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ABSTRACT OF THE DISSERTATION

Coding for Flash Memories

by

Eitan Yaakobi

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2011

Professor Paul H. Siegel, Co-Chair
Professor Alexander Vardy, Co-Chair

Flash memories are, by far, the most important type of non-volatile memory in use today.

They are employed widely in mobile, embedded, and mass-storage applications, and the growth

in this sector continues at a staggering pace. Moreover, since flash memories do not suffer

from the mechanical limitations of magnetic disk drives, solid-state drives have the potential

to upstage the magnetic recording industry in the foreseeable future. The research goal of this

dissertation is the discovery of new coding theory methods that supports efficient design of flash

memories.

Flash memory is comprised of blocks of cells, wherein each cell can take on q > 2

levels. While increasing the cell level is easy, reducing its level can be accomplished only by

erasing an entire block. Such block erasures are not only time-consuming, but also degrade the

xv



memory lifetime.

Our main contribution in this research is the design of rewriting codes that maximize the

number of times that information can be written prior to incurring a block erasure. Examples of

such coding schemes are flash/floating codes and buffer codes, introduced by Jiang and Bruck

et al. in 2007, and WOM-codes that were presented by Rivest and Shamir almost three decades

ago. The overall goal in these codes is to maximize the amount of information written to a fixed

number of cells in a fixed number of writes.

Furthermore, the design of error-correcting codes in flash memories is extensively stud-

ied. It is shown how to modify WOM-codes to support an error-correction capability. Motivated

by the asymmetry of the error behavior of flash memories and the work by Cassuto et al., a cod-

ing scheme to correct asymmetric errors is presented. An extensive empirical database of errors

was used to develop a comprehensive understanding of the error behavior as well as to design

specific error-correcting codes for flash memories.

This research on flash memories is expanded to other directions. Wear leveling tech-

niques are widely used in flash memories in order to reduce and balance block erasures. It is

shown that coding schemes to be used in these techniques can significantly reduce the number

block erasures incurred during data movement. Also, the design of parallel cell programming

algorithms is studied for the specific constraints and behavior of flash cells.

xvi



Chapter 1

Introduction

1.1 Background

Coding theory was effectively born in 1948, with the publication of Shannon’s cele-

brated classic paper [3]. It was recognized early on that error-correction coding is a powerful

system design technique that can fundamentally change the trade-offs in a communication sys-

tem. Indeed, in order to improve performance, error-control coding has been widely used by

the communications and data storage industries. In particular, the research in this dissertation

focuses on the relevant problems arising from flash memory systems.

Any communication channel can be considered as a transmission of information either

from one place to another — space domain, or from one time to another — time domain. In

both types of communication channels, the information cannot be perfectly transmitted and a

noisy version of it is received. The noise can be caused by various reasons. If the information

is transmitted in the space domain then any natural source such as weather conditions, radiation,

thermal effects, etc. can cause noise in the channel. In the time domain, the information is stored

on a memory device and any physical defect or degradation of the memory reliability can damage

the stored data. For example, a scratch on a CD will corrupt the bits that are stored in that area on

the CD. Both channels use the same types of signal processing systems and error-control codes

in order to transmit the information reliably.

Data storage devices rely upon error detection and correction (EDAC) codes to ensure

highly reliable information retrieval. Optical storage devices, such as CD- and DVD-based

recorders, allocate significant overhead for the redundancy introduced by the encoding of data

into codewords. High-performance hard disk drives also devote overhead for high-rate EDAC

1
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codes that can correct multiple erroneous symbols within a codeword. The powerful codes used

in these storage devices are the culmination of decades of research and development, and efforts

to design more powerful and efficient EDAC coding algorithms are ongoing.

Non-volatile data storage devices, particularly those based upon flash memory tech-

nologies, are revolutionizing the way we access and manipulate information. They have many

attractive features compared to magnetic hard disk drives, including their compactness, shock

resistance, lack of moving parts, and lower data-access time. Flash memory is now the storage

medium of choice in portable consumer electronic applications, and high performance solid-

state drives (SSDs) are also being introduced into mobile computing, enterprise storage, data

warehousing, and data-intensive computing systems. Accordingly, there is a surge in interest in

the refinement, development, and expanded commercial use of these non-volatile memory tech-

nologies. On the other hand, these technologies present major challenges in the areas of device

reliability, endurance, and energy efficiency. These challenges can be overcome, in part, through

innovative coding and data handling techniques.

Flash memory chips may use single-level cell (SLC) technology, where each cell can

store one binary digit, or multi-level cell (MLC) technology, where each cell can store multiple

binary digits. First generation flash storage devices have used only low-redundancy EDAC codes

that offer minimal error correction and detection capabilities, such as single-bit error-correcting

Hamming codes and error-detecting cyclic redundancy check (CRC) codes. The demand for

increased storage capacity, coupled with the introduction of MLC flash technology, has created

the need for more powerful ECC methods, such as BCH codes and Low-Density Parity-Check

(LDPC) codes.

1.2 Flash Memory Basics

A flash memory consists of an array of floating-gate cells, organized into blocks (a

typical block comprises roughly 220 cells). Hot-electron injection is used to inject electrons into

a cell, where they become trapped. The Fowler-Nordheim tunneling mechanism (field emission)

can be used to remove electrons from an entire block of cells, thereby discharging them. The

level of a cell is a function of the amount of charge (electrons) trapped within it. Historically,

flash cells have been designed to store only two values (one bit); however, multilevel flash cells

are actively being developed and are already in use in many devices [3]. In multilevel flash cells,

voltage is quantized to q discrete threshold values. The parameter q can range from q = 2 (the

conventional two-state case) up to q = 16.
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The most conspicuous property of flash storage is its inherent asymmetry between cell

programming (charge placement) and cell erasing (charge removal). While adding charge to a

single cell is a fast and simple operation, removing charge from a cell is very difficult. In fact,

flash memories do not allow a single cell to be erased; rather, only entire blocks (comprising up

to 220 or more cells) can be erased. Thus, a single cell erase operation requires the cumbersome

process of copying an entire block to a temporary location, erasing it, and then re-programming

all the cells except one. Moreover, since over-programming (raising the charge of a cell above

its intended level) can only be corrected by a block erasure, in practice, a conservative procedure

is used for programming a cell. Charge is injected into the cell over numerous rounds; after

every round, the charge level is measured and the next-round injection is configured, so that the

charge gradually approaches its desired level. All this is extremely costly in time and energy.

Such block erasures are not only time-consuming, but also degrade the lifetime of the memory.

A typical block can tolerate about 104 − 105 or fewer erasures.

1.3 Codes for Flash Memories

As flash memory has become ubiquitous in recent years, finding solutions for its limited

lifetime and asymmetric programming behavior has become an important challenge. Examples

of such coding solutions were given in [4,8,9,11,12,17,31]. The goal in these codes is to rewrite

the information into flash memories while preserving the constraint that on each write cells can

only increase their value. In fact, the model and behavior of a flash memory is very similar to

the well-studied write-once memory (WOM) model. Inspired by memories such as punch cards

and optical disks, Rivest and Shamir first introduced WOM-codes in 1982. Similarly to flash, in

these memories, the media can be represented as a collection of write-once bit locations, each

of which initially represents a bit value 0 that be irreversibly overwritten with a bit value 1.

Constructions of WOM-codes were given for example in [2, 5, 5, 13, 17, 18] and were recently

improved in [11,19]. Error correcting WOM-codes were also studied in [20,21] and more recent

constructions appeared in [29].

Slightly different and yet very related are the rank modulation codes [12, 13]. In rank

modulation, the information is not stored according to the exact cell levels but rather by the cell

permutation which is derived from these levels. Other works explore efficient data movement in

flash memories that minimize the number of block erasures as well as extra space [13, 17] and

fast cell programming algorithms of flash memories [7, 8, 27].
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1.4 Dissertation Overview

After understanding the model and constraints in flash memory we can overview the

problems which this dissertation solves using coding theory tools.

In Chapter 2, we present rewriting codes for flash memories. The first part of this chapter

focuses on the flash codes problem and a nearly optimal construction of such codes is presented.

In the second part, buffer codes are studied. An upper bound and a construction of such codes

are presented which improve upon the related previous work.

WOM-codes are studied in Chapter 3. We first show how to construct two-write WOM-

codes that improve upon the best previously known. These codes are also used to construct codes

for the Blackwell channel. Then, we show how to extend these codes to an arbitrary number of

writes, giving the best known WOM-codes for 3 6 t 6 10 writes.

The study of WOM-codes is continued in Chapter 4. Here, error-correcting WOM-codes

are constructed which improve upon the previously known single-error-correcting WOM-codes.

Extensions for double- and triple-error-correcting WOM-codes are given as well. For triple-

error-correction, we introduce the notion of strong cyclic error-correcting codes. Finally, we

show how to design WOM-codes for the correction of any arbitrary number of errors.

Chapter 5 describes a new error model for multi-level flash memories based upon a

graded distribution of asymmetric errors of limited magnitudes. We show how to use a previous

construction by Cassuto et al. [5] of asymmetric limited-magnitude error-correcting codes in

order to develop a family of codes that correct asymmetric errors in the new model.

Chapter 6 presents algorithms for programming flash memory cells. First, a model

which describes the programming of flash memory cells is given. According to this model,

algorithms to program the cells in parallel are given. Modifications to programming with noise

and inter-cell interference are given as well. Then, we show an algorithm that is used to get

information about the characteristics of the cells and using this information we show how to

program a cell with feedback.

Chapter 7 studies how to efficiently move data in flash memories. We show how to

utilize coding schemes in order to construct codes that reduce the number of auxiliary blocks

used in the algorithm as well as the number of block erasures.

Finally, Chapter 8 uses empirical data to characterize the flash error behavior. This

information will be useful in the design of new error-correcting codes for flash memories. Fur-

thermore, we explore in this chapter the implementation of WOM-codes in flash memories.
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Chapter 2

Rewriting Codes for Flash Memories

2.1 Introduction

In Chapter 1, we described how flash memories work and in particular the constraints

of such memories. The most conspicuous property of flash-storage technology is its inherent

asymmetry between cell programming (charge placement) and cell erasing (charge removal). In

fact, flash technology does not allow a single cell to be erased — rather, only entire blocks can be

erased. This constraint makes it important to design coding schemes that maximize the number

of times information stored in a flash memory can be written (and re-written) prior to incurring

a block erasure.

Such coding schemes — known as floating codes or flash codes and buffer codes —

were first introduced in [1, 7, 8] a few years ago. Since then, several more papers on this subject

have appeared in the literature [5, 9, 9, 11, 12, 17]. It should be pointed out that flash codes and

buffer codes can be regarded as examples of memories with constrained source, which were

described in [11]. Yet another example of such codes are the write-once memory (WOM)

codes [2, 3, 5], that have been studied since the early 1980s. In fact, flash codes may be re-

garded as a generalization of WOM-codes. Slightly different and yet very related are the rank

modulation codes [12, 13]. In rank modulation, the information is not stored according to the

exact cell levels but rather by the cell permutation which is derived from these levels.

8
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2.2 Preliminaries and Flash Codes Definition

Let us first give a precise definition of flash codes that were introduced less formally

in the previous section. We use {0, 1}k to denote the set of binary vectors of length k, and

refer to the elements of this set as information vectors. The set of possible levels for each

cell is denoted by Aq = {0, 1, . . . , q−1} and thought of as a subset of the integers. The qn

vectors of length n over Aq are called cell-state vectors. With this notation, any flash code C
can be specified in terms of two functions: an encoding map E and a decoding map D. The

decoding map D : An
q → {0, 1}k indicates for each cell-state vector x∈An

q the corresponding

information vector. In turn, the encoding map E : {0, 1, . . . , k−1}×An
q → An

q ∪ {E} assigns

to every index i and cell-state vector x∈An
q , another cell-state vector y = E(i, x) such that

y j > x j for all j and D(y) differs from D(x) only in the i-th position. If no such y∈An
q exists,

then E(i, x) = E indicating that block erasure is required. To bootstrap the encoding process,

we assume that the initial state of the n memory cells is (0, 0, . . . , 0). Henceforth, iteratively

applying the encoding map, we can determine how any sequence of transitions 0→ 1 or 1→ 0

in the k information bits maps into a sequence of cell-state vectors, eventually terminated by the

block erasure. This leads to the following definition.

Definition 2.2.1. An (n, k)q flash code C(D, E) guarantees t writes if for all sequences of up

to t transitions 0→ 1 or 1→ 0 in the k information bits, the encoding map E does not produce

the block erasure symbol E. If so, we say that C is an (n, k, t)q code, and define the deficiency

of C as δ(C) = n(q−1)− t.

In addition to this definition, we will also use the following terminology. Given a vector

x = (x1, x2, . . . , xm) over Aq, we define its weight as wt(x) = x1 + x1 + · · ·+ xm (where the

addition is over the integers), and its parity as wt(x) mod 2.

2.3 Two Bits Flash Codes

In this section, we present our first construction of flash codes. In [8], a construction for

storing two bits is presented and is shown to be optimal. The construction given here will be

proved to be optimal as well and we believe that it is more intuitive.

In this construction, the leftmost and rightmost cells correspond to the first and second

bit, respectively. When rewriting, if the first or second bit changes its value then the leftmost

or rightmost cell of level less than q− 1 is increased by one level, respectively. In general, the
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cell-state vector has the following form:

(q− 1, . . . , q− 1, xi, 0, . . . , 0, x j, q− 1, . . . , q− 1),

where 0 < xi, x j 6 q − 1. This principle repeats itself until only one cell is left with level

less than q − 1. Then, this cell is used to store two bits according to its residue modulo 4.

If this residue is 0, 1, 2, 3 then the value of the bits is (v1, v2) = (0, 0), (1, 0), (0, 1), (1, 1),

respectively. The construction is presented for odd values of q and we will discuss later how

to modify it for even values as well. In what follows, these maps are described algorithmically,

using (C-like) pseudo-code notation.

Decoding mapD2 : The input to this map is a cell-state vector x = (x1, x2, . . . , xn). The output

is the corresponding two-bit information vector (v1, v2).

i1 = find left cell(y1, y2, . . . , yn);
i2 = find right cell(y1, y2, . . . , yn);
if(i2 == 0) // all cells are full
{{ v1 = q - 1(mod 2); v2 = b((q - 1)(mod 4))/2c; }}
if (i1 == i2) // there is only one non-full cell
{{ v1 = yi1(mod 2); v2 = b(yi1(mod 4))/2c; }}
if (i1 != i2) // there are at least two non-full cells
{{ v1 = yi1(mod 2); v2 = yi2(mod 2); }}

Encoding map E2 : The input to this map is a cell-state vector x = (x1, x2, . . . , xn), and an

index j ∈ {1, 2} of the bit that has changed. Its output is either a new cell-state vector y =

(y1, y2, . . . , yn) or the erasure symbol E.

(y1, y2, . . . , yn) = (x1, x2, . . . , xn);
i1 = find left cell(y1, y2, . . . , yn);
i2 = find right cell(y1, y2, . . . , yn);
if(i2 == 0) return E;
if (i1 == i2) // there is only one non-full cell
{{ if( j == 2) a = 2;
else a = j + 2·(yi1(mod 2));
if(yi1 + a > q - 1) return E;
else {{ yi1 = yi1 + a;return; }} }}

yi j = yi j + 1;
if ((i2 - i1 == 1) ∧ (yi j == q - 1))
{{ vi j = 0; vi3− j = yi3− j(mod 2);

a = 2 · v2 + v1 - (yi3− j(mod 4));
if(a < 0) yi3− j = yi3− j + 4 + x;
else yi3− j = yi3− j + a; }}
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The function find left cell(y1, y2, . . . , yn) finds the leftmost cell of level less

than q− 1 and if there is not such a cell then it returns n+ 1. Similarly, the function find righ-

t cell(y1, y2, . . . , yn) finds the rightmost cell of level less than q− 1 and if there is not such

a cell then it returns 0. The notation yi j stands for the variable yi1 in case j = 1, and yi2 if j = 2.

The same rule applies for yi3− j . The symbol ∧ stands for the logical operator “and”. The next

theorem proves the number of writes this construction guarantees.

Theorem 2.3.1. If there are n q-level cells and q is odd, then the code C(D2, E2) guarantees at

least t = (n− 1)(q− 1) +
⌊

q−1
2

⌋
writes before erasing.

Proof. As long as there is more than one cell of level less than q− 1, the weight of the cell-state

vector increases by one on each write. This may change only after at least (n− 1)(q− 1) writes.

Assume that there is only one cell of level less than q− 1 after s = (n− 1)(q− 1) + k writes,

where k > 0, and call it the i-th cell. Starting this write, the different residues modulo 4 of the

i-th cell correspond to the four possible two-bit information vector (v1, v2). Therefore, on the

s-th write, we also need to increase the level of the i-th cell so it will correspond to the correct

information vector on this write. For all succeeding writes, if the second bit changes then the

i-th cell increases by two levels. If the first bit changes from 0 to 1 then the i-th cell increases by

one level and otherwise by three levels. Therefore, if there are m more writes and v1 = 0 then

the i-th cell increases by at most 2m levels, and if there are m more writes and v1 = 1 then the

i-th cell increases by at most 2m + 1 levels.

Let us consider all possible values of k and the information vector (v1, v2) on the s-th

write in order to calculate the number of guaranteed writes before erasing. Note that on the

s-th write (v1 + v2) ≡ s(mod 2). Furthermore, since q is odd, the value of the bit that is

written changes from one to zero because it reaches level q− 1, and thus the other bit has value

k(mod 2).

1. Assume k(mod 4) = 0, then (v1, v2) = (0, 0) and the level of the i-th cell does not

increase on the s-th write. Since v1 = 0, after m writes the cell increases by at most 2m

levels. Hence, there are at least q−1−k
2 more writes and the total number of writes is at

least

(n− 1)(q− 1) + k +
q− 1− k

2
> (n− 1)(q− 1) +

q− 1
2

.

2. Assume k(mod 4) = 1, then (v1, v2) = (1, 0) or (v1, v2) = (0, 1). If (v1, v2) = (1, 0)

then on the s-th write the i-th cell does not increase its level and after m writes its level

increases by at most 2m + 1 levels. If (v1, v2) = (0, 1) then the i-th cell increases by
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one level and after m writes its level increases by at most 2m more levels. Hence, in both

cases there are at least q−2−k
2 more writes. Together we get that the total number of writes

is at least

(n− 1)(q− 1) + k +
q− 2− k

2
> (n− 1)(q− 1) +

q− 1
2

.

3. Assume k(mod 4) = 2, then (v1, v2) = (0, 0) and the i-th cell increases by two levels

on s-th write. Since v1 = 0 after m more writes the cell increases by at most 2m levels

and hence there are at least b(q− 1− (k + 2))/2c more writes, where k > 2. There total

number of write is at least

(n− 1)(q− 1) + k +
q− 3− k

2
> (n− 1)(q− 1) +

q− 1
2

.

4. Assume k(mod 4) = 3, then (v1, v2) = (1, 0) or (v1, v2) = (0, 1). If (v1, v2) = (1, 0)

then on the s-th write the i-th cell increases by two levels and after m more writes it

increases by at most 2m + 1 levels. If (v1, v2) = (0, 1) then the i-th cell increases by

three levels and after m more writes it increases by at most 2m more levels. Hence there

are at least q−4−k
2 more writes, where k > 3. Thus, the total number of writes is at least

(n− 1)(q− 1) + k +
q− 4− k

2
> (n− 1)(q− 1) +

q− 1
2

.

In any case, the guaranteed number of writes is (n− 1)(q− 1) +
⌊

q−1
2

⌋
.

For even values of q, the construction is very similar. As long as there is more than one cell

of level less q− 1 we follow the same rules for the encoding. For the decoding, since q− 1 is

no longer even, the value of v1 is the parity of the cells 1, . . . , i1, where i1 is the leftmost cell

of value less q− 1. The value of v2 is the parity of the cells i2, i2 + 1, . . . , n, where i2 is the

rightmost cell of value less q− 1. If there is only one left cell, then it represents a value of two

bits as before according to its residue modulo 4. If the the index of the last available cell is i then

v1 = (i− 1 + yi)(mod2),

v2 = ((n− i) + b(yi(mod4))/2c)(mod2).

Also, the last cell does not reach level q− 1 so is always possible to distinguish what the last

cell is. We omit the tedious details as the proof is similar to the case where q is odd.
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2.4 Index-less Indexed Flash Codes

What is the smallest possible write deficiency δq(n, k) for an (n, k, t)q flash code, and

how does it behave asymptotically as the code parameters k and n get large? The best-known

lower bound, due to Jiang, Bohossian, and Bruck [8], asserts that

δq(n, k) >
1
2
(
q− 1

)
min{n, k−1}. (2.1)

How closely can this bound be approached by code constructions? It appears that the answer

to this question depends on the relationship between k and n. In this section, we are concerned

mainly with the case where both k and n are large, and n is much larger than k (in particular,

n > k2). In Section 2.6, we will consider the case k/n = const. At the other end of the spectrum,

the case k > n has been studied in [11].

The first construction of flash codes for large k are the so-called indexed flash codes,

due to Jiang and Bruck [9, 9]. In this construction, the k information bits are partitioned into

m1 = k/k′ subsets of k′ bits each (with k′ 6 6) while the memory cells are subdivided into

m2 > m1 groups of n′ cells each. Additional memory cells (called index cells) are set aside to

indicate for each subset of k′ bits which group of n′ memory cells is used to store them. The

deficiency of the resulting flash codes is O(
√

qn). Note that for n > k, the lower bound on

write deficiency in (2.1) behaves as Ω(qk), and thus does not depend on n. Consequently, the

gap between the Jiang-Bruck construction [9] and the lower bound could be arbitrarily large,

especially when n is much larger than k.

In [17], a different construction of flash codes was proposed. These codes are based upon

representing the n memory cells as a high-dimensional array, and achieve a write deficiency of

O(qk2). Crucially, the deficiency of these codes does not depend on n. Nevertheless, there was

still a significant gap between O(qk2) — which was the best currently known result — and the

lower bound of Ω(qk).

Our point of departure are the indexed flash codes by Jiang and Bruck [9, 9], that were

briefly described above. In this section, we eliminate the need for index cells — and, thus, the

overhead associated with these cells — in the Jiang-Bruck construction [9]. This is achieved by

“encoding” the indices into the order in which the cell levels are increased.

As in [9], we partition the n memory cells into m groups of n′ cells each. However,

while in [9] the value of n′ is more or less arbitrary, in our construction n′= k. We henceforth

refer to such groups of n′= k cells as blocks (though they are not related to the physical blocks

of floating-gate cells which comprise the flash memory). We will furthermore use, throughout
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this chapter, the following terminology. We say that:

I a block is full if all its cells are at level q−1;

I a block is empty if all its cells are at level zero;

I a block is active if it is neither full nor empty.

In our construction, each block represents exactly one bit. This implies that the total number

of blocks, given by m = bn/kc, must be at least k, which in turn implies n > k2. If n is not

divisible by k, the remaining cells are simply left unused. Finally, we also assume that either k

is even or q is odd. If this is not the case, we can invoke the same construction with k replaced

by k + 1 (and the last bit permanently set to zero).

The key idea is that each block is used to encode not only the current value of the bit

that it represents, but also which of the k bits it represents. The value of the bit is simply the

parity of the block. The index of the bit is encoded in the order in which the levels of the k

cells are increased. For example, if the block stores the i-th bit, first the level of the i-th cell in

the block is increased from 0 to q−1 in response to the transitions 0→ 1 and 1→ 0 in the bit

value. Then, the same procedure is applied to the (i+1)-st cell, the (i+2)-nd cell, and so on,

with the indices i + 1, i + 2, . . . interpreted cyclically (modulo k). This process is illustrated in

the following example.

Example 2.4.1. Suppose that k = 4 and q = 3. If a block represents the first bit, then its cell

levels will transition from (0, 0, 0, 0) to (2, 2, 2, 2) in the following order:

(0000)→ (1000)→ (2000)→ (2100)→ (2200)

→ (2210)→ (2220)→ (2221)→ (2222)

On the other hand, for a block that represents the second bit, the corresponding cell-writing order

is given by:

(0000)→ (0100)→ (0200)→ (0210)→ (0220)

→ (0221)→ (0222)→ (1222)→ (2222)

The cell-writing orders for blocks that represent the third and fourth bits are given, respectively,

by

(0000)→ (0010)→ (0020)→ (0021)→ (0022)

→ (1022)→ (2022)→ (2122)→ (2222)
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and

(0000)→ (0001)→ (0002)→ (1002)→ (2002)

→ (2102)→ (2202)→ (2212)→ (2222)

Note that, unless a block is full, it is always possible to determine which cell was written first

and, consequently, which of the k = 4 bits this block represents.

We now provide a precise specification of an (n, k)q flash code C based upon this idea,

in terms of a decoding map DA and an encoding map EA.

Decoding mapDA : The input to this map is a cell-state vector x = (x1|x2| · · · |xm), partitioned

into m blocks. The output is the corresponding information vector (v0, v1, . . . , vk−1).

(v0, v1, . . . , vk−1) = (0, 0, . . . , 0);
for ( j = 1; j 6 m; j = j+ 1)
if (active(x j))
{{ i = read index(x j); vi = parity(x j); }}

Encoding map EA : The input to this map is a cell-state vector x = (x1|x2| · · · |xm), partitioned

into m blocks of k cells, and an index i of the bit that has changed. Its output is either a cell-state

vector y = (y1|y2| · · · |ym) or the erasure symbol E.

(y1|y2| · · · |ym) = (x1|x2| · · · |xm);

for ( j = 1; j 6 m; j = j+ 1)
if (active(x j) ∧ (read index(x j)== i))
{{ write(y j); break; }}

if ( j == m + 1) // active block not found
for ( j = 1; j 6 m; j = j+ 1)
if (empty(x j)) {{ write new(i,y j); break;}}

if ( j == m + 1) // no empty blocks remain
return E;

To complete the specification of the flash code C(DA, EA), let us elaborate upon all the

functions used in the pseudo-code above. The functions active(x), respectively empty(x),

simply determine if the given block is active, respectively empty. The function parity(x)

computes the parity of x, defined in Section 5.2. Note that the parity of a full block is always

zero (since k(q−1) is even, by assumption). The function read index(x) computes the bit-

index encoded in an active block x = (x0, x1, . . . , xk−1). This can be done as follows. Find

all the zero cells in x. Note that these cells always form one cyclically contiguous run, say

x j, x j+1, . . . , x j+r (where the indices are modulo k). Then the index of the corresponding bit is
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i = j + r + 1 mod k. If there are no zeros in x, there must be exactly one cell, say x j, whose

level is strictly less than q−1. In this case, the bit-index is i = j + 1 mod k. The function

write(y) proceeds along similar lines. Find the single cyclically contiguous run of zeros in

(y0, y1, . . . , yk−1), say y j, y j+1, . . . , y j+r. If y j−1 < q−1, increase y j−1 by one; otherwise set

y j = 1. If there are no zeros in y, find the unique cell y j such that y j < q−1 and increase its

level by one. Fin- ally, the function write new(i,y) simply sets yi = 1.

Theorem 2.4.1. The write deficiency of the flash code C(DA, EA) described above is at most

(k− 1)
(
(k + 1)(q−1) − 1

)
= O

(
qk2) (2.2)

Proof. Note that at each instance, at most k of the m blocks are active. The encoding map

EA(i, x) produces the erasure symbol E when there are no more empty blocks, and the block

representing the i-th bit is full. In the worst case, this may occur when there are k − 1 active

blocks, each using just one cell level. This contributes (k− 1)
(
k(q−1)− 1

)
unused cell levels.

In addition, there are at most k − 1 cells that are unused due to the partition into m = bn/kc
blocks of exactly k cells. These contribute at most (k− 1)(q−1) unused cell levels.

2.5 Nearly Optimal Construction

It is apparent from the proof of Theorem 2.4.1 that the deficiency of the flash code

C(D0, E0), constructed in Section 2.4, is due primarily to the following: when writing stops,

there are still potentially numerous unused cell levels. The key idea developed in this sec-

tion is to continue writing after the encoding map E0 produces the erasure symbol E, utilizing

those cell levels that are left unused by E0. Obviously, it is not possible to continue writing using

the same encoding and decoding maps. However, it may be possible to do so if, at the point

when E0 produces the erasure symbol E, we switch to a different encoding procedure, say E1. In

fact, this idea can be applied iteratively: once E1 reaches its limit, we will transition to another

encoding map E2, then yet another map E3, and so on.

Assuming that k ≡ 0 (mod 4), here is one way to continue writing after the encoding

map E0 has been exhausted. When E0 produces the erasure symbol E, we say that the first stage

of encoding is over and transition to the second stage, as follows. First, we re-examine the cell-

state vector x = (x1|x2| · · · |xm) and re-partition it into 2m = 2 bn/kc blocks of k/2 cells

each. Most of these smaller blocks will be already full, but we may find some m1 of them that
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are either empty or active (live). Observe that m1 6 2(k− 1) since at the end of the first stage,

there are at most k − 1 active blocks of k cells, and each of them produces at most two live

(non-full) blocks of k/2 cells.

If m1 > k, we can continue writing as follows. Once again, each of the m1 blocks

will represent exactly one bit; as before, the value of this bit is determined by the parity of the

block. As part of the transition from the first stage to the second stage, we record the current

information vector (v0, v1, . . . , vk−1) in the first k of the m1 live blocks, say x1, x2, . . . , xk. To

this end, whenever parity(xi) 6= vi−1, we increase the level of one of the cells in xi by one;

otherwise, we leave xi as is.

Since the blocks now have k/2 cells rather than k cells, it is no longer possible to en-

code in each block which of the k information bits it represents. Therefore, we set aside for

this purpose 2(k−1)dlogq(k+2)e index cells (that are not used during the first stage). These

cells are partitioned into 2(k−1) blocks of µ = dlogq(k+2)e cells each, which we call index

blocks. Henceforth, it will be convenient to refer to the blocks of k/2 cells as parity blocks, in

order to distinguish them from the index blocks. Initially, the first k index blocks u1, u2, . . . , uk

are set so that ui = i (in the base-q number system), which reflects the fact that the informa-

tion bits v0, v1, . . . , vk−1 are stored (in that order) in the first k live parity blocks. The next

m1− k index blocks are set to (0, 0, . . . , 0), thereby indicating that the corresponding (live) par-

ity blocks are available to store information bits. The last 2(k−1)−m1 index blocks are set to

(q−1, q−1, . . . , q−1) to indicate that the corresponding parity blocks are full (in fact, nonexis-

tent). Finally, it is possible that in the process of enforcing parity(xi)= vi−1 for the first k

live parity blocks, some of these blocks become full (this happens iff wt(xi) = (k/2)(q−1)− 1

and vi = 0 at the end of the first stage, since k/2 is even by assumption). To account for this fact,

we set the corresponding index blocks to (q−1, q−1, . . . , q−1). This completes the transition

from the first stage to the second stage, which is invoked when the encoding map E0 produces

the erasure symbol E.

Let us now summarize the foregoing discussion by giving a concise algorithmic descrip-

tion of the transition procedure.

Transition procedure T1 : Partition the memory into 2 bn/kc parity blocks of k/2 cells, and

identify the m1 6 2(k−1) parity blocks x1, x2, . . . , xm1 that are not full. If m1 < k, output the

erasure symbol E and terminate. Otherwise, set the 2(k−1) index blocks u1, u2, . . . , u2k−2 as
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follows:

ui =


i for i = 1, 2, . . . , k

0 for i = k + 1, k + 2, . . . , m1

qµ − 1 for i = m1+1, m1+2, . . . , 2k− 2

(2.3)

where µ = dlogq(k+2)e is the number of cells in each index block, then record the information

vector (v0, v1, . . . , vk−1) in the first k live parity blocks x1, x2, . . . , xk, as follows:

for (i = 1; i 6 k; i = i + 1)
if (parity(xi) 6= vi−1)
{{ increment(xi); if (full(xi)) ui = qµ − 1;}}

The function full(x) determines whether the given block x (which could be a parity block or

an index block) is full. The function increment(x) increases by one the level of a cell (does

not matter which) in the given live block.

During second-stage encoding and decoding, we will need to figure out for each active

parity block x which of the k information bits it represents. To this end, we will have to find and

read the index block u that corresponds to x. How exactly is the correspondence between parity

blocks and index blocks established? Note that, upon the completion of the transition procedure

T1, there is the same number of live parity blocks and live index blocks; moreover, the j-th live

index block corresponds to the j-th live parity block, for all j. The encoding procedure will make

sure that this correspondence is preserved throughout the second stage: whenever a parity block

becomes full, it will make the corresponding index block full as well.

We are now ready to present the encoding and decoding maps which are, again, specified

in C-like pseudo-code notation.

Decoding map D1 : The input is a cell-state vector x = (x1|x2| · · · |x2m|| u1|u2| · · · |u2k−2),

partitioned into 2m parity blocks, of k/2 cells each, and 2(k−1) index blocks. The output is the

information vector (v0, v1, . . . , vk−1).

(v0, v1, . . . , vk−1) = (0, 0, . . . , 0);
for (` = j = 1; j 6 2m; j = j+ 1)
{{
if (full(x j)) continue; //skip full blocks
while (full(u`)) ` = `+ 1;//skip full blocks
i = u`; ` = `+ 1;
if (i 6= 0) vi−1 = parity(x j);}}

Given an index i of the bit that has changed, the encoding map E1 first tries to find an active

parity block x that represents the i-th information bit. If such a block is found, it is incremented
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and checked for getting full (in which case the corresponding index block is set to qµ − 1). If

not, another live parity block is allocated to represent the i-th information bit. If no more live

parity blocks are available, the erasure symbol E is returned.

Encoding map E1 : The input is a cell-state vector x = (x1|x2| · · · |x2m|| u1|u2| · · · |u2k−2),

partitioned into 2m parity blocks and 2(k−1) index blocks, and an index i of the information bit

that changed. Its output is either a cell-state vector y = (y1|y2| · · · |y2m|| u′1|u′2| · · · |u′2k−2) or

the symbol E.

(y1|y2| · · · |y2m) = (x1|x2| · · · |x2m);
(u′1|u′2| · · · |u′2k−2) = (u1|u2| · · · |u2k−2);

for (` = j = 1; j 6 2m; j = j+ 1)
{{

if (full(x j)) continue;
while (full(u`)) ` = `+ 1;
if (u` == i + 1)
{{

increment(y j);
if(full(y j)) u′` = qµ − 1;
break;

}}
else ` = `+ 1;

}}
if ( j == 2m + 1) // active block not found
for (` = j = 1; j 6 2m; j = j+ 1)
{{

if (full(x j)) continue;
while (full(u`)) ` = `+ 1;
if (u` == 0)
{{

u′` = i + 1;
if (parity(x j) 6= vi)increment(y j);
if (full(y j)) u′` = qµ − 1;
break;

}}
else ` = `+ 1;

}}
if ( j == 2m + 1) // no more available live blocks
return E;

Note that when the second encoding stage terminates, there are at most k − 1 parity

blocks that are not full, comprising at most k(k − 1)/2 cells (at most k(k − 1)(q−1)/2 cell-

levels).

Once the maps D1 and E1 are understood, it becomes clear that the same approach

can be applied iteratively. The resulting flash code C∗ will proceed, sequentially, through s

different encoding stages E0, E1, . . . , Es−1, where s = dlog2 ke. In describing this code, we

shall assume for the sake of simplicity that k is a power of two, that is k = 2s. If not, the same
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code can be used to store 2s > k information bits, of which the last 2s − k are set to zero. Note

that this will not change the order of the resulting write deficiency.

To accommodate the encoding maps E1, E2, . . . , Es−1, we set aside for each map a

batch of 2(k − 1) index blocks, with each index block consisting of µ = dlogq(k+2)e cells.

The transition procedure Tr which bridges between the encoding maps Er−1 and Er (for some

r∈ {2, 3, . . . , s−1}) is identical to the transition procedure T1, except for the following differ-

ences:

D1. The r-th batch of index blocks is used; and

D2. The parity blocks consist of k/2r cells each.

In addition to D1 and D2, the decoding/encoding maps Dr and Er differ from D1 and E1 in that

“2m” should be replaced by “2rm” throughout, where m stands for bn/kc as before. There are

no other differences.

Theorem 2.5.1. For s= dlog2ke, the write deficiency order of the flash code C∗, which is

defined by the sequence of decoding/encoding maps D0,D1, . . . ,Ds−1 and Eo, E1, . . . , Es−1, is

O
(
qk log2k/log q

)
.

