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1. Introduction
Among the ecosystems most vulnerable to a changing climate, Arctic tundra has relatively large stores of soil 
organic carbon locked within permafrost which inhibits CO2 and CH4 production (Hugelius et al., 2020; Schuur 
et al., 2009, 2015; Turetsky et al., 2020). The Arctic tundra has been a net source of atmospheric CO2 as reported 
in Oechel et al. (1993, 1995) and Belshe et al. (2013) with rising temperatures accelerating permafrost thaw and 
subsequently CO2 and CH4 emissions (Keuper et al., 2020; Turetsky et al., 2020). Even with enhanced vegetation 
growth, the Arctic is expected to remain a net CO2 source and become a larger CH4 source by 2100 (de Vrese 
et al., 2021; Koven et al., 2015; McGuire et al., 2018; Turetsky et al., 2020). Better understanding of the timing 

Abstract Arctic tundra has the potential to generate significant climate feedbacks, but spatial complexity 
makes it difficult to quantify the impacts of climate on ecosystem-atmosphere fluxes, particularly in polygonal 
tundra comprising wetter and drier polygon types on the scale of tens of meters. We measured CO2, CH4, 
and energy fluxes using eddy covariance for 7 yr (April to November, 2013–2019) in polygonal tundra near 
Utqiagvik, Alaska. This period saw the earliest snowmelt, latest snow accumulation, and hottest summer on 
record. To estimate fluxes by polygon type, we combined a polygon classification with a flux-footprint model. 
Methane fluxes were highest in the summer months but were also large during freeze-up and increased with 
the warming trend in August–November temperatures. While CO2 respiration had a consistent, exponential 
relationship with temperature, net ecosystem exchange was more variable among years. CO2 and CH4 exchange 
(June–September) ranged between −0.83 (Standard error [SE] = 0.03) and −1.32 (SE = 0.04) μmol m−2 s−1 
and 13.92 (SE = 0.26)—23.42 (SE = 0.45) nmol m−2 s−1, respectively, and varied interannually (p ≤ 0.05). 
The maximum-influence method effectively attributed fluxes to polygon types. Areas dominated by low-
centered polygons had higher CO2 fluxes except in 2016–2017. Methane fluxes were highest in low-centered 
polygons 2013–2015 and in flat-centered polygons in subsequent years, possibly due to increasing temperature 
and precipitation. Sensible and latent heat fluxes also varied significantly among polygon types. Accurate 
characterization of Arctic fluxes and their climate dependencies requires spatial disaggregation and long term 
observations.

Plain Language Summary We measured carbon dioxide and methane fluxes for 7 yr (April to 
November, 2013–2019) in polygonal tundra near Utqiagvik (Barrow), Alaska using eddy covariance (EC). 
The EC method provides the measurements of vertical flux of transported air parcels by correlation of the 
fluctuations in carbon dioxide or methane concentration with fluctuations in the vertical wind speed. The ice 
wedge polygonal tundra area is covered by ponds, drained lake basins, and wetter and drier polygon types on 
the scale of tens of meters across. This period saw the earliest snowmelt, latest snow accumulation date, and 
hottest summer on record. To estimate fluxes by polygon type, we combined a polygon classification with a 
flux-footprint model. The model represents the field of view of the EC system and allows the user to extract 
the location of the peak contribution. The site was a net carbon sink between June and September in each of the 
seven years. Areas dominated by low-centered polygons had higher carbon dioxide fluxes except in 2016–2017, 
while methane fluxes were highest in low-centered polygons 2013–2015 and in flat-centered polygons in 
subsequent years. This is possibly due to increasing temperature and precipitation. Not only were methane 
fluxes highest in the summer months but also large during freeze-up and increased with the warming trend in 
August–November temperatures.
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and magnitude of tundra responses to climate requires higher spatial-resolution observations in order to fully 
comprehend the effect of climate variability on carbon and energy exchange.