Proof. We consider the worst-case scenario for the number of cell levels that are either unused

or “wasted” in the overall encoding procedure. As before, there are at most k− 1 cells that are

unused due to the partition into bn/kc blocks, of exactly k cells each, at the very first encoding

stage. These cells contribute at most (q−1)(k − 1) unused cell levels. The index blocks for

the s − 1 encoding maps E1, E2, . . . , Es−1 contain 2(k − 1)(s − 1)µ cells altogether, thereby

wasting at most

2(q− 1)(k− 1)(s− 1)dlogq(k+2)e = O
(

qk log2k
log q

)
(2.4)

cell levels. In each of the s − 1 transition procedures, the situation parity(xi) 6= vi−1 can

occur at most k times, and each time it occurs a single cell level is wasted. Finally, as in Theo-

rem 2.4.1, when the encoding process Eo, E1, . . . , Es−1 terminates there are at most k− 1 parity

blocks that are not full and, in the worst case, each of them uses just one cell level. However,

now these parity blocks contain only dk/2s−1e = 2 cells each, and thus contribute at most

(k− 1)(2q− 3) unused cell levels. Putting all of this together, we find that at most

(q−1)(k−1)
(

2(s−1)dlogq(k+2)e + 3
)

+ k(s−1) (2.5)
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cell levels are wasted or left unused. Clearly, this expression is dominated by (2.4), and thus

bounded by O
(
qk log2k/log q

)
.

For large q, the upper bound of O
(
qk log2k/log q

)
on the deficiency of our scheme can

be improved by using a more efficient “packaging” of index blocks in the flash memory. As

before, we allocate a batch of 2(k− 1) index blocks to each encoding stage except E0. But now,

every index block will occupy µ′ = dlog2(k+2)e cells rather than µ = dlogq(k+2)e cells, and

the indices will be written in binary rather than in the base-q number system. This allows index

blocks that correspond to successive encoding stages to be “stacked on top of each other” in

the same memory cells. Specifically, the encoding stage E1 will use only cell levels 0 and 1 to

record the indices in its index blocks. Once this stage is over, the index information recorded

during T1 and E1 is no longer relevant, and the level of all the 2(k− 1)µ′ cells in the 2(k− 1)

index blocks can be raised to 1. Thereafter, provided q > 3, the transition procedure T2 and the

encoding map E2 can use cell levels 1 and 2 to record the relevant index information in the same

memory cells. Proceeding in this manner, we can accommodate up to q − 1 batches of index

blocks in 2(k − 1)µ′ memory cells. We shall refer to this indexing scheme as stacked binary

indexing and denote the resulting flash code by C′.

Theorem 2.5.2. The write deficiency of the flash code C′ defined by the sequence of decod-

ing/encoding maps D0,D1, . . . ,Ds−1 and Eo, E1, . . . , Es−1 that use stacked binary indexing is

at most O(qk log k) if q > log2 k, and at most O(k log2 k) otherwise.

Proof. With stacked binary indexing, the number of cell levels wasted in all the 2(k− 1)(s− 1)

index blocks is at most

2(q− 1)(k− 1)
⌈

s− 1
q− 1

⌉
dlog2(k+2)e (2.6)

Although for most values of k and q this is strictly less than (2.4), all the other terms in (2.5) are

still dominated by (2.6).

Remark. If we need to store k symbols, rather than bits, over an alphabet of size ` > 2, the

same flash code can still be used, with an appropriate interface. With the linear womcode of [5],

the `-ary symbols can be represented using `− 1 bits in such a way that any symbol change

corresponds to a single bit transition. The flash code C′ can be now applied as is, and the

resulting write deficiency is O
(
max{q, log2k`} k` log k`

)
.
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2.6 Flash Codes of Constant Rate

All of our results so far pertain to the case where n > k2. In this section, we briefly ex-

amine the situation where both k and n are large, while k/n = R for some constant R < 1. Ob-

serve that write deficiency δ(C) = n(q−1)− t is not an appropriate figure of merit in this situa-

tion: a trivial code that guarantees t = 0 writes achieves write deficiency n(q−1) = k(q−1)/R,

which is within a constant factor 2/R from the lower bound (2.1).

Thus we will state our results in terms of the guaranteed number of writes t rather than the

write deficiency δ(C).
If q = 2, we can easily guarantee Ω(n/ log k) writes as follows: partition the n cells

into blocks of size dlog2ke and each time an information bit changes, record its index in the next

available block. For q > 2, the same method guarantees about bn/ logqkc = Ω(n log q/ log k)

writes, but we can do better.

Let us partition the n cells into two groups: the index group consisting of n− k cells and

the parity group consisting of k cells. The index group is then subdivided into m = b(n−k)/sc
blocks, each consisting of s = dlog2ke cells. The writing proceeds in q − 1 phases. During

the first phase, every time an information bit changes, its index is recorded in binary (using cell

levels 0 and 1) in the next available index block. After m writes, the first phase is over. We then

copy the k information bits into the k cells of the parity group, and raise the level of all cells in

the index group to 1. The second phase can now proceed using cell levels 1 and 2, and recording

changes in information bits relative to the values stored in the parity group. At the end of the

second phase, the current values of the k bits are recorded in the parity cells using levels 1 and

2. And so on. This simple coding scheme achieves

m(q− 1) =
n(q−1)(1− R)

log2 k
= Ω

(
nq

log k

)
(2.7)

writes (where the middle expression ignores ceilings/floors by assuming that k is a power of two

and that n− k is divisible by log2 k). If q is odd and R > 0.415, we can do a little better by

using the ternary number system (cell levels 0, 1, 2) in both the index group and the parity group.

In this case, the size of the parity group is dk/ log23e cells and 1−R in (2.7) can be re-placed by

(log23− R)/2. Finally, for all R > 0.755 and q− 1 divisible by three, the quaternary alphabet

is optimal, leading to a factor of (2− R)/3 rather than 1− R in (2.7).
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2.7 Buffer Codes

Buffer codes were first presented by Bohossian et al. in [1]. In this family of codes, a

buffer of r symbols has to be stored in n flash memory q-ary cells. After each write, the last r

symbols that were written have to be recovered by the cell-state vector. The goal is to maximize

the number of write symbols t the code guarantees without incurring a block erasure. In [1,9], a

construction and upper bound of buffer codes that use one cell are given and a construction for

arbitrary number of cells n, where n > 2r is given as well.

2.7.1 Buffer Codes Definition

Let us first give a formal definition of buffer codes. We refer to the set of vectors in

{0, . . . , `− 1}r as buffer vectors. Similarly to flash codes, a buffer code C is also specified by

an encoding map E and a decoding map D. The decoding map D : An
q → {0, . . . , ` − 1}r

assigns for each cell-state vector x∈An
q its buffer vector D(x). Similarly, the encoding map

E : {0, . . . , `− 1}×An
q → An

q ∪ {E} specifies to every symbol a ∈ {0, . . . , ` − 1} and cell-

state vector x∈An
q , another cell-state vector y = E(a, x) such that y j > x j for all 1 6 j 6 n,

(D(y))1 = a and for 2 6 i 6 r, (D(y))i = (D(x))i−1. In case such a y∈An
q does not exist,

then E(i, x) = E. Thus, we give a formal definition of buffer codes.

Definition 2.7.1. An (n, `, r, t)q buffer code C(D, E) guarantees t writes if for all sequences

of up to t symbol writes, the encoding map E does not produce the block erasure symbol E.

2.7.2 Single-Cell Buffer Codes

In this section, we discuss the case where there is a single cell (n = 1) to store the buffer.

A construction for this scenario where a binary buffer (` = 2) is stored was given in [1, 9]. This

construction guarantees at least t =
⌊ q

2r−1

⌋
+ r − 2 writes before a block erasure. An upper

bound was given as well which asserts that for every buffer code with one cell the number of

writes t has to satisfy

t 6
⌊

q− 1
`r − 1

⌋
· r + b((q− 1) mod (`r − 1) + 1)c .

Let us show here another upper bound for such codes.

Theorem 2.7.2. For any (1, `, r, t)q buffer code C such that q > `r,

t 6

⌊
q− `r

1
r ∑d|rϕ(

r
d )`

d

⌋
+ r,
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whereϕ is Euler’sϕ function.

Proof. Let C(D, E) be a (1, `, r, t)q buffer code. After i > 1 writes, for each v ∈ {0, 1, . . . , `−
1}r, let

Si(v) = {x | there is a sequence of j 6 i symbol writes ending in level x and D(x) = v},

mi(v) = maxx∈Si(v){x} is the maximum cell level that is possible to reach after i symbol writes

such that D(i) = v, and

Mi = ∑
v∈{0,...,`−1}r

|Si(v)|.

Clearly, for all i 6 t, Mi 6 q− 1. After r writes, it is possible to reach any of the `r different

buffer vectors and thus Mr > `r − 1.

Let G`,r be the r-th order `-ary de Bruijn graph [3]. Its vertices set is V`,r = {0, 1, . . . , `−
1}r and its edges set is E`,r. Let v1, v2 ∈ {0, 1, . . . , `− 1}r be two different buffer states. Note

that if (v1, v2) ∈ E`,r and mi(v1) > mi(v2) then mi+1(v2) > mi(v2) and therefore, the value

of Mi+1 increases by at least one level for every such an edge. In the de Bruijn graph every cycle

has at least one edge (v1, v2) ∈ E`,r such that mi(v1) > mi(v2). Therefore, the number of new

unused levels is at least as the number of disjoint vertex cycles in G`,r. This number is known to

be 1
r ∑d|rϕ(

r
d )`

d [6, 15], and therefore

t 6

⌊
q− `r

1
r ∑d|rϕ(

r
d )`

d

⌋
+ r.

Lemma 2.7.3. The bound in Theorem 2.7.2 improves the bound in [1] for q > `r. That is,⌊
q− `r

1
r ∑d|rϕ(

r
d )`

d

⌋
+ r 6

⌊
q− 1
`r − 1

⌋
· r +

⌊
log`

(
((q− 1) mod (`r − 1)) + 1

)⌋
.

Proof. Note that
1
r ∑

d|r
ϕ
( r

d

)
`d >

`r + `ϕ (r)
r

,

and therefore⌊
q− `r

1
r ∑d|rϕ(

r
d )`

d

⌋
+ r 6

⌊
q− `r

`r+`ϕ(r)
r

⌋
+ r =

⌊
q− `r

`r + `ϕ(r)
· r
⌋
+ r =

⌊
q + `ϕ(r)
`r + `ϕ(r)

· r
⌋

.
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If we denote q− 1 = x(`r − 1) + y, where 0 6 y 6 `r − 1, then⌊
q− `r

1
r ∑d|rϕ(

r
d )`

d

⌋
+ r 6

⌊
q + `ϕ(r)
`r + `ϕ(r)

· r
⌋
=

⌊
x(`r − 1) + y + 1 + `ϕ(r)

`r + `ϕ(r)
· r
⌋

=

⌊
x(`r + `ϕ(r))− x + y + 1− (x− 1)`ϕ(r)

`r + `ϕ(r)
· r
⌋

= xr +
⌊
−x + y + 1− (x− 1)`ϕ(r)

`r + `ϕ(r)
· r
⌋
6 xr +

⌊
(y + 1)r

`r

⌋
.

Let us show that (y+1)r
`r 6 log`(y + 1). That is, we show that (y + 1) > `

(y+1)r
`r or(

(y + 1)
1

y+1

)`r

> `r.

The function f (x) = x
1
x is monotonically decreasing for x > 1 and since y 6 `r − 1, we get(

(y + 1)
1

y+1

)`r

>
(
(`r)

1
`r
)`r

= `r.

All together we get that⌊
q− `r

1
r ∑d|rϕ(

r
d )`

d

⌋
+ r 6 xr +

⌊
(y + 1)r

`r

⌋
6 xr + blog`(y + 1)c =

⌊
q− 1
`r − 1

⌋
· r +

⌊
log`

(
((q− 1) mod (`r − 1)) + 1

)⌋
.

2.7.3 Multiple-Cells Buffer Codes

In [1,9], a buffer code construction is given for ` = 2 and arbitrary n, q, r, where n > 2r.

This construction guarantees t = (q− 1)(n− 2r + 1) + r− 1 writes. In this Section, we show

how to improve this construction such that its number of writes is t = (q− 1)(n− r).

In case that q = 2, the construction in [1, 9] guarantees n − r writes. The encoding

procedure is performed in such a way that after i writes, 1 6 i 6 n− r, the buffer is located

between the (i + 1)-st and (i + r)-th cells, where the first bit of the buffer memory is stored in

the (i + r)-th cell and the last bit is stored in the (i + 1)-st cell. If q > 2, then the construction

uses the cell levels by a “layer by layer” approach. That is, first the layer of levels 0 and 1 is

used, then the layer of levels 1 and 2 is used, and so on. In the transition from a the layer of

levels i− 1, i to the layer of levels i, i + 1, first all the cells are reset to level i and the buffer is

written in the new layer of levels i, i + 1. Then, it is possible to continue writing in this layer.
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Basically, on each layer, it is possible to write n− r times. However, when a new layer is used,

then first the buffer from the previous layer is copied and then is written in the new layer. Hence,

it is possible to have only (n − 2r + 1) more writes in the new layer and the total number of

writes is

n− r + (q− 2)(n− 2r + 1) = (q− 1)(n− 2r + 1) + r− 1.

The transition between these consecutive layers is not performed efficiently and our improve-

ment here show how it is possible to write n− r times on each layer such that the total number

of writes is t = (q− 1)(n− r). We present this construction by its encoding and decoding maps

specification.

Decoding map Dbuf : The input to this map is a cell-state vector x = (x1, x2, . . . , xn). The

output is the corresponding information buffer vector (v1, v2, . . . , vr).

m = max(x1, x2, . . . , xn);
nm = find repeat(m, x1, x2, . . . , xn);
if(nm > r)
for(i = 1; i 6 r; i = i + 1)

vi = xr+nm−i+1 - m;
else {{
for(i = 1; i 6 nm; i = i + 1)

vi = xr+nm−i+1 - m;
for(i = nm + 1; i 6 r; i = i + 1)

vi = xn+nm−i+1 - (m - 1);}}

The function max(x1, x2, . . . , xn) simply returns the maximum value of the cells x1, x2, . . . , xn.

The function find repeat(m, x1, x2, . . . , xn) returns the number of times the value m re-

peats in the cells x1, x2, . . . , xn. If the value of nm is at least r then the buffer is stored between

the (nm + 1)-st and (nm + r)-th cells, and the buffer values are calculated by subtracting m from

the value of each cell. If the value of nm is less than r then the buffer is stored cyclically in two

cell groups: the last r − nm cells and the nm cells in locations r + 1, . . . , r + nm. In the first

group, the buffer values are given by subtracting m− 1 from the cells’ value and in the second

group by subtracting m from the cells’ value.

Encoding map Ebuf : The input to this map is a cell-state vector x = (x1, x2, . . . , xn), and a new

bit b. Its output is either a cell-state vector y = (y1, y2, . . . , yn) or the erasure symbol E.
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(y1, y2, . . . , yn) = (x1, x2, . . . , xn);
m = max(x1, x2, . . . , xn);
nm = find repeat(m, x1, x2, . . . , xn);
if(m == 0) {{ // if this is the first write
if(b == 1) yr+1 = 1;
else y1 = 1; }}

if(nm == n - r) {{ // first write in this layer
for(i = 1; i 6 n - r + 1; i = i + 1)

yi = m;
if(b == 1) yr+1 = m + 1;
else y1 = m + 1; }}

if(nm < n - r) {{ // not the first write in this layer
yr+nm+1 = yr+nm+1 + b;
if(b == 0)
for(i = 1; i 6 nm + r; i = i + 1)
if(yi == m - 1) {{

yr+nm+1 = yr+nm+1 + 1; break; }} }}
if(nm 6 r - 1) // one of first r− 1 writes in this layer

yn−r+1+nm = m - 1;

On the first write, according to the bit value b the first or the (r + 1)-st cell changes its value to

one. On the first write on each layer, the first n− r + 1 cells are increased to level m, and then

the first or the (r + 1)-st cell is increased by one level, according to the bit value b. For all other

writes, if the value if b is one then we simply increase the (r + nm + 1)-st cell by one level,

and otherwise we increase the first cell of level m− 1 by one level. Finally, if it is one of the

first r− 1 writes in each level, then we need to update the last cell that stores the buffer to level

m− 1 since it no longer stores the buffer and thus its level has to be updated. The next example

demonstrates how this construction works.

Example 2.7.1. In this example, we show how the last construction works for n = 11, q =

3, ` = 2 and r = 4, so the number of writes is 2 · (11 − 4) = 14. The sequence of write

bits is 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0 and they are performed as follows. The underlined cells

represent the cells that store the buffer on each write.
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Written Bit Buffer State Cell State Vector
(0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

1 (0, 0, 0, 1) (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
1 (0, 0, 1, 1) (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)
0 (0, 1, 1, 0) (1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)
0 (1, 1, 0, 0) (1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0)
1 (1, 0, 0, 1) (1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0)
0 (0, 0, 1, 0) (1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0)
0 (0, 1, 0, 0) (1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0)
1 (1, 0, 0, 1) (1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 0)
1 (0, 0, 1, 1) (1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0)
1 (0, 1, 1, 1) (1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 0)
0 (1, 1, 1, 0) (2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1)
1 (1, 1, 0, 1) (2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1)
1 (1, 0, 1, 1) (2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1)
0 (0, 1, 1, 0) (2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1)

Next, we prove the correctness of the construction.

Lemma 2.7.4. After s = x(n− r) + y, where 1 6 y 6 n− r, the maximum cell level is x + 1

and there are y cells in level x + 1.

Proof. According to the encoding map Ebuf, the maximum cell level increases every n− r write,

on the (i(n− r) + 1)-st write, for 0 6 i 6 q− 2. Therefore, after s writes, the maximum cell

value is x =
⌈ s

n−r

⌉
. If y = 1 then the maximum cell value is x + 1 and we can see that exactly

one cell changes its value to x + 1. For all other writes, the maximum cell value does not change

and exactly one cell changes its value to the maximum cell value which is x + 1.

Theorem 2.7.5. The buffer code C(Dbuf, Ebuf) stores the buffer successfully and guarantees

t = (q− 1)(n− r) writes.

Proof. According to Lemma 2.7.4, after t = (q− 1)(n− r) writes the maximum cell level does

not reach level q and hence there is no need to erase the block of cells. We prove the correctness

of the encoding and decoding maps to store the correct value of the buffer by induction on the

number of writes s. This is done by proving that for all 1 6 s 6 t, such that s = x(n− r) +

y, where 1 6 y 6 n − r, the buffer (v1, . . . , vr) is calculated successfully according to the

decoding rules of the decoding map:

1. If y > r then for 1 6 i 6 r, vi = xr+y−i+1 −m.
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2. If y < r then for 1 6 i 6 y, vi = xr+y−i+1 − m and for y + 1 6 i 6 r, vi =

xr+y−i+1 − (m− 1).

It is straightforward to verify that after the first write the memory successfully stores the buffer.

Assume the assertion is correct after the s-th write, where 1 6 s = x(n − r) + y 6 t − 1,

1 6 y 6 n− r. Assume that the new bit to be written to the buffer on the (s + 1)-st write is b

and let us consider the following cases:

1. If y = n− r, then on the (s + 1)-st write in the encoding map the value of nm is n− r.

Thus the first n− r + 1 cells change their value to m = x, the value of the last r− 1 cells

do not change, and if b = 1 then yr+1 = m + 1, and otherwise y1 = m + 1. Therefore,

the new value of the buffer is also given according to the decoding rules.

2. If y < n− r, then nm = y < n− r, and the value of the (r + nm + 1)-st cell increases

by b so the buffer is shifted one place to the right and it stores its updated value. If b = 0,

then we increase one the first nm + 1 cells by one level. Note that nm = y and there are

exactly y cells with the maximum value so we can always find a cell of value less than m

and increase it to be m. Then, again the buffer is stored according to the above decoding

rules.

2.8 Conclusion and Open Problems

Rewriting codes for flash memories are of high importance as they allow to increase

the lifetime of the memory. Examples of such codes are flash codes [8] and buffer codes [1].

Our main contribution in this chapter is an efficient construction of flash codes that support the

storage of any number of bits. We show that the write deficiency order of the code is O(k log k ·
max{log k, q}), which is an improvement upon equivalent constructions in [9,9,17]. The upper

bound in [8] on the guaranteed number of writes implies that the order of the lower bound on the

deficiency is O(kq). Therefore, there is a gap, which we believe can be reduced, between the

write deficiency orders of our construction and the lower bound. For buffer codes, we showed

how to improve an upper bound on the number of writes in case one cell is used to store the

buffer. If there are multiple cells, we showed an improved construction upon the one presented

in [1, 9].
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Chapter 3

Codes for Write-Once Memories

3.1 Introduction

Write-once-memory (WOM) codes were introduced in 1982 by Rivest and Shamir [5].

They make it possible to record binary data more than once in a so-called write-once storage

medium, such as a punch card or ablative optical disk. These media can be represented as a

collection of write-once bit locations, each of which initially represents a bit value 0 that can

be irreversibly overwritten with a bit value 1. A WOM-code allows the reuse of a write-once

medium by introducing redundancy into the recorded bit sequence and, in subsequent write

operations, observing the state of the medium before determining how to update the contents of

the memory with a new bit sequence.

A simple example, presented in [5], enables the recording of two bits of information in 3

memory elements, twice. The encoding and decoding rules for this WOM-code are described in

a tabular form in Table 3.1. It is easy to verify that after the first 2-bit data vector is encoded into

a 3-bit codeword, if the second 2-bit data vector is different from the first, the 3-bit codeword

into which it is encoded does not change any code bit 1 into a code bit 0, ensuring that it can be

recorded in the write-once medium.

Table 3.1: A WOM-code Example

Data bits First write Second write (if data changes)
00 000 111
10 100 011
01 010 101
11 001 110

32
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Flash memories impose constraints on recording that are similar to those associated with

write-once memories. As explained in Chapter 1, while it is fast and simple to increase a flash

memory cell level, reducing its level requires a long and cumbersome operation of first erasing

its entire containing block (∼ 106 cells) and only then programming the cells. A WOM-code can

be applied in this context to enable additional writes without first having to erase the entire block.

The deferral of a block erasure is beneficial to the lifetime of the device. The cost associated with

this increase in the endurance is the redundancy and the additional complexity associated with

the encoding and decoding processes. For more details on the implementation of WOM-codes

in flash memories, the reader is referred to [3, 22].

The most fundamental problem in the WOM model is to maximize the total amount

of information that can be written into n memory cells in t writes, while preserving the con-

straint that on each write one can only change cells in the zero state to the one state. The first

WOM-code construction, presented by Rivest and Shamir, was designed for the storage of two

bits twice using only three cells [5]. In their work, Rivest and Shamir also reported on more

WOM-code constructions, including tabular WOM-codes and “linear” WOM-codes. Merkx

constructed WOM-codes based on projective geometry [13]. In [2], using binary linear codes,

Cohen et al. introduced a “coset-coding” technique that is used to construct WOM-codes, and

in [5], an improvement to one of the constructions in [2] was given by Godlewski. Recently,

position modulation codes were introduced by Wu and Jiang in order to construct multiple-write

WOM-codes [18]. Wu found WOM-codes for two writes in [17] which improved the best rate

previously known.

Wolf et al. discussed the WOM-codes problem from its information-theoretic point of

view [16]. In [3], the WOM model has been generalized for multi-level cells and information

theory limits and code constructions for constrained sources were studied. Heegard studied the

capacity of a WOM and a noisy WOM in [6], and Fu and Han Vinck found the capacity of a

non-binary WOM [4]. Error-correcting WOM-codes were first studied in [20], [21] and more

constructions were recently given in [29]. Jiang discussed in [7] the generalization of error-

correcting WOM-codes for the flash/floating codes model [8, 9, 12].

3.2 Preliminaries

In this work, the memory elements, called cells, have two states: zero and one. At the

beginning, all the cells are in their zero state. A cell can change its state from zero to one. This

operation is irreversible in the sense that a cell cannot change its state from one to zero unless
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the entire memory is erased. The memory-state vectors are all the binary vectors of length n,

{0, 1}n. For two memory-state vectors c, c′ ∈ {0, 1}n, we denote by c > c′, if and only if

ci > c′i for all 1 6 i 6 n and we say that c covers c′.

Definition 3.2.1. An [n, t; M1, . . . , Mt] t-write WOM-code C is a coding scheme which consists

of n cells and t pairs of encoding and decoding maps, denoted by Ei and Di for 1 6 i 6 t. The

t-write WOM-code C satisfies the following properties:

1. E1 : {1, . . . , M1} → {0, 1}n,

2. For 2 6 i 6 t,

Ei : {1, . . . , Mi} × {0, 1}n → {0, 1}n,

such that, for all (m, c) ∈ {1, . . . , Mi} × {0, 1}n,

Ei(m, c) > c.

3. For 1 6 i 6 t,

Di : {0, 1}n → {1, . . . , Mi},

such that D1(E1(m)) = m for all m ∈ {1, . . . , M1}, and for 2 6 i 6 t, Di(Ei(m, c)) =

m for all (m, c) ∈ {1, . . . , Mi} × {0, 1}n.

The sum-rate of a t-write WOM-code C is defined to be

Rsum(C) =
∑

t
i=1 log2 Mi

n
.

Remark 3.2.1. We assume that the write number on each write is known. This knowledge does

not affect the sum-rate. Indeed, assume that there exists an [n, t; M1, . . . , Mt] t-write WOM-

code C where the write number is known. Assume also that the sum-rate of C is Rsum(C) =
∑

t
i=1 log2 Mi

n . It is possible to change this WOM-code to an [Nn + t, t; MN
1 , . . . , MN

t ] t-write

WOM-code C ′ by having N blocks of the t-write WOM-code C and t more cells indicating the

write number. Then, the sum-rate of C ′ is

Rsum(C ′) =
∑

t
i=1 log2 MN

i
Nn + t

=
N ∑

t
i=1 log2 Mi

Nn + t

=
N ∑

t
i=1 log2 Mi

Nn
· Nn

Nn + t
=
Rsum(C)
1 + t

Nn
.

Therefore, for N large enough it is possible to achieve the sum-rate of the t-write WOM-code

C. For simplicity, we will assume in this work that the write number is known in the encoding

process.
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While there are different ways to analyze the efficiency of WOM-codes, we find that the

appropriate figure of merit is to analyze the sum-rate under the assumption of a fixed number of

writes. In general, the more writes the WOM-code can support, the better the sum-rate it can

achieve. The goal is to give upper and lower bounds on the sum-rates of WOM-codes while

fixing the number of writes t.

Note that there are two different problems we can address when analyzing WOM-codes:

we either require that on all writes the written message comes from an alphabet of fixed size M,

or we allow the size of the alphabet of possible messages to vary from one write to another. In

the first case we say that the WOM-code is fixed-rate, whereas in the second case we say it is

unrestricted-rate.

3.3 Previous Work

It is proved in [4] and [6] that the capacity region of a binary t-write WOM-code is

Ct =
{
(R1, . . . ,Rt) | R1 6 h(p1),R2 6 (1− p1)h(p2),

. . . ,Rt−1 6
(

∏
t−2
i=1(1− pi)

)
h(pt−1),Rt 6 ∏

t−1
i=1(1− pi),

where 0 6 p1, . . . , pt−1 6 1/2
}

. (3.1)

It has been shown that all points in the capacity region can be achieved by random coding with

unrestricted-rate WOM- codes. The sum-rate of the WOM-code is given by

R =
t

∑
j=1
R j = h(p1) +

t−1

∑
j=2

( j−1

∏
i=1

(1− pi)h(p j)
)
+

t−1

∏
i=1

(1− pi).

It is proved in [6] that the sum-rate is maximized when

p j =
1

2 + t− j
,

for 1 6 j 6 t − 1, and the maximum sum-rate is log2(t + 1). For example, for t = 2, the

maximum sum-rate, log2 3, is achieved for p1 = 1/3. Intuitively, this upper bound is plausible.

During the course of the t writes, a particular cell can be programmed at some time j ∈ 1, . . . , t

or not programmed at all. Thus there are t + 1 possible scenarios, so the amount of information

that can be stored in each cell is no greater that log2(t+ 1). Of course, the result above indicates

that this is a tight upper bound.

The case of fixed-rate WOM-codes was discussed in [6]. In this setting, we consider

those points on the boundary of the capacity region Ct satisfying R1 = · · · = Rt. The maxi-

mum sum-rate, denoted byRF
U(t), is given by the recursion in the following Theorem [6].
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Table 3.2: Upper bounds on the sum-rate of fixed-rate WOM-codes

t RF
U(t) t RF

U(t)
1 1 6 2.712
2 1.546 7 2.9001
3 1.9368 8 3.0664
4 2.2436 9 3.2157
5 2.4965 10 3.352

Theorem 3.3.1. The values ofRF
U(t) for t > 1 satisfy the following recursive formula:

RF
U(1) = 1

RF
U(t + 1) = (t + 1) · root

{
h

(
z

RF
U(t)/t

)
− z

}
,

where root{ f (z)} is the minimum positive value of z such that f (z) = 0.

As in the case of unrestricted-rate WOM-codes, the upper bound RF
U(t) is tight. Using the

recursion in the theorem, we obtain the following results forRF
U(t) in Table 3.2.

The upper bounds on the sum-rates for fixed- and unrestricted-rate presented above have

been shown to be achievable in theory. However, finding specific WOM-code constructions that

achieve these maximum possible sum-rates remains an open problem. In the rest of this sec-

tion, we give a brief summary of the highest known sum-rates that were achieved by previously

published WOM-code constructions.

Rivest and Shamir, 1982 [5]

Rivest and Shamir constructed the first [3, 2; 4, 4] WOM-code (Rsum = 1.3333), that

stores two bits twice using only three cells. They constructed other WOM-codes, including a

[7, 2; 26, 26] WOM-code (Rsum = 1.343) which has a slightly better sum-rate, a [7, 3; 8, 8, 8]

WOM-code (Rsum = 1.2857), and a [7, 5; 4, 4, 4, 4, 4] WOM-code (Rsum = 1.4286). They

also described construction methods for various classes of WOM-codes, including tabular WOM-

codes and “linear” WOM-codes. In their paper, they also mentioned specific WOM-codes as

well as some classes of WOM-codes designed by others, with the following parameters:

1. [5, 3; 5, 5, 5] WOM-code (Rsum = 1.3932), by David Klaner.

2. [7, 4; 7, 7, 7, 7] WOM-code (Rsum = 1.6042), by David Leavitt.

3. [12, 3; 65, 81, 64] WOM-code (Rsum = 1.5302), by James B. Saxe.

4. [n, n/2 − 1; n/2, n/2 − 1, n/2 − 2, . . . , 2] WOM-code, n even (Rsum ≈ log2 n
2 for n

large enough), by James B. Saxe.
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Merkx, 1984 [13]

Merkx constructed WOM-codes based on projective geometry codes. Parameters of

some of his WOM-codes are:

1. [7, 4; 7, 7, 7, 7] WOM-code (Rsum = 1.6042).

2. [31, 10; 31, 31, 31, 31, 31, 31, 31, 31, 31, 31] WOM-code (Rsum = 1.5981).

3. [7, 4; 8, 7, 8, 8] WOM-code (Rsum = 1.6868).

4. [7, 4; 8, 7, 11, 8] WOM-code (Rsum = 1.7524).

5. [8, 4; 8, 14, 11, 8] WOM-code (Rsum = 1.6583).

6. [16, 7; 16, 16, 16, 16, 16, 16, 16] WOM-code (Rsum = 1.75).

7. [15, 7; 15, 15, 15, 15, 15, 15, 15] WOM-code (Rsum = 1.8232).

Cohen, Godlewski, and Merkx, 1986 [2]

Cohen et al. introduced the “coset-coding” technique, which uses binary linear codes

in the construction of WOM-codes. This approach yielded WOM-codes with the following

parameters:

1. [23, 3; 211, 211, 211] WOM-code (Rsum = 1.4348).

2. [3, 2; 4, 4] WOM-code (Rsum = 1.3333).

3. [7, 3; 8, 8, 8] WOM-code (Rsum = 1.2857).

4. [2r − 1, 2r−2 + 2; 2r, 2r, . . . , 2r] WOM-code (Rsum = r(2r−2+2)
2r−1 ), for r > 4.

Godlewski, 1987 [5]

Godlewski improved upon the last result in [2] by constructing WOM-codes with pa-

rameters:

1. [2r − 1, 2r−2 + 2r−4 + 2; 2r, 2r, . . . , 2r] WOM-code (Rsum = r(2r−2+2r−4+2)
2r−1 ), for r > 4.

Wu and Jiang, 2009 [18]

Recently, position modulation codes were used by Wu and Jiang in order to construct

multiple-write WOM-codes. Their construction can produce many WOM-codes, among them

WOM-codes with the following parameters:
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Table 3.3: Prior best-known sum-rates for unrestricted-rate and fixed-rate WOM-codes.

Number Best Prior Upper Bound Best Prior Upper Bound
of Writes (unrestricted) (unrestricted) (fixed) (fixed)

2 1.3707 [17] 1.585 1.343 [5] 1.546
3 1.5302 [5] 2 1.4348 [2] 1.9368
4 1.7524 [13] 2.3219 1.6042 [5, 13] 2.2436
5 1.7524 [13] 2.585 1.6279 [18] 2.4965
6 1.7524 [13] 2.8074 1.7143 [18] 2.712
7 1.8232 [13] 3 1.8232 [13] 2.9001
8 1.8824 [18] 3.1699 1.8824 [18] 3.0664
9 1.9535 [18] 3.3219 1.9535 [18] 3.2157

10 2.0144 [18] 3.4594 2.0144 [18] 3.352

1. [172, 5; 256, 256, 256, 256, 256] WOM-code (Rsum = 1.6279).

2. [196, 6; 256, 256, 256, 256, 256, 256] WOM-code (Rsum = 1.7143).

3. [216, 7; 256, 256, 256, 256, 256, 256, 256] WOM-code (Rsum = 1.8148).

4. [238, 8; 256, 256, 256, 256, 256, 256, 256, 256] WOM-code (Rsum = 1.8824).

5. [258, 9; 256, 256, 256, 256, 256, 256, 256, 256, 256] WOM-code (Rsum = 1.9535).

6. [278, 10; 256, 256, 256, 256, 256, 256, 256, 256, 256, 256] WOM-code (Rsum = 2.0144).

Wu, 2010 [17]

Wu designed two-write WOM-codes that had the highest sum-rates of any such WOM-

codes known at the time. His best construction gave a [10, 2; 176, 76] WOM-code (Rsum =

1.3707). He also presented a construction of “ε-error” two-write WOM-codes for which the

second write is not guaranteed in the worst case, but is allowed with high probability.

The results of the best previously known WOM-codes both for fixed- and unrestricted-

rate WOM-codes as well as upper bounds for each case are summarized in Table 3.3.

3.4 Two-Write WOM-Codes

In this section we present a two-write WOM-codes construction that reduces the gap

between the upper and lower bound on the sum-rates for both fixed- and unrestricted-rate WOM-

codes. The construction is inspired by the “coset-coding” scheme which was used in [2, 5] and

recently in [17]. In [2, 5], multiple-write WOM-codes are constructed where on each write the

“coset-coding” scheme is used. In [17], the “coset-coding” is used only on the second write
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in order to generate an ε-error two-write WOM-codes. In ε-error two-write WOM-codes the

second write is not guaranteed in the worst case but is allowed with high probability. Here, it

is shown how to generate from every linear code a two-write WOM-code. As in [17], we use

the “coset-coding” scheme only on the second write, and the first write is modified such that the

second write is guaranteed in the worst case. We show two specific examples of WOM-codes

having better sum-rates than the previously best known ones. We also show that by choosing

uniformly at random the parity-check matrix of the linear code, there exist WOM-codes that

achieve all points in the capacity region of two-write WOM-codes. Finally, we discuss the

connection between the Blackwell channel [1] and two-write WOM-codes. We show how to

generate from each two-write WOM-code a code for the Blackwell channel.

3.4.1 Two-Write WOM-Codes Construction

Let C[n, k] be a linear code with parity-check matrixH. For each v ∈ {0, 1}n we define

the matrix Hv as follows. The i-th column of Hv, 1 6 i 6 n, is the i-th column of H if vi = 0

and otherwise it is the zeros column. The set VC is defined to be

VC = {v ∈ {0, 1}n | rank(Hv) = n− k}. (3.2)

We first note the following claim.

Claim 3.4.1. If a vector v belongs to VC , its weight is at most k.

The support of a binary vector v, denoted by supp(v), is the set {i | vi = 1}. The dual of the

code C is denoted by C⊥. The next lemma is a variation of a well known result (see e.g. [2]).

Lemma 3.4.2. Let C[n, k] be a linear code with parity-check matrix H. For each vector v ∈
{0, 1}n, rank(Hv) = n− k if and only if v does not cover any non-zero codeword in C⊥.