The Arctic coastal plain of the North Slope of Alaska is characterized by ice wedge polygonal tundra, small 
ponds or lakes, and drained lake basins. For example, on the Barrow Peninsula near Utqiagvik (formerly Bar-
row), roughly half the area is covered by low-centered polygons and lakes (24% each), with other areas covered 
by drier flat-centered (17%) and high-centered (11%) polygons (Lara et al., 2015; Wainwright et al., 2015). Ice 
wedge polygon formation is related to cycles of freezing and thawing of the active layer (Brown, 1967; Liljedahl 
et al., 2016), creating units that extend from a few meters to tens of meters across. The different polygon types 
differ in soil microbial community (Graham et al., 2013; Jansson et al., 2012; Taş et al., 2018), soil organic car-
bon content (Bockheim et al., 1999; Dennis et al., 1978; Michaelson et al., 1996), hydrology and inundated area 
(Brown, 1967; Liljedahl et al., 2016; Zona et al., 2011), and vegetation cover (Dennis et al., 1978; Webber, 1978). 
These diverse properties of tundra landscape combine to spatially diverging CO2 and CH4 fluxes across the land-
scape as shown in many high latitude studies (e.g., Pirk et al., 2017 and references therein).

The Arctic is undergoing a warming trend (Box et al., 2019; Jeong et al., 2018; Moritz et al., 2002) causing later 
active-layer freeze-up (Box et al., 2019) as well as a deepening of the active layer (Andresen et al., 2020; Ge-
wirtzman et al., 2018). Along the Arctic coastal plain of Alaska, active layer depth (ALD) varies at fine scale due 
to microtopography, vegetation, snow dynamics, and belowground properties, such as soil moisture for example, 
but a trend of deepening ALD has been observed at some locations. For example, at the Barrow Environmental 
Observatory, near Utqiagvik and environs where this study was based, ALD deepened between 2000 and 2015 
as found by the recent modeling study by Yi et al.  (2018), integrating remote sensing and field observations. 
This said, a declining trend (ALD shallower) was observed from manual annual probing at the site between 1995 
and 2007 by Streletskiy et al. (2008), coinciding with a period of global warming hiatus (Dai & Wang, 2018) 
with an average maximum depth of 0.39 m (SE = 0.01) in 2013–2018 (D. Nicolsky, University of Alaska, Fair-
banks [personal communication]; Romanovsky et al., 2017) usually reached in mid to end August (Shiklomanov 
et al., 2010; Streletskiy et al., 2008). Precipitation may also be trending, with recent studies showing an increase 
across Alaska (Wendler et al., 2017) and the greater pan-Arctic region (Box et al., 2019). In Utqiagvik, winter 
and spring precipitation are increasing (McAfee et al., 2013). Models project that climate changes such as these 
will alter the functioning and composition of polygonal tundra (Lara et al., 2018), including altering greenhouse 
gas and energy fluxes (Grant et al., 2019; Grant, Mekonnen, Riley, Wainwright, et al., 2017; Jeong et al., 2018; 
López-Blanco et al., 2017).

While net CO2, CH4, and energy exchange at the landscape scale are measured in the Arctic using the well-es-
tablished eddy covariance (EC) technique (Aubinet et al., 2012; Baldocchi, 2003), partitioning Arctic CO2 fluxes 
into ecosystem respiration and gross primary productivity (GPP) is less straightforward than in many other loca-
tions due to the lack of true night during the growing season.