Lemma 3.4.2 implies that if two matrices are parity-check matrices of the same linear code C,

then their corresponding sets VC are identical, and so we can define the set VC to be

VC = {v ∈ {0, 1}n | v does not cover any non-zero c ∈ C⊥}.

The next theorem presents our two-write WOM-codes.

Theorem 3.4.3. Let C[n, k] be a linear code with parity-check matrix H and let VC be the set

defined in (3.2). Then there exists an [n, 2; |VC |, 2n−k] two-write WOM-code of sum-rate

log2 |VC |+ (n− k)
n

.
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Proof. We need to show the existence of the encoding and decoding maps on the first and second

writes. First, let {v1, v2, . . . , v|VC |} be an ordering of the set VC . The first and the second writes

are implemented as follows.

1. On the first write, a symbol over an alphabet of size |VC | is written. The encoding and

decoding maps E1,D1 are defined as follows. For each m ∈ {1, . . . , |VC |}, E1(m) = vm

and D1(vm) = m.

2. On the second write, we write a vector s2 of n− k bits. Let v1 be the programmed vector

on the first write and s1 = H · v1, then

E2(s2, v1) = v1 + v2,

where v2 is a solution of the equation Hv1 · v2 = s1 + s2. For the decoding map D2, if c

is the vector of programmed cells, then the decoded value of the n− k bits is given by

D2(c) = H · c = H · v1 +H · v2 = s1 + s1 + s2 = s2.

The success of the second write results from the condition that for every vector v ∈ VC ,

rank(Hv) = n− k.

There is no condition on the code C and therefore we can use any linear code in this construc-

tion, though we seek to find codes that maximize the sum-rate log2(|VC |)+n−k
n . Next, we show

two examples of two-write WOM-codes that achieve better sum-rates than the previously best

known ones.

Example 3.4.1. Let us demonstrate how Theorem 3.4.3 works for the [16, 5, 8] first order Reed-

Muller code. Its dual code is the [16, 11, 4] second order Reed-Muller, which is the extended

Hamming code of length 16. Hence, we are interested in the size of the set

V1 =
{

v ∈ {0, 1}16| v does not cover any c ∈ [16, 11, 4]
}

.

According to Claim 3.4.1, the set V1 does not contain vectors of weight greater than five. This

extended Hamming code has 140 codewords of weight four and no codewords of weight five.

The set V1 consists of the following vector sets.

1. All vectors of weight at most three. There are ∑
3
i=0 (

16
i ) = 697 such vectors.

2. All vectors of weight four that are not codewords. There are (16
4 ) − 140 = 1680 such

vectors.
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3. All vectors of weight five that do no cover a codeword of weight four. There are (16
5 )−

12 · 140 = 2688 such vectors. Since the minimum distance of the code is four, a vector

of weight five can cover at most one codeword of weight four.

Therefore, we get |V1| = 697 + 1680 + 2688 = 5065 and the sum-rate is

(log2(5065) + 11)/16 = 1.4566.

It is possible to modify this WOM-code such that on the first write only 11 bits are written. Thus,

we achieve a two-write fixed-rate WOM-code and its sum-rate is 22/16 = 1.375, which is the

best known fixed-rate WOM-code.

Example 3.4.2. In this example we will use the [23, 11, 8] Golay code. Its dual code is the

[23, 12, 7] Golay code so we are interested in the size of the set

V2 =
{

v ∈ {0, 1}23 | v does not cover any c ∈ [23, 12, 7]
}

.

According to Claim 3.4.1, there are no vectors of weight greater than 11 in the set V2. The

[23, 12, 7] Golay code has A7 = 253 codewords of weight seven, A8 = 506 codewords of

weight eight, and A11 = 1288 codewords of weight 11. The set V2 consists of the following

vector sets.

1. All vectors of weight at most 6. This number of vectors is ∑
6
i=0 (

23
i ) = 145499.

2. All vectors of weight between 7 and 10 besides those that cover a codeword of weight

7 or 8. Since the minimum distance of the code is 7 every vector can cover at most one

codeword. Hence, this number of vectors is

10

∑
i=7

(
23
i

)
− A7 ·

10

∑
i=7

(
16

i− 7

)
− A8 ·

10

∑
i=8

(
15

i− 8

)
= 2459160

3. All vectors of weight 11 that are not codewords and do not cover a codeword of weight

either 7 or 8. This number was shown in [5] to be 695520.

Therefore, for the [23, 11, 8] Golay code we get

|V2| = 145499 + 2459160 + 695520 = 3300179,

and thus the sum-rate is

(log2(3300179) + 12)/23 = 1.4632.
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3.4.2 Random Coding

The scheme we described in the previous subsection can work for any linear code C.

Given a linear code C[n, k] with parity-check matrix HC , we denoteR1(C) = log2 |VC |
n ,R2(C) =

n−k
n so the sum-rate of the generated WOM-codes is

R1(C) +R2(C) =
log2 |VC |+ n− k

n
.

Our goal in this subsection is to show that it is possible to achieve the capacity region C2 defined

in (3.1), by choosing uniformly at random the parity-check matrix of the linear code C. We prove

that in the following theorem.

Theorem 3.4.4. For any (R1,R2) ∈ C2 and ε > 0 there exists a linear code C satisfying

R1(C) > R1 −ε,R2(C) > R2 −ε.

Proof. Let p ∈ [0, 0.5] be such that R1 6 h(p) and R2 6 1− p. Let k = dnpe for n large

enough and let us choose uniformly at random an (n− k)× n matrix H. The matrix H will be

the parity-check matrix of the linear code C that will be used to construct the two-write WOM-

code. For each vector v ∈ {0, 1}n, let us define the indicator random variable Xv(H) on the

space of all matrices as follows

Xv(H) =

 1 if v ∈ VC
0 otherwise

where VC is the set defined in (3.2). Note that choosing the matrix H uniformly at random

induces a probability distribution on the set VC and thus a probability distribution on the random

variable Xv(H). Then the number of vectors in VC is X(H) = ∑v∈{0,1}n Xv(H), and

E[X(H)] = ∑
v∈{0,1}n

E[Xv(H)] = ∑
v∈{0,1}n

Pr{Xv(H) = 1}. (3.3)

We claim that Pr{Xv(H) = 1} depends on v only through its weight, wt(v). In this case, (3.3)

simplifies to

E[X(H)] =
n

∑
i=0

(
n
i

)
Pr{Xv:wt(v)=i(H) = 1} =

k

∑
i=0

(
n
i

)
Pr{Xv:wt(v)=i(H) = 1},

because if wt(v) > k + 1 then Xv = 0 (Claim 3.4.1).

Now, let us determine the value of Pr{Xv(H) = 1} for a vector v of weight 0 6 i 6 k.

Note that v ∈ VC if and only if the sub-matrix of size (n − k) × (n − wt(v)) induced by



43

the zero entries of the vector v is full rank. It is well known, e.g. [3], that if we choose an

m × n matrix, where m 6 n, uniformly at random then the probability that it is full rank is

∏
n
j=n−m+1(1− 2− j). Therefore, if we choose an (n− k)× (n− i) matrix uniformly at random

then the probability that it is full rank is ∏
n−i
j=k−i+1

(
1− 2− j). Note that

n−i

∏
j=k−i+1

(
1− 2− j

)
>

∞
∏
j=1

(
1− 2− j

)
>

(
1− 1

2

)(
1−

∞
∑
j=2

2− j

)
=

1
2
· 1

2
=

1
4

,

and, hence, Pr{Xv(H) = 1} = ∏
n−i
j=k−i+1

(
1− 2− j) > 1/4. According to Lemma 4.8 in [22],

k

∑
i=0

(
n
i

)
>

1
n + 1

2nh( k
n )

and, therefore, we get

E[X(H)] =
k

∑
i=0

(
n
i

) n−i

∏
j=k−i+1

(
1− 2− j

)
> 2nh( k

n )−2−log2(n+1).

It follows that there exists a parity-check matrix H of a linear code C, such that the size of the

set VC is at least 2nh( k
n )−2−log2(n+1) and

R1(C) > h
(

k
n

)
−

2 + log2(n + 1)
n

> h(p)−
2 + log2(n + 1)

n
> R1 −ε

R2(C) =
n− k

n
> (1− p)− 1

n
> R2 −ε

for n large enough.

Random coding was proved to be capacity-achieving by constructing a partition code [6], [4].

However, our random coding scheme has more structure that enables to look for WOM-codes

with a relatively small block length. We ran a computer search to look for such WOM-codes. The

parity-check matrix of the linear code C was chosen uniformly at random and then the size of the

set VC was computed. The results are shown in Fig. 7.1. Note that if (R1,R2) and (R3,R4) are

two achievable rate points then for each t ∈ Q the point (tR1 + (1− t)R2, tR3 + (1− t)R4)

is an achievable rate point, too. This can simply be done by block sharing of a large number of

blocks. Therefore, the achievable region is convex.

We ran a computer search to find more two-write WOM-codes with high sum-rates. For

fixed-rate WOM-codes, our best construction achieved by a computer search has sum-rate 48
33 ≈

1.4546 and for unrestricted-rate WOM-codes our best computer search construction achieved

sum-rate 1.4928. The number of cells in these two constructions is 33.
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Figure 3.1: The capacity region and achieved rates of two-write WOM-codes.
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Remark 3.4.1. The encoding and decoding maps of the second write are implemented by the

parity-check matrix of the linear code C as described in the proof of Theorem 3.4.3. A naive

scheme to implement the encoding and decoding maps of the first write is simply by a lookup

table of the set VC . However, this can be done more efficiently using algorithms to encode and

decode constant weight binary codes. There are several works which efficiently encode and

decode all binary vectors of length n and weight k; see for example [2, 6, 17, 23, 24]. These

works can be easily extended to construct efficient encoder and decoder maps to the set of all

binary vectors of length n and weight at most k, denoted by

B(n, k) = {v ∈ {0, 1}n | supp(v) 6 k}.

The set VC is a subset of the set B(n, k). Therefore, we can use these algorithms while con-

structing a smaller table, only for the vectors in the set B(n, k) \ VC as follows. Assume that

f : {1, . . . , |B(n, k)|} → B(n, k) is a one-to-one and onto map such that the complexity to

calculate f and f−1 is efficient. Assume we list all the vectors in B(n, k) \ VC such that we

list for every vector v ∈ B(n, k) \ VC its value f−1(v) and this list is sorted according to the

values of f−1(v). Then, a mapping g : {1, . . . , |VC |} → VC is constructed such that for all

x ∈ {1, . . . , |VC |}, g(x) = f (x + a(x)), where a(x) is the number of vectors in B(n, k) \ VC
of value less than x. The time complexity to calculate a(x) is O(log2(|B(n, k) \ VC |)) since

this list is sorted. Similarly, for all v ∈ VC , g−1(v) = f−1(v)− a( f−1(v)).

In many cases, the size of the set B(k, n) \VC will be significantly smaller than the size

of VC . For example, for the Golay code [23, 11, 8], the size of VC is 3300179 while the size of

B(23, 11) \VC is
11

∑
i=0

(
n
i

)
− 3300179 = 894125.

Similarly, for the Reed-Muller code [16, 5, 8], the size of the set VC is 5065 while the size of the

set B(16, 5) \VC is 1820.

3.4.3 Application to the Blackwell Channel

The Blackwell channel, introduced first by Blackwell [1], is one example of a determin-

istic broadcast channel. The channel is composed of one transmitter and two receivers. The input

to the transmitter is ternary and the channel output to each receiver is a binary symbol. Let u be

the ternary input vector to the transmitter of length n. For 1 6 i 6 n, f (ui) = ( f (ui)1, f (ui)2)

is a binary vector of length two defined as follows (see Fig. 3.2):

f (0) = (0, 0), f (1) = (0, 1), f (2) = (1, 0).
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Figure 3.2: The Blackwell Channel.

The binary vectors f1(u), f2(u) are defined to be

f1(u) = ( f (u1)1, f (u2)1, . . . , f (un)1),

f2(u) = ( f (u1)2, f (u2)2, . . . , f (un)2),

and are the output vectors to the two receivers.

The capacity region of the Blackwell channel was found by Gel’fand [9] and consists of

five sub-regions, given by their boundaries:

1. {(R1, R2) | 0 6 R1 6 1/2, R2 = 1},

2. {(R1, R2) | R1 = 1− p, R2 = h(p), 1/3 6 p 6 1/2},

3. {(R1, R2) | R1 + R2 = log2 3, 2
3 6 R1 6 log2 3− 2

3},

4. {(R1, R2) | R1 = h(p), R2 = 1− p, 1/3 6 p 6 1/2},

5. {(R1, R2) | R1 = 1, 0 6 R2 6 1/2}.

The connection between the Blackwell channel and two-write WOM-codes was suggested by

Roth [15]. The next theorem shows that from every two-write WOM-code of rate (R1, R2) it is

possible to construct codes for the Blackwell channel of rates (R1, R2) and (R2, R1).

Theorem 3.4.5. If (R1, R2) is an achievable rate of a two-write WOM-code, then (R1, R2) and

(R2, R1) are achievable rates on the Blackwell channel.
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Proof. Assume that there exists a [n, 2; 2nR1 , 2nR2 ] two-write WOM-code and let E1, E2 and

D1,D2 be its encoding and decoding maps. We claim that there exists a coding scheme for the

Blackwell channel of rate (R1, R2). Let (m1, m2) ∈ {1, . . . , 2nR1} × {1, . . . , 2nR2} be two

messages and let v1 = E1(m1) and v2 = E2(m2, v1). Let u be a ternary vector of length n

defined as follows. For 1 6 i 6 n, ui = f−1(v1,i, v2,i). The vector u is well-defined since for

all 1 6 i 6 n, (v1,i, v2,i) 6= (1, 0) and hence (v1,i, v2,i) 6= (1, 1). The vector u is the input to

the transmitter. Then, the vector f1(u) is transmitted to the first receiver and the vector f2(u)

to the second receiver. Note that f1(u) = v1 and f2(u) = v2. Therefore, the first receiver

decodes its message according to D1( f1(u)) = D1(v1) = m1 and the second receiver decodes

its message according to D2( f2(u)) = D2(v2) = m2.

Similarly, it is possible to achieve the rate (R2, R1). Now we let v2 = E2(m2) and

v1 = E1(m1, v2). The vector u is defined as ui = f−1(v1,i, v2,i) for 1 6 i 6 n. The decoded

message by the first receiver isD1( f1(u)) andD2( f2(u)) is the decoded message by the second

receiver.

Remark 3.4.2. It is possible to define the Blackwell channel differently such that the forbidden

pair of bits is not (1, 1) but another combination. Our construction of the codes can be adjusted

accordingly.

Now, we can use our two-write WOM-codes in order to define codes for the Blackwell

channel. By using time sharing, the achievable region is convex and hence we get in Fig. 3.3 the

capacity and achieved regions for the Blackwell channel.

3.5 Multiple-Write WOM-Codes

In this section, we present WOM-code constructions which reduce the gaps between the

upper and lower bounds on the sum-rates of WOM-codes for 3 6 t 6 10. First, we generalize

the two-write WOM-code construction from Section 3.4 for non-binary cells. Then, we show

how to use these non-binary two-write WOM-codes in order to construct binary multiple-write

WOM-codes. We start with specific constructions for three- and four-write WOM-codes, and

then show a general design approach that works for an arbitrary number of writes.
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Figure 3.3: The capacity region and the achieved rates of the Blackwell channel.
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3.5.1 Non-binary Two-Write WOM-Codes

Suppose now that each cell has q levels, where q is a prime number or a power of a

prime number. We start by choosing a linear code C[n, k] over GF(q) with a parity-check matrix

H of size (n− k)× n. For a vector v of length n over GF(q), let H(v) be the matrix H with

zero columns replacing the columns that correspond to the positions of the non-zero values in v.

Then we define

V(q)
C = {v ∈ (GF(q))n | rank(H(v)) = n− k}. (3.4)

Next, we construct a non-binary two-write WOM-code [n, 2; |V(q)
C |, qn−k] in a similar

manner to the construction in Section 3.4. Since the proof of the next theorem is very similar to

the proof of Theorem 3.4.3 we omit it. A complete proof can be found in [11].

Theorem 3.5.1. Let C[n, k] be a linear code with parity-check matrixH over GF(q) and let V(q)
C

be the set defined in (3.4). Then there exists a q-ary [n, 2; |V(q)
C |, qn−k] two-write WOM-code

of sum-rate
log2 |V

(q)
C |+ (n− k) log2 q

n
.

As was shown in the binary case, there is no restriction on the choice of the linear code

C or the parity-check matrix H. Every such code/matrix generates a WOM-code. For a linear

code C we defineR1(C) =
log2 |V

(q)
C |

n andR2(C) = (n−k) log2 q
n so the sum-rate of the generated

WOM-code isR1(C) +R2(C). The capacity region of the achievable rates by this construction

is

C(q)
2 =

{
(R1,R2) | ∃p ∈ [0,

q− 1
q

],R1 6 h(p) + p log2(q− 1),R2 6 (1− p) log2(q)
}

.

The proof is also very similar to Theorem 3.4.4 in Section 3.4 for the binary case and thus we

omit it as the complete proof appears in [11].

Theorem 3.5.2. For any (R1,R2) ∈ C(q)
2 and ε > 0, there exists a linear code C satisfying

R1(C) > R1 −ε,R2(C) > R2 −ε.

The next corollary provides the best achievable sum-rate of the construction.

Corollary 3.5.3. For any q-ary WOM-code generated using our construction, the highest achiev-

able sum-rate is log2(2q− 1).
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Proof. First, note that

h(p) + p log2(q− 1) + (1− p) log2 q

= p log2

(q− 1
p

)
+ (1− p) log2

( q
1− p

)
,

and since the function f (x) = log2 x is a concave function

p log2
q− 1

p
+ (1− p) log2

q
1− p

6 log2

(
p · q− 1

p
+ (1− p)

q
1− p

)
= log2(2q− 1).

Also, for p = q−1
2q−1 , the achievable sum-rate is log2(2q− 1). Therefore, there exists a WOM-

code produced by our construction with sum-rate log2(2q− 1).

On the other hand, any WOM-code resulting from our construction satisfies the property

that every cell is programmed at most once. This model was studied in [4] and the maximum

achievable sum-rate was proved to be log2(2q− 1). Therefore, our construction cannot produce

a WOM-code with a sum-rate that exceeds log2(2q− 1).

Remark 3.5.1. This construction does not achieve high sum-rates for non-binary two-write

WOM-codes in general. While the best achievable sum-rate of the construction is log2(2q− 1),

the upper bound on the sum-rate is log2 (
q+1

2 ); see [4]. The decrease in the sum-rate in our

construction results from the fact that cells cannot be programmed twice. That is, if a cell was

programmed on the first write, it cannot be reprogrammed on the second write even if it did

not reach its highest level. In fact, it is possible to find non-binary two-write WOM-codes with

better sum-rates. However, our goal in this work is not to find efficient non-binary WOM-codes.

Rather, as shown later, the non-binary codes that we have constructed can be used in the design

of binary multiple-write WOM-codes.

For the construction of binary multiple-write in the next subsection, we use WOM-codes

over GF(3). We ran a computer search to find such a ternary two-write WOM-code of sum-rate

2.2205, and we will use this WOM-code in order to construct specific multiple-write WOM-

codes.

3.5.2 Three-Write WOM-Codes

We start with a construction for binary three-write WOM-codes. The construction uses

the WOM-codes found in the previous subsection over GF(3).
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Theorem 3.5.4. Let C3 be an [n, 2; 2nR1 , 2nR2 ] two-write WOM-code over GF(3) constructed

as in Section 3.5.1. Then, there exists a [2n, 3; 2nR1 , 2nR2 , 2n] three-write WOM-code of sum-

rate R1+R2+1
2 .

Proof. We denote by E3,1 and E3,2 the encoding maps of the first and second writes, and by D3,1

and D3,2 the decoding maps of the first and second writes of the WOM-code C3, respectively.

The 2n cells of the three-write WOM-code we construct are divided into n two-cell blocks, so the

memory-state vector is of the form ((c1,1, c1,2), (c2,1, c2,2), . . . , (cn,1, cn,2)). In this construction

we also use a mapφ : GF(3) 7→ (GF(2), GF(2)) defined as follows:

φ(0) = (0, 0),

φ(1) = (1, 0),

φ(2) = (0, 1).

The mapφ extends naturally to ternary vectors v = (v1, . . . , vn) ∈ GF(3)n using the rule

φ(v) = (φ(v1), . . . ,φ(vn)).

On the pairs (c, c′) in the image ofφ, we defineφ−1(c, c′) to indicate the inverse function. The

map φ−1 is extended similarly to work over vectors of such bit pairs. We are now ready to

describe the encoding and decoding maps for a three-write WOM-code.

1. On the first write, a message m from the set {1, . . . , 2nR1} is written in the 2n cells:

E1(m) = φ(E3,1(m)).

The decoding map is defined similarly, where c is the memory-state vector:

D1(c) = D3,1(φ
−1(c)).

2. On the second write, a message m from the set {1, . . . , 2nR2} is written in the 2n cells as

follows. Let c be the programmed vector on the first write. Then,

E2(m, c) = φ(E3,2(m,φ−1(c))).

That is, first the memory-state vector c is converted to a ternary vector. Then, it is encoded

using the encoding E3,2 and the new message, producing a new ternary memory-state

vector. Finally, the last vector is converted to a 2n-bit vector. The decoding map is defined

as on the first write:

D2(c) = D3,2(φ
−1(c)).
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According to the construction of the WOM-code C3, no ternary cell is programmed twice

and therefore each of the n pairs of bits is programmed at most once.

3. On the third write, an n-bit vector v is written. Let c = ((c1,1, c1,2), . . . , (cn,1, cn,2)) be

the current memory-state vector. Then,

E3(v, c) = ((c′1,1, c′1,2), . . . , (c′n,1, c′n,2))

is a vector, defined as follows. For 1 6 i 6 n, (c′i,1, c′i,2) = (1, 1) if vi = 1 and otherwise

(c′i,1, c′i,2) = (ci,1, ci,2). It is always possible to program the pair of bits to be (1, 1) since

at most one cell in each pair was previously programmed. The decoding map D2(c) is

defined to be

D2(c) = (c1,1 · c1,2, . . . , cn,1 · cn,2).

That is, the decoded value of each pair of bits is one if and only if the value of both of

them is one.

Corollary 3.5.5. The best achievable sum-rate of a three-write WOM-code using this construc-

tion is (log2 5 + 1)/2 ≈ 1.66.

Proof. Given a two-write WOM-code C3 over GF(3) with rates (R1,R2), the constructed

binary three-write WOM-code has rates (R1/2,R2/2, 1/2) and its sum-rate is R = (R1 +

R2 + 1)/2. This sum-rate is maximized when R1 +R2 is maximized. But R1 +R2 is the

sum-rate of the two-write WOM-code over GF(3), which was proven in Corollary 3.5.3 to be

maximized at log2 5. Then the maximum achievable sum-rate of the constructed binary three-

write WOM-code is
log2 5 + 1

2
≈ 1.66.

Using the construction of WOM-codes over GF(3) presented in the previous subsection, we can

construct a three-write WOM-code of sum-rate (2.2205 + 1)/2 = 1.6102.

3.5.3 Four-Write WOM-Codes

We next present a construction for four-write binary WOM-codes.
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Theorem 3.5.6. Let C3 be an [n, 2; 2nR3,1 , 2nR3,2 ] two-write WOM-code over GF(3) which

is constructed in Section 3.5.1. Let C2 be an [n, 2; 2nR2,1 , 2nR2,2 ] binary two-write WOM-

code. Then, there exists a [2n, 4; 2nR3,1 , 2nR3,2 , 2nR2,1 , 2nR2,2 ] four-write WOM-code of sum-

rate R3,1+R3,2+R2,1+R2,2
2 .

Proof. The proof is very similar to the one used for three-write WOM-codes. We denote by

E3,1, E3,2 the encoding maps of the first and second writes, and by D3,1,D3,2 the decoding maps

of the first and second writes of the WOM-code C3, respectively. Similarly, the encoding and

decoding maps of the WOM-code C2 for the first and second writes are denoted by E2,1, E2,2

and D2,1,D2,2, respectively. Using the encoding and decoding maps of C3, we define the first

and second writes of our constructed four-write WOM-code as we did for the first and second

writes of the three-write WOM-codes. The third and fourth writes are defined in a similar way,

as follows.

1. On the third write, a message m from the set {1, . . . , 2nR2,1} is written. Let E2,1(m) =

v = (v1, . . . , vn) and let c = ((c1,1, c1,2), . . . , (cn,1, cn,2)) be the current memory-state

vector. Then,

E3(m, c) = ((c′1,1, c′1,2), . . . , (c′n,1, c′n,2)),

where for 1 6 i 6 n, (c′i,1, c′i,2) = (1, 1) if vi = 1 and, otherwise, (c′i,1, c′i,2) = (ci,1, ci,2).

The decoding map D3(c) is defined to be

D3(c) = D2,1(c1,1 · c1,2, . . . , cn,1 · cn,2).

2. On the fourth write, a message m from the set {1, . . . , 2nR2,2} is written. Let

E2,2(m, (c1,1 · c1,2, . . . , cn,1 · cn,2)) = v = (v1, . . . , vn),

where c = ((c1,1, c1,2), . . . , (cn,1, cn,2)) is the current memory-state vector. Then,

E4(m, c) = ((c′1,1, c′1,2), . . . , (c′n,1, c′n,2)),

where for 1 6 i 6 n, (c′i,1, c′i,2) = (1, 1) if vi = 1 and, otherwise, (c′i,1, c′i,2) = (ci,1, ci,2).

The decoding map D4(c) is defined, as before, by

D4(c) = D2,2(c′1,1 · c′1,2, . . . , c′n,1 · c′n,2).
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Remark 3.5.2. The last theorem requires both the binary two-write and ternary two-write

WOM-codes to have the same number of cells, n. However, we can construct a four-write

binary WOM-code using any two such WOM-codes, even if they do not have the same number

of cells. Suppose we have a WOM-code over GF(3) with n1 cells and binary WOM-code with

n2 cells. Both codes can be extended to use lcm(n1, n2) cells. Then, the construction above will

give a four-write WOM-code.

Corollary 3.5.7. The best achievable sum-rate of a four-write WOM-code using this construc-

tion is (log2 5 + log2 3)/2 ≈ 1.95.

Proof. According to Corollary 3.5.3, the maximum value of R3,1 +R3,2 is log2 5 and the

maximum value ofR2,1 +R2,2 is log2 3. Therefore, the maximum sum-rate of the constructed

four-write WOM-codes is
log2(5) + log2(3)

2
≈ 1.95.

If we use the WOM-code over GF(3) of sum-rate 2.2205 found in the previous subsection

as the WOM-code C3 and the binary two-write WOM-code of sum-rate 1.4928 found in Sec-

tion 3.4 as the WOM-code C2, then there exists a four-write WOM-code of sum-rate (2.2205 +

1.4928)/2 = 1.8566.

3.5.4 Multiple-Write WOM-Codes

The construction of three- and four-write WOM-codes can be easily generalized to an

arbitrary number of writes. We state the following theorem and skip its proof since it is very

similar to the proofs of the corresponding theorems for three- and four-write WOM-codes.

Theorem 3.5.8. Let C3 be an [n, 2; 2nR3,1 , 2nR3,2 ] two-write WOM-code over GF(3) con-

structed as in Section 3.5.1. Let C2 be an [n, t − 2; 2nR2,1 , . . . , 2nR2,t−2 ] binary (t − 2)-write

WOM-code. Then, there exists a

[2n, t; 2nR3,1 , 2nR3,2 , 2nR2,1 , . . . , 2nR2,t−2 ]

t-write WOM-code of sum-rate

R3,1 +R3,2 + ∑
t−2
i=1 R2,i

2
.
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Theorem 3.5.8 implies that if there exists a (t− 2)-write WOM-code of sum-rateRt−2

then there exists a t-write WOM-code of sum-rate

Rt =
log2 5 +Rt−2

2
.

The following corollary summarizes the possible achievable sum-rates of t-write WOM-codes.

Corollary 3.5.9. For t > 3, there exists a t-write WOM-code of sum-rate

Rt =


(2

t−1
2 −1)·log2 5+1

2
t−1

2
, t odd

(2
t−2

2 −1)·log2 5+log2 3

2
t−2

2
, t even.

If we use again the two-write WOM-code over GF(3) of sum-rate 2.2205 and the binary

two-write WOM-code of sum-rate 1.4928 from Section 3.4, then for t > 3 we obtain a t-write

WOM-code of sum-rateRt, where

Rt =


(2

t−1
2 −1)·2.22+1

2
t−1

2
, t odd

(2
t−2

2 −1)·2.22+1.4928

2
t−2

2
, t even.

3.6 Concatenated WOM-Codes

The construction presented in the previous section provides us with a family of WOM-

codes for all t > 3. In this section, we will show a general scheme to construct more families

of WOM-codes. In fact, the construction in the previous section is a special case of this general

scheme.

Theorem 3.6.1. Assume that C∗ is an [m, t/2; q1, . . . , qt/2] binary t/2-write WOM-code where

t is a positive even integer. For 1 6 i 6 t/2, we let Ci be an [n, 2; 2nRi,1 , 2nRi,2 ] two-

write WOM-code over GF(qi), which is constructed in Section 3.5.1. Then, there exists an

[mn, 2nR1,1 , 2nR1,2 , . . . , 2nRt/2,1 , 2nRt/2,2 , t] binary t-write WOM-code of sum-rate

t/2

∑
i=1

Ri,1 +Ri,2

m
.

Proof. For 1 6 i 6 t/2, let E∗i ,D∗i be the encoding, decoding maps on the i-th write of the

WOM-code C∗, respectively. The definition of E∗i ,D∗i for 1 6 i 6 t/2 extends naturally to

vectors by simply invoking the maps on each entry in the vector. Similarly, for 1 6 i 6 t/2,

let us denote by Ei,1 and Ei,2 the encoding maps of the first and second writes, and by Di,1
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and Di,2 the decoding maps of the first and second writes of the WOM-code Ci, respectively.

We will present the specification of the encoding and decoding maps of the constructed t-write

WOM-code.

In the following definitions of the encoding and decoding maps, we consider the memory-

state vector c to have n symbols of m bits each, i.e. c ∈ (GF(2m))n. For 1 6 i 6 t/2, the

(2i− 1)-st write and 2i-th write are implemented as follows.

1. On the (2i− 1)-st write, a message m1 ∈ {1, . . . , 2nRi,1} is written to the memory-state

vector c according to

E2i−1(m1, c) = E∗i (Ei,1(m1), c).

The memory-state vector c is decoded according to

D2i−1(c) = Di,1(D∗i (c)).

2. On the 2i-th write, a message m2 ∈ {1, . . . , 2nRi,2} is written according to

E2i(m2) = E∗i (Ei,2(m2,D∗i (c)), c)

and the memory-state vector c is decoded according to

D2i(c) = Di,2(D∗i (c)).

We will demonstrate how this construction works in the following example.

Example 3.6.1. We choose a [3, 3; 4, 3, 2] three-write WOM-code as the code C∗. This code is

depicted in Fig. 3.4 by a state diagram describing all three writes. The three-bit vector in each

state is the memory-state and the number next to it is the decoded value. We need to find three

more two-write WOM-codes over GF(4), GF(3), and GF(2). For the code C1 over GF(4), we

ran a computer search to find a two-write WOM-code over GF(4) of sum-rate 2.6862. For the

code C2 over GF(3), we use the code of sum-rate 2.22 which we found in Section 3.5.1, and we

use the binary two-write WOM-code with sum-rate 1.4928 for the code C3. Then, the sum-rate

of the six-write WOM-code is

2.6793 + 2.22 + 1.49
3

= 2.1297.
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Table 3.4: Sum-rates of concatenated WOM-codes

Number Achieved Maximum
of Writes New Rate New Rate

5 1.9689 log2 7+log2 5+1
3 = 2.0431

6 2.1331 log2 7+log2 5+log2 3
3 = 2.2381

7 2.1723 log2 7+log2 5+(log2 5+1)/2
3 = 2.2634

8 2.2544 log2 7+log2 5+(log2 5+log2 3)/2
3 = 2.3609

9 2.2918 log2 7+log2 5+(log2 7+log2 5+1)/3
3 = 2.3908

10 2.3466 log2 7+log2 5+(log2 7+log2 5+log2 3)/3
3 = 2.4588

It is possible to construct a five-write WOM-code by writing a vector of n bits in the last write

so its sum-rate is
2.6862 + 2.2205 + 1

3
= 1.9689.

Note that if one of the codes in the general construction is binary then we can actually

use a WOM-code that allows more than two writes. That is, in this construction we can use

any binary multiple-write WOM-code as the WOM-code C3. Therefore, we can generate an-

other family of WOM-codes for t > 5. Their maximum achievable sum-rates are given by the

following formula

Rt =
log2 7 + log2 5 +Rt−4

3
,

for t > 5 andRt−4 is the maximum achievable sum-rate for a (t− 4)-write WOM-code. Simi-

larly, the constructed codes which we obtain using the WOM-codes found above have sum-rates

R′t =
2.6862 + 2.2205 +R′t−4

3
,

where R′t−4 is the best sum-rate of a constructed (t− 4)-write WOM-code. Table 3.4 summa-

rizes these sum-rates.

Note that the construction in Section 3.5 is a special case of the generalized concatenated

WOM-codes construction in which the WOM-code C∗ is chosen to be a [2, 2; 3, 2] binary two-

write WOM-code.

The general scheme described in Theorem 3.6.1 provides us with many more families of

WOM-codes. However, in order to construct WOM-codes with high sum-rates, the WOM-code

C∗ has to be chosen very carefully. In particular, it is important to choose such a WOM-code with

as few cells as possible, since the sum of all sum-rates of the non-binary two-write WOM-codes

is averaged over the number of cells of the WOM-code C∗. As the number of short WOM-codes

is small, there are only a small number of possibilities to check. However, our search for better



58

Figure 3.4: A [3, 3; 4, 3, 2] three-write WOM-code.
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WOM-codes with between six and ten writes using WOM-codes with few cells did not lead to

any better results.

3.7 Fixed-rate WOM-codes

The WOM-code construction for more than two writes improved the achieved sum-rates

only in the unrestricted-rate case. In this section, we present a method to construct fixed-rate

WOM-codes. The method is recursive and is based on the previously constructed unrestricted-

rate WOM-codes.

Theorem 3.7.1. Let C be an [n, t; 2nR1 , 2nR2 , . . . , 2nRt ] t-write WOM-code. Assume that for

1 6 i 6 t − 1 there exists a fixed-rate WOM-code of sum-rate Ri. Let R′1, . . . ,R′t be a

permutation of R1, . . . ,Rt such that R′1 > · · · > R′t. Then, there exists a fixed-rate t-write

WOM-code of sum-rate
t · R′1

1 + ∑
t−1
i=1

i(R′t−i−R′t−i+1)

Ri

.

Proof. For simplicity, let us assume that R1 > · · · > Rt as it will be clear from the proof

how to generalize to the arbitrary case. First, we add (Rt−1 −Rt)n more cells in order to write

(Rt−1 −Rt)n bits on the last write. This guarantees that the rates on the last two writes are

the same. Then, we add 2(Rt−2 −Rt−1)n/R2 more cells in order to write (Rt−2 −Rt−1)n

more bits on each of the last two writes. This part of the last two writes is invoked using the

fixed-rate two-write WOM-code of sum-rate R2 and therefore the additional number of cells is

2(Rt−2 −Rt−1)n/R2. This addition of cells guarantees that the rates on the last three writes

are all the same. In general, for 1 6 i 6 t − 1 we add i(Rt−i − Rt−i+1)n/Ri more cells

such that (Rt−i −Rt−i+1)n more bits are written on each of the last i writes and therefore the

rates on the last i + 1 writes are all the same. These bits are written using the fixed-rate i-write

WOM-code which is assumed to exist.

With the addition of these cells, the number of bits written on the i-th write for 1 6 i 6 t

is

Rin +
i−1

∑
j=1

(R j −R j+1)n = R1n.

Thus, the rates on all writes are the same and the generated WOM-code is fixed-rate.

The total number of bits we add is

t−1

∑
i=1

i(Rt−i −Rt−i+1)n
Ri

,
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and thus the sum-rate is

t · R1n

n + ∑
t−1
i=1

i(Rt−i−Rt−i+1)n
Ri

=
t · R1

1 + ∑
t−1
i=1

i(Rt−i−Rt−i+1)
Ri

.