One approach to measuring fluxes from small landscape features is the chamber method (Kutzbach et al., 2007; 
Norman et al., 1997; Pavelka et al., 2018). Chamber measurements of greenhouse gas fluxes in polygonal tundra 
show high variability in relative CO2 flux rates among polygon types and saturation. For example, some studies 
report lower ecosystem respiration in low-centered polygons when the ground was wetter (Olivas et al., 2011) 
in comparison to drier periods (study only looked at low-centered polygons) while Pirk et al. (2017) measured 
higher respiration in wetter areas (no polygon type indicated) at their polygonal tundra site. Wilkman et al. (2018) 
reported consistently higher respiration rates in troughs and low centered polygons in comparison to high-cen-
tered polygons. However, Vaughn et  al.  (2016) found no significant difference among polygon types. These 
results illustrate the high variability in respiration in this spatially and temporally heterogeneous environment. 
In contrast, methane chamber measurements in tundra ecosystems appear more predictable, with consistently 
higher efflux in low-centered polygons and troughs, and efflux in flat-centered polygons only during wetter 
periods (Lara et al., 2015; Sachs et al., 2010; Vaughn et al., 2016; von Fischer et al., 2010; Wagner et al., 2003). 
While chamber measurements are useful for characterizing controls of fluxes by plant, moisture, and temperature 
conditions, their fine scale (<1 m2) and intermittent deployment—continuous chamber measurements especially 
tend to be poorly replicated—makes scaling up over space and time challenging. In contrast, the EC method cap-
tures the turbulent exchange continuously and over a larger area up to 1 km2 depending on atmospheric stability 
(Burba, 2001). The incommensurate nature of these measurements complicates scaling chamber fluxes to the 
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ecosystem level or using flux data to provide mechanistic explanations for observed EC fluxes (Fox et al., 2008; 
Zhang et al., 2012). Additional means of attributing EC fluxes to landscape features are needed.

Footprint studies (Kljun et al., 2004; Kormann & Meixner, 2001) help in estimating the field of view of EC 
measurements at larger scale, but have not been applied to quantify fluxes from smaller or distinct landscape 
features, such as different polygon types. The polygon classification work by Wainwright et al. (2015) opens up 
a new measurement avenue in which polygon distribution, footprint analysis, and the maximum-effect source 
location within the footprint (estimated for each half-hourly flux value) and its distance from the EC tower can be 
combined to attribute flux components to locations within the footprint or to specific landscape types.

Although EC measurements cover a spatially small area (footprint) of up to a few hundred meters with sites across 
the Arctic still limited in numbers, their data are nonetheless used in estimating regional fluxes of CO2 (Ueyama 
et al., 2013), CH4 (Sayres et al., 2017; Zona et al., 2016), or energy fluxes (Cristóbal et al., 2017). The spatial 
heterogeneity of the Arctic polygon tundra has large implications for regional fluxes and land surface models 
and the fidelity and uncertainty of their predictions. A synthesis of 40 terrestrial models’ simulations of Alaska 
(Fisher et al., 2014) showed almost no consistent spatial patterns in net ecosystem exchange (NEE). Different 
models showed the entire state as a strong carbon sink, while others showed the opposite. Some predicted carbon 
neutral emissions and some models showed a spatial distribution of sinks and sources, as also did a newer study 
by Commane et al. (2017).

A model study on energy fluxes of the North Slope of Alaska (Lynch, Bonan, et  al.,  1999; Lynch, Chapin, 
et al., 1999) detailed the difficulty of model validation and performance using measured data from multiple mete-
orological and/or EC sites and research groups, highlighting the uncertainties attached to measurement methods, 
instruments, and model parametrization. Uncertainties that accompany such measurements vary from EC tower/
met station location to the exact placement and depth of the individual soil temperature probe or soil heat-flux 
plates and their respective spatial representativeness. These observational challenges and model studies highlight 
the difficulties in understanding and predicting the complex and heterogeneous Arctic polygon tundra, and its 
dynamics under a changing climate.

To better understand the temporal and spatial heterogeneity of CO2, CH4, and energy exchange at the Next 
Generation Ecosystem Experiments (NGEE Arctic) Barrow research site near Utqiagvik, Alaska, we analyzed 
seven consecutive years of EC and meteorological measurements covering April to November, 2013–2019. This 
period represents some meteorological extremes, including the earliest snowmelt dates, latest snow accumula-
tion dates (Cox et al., 2017), and hottest summer on record (National Oceanic and Atmospheric Administration 
[NOAA],  2019). The objectives of this study were to (a) document the inter- and intra-seasonal variation in 
CO2, CH4, and energy fluxes at a polygonal tundra site; (b) explore how variability and trends in meteorological 
variables affect these fluxes; and (c) investigate the spatial variability of these fluxes, to ultimately (d) assess the 
possibility of separating these landscape-scale fluxes by polygon type.

2. Materials and Methods
2.1. Site Description

This study was carried out in the Barrow Environmental Observatory (BEO, 71°16′48.26″N; 156°36′33.12″W) 
on the coastal plain near Utqiagvik (Barrow), Alaska, as part of the United States Department of Energy Next 
Generation Ecosystem Experiments (NGEE-Arctic) project (Figure 1). The mean annual temperature is −12°C 
and mean annual precipitation is 114.3 mm. The site is characterized by polygonal structures classified into low-, 
flat-, and high-centered polygons, each representing a different microtopography and hence surface, soil, and 
hydrological properties (Brown, 1967; Liljedahl et al., 2016; Wainwright et al., 2015; Zona et al., 2011). These 
features are identifiable in aerial images (Cherry & Crowder, 2016; Svensson, 1963) and in high-resolution ele-
vation models (Wilson & Altmann, 2017). According to Lara et al. (2015) and Wainwright et al. (2015), low-cen-
tered polygons occupy the largest area across the Barrow Peninsula and the BEO, followed by flat-centered ones, 
and high-centered polygons only cover around 11% of the tundra. Areas north of the EC tower site (AmeriFlux 
ID US-NGB, Figures 1 and 2) are dominated by low-centered polygons while the southern and western sections 
by flat- and high-centered polygons. The main vegetation types found across the BEO are Carex aquatilis subsp. 
Stans, Saxifraga cernua communities, Luzula confusa, Dupontia fisheri as well as non-acidic tundra Carex spp. 
and Eriophorum spp. (Sloan & Norby, 2014; Villarreal et al., 2012).
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2.2. Methods

2.2.1. EC Measurements

We measured CO2, CH4 and energy exchange at the landscape level at the NGEE-Arctic eddy flux site (Den-
gel et al., 2020; Torn & Dengel, 2020) using EC for 7 yr (April to November, 2013–2019) with a 74% overall 
April–November data coverage (30 min data) and 79% for the June–September data range. The system consisted 
of a Gill R3-50 ultrasonic anemometer (Gill Instruments, Lymington, UK), and an open path LI-7500A CO2/
H2O gas analyzer (LI-COR Biosciences, Lincoln, NE, USA), along with an LI-7700 CH4 gas analyzer (LI-COR 
Biosciences) at 4 m above ground. Digital raw data streams from all three of these instruments were synchro-
nized and recorded by a program (HuskerFlux) developed by D. Billesbach; running on a small, single-board 
computer, which also provided communications for data retrieval, and served as a platform for the Campbell 

Figure 1. Aerial image (upper left image) of the area surrounding the eddy flux tower together with the polygon classification extracted from Wainwright et al. (2015; 
upper right image) in which the location of the EC tower is marked as a yellow dot. The lower panel shows images of polygonal features near the NGEE Arctic Barrow 
eddy flux site (early September 2019) showing an area dominated by flat and high centered polygons surrounded by inundated troughs. Photo credit: J. Cherry, NGEE 
Arctic (aerial image) and S. Dengel (lower panel images).
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Scientific LoggerNet program which archived raw data from other (slow response) instruments. The following 
processing steps were taken in calculating 30-min fluxes from the raw 10 Hz data: spike detection was imple-
mented using the standard Vickers and Mahrt  (1997) de-spiking algorithm. We applied the coordinate rota-
tion using the second rotation method described in Baldocchi et al. (1988), sonic virtual temperature correction 
(Kaimal & Gaynor, 1991), frequency response correction (Massman, 2000), and the buoyancy flux correction 
defined in Schotanus et al. (1983). The computed co-spectra for vertical wind and temperature, CO2, CH4, and 
H2O, respectively, for each half hour using the Fast Fourier Transform were used to verify the magnitude of the 
frequency response correction, reflecting the ability of the system to measure high-frequency gas transport. We 
applied the Webb-Pearman-Leuning density correction (WPL; Webb et al., 1980) to the data originating from 
both gas analyzers, as well as the LI-7700-specific corrections for spectroscopic effects (LI-COR, 2010; Mc-
Dermitt et al., 2011). Furthermore, data quality control measures were carried out following guidelines given in 
Foken et al. (2004) by removing flux values with quality flags of seven and higher, in addition to excluding flux 
data recorded under low signal strength and rainy periods as rain has an impact on the performance of open-path 
gas analyzers as well as sonic anemometers (Burba, 2013). These quality control procedures, together with fluxes 
filtered for low friction velocity led to a removal of 38% of measured CO2 fluxes (27% for June–September time 
periods). In addition to the friction-velocity filter, one of the common reasons for data removal was low signal 
strength.