Let us demonstrate how to apply the last theorem. We start with the three-write WOM-

code we constructed in Section 3.5.2. Its rates on the first, second, and third writes are 0.6291,

0.4811, 0.5, respectively. We add 0.0189n more cells in order to guarantee that the rates on the

last two writes are the same. Then we use the fixed-rate two-write WOM-code constructed in

Section 3.4.1 of sum-rate 1.4546. Hence we add

2 · (0.6291− 0.5)n
1.4546

= 0.1775n

more cells, yielding a fixed-rate three-write WOM-code of sum-rate

3 · 0.6291
1.1964

= 1.5775.

If we used the best fixed-rate two-write WOM-code of sum-rate 1.546 and the best three-

write WOM-code of sum-rate 1.66, then we get a fixed-rate three-write WOM-code of sum-rate

1.6263.

Note that we could use a two-write WOM-code such that 0.0189n bits are written on

its first write and 0.1291n bits are written on its second write. This will indeed add another

small improvement to the sum-rate, however this scheme is not easy to generalize. Our goal

here is to give a general scheme. We are aware that for each individual case it is possible to use

other unrestricted-rate WOM-codes that will provide a WOM-code of the desired sum-rate with

slightly fewer cells.

Now we move to the four-write WOM-code from Section 3.5.3. Its component rates are

0.6291, 0.4811, 0.413, 1/3. We add three more groups of cells as follows:

1. (0.413− 1/3)n = 0.0797n more cells, so that the last two write have the same rate.

2. 2 · (0.4811− 0.413)n/1.4546 = 0.0936n more cells, so that the last three writes have

the same rate.

3. 3 · (0.6291− 0.4811)n/1.5731 = 0.2822n more cells, so that the last four writes have

the same rate.
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Table 3.5: Sum-rates of fixed-rate WOM-codes

Number Achieved Maximum
of Writes Sum-rate Sum-rate

3 1.5775 1.6263
4 1.7298 1.8249
5 1.8794 1.9302
6 1.9742 2.0570
7 1.991 2.0692
8 2.0375 2.1190
9 2.0951 2.1702

10 2.1327 2.2189

Then, we get a fixed-rate four-write WOM-code with sum-rate

4 · 0.6291
1 + 0.0797 + 0.0936 + 0.2822

= 1.7298.

If we used the best fixed-rate two- and three-write WOM-codes and the best unrestricted-rate

four-write WOM-code, then we obtain a fixed-rate four-write WOM-code of sum-rate 1.8249.

Fixed-rate t-write WOM-code for t > 4 can be similarly obtained. We summarize the results for

the sum-rates that we actually found and the best ones we could find in this method in Table 3.5.

3.8 Summary and Comparison

In this chapter, we have presented several constructions for multiple-write WOM-codes.

First, we showed a method to construct two-write WOM-codes. Using this method we found

two-write WOM-codes with better sum-rates than the previously known codes. Then, we proved

that it is possible to achieve each point in the achieved-rate region of two-write WOM-codes

using this scheme. Furthermore, we showed that each two-write WOM-code generates a code

for the Blackwell channel.

We then presented another method for constructing binary multiple-write WOM-codes.

The method made use of two-write WOM-codes over GF(q), for which we generalized the

binary construction. While the non-binary WOM-codes we constructed do not achieve high

sum-rate, they allowed us to construct binary t-write WOM-codes for t > 3. We showed how to

construct WOM-codes for three and four writes, and then showed that a recursive algorithm can

be used to generate binary WOM-codes that support any number of writes. We also described a

general concatenation scheme to construct other families of WOM-codes. Applying this scheme,
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Table 3.6: Comparison with known unrestricted-rate WOM-codes

Number Best Achieved Maximum Upper
of Writes Prior New Sum-rate New Sum-rate Bound

2 1.3707 1.4928 1.585 1.585
3 1.5302 1.6102 1.661 2
4 1.7524 1.8566 1.9534 2.3219
5 1.7524 1.9689 2.0431 2.585
6 1.7524 2.1331 2.2381 2.8074
7 1.8232 2.1723 2.2634 3
8 1.8824 2.2544 2.3609 3.1699
9 1.9535 2.2918 2.3908 3.3219

10 2.0144 2.3466 2.4588 3.4594

we found another family of t-write WOM-codes that gives the best known unrestricted-rate sum-

rates for 5 6 t 6 10. Lastly, we showed two methods to construct fixed-rate multiple-write

WOM-codes.

Tables 3.6 and 3.7 show a comparison of the sum-rates of unrestricted-rate and fixed-rate

WOM-codes presented in this work and the best previously known sum-rates for 2 6 t 6 10.

The column labeled “Best Prior” is the highest sum-rate achieved by a previously reported t-

write WOM-code. The column “Achieved New Sum-rate” gives the sum-rates that we actually

obtained through application of the new techniques. The column “Maximum New Sum-rate”

lists the maximum possible sum-rates that can be obtained using our approach. Finally, the

column “Upper Bound” gives the maximum possible sum-rates for t-write WOM codes.

For unrestricted-rate two-write WOM-codes, the results were found by the computer

search method of Section 3.4. For three and four writes, we used the WOM-codes described

in Section 3.5, and for 5 6 t 6 10, we used the WOM-codes discussed in Section 3.6. For

fixed-rate two-write WOM-codes, we again used the computer search method of Section 3.4.

The constructions for more than two writes were obtained by application of Theorem 3.7.1.
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Table 3.7: Comparison with known fixed-rate WOM-codes

Number Best Achieved Maximum Upper
of Writes Prior New Sum-rate New Sum-rate Bound

2 1.343 1.4546 1.546 1.546
3 1.4348 1.5775 1.6263 1.9366
4 1.6042 1.7298 1.8249 2.2436
5 1.6279 1.8794 1.9302 2.4965
6 1.7143 1.9742 2.0570 2.7120
7 1.8232 1.991 2.0692 2.9001
8 1.8824 2.0375 2.1190 3.0664
9 1.9535 2.0951 2.1702 3.2157

10 2.0144 2.1327 2.2189 3.3520
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Chapter 4

Multiple Error-Correcting

WOM-Codes

4.1 Introduction

In Chapter 3, we studied write-once-memory (WOM) codes which were first presented

by Rivest and Shamir almost three decades ago [5]. The first motivation to design WOM-codes

came from storage medium such as punch cards and optical disks. These memories consist of

binary memory elements that can only be changed from a zero state to a one state. Since then,

more research results have appeared on this topic, e.g. [2–6, 13, 16, 20, 21], and recently, there

has been renewed interest in these codes due to their high relevance with the ubiquitous flash

memories [11, 17–19].

In the WOM model, the problem that has received the most attention is: what is the min-

imum number of cells n required to store k bits t times? Or, alternatively: what is the maximum

number of bits k that can be written t times using n cells? Even though the problem of adapting

WOM-codes to handle memory errors was suggested in the original Rivest-Shamir paper [5],

the first construction of codes addressing this problem wasn’t published until a few years later

by Zémor [21] and Zémor and Cohen [20]. The capacity of a noisy WOM was studied by Hee-

gard [6]. Recently, in [7], Jiang discussed the generalization of error-correcting WOM-codes for

the flash/floating codes model [8, 9, 12].

66
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4.2 Preliminaries and Previous Work

In this chapter, the memory elements, called cells, have two states: zero and one. At the

beginning, all the cells are in their zero state. A programming operation changes the state of a

cell from zero to one. This operation is irreversible in the sense that one cannot change the cell

state from one to zero unless the entire memory is first erased. The memory-state vectors are

all the binary vectors of length n, {0, 1}n. The data vectors are the set of all binary vectors of

length k, {0, 1}k. Any WOM-code C is specified by its encoding map EC and decoding mapDC .
The decoding mapDC : {0, 1}n → {0, 1}k assigns to each memory-state vector c ∈ {0, 1}n its

corresponding data vector v = DC(c) ∈ {0, 1}k. The encoding map EC : {0, 1}k × {0, 1}n →
{0, 1}n ∪ {E} indicates for each new data vector v ∈ {0, 1}k and memory-state vector c ∈
{0, 1}n, a new memory-state vector c′ = EC(v, c) such that DC(c′) = v, and ci 6 c′i, for

all 1 6 i 6 n. In case such a c′ ∈ {0, 1}n does not exist, the value of the encoding map is

EC(v, c) = E.

Definition 4.2.1. An [n, k, t] WOM-code C(EC ,DC) is a coding scheme which consists of n

cells and is defined by its encoding and decoding maps, denoted by EC and DC , respectively.

The WOM-code C guarantees any t writes of a k-bit data vector v without producing the block

erasure symbol E. The rate of the WOM-code C is defined asR = kt
n .

Remark 4.2.1. As described in Chapter 3, it is possible to generalize the definition of WOM-

codes to allow an arbitrary number of bits or symbols to be stored at each write. In this work

we focus only on the case where the same number of bits is written at each write, i.e. fixed-rate

WOM-codes. Since the rates on all individual writes are the same the “sum-rate” in the general

case is simply called the “rate”. However, we note that it is possible to change the constructions

to support the case where a different number of bits is written on each write.

The following definitions are also used in our work:

1. An [n, k, t] WOM-code that can correct e errors is called an [n, k, t] e-error-correcting

WOM-code.

2. An [n, k, t] WOM-code that can detect e errors is called an [n, k, t] e-error-detecting

WOM-code.

The definition of the decoding map in the second case is extended to be DCW : {0, 1}n →
{0, 1}k ∪ {F}, where the symbol F indicates an error detection flag.
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Remark 4.2.2. If after decoding on the i-th write, a cell which is in state zero is erroneous,

this error can be corrected (at least theoretically) prior to the next write by changing the state

of this cell to a one. However, if after decoding on the i-th write, a cell which is in state one is

erroneous, the state of this cell cannot be changed prior to the next write. In this case, however,

it is assumed that on the (i + 1)-st write the encoder knows that the cell’s true state is a zero.

There is no problem if the encoder wants to write a one in this cell. However, if the encoder

wants to write a zero in this cell, then the error which was corrected on the i-th write will also

occur on the (i + 1)-st write because in this case it is not possible to physically change the cell’s

state . When we say that a WOM-code is an e-error-correcting code we mean that the code will

correct e or a fewer errors on each write but we realize that some the errors which were corrected

on one write could appear on subsequent writes. This information could be used in decoding

but the decoder we consider here does not do so. We also assume here that there are no reading

errors, that is, the correct state of a cell is always read.

In this work, we present error-detecting and error-correcting WOM-codes, which have

the following generic structure:

1. We assume that there exists an [n, k, t] WOM-code C(EC ,DC). Its n cells are denoted by

c = (c0, . . . , cn−1) and called the information cells. Note that this original code C cannot

correct errors.

2. The constructed code consists of the n information cells c, and r additional cells, called

the redundancy cells, and denoted by p = (p0, . . . , pr−1). The redundancy cells enable

the decoder to correct cell-errors. That is, we get an [n + r, k, t] WOM-code with some

error correction/detection capabilities.

Two constructions of error-correcting WOM-codes were given in [20]. Both construc-

tions correct a single cell-error during the writes. The first construction, based upon a double-

error-correcting BCH code, enables one to write k bits using n = 2k − 1 cells t ≈ n/15.42

times, so its rate is roughly k
15.42 ≈

log2(15.42t+1)
15.42 . The second construction, which uses the same

number of cells, is based on a triple-error-correcting BCH code and stores 2k bits t ≈ n/26.9

times. Its rate is approximately 2k
26.9 ≈

log2(26.9t+1)
13.45 . As in Chapter 3, in order to analyze the

performance of WOM-codes, we find that the appropriate figure of merit is to compare the rates

under the assumption of a fixed number of writes. In general, the more writes the WOM-code

can support, the better the rate it can achieve. The second construction in [20] is superior to the

first one as it achieves a better rate even though its number of writes is smaller.
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A simple scheme to construct an e-error-correcting WOM-code is based upon an existing

WOM-code C that stores k bits t times in n cells. In this scheme, each one of the n cells is

replicated 2e + 1 times so it is possible to correct any e or fewer cell-errors. If the WOM-code

C has rateR = kt
n , then the generated e-error-correcting WOM-code has rate 1

2e+1R = kt
(2e+1)n .

For example, in [5], a WOM-code which stores k bits t = 5 · 2k−4 + 1 times using n = 2k − 1

cells, for k > 4 is presented. If we use this WOM-code to construct a single-error-correcting

WOM-code, then its rate, 1
3

k(5·2k−4+1)
2k−1 >

log2(3.2(t−1))
9.6 , outperforms for t large enough the rate

of the two other constructions in [20].

4.3 Single-Error-Detecting WOM-Codes

In this section we present single-error-detecting WOM-codes. As described in Sec-

tion 5.2, we let CW (ECW ,DCW ) be an [n, k, t] WOM-code, and its cells, called the information

cells, are denoted by c = (c0, . . . , cn−1). We construct an [n + t, k, t] single-error-detecting

WOM-code, denoted by CSED(ECSED ,DCSED).

In this construction there are t redundancy cells, denoted by p = (p0, p1, . . . , pt−1),

i.e., the value of r in the general structure is t. The code CSED satisfies the following property:

at each write, the parity of the t redundancy cells, ∑
t−1
i=0 pi, and the parity of the n information

cells, ∑
n−1
i=0 ci, are the same.

Theorem 4.3.1. If CW is an [n, k, t] WOM-code, then CSED is an [n + t, k, t] single-error-

detecting WOM-code.

Proof. We prove this theorem by showing the correctness of the encoding and decoding maps.

In the encoding map ECSED , the new data vector v is encoded in the n information cells by the

encoding map ECW (c, v). If the parity of the information cells is changed, then one of the t

redundancy cells is programmed. Since there are initially t redundancy cells in state zero and

each time at most one of them is programmed, there is at least one unprogrammed cell at each

write.

In the decoding map DCSED , at most one of the cells is in error. If the information cell’s

parity is different than the redundancy cell’s parity, then the flag F is returned to indicate a

single error detection. Otherwise, the data vector v is simply decoded by the decoding map

v = DCW (c).
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This scheme can be applied to all known WOM-codes. In particular, the next example

shows how to adapt the scheme to WOM-codes which are based on Hamming codes [2, 5].

Example 4.3.1. In [2], a construction of WOM-codes, based on Hamming codes, is presented.

For k > 4, the construction gives a [2k − 1, k, 2k−2 + 2] WOM-code, and for k = 2, 3 a [2k −
1, k, 2k−2 + 1] WOM-code. In particular, the [3, 2, 2] WOM-code, presented by Rivest and

Shamir [5], is a special case of this construction for k = 2. Later, in [5] the case k > 4 was

improved and [2k − 1, k, 5 · 2k−4 + 1] WOM-codes were presented.

For k > 4, Zémor showed that it is possible to change the construction such that, ex-

cluding the first write, the number of programmed cells at each write is even [21]. Therefore,

the parity bit changes its values at most once. Thus, one redundancy cell is sufficient for the

construction and we get a [2k, k, 5 · 2k−4 + 1] single-error-detecting code. In fact, a similar

construction to this code with the same parameters was presented by Zémor in [21].

For k = 2, 3, the construction is slightly modified. At each write, the redundancy

cells’ parity is the complement of the information cells’ parity. Then, at most 2k−2 = t − 1

cells are sufficient and thus a [2k + 2k−2 − 1, k, 2k−2 + 1] single-error-detecting code exists.

The following table demonstrates the construction for the [4, 2, 2] single-error-detecting WOM-

code. The bold font represents the bit in the redundancy cell. A similar table can be built for the

[9, 3, 3] single-error-detecting WOM-code.

Bits Value First Write Second Write
00 0001 1110
01 0010 1101
10 0100 1011
11 1000 0111

4.4 Single-Error-Correcting WOM-Codes

In order to construct single-error-correcting WOM-codes, we start as in Section 4.3

with an [n, k, t] WOM-code, CW (ECW ,DCW ). Its information cells are c = (c0, . . . , cn−1)

and we add r redundancy cells, p = (p0, . . . , pr−1), that form a word in CWD(ECWD ,DCWD ),
an [r, dlog2(n + 1)e, t] single-error-detecting WOM-code. Then, we construct an [n + r, k, t]

single-error-correcting WOM-code, denoted by CSEC(ECSEC ,DCSEC), as follows.

At each write we generate a dlog2(n + 1)e-bit vector, called the syndrome and denoted

by s. The syndrome will correspond to the redundancy bits of a Hamming code (or a shortened

Hamming code) of length n, and will make it possible to locate an information cell in error.
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Next, and in the following sections, we provide the exact specification of the given

error-correcting WOM-codes by their encoding and decoding maps. These maps are described

algorithmically using a pseudo-code notation. In this specification we will use the encoding

and decoding maps ECW ,DCW of the WOM-code CW and the encoding and decoding maps

ECWD ,DCWD of the single-error-detecting WOM-code CWD. We let α be a primitive element in

the extension field GF(2dlog2(n+1)e).

Encoding map ECSEC : The input is the memory-state vector (c, p) and the new k-bit

data vector v. The output is either a new memory-state vector (c′, p′) or the erasure symbol E.

1. c′ = ECW(c, v);
2. if (c′ == E) return E;
3. s = ∑

n−1
i=0 c′iα

i;

4. p′ = ECWD(p, s);
5. if (p′ == E) return E;
6. return (c′, p′);

In the encoding map, ECSEC , the data vector v is encoded in the information cells c (line

1). If writing does not succeed, the symbol E is returned (line 2). Otherwise, the syndrome s

of the new n information cells is calculated (line 3). Then, s is encoded in the redundancy cells

using the encoding map ECWD(p, s) (line 4). If this writing fails, the symbol E is returned (line

5); otherwise, the new memory-state vector is returned (line 6). Note that since the encoding

map ECW can write t messages of k-bits each and the encoding map ECWD can write t times the

dlog2(n + 1)e-bit syndrome s, the encoding map ECSEC also can write k-bits t times.

Decoding map DCSEC : The input is the memory-state vector (c′, p′). The output is the

decoded k-bit data vector v.

1. s′′ = DCWD(p′);
2. if (s′′ == F)
3. {{ v = DCW(c′); return v; }}
4. s′ = ∑

n−1
i=0 c′iα

i;

5. if (s′ == s′′)
6. {{ v = DCW(c′); return v; }}
7. i = logα (s′ + s′′);
8. v = DCW(c′0, . . . , c′i-1, 1 - c′i , c′i+1, . . . , c′n-1);
9. return v;

The syndrome s′′ is decoded by applying the decoding map DCWD on the redundancy

cells p′ (line 1). The code CWD is a single-error-detecting WOM-code and hence by its decoding
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map DCWD it is possible to determine if there is an error in one of the r redundancy cells (line 2).

We distinguish between the following two cases:

1. If one of the redundancy cells is in error, i.e. the condition in line 2 holds, then there is no

error in the information cells and v is decoded by the decoding map DCW (line 3).

2. If there is no error in the redundancy cells, then s′′ is the correct value of the syndrome s.

The received syndrome s′ from the received n information cells is s′ = ∑
n−1
i=0 c′iα

i (line

4). If s′ = s′′ (line 5), then there is no error in the n information cells and it is possible

to decode the correct value of the data vector v (line 6). Otherwise, if the i-th cell is in

error, then s′ + s′′ = αi. The calculation of logα (s′ + s′′) returns the value i such that

αi = s′ + s′′ (line 7). This identifies the erroneous cell and again can decode the data

vector v (line 8).

Thus we have proved the following theorem.

Theorem 4.4.1. If CW is an [n, k, t] WOM-code, CWD is an [r, dlog2(n + 1)e, t] single-error-

detecting WOM-code, then CSEC is an [n + r, k, t] single-error-correcting WOM-code.

The next example demonstrates how to use this construction to build specific single-

error-correcting WOM-codes.

Example 4.4.1. As in Example 4.3.1, the code CW is chosen to be the [2k − 1, k, 5 · 2k−4 + 1]

WOM-code for k > 4 from [5]. Therefore, n = 2k − 1, and dlog2(n + 1)e = k, so we can use

the [2k, k, 5 · 2k−4 + 1] single-error-detecting WOM-code from Example 4.3.1. The resulting

[2 · 2k − 1, k, 5 · 2k−4 + 1] single-error-correcting WOM-code has rate

R =
k(5 · 2k−4 + 1)

2 · 2k − 1
>

log2(3.2(t− 1))
6.4

,

which is an improvement upon the constructions in [20] and the simple construction presented

in the Introduction.

4.5 Double-Error-Correcting WOM-Codes

The double-error-correcting WOM-codes construction is very similar to the single-error-

correcting case in Section 4.4, where the same WOM-codes CW , CWD are used. There are

2r redundancy cells, partitioned into two r-cell groups, p1 = (p0, p1, . . . , pr−1) and p2 =
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(pr, p1, . . . , p2r−1). The redundancy groups p1 and p2 store dlog2(n + 1)e-bit syndrome vec-

tors s1 and s2, respectively. The two syndromes correspond to the two roots α,α3 of a double-

error-correcting BCH code, denoted by C2-BCH, where α is a primitive element in the field

GF(2dlog2(n+1)e). In this construction, dlog2(n + 1)e is assumed to be an odd integer. The

code is denoted by CDEC(ECDEC ,DCDEC).

Encoding map ECDEC : The input is the memory-state vector (c, p1, p2) and the new

k-bit data vector v. The output is either a new memory-state vector (c′, p′1, p′2) or the erasure

symbol E.

1. c′ = ECW(c, v);
2. if (c′ == E) return E;
3. s1 = ∑

n−1
i=0 c′iα

i; s2 = ∑
n−1
i=0 c′iα

3i;

4. p′1 = ECWD(p1, s1); p′2 = ECWD(p2, s2);
5. if ((p′1 == E)OR(p′2 == E)) return E;
6. return (c′, p′1, p′2);

The new k-bit data vector v is encoded in the information cells using the encoding map

ECW (line 1). The success of this writing is then checked (line 2). The two syndromes s1, s2 are

calculated (line 3) and are encoded in the redundancy cells (line 4) while checking the writing

success (line 5). If the last two writing operations succeed, the encoding map returns the new

memory-state vector (line 6).

For the decoding map DCDEC , we use the single-error-correcting WOM-code decoding

map DCSEC , which receives as its input n information cells and r redundancy cells. Note that

while the code CSEC uses a fixed primitive element α ∈ GF(2dlog2(n+1)e), it is possible to

use any other primitive element in the field GF(2dlog2(n+1)e). We slightly modify the input

arguments of the decoding map DCSEC such that the primitive element is its first parameter. The

modified decoding map is denoted by D′CSEC
. We use the decoding map DC2-BCH of the double-

error-correcting BCH code. Its input is the 2dlog2(n + 1)e syndrome bits; its output is the error

vector.

Decoding map DCDEC : The input is the memory-state vector (c′, p′1, p′2). The output is

the decoded k-bit data vector v.
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1. s′′1 = DCWD(p′1); s′′2 = DCWD(p′2);
2. if (s′′1 == F)
3. {{ v = D′CSEC

(α3, c′, p′2); return v; }}
4. if (s′′2 == F)
5. {{ v = D′CSEC

(α, c′, p′1); return v; }}
6. s′1 = ∑

n−1
i=0 c′iα

i; s′2 = ∑
n−1
i=0 c′iα

3i;

7. if ((s′1 == s′′1)OR(s′2 == s′′2))
8. {{ v = DCW(c′); return v; }}
9. e′ = DC2-BCH(s′1 + s′′1 , s′2 + s′′2);
10. v = DCW(c′ + e′);
11. return v;

The two syndromes s′′1 , s′′2 are decoded using the redundancy cells and the decoding

map DCWD (line 1). If s′′1 = F (line 2) then there is at least one error in the redundancy cells of

group p′1, and at most one error in the information cells c′ and the second redundancy group p′2.

Therefore, it possible to decode the data vector v by applying the decoding mapD′CSEC
to the cells

in c′ and p′2 while takingα3 to be the primitive element (line 3). Note that since dlog2(n + 1)e
is an odd integer, α3 is also a primitive element in GF(2dlog2(n+1)e). Similarly, if s′′2 = F (line

4), then we decode by applying the decoding map D′CSEC
to the cells c′ and p′1, while α is the

primitive element (line 5).

If according to the decoding map DCWD , no error is decoded in both the redundancy

cell groups, then either there is no error in all the redundancy cells or there are exactly two

errors in one of the two redundancy cell groups. First, the syndromes s′1, s′2 from the received n

information cells are calculated (line 6). Then, we consider the following two cases:

1. If s′1 = s′′1 or s′2 = s′′2 (line 7), then necessarily there is no error in the n information cells

and the k-bit data vector is calculated and returned (line 8). (This is true since if there is

at least one error in the information cells then there is no error in the redundancy cells and

neither of these equalities holds, which is a contradiction.)

2. If s′1 6= s′′1 and s′2 6= s′′2 (line 9) then at least one error occurred in the n information cells

and no errors in the redundancy cells. The error vector is found by applying the decoding

algorithm of the two-error-correcting BCH code, DC2-BCH , to s′1 + s′′1 and s′2 + s′′2 (line

9). Then, we know the correct value of the n information cells and it is again possible to

successfully decode the data vector v (line 10).

We conclude this construction in the following theorem.
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Theorem 4.5.1. If CW is an [n, k, t] WOM-code, CWD is an [r, dlog2(n + 1)e, t] single-error-

detecting WOM-code, and dlog2(n+ 1)e is an odd integer, then CDEC is an [n+ 2r, k, t] double-

error-correcting WOM-code.

The construction does not work if dlog2(n + 1)e is an even integer since α3 is no

longer a primitive element in the field GF(2dlog2(n+1)e), and thus the decoding map in line 3

cannot succeed. Clearly, it is possible to modify it by working over the field GF(21+dlog2(n+1)e)

and storing syndromes of 1 + dlog2(n + 1)e bits. Next, we show a modification in case that

dlog2(n + 2)e is an even integer by adding t more cells.

Assume that dlog2(n + 2)e is an even integer. The last construction is modified and

we present its differences in the encoding and decoding maps. The main modifications are as

follows:

1. Instead of using the [n, k, t] WOM-code CW , an [n + t, k, t] single-error-detecting WOM-

code is used and we denote it by C ′W (EC ′W ,DC ′W ). The t additional redundancy cells are

denoted by q = (q0, . . . , qt−1).

2. Instead of using the rootα3 we use the rootα−1.

3. The syndromes s1 and s2 are calculated according to the new roots applied to the infor-

mation cells c and their parity value, which is stored in the new redundancy cells q.

The input and output to the encoding map are changed accordingly where the memory-

state vector is (c, q, p1, p2). In the first and second lines, we use the encoding map EC ′W instead

of ECW on the cells (c, q). The syndrome values in line 3 and the returned new memory-state

vector in line 6 are also changed accordingly.

1. (c′, q′) = EC ′W((c, q), v);
2. if ((c′, q′) == E) return E;

3. s1 = ∑
n−1
i=0 c′iα

i+(∑
t−1
i=0 q′i)α

n;

s2 = ∑
n−1
i=0 c′iα

−i+(∑
t−1
i=0 q′i)α

−n;

6. return (c′, q′, p′1, p′2);

The decoding algorithm is also very similar. Since we use the root α−1 and also the

value of the t new redundancy cells, lines 3 and 6 are changed as follows. Note thatα−1 is also

a primitive element and therefore the decoding map in line 3 succeeds.
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3. {{ v = D′CSEC
(α−1, c′, p′2); return v; }}

6. s′1 = ∑
n−1
i=0 c′iα

i + (∑
t−1
i=0 q′i)α

n;

s′2 = ∑
n−1
i=0 c′iα

−i + (∑
t−1
i=0 q′i)α

−n;

If the decoder reaches line 9, then there is at least one error in the n information cells

c′ and t redundancy cells q′. The main difference in the decoding is that at this line we neces-

sarily need to know if there is one or two cells in error among the n information cells c′ and t

redundancy cells q′. If there is a single error, that is, the parity of the n information cells and

the parity of the t additional redundancy cells are not the same (line 9), then we can decode the

data vector using the decoding map D′CSEC
with the root α since there is at most one error in the

information cells and no error in the redundancy cells p′1 (line 10). Otherwise, there are exactly

two errors in the n information cells and t redundancy cells. The values of e1 and e2 which are

calculated in line 11 are of the form

e1 = αi +α j, e2 = α−i +α− j,

for some 0 6 i, j 6 n, i 6= j, and

e1(e2
1 + e1e−1

2 )

= (αi +α j)

(
(αi +α j)2 + (αi +α j)

αi+ j

αi +α j

)
= (αi +α j)

(
α2i +α2 j +αi+ j

)
= α3i +α3 j.

Therefore, the values of i and j, i.e. the error vector, can be found by applying the decoding

procedure DC2-BCH to e1 and e1(e2
1 + e1e−1

2 ) (line 12). Next, the data vector can be successfully

decoded (line 13). Note that the error vector in line 12 consists of n + 1 bits while for the

decoding map in line 13 we need only its first n bits.

9. if ((∑
n−1
i=0 c′i) != (∑t−1

i=0 q′i))
10. {{ v = D′CSEC

(α, c′, p′1); return v; }}
11. e1 = s′1 + s′′1; e2 = s′2 + s′′2;
12. e′ = DC2-BCH(e1, e1(e2

1 + e1e−1
2 ));

13. v = DCW(c′ + e′);
14. return v;

To conclude, we state the following theorem.
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Theorem 4.5.2. Let CW be an [n, k, t] WOM-code and CWD be an [r, dlog2(n + 2)e, t] single-

error-detecting WOM-code. Suppose dlog2(n + 2)e is an even integer. Then there exists an

[n + 2r + t, k, t] double-error-correcting WOM-code.

4.6 Triple-Error Correcting WOM-Codes

From the previous sections we might think that a general scheme to construct an e-error

correcting WOM-code is to combine an existing WOM-code and a cyclic e-error-correcting

code, where the latter code is defined by e rootsα1, . . . ,αe. However, not every e-error-correcting

code would work this scheme. For example, in the double-error-correcting construction in Sec-

tion 4.5, the BCH code with roots α and α3 cannot work if dlog2(n + 1)e is an even integer.

This results from the fact that α3 is not a primitive element and hence the code generated only

by α3 is not a single-error-correcting code. For arbitrary e, if the cyclic e-error-correcting code

is defined by e roots, then a necessary but not sufficient condition for this scheme to work is that

every subset of k 6 e roots generates a cyclic k-error-correcting code. We state this property in

the following definition.

Definition 4.6.1. Let n be an integer andα1, . . . ,αe be e different elements in the field GF(2n).

Let the code C(α1, . . . ,αe) be a cyclic error-correcting code of length 2n− 1, which its roots are

α1, . . . ,αe. The code C(α1, . . . ,αe) is called a strong e-error-correcting code if for every 1 6

k 6 e and every set of k distinct elementsαi1 , . . . ,αik ∈ {α1, . . . ,αe}, the code C(αi1 , . . . ,αik)

is a k-error-correcting code.

We note that finding strong e-error-correcting codes is a fascinating problem by itself

but is beyond the scope of this work. Next, we show how to choose the rootsα1,α2,α3 such that

C(α1,α2,α3) is a strong triple-error-correcting code. For the following discussion,α is assumed

to be a primitive element in GF(2n). The following result was proved by Kasami in [10].

Theorem 4.6.2. [10]. Let n be an odd integer and gcd(n, k) = 1. Then, C(α,α2k+1,α23k+1) is

a cyclic triple-error-correcting code.

In [1], the authors show an alternative proof to the last theorem and state the following lemma.

Lemma 4.6.3. Let n be an integer and gcd(n, k) = 1. Then, C(α,α2k+1) is a cyclic double-

error-correcting code.

These two results imply the following lemma.
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Lemma 4.6.4. Let n be an integer such that gcd(n, 6) = 1, and let k = n−1
2 . Then, the

following properties hold.

1. The codes C(α), C(α2k+1), C(α23k+1) are cyclic single-error-correcting codes.

2. The codes C(α,α2k+1), C(α,α23k+1) are cyclic double-error-correcting codes.

3. The code C(α,α2k+1,α23k+1) is a cyclic triple-error-correcting code.

Proof.

1. Since k = n−1
2 , we know that 2k + 1 is a divisor of 2n−1 − 1. Since gcd(2n − 1, 2n−1 −

1) = 1, we conclude that gcd(2n − 1, 2k + 1) = 1. Therefore α2k+1 is a primitive

element in GF(2n) and the code C(α2k+1) is a cyclic single-error-correcting code. Since

gcd(n, 6) = 1, it follows also that gcd(2n − 1, 23k + 1) = 1, and therefore the code

C(α23k+1) is a cyclic single-error-correcting code as well.

2. Since gcd(n, k) = 1, the condition of Lemma 4.6.3 holds and the code C(α,α2k+1) is

a double-error-correcting code. Similarly, since gcd(n, 6) = 1 and gcd(n, k) = 1, it

follows that gcd(n, 3k) = 1, and again by Lemma 4.6.3, the code C(α,α23k+1) is a

double-error-correcting code.

3. Since gcd(n, 6) = 1, n is necessarily an odd integer and since gcd(n, k) = 1 the con-

ditions of Theorem 4.6.2 hold. Therefore, the code C(α,α2k+1,α23k+1) is a triple-error-

correcting code.

We note that at this point the code C(α,α2k+1,α23k+1) is “almost” a strong triple-error-correcting

code. All that remains to be shown is that the code C(α2k+1,α23k+1) is a double-error-correcting

code. Before doing so, we state the definition of an almost perfect nonlinear mapping.

Definition 4.6.5. A mapping f : GF(pn) → GF(pn) is called an almost perfect nonlinear

(APN) mapping if each equation

f (x + a)− f (x) = b

for a, b ∈ GF(pn) and a 6= 0 has at most two solutions in GF(pn). If f is an APN mapping and

is of the form f (x) = xd then f is called an almost perfect nonlinear power mapping.

The next lemma was proved in [10].
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Lemma 4.6.6. If n is an odd integer, 2 6 k 6 n−1
2 , and gcd(n, k) = 1 then the mapping

f (x) = x22k−2k+1 over GF(2n) is an APN mapping.

The proof of the next lemma follows an outline similar to that of the proof of Theorem 1 in [1].

Lemma 4.6.7. If n, k are integers, gcd(n, 6) = 1 and k = n−1
2 , then C(α2k+1,α23k+1) is a

double-error-correcting code.

Proof. Note first that α2k+1 is a primitive element in GF(2n) since gcd(2n − 1, 2k + 1) = 1.

Also, gcd(n, k) = 1 and n is an odd integer, so, according to Lemma 4.6.6, f (x) = xd is an

APN power mapping, where d = 22k − 2k + 1. We denote γ = α2k+1, and hence need to prove

that C(γ,γd) is a double-error-correcting code.

Assume to the contrary that the code is not a double-error-correcting code. Clearly, there

are no codewords of weight one or two and hence there exists a codeword of weight three or four.

Assume there exist a codeword of weight four. Then, there exist four integers 0 6 i1 < i2 <

i3 < i4 6 2n − 2 such that

γi1 +γi2 +γi3 +γi4 = 0

(γi1)d + (γi2)d + (γi3)d + (γi4)d = 0.

The last two equations can be written as follows

γi1 +γi2 = a = γi3 +γi4

(γi1)d + (γi2)d = b = (γi3)d + (γi4)d,

for some a, b ∈ GF(2n), and a 6= 0. Hence, the equation

(x + a)d + xd = b

has four different solutions: γi1 ,γi2 ,γi3 ,γi4 . This is a contradiction since xd is an APN mapping.

The case of a codeword of weight three is handled similarly.

From Lemma 4.6.4 and Lemma 4.6.7 we conclude the following theorem.

Theorem 4.6.8. If n, k are integers, gcd(n, 6) = 1, and k = n−1
2 , then C(α,α2k+1,α23k+1) is a

strong triple-error-correcting code.

We are now ready to show the triple-error-correcting WOM-code construction. Again,

we use the WOM-codes CW , CWD, and assume that gcd(dlog2(n + 1)e, 6) = 1 and α is

a primitive element in GF(2dlog2(n+1)e). The strong triple-error-correcting code is denoted
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by Cstrong
3 (ECstrong

3
,DCstrong

3
). Its roots are α1 = α,α2 = α2k+1,α3 = α23k+1, where k =

dlog2(n+1)e−1
2 . There are 3r + t redundancy cells, divided into four groups:

1. The first t cells q = (q0, . . . , qt−1) are used with the n information cells to construct an

[n + t, k, t] single-error-detecting WOM-code C ′W (EC ′W ,DC ′W ).

2. The other three groups p1 = (p0, . . . , pr−1), p2 = (pr, . . . , p2r−1), and p3 = (p2r, . . . ,

p3r−1) constitutes of r cells each. The i-th group, i = 1, 2, 3, stores the dlog2(n+ 1)e-bit

syndrome si which corresponds to the rootαi.

To conclude, we describe an [n + t + 3r, k, t] triple-error-correcting WOM-code, which we de-

note by CTEC(ECTEC ,DCTEC).