Due to its proximity to the Chukchi Sea, the site experiences prolonged periods when the foggy air is enriched 
with salty sea air leading to low signal strength values, sometimes within hours of cleaning the optical windows 
of the open path analyzers. Furthermore, the site experiences extensive periods without power.

Figure 2. Maximum flux-contribution locations for fluxes color-coded by polygon type. The location of each individual 
(each half-hour value) estimated maximum flux-contribution location is overlaid on a polygon map, showing low-centered 
(LCP), flat-centered (FCP), high-centered (HCP) polygons and the drainage area (drainage, to the southeast of the eddy flux 
tower) in gray tones. The solid yellow circle in the center of the figure shows the location of the eddy flux tower, while the 
cyan-colored circles show measurements outside the June–September period (freeze-up) and with them the seasonal shift in 
footprint extent as those maximum flux-contribution locations are further away than those estimated for June to Septemeber.
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2.2.2. Meteorological Measurements

Meteorological measurements were made along with the EC measurements (April to November, 2013–2019). 
The suite of instrumentation included air temperature and relative humidity (HMP60, Campbell Scientific, Lo-
gan, UT, USA) measured at 3 m above ground (overall data coverage 80%, 93% for June–September time periods, 
and similar coverage for all other met variables), incoming and outgoing short- and longwave radiation (CNR4, 
Kipp & Zonen, Delft, The Netherlands), and incoming and reflected photosynthetic photon flux density (PPFD) 
that was measured with two LI-190 quantum sensors (LI-COR Biosciences) at 2 m above ground. Surface tem-
perature was measured using a SI-111 Infrared Radiometer (Apogee Instruments, Logan, UT, USA) with a 22° 
half-angle field of view attached at 2 m above the ground. These IR sensors use a portion of the longwave thermal 
radiation emitted by the surface (i.e., tundra) within the field of view. Soil heat flux (G) was measured with four 
soil heat flux plates (Hukseflux, Delft, The Netherlands) at 7 cm below the surface in the vicinity of the EC tower. 
No attempt was made to estimate the heat flux above the soil heat flux plates or at surface level. These meteor-
ological data (Dengel et al., 2020) were quality controlled following methods briefly introduced in Christianson 
et al. (2017) and Pastorello et al. (2017) by removing observations outside realistic margins, as well as correcting 
for timestamp drifts, instrument drift, or use of wrong coefficients, for example, soil temperatures at 10 cm depth 
were measured at five locations along a transect across polygons near the EC tower by Romanovsky et al. (2017). 
Daily thaw depth values were estimated from soil temperature readings recorded along a vertical profile in the 
center of a polygon to a depth of 1.5 m (Romanovsky et al., 2017).