Encoding map ECTEC : The input is the memory-state vector (c, q, p1, p2, p3) and the

new k-bit data vector v. The output is either a new memory-state vector (c′, q′, p′1, p′2, p′3) or

the erasure symbol E.

1. (c′, q′) = EC ′W((c, q), v);
2. if ((c′, q′) == E) return E;

3. s1 = ∑
n−1
i=0 c′iα

id1
1 ; s2 = ∑

n−1
i=0 c′iα

id2
2 ; s3 = ∑

n−1
i=0 c′iα

id3
3 ;

4. p′1 = ECWD(p1, s1); p′2 = ECWD(p2, s2);
p′3 = ECWD(p3, s3);

5. if ((p′1 == E)OR(p′2 == E)OR(p′3 == E))
return E;

6. return (c′, q′, p′1, p′2, p′3);

The new k-bit data vector v is encoded in the information cells c and the first group of

the redundancy cells q using the encoding map EC ′W (line 1). If this writing does not succeed

the symbol E is returned (line 2). Otherwise, the three syndromes s1, s2, s3 are calculated from

the n information cells (line 3) and are encoded in the last three groups of redundancy cells (line

4) while checking their writing success (line 5). If the last three writing operations succeed, the

encoding map returns the new memory-state vector (line 6).

In the decoding map, DCTEC , we use the decoding map of the double-error-correcting

WOM-code DCDEC . Note that in the decoding map DCDEC , instead of using a double-error-

correcting BCH code, we can use any other cyclic double-error-correcting code which is given

by its two roots. Line 9 in the decoding mapDCDEC is modified by substituting the decoding map

of the new cyclic double-error-correcting code. The input to the modified decoding map D′CDEC

is the two roots of the cyclic double-error-correcting code, the n information cells, and the 2r

redundancy cells, corresponding to the two syndromes of the two roots.
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Decoding map DCTEC : The input is the memory-state vector (c′, q′, p′1, p′2, p′3). The

output is the decoded data vector v.

1. s′′1 = DCWD(p′1); s′′2 = DCWD(p′2); s′′3 = DCWD(p′3);
2. if (s′′1 == F)
3. {{ v = D′CDEC

(α2,α3, c′, p′2, p′3); return v; }}
4. if (s′′2 == F)
5. {{ v = D′CDEC

(α1,α3, c′, p′1, p′3); return v; }}
6. if (s′′3 == F)
7. {{ v = D′CDEC

(α1,α2, c′, p′1, p′2); return v; }}
8. s′1 = ∑

n−1
i=0 c′iα

i
1; s′2 = ∑

n−1
i=0 c′iα

i
2; s′3 = ∑

n−1
i=0 c′iα

i
3;

9. e1 = s′1 + s′′1; e2 = s′2 + s′′2; e3 = s′3 + s′′3;
10. if ((∑

n−1
i=0 c′i) == (∑

t−1
i=0 q′i))

11. {{ v = D′CDEC
(α1,α2, c′, p′1, p′2); return v; }}

12. if ((e2k+1
1 == e2)OR(e23k+1

1 == e3)

OR(e22k−2k+1
2 == e3))

13. {{ v = maj(D′CSEC
(α1, c′, p′1),D′CSEC

(α2, c′, p′2),
D′CSEC

(α3, c′, p′3)); return v; }}
14. e′ = DCstrong3

(e1, e2, e3);

15. v = DCW(c′ + e′);
16. return v;

First, the three syndromes from the last three redundancy cell groups are decoded (line

1). If the decoded syndrome s′′1 is the error flag F (line 2), then there is at least one error in the

group p′1. In the information cells c′ and redundancy cells p′2, p′3 there are at most two errors.

Therefore, we decode by applying the decoding mapD′CDEC
to c′ and p′2, p′3 with the rootsα1,α3

(line 3). The same procedure is applied if s′′2 or s′′3 is the error flag F (lines 4− 7). Here, we

use the property of Cstrong
3 that every two out of its three roots generate a cyclic double-error-

correcting code.

After line 7, none of the syndromes s′′1 , s′′2 , s′′3 is the error flag F. Therefore, if there

are errors in these redundancy cells then the number of errors in each of the three redundancy

cells groups is even and since there are at most three errors, at most one group has exactly two

errors. The received syndromes s′1, s′2, s′3 from the received cells and the differences e1, e2, e3

are calculated (lines 8 and 9). If the condition in line 10 holds, then the cells c′ and q′ have zero

or two errors. In both cases, the cells c′, p′1, p′2 have at most two errors so it is possible to decode

(line 11).
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We are left with the case where the parities of the cells c′ and q′ are not the same. That

is, these cells have either one or three errors. We address this case in the next lemma.

Lemma 4.6.9. The condition in line 12 holds if and only if there is at most a single error in the

information cells c′.

Proof. If there is at most a single error in the information cells c′ then at most one of the

redundancy cell groups p′1, p′2, p′3 has two errors, that is, at least two of these groups do not have

errors. If there is no error in the first and second groups and the i-th information cell c′i is in error,

then e1 = αi
1 = αi and e2 = αi

2 = αi(2k+1). Therefore, e2k+1
1 = e2. This condition clearly

holds also if there are no errors in the information cells c′. Similarly, if there is no error in p′1
and p′3 then e23k+1

1 = e3, and if there is no error in p′2 and p′3 then e22k−2k+1
2 = e3. Therefore, if

there is at most a single error in the information cells c′ then the condition in line 12 holds.

Now assume that there is more than one error in the information cells c′. That is, the

information cells have two or three errors and in this case, there is no error in the redundancy

cells p′1, p′2, p′3. Assume that the information cells have three errors in locations i, j, `. Then,

e1 = αi +α j +α`

e2 = αi(2k+1) +α j(2k+1) +α`(2k+1)

e3 = αi(23k+1) +α j(23k+1) +α`(23k+1),

for some 0 6 i < j < ` 6 n− 1. In this case, e2k+1
1 6= e2. Otherwise, we get

e1 +α
i +α j +α` = 0

e(2
k+1)

1 +αi(2k+1) +α j(2k+1) +α`(2k+1) = 0,

and C(α,α2k+1) has a codeword of weight at most four, which is a contradiction. Similarly,

e23k+1
1 6= e3 and e22k−2k+1

2 6= e3. The case of two errors in the information cells is handled

similarly. Hence, the condition in line 12 does not hold.

According to Lemma 4.6.9, if the condition in line 12 holds, then there is at most a single

error in the information cells c′. At most one of the redundancy cell groups p′1, p′2, p′3 has errors.

Therefore, at least two out of the three decoding maps in line 13 succeed, and the function maj,

which outputs the majority of the three decoded values, returns the correct value of v. In line 14,



83

there are at most three errors in the information cells and no errors in the redundancy cell groups

p′1, p′2, p′3, so it is possible to find the error vector (line 14) and decode (line 15). We conclude

with the following theorem.

Theorem 4.6.10. If CW is an [n, k, t] WOM-code, CWD is an [r, dlog2(n + 1)e, t] single-error-

detecting WOM-code, and gcd(dlog2(n + 1)e, 6) = 1, then CTEC is an [n + 3r + t, k, t] triple-

error-correcting WOM-code.

4.7 Multiple Error-Correcting WOM-Codes

In this section, we study how to correct an arbitrary number of errors with a WOM-code.

As described in the Introduction, a simple scheme to construct an e-error-correcting WOM-code

is done by using an existing WOM-code and replicating each one of its cells 2e + 1 times. A

first improvement upon this scheme can be achieved by replicating each cell only e + 1 times.

Then, instead of using a regular WOM-code, a single-error-correcting WOM-code is applied.

Note that since each cell is replicated e + 1 times, at most one cell in the single-error-correcting

WOM-code will be erroneous and thus its decoding map succeeds. In the rest of the section

we will show how to use similar ideas in order to construct better WOM-codes that correct an

arbitrary specified number of errors.

Let us first show another property of the triple-error-correcting WOM-code studied in

Section 4.6.

Lemma 4.7.1. Let CTEC be an [n + 3r + t, k, t] triple-error-correcting WOM-code constructed

in Theorem 4.6.10. Then the code CTEC can correct four erasures.

Proof. Assume first that there are no erasures in the redundancy cells groups p1, p2, p3 then

we know the correct value of the syndromes s1, s2, s3 and in the information cells c there are at

most four erasures. Since the code Cstrong
3 corrects three errors, its minimum distance is at least

seven and hence it can correct up to six erasures and a fortiori four erasures.

If each redundancy cell group p1, p2, p3 has at most one error, then it is still possible

to successfully decode the three syndromes since each syndrome is stored using a single-error-

detecting WOM-code and then find the erasure cells as in the first case.

If one of the three redundancy groups has at least two erasures then in the n information

cells and two other redundancy groups there are at most two erasures and again it is possible to
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successfully decode the erasure values.

The next theorem confirms the validity of the first construction for an e-error-correcting

WOM-code.

Theorem 4.7.2. Let CTEC be an [n, k, t] triple-error-correcting WOM-code. Then there exists an

[de/2en, k, t] e-error-correcting WOM-code.

Proof. Let us denote the cells of the WOM-code CTEC by c′0, . . . , c′n−1. The constructed e-error-

correcting WOM-code is denoted by CeEC and its de/2en cells are denoted by c0,0, . . . , c0,de/2e−1,

. . . , cn−1,0, . . . , cn−1,de/2e−1. We use two transformations in the validation of the construction.

The first transformation

f : {0, 1}de/2en → {0, 1, ?}n,

transforms a memory-state vector of de/2en cells,

c = (c0,0, . . . , c0,de/2e−1, . . . , cn−1,0, . . . , cn−1,de/2e−1),

into a memory-state vector of n cells,

c′ = (c′0, . . . , c′n−1),

by taking the majority of every group of de/2e cells. That is, for all 0 6 i 6 n− 1

c′i = maj{ci,0, . . . , ci,de/2e−1},

and in case of equality in the numbers of ones and zeros, then c′i =?, the erasure symbol. The

second transformation

g : {0, 1}n → {0, 1}de/2en,

transforms a memory-state vector of n cells,

c′ = (c′0, . . . , c′n−1),

to a memory-state vector of de/2en cells,

c = (c0,0, . . . , c0,de/2e−1, . . . , cn−1,0, . . . , cn−1,de/2e−1),

such that for all 0 6 i 6 n− 1 and 0 6 j 6 de/2e − 1,

ci, j = c′i .
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That is, every cell is replicated de/2e times.

In the encoding map ECeEC , the new vector data v and memory-state vector c of de/2en
cells are received. Then, the new memory-state vector is updated according to

g(ECTEC( f (c), v)).

First, a memory-state vector of n cells is generated by the transformation f on the memory-state

vector of the de/2en cells, c. Then, the encoding map ECTEC is invoked on the memory-state

vector f (c) and data vector v. Finally, the new memory-state vector of n cells is transformed

back to de/2en cells to generate the new memory-state vector.

In the decoding map EDeEC , the memory-state vector c of de/2en cells is the input and

is decoded according to

EDTEC( f (c)).

As in the encoding map, first a memory-state vector of n cells is generated from the memory-

state vector of de/2en cells and is the input to the decoding map of the WOM-code EDTEC . The

output data vector v from EDTEC is the output data vector of the decoding map.

If there are at most e errors in c then in the memory-state vector f (c) there are at most

three errors and erasures or exactly four erasures. Since CTEC is a triple-error-correcting WOM-

code it can correct three errors and erasures and according to Lemma 4.7.1 it can correct four

erasures as well.

The next example demonstrates how to use the previous construction in order to con-

struct a four-error-correcting WOM-code.

Example 4.7.1. Let us start with the [2k − 1, k, 5 · 2k−4 + 1] WOM-code for k > 4, and

gcd(k, 6) = 1, by Godlewski [5]. First, a strong triple-error-correcting code exists since we

require that gcd(k, 6) = 1. A triple-error-correcting WOM-code is built using the [2k, k, 5 ·
2k−4 + 1] single-error-detecting WOM-code from Example 4.3.1. This last WOM-code is used

as the WOM-codes CWD and C ′W in the construction of the triple-error-correcting WOM-codes.

Hence, we get a triple-error-correcting WOM-code that stores k bits 5 · 2k−4 + 1 times using

2k − 1 + 1 + 3 · 2k = 4 · 2k

cells. Then, according to Theorem 4.7.2 there exists a [8 · 2k, k, 5 · 2k−4 + 1] four-error-correcting

WOM-code.
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Roth [15] suggested another construction of multiple-error-correcting WOM-codes. The

construction is based upon a recursive approach, described as follows. Assume that C is an

[n, k, t] WOM-code, and assume that there exists a linear e-error-correcting code of length n and

redundancy r. Then, the r redundancy bits are recursively stored using another e-error-correcting

WOM-code. This process can be recursively repeated multiple-times until it is necessary to use

an e-error-correcting WOM-code which can be constructed according to Theorem 4.7.2. We

validate the recursive step of this construction in the next theorem and then show an example of

how to use the construction.

Theorem 4.7.3. Let C1 be an [n, k, t] WOM-code, C2 be a linear e-error-correcting-code of

length n and redundancy r, and C3 be an [m, r, t] e-error-correcting WOM-code, then there exists

an [n + m, k, t] e-error-correcting WOM-code.

Proof. The e-error-correcting WOM-code we construct has n + m cells which are partitioned

into two groups. The first group has n cells and is denoted by c = (c1, . . . , cn). The second

group consists of m cells and is denoted by p = (p1, . . . , pm).

In the encoding map the memory-state vector of n + m cells, (c, p) and new data vector

v are received. The output is a new memory-state vector (c′, p′). The data vector v is stored in

the first n cells using the encoding map of the WOM-code C1,

c′ = EC1(c, v).

Let H be the parity check matrix of the linear e-error-correcting code C2. In the next step a

syndrome s of r bits is calculated using the new value of the n bits,

s = H · c′.

Then, the syndrome s is stored in the m cells using the encoding map of the WOM-code C3,

p′ = EC3(p, s).

In the decoding map, the memory-state vector (c′, p′) is the input and the output is a

data vector v of k bits. First, the syndrome s of r bits is decoded by applying the decoding map

of the e-error-correcting WOM-code C3,

s′′ = DC3(p′).

The success of this decoding map is guaranteed since there are at most e errors in p′ and the

WOM-code C3 can correct e errors. Another syndrome is calculated from the n cells and the
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parity check matrix H,

s′ = H · c′.

Note that if the memory-state vector without errors is c and e is the error-vector of weight at

most e, i.e. c′ = c + e, then

H · e = H · (c + c′) = H · c + H · c′ = s′′ + s′.

Therefore, the syndrome that corresponds to the error vector e is s′′+ s′ and it is possible to find

it by applying the decoding map of the code C2 to s′′ + s′,

e = DC2(s
′′ + s′).

Finally, the data vector v is decoded by applying the decoding map of the WOM-code C1 to the

memory-state vector c′ + e,

v = DC1(c
′ + e).

A necessary condition to efficiently apply this scheme recursively is that, r, the number

of redundancy bits of the e-error-correcting is not greater than the number of information bits k;

otherwise the number of cells in the next step of the recursion is greater than the total number of

cells n. The code constructed in Example 4.7.1 cannot be used for just this reason. If we start

with the [2k− 1, k, 5 · 2k−4 + 1] WOM-code for k > 4, gcd(k, 6) = 1, and then use a four-error-

correcting-code, the number of redundancy bits is roughly 4k and so the number of information

bits for the next WOM-code in the recursion is greater than the number of the information bits

that the WOM-code needs to store. The next example shows another case where this scheme can

outperform the construction in Theorem 4.7.2.

Example 4.7.2. In this example we start with the [23, 11, 3] WOM-code constructed by Cohen

et al. [2]. In order to use this WOM-code in a larger block of cells, one can simply repeat the

WOM-code in successive groups of 23 cells. For example, repeating the code 89 times pro-

vides us with a [2047, 979, 3] WOM-code. In order to construct a four-error-correcting WOM-

code according to the construction in Theorem 4.7.2, it is necessary to first build a triple-error-

correcting WOM-code. In this case n = 2047, dlog(n + 1)e = 11, and we will construct a

single-error-detecting WOM-code that stores 11 bits three times. This can be done according

to Section 4.3 and the [23, 11, 3] WOM-code, so we receive a [26, 11, 3] single-error-detecting
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WOM-code. The condition of Theorem 4.6.10 holds, i.e. gcd(11, 6) = 1, and thus we can

construct a [2047 + 3 · 26 + 3 = 2128, 979, 3] triple-error-correcting WOM-code. Finally, by

applying Theorem 4.7.2, we can construct a [4256, 979, 3] four-error-correcting WOM-code.

Next, we construct the code according to Theorem 4.7.3. Again, let us start with the

[2047, 979, 3] WOM-code and use a four-error-correcting code of length 2047. Specifically, we

use a four-error-correcting BCH code of 4 · 11 = 44 redundancy bits, so we need to store 44 bits

three times while correcting four errors. Therefore, we seek to use Theorem 4.7.2 and hence need

to construct first a triple-error-correcting WOM-code which stores 44 bits three times. Note that

now n = 92 and dlog(n + 1)e = 7, so a single-error-detecting that stores seven bits three times

is required. Cohen et al. [2] also constructed a [7, 3, 3] WOM-code and therefore there exists a

[14, 6, 3] WOM-code. By simply adding three more cells to store one more bit three times we

construct a [17, 7, 3] WOM-code. The latter WOM-code provides us with a [20, 7, 3] single-

error-detecting WOM-code. The condition of Theorem 4.6.10 holds again, gcd(7, 6) = 1, and

thus we construct a [92 + 3 · 20 + 3 = 155, 44, 3] triple-error-correcting WOM-code. Next, by

applying Theorem 4.7.2, we can construct a [2 · 155 = 310, 44, 3] four-error-correcting WOM-

code. Finally, we get a [2047 + 310 = 2357, 979, 3] four-error-correcting WOM-code, thereby

improving upon the first construction.

4.8 Summary and Conclusions

In this chapter, we constructed error-correcting WOM-codes. All the proposed con-

structions had the same structure in the sense that we started with an existing [n, k, t] WOM-

code and then added more redundancy cells that enabled the WOM-code to detect or correct

errors. We started with a construction of a single-error-detecting WOM-code. Then, we showed

how to use this construction along with Hamming codes in order to construct single-error-

correcting WOM-codes. Building upon this, we construct double-error-correcting WOM-codes

when dlog(n + 1)e is an odd integer and when dlog(n + 2)e is an even integer.

We proceeded to construct triple-error-correcting WOM-codes. Here, we introduced the

notion of strong cyclic error-correcting codes, for which the e roots of the generator polynomial

have the property that any subset of k distinct roots generate a k-error-correcting code. We

showed how to find strong triple-error correcting codes and used them in the construction of

triple-error-correcting WOM-codes. The triple-error-correcting WOM-codes were used in one

construction, which then formed the basis of a recursive construction that sometimes yields better

multiple-error-correcting WOM-codes.



89

Acknowledgment

Chapter 4 is in part a reprint of the material in the paper: E. Yaakobi, P.H. Siegel,

A. Vardy, and J.K. Wolf, “Multiple Error-Correcting WOM-Codes,” Proc. IEEE International

Symposium on Information Theory, pp. 1933–1937, Austin, Texas, June 2010.

Bibliography

[1] C. Bracken and T. Helleseth, “Triple-error-correcting BCH-like codes,” in Proc. IEEE Int.
Symp. Inform. Theory, pp. 1723–1725, Seoul, Korea, June 2009.

[2] G.D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-once memories,”
IEEE Trans. Inform. Theory, vol. 32, no. 5, pp. 697–700, September 1986.

[3] A. Fiat and A. Shamir, “Generalized write-once memories,” IEEE Trans. Inform. Theory,
vol. 30, pp. 470–480, September 1984.

[4] F. Fu and A.J. Han Vinck, “On the capacity of generalized write-once memory with state
transitions described by an arbitrary directed acyclic graph,” IEEE Trans. Inform. Theory,
vol. 45, no. 1, pp. 308–313, September 1999.
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Chapter 5

On Codes that Correct Asymmetric

Errors with Graded Magnitude

Distribution

5.1 introduction

The topic of asymmetric error-correcting codes over non-binary alphabets has attracted

considerable attention in the past few years, largely due to its relevance in the context of multi-

level flash memories. However, research on asymmetric codes has a long history. A number

of papers appeared in the 1960’s, e.g., [3, 13, 19, 20]. Constructions and upper bounds on such

codes were given in, e.g., [2,7,8,11,12,15,21] and constructions of systematic asymmetric error-

correcting codes were studied in [4]. One of the dominant error mechanisms of flash memory

cells is over-programming the cells [6,17,22]. Since flash memory cells cannot reduce their level,

these errors cannot be physically corrected unless the entire containing block is erased. Thus, it

is crucial to design error-correcting codes that correct asymmetric errors of limited-magnitude.

Furthermore, the ability to correct such errors can enable the programming of the cells to be less

accurate and thus faster.

In [5], Cassuto et al. designed codes which correct t asymmetric errors of limited-

magnitude `. In this model, an error can only increase the erroneous symbol by at most ` levels.

Systematic optimal codes for this model that correct all asymmetric and symmetric errors of

limited-magnitude were given by Elarief and Bose [10]. In [16], the case of correcting a single

asymmetric error (t = 1) of limited-magnitude ` was studied, and the results improved upon

91
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those given by Cassuto et al. for this scenario. Asymmetric error-correcting codes for binary and

non-binary alphabets were recently presented by Dolecek [9]. Codes correcting all unidirectional

errors of limited-magnitude were studied in [1]. Another related error model assumes that if the

cell level is x then the level can only be reduced to any value less than x. Code constructions

were given in [14], and a short survey was given in [15].

These previously proposed codes and bounds for the non-binary case mainly deal with

the case of t asymmetric errors of limited-magnitude `. However, in flash memories, it is likely

that only a few cells will suffer from an error of large magnitude and that most of the erroneous

cells will suffer from an error of a smaller magnitude [22]. In this chaptr, we will present code

constructions that correct t1 asymmetric errors of magnitude at most `1 and t2 asymmetric errors

of magnitude at most `2, where `1 < `2. This model can be naturally generalized to a wider

range of magnitudes as well as for errors in both directions.

5.2 Preliminaries

In this work, the memory elements, called cells, have q states: 0, 1, . . . , q − 1. For a

vector x = (x1, . . . , xn), we let wt(x) denote its Hamming weight, i.e. wt(x) = |{i | xi 6= 0}|.
First, let us define asymmetric limited-magnitude errors.

Definition 5.2.1. An error vector e = (e1, e2, . . . , en) is called a t-asymmetric `-limited-

magnitude error if

1. max16i6n{ei} 6 `,

2. wt(e) 6 t.

An [n, q, t, `] error-correcting code C is called a t-asymmetric `-limited-magnitude error-corre-

cting code if it is a q-ary code of length n which can correct all t-asymmetric `-limited-magnitude

errors.

We extend the last definition to error vectors with two different limited-magnitudes.

Definition 5.2.2. An error vector e = (e1, e1, . . . , en) is called a (t1, t2)-asymmetric (`1, `2)-

limited-magnitude error if

1. max16i6n{ei} 6 `2.

2. wt(e) 6 t1 + t2.
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3. |{i | `1 + 1 6 ei 6 `2}| 6 t2,

An [n, q, (t1, t2), (`1, `2)] error-correcting code C is called a (t1, t2)-asymmetric (`1, `2)-

limited-magnitude error-correcting code if it is a q-ary code of length n which can correct

all (t1, t2)-asymmetric (`1, `2)-limited-magnitude errors.

That is, the error model is such that there are at most t1 + t2 errors; at most t2 of these errors

have magnitude between `1 + 1 and `2 and the magnitude of the rest of the errors is at most `1.

Lemma 5.2.3. Let t1, t2, `1, `2 be positive integers such that `1 < `2. Then, the number of

(t1, t2)-asymmetric (`1, `2)-limited-magnitude errors is

t2

∑
i=0

((
n
i

)
(`2 − `1)

i ·
t1+t2−i

∑
j=0

(
n− i

j

)
`

j
1

)
.

Proof. For any (t1, t2)-asymmetric (`1, `2)-limited-magnitude error vector, the number of errors

of magnitude between `1 + 1 and `2 is at most t2. Assume this number is i, 0 6 i 6 t2, then the

number of error vectors with i such errors is (n
i )(`2 − `1)

i. There are at most t1 + t2 − i more

errors of magnitude at most `1 and so for any error vector with i errors between `1 + 1 and `2,

the number of (t1, t2)-asymmetric (`1, `2)-limited-magnitude error vectors is ∑
t1+t2−i
j=0 (n−i

j )`
j
1.

Therefore, the total number of such error vectors is ∑
t2
i=0

(
(n

i )(`2 − `1)
i · ∑t1+t2−i

j=0 (n−i
j )`

j
1

)
.

There are two error models that can be considered. The errors can or cannot wrap-

around. That is, in the first case, if the transmitted word is c and the error vector is e then the

received word is (c+ e) mod q, while in the latter case we require that c+ e 6 (q− 1, . . . , q−
1). In many practical applications like multi-level flash memories, it is common to assume that

errors do not wrap-around. However, the constructions we present can work in some cases for

both models.

5.3 Constructions of t-Asymmetric `-Limited-Magnitude

Error-Correcting Codes

The goal of this work is to construct (t1, t2)-asymmetric (`1, `2)-limited-magnitude

error-correcting codes. The construction of such codes is based on a recent construction by

Cassuto et al. [5] of t-asymmetric `-limited magnitude error-correcting codes. We now review

the construction in [5]. For a vector x = (x1, . . . , xn), and a positive integer m, we define the
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vector x mod m to be

x mod m = (x1 mod m, . . . , xn mod m).

Construction 5.3.1. Let Σ be a t-error-correcting code of size n and redundancy r over an

alphabet of size `+ 1. Then the q-ary code C of length n is defined as

C = {c ∈ {0, . . . , q− 1}n | c mod (`+ 1) ∈ Σ}.

The code Σ will be called the base code used to construct C. The following theorem was proved

in [5].

Theorem 5.3.1. The code C is an [n, q, t, `] error-correcting code if the code Σ corrects t or

fewer symmetric errors. If q > 2`, the converse is true as well.

Next, we describe the decoding and encoding procedures.

Decoding: Let c ∈ C be the transmitted codeword and y = c + e the received word, where e is

a t-asymmetric `-limited-magnitude error vector. Let

z = y mod (`+ 1) = (c + e) mod (`+ 1).

Then, since c mod (`+ 1) ∈ Σ, the word z suffers at most t symbol errors. These errors can

be found using the decoder of the code Σ. That is, the value of e mod (`+ 1) is found and thus

also the error vector e.

Remark 5.3.1. As mentioned in [5], we will also assume here, for the simplicity of the encoding

procedure, that (`+ 1)|q, and the construction corrects wrap-around errors as well. However it is

possible to modify the encoding procedure also for the case where (`+ 1) - q, while sacrificing

the ability to correct wrap-around errors.

Encoding: The encoding procedure, as presented in [5], can use any encoding procedure for Σ.

However, for our construction, we will require that Σ be systematic1. If r is the redundancy of

Σ then the encoder’s input is a vector (u1, u2) ∈ {0, . . . , q− 1}n−r × {0, . . . , q
`+1 − 1}r. Let

v1 ∈ {0, . . . , `}r be the systematic encoder’s output of Σ when applied to (u1 mod (`+ 1)).

Then the encoder’s output of C is c, where

c = (u1, (`+ 1) · u2 + v1).

1The restriction that the code Σ has a systematic encoder is not a severe one, as many codes and in particular all
linear codes have a systematic encoder.



95

Note that c ∈ {0, . . . , q− 1}n, (c mod (`+ 1)) ∈ Σ and distinct input vectors generate distinct

output vectors.

In the rest of this chapter, we present code constructions that are based on the codes

we just described. When we refer to an [n, q, t, `] code C, we refer to a code that is designed

in Construction 5.3.1 which is constructed using a base code Σ. While Σ is constructed over

an alphabet of size ` + 1 and has to correct t symbol errors, it is possible to use other codes

over larger alphabets that correct t-asymmetric `-limited-magnitude errors that wrap around (see

Construction 1A in [5]). Either choice of Σ will work in our constructions.

In fact, assume one wants to construct [n, q, t, 1] error-correcting codes. According to

Construction 5.3.1, Σ is a binary code, however if q is an odd integer the construction does not

necessarily result in a good code. A different construction of [n, q, t, 1] error-correcting codes

was recently given by Dolecek [9]. Yet another construction is presented in the next theorem

and provides the code Σ to be used as an [n, p, t, 1] error-correcting code in order to construct

an [n, q, t, 1] error-correcting code where p is a prime integer that divides q.

Theorem 5.3.2. Let p, t, m, n be four positive integers such that p is a prime number, t 6 p− 1,

and n = pm − 1. Letα ∈ GF(pm) be a primitive element. Then, the matrix H,

H =


α1 α2 α3 · · · αn

α2 α4 α6 · · · α2n

...
...

...
. . .

...

αt α2t α3t · · · αtn

 ,

is a parity-check matrix of an [n, p, t, 1] error-correcting code of dimension m− t over GF(p).

Proof. Assume that there are t errors in locations i1, . . . , it and the error magnitude in each

coordinate is one. Therefore, the syndrome we receive is s = (s1, . . . , st) where for 1 6 ` 6 t,

s` =
t

∑
k=1
α`

k .

According to the Newton-Girard formulas over GF(p) [18] and since t 6 p− 1, it is possible

for 1 6 ` 6 t to derive the values of

Λ` = ∑
v1<v2<···<v`

αv1 ·αv2 · · ·αv` .

These values give us the coefficients of the degree-t polynomial p(x) = ∏
t
j=1(x−αi j), since

p(x) = xt −Λ1xt−1 +Λ2xt−2 − · · ·+ (−1)t−1Λt−1x + (−1)tΛt.
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Therefore, the roots of the polynomial p(x) are the values αi1 , . . . ,αit and we can derive the

error locations.

Since the number of errors is not known in advance, we can perform the same rule of

decoding while some of the roots will have the value zero which correspond to no error.

Before we proceed to the next section and construct (t1, t2)-asymmetric (`1, `2)-limited-

magnitude error-correcting codes, we construct a family of codes that correct errors of the fol-

lowing magnitudes:

s, 2s, 3s, . . . , `s,

for some positive integers s, `.

Definition 5.3.3. An error vector e = (e1, . . . , en) is called a t-asymmetric (`, s)-multiple-

spaced limited-magnitude error if

1. max16i6n{ei} 6 `s,

2. wt(e) 6 t,

3. for all 1 6 i 6 n, ei ≡ 0(mods).

An [n, q, t, `, s] error-correcting-code C is called a t-asymmetric (`, s)-multiple-spaced limited-

magnitude error-correcting code if it is a q-ary code of length n which can correct all t-

asymmetric (`, s)-multiple-spaced limited-magnitude errors.

The next theorem gives a construction of [n, q, t, `, s] error-correcting-codes.

Theorem 5.3.4. Let n, q, t, `, s be positive integers and assume that there exists an [n,
⌈ q

s

⌉
, t, `]

error-correcting code C1. Then, there exists an [n, q, t, `, s] error-correcting code C2 of the same

size.

Proof. The new code C2 is defined as follows.

c ∈ C2 if and only if
⌊

1
s
· c
⌋
∈ C1.

Assume that c ∈ C2 and y = c + e is the received word, where e is a t-asymmetric (`, s)-

multiple-spaced limited-magnitude error. We use the decoding procedure of C1, where the input

is
⌊ 1

s · y
⌋
. Note that, ⌊

1
s
· y
⌋
=

⌊
1
s
· (c + e)

⌋
=

⌊
1
s
· c
⌋
+

1
s
· e.
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Since
⌊ 1

s · c
⌋
∈ C1, we can consider

⌊ 1
s · c

⌋
+ 1

s · e to be the input to the decoder of C1, where
1
s · e is a t-asymmetric `-limited-magnitude error. Thus, the decoder of C1 can decode the error

vector 1
s · e and multiplying it by s gives with the original error vector e.

A code will be called perfect if it attains the sphere packing bound for t-asymmetric

`-limited-magnitude errors [5].

Theorem 5.3.5. If the code C1 is perfect and s|q, then the code C2 is perfect as well.

Proof. If the code C1 is perfect then

|C1| ·
t

∑
i=0

(
n
i

)
`i = (q′)n,

where q′ = q
s . The size of the code C2 is |C2| = sn · |C1| and the number of errors is ∑

t
i=0 (

n
i )`

i.

Therefore,

|C2| ·
t

∑
i=0

(
n
i

)
`i = sn · |C1| ·

t

∑
i=0

(
n
i

)
`i = sn · (q′)n = qn

and the code C2 is perfect as well.

Theorem 5.3.4 gives us the construction as well as the decoding procedure for the new

code C2. Its encoding procedure is derived from the encoding procedure of C1. Assume that C1

is constructed as described earlier in this section using a base code Σ of length n and redundancy

r which corrects t symbol errors over an alphabet of size `+ 1 and it has a systematic encoder.

Then, Σ is also the base code for C2. For the simplicity of the encoder we assume that s(`+ 1)|q.

The encoder’s input is a vector

(u1, u2) ∈ {0, . . . , q− 1}n−r ×
{

0, . . . ,
q

`+ 1
− 1
}r

.

Let v2 ∈ {0, . . . , `}n be the encoder’s output of Σ when applied to
(⌊ u1

s

⌋
mod (`+ 1)

)
. The

encoder’s output of C2 is c = (c1, c2), where c1 = u1 and

c2 = s ·
(
(`+ 1)

⌊u2

s

⌋
+ v2

)
+ (u2 mod s).

The vector c satisfies c ∈ {0, . . . , q− 1}n,
⌊ 1

s · c
⌋
∈ C1 and the outputs of two different input

vectors are different. Thus, the encoding procedure follows the construction of C2.

Remark 5.3.2. Let us explain the intuition behind this construction. Assume that q is a power

of two and every cell level is represented as a sequence of log2 q bits. If we construct asym-

metric error-correcting codes where ` = 1, then the base code Σ is binary and the encoding and
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decoding of the q-ary code are implemented on the LSB of each cell. For asymmetric (`, s)-

multiple-spaced limited-magnitude error-correcting codes, assume that ` = 2 and s is also a

power of two, say the i-th power, where 2 6 i < log2 q − 1, then the base code Σ is again

binary and the encoding and decoding of the q-ary code are implemented on the i-th digit of

each cell.

5.4 A Construction of (t1, t2)-Asymmetric

(`1, `2)-Limited-Magnitude Error-Correcting Codes

In this section, we give a construction of (t1, t2)-asymmetric (`1, `2)-limited-magnitude

error-correcting codes. The construction uses the codes proposed by Cassuto et al. [5] which

were reviewed in Section 5.3. We will describe the encoding procedure and then show its cor-

rectness by the success of its decoding procedure.

Construction 5.4.1. Let t1, t2, `1, `2 be positive integers such that `1 < `2, and let `′2 =⌊
`2

`1+1

⌋
. Let C1 be an [n, q, t1 + t2, `1] error-correcting code and let C2 be an [n, q, t2, `′2, `1 + 1]

error-correcting code. Let Σ1 and Σ2 be the base codes that are used to generate the codes C1

and C2, respectively. Both base codes are of length n, and they have redundancy r1 and r2,

respectively. They also have systematic encoders. We construct the code C by means of the

following encoding procedure. The input to the encoder is a vector

(u1, u2, u3) ∈ {0, . . . , q− 1}n−r1−r2×{
0, . . . ,

q
`′2 + 1

− 1
}r2

×
{

0, . . . ,
q

`1 + 1
− 1
}r1

.

The encoding of these information symbols is carried out in two steps. First, let v2 be the

systematic encoder’s output of Σ2 applied to the vector(⌊
u1

`1 + 1

⌋
mod (`′2 + 1),

⌊
u3

`1 + 1

⌋
mod (`′2 + 1)

)
,

and let

u′2 = (`1 + 1)
(
(`′2 + 1)

⌊
u2

`1 + 1

⌋
+ v2

)
+ (u2 mod (`1 + 1)).

Then, we calculate v3 to be the systematic encoder’s output of Σ1 applied to (u1 mod (`1 +

1), u′2 mod (`1 + 1)). Finally, the encoder’s output is c = (c1, c2, c3), where c1 = u1, c2 = u′2
and c3 = (`1 + 1) · u3 + v3.
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Remark 5.4.1. We assume here that r1 + r2 6 n. However, if this is not the case we can modify

the construction to be applicable in this scenario.

Before we show the correctness of this construction, let us prove a few properties of

(t1, t2)-asymmetric (`1, `2)-limited-magnitude errors. Assume that e is a (t1, t2) asymmetric

(`1, `2)-limited-magnitude error. First note that this error vector can be written as e = e1 + e2,

where

e1 = e mod (`1 + 1), e2 = e− e1.

Lemma 5.4.1. For all c ∈ C1, c + e2 ∈ C1.

Proof. The proof follows from the observation that

e2 mod (`1 + 1) = 0.

Lemma 5.4.2. The error vector e1 is a (t1 + t2)-asymmetric `1-limited-magnitude error.

Proof. Since wt(e) 6 t1 + t2 so is wt(e1) 6 t1 + t2 and clearly max06i6n−1{e1,i} 6 `1.

Lemma 5.4.3. The vector e2 is a t2-asymmetric (`′2, `1 + 1)-multiple-spaced limited-magnitude

error.

Proof. For each i, 1 6 i 6 n, if ei 6 `1 then e2,i = 0 and therefore wt(e2) 6 t2. Furthermore,

e2,i = ei − e1,i = ei − (ei mod (`1 + 1)),

and thus e2,i ≡ 0 mod (`+ 1). Finally,

e2,i = ei − (ei mod (`1 + 1)) =
⌊

ei

`1 + 1

⌋
· (`1 + 1)

6
⌊

`2

`1 + 1

⌋
· (`1 + 1) = `′2 · (`1 + 1)

In the next theorem we will prove the correctness of this construction by showing the

success of its decoding procedure.
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Theorem 5.4.4. The code C generated by Construction 5.4.1 is an [n, q, (t1, t2), (`1, `2)] error-

correcting code.

Proof. The proof follows from the decoding procedure of the code C. Assume the received

word is y = c + e where e is a (t1, t2)-asymmetric (`1, `2)-limited-magnitude error vector. As

mentioned above, we write the error vector in the form e = e1 + e2, where e1 = e mod (`1 + 1)

and e2 = e− e1. From Lemma 5.4.1, c + e2 ∈ C1 and from Lemma 5.4.2, e1 is a (t1 + t2)-

asymmetric `1-limited magnitude error vector. Therefore, by applying the decoder of C1 to the

received word y, the error vector e1 is decoded and the decoder’s output is y′ = c + e2.

According to Lemma 5.4.3, the error vector e2 is a t2-asymmetric (`′2, `1 + 1)-multiple-

spaced limited-magnitude error. However, note that c is not a codeword of C2. In fact, c is the

encoded codeword, which is the output of the encoder of C1. Its input, which is the output of

the encoder of C2, is c′, where for all 1 6 i 6 n− r1, c′i = ci, and for n− r1 + 1 6 i 6 n,

c′i = ci − (ci mod (`1 + 1)). But, the decoder of C2 decodes a t2-asymmetric (`+ 1)-multiple

`′2-limited-magnitude error by calculating⌊
1

`1 + 1
· y′
⌋
=

⌊
1

`1 + 1
· (c + e2)

⌋
=

⌊
1

`1 + 1
· c
⌋
+

1
`1 + 1

· e2 =

⌊
1

`1 + 1
· c′
⌋
+

1
`1 + 1

· e2.

Therefore, the error output of the decoder of C2 is e2 and we successfully receive the transmitted

codeword c.

In order to evaluate this code construction we compare it to the codes by Cassuto el

al. [5]. Clearly, for all positive integers t1, t2, `1, `2 such that `1 6 `2, every [n, q, t1 + t2, `2]

error-correcting code is also an [n, q, (t1, t2), (`1, `2)] error-correcting code. In case that t1 and

t2 are roughly the same, it turns out that our construction is inferior. The reason is that the

number of errors found by C1 is t1 + t2 and the number of errors found by C2 is t2. Even though

the magnitude of the errors is smaller than `2, the total number of errors found by the two codes

is t1 + 2t2, as opposed to t1 + t2 errors corrected by an [n, q, t1 + t2, `2] code. Since the sizes of

the two codes depend on the sizes of their base codes, in order to give an accurate comparison,

one needs to know the exact sizes of these base codes. If all the base codes were perfect or close

to be perfect then it is possible to show that, approximately, if t1
t2
> log n

log `2−log `1
, then our scheme

is superior. For example, if n = 1000 and `1 = 1, `2 = 4, t1 = 6, t2 = 1, our construction

yields better codes. Consider another example of [n, q, (n− 1, 1), (1, 2)] error-correcting codes,
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where 12|q. Then, the size of the best [n, q, n, 2] error-correcting codes will be
( q

3

)n, while our

construction achieves codes of size 1
2dlog ne ·

( q
2

)n
>
( q

3

)n.

5.5 A Construction of (1, 1)-Asymmetric (1, `)-Limited-Magnitude

Error-Correcting Codes

We saw in the previous section that if the values of t1 and t2 are roughly the same then

our construction does not necessarily outperform the construction by Cassuto et al. Here, we

consider one case where it is possible to achieve better code constructions. We start with a

construction of an [n, q, (1, 1), (1, 2)] error-correcting code.

Theorem 5.5.1. Let q, m be positive integers such that m > 1 and 3|q, and C1 is the code

constructed in Theorem 5.3.2 where n = 3m − 1, p = 3, t = 2. Then, the code C, defined as,

C = {c ∈ {0, . . . , q− 1}n|c(mod3) ∈ C1,
n

∑
i=1

ci ≡ 0(mod2)}.

is an [n, q, (1, 1), (1, 2)] error-correcting code.

Proof. Let c be the transmitted codeword, y = c + e the received word where e is a (1, 1)-

asymmetric (1, 2)-limited magnitude error, and s1 = ∑
n
i=1 yiα

i, s2 = ∑
n
i=1 yiα

2i. The sum of

the received symbols can have either odd or even parity, modulo 2.

Odd sum-parity: ∑
n
i=1 yi ≡ 1(mod2).

There are two possible cases.

1. The weight of e is one and the error magnitude is one.

2. The weight of e is two, one error is of magnitude one and the other one is of magnitude

two.

In the first case, we get s1 = αi, s2 = α2i = s2
1, where i is the error location. In the second case,

s1 = αi1 + 2αi2 , s2 = α2i1 + 2α2i2 , where i1, i2 are the error locations and

s2
1 = (αi1 + 2αi2)2 = α2i1 +α2i2 +αi1+i2

= α2i1 + 2α2i2 − (α2i2 −αi1+i2) = s2 +α
i2(αi2 −αi1) 6= s2.
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Hence we can distinguish between these two cases. The error location error in the first case is

easy to find. In the second case, we decode as follows:

s2

s1
+ s1 =

α2i1 + 2α2i2

αi1 + 2αi2
+αi1 + 2αi2

=
α2i1 −α2i2

αi1 −αi2
+αi1 −αi2 = 2αi1 .

From this we can determine the location of the error with magnitude one and, therefore, also the

location of the error with magnitude two.

Even sum-parity: ∑
n
i=1 yi ≡ 0(mod2). There are three cases:

1. There is no error.

2. The weight of e is one and the error magnitude is two.

3. The weight of e is two and both errors have magnitude one.

In the first case, we get s1 = s2 = 0. In the second case, s1 = 2αi, s2 = 2α2i = 2s2
1, where

i is the error location. In the third case, we can show as before that s2 6= 2s2
1. Hence, we can

distinguish between the three cases and the error locations in each case can again be easily de-

termined.

Assume q is even. The size of the code C1 is 3n−2m and, as defined, the size of C is
qn

2·9m . On the other hand, suppose that we use Construction 5.3.1 to design an [n, q, 2, 2] error

correcting code C ′ with the same parameters n and q. If the base code Σ is an optimal linear

code that corrects two errors over GF(3), its redundancy is at least
⌈
log3(2n2 + 1)

⌉
= 2m+ 1,

and therefore the size of the code C ′ is at most qn

32m+1 < qn

2·9m .

5.6 Conclusion

In this work, we studied a new error model for multi-level flash memories based upon

a graded distribution of asymmetric errors of limited magnitudes. Using a recent construction

by Cassuto et al. [5] of asymmetric limited-magnitude error-correcting codes, we developed a

family of codes that correct asymmetric errors with magnitudes a multiple of some fixed integer.

We then utilized these two classes of codes to construct codes that correct t1 asymmetric errors

of magnitude no more than `1 and t2 errors of magnitude no more than `2, where `1 < `2.

Finally, we discussed efficient constructions for the special case where t1 = t2 = 1, `1 = 1, and

`2 > 1.
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Chapter 6

On The Parallel Programming of Flash

Memory Cells

6.1 Introduction

Parallel programming is an important tool used in flash memories to achieve high write

speed. Studying how cells are programmed is crucial for understanding the storage capacity of

flash memories. While programming the cells, charge can be progressively injected into a cell;

however, in order to remove charge from any cell, a large block of cells (about 106 cells) must be

first erased together (i.e., all charge in them be fully removed) before reprogrammed [3]. There-

fore, in order to avoid block erasures, flash memory cells are usually programmed cautiously

with multiple rounds of charge injection, so that every cell’s level gradually approaches its target

level [13, 18].

Parallel programming in flash memories has two important properties: shared program

voltages, and variation in charge-injection properties. A flash memory injects charge into a cell

by applying a program voltage to the cell. In parallel programming, a common program voltage

is applied to many cells for simultaneous charge injection [3]. Compared to applying a separate

program voltage to each cell, this property significantly simplifies the complexity of the memory

hardware. It is also a constraint for the storage capacity of flash memories. Another important

property is that cells have different hardness for charge injection [13, 18]. Some cells are easy

to program, while others are hard to program. When the same program voltage is applied to

cells, the easier-to-program cells will have more charge injected into them than the harder-to-

program cells. This hardness is an intrinsic property of each cell. To accurately control the
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final cell levels, different program voltages should be applied to cells based on their hardness for

programming. A widely used method in industry is the Incremental Step Pulse Programming

(ISPP) scheme [13,18], which gradually increases the program voltage to first program the easier

cells and then the harder cells. To ensure that the (easier) cells are not overprogrammed, the

subsequent program voltages are not applied to the cells whose levels are already sufficiently

close to their target levels.

In previous works, the optimal programming of single flash memory cells has been

studied. In [7], an optimal programming algorithm was presented for storing as much data as

possible in a single cell, which achieves the zero-error storage capacity under its programming

noise model. In [8], an algorithm was shown for optimizing the expected cell programming pre-

cision, when the programming noise follows a random distribution. Note that for programming

a single cell, the two important properties for parallel programming – shared program voltages

and variation in programming hardness – are not considered. So for parallel programming, new

techniques need to be developed.

6.2 Terms and Concepts

Let us first describe the general information theoretic framework of the cell program-

ming problem. This problem can be modeled as a cascade channel, described in Figure 7.1,

where the number of channels is as the number of programming rounds, t. We assume that there

are n cells, whose initial levels (i.e., charge levels) are all 0. When the cells are programmed,

a cell’s level can only increase. Each cell is characterized by some target level θi > 0 and the

target levels vector is Θ , (θ1, . . . ,θn). Each round of programming is first described by an

encoder Ei, 1 6 i 6 t. The input to the first encoder is the target levels vector and for the

other encoders the input includes also a feedback on the cells’ level based on the previous pro-

gramming round. The output of each encoder is the variable Xi which includes an information

about the program voltage on the i-th round and the set of cells that are applied by this voltage.

Then, the output of the channel, which is the outcome of the programming iteration on the i-th

round, is a function of Xi, Ni, and Yi−1 if i > 1. The variable Ni represents the noise in each

cell and any other property of the cell that will affect its level. The variable Yi−1 represents the

current value of each cell. For the next round, the outcome on the i-th round of programming

Yi is used in order to generate a feedback Fi on the cell levels which will be used in the next

programming round. Then, the goal is to minimize a cost function between the channel output

Yt after t programming rounds and the target levels vector Θ.
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Figure 6.1: The information theoretic framework of the cell programming model.
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There are different ways to specify this general framework. For example, this model

of programming the cells can be also seen as a rewritable channel, which was described by

Lastras-Montaño et al. [11,12,15]. Yet another model was given in [17] which approximates the

cells’ levels after programming while taking into account other effects like inter-cell interference

and aging of the flash memory blocks. In this work, we focus on the following model. Let

c1, c2, . . . , cn be the n flash memory cells. We model the hardness of charge injection for the

cells by the positive parameters α1,α2, . . . ,αn. Specifically, for i ∈ [n] , {1, 2, . . . , n}, if a

program voltage V is used to inject charge into the cell ci, the level of ci will increase by

αiV +ε,

where ε is called the programming noise and is a random number with a probabilistic distribu-

tion. (The distribution of ε may depend onαi and V.) In this work, we will mostly consider the

case ε = 0 (which means the programming noise is sufficiently small), and focus on studying

howαi (i.e., the variance in charge-injection hardness) impacts parallel programming.

For i ∈ [n], θi > 0 is the target level of the cell ci. The programming process consists

of t rounds of charge injection, and the goal is to make the final level of ci be very close to θi.

To guarantee high write speed, t is usually a small constant (e.g., t = 6 or 8 for MLC flash).

Let V1, V2, . . . , Vt denote the program voltages of the t rounds of programming, respectively. In

each round, the memory can decide whether to apply the program voltage to a cell or not. For

i ∈ [n] and j ∈ [t], let bi, j be a 0/1 integer such that in the j-th round of programming, if the

program voltage Vj is applied to the cell ci, then bi, j = 1; otherwise, bi, j = 0. For i ∈ [n] and

j ∈ [t], let `i, j denote the level of ci after the j-th round of programming. Then we have

`i, j = αi ·
(
V1, V2, · · · , Vj

)
·
(
bi,1, bi,2, · · · , bi, j

)T .

We measure the performance of programming by a cost function C(Θ, L), where Θ =

(θ1,θ2, . . . ,θn) are the target levels and L , (`1,t, `2,t, . . . , `n,t) are the final cell levels. There

are various ways to define C(Θ, L). We will adopt the `p metric and denote it by Cp(Θ, L):

Cp(Θ, L) ,

(
n

∑
i=1
|θi − `i,t|p

)1/p

.

Given the integer p, our objective is to minimize Cp(Θ, L).

In the parallel programming problem, Θ and t are given parameters. We can choose

V1, . . . , Vt and b1,1, . . . , bn,t for the best performance. It makes a difference whether we know

the values ofα1, . . . ,αn, and whether we can learn the cell levels after each programming round
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(which is feedback information). If the feedback information on cell levels is available, the pro-

gramming algorithm can be adaptive. Note that it is very time consuming to measure the exact

cell levels. In practice, it is much faster to compare the cell levels with some preset threshold

levels (using comparators), and use the information on cell levels to make decisions on program-

ming [13, 18]. We show examples in the following.

Example 6.2.1. Let n = 8,

Θ = (1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 2.0, 2.0),

t = 2, and

(α1, . . . ,α8) = (0.5, 0.5, 0.8, 0.75, 0.5, 0.42, 0.85, 0.46),

be known parameters. Assume there is no feedback information on the cell levels after each

round of programming.

Suppose we choose V1 = 2.0 and V2 = 2.5, and choose(
b1,1 b2,1 · · · b8,1

b1,2 b2,2 · · · b8,2

)
=

(
1 1 0 0 1 1 0 1

0 0 1 1 0 1 1 1

)
.

Then we get

L = (1.0, 1.0, 2.0, 1.875, 1.0, 1.89, 2.125, 2.07) ,

and

Cp(Θ, L) = (2× 0.125p + 0.11p + 0.07p)1/p .

If p = 2, then the programming performance is C2(Θ, L) = 0.220.

Example 6.2.2. Let n > 1, Θ = (1.0, 1.0, . . . , 1.0), and t = 2. Let αmin and αmax be two

known parameters such that 0 < αmin < αmax. Suppose that the values of α1, · · · ,αn are

unknown; however, it is known that αi ∈ [αmin,αmax] for i ∈ [n]. Suppose that we have

feedback information on cell levels in the following way: after the first round of programming,

we can compare all cells with a common preset threshold level τ to see if their levels are above

or below τ . Based on this information, the memory can adaptively adjust the second round of

programming. Suppose that we want to minimize C∞(Θ, L).
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It can be verified that the following programming algorithm is optimal. Choose

V1 =
2√

αmax (
√
αmax +

√
αmin)

,

V2 =
2 (
√
αmax −

√
αmin)√

αmaxαmin (
√
αmax +

√
αmin)

,

τ =
2
√
αmin√

αmax +
√
αmin

.

After the first round of programming, all the cell levels are in the range

[αminV1,αmaxV1] =

[
2αmin√

αmax (
√
αmax +

√
αmin)

,
2
√
αmax√

αmax +
√
αmin

]
(Note that τ < 1,αmaxV1 > 1, and 1− τ = αmaxV1 − 1.)

Let S denote the set of cells whose levels are less than τ after the first round of pro-

gramming. (Note that for any cell ci ∈ S , we know now thatαi ∈ [αmin, τV1
).) Only the cells in

S are programmed in the second round. After the second round, the levels of the cells in S are

in the range

[αmin(V1 + V2),
τ

V1
· (V1 + V2)) = [τ ,αmaxV1).

So are the cells in {c1, . . . , cn} \ S . So we get

C∞(Θ, L) = 1− τ = αmaxV1 − 1 =

√
αmax −

√
αmin√

αmax +
√
αmin

.

6.3 Optimal Programming without Feedback

In this section, we present an optimal programming algorithm when the cells’ hard-

ness for programming – α1,α2, . . . ,αn – is known. In this case, there is no need to obtain

the feedback information on cell levels during programming, because they change determinis-

tically. (In practice, α1, . . . ,αn may be estimated values through some cell profiling process.)

Let n, t, θ1, . . . ,θn and p also be known parameters. The programming algorithm needs to find

V1, . . . , Vt and b1,1, . . . , bn,t that minimize Cp(Θ, L).

The parallel programming problem here is similar, for p = 2, to the Subspace/Subset

Selection Problem (SSP) [6] and the Sparse Approximate Solution Problem (SAS) [16], because

we can see

~pi , (b1,i, b2,i, . . . , bn,i)
T

for i = 1, . . . , t as vectors, see V1, . . . , Vt as real coefficients, and the objective is to make the

linear combination

(~p1, . . . ,~pt) · (V1, . . . , Vt)
T
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be close to a given vector (θ1, . . . ,θn)
T. Both SSP and SAS problems are NP hard. However,

we show here that the parallel programming problem has a polynomial-time solution (for many

commonly used `p metrics, including p = 1, 2, ∞), using the condition that here t = O(1) is a

constant.

Without loss of generality (WLOG), we assume that

θ1

α1
6
θ2

α2
6 · · · 6 θn

αn
.

(It takes time complexity O(n lg n) to sort the n ratios and label the n cells this way.)

Lemma 6.3.1. There exists an optimal solution V1, . . . , Vt, b1,1, . . . , bn,t such that for any 1 6

i < j 6 n,

(V1, . . . , Vt) · (bi,1, . . . , bi,t)
T 6 (V1, . . . , Vt) ·

(
b j,1, . . . , b j,t

)T

Proof. For k = 1, 2, . . . , n, let us define

yk , (V1, . . . , Vt) · (bk,1, . . . , bk,t)
T .

Note that for each k ∈ [n], Cp(Θ, L) is monotonically increasing in |θk − `k,t| = |θk −αk yk|.
Consider any optimal solution where yi > y j. Since |θi − `i,t| is minimized, we have

|θi −αi yi| 6
∣∣θi −αi y j

∣∣ ,

θ2
i − 2θiαi yi +α

2
i y2

i 6 θ2
i − 2θiαi y j +α

2
i y2

j ,

α2
i (y2

i − y2
j ) 6 2θiαi(yi − y j),

yi + y j

2
6
θi

αi
.

Similarly, since
∣∣θ j − ` j,t

∣∣ is minimized, we have θ j
α j

6
yi+y j

2 . Since θi
αi

6
θ j
α j

, we get θi
αi

=
yi+y j

2 =
θ j
α j

. So

|θi −αi yi| =
∣∣θi −αi y j

∣∣
and we can make (bi,1, . . . , bi,t) take the value of

(
b j,1, . . . , b j,t

)
and still get an optimal solution.

This way we can convert any optimal solution to an optimal solution that has the property shown

in the lemma.

Let B1, B2, . . . , B2t denote the 2t distinct binary vectors of length t, respectively. And

let

SB , {B1, B2, . . . , B2t}.
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(Let B1, . . . , B2t be column vectors, e.g., (0, . . . , 0)T. Clearly, for i ∈ [n], (bi,1, . . . , bi,t)
T ∈

SB.) There are 2t! permutations for the elements in SB, which we denote by π1, π2, . . . , π2t !.

For i ∈ [2t!], we denote the permutation πi (SB) by(
Bπi

1 , Bπi
2 , . . . , Bπi

2t

)
.

Define ~V , (V1, V2, . . . , Vt). Given the program voltages V1, . . . , Vt, let I(~V) be the

integer in [2t!] such that

~V · B
πI(~V)

1 6 ~V · B
πI(~V)

2 6 · · · 6 ~V · B
πI(~V)

2t .

(If there is more than one such integer, I(~V) can be any one of them.) The following result

follows from Lemma 6.3.1.

Lemma 6.3.2. There exists an optimal solution V1, . . . , Vt, b1,1, . . . , bn,t such that we can par-

tition the set {1, 2, . . . , n} into 2t subsets

{1, 2, . . . , k1}, {k1 + 1, k1 + 2, . . . , k2}, . . . , {ki−1 + 1, . . . , ki}, . . . , {k2t−1 + 1, . . . , n}

with this property: ∀ i ∈ [2t] and j ∈ {ki−1 + 1, ki−1 + 2, . . . , ki},
(
b j,1, b j,2, . . . , b j,t

)T
=

B
πI(~V)

i . (Here we let 0 = k0 6 k1 6 k2 6 · · · 6 k2t = n.)

Proof. According to Lemma 6.3.1, the amount of injected charge to the cell is a nondecreasing

function. If there are t rounds of programming, then there are 2t different amounts of charge

to inject to each cell. Each such an amount of charge corresponds to a length-t binary vector

describing on each rounds the cell was programmed. Therefore, it is possible to divide the n

cells into 2t groups such that in each group the same amount of charge is injected to all the cells.

There are (n+2t−1
2t−1 ) ways to choose the integers k1, k2, . . . , k2t−1. (Note that if ki−1 = ki

for some i, then the subset {ki−1 + 1, . . . , ki} is actually empty.) For i = 1, 2, . . . , (n+2t−1
2t−1 ), let

(k1(i), k2(i), . . . , k2t−1(i)) be the integers chosen for (k1, k2, . . . , k2t−1) in the i-th way.

We present the parallel programming algorithm. The idea is to fix each permutation πi

and the partitioning integers k1, . . . , k2t−1, and search for the optimal solution.

Algorithm 6.3.3 PROGRAMMING WITHOUT FEEDBACK

Let fopt ← ∞.

Let ~Vopt ← (−1,−1, . . . ,−1). (~Vopt has length t.)
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Let bopt
i, j ← −1 for i ∈ [n] and j ∈ [t].

For i = 1, 2, . . . , 2t!

{ For j = 1, 2, . . . , (n+2t−1
2t−1 )

{ Find V1, V2, . . . , Vt that minimize the function f ,

2t

∑
d=1

∑
q=kd−1( j)+1,kd−1( j)+2,...,kd( j)

∣∣θq −αq · (V1, V2, . . . , Vt) · Bπi
d

∣∣p

subject to the constraints that V1, V2, . . . , Vt > 0.

Let V∗1 , . . . , V∗t denote the optimal solution to the above

optimization problem, and let f ∗ be the corresponding

minimum value of the objective function f .

If f ∗ < fopt, do:

{ fopt ← f ∗.

~Vopt ← (V∗1 , . . . , V∗t ).

For d = 1, 2, . . . , 2t

{ For q = kd−1( j) + 1, kd−1( j) + 2, . . . , kd( j)

{
(

bopt
q,1 , bopt

q,2 , . . . , bopt
q,t

)T
← Bπi

d .

} } } } }
Output the solution ~Vopt, bopt

1,1 , . . . , bopt
n,t . (The corresponding

minimized value of the cost function Cp(Θ, L) is f 1/p
opt .

Theorem 6.3.4. Algorithm 7.5.1 outputs an optimal solution to the parallel programming prob-

lem.

Proof. In each iteration of Algorithm 7.5.1, V∗1 , . . . , V∗t and the values b1,1, . . . , bn,t

(which are specified by the vectors Bπi
d in the iteration) form a feasible solution to the parallel

programming problem. On the other hand, an optimal solution to the parallel programming prob-

lem that has the properties in Lemma 6.3.1 and Lemma 6.3.2 must be found by Algorithm 7.5.1.

It can be seen that when p = 1, 2, and ∞ (which are the most commonly used metrics

for Cp(Θ, L)), the time complexity of Algorithm 7.5.1 is polynomial in n. (Note that t is a small

constant.) For example, consider p = 2. In each iteration of Algorithm 7.5.1, the optimization



114

problem is a quadratic programming problem with t = O(1) non-negativity constraints for

variables, which can be solved with time complexity of O(n) [10]. In general, for any p we get

a polynomial with a fixed number of variables, t, and finding its minimum can be done with time

complexity of O(n). There are 2t!(n+2t−1
2t−1 ) = O(n2t−1) iterations. So Algorithm 7.5.1 has time

complexity O(n2t
).

Note that we can slightly optimize the complexity of Algorithm 7.5.1 by using the fact

that not all the 2t! permutations πi need to be checked. Since we require that for each permutation

I(~V),
~V · B

πI(~V)

1 6 ~V · B
πI(~V)

2 6 · · · 6 ~V · B
πI(~V)

2t ,

if we assume without loss of generality that

V1 < V2 < · · · < Vt

(the programming order does not matter since there is no feedback), then for any permutation,

I(~V),

B
πI(~V)

1 = (0, . . . , 0), B
πI(~V)

2 = (1, 0, . . . , 0), B
πI(~V)

3 = (0, 1, 0, . . . , 0)

and

B
πI(~V)

2t = (1, . . . , 1), B
πI(~V)

2t−1 = (0, 1, . . . , 1), B
πI(~V)

2t−2 = (1, 0, 1, . . . , 1).

However, this does not improve the complexity order of the algorithm as the complexity sig-

nificantly results from the second for-loop which we cannot optimize. In the next example, we

demonstrate how to apply Algorithm 7.5.1 for t = 3.

Example 6.3.1. Let us demonstrate how Algorithm 7.5.1 works for t = 3. Again, we assume

without loss of generality that 0 < V1 < V2 < V3. Therefore,

0 < V1 < V2 < V3, V1 + V2 < V1 + V3 < V2 + V3 < V1 + V2 + V3

and so there are two permutations of the vectors in {0, 1}3 that we need to consider. The

first loop in Algorithm 7.5.1 goes through two possible permutations and the second loop goes

through all possible set of integers {k0, k1, . . . , k7, k8}, such that

1 = k0 6 k1 6 · · · 6 k7 6 k8 = n + 1,
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and there are (n+8−1
8−1 ) = (n+7

7 ) ways to choose these numbers. For example, assume that V3 <

V1 + V2, then for each set of such integers 1 = k0 6 k1 6 · · · 6 k7 6 k8 = n + 1 we find the

solution of V1, V2, V3 that minimizes the cost function
k1−1

∑
q=k0

θ2
q +

k2−1

∑
q=k1

(θq −V1)
2 +

k3−1

∑
q=k2

(θq −V2)
2 +

k4−1

∑
q=k3

(θq −V3)
2

+
k5−1

∑
q=k4

(θq − (V1 + V2))
2 +

k6−1

∑
q=k5

(θq − (V1 + V3))
2

+
k7−1

∑
q=k6

(θq − (V2 + V3))
2 +

k8−1

∑
q=k7

(θq − (V1 + V2 + V3))
2.

Finally, we are only left to output the solution with the minimum cost function.

We conclude this section by studying a simplified yet useful case of parallel program-

ming. In this case, all n cells have the same target cell level, that is, θ1 = · · · = θn = θ.

(For multi-level cells (MLC), it is a natural heuristic solution to program cells of the same target

level together, which corresponds to this case.) We consider programming noise ε; that is, if the

program voltage V is applied to a cell ci, its charge level will increase by αiV +εi(V), where

the programming noise εi(V) is a random number related to V. The values of α1, . . . ,αn are

unknown, but we see them as i.i.d. random variables with known expectation µ1(α) and second

moment µ2(α). (That is, if we use E (x) to denote the expectation of a random variable x, then

for i ∈ [n], E (αi) = µ1(α) and E
(
α2

i
)
= µ2(α). Note that the statistics µ1(α) and µ2(α) are

easy to obtain by the memory by testing many cells with the values of the injected and trapped

charges in the cells.) We also assume that the programming noise ε1(V), . . . ,εn(V) are i.i.d.

random variables; and for i ∈ [n], we assume E(εi(V)) = 0 (namely, its expectation is zero)

and E
(
(εi(V))2

)
= σV2 (namely, its standard deviation is proportional to the program voltage

V). We can use t rounds of programming. We consider the `2 metric for the cost function and

define it as

C ,
n

∑
i=1

(θ− `i,t)
2 .

And our objective is to minimize E (C), that is, the expected cost. We call this case uniform

programming.

Clearly, the optimal solution is to apply the same set of program voltages V1, . . . , Vt to

all the n cells. The following theorem presents the optimal solution and the optimal cost.

Theorem 6.3.5. For the uniform programming problem, the optimal solution is to set

V1 = · · · = Vt =
θµ1(α)

tµ2(α) +σ
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and bi, j = 1 for i ∈ [n] and j ∈ [t]. The corresponding minimized value of the expected cost

E (C) is

n
(

1− µ1(α)
2

µ2(α) +
σ
t

)
θ2.

Proof. Since there is no interference between the cells `1,t, `2,t, . . . , `n,t are i.i.d. random

variables. So E (C) = nE
(
(θ− `1,t)

2
)

. For i ∈ [t], let ε1,i denote the programming noise for

cell c1 in the i-th round of programming. Then,

E (C) /n = E
((
θ− ∑

t
i=1 (α1Vi +ε1,i)

)2
)

= θ2 − 2θE
(
∑

t
i=1 (α1Vi +ε1,i)

)
+ E

((
∑

t
i=1 (α1Vi +ε1,i)

)2
)

= θ2 − 2θµ1(α)∑
t
i=1 Vi +µ2(α)

(
∑

t
i=1 Vi

)2
+σ ∑

t
i=1 V2

i .

Note that ∑
t
i=1 V2

i > 1
t

(
∑

t
i=1 Vi

)2. So we get

E (C) /n >
(
µ2(α) +

σ

t

)( t

∑
i=1

Vi

)2

− 2θµ1(α)
t

∑
i=1

Vi +θ
2 >

(
1− µ1(α)

2

µ2(α) +
σ
t

)
θ2.

The above inequalities will become equalities if and only if

t

∑
i=1

Vi =
θµ1(α)

µ2(α) +
σ
t

and V1 = V2 = · · · = Vt.

6.4 Programming with Inter-Cell Interference

In order to improve the capacity of flash memories, their cell size is getting smaller and

smaller. One of the main side effects of scaling down the flash memory technology is an increase

in the inter-cell interference, also known as cell-to-cell coupling [1, 9]. While programming a

flash memory cell, its neighbors are also affected by the charge that is injected into the cell,

which causes inter-cell interference [5, 14]. There are several ways to overcome inter-cell inter-

ference, such as powerful error-correcting codes or modulation codes. In this section, we study

how to overcome this problem by adjusting the cell programming algorithms so the inter-cell in-

terference is taken into account and thus is reduced. We show how to modify Algorithm 7.5.1 in

Section 6.3 in case there is inter-cell interference while the cells are being programmed. For sim-

plicity of presentation, we will only consider the `2 metric, but modifications for other metrics

are straightforward. Also, we consider inter-cell interference only in one dimension.
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The problem formulation is similar to the description in Section 6.2. Let V1, V2, . . . , Vt

and bi, j for i ∈ [n], j ∈ [t] be as defined previously. For i ∈ [n], j ∈ [t], let yi, j be the amount of

charge that is injected to the i-th cell after the j-th programming round, that is,

yi, j = (V1, V2, . . . , Vj) · (bi,1, bi,2, . . . , bi, j)
T .

Then, `i, j, the level of ci after the j-th programming round is given by

`i, j = αi yi, j +αiβ(yi−1, j + yi+1, j),

where β is a small constant indicating the amount of inter-cell interference. By convention, we

define for all j ∈ [t], y0, j = yn+1, j = 0.

Assume that the target levels are Θ = (θ1, . . . ,θn). First, we define the modified target

levels Θ′ = (θ′1, . . . ,θ′n) which satisfy

θ′i = θi −αiβ

(
θ′i−1

αi−1
+
θ′i+1

αi+1

)
(6.1)

for i ∈ [n] and θ′0 = θ′n+1 = 0, by convention. We assume that β is small enough such that

θ′i > 0, for i ∈ [n]. Let the matrix A be

An =



1 α1β
α2

0 0 · · · 0
α2β
α1

1 α2β
α3

0 · · · 0

0 α3β
α2

1 α3β
α4

· · · 0
...

...
...

...
. . .

...

0 0 · · · 0 αnβ
αn−1

1


,

then equation (6.1) can be expressed also in the following way

An · (θ′1, . . . ,θ′n)
T = (θ1, . . . ,θn)

T .

Lemma 6.4.1. If β <
√

1
n−1 , then there is a unique solution to the values of θ′i for i ∈ [n].

Proof. We need to show that the matrix An is invertible. We show by induction that 1− (n−
1)β2 6 |An| 6 1. The base of the induction is the matrix

A2 =

 1 α1β
α2

α2β
α1

1

 ,

and its determinant satisfies

|A2| = 1− α1β

α2
· α2β

α1
= 1−β2,
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and |A2| 6 1. Next assume that for i 6 n− 1,

1− (i− 1)β2 6 |Ai| 6 1.

Note that

|An| = |An−1| −
αnβ

αn−1
· αn−1β

αn
· |An−2| 6 |An−1| 6 1

and

|An| = |An−1| −β2 · |An−2| > 1− (n− 2)β2 −β2 = 1− (n− 1)β2.

Therefore, |An| > 1− (n− 1)β2 and since β <
√

1
n−1 , we get that |An| > 0, that is,

the matrix An is invertible and there is a unique solution to the values of θ′i for i ∈ [n].

In the rest of this section we will assume that β <
√

1
n−1 , so there is a unique solution to the

values of θ′i for i ∈ [n] and they are all positive.

Next, we seek to apply Algorithm 7.5.1 with the values ofθ′i , i ∈ [n]. However, we need

to apply the following modifications. First, we sort, as before, the cells and let {p1, . . . , pn} be

a permutation of {1, . . . , n} such that

θ′p1

αp1

<
θ′p2

αp2

< · · · <
θ′pn

αpn

.

Note that now the order of the cells does matter because of the inter-cell interference. We assume

here that all these ratios are different since if there are two identical values then we can treat them

as the same cell. And let

ε = min
i=1,...,n−1

{
θ′pi+1

αpi+1

−
θ′pi

αpi

}
.

Also, the function that we minimize in Algorithm 7.5.1 is

f =
2t

∑
d=1

∑
q=kd−1(p j)+1,kd−1(p j)+2,...,kd(p j)

∣∣θq −αq yq −αqβ(yq−1 + yq+1)
∣∣p ,

where for all 1 6 i 6 n, yi is the amount of charge that is injected to the i-th cell, i.e., in

Algorithm 7.5.1

yi = (V1, . . . , Vt) · Bπi
d .

The rest of the Algorithm remains the same and we denote the new algorithm by Algorithm 7.5.1A.

The new function f which we need to minimize is again a polynomial in t variables which can

be solved in time complexity O(n). Therefore, the complexity of Algorithm 7.5.1A does not

change.
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Let us prove the conditions where Algorithm 7.5.1A results with the optimal solution.

The main idea is to prove the equivalent of Lemma 6.3.1. Assume that an optimal solution is

given by the choice of Vi for i ∈ [t] and bi, j for i ∈ [t], j ∈ [n]. The cost of this solution is

δ =
n

∑
i=1

(
θi −αi(yi +β(yi−1 + yi+1))

)2,

where yi = (V1, . . . , Vt) · (bi,1, . . . , bi,t).

Lemma 6.4.2. If the cost of an optimal solution is δ then

n

∑
i=1

(θ′i −αi yi)
2 6

δ

1− (n− 1)β2 .

Proof. Note the following relation:

θi −αi(yi +β(yi−1 + yi+1)) = θi −αiβ

(
θ′i−1

αi−1
+
θ′i+1

αi+1

)
−αi yi +αiβ

(
θ′i−1

αi−1
+
θ′i+1

αi+1

)
−αiβ(yi−1 + yi+1)

= θ′i −αi yi +αiβ

(
θ′i−1 −αi−1 yi−1

αi−1
+
θ′i+1 −αi+1 yi+1

αi+1

)
.

If we define for i ∈ [n], ai = θi −αi(yi +β(yi−1 + yi+1)) and bi = θ
′
i −αi yi, then we get the

following equations:

ai = bi +αiβ

(
bi−1

αi−1
+

bi+1

αi+1

)
,

which can be written in the form

An · (b1, . . . , bn)
T = (a1, . . . , an)

T .

Hence, since the matrix An is invertible (b1, . . . , bn)T = A−1
n · (a1, . . . , an)T, and so

||(b1, . . . , bn)||2 = |A−1
n | · ||(a1, . . . , an)||2 6

δ

1− (n− 1)β2 .

In particular, we get from Lemma 6.4.2 that for all i ∈ [n],

|θ′i −αi yi| 6
√

δ

1− (n− 1)β2 .

Lemma 6.4.3. If the cost of an optimal solution is δ and
√

δ
1−(n−1)β2 < ε

4β , then for 1 6 i <

j 6 n, ypi 6 yp j .
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Proof. Let us denote
√

δ
1−(n−1)β2 by δ. For 1 6 i 6 n, let `i = αi(yi +β(yi−1 + yi+1)) and

note that the cost function is monotonically increasing in |θi − `i|. Assume to the contrary that

there exist 1 6 i < j 6 n such that ypi > yp j . Since |θpi − `pi | is minimized we get that

|θpi −αpi(ypi +β(ypi−1 + ypi+1))| 6 |θpi −αpi(yp j +β(ypi−1 + ypi+1))|,

α2
pi
(y2

pi
− y2

p j
) 6 2αpi(ypi − yp j)(θpi −β(ypi−1 + ypi+1)),

αpi(ypi + yp j) 6 2(θpi −β(ypi−1 + ypi+1)).

and similarly we get

αp j(ypi + yp j) > 2(θp j −β(yp j−1 + yp j+1)).

Thus,
θpi −β(ypi−1 + ypi+1)

αpi

>
θp j −β(yp j−1 + yp j+1)

αp j

.

Since
θ′pi
αpi

<
θ′p j
αp j

we get that

θpi −αpiβ(θ
′
pi−1 +θ

′
pi+1)

αpi

<
θp j −αp jβ(θ

′
p j−1 +θ

′
p j+1)

αp j

.

Together these imply

θp j −αp jβ(yp j−1 + yp j+1)

αp j

>(1)
θp j −αp jβ(θ

′
p j−1/αp j−1 +θ

′
p j+1/αp j+1 + 2δ′)

αp j

=
θ′p j

αp j

− 2δ′β >(2) θ
′
pi

αpi

− 2δ′β+ε

=
θpi −αpiβ(θ

′
pi−1/αpi−1 +θ

′
pi+1/αpi+1 + 2δ′ −ε/β)

αpi

>(3)
θpi −αpiβ(θ

′
pi−1/αpi−1 +θ

′
pi+1/αpi+1 − 2δ′)

αpi

>(4) θpi −αpiβ(ypi−1 + ypi+1)

αpi

,

where (1) and (4) result from the conclusion that for all i ∈ [n], |θ′i −αi yi| 6 δ′. Inequality

(2) results from the definition of ε and inequality (3) results from the condition in the lemma

that δ′ < ε
4β . Hence, we get a contradiction.

To conclude, we prove the following Theorem.
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Theorem 6.4.4. If
√

δ
1−(n−1)β2 6 ε

4β , then Algorithm 7.5.1A outputs an optimal solution.

Proof. According to Lemma 6.4.3, for any optimal solution the amount of charge that is injected

to the cells is non-decreasing according to the permutation of the cell p1, p2, . . . , pn. Therefore,

this order of injecting the cells is a feasible solution of Algorithm 7.5.1A and hence can be found

by the algorithm.

6.5 Feedback Information on Cell Levels

In this section, we extend the study to parallel programming with feedback information

on cell levels. That is, the memory can measure the cell levels after every round of charge

injection. Note that in practice, it is very time consuming to measure the exact level of every

cell. It is much faster to compare the cell levels (in parallel using comparators) with one or more

preset threshold levels, to see if the cell levels are above or below the threshold level [3, 13, 18].

This is the scheme we consider here. By obtaining this feedback information on cell levels, the

memory can learn more about the cells’ hardness for charge injection, and adaptively choose the

subsequent program voltages for optimal performance.

Let αmin and αmax be two known parameters, where 0 < αmin < αmax. We assume

that initially (i.e., before programming starts), the only knowledge on cells’ hardness for charge

injection is that for i ∈ [n],αi ∈ [αmin,αmax]. After every round of programming, based on the

feedback information on cell levels, the memory can estimate the values of the αi’s better, and

adaptively optimize the following program voltages. Therefore, the programming algorithm is a

combination of two iterative processes: iteratively obtaining information on the cells’ hardness

for programming (i.e., the values of αi’s), and adaptively optimizing the program voltages (i.e.,

V1, . . . , Vt) and the on/off of cells (i.e., b1,1, . . . , bn,t).

In this section, we focus on the first iterative process, and study this related problem:

How much information can be learned about a cell’s hardness for charge injection, α, through

t rounds of programming? Specifically, let [α′min,α′max] ⊆ [αmin,αmax] denote the range we

can narrow down to such that after t rounds of programming, we can learn for sure that α ∈
[α′min,α′max]. The smallerα′max −α′min is, the better.

We assume that after every round of programming, we can compare a cell with one

preset threshold level. We formally formulate the problem as follows. Let c be a cell whose initial

level is 0. Letα denote the cell’s hardness for charge injection, such that when a program voltage
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V is applied, the cell’s level will increase byαV. Initially, the only knowledge aboutα is thatα ∈
[αmin,αmax] for some known parametersαmin,αmax. We can use up to t rounds of programming

(whose program voltages are denoted by V1, . . . , Vt), and choose in advance r threshold levels

τ1, τ2, . . . , τr. For i ∈ [t], let `i denote the cell’s level after the i-th round of programming,

and let [αmin
i ,αmax

i ] denote the range such that after the i-th round of programming, we know

for sure that α ∈ [αmin
i ,αmax

i ]. (By convention, let `0 = 0 and [αmin
0 ,αmax

0 ] = [αmin,αmax].

Clearly, when 0 6 i < j 6 t, [αmin
i ,αmax

i ] ⊇ [αmin
j ,αmax

j ].) For i ∈ [t], after the i-th round of

programming, we can compare `i with one threshold level – say τ j – to see if `i < τ j or `i > τ j,

computeαmin
i andαmax

i , and adaptively choose the next program voltage Vi+1. Our objective is

to choose τ1, . . . , τr in advance, choose V1, . . . , Vt online, such thatαmax
t −αmin

t is minimized

(in the worst case).

Let ∆ (t, r,αmin,αmax) denote the smallest achievable value of αmax
t −αmin

t over all

possible solutions. Intuitively, ∆ (t, r,αmin,αmax) > (αmax −αmin) /2t. (Every comparison

with a threshold level can reduce the interval size by at most half.) We now present a better

bound. Given i > j, define ((
i
j

))
,

j

∑
k=0

(
i
k

)
and for i < j, define

(
(i

j)
)
, 2i. Note that((

i
j

))
=

((
i− 1

j

))
+

((
i− 1
j− 1

))
.

Theorem 6.5.1. For all r, t > 0,

∆ (t, r,αmin,αmax) >
(αmax −αmin)(

(t
r)
) .

Proof. We prove by induction on t that for all r > 0,

∆ (t, r,αmin,αmax) > (αmax −αmin) /

((
t
r

))
.

For the base case where t = 0, for all r > 0,

∆(0, r,αmin,αmax) = αmax −αmin.

Let t > 1 and assume that the claim is true for t− 1. On the first round of programming,

we compare the cell level ` with some threshold level τ ; then for some α′ ∈ [αmin,αmax] we

can determine if α > α′ (because ` > τ) or α < α′ (because ` < τ). There are t− 1 more
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rounds; and if the cell level ` has exceeded τ , there are at most r − 1 threshold levels left to

compare with. (Note that the cell level can only increase.) So by induction, we get

∆(t, r,αmin,αmax)

= min
α′

max
{
∆(t− 1, r− 1,α′,αmax), ∆(t− 1, r,αmin,α′)

}
> min

α′
max

αmax −α′(
(t−1

r−1)
) ,

α′ −αmin(
(t−1

r )
)
 .

Ifα′ > ((t−1
r ))αmax+((t−1

r−1))αmin

((t
r))

, then

α′ −αmin(
(t−1

r )
) >

((t−1
r ))αmax+((t−1

r−1))αmin

((t
r))

−αmin(
(t−1

r )
)

=

(
(t−1

r )
)
αmax −

(
(t−1

r )
)
αmin(

(t
r)
)
·
(
(t−1

r )
) =

αmax −αmin(
(t

r)
) .

Similarly, ifα′ 6 ((t−1
r ))αmax+((t−1

r−1))αmin

((t
r))

, then

αmax −α′(
(t−1

r−1)
) >

αmax −
((t−1

r ))αmax+((t−1
r−1))αmin

((t
r))(

(t−1
r−1)

)
=

(
(t−1

r−1)
)
αmax −

(
(t−1

r−1)
)
αmin(

(t
r)
)
·
(
(t−1

r−1)
) =

αmax −αmin(
(t

r)
) .

Therefore, we get ∆(t, r,αmin,αmax) >
αmax−αmin

((t
r))

.

We now present an optimal algorithm whose performance matches the above bound. It

has r 6 t. (Having r > t does not help since we compare with only one threshold level in every

round of programming.) In the algorithm, for i = 1, . . . , r, let τi = τ1

(
αmax
αmin

)i−1
. (The value

of τ1 > 0 can be arbitrary. By convention, let τ0 , 0.) Let z1, . . . , zt+1 and flag be integer

parameters, and set z1 = r and flag = 1. Then, for i = 1, 2, . . . , t, the i-th programming round

(and its following computation) is performed as follows:

1. If zi = 0, thenαmin
i ← αmin

i−1 ,αmax
i ← αmax

i−1 , zi+1 ← 0 and skip the next three steps. (In

this case, we see Vi as Vi = 0; namely, the cell is not really programmed.)
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2. α′i ←
αmin

i−1

(
( t−i

zi−1)
)
+αmax

i−1

(
(t−i

zi
)
)

(
( t−i

zi−1)
)
+
(
(t−i

zi
)
) .

3. If flag = 1, then Vi ←
τr−zi+1

α′i
− τr−zi

αmin
i−1

;

If flag = 0, then Vi ←
τr−zi+1

α′i
− τr−zi+1

αmax
i−1

.

Program the cell with program voltage Vi.

4. Compare cell level `i with threshold level τr−zi+1.

If `i < τr−zi+1, thenαmin
i ← αmin

i−1 ,αmax
i ← α′i , f lag← 0, zi+1 ← zi.

If `i > τr−zi+1, thenαmin
i ← α′i ,α

max
i ← αmax

i−1 , zi+1 ← zi − 1.

The next lemma shows that the program voltages are all non-negative, which means the

algorithm can be successfully implemented.

Lemma 6.5.2. In the algorithm, for i = 1, . . . , t, Vi > 0.

Proof. For all 1 6 i 6 t, if zi = 0 then Vi = 0 and the assertion is correct. For i = 1,

V1 =
τ1

α′1
− τ0

αmin
i−1

=
τ1

α′1
> 0.

Now consider i > 2 and zi > 0. If f lag = 1, then

Vi =
τr−zi+1

α′i
− τr−zi

αmin
i−1

=
αmax

αmin
· τr−zi

α′i
− τr−zi

αmin
i−1

= τr−zi

(
αmax

αmin
· 1
α′i
− 1
αmin

i−1

)
.

Sinceαmin 6 αmin
i−1 andα′i 6 αmax, we get Vi > 0. Similarly, if f lag = 0, then

Vi =
τr−zi+1

α′i
− τr−zi+1

αmax
i−1

= τr−zi+1 ·
(

1
α′i
− 1
αmax

i−1

)
> 0.

The following lemma proves a property of the total programmed voltage after each iter-

ation.

Lemma 6.5.3. In the algorithm, for i = 1, . . . , t, we have ∑
i
j=1 Vj = (τr−zi+1) /α

′
i when

zi > 0. (If zi = 0, Vi = 0.)
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Proof. We prove the lemma by induction on i. On the first programming round z1 = r and the

program voltage,

V1 =
τ1

α′1
− τ0

αmin
0

=
τ1

α′1
,

is also the total programmed voltage. Assume that the assertion is correct for i− 1 < t, so the

total programmed voltage is
τr−zi−1+1

α′i−1
. We will prove its validity for the i-th programming round.

Let us consider the following two cases:

1. If on the (i− 1)-st round `i−1 < τr−zi−1+1 then on the i-th roundαmax
i−1 = α′i−1, zi = zi−1

so the total programmed voltage on the (i− 1)-st round is

τr−zi−1+1

α′i−1
=
τr−zi+1

αmax
i−1

and the value of f lag is zero. Therefore, the program voltage on the i-th round is

Vi =
τr−zi+1

α′i
− τr−zi+1

αmax
i−1

and the total programmed voltage is
τr−zi+1

α′i
.

2. If on the (i − 1)-st round `i−1 > τr−zi−1+1 then on the i-th round αmin
i−1 = α′i−1, zi =

zi−1 − 1 so the total programmed voltage on the (i− 1)-st round is

τr−zi−1+1

α′i−1
=
τr−zi

αmin
i−1

and the value of f lag is one. Therefore, the program voltage on the i-th round is

Vi =
τr−zi+1

α′i
− τr−zi

αmin
i−1

so the total programmed voltage is again
τr−zi+1

α′i
.

The next theorem shows the performance of the algorithm.

Theorem 6.5.4. The algorithm outputsαmin
t ,αmax

t such that

αmax
t −αmin

t =
αmax −αmin(

(t
r)
) .
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Proof. Let k be the smallest integer in {1, 2, . . . , t− 1} such that zk+1 = 0 in the algorithm;

if zi > 0 for i ∈ [t − 1], then let k = t. The k-th round is the final round when the cell is

really programmed, and we have αmin
t = αmin

k , αmax
t = αmax

k . In the following, we consider

only the case k = t. (The case k < t is a simple extension.) Note that zt+1 = 0. We prove for

i ∈ {0, 1, . . . , t},

αmax
t −αmin

t =
(
αmax

i −αmin
i

)
/

((
t− i
zi+1

))
.

This clearly holds for i = t. We now prove it using induction on i, for i = t− 1, t− 2, . . . , 0.

(The case i = 0 leads to this theorem.)

Consider the (i + 1)-st round of programming. The parameterα′i+1 is chosen such that

αmax
i −α′i+1 =

(
( t−i−1

zi+1−1)
)
(αmax

i −αmin
i )(

( t−i−1
zi+1−1)

)
+
(
(t−i−1

zi+1
)
)

and

α′i+1 −αmin
i =

(
(t−i−1

zi+1
)
)
(αmax

i −αmin
i )(

( t−i−1
zi+1−1)

)
+
(
(t−i−1

zi+1
)
) .

This means
αmax

i −α′i+1(
( t−i−1

zi+1−1)
) =

α′i+1 −αmin
i(

(t−i−1
zi+1

)
) .

Since either “αmax
i+1 = αmax

i , αmin
i+1 = α′i+1 and zi+2 = zi+1 − 1” or “αmax

i+1 = α′i+1, αmin
i+1 =

αmin
i and zi+2 = zi+1”, using induction we get

αmax
t −αmin

t =
αmax

i+1 −αmin
i+1(

(t−i−1
zi+2

)
) =

αmax
i −α′i+1(
( t−i−1

zi+1−1)
) =

α′i+1 −αmin
i(

(t−i−1
zi+1

)
)

=

(
αmax

i −α′i+1

)
+
(
α′i+1 −αmin

i
)(

( t−i−1
zi+1−1)

)
+
(
(t−i−1

zi+1
)
) =

αmax
i −αmin

i(
( t−i

zi+1
)
)

From Theorem 6.5.1 and Theorem 6.5.4, we see that the bound in Theorem 6.5.1 is

actually exact. We get the following result.

Corollary 6.5.5. The above algorithm is optimal. And

∆ (t, r,αmin,αmax) =
αmax −αmin(

(t
r)
) .
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Remark 6.5.1. We note that the solution of this problem is very similar to the egg-drop num-

bers [2]. The egg-drop number Dt,` is the the number of floors that one can reach with ` eggs

and t drops. The egg-drop numbers are initialized with the values Dt,` = 0 for t = 0 or ` = 0.

The recursive formula of the egg-drop number

Dt,` = Dt−1,`−1 + Dt−1,` + 1

gives the solution Dt,` =
(
(t
`)
)
− 1. Another connection to the egg-drop numbers appeared in

the context of threshold group testing, see [4].

6.6 Programming with Feedback Information on Cell Levels

In this section, we are interested in programming with feedback information on the

cell levels. As in Section 6.5, after each programming round it is possible to compare the cell

levels with some threshold levels. Here, the goal is to learn about the cells’ hardness while

programming the cells to their target level. It is very likely in practice that the cells do not have

to reach a specific target level but rather reach an interval range that defines a level [3, 13, 18].

The feedback obtained by programming the cells is utilized to have an accurate programming

that will eventually place the cells in their target range level.

The problem formulation is as follows. We assume that there is a single cell whose

initial level is 0 and whose hardness α satisfies α ∈ [αmin,αmax] for some known parameters

αmin and αmax. There are two reference cells τ1 < τ2 and the goal is to program the cell

such that its level is in the range [τ1, τ2]. Every algorithm is characterized by its maximum

number of programming rounds t and the program voltages V1, . . . , Vt on each round, chosen

in advance. For i ∈ [t], `i denotes the cell’s level at the end of the i-th programming round. At

the i-th programming round, the cell’s level, `i, is compared with τ1 and τ2. If `i > τ2 then the

algorithm fails. If τ1 6 `i 6 τ2 then the algorithm terminates successfully. If `i < τ1 and i < t

then the algorithm proceeds to the next round and if `t < τ1 then the algorithm fails. According

to the feedback on the cell’s level it is possible to have a better estimate of the cell’s hardness

and so we denote by [αmin
i ,αmax

i ] for i ∈ [t] the range of the cell’s hardness at the beginning of

the i-th programming round. If the algorithm does not fail then for i ∈ [t], `i 6 τ2 and if `i > τ1

then the algorithm terminates successfully. Therefore, we can not have a better estimate for the

lower bound onα andαmin
i = αmin for i ∈ [t].

Let t(τ1, τ2,αmin,αmax) denote the smallest number of programming rounds of any

successful algorithm for allα ∈ [αmin,αmax]. In the next lemma and theorem we show a lower
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bound on t(τ1, τ2,αmin,αmax).

Lemma 6.6.1. For any successful algorithm with t programming rounds in the worst case,

αi
max >

(
τ1
τ2

)i−1
αmax and ∑

i
j=1 Vj 6

τ2
αmax

(
τ2
τ1

)i−1
, for i ∈ [t].

Proof. We prove this claim by induction on i. On the first round αmax
1 = αmax =

(
τ1
τ2

)0
αmax.

Let V1 be the program voltage on the first programming round. Since the algorithm does not fail

αmaxV1 6 τ2 and therefore V1 6 τ2
αmax

.

Assume the claim is true on the i-th programming round and consider the (i + 1)-st

round for 1 6 i < t. According to the assumption, αi
max >

(
τ1
τ2

)i−1
αmax and ∑

i
j=1 Vj 6

τ2
αmax

(
τ2
τ1

)i−1
. If the algorithm proceeds to the (i + 1)-st round then `i < τ1 and therefore

αi+1
max ·

i

∑
j=1

Vj < τ1,

αi+1
max <

τ1

∑
i
j=1 Vj

.

Therefore, the best upper bound on αi+1
max is achieved when ∑

i
j=1 Vj reaches its greatest value,

that is,

αi+1
max >

τ1

τ2
αmax

(
τ2
τ1

)i−1 =

(
τ1

τ2

)i

αmax.

The amount of programmed charge for the next round has to satisfy that the cell’s level does not

reach level τ2, in the worst case. Thus,

αi+1
max ·

i+1

∑
j=1

Vj 6 τ2,

i+1

∑
j=1

Vj 6
τ2

αi+1
max

6
τ2

αmax

(
τ2

τ1

)i

.

Theorem 6.6.2. For any 0 < τ1 < τ2, 0 < αmin < αmax,

t(τ1, τ2,αmin,αmax) >
⌈

log2(αmax/αmin)

log2(τ2/τ1)

⌉
.

Proof. For any successful algorithm, for all i ∈ [t], `i 6 τ2. Therefore, the worst case for the

number of programming rounds is given by the minimum value of i where `i > τ1 in the worst
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case. That is, the minimum value of i such that

αmin ·
i

∑
j=1

Vj > τ1. (6.2)

(Remember that for all i, αmin
i = αmin.) According to Lemma 6.6.1, ∑

i
j=1 Vj 6

τ2
αmax

(
τ2
τ1

)i−1
,

and therefore the least positive integer i that satisfies (6.2) has to satisfy also

αmin ·
τ2

αmax

(
τ2

τ1

)i−1

> τ1(
τ2

τ1

)i

>
αmax

αmin
,

i >
⌈

log2(αmax/αmin)

log2(τ2/τ1)

⌉
.

Next, we present an algorithm that achieves the above lower bound and hence is optimal.

Let t =
⌈

log2(αmax/αmin)
log2(τ2/τ1)

⌉
, V1 = τ2

αmax
and for 2 6 i 6 t,

Vi =
τ2

αmax

((
τ2

τ1

)i−1

−
(
τ2

τ1

)i−2
)

.

The algorithm works as follows

1. Program the cell with program voltage Vi.

2. If i < t, compare the cell level `i with the threshold level τ1. If `i < τ1 then continue to

round i + 1. Otherwise, stop the algorithm. If i = t the algorithm stops.

The success if this algorithm is proved in the following three lemmas.

Lemma 6.6.3. For i ∈ [t], if the algorithm reaches the i-th programming round, then αmax
i =(

τ1
τ2

)i−1
αmax.

Proof. We prove this claim by induction on i. On the first programming round we know that

α ∈ [αmin,αmax] and the claim is clear. Assume that the claim is true on the i-th round, where

2 6 i < t andαmax
i =

(
τ1
τ2

)i−1
αmax, then

Vi =
τ2

αmax

((
τ2

τ1

)i−1

−
(
τ2

τ1

)i−2
)

,
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and the total programmed voltage is

i

∑
j=1

Vj =
τ2

αmax
+

i

∑
j=2

τ2

αmax

((
τ2

τ1

) j−1

−
(
τ2

τ1

) j−2
)

=
τ2

αmax

(
τ2

τ1

)i−1

.

Therefore, if the algorithm reaches its (i + 1)-st programming round, then `i < τ1 and so

α ·
i

∑
j=1

Vj < τ1,

α <

(
τ1

τ2

)i

αmax.

That is, on the (i + 1)-st roundαmax
i+1 =

(
τ1
τ2

)i
αmax.

Lemma 6.6.4. For i ∈ [t], on the i-th programming round,

`i 6 τ2.

Proof. As shown in Lemma 6.6.3, for i ∈ [t], if the algorithm reaches the i-th programming

round then ∑
i
j=1 Vj =

τ2
αmax

(
τ2
τ1

)i−1
andα 6

(
τ1
τ2

)i−1
αmax. Therefore, the cell level `i satisfies

`i = α ·
i

∑
j=1

Vj = α ·
τ2

αmax

(
τ2

τ1

)i−1

6
(
τ1

τ2

)i−1

αmax ·
τ2

αmax

(
τ2

τ1

)i−1

= τ2.

Lemma 6.6.5. At the end of the algorithm the cell level is not less than τ1.

Proof. If the algorithm stops on the i-th programming round where 1 6 i < t then clearly the

cell’s level is not less than τ1. If the algorithm reaches its t-th level, then the total programmed

charge is ∑
t
j=1 Vj =

τ2
αmax

(
τ2
τ1

)t−1
, and the cell’s level `t satisfies

`t = α ·
t

∑
j=1

Vj > αmin ·
τ2

αmax

(
τ2

τ1

)t−1

= αmin ·
τ2

αmax

(
τ2

τ1

)⌈ log2(αmax/αmin)
log2(τ2/τ1)

⌉
−1

> αmin ·
τ2

αmax
· αmax

αmin
· τ1

τ2
= τ1.



131

Corollary 6.6.6. The above algorithm is optimal. And

t(τ1, τ2,αmin,αmax) =

⌈
log2(αmax/αmin)

log2(τ2/τ1)

⌉
.

6.7 Conclusion

Parallel programming is an important technique for flash memories. And flash memo-

ries have a unique iterative and monotonic cell-programming model. In this chapter, we studied

parallel programming for flash memories, focusing on its two special properties: shared program

voltages and varied programming hardness. We showed algorithms that describe how to imple-

ment the parallel programming when the cells’ hardness is known. We showed how to modify

them in case there is inter-cell interference when cells are programmed. We then proceeded to

show how the cells’ hardness can be obtained by feedback received while cells are programmed.

Finally, we showed how to program a single cell with feedback.
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Chapter 7

Storage Coding for Wear Leveling in

Flash Memories

7.1 Introduction

Flash memory cells are organized into blocks. Each block is further partitioned into

multiple pages, and every read or write operation accesses a page as a unit. Typically, a page

has 2KB to 4KB of data, and 64 to 256 pages comprise a block [5]. Due to the block erasure

property of flash memories, every page can be read and written (for the first time) individually,

however, rewriting a page (that is, modifying its contents) requires the whole block to be erased

and then reprogrammed. Since block erasures degrade the quality of the cells, it is critical to

minimize the number of block erasures. It is also critical to balance the number of erasures

across different blocks. For this reason, numerous wear leveling techniques are widely used in

flash-memory systems. The general idea is to balance erasures by migrating data to different

locations, especially when data are rewritten [5].

In wear leveling, it is often desirable to move the frequently changing data (so-called hot

data) into the same blocks, while storing the mostly static data together in other blocks. Thereby

the overall erasures caused by the hot data can be reduced (see [5, 6]). The specific locations to

which the data are moved can be optimized not only based on the update frequencies, but also on

the correlation among the data. Another important application where data movement is required

is defragmentation of files. Many file systems (and database systems) implemented in flash take

the log-structured approach, wherein updates to files are stored non-consecutively across blocks.

This way, wear leveling is achieved and local block erasures are avoided [3]. Consequently, files
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are frequently fragmented. To improve performance, data have to be moved periodically in order

to reorganize the file segments. In database systems or sensors, after bursty incoming data flows

are reliably stored, data movement is used to store the data in a categorized manner for efficient

analysis. To facilitate data movement, a flash translation layer (FTL) is usually employed to map

logical data pages to physical pages in the flash memory [5]. Minimizing the number of block

erasures incurred during the data movement process remains a major challenge.

In this chapter, we show that coding techniques can significantly reduce the number

block erasures incurred during data movement. In addition to the overall number of erasures, we

also consider other parameters, such as coding complexity and extra storage space (number of

auxiliary blocks).

7.2 Terms and Concepts

In this section, we formally define the data movement problem, and present some useful

concepts.

Definition 7.2.1. (DATA MOVEMENT PROBLEM)

Consider n blocks storing data in a flash memory, and suppose that each block contains m pages.

The n blocks are denoted by B1, . . . , Bn, and the m pages in block Bi are denoted by pi,1, . . . , pi,m

for i = 1, . . . , n. Letα(i, j) and β(i, j) be two functions:

α(i, j) : {1, . . . , n} × {1, . . . , m} → {1, . . . , n};
β(i, j) : {1, . . . , n} × {1, . . . , m} → {1, . . . , m}.

The functions α(i, j) and β(i, j) specify the desired data movement. Specifically, the data ini-

tially stored in the page pi, j are denoted by Di, j, and need to be moved into page pα(i, j),β(i, j), for

all (i, j) ∈ {1, . . . , n} × {1, . . . , m}.
A given number of empty blocks, called auxiliary blocks, can be used in the data move-

ment process, and they need to be erased in the end. To ensure data integrity, at any moment of

the data movement process, the data stored in the flash memory blocks should be sufficient for

recovering all the original data. The objective is to minimize the total number of block erasures

in the data movement process.

Clearly, the functions α(i, j) and β(i, j) together have to form a permutation for the

mn pages. To avoid trivial cases, we assume that every block has at least one page whose data

need to be moved to another block (otherwise, it can be simply excluded from the set of the n
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Figure 7.1: Data movement with n = 6, m = 3.

blocks considered in the data movement problem). Also note that a block has to be fully erased

whenever any of its pages is modified.

Let us now define some terms that are used throughout the chapter. There are two useful

graph representations for the data movement problem: the transition graph and a bipartite graph.

In the transition graph G = (V, E), |V| = n vertices represent the n data blocks B1, . . . , Bn.

If y pages of data need to be moved from Bi to B j, then there are y directed edges from Bi to

B j in G. G is a regular directed graph with m outgoing edges and m incoming edges for every

vertex. In the bipartite graph H = (V1 ∪V2, E′), V1 and V2 each has n vertices that represent

the n blocks. If y pages of data are moved from Bi to B j, there are y directed edges from vertex

Bi ∈ V1 to vertex B j ∈ V2. The two graphs are equivalent but are used in different proofs.

Definition 7.2.2.(BLOCK-PERMUTATION SET AND SEMI-CYCLE)

A set of n pages {p1, j1 , p2, j2 , . . . , pn, jn} that belong to n different blocks is called a block-per-

mutation set if

{α(1, j1),α(2, j2), . . . ,α(n, jn)} = {1, 2, . . . , n}.

If {p1, j1 , p2, j2 , . . . , pn, jn} is a block-permutation set, then the data they initially store, namely

{D1, j1 , D2, j2 , . . . , Dn, jn}, are called a block-permutation data set.

Let z ∈ {1, 2, . . . , n}. An ordered set of pages

(pi0 , j0 , pi1 , j1 , . . . , piz−1 , jz−1)
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is called a semi-cycle if for k = 0, 1, . . . , z− 1, we have

α(ik, jk) = ik+1 mod z.

Example 7.2.1. The data movement problem shown in Fig. 7.1 exemplifies the construction

of the transition graph and the bipartite graph with n = 6, m = 3. Subfigure (a) shows

the permutation table. The numbers with coordinates (i, j) are α(i, j),β(i, j). For example,

(α(1, 1),β(1, 1)) = (3, 3), and (α(1, 2),β(1, 2)) = (2, 1). Subfigure (b) is the transition

graph. Subfigure (c) is the bipartite graph representation. The n thick edges are a perfect match-

ing (a block-permutation set). Subfigure (d) is the graph after removing a perfect matching from

the bipartite graph. Here for i = 1, . . . , n, vertex i represents block Bi. The nm = 18 pages can

be partitioned into three block-permutation sets:

{p1,1, p2,2, p3,2, p4,2, p5,3, p6,1},

{p1,2, p2,1, p3,3, p4,3, p5,2, p6,2},

{p1,3, p2,3, p3,1, p4,1, p5,1, p6,3}.

The block-permutation sets can be further decomposed into six semi-cycles:

(p5,3, p1,1, p3,2, p6,1), (p2,2, p4,2), (p5,2, p3,3, p1,2, p2,1, p4,3, p6,2),

(p1,3), (p2,3, p3,1, p4,1), (p5,1, p6,3).

Every semi-cycle corresponds to a directed cycle in the transition graph, and every block-

permutation set corresponds to a set of directed cycles that enter and leave every vertex exactly

once. It is not a coincidence that the nm pages in the above example can be partitioned into m

block-permutation sets. The following theorem shows it holds for the general case.

Theorem 7.2.3. The nm pages can be partitioned into m block-permutation sets. Therefore, the

nm pages of data can be partitioned into m block-permutation data sets.

Proof. The data movement problem can be represented by the bipartite graph, where every

edge represents a page whose data need to be moved into another block. (See Fig. 7.1 (c) for

an example.) It is known that for every bipartite graph G = (V, E) with bipartition {A, B}
(namely, A ∩ B = ∅ and A ∪ B = V), we have the Hall’s Marriage Theorem [4]:

For S ⊆ A, let N(S) denote the set of vertices in the graph G that are adjacent to at
least one vertex in S. (That is, the vertices in N(S) are the neighbors of the vertices
in S.) Then, the graph G contains a matching of A if and only if |N(S)| > |S| for
all S ⊆ A.
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For the bipartite graph we are considering here, for i = 1, . . . , n, any i vertices in the top layer

have im outgoing edges and therefore are connected to at least i vertices in the bottom layer.

Therefore, the bipartite graph has a perfect matching. The edges of the perfect matching corre-

spond to a block-permutation set. If we remove those edges, we get a bipartite graph of degree

m − 1 for every vertex. (See Fig. 7.1 (c), (d).) With the same argument, we can find another

perfect matching and reduce the bipartite graph to regular degree m− 2. In this way, we partition

the nm edges into m block-permutation sets.

A perfect matching in the bipartite graph can be found using the Ford-Fulkerson Algo-

rithm [7] for computing maximum flow. The idea is to connect all the n top-layer vertices of

the bipartite graph to a source s and connect all the n bottom-layer vertices to a sink t. Then a

perfect matching in the bipartite graph is equivalent to a maximum flow of capacity n between

the source s and the sink t. The Ford-Fulkerson Algorithm has time complexity O(n2m), so

decomposing the nm edges in the bipartite graph into m perfect matchings has time complex-

ity O(n2m2). Therefore, we can partition the nm pages into m block-permutation sets in time

O(n2m2).

7.3 Coding for Minimizing Auxiliary Blocks

In this work, we focus on the scenario where as few auxiliary blocks as possible are used

in the data movement process. In this section, we show that coding techniques can minimize the

number of auxiliary blocks. Afterwards, we will study how to use coding to minimize block

erasures.

7.3.1 Data Movement without Coding

When coding is not used, data are directly copied from page to page. The following

simple example shows that, in the worst case, more than one auxiliary block is needed for data

movement. Note that Di, j denotes the data initially stored in the page pi, j.

Example 7.3.1. Let n = m = 2, and let the functionsα(i, j) and β(i, j) be:

(α(1, 1),β(1, 1)) = (1, 1),

(α(1, 2),β(1, 2)) = (2, 2),

(α(2, 1),β(2, 1)) = (2, 1),
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(α(2, 2),β(2, 2)) = (1, 2).

It is simple to verify that without coding, there is no way to move the data as requested with only

one auxiliary block. To see that, assume that only one auxiliary block B0 is used. Without loss

of generality, assume that we first copy the data in B1 – the data D1,1 and D1,2 – into B0, and

then erase B1. In the next step, the only reasonable choice is to write into B1 the data D1,1 and

D2,2 (which are the data we want to eventually move into B1). After this writing, B0 has D1,1

and D1,2, B1 has D1,1 and D2,2, and B2 has D2,1 and D2,2. The objective of the data movement

has not been met yet. However, we can see that there is no way to proceed: in the next step, if

we erase B0, the data D1,2 will be lost; if we erase B2, the data D2,1 will be lost. So the data

movement fails. It is simple to verify that no feasible solution exists. Therefore, at least two

auxiliary blocks are needed. 2

We now show that two auxiliary blocks are sufficient for data movement without coding.

The next algorithm uses two auxiliary blocks, which are denoted by B0 and B′0. It operates in a

way similar to bubble sort. And it sorts the data of the m block-permutation data sets in parallel.

Algorithm 7.3.1. (BUBBLE-SORT-BASED DATA MOVEMENT)

Decompose the nm pages of data into m block-permutation

data sets.
For i = 1, . . . , n− 1

{

For j = i + 1, . . . , n

{

Copy all the data of Bi into B0;

Copy all the data of B j into B′0;

Erase Bi and B j;

For k = 1, . . . , m

{

Let Di1 , j1 and Di2 , j2 be the two pages of data in B0 and B′0,

respectively, that belong to the k-th block-permutation data set.
Let pi, j3 be the unique page in Bi such that when the data move-

ment process ends, the data stored in pi, j3 will be from the k-th

block-permutation data set.
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If α(i2, j2) = i (which implies β(i2, j2) = j3 and α(i1, j1) 6=
i), copy the data Di2 , j2 into the page pi, j3 ; otherwise, copy the

data Di1 , j1 into the page pi, j3 .
}

Write into B j the m pages of data that are in B0 or B′0 but not in Bi.

Erase B0 and B′0.

}

}

In the above algorithm, for every block-permutation data set, its data are not only sorted

in parallel with other block-permutation data sets, but are also always dispersed in n blocks

(with every block holding one page of its data). The algorithm uses O(n2) erasures. (The n

blocks B1, . . . , Bn are each erased n − 1 times, while the two auxiliary blocks B0 and B′0 are

each erased (n
2) times.) If instead of bubble sorting, we use more efficient sorting networks such

as the Batcher sorting network [2] or the AKS network [1], the number of erasures can be further

reduced to O(n log2 n) and O(n log n), respectively. For simplicity we skip the details.

7.3.2 Storage Coding with One Auxiliary Block

In Algorithm 7.3.1, the only function of the two auxiliary blocks B0 and B′0 is to store

the data of the data blocks Bi, B j when the data in Bi, B j are being swapped. We now show

how coding can help reduce the number of auxiliary blocks to one, which is clearly the best

possible. Let B0 denote the only auxiliary block, and let p0,1, p0,2, . . . , p0,m denote its pages.

For k = 1, . . . , m, statically store in page p0,k the bit-wise exclusive-OR of the n pages of data

in the k-th block-permutation data set. We make such a change in Algorithm 7.3.1:

When the data in Bi, B j are swapped, instead of erasing them together, we first erase Bi

and write data into Bi, then erase B j and write data into B j.

This is feasible because for every block-permutation data set, there are always at least n

pages of data related to it stored in the n + 1 blocks: n− 1 pages of those data are the original

data in the block-permutation data set, and the other page of data are the bit-wise exclusive-OR

of the data of the block-permutation data set. The total number of block erasures here is of the

same order as the algorithm without coding. Therefore, if the AKS network is used for swapping

the data, O(n log n) block erasures will be used in total.
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7.4 Efficient Storage Coding over GF(2)

In this section, we present a data movement algorithm that uses only one auxiliary block

and 2n erasures. It erases every block either once or twice, which is well balanced. The algorithm

uses coding over GF(2) and is very efficient.

For convenience, let us assume for now that every block has only one page. The results

will be naturally extended to the general case where every block has m pages. (Note that the

erasure of a block will affect all the m block-permutation data sets. So when m > 2, the

sequence of block erasures need to be compatible for the data movement of all those m sets.)

Let B0 denote the auxiliary block, and let p0 denote its page. For i = 1, . . . , n, let pi denote the

page in the block Bi, and let Di denote the data initially stored in the page pi. Let

α : {1, . . . , n} → {1, . . . , n}

be the permutation such that the data Di need to be moved into the page pα(i). Let α−1 be the

inverse permutation of α. Say that the n pages p1, p2, . . . , pn can be partitioned into t semi-

cycles, denoted by

C1, C2, . . . , Ct.

Note that since right now we consider a block to have only one page, a semi-cycle is just a cycle

in the permutation α. Every semi-cycle Ci (1 6 i 6 t) has a special page called tail, defined as

follows: if p j is the tail of Ci, then for every other page pk ∈ Ci, we have j > k.

We use “⊕” to represent the bit-wise exclusive-OR of data. The following algorithm

uses 2n block erasures to move data. It consists of two passes: the forward pass and the back-

ward pass. Note that in the algorithm below, whenever some data are about to be written into

a page, the data can be efficiently computed from the existing data in the flash memory blocks

(namely, from the data currently stored in the flash memory). The details will be clear later. Also

note that for i = 1, 2, . . . , n, Dα−1(i) is the data that need to be moved into the page pi.

Algorithm 7.4.1. (GF(2)-CODING-BASED DATA MOVEMENT)

FORWARD PASS:

For i = 1, 2, . . . , n do:
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If pi is not the tail of its semi-cycle, write

Di ⊕ Dα−1(i)

into the page pi−1; otherwise, write

Di

into the page pi−1. Then, erase the block Bi.

BACKWARD PASS:

For i = n, n− 1, . . . , 1 do:

Write

Dα−1(i)

into the page pi. Then, erase the block Bi−1.

Example 7.4.1. Figure 7.2 gives an example of the execution of Algorithm 7.4.1 with n = 8

and t = 2. Here

(α(1),α(2), . . . ,α(8)) = (3, 6, 8, 1, 2, 5, 4, 7).

Consequently, we have

(α−1(1),α−1(2), . . . ,α−1(8)) = (4, 5, 1, 7, 6, 2, 8, 3).

The two semi-cycles are (p1, p3, p8, p7, p4) and (p2, p6, p5). In Figure 7.2, each row is a step

of Algorithm 7.4.1. The numbers are the data in the blocks. (For convenience, we use i to denote

data Di in the figure for i = 1, 2, . . . , 8.) The rightmost column describes the computation

performed for this step, where δi denotes the data in pi then. 2

The correctness of Algorithm 7.4.1 depends on whether the data written into a page can

always be derived from the existing data in the flash memory blocks. Theorem 7.4.2 shows this

is true.

Theorem 7.4.2. When Algorithm 7.4.1 is running, at any moment, for i = 1, 2, . . . , n, if the

data Di are not stored in the n + 1 blocks B0, B1, . . . , Bn, then there must exist a set of data

{Di ⊕ D j1 , D j1 ⊕ D j2 , D j2 ⊕ D j3 , . . . , D jk−1 ⊕ Dk, Dk}

that are all stored in the n + 1 blocks. Therefore, Di can be easily obtained by computing the

bit-wise exclusive-OR of the data in the set.
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B0 B1 B2 B3 B4 B5 B6 B7 B8 Operation

forward pass

1 2 3 4 5 6 7 8 δ1 ⊕ δ4

1⊕ 4 2 3 4 5 6 7 8 δ2 ⊕ δ5

1⊕ 4 2⊕ 5 3 4 5 6 7 8 δ3 ⊕ δ0 ⊕ δ4

1⊕ 4 2⊕ 5 3⊕ 1 4 5 6 7 8 δ4 ⊕ δ7

1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5 6 7 8 δ5 ⊕ δ6

1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7 8 copy δ6

1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7 8 δ7 ⊕ δ8

1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7⊕ 8 8 copy δ8

1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7⊕ 8 8

backward pass

1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7⊕ 8 8 δ7 ⊕ δ6 ⊕ δ3 ⊕ δ0 ⊕ δ2

1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 7⊕ 8 3 δ6 ⊕ δ3 ⊕ δ0 ⊕ δ2 ⊕ δ8

1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 6 8 3 δ5 ⊕ δ4 ⊕ δ1

1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 5⊕ 6 2 8 3 δ4 ⊕ δ1 ⊕ δ6

1⊕ 4 2⊕ 5 3⊕ 1 4⊕ 7 6 2 8 3 δ3 ⊕ δ0 ⊕ δ2 ⊕ δ8

1⊕ 4 2⊕ 5 3⊕ 1 7 6 2 8 3 δ2 ⊕ δ8

1⊕ 4 2⊕ 5 1 7 6 2 8 3 δ1 ⊕ δ6

1⊕ 4 5 1 7 6 2 8 3 δ0 ⊕ δ3

4 5 1 7 6 2 8 3

Figure 7.2: Example of Algorithm 7.4.1. δi denotes the data in page pi, for i = 0, 1, . . . , 8.

Proof. Consider a semi-cycle Ci (1 6 i 6 t), and let us denote its pages by

pi1 , pi2 , . . . , pix .

Without loss of generality (WLOG), assume

α(i j) = i j+1

for j = 1, 2, . . . , x− 1 and

α(ix) = i1.

Also assume that pi1 is the “tail” of the semi-cycle, namely, i1 > i j for j = 2, 3, . . . , x. Now

imagine a directed path S as follows:

1. S has x vertices, representing the data Di1 , Di2 , . . ., Dix ;
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D8

DD7 4

1DD4
D1

D7

D4

D1

D8D7

D4 D3

D1 D3

DD8 7

DD7 4

1DD4
D2

D6D5

D6 5D

D5 2D

(c)(a) (b)

Figure 7.3: The directed path S of a semi-cycle, whose vertices and edges represent data.

2. There is a directed edge from Di j to Di j+1 for j = 1, 2, . . . , x− 1. The edge represents

the data

Di j ⊕ Di j+1 .

For example, the data movement problem in Example 7.4.1 has two semi-cycles, (p2, p6, p5)

and (p1, p3, p8, p7, p4). We show the corresponding directed path S in Fig. 7.3. Subfigure (a)

is the directed path S for semi-cycle (p1, p3, p8, p7, p4), and subfigure (b) is the directed path S

for semi-cycle (p2, p6, p5).

The directed path S corresponding to a semi-cycle, whose vertices and edges represent

data. (a) The directed path S for semi-cycle (p1, p3, p8, p7, p4). (b) The directed path S for semi-

cycle (p2, p6, p5). (c) The stored and un-stored data after three block erasures in the “forward-

pass” of the data-movement algorithm. The vertices and edges of solid thick lines represent the

data that are stored at that moment. The vertices and edges of dashed thin lines represent the

data that are not stored at that moment.

Consider the forward pass in the algorithm. In this pass, for j = 2, 3, . . . , x, right before

the data Di j are erased, the data Di j−1 ⊕ Di j are stored. Note that Di j corresponds to a vertex in

the directed path S, and Di j−1 ⊕ Di j corresponds to the directed edge entering that vertex in S.

So for every vertex in S whose corresponding data have been erased, there is a directed sub-path

in S entering it with this property: “the data represented by the edges in this sub-path, as well

as the data represented by the starting vertex of the sub-path, are all stored in the n + 1 blocks.”

This is the same as the condition stated in the theorem. (For instance, for the data movement

problem in Example 7.4.1, after three block erasures, the stored and un-stored data after three

block erasures in the “forward-pass” of the data-movement algorithm are as shown in Fig. 7.3

(c). The vertices and edges of solid thick lines represent the data that are stored at that moment.

The vertices and edges of dashed thin lines represent the data that are not stored at that moment.
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As an example, consider the erased data D3. The corresponding sub-path entering it contains the

data D4, D4 ⊕ D1 and D1 ⊕ D3, which are stored and can be used to recover D3.)

When the forward pass of the algorithm ends, the data represented by the vertex Di1

and all the edges in S are all stored in the n + 1 blocks. Clearly, all the original data can be

recovered.

Now consider the backward pass in the algorithm. In this pass, first, the data Dix are

stored and then the data Di1 are erased. Then, for j = 1, 2, . . . , x − 1, right before the data

Di j ⊕ Di j+1 are erased, the data Di j are stored. Note that Di j corresponds to a vertex in the di-

rected path S, and Di j ⊕ Di j+1 corresponds to the directed edge leaving that vertex in S. So for

every vertex in S whose corresponding data have been erased, there is a directed sub-path in S

leaving it with this property: “the data represented by the edges in this sub-path, as well as the

data represented by the end vertex of the sub-path, are all stored in the n + 1 blocks.” This is the

same as the condition stated in the theorem. So the conclusion holds.

Algorithm 7.4.1 can be easily extended to the general case where every block has m > 1

pages. Use the algorithm to process the m block-permutation data sets in parallel, in the same

way as Algorithm 7.3.1. Specifically, for i = 1, . . . , n and j = 1, . . . , m, let pi,k(i, j) denote the

unique page in Bi such that some data in the j-th block-permutation data set need to be moved

into pi,k(i, j). In the algorithm, every time Bi is erased, write the data related to the j-th block-

permutation data set into pi,k(i, j). Since every block-permutation set occupies exactly one page

in each block, there will be no conflict in writing.

7.5 Storage Coding with Minimized Number of Erasures

In this section, we present an algorithm that uses at most 2n − 1 erasures, which is

worst-case optimal. It erases every block either once or twice, which is well balanced. We

further show that it is NP hard to minimize the number of erasures for every given instance, but

our algorithm provides a 2-approximation. Namely, it uses at most twice the number of block

erasures compared to the optimal solution.

7.5.1 Optimal Solution with Canonical Labelling

The n blocks initially storing data can be labelled by B1, . . . , Bn in n! different ways.

Let y be an integer in {0, 1, . . . , n − 2}. We call a labelling of the n blocks that satisfies the
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following constraint a canonical labelling with parameter y:

“For i = y + 1, y + 2, . . . , n− 2 and j = i + 2, i + 3, . . . , n, no data initially stored in

the block B j need to be moved into the block Bi.”

Trivially, any labelling is a canonical labelling with parameter n− 2. However, given an

instance of the data movement problem, it is difficult to find a canonical labelling that minimizes

the value of y.

We now present a data-movement algorithm for blocks that have a canonical labelling

with parameter y. It uses one auxiliary block B0, and uses

n + y + 1 6 2n− 1

erasures. So the smaller y is, the better. For convenience, let us again assume that every block

contains only one page, and let pi, Di,α,α−1 be as defined in the previous section. Let r denote

the number of bits in a page. 1 The algorithm can be naturally extended to the general case,

where every block has m > 1 pages, in the same way as introduced in the previous section.

Algorithm 7.5.1. (DATA MOVEMENT WITH LINEAR CODING)

This algorithm is for blocks that have a canonical labelling with parameter y ∈ {0, 1, . . . , n−
2}. Let γ1,γ2, . . . ,γn be distinct non-zero elements in the field GF(2r).

STEP 1: For i = 0, 1, . . . , y do: Erase Bi (for i = 0 there is no need to erase B0), and

write into pi the data ∑
n
k=1 γ

i
kDk.

STEP 2: For i = y + 1, y + 2, . . . , n do: Erase Bi, and write into pi the data Dα−1(i).

STEP 3: For i = y, y− 1, . . . , 1 do: Erase Bi, and write into the page pi the data Dα−1(i).

Finally, erase B0.

Theorem 7.5.2. Algorithm 7.5.1 is correct and uses

n + y + 1 6 2n− 1

erasures. (Note that the algorithm assumes that the blocks have a canonical labelling with pa-

rameter y.)

Proof. We show that each time a block Bi is erased, it is feasible to generate all the n pages of

original data using the current data stored in the other n pages. Denote by δi, 0 6 i 6 n, the

1When r is greater than what is needed by Algorithm 7.5.1, which is nearly always true in practice, we can
partition each page into bit strings of an appropriate length, and apply the algorithm to the strings in parallel.
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current data stored in the page pi, which are a linear combination of the n pages of original data.

The linear combination written in each page can be represented by a matrix multiplication

H · (D1, D2, . . . , Dn)
T = (δ0, . . . , δi−1, δi+1, . . . , δn)

T .

The matrix H defines the linear combination of the original data written into each page. Consider

the first step of the algorithm when the block Bi is erased. The data written in ph, for 0 6 h 6

i− 1, are

δh =
n

∑
k=1
γh

k Dk,

and the data stored in ph, for i + 1 6 h 6 n, are

δh = Dh.

The matrix representation of this problem is

1 1

γ1 γ2

γ2
1 γ2

2
...

...

γi−1
1 γi−1

2

· · · 1

· · · γn

· · · γ2
n

. . .
...

· · · γi−1
n

0(n−i)×i In−i


·



D1

D2

D3
...

Dn−1

Dn


=



δ0
...

δi−1

δi+1
...

δn


where 0(n−i)×i is the zero matrix of size (n − i) × i, and In−i is the unit matrix of size (n −
i)× (n− i). Since this matrix is invertible, it is feasible to generate all the original data and in

particular, the required data that need to be written into pi.
For i = y + 1, y + 2, . . . , n, after erasing the block Bi during the second step of the

algorithm, the data stored in ph, for 0 6 h 6 y, are δh = ∑
n
k=1 γ

h
k Dk. The data written into ph,

for y + 1 6 h 6 i − 1, are δh = Dα−1(h), and the data stored in ph, for i + 1 6 h 6 n, are
δh = Dh. These equations are represented as follows:

1 1

γ1 γ2

γ2
1 γ

2
2

...
...

γ
y
1 γ

y
2

· · · 1

· · · γn

· · · γ2
n

. . .
...

· · · γy
n

An−i


·



D1

D2

D3
...

Dn−1

Dn


=



δ0
...

δi−1

δi+1
...

δn


,

where An−i is a matrix of size (n− y− 1)× n defined as follows:
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1. The h-th row of the matrix An−i for 1 6 h 6 i − y − 1 is a unit vector of length n

containing a one in its (α−1(y + h))-th entry.

2. The h-th row of the matrix An−i for i− y 6 h 6 n− y− 1 is a unit vector that contains

a one in its (y + h + 1)-th entry.

Since there are no data that are moved from block B j to block Bi, where y + 1 6 i 6 n − 2

and i + 2 6 j 6 n, the first i − y − 1 row vectors of the matrix An−i are different from the

last n − i row vectors of the matrix An−i. Therefore, the matrix An−i contains a set of unit

vectors where all the vectors are different from each other. If we calculate the determinant of the

matrix on the left hand side according to the rows of the matrix An−i, then we are left with an

(y + 1)× (y + 1) matrix of the form:

1 1 1 · · · 1 1

γi1 γi2 γi3 · · · γiy γiy+1

γ2
i1
γ2

i2
γ2

i3
· · · γ2

iy
γ2

iy+1
...

...
...

. . .
...

...

γ
y
i1
γ

y
i2
γ

y
i3
· · · γy

iy
γ

y
iy+1


and its determinant is not zero because it is a Vandermonde matrix. Therefore, the matrix on the

left hand side is invertible, and it is feasible to generate all the original data Di, 1 6 i 6 n, and

in particular the data Dα−1(i) that need to be written into the page pi.
For i = y, y− 1, . . . , 1, after erasing the block Bi during the third step of the algorithm,

the data stored in ph, for 0 6 h 6 i − 1, are δh = ∑
n
k=1 γ

h
k Dk, and the data stored in ph, for

i + 1 6 h 6 n, are δh = Dα−1(h). Therefore, the matrix representing this equations is

1 1

γ1 γ2

γ2
1 γ2

2
...

...

γi−1
1 γi−1

2

· · · 1

· · · γn

· · · γ2
n

. . .
...

· · · γi−1
n

Pn−i


·



D1

D2

D3
...

Dn−1

Dn


=



δ0
...

δi−1

δi+1
...

δn


,

where Pn−i is a matrix consisting of n − i row vectors of length n, and its h-th row vector,

1 6 h 6 n− i, is a unit vector of length n which has a one in its α−1(i + h)-th entry and zero

elsewhere. As before, all the unit vectors in the matrix Pn−i are different from each other. There-

fore the matrix on the left hand side is invertible, and it is feasible to generate all the original
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data Di, 1 6 i 6 n, and in particular the data Dα−1(i) that need to be written into the page pi.

The above algorithm uses Reed-Solomon codes for data movement. It can be extended

to general MDS codes.

The following theorem shows an interesting property of canonical labelling. Note that

since every block has some data that need to be moved into it from some other block, every

block needs to be erased at least once. So at least n + 1 erasures (including erasing the auxiliary

block) are needed in any case.

Theorem 7.5.3. Assume r, the number of bits in a page, is sufficiently large, and let y ∈
{0, 1, . . . , n− 2}. There is a data-movement solution using

n + y + 1

erasures if and only if there is a canonical labelling of the blocks with parameter y.

Proof. First, assume that there is a data-movement solution using n + y + 1 erasures. Since

every block (including the auxiliary block) is erased at least once, there are at least n− y blocks

that are erased only once in the solution. Pick n− y blocks erased only once and label them as

By+1, By+2, . . . , Bn this way: “in the solution, when y + 1 6 i < j 6 n, Bi is erased before

B j.” Label the other y blocks as B1, . . . , By arbitrarily. Let us use contradiction to prove that no

data in B j need to be moved into Bi, where i > y + 1, j > i + 2.

Assume some data in B j need to be moved into Bi. After Bi is erased, those data must

be written into Bi because Bi is erased only once. When the solution erases Bi+1 (which happens

before B j is erased), the data mentioned above exist in both Bi and B j. So at this moment, there

are at most nm− 1 pages of distinct data; however, it is impossible to recover all the nm pages

of original data using only nm− 1 pages of distinct data. So there is a contradiction. Therefore,

with the above labelling, we have already found a canonical labelling with parameter y. The

other direction of the proof comes from the existence of Algorithm 7.5.1.

We can easily make Algorithm 7.5.1 use 2n− 1 erasures by letting y = n− 2 and using

an arbitrary block labelling. On the other hand, 2n− 1 erasures are necessary in the worst case.

To see that, consider an instance where m > n and every block has some data that need to be

moved into every other block. For such an instance, a canonical labelling has to have y = n− 2,

which implies n+ y+ 1 = 2n− 1 erasures by Theorem 7.5.3. So Algorithm 7.5.1 is worst-case

optimal.
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7.6 Conclusion and Future Research

In this chapter, we studied the data movement problem for flash memories. We presented

sorting-based algorithms that do not utilize coding, which can use as few as O(n log n) erasures

for moving data among n blocks. We showed that coding techniques can not only minimize the

number of auxiliary blocks, but also reduce the number of erasures to O(n). In particular, we

presented a solution based on coding over GF(2) that requires only 2n erasures. We further

presented a linear-coding solution that requires at most 2n − 1 erasures, which is worst-case

optimal. Both solutions based on coding achieve an approximation ratio of two with respect to

the minimum possible number of block erasures for each instance. They also balance the number

of erasures in different blocks very well.

The data movement problem studied here can have numerous practical variations. In

one variation, the data to be moved into each block are specified, but the order of the data in

that block is allowed to be arbitrary. The algorithms presented in this work can easily solve this

variation of the problem by first assigning an arbitrary page order to each block (which does not

affect the performance of the algorithms). In another variation, we are only given a specification

as to which group of data needs to be moved into the same block, without specifying which

block. Furthermore, the final data may be a function of the data originally stored in the blocks.

Such variations require new solutions for optimal performance. They remain open for future

research.
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Chapter 8

Error Characterization and Coding

Schemes for Flash Memories

8.1 Introduction

Flash memory chips may use single-level cell (SLC) technology, where each cell can

store one binary digit, or multi-level cell (MLC) technology, where each cell can store multiple

binary digits. In this work, we assume that MLC chips store two bits in a cell. First generation

flash storage devices have used only low-redundancy codes that offer minimal error correction

and detection capabilities, such as single-bit error-correcting Hamming codes and error-detecting

cyclic redundancy check (CRC) codes. The demand for increased storage capacity, coupled with

the introduction of MLC flash technology, has created the need for more powerful ECC methods,

such as BCH codes and Low-Density Parity-Check (LDPC) codes.

The design of effective error-correcting codes requires a comprehensive understanding

of the error mechanisms and error characteristics of flash memories. To help address this need,

we used in this work an extensive empirical database of errors observed during erase, write, and

read operations on a flash memory device. Error statistics were gathered from several blocks

on SLC and MLC flash memory chips. For each block, we repeated continuously the following

process hundreds of thousands to millions of times:

1. Erase the block.

2. Write pseudo-random data into the block.

3. Read the block and identify errors by comparing the originally recorded data to the data
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that was read.

Using this database of errors, we analyzed the error behavior on a block-, page-, and bit-level

and classified the observed error types. This information was used in order to suggest a new

scheme of error-correcting codes for MLC flash. Furthermore, we explored the implementation

of WOM-codes, which were extensively studied in Chapters 3 and 4, for SLC flash.

Remark 8.1.1. We note that the experiments were conducted in a controlled laboratory envi-

ronment, and the results do not reflect the impact of other performance-related factors such as

varying time intervals between erasures, ambient temperature changes, and multiple read oper-

ations between erasures. Consequently, the observed lifetimes of the tested flash blocks were

much longer than the lifetimes specified by the manufacturer. Also, it should be pointed out that

we collected the error data from only a few blocks on each chip, so our results and conclusions

do not account for possible variability among blocks on any given chip. A similar disclaimer ap-

plies to flash devices produced by different manufacturers. Therefore, we do not pretend to give

in this chapter a complete and comprehensive study of error characteristics in flash memories.

For further discussion of flash memory characterization, see [3].

8.2 Flash Memory Structure

A flash memory chip is built from floating-gate cells which are organized in blocks.

Each block typically contains either 64 pages (SLC) or 128 pages (MLC), where the size of a

page can range from 2KB to 8KB [1].

In SLC flash, each cell has two levels and stores one bit. A non-programmed cell repre-

sents bit value ‘1’ and once it is charged the bit value is ‘0’ (see Fig. 8.1). In MLC flash, each cell

has four levels and stores two bits. The left bit among the two bits is called the Most Significant

Bit (MSB) and the right bit is the Least Significant Bit (LSB). The cell has four levels and the

mapping between charge values and bit values is depicted in Fig. 8.1.

A typical SLC block consists of 32 rows of 215 cells, such that each row contains two

pages. One page consists of the first 214 cells in each row and another page consists of the

last 214 cells in the row. A typical layout of the pages within an SLC block is demonstrated

in Table 8.1. In MLC flash, the two bits within a single cell are not mapped to the same page.

Rather, the collection of MSB’s from a group of cells constitute a page called the MSB page and,

similarly, the LSB’s from the same group of cells form a page called the LSB page. The layout

of an MLC block is similar to that of an SLC block, as depicted in Table 8.2.
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Figure 8.1: Mappings of cell levels to binary representations in SLC and MLC flash.

Table 8.1: Typical layout of an SLC block

Row Index First 214 cells Last 214 cells
0 page 0 page 1
1 page 2 page 3
2 page 4 page 5
...

...
...

30 page 60 page 61
31 page 62 page 63

Table 8.2: Typical layout of an MLC block

Row MSB of the LSB of the MSB of the LSB of the
Index first 215 cells first 215 cells last 215 cells last 215 cells

0 page 0 page 4 page 1 page 5
1 page 2 page 8 page 3 page 9
2 page 6 page 12 page 7 page 13
3 page 10 page 16 page 11 page 17
...

...
...

...
...

30 page 118 page 124 page 119 page 125
31 page 122 page 126 page 123 page 127
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In order to reduce the number of block erasure operations, an updated version of a

stored page is simply written into another available physical location, and its previous location

is marked as invalid. A table, called the Flash Transition Layer (FTL) [1], keeps a record of

the latest mapping between logical and physical pages and is maintained in the memory device.

When the memory becomes full (or reaches a pre-specified storage capacity), blocks no longer

in active use need to be erased to allow new data to be stored. To enhance device lifetime, “wear-

leveling” algorithms are used to balance the number of erasures among blocks within a single

device [1].

Each page in a flash memory block contains a spare area. If the page size is 2KB then

a typical spare area can be 64B. A portion of this spare area is used to store metadata in order

to build the FTL once the flash memory is activated. The rest of the spare area is dedicated to

storing the redundancy bytes of the error-correcting codes [2].

Remark 8.2.1. The organization of pages in a flash memory block may differ from one man-

ufacturer to another. The configurations shown in Tables 8.1 and 8.2 are consistent with the

information available to us about the devices tested, as well as with most of the results of our

experiments.

8.3 Error Characterization of Flash Memories

In order to have a basic characterization of the error behavior in flash memories we

repeated the process of erasing, writing pseudo-random data, and reading to compare and find

errors for SLC and MLC blocks. The raw BER as a function of the program/erase cycle of the

blocks is given in Fig. 8.2 and Fig. 8.3. We now use the results of these experiments to gain

further understanding about the error characteristics and mechanisms in these chips.

8.3.1 Page-level BER

We also examined the BER of each individual page in the block in order to determine if

the BER has any significant page dependency. The page-level BER measurements were used to

generate a three-dimensional picture, as shown in Fig. 8.4 for the SLC block and in Fig. 8.5 for

the MLC block. The raw BER as a function of the program/erase cycle is given for each page

individually.

In the SLC case, we observed that in general the BERs of the pages in the left-hand part

of the block are significantly larger than those of the pages in the right-hand part. One possible
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Figure 8.2: Raw BER for SLC flash.

Figure 8.3: Raw BER for MLC flash.
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Figure 8.4: BER per Page for SLC Block.

explanation for this phenomenon is related to the way in which the cells are programmed. In each

row, the left-hand page is programmed first, followed by the programming of the corresponding

right-hand page. We speculate that the programming of the right-hand page somehow disturbs

the cells in the left-hand page, inducing more errors when the left-hand page is later read.

In the MLC case, we see that the LSB pages generally have a higher BER than the MSB

pages. This is due to the fact that the assignment of 2-bit patterns to threshold values within

a cell makes the LSB more susceptible to errors than the MSB. This will be discussed in more

detail in Section 8.5. We also noted anomalous BER characteristics in the first and last few pages

of the MLC block. We have not yet found an explanation for this behavior.

8.3.2 Bit-level BER

Next, we investigated the error performance at the bit level within each block. The

number of errors in each bit was accumulated over a small number of consecutive program/erase

cycles during which the error statistics could be assumed to be fairly constant. For the SLC block,

we considered cycles 1.5× 106 to 1.6× 106. The total number of errors in each bit location was

counted and the results were plotted in a three-dimensional histogram, shown in Fig. 8.6. In the
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Figure 8.5: BER per Page for MLC Block.

figure, the results for the left-hand pages and right-hand pages are shown separately. It can be

seen that the errors are clustered in columns rather than rows. We can also see that there are fewer

errors overall in the right-hand part of the block, as is to be expected from Fig. 8.4. Bit-level

BER measurements for the MLC blocks (not shown here) displayed different characteristics. In

contrast to the SLC case, we did not find that the errors were clustered along the bit lines; rather,

the bit-error locations appear to be randomly distributed among the cells.

8.4 Partial Cell State Usage in MLC

Even though MLC flash memories can increase storage capacity, they tend to be less

reliable and to have shorter lifetimes. In this section, we wish to explore the use of an MLC

device as if it were SLC. The idea is that this will provide additional immunity to errors in the

stored information.

There are several ways in which one could store only a single bit in MLC flash:

1. Program only the MSB pages.

2. Program only the LSB pages.
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Figure 8.6: Bit Error Map for SLC Block.
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Figure 8.7: Different Schemes for Storing a Single Bit in an MLC Block.

3. Program the LSB and MSB pages with the same values. (The cells will therefore be in

state 11 or 00.)

4. Program the data in the MSB pages, and program all LSB pages to all-0 bit values. (The

cells will therefore be in state 11 or 01.)

Fig. 8.7 shows the measured BER for all four of these schemes. The results show that the best

approach is the first one, in which we program only the MSB pages.

This technique can also be made adaptive by initially using the MLC device in its native

mode, and then switching to SLC mode after a certain number of iterations, when the BER has

become larger due to device wear. Experimental results confirmed that this mode of operation

can indeed enhance the MLC device endurance.

8.5 ECC for MLC Flash

In this section, we give a more complete characterization of the errors in MLC flash

blocks. We then propose a new ECC scheme designed to correct the dominant errors. For MLC

flash blocks, we want to determine the most likely transitions between the four states that a cell
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can support.

To that end, we collected the errors found as we iterated the operation of erasing a

block, programming pseudo-random data, and then reading back the data. Using the MLC block

layout shown in Table 8.2, we then characterized the observed error types in terms of cell state

transitions. In theory, an error corresponding to any change in cell level is possible. However,

we found in our experiments that the different error transitions are not equally likely. Rather,

the dominant errors were those in which the cell voltage changed by one level, particularly from

state 10 to state 00 or from state 00 to state 01. Errors where the voltage changed by two or three

levels were very rare.

These results suggest a new ECC scheme for MLC flash. Today, the ECC in MLC flash

operates on individual pages. That is, even though an MSB page and an LSB page share the

same group of cells, the errors in each page are corrected independently. The idea behind the

new ECC scheme is to focus on correcting the dominant single-level cell-state errors by sharing

some redundancy between the pair of MSB and LSB pages.

Let C1 be a t1-error-correcting BCH code and let C2 be a t2-error-correcting BCH code,

where t2 > t1. We use systematic encoders for both codes, and we choose them to be “com-

patible” in the following sense. Suppose that for a given information word, the encoder for C1

generates r1 redundancy bits and the encoder for C2 generates r2 redundancy bits. Then, we

assume that by the r2 redundancy bits generated by the encoder for C2 it is possible to calculate

the r1 redundancy bits generated by the encoder for C1.

Let pMSB = (a0, . . . , an−1), pLSB = (b0, . . . , bn−1) be an MSB page and an LSB page

sharing the same group of cells. The encoding proceeds as follows.

Encoding:

1. Calculate s1, the r1 redundancy bits of C1 corresponding to the information page pMSB.

2. Calculate s2, the r2 redundancy bits of C2 corresponding to the information page pMSB +

pLSB.

Note that, by the linearity of the codes C1 and C2, the r1 redundancy bits of C1 corresponding to

the information page pLSB are the sum of s1 and the r1 redundancy bits that can be computed

by s2. Therefore, it is possible to correct t1 errors in the LSB page, as well. The decoding

procedure, which we now describe, makes use of this property.

Decoding:

1. Using the r2 bits corresponding to s2 and a decoder for the code C2, find up to t2 errors in
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pMSB + pLSB.

2. Change the states of the cells identified as erroneous by the C2 decoder by one level,

according to the rule: state 11 is changed to state 10, and vice versa, state 00 is changed

to state 10, and state 01 is changed to state 00.

3. Using the r1 bits corresponding to s1 and a decoder for the code C1, find up to t1 errors in

the page pMSB.

4. Compute the sum of the r1 bits corresponding to s1 and the associated r1 bits that are

computed from s2. Using this sum and a decoder for the code C1, find up to t1 errors in

pLSB.

We applied this ECC scheme to the MLC flash device and compared its page-level per-

formance to that of a BCH code. Fig. 8.8 shows the results for a BCH code that corrects 20 errors

in each page and the new ECC scheme, where the code C2 can correct 35 errors and the code

C1 can correct 5 errors. With these parameters, the two coding schemes have the same overall

redundancy. In the error-rate evaluation, we assume for each code that decoding is successful if

the number of errors in a codeword is no greater than the code’s specified error correction capa-

bility. If the number exceeds the correction capability, we assume this condition is detected, and

the received word remains unchanged. Our results show that for sufficiently low or sufficiently

high raw error rates, the two coded behave similarly. However, when the number of errors is in

the range typically found after 32, 000 to 40, 000 program/erase cycles, the new coding scheme

can correctly decode both the MSB and the LSB pages, while the BCH code tends to fail, as

shown in Fig. 8.8.

Remark 8.5.1. Our goal in this section was to suggest the possibility of a new ECC scheme

for MLC flash memories that simultaneously protects MSB and LSB pages. The performance

evaluation is based upon certain assumptions about the decoder that need to be more carefully

assessed. In particular, a full analysis should consider the vulnerability of the scheme to mis-

correction by the C2 decoder. We also note that the code design was motivated by the error data

collected from a particular MLC chip in a controlled laboratory environment. A more thorough

evaluation of the scheme would have to take into account device variability arising from different

manufacturers (see, for example, [4]) and operating conditions.
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Figure 8.8: Comparison Between ECC schemes.

8.6 WOM-Codes for Flash Memories

In this section, we discuss the implementation of WOM-codes which were extensively

studies in Section 3 and 4. These codes are intended to permit reuse of memories whose cells

can be programmed only once, such as punch cards or optical storage memories. In [5], a simple

WOM-code that can store two bits twice using three cells was presented. Table 3.1 gives the

encoding and decoding rules for this WOM-code.

A block in a flash memory chip is very similar to a write-once memory in that a cell

level can only be increased, not decreased, on successive writes, unless the entire block is erased.

This observation suggests the use of WOM-codes in flash memories as a means of reducing the

number of block erasures and, accordingly, increasing the device endurance.

As an example, we describe the application of the two-write WOM-code in Table 3.1

to an SLC flash memory. For every 2KB page in a block, we encode b2KB/1.5c = b4/3KBc
of data using the rate-2/3 WOM encoder. The encoded pages are written successively into the

block using a conventional wear-leveling algorithm, but with a slight modification. Specifically,

when the wear-leveling algorithm calls for a block to be erased, the block is not physically erased

but, rather, is marked as “invalid.” In subsequent page-write operations to the block, the wear-
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Figure 8.9: BER for first and second write of WOM-codes in SLC flash.

leveling algorithm treats the block as if it were erased, but first reads the page to be rewritten,

and then makes use of the encoding rules for the second write of the WOM-code to program the

page. Such rewrite operations can continue until the wear-leveling algorithm determines that the

block must be erased, at which point the block is physically erased, and the programming cycle

begins anew.

We implemented this WOM-code programming scheme on an SLC device and investi-

gated the effect of the second write on the block BER. The results are shown in Fig. 8.9. The

block BERs associated with the first and second writes are shown in blue and red, respectively,

as a function of the iteration number. Clearly, the BER of the second write exceeds that of

the first write, and quite substantially after about 8× 105 iterations. However, below 5× 105

iterations, the increase in BER appears to be small, and it appears that the degradation in perfor-

mance could be offset by the use of an appropriate error correction strategy with minimal extra

overhead. Further discussion of WOM-codes and their application to MLC flash memory can be

found in [3].
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8.7 Summary and Conclusions

In this work, we used empirical data to investigate the characteristics of errors in SLC

and MLC flash memory devices. We studied the error behavior at the block level, page level,

and bit level. Our observations motivated the design of a new error-correcting scheme for MLC

flash that outperforms conventional BCH codes. We also measured the improvement in BER

that could be achieved with a reduction in the nominal chip storage capacity. Finally, we de-

scribed the application of WOM-codes to flash memories, and we experimentally evaluated the

performance of a simple WOM-code on an SLC device.
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