2.2.3. Flux Partitioning, Gap Filling, Calculation of Cumulative Fluxes, and Energy Balance

Due to the late snowmelt season (mostly June) and early autumn snow accumulation that is often already occur-
ring in September (Figure 3, see incoming and reflected radiation) only June–September data were partitioned 
into ecosystem respiration and GPP. To do so ecosystem respiration was calculated from relationships between 
nocturnal NEE and soil temperature measured within the footprint area. Windy (friction velocity > 0.15 m s−1) 
nighttime flux data (PPFD < 50 μmol m−2 s−1, as also used by Euskirchen et al., 2012; Nordstroem et al., 2001 
at their Arctic sites) were plotted against soil temperature and an exponential function (Lloyd & Taylor, 1994) 
fitted. Currently there is no consent on use of soil versus air temperature in Arctic ecosystem respiration studies 
(Euskirchen et al., 2012, 2014, 2017; Grøndahl & Ministry of the Environment-Denmark, 2006; Kutzbach, 2006; 
Shaver et al., 2013; Vourlitis et al., 2000; Zamolodchikov et al., 2003) with air temperature generally being used 
due to its more frequent availability, as stated by Keenan et al. (2019). Ecosystem respiration represents the sum 
of heterotrophic (soil) respiration that is driven by soil temperature and moisture, and autotrophic respiration that 
is driven by air temperature (Ruimy et al., 1995) so a combination of both appears most appropriate. Wohlfahrt 
and Galvagno (2017) pointed out that the use of soil temperature as the driving temperature underestimates day-
time respiration while the use of air temperature as the driving temperature to overestimate daytime respiration. 
In order to obviate such an under- or overestimation of daytime respiration we plotted nighttime fluxes against 
soil temperature and used air temperature to estimate daytime respiration and GPP. We believe this to be the ap-
propriate method at this site as this method avoids this bias together with the additional uncertainty introduced by 
thermal inertia/thermal offset and the resulting time lag of Arctic soil temperature in relation to air temperature 
(Aalto et al., 2018; Biskaborn et al., 2019; Lyu, 2015; Lyu & Zhuang, 2018; Zhang et al., 2005) and its effect on 
respiration (Shaver et al., 2013).

Following Causton and Dale (1990) and Ruimy et al. (1995), the Michaelis-Menten rectangular hyperbola was 
used to describe the relationship between photosynthesis (GPP) and PPFD, representing the apparent photochem-
ical efficiency (light use curve):

 



,max g

g

A Q
F

b Q 

where Qg is the incident PPFD, Amax the maximum gross photosynthesis at infinite irradiance, and b is the PPFD 
value at which half of the light-saturated photosynthesis is occurring. Amax/b is the slope of the curve at Amax = 0, 
representing the apparent photochemical efficiency (light use efficiency [LUE]; Causton & Dale, 1990).

In order to calculate the net carbon (g C m−2) cumulative uptake of the site, gap-free data are required. Following 
the same procedure as with partitioning NEE, we only gap-filled NEE for June–September by applying the Amer-
iFlux ONEFlux Marginal Distribution Sampling (Pastorello et  al.,  2020) gap-filling procedure incorporating 
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Figure 3. Overview of meteorological and flux data measured at the Barrow Ecological Observatory near Utqiaġvik (formerly Barrow), Alaska, showing incoming 
(in gray) and outgoing (in black) shortwave radiation in the upper most panel, air temperature (in black), and CO2 and CH4 fluxes color coded by spring (April–May, in 
light blue), June–September (in red), and freeze-up season (October–November in gray). Vertical lines are added to distinguish between individual years and horizontal 
lines at y = 0 added for clarity only (gray in upper most figure and dotted black in the subsequent three lower figures). Numbers under the x-axis represent months.
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incoming shortwave radiation, air temperature, and vapor pressure deficit which act as drivers of net fluxes. 
Missing meteorological values have implications for gap-filling methods/procedures and associated uncertainties 
(see Reichstein et al., 2005). The site had no power in September 2016 and to avoid introducing very high uncer-
tainties no attempt was made to gap-fill missing September 2016 values and so this month was not included in 
the cumulative sums. Gap-filled averages and associated standard errors for each June–September (2013–2019) 
period are reported in Table 1. A detailed description of the method, procedures, and uncertainties can be found 
in Reichstein et al. (2005; Appendix A) and Pastorello et al. (2020). CH4 flux data were not gap-filled.

Energy balance was calculated as the fraction of the total sum of latent, sensible and soil heat flux, and the net 
incoming and outgoing radiation measured at the site. While latent and sensible heat were measured with the EC 
suite of instrumentation, net radiation was measured off the EC tower and ground heat flux plates installed near 
the tower. This common measurement method is well known to be accompanied with uncertainty introduced by 
the combination of a varying footprint (potentially each half hour) and fixed point measurements.

2.2.4. Polygon Classification and Footprint Determination: Maximum Influence Estimation

Since source and sink locations are dependent on the underlying surface, in our case polygonal features, we 
include the polygon type classification introduced in Wainwright et al. (2015) in conjunction with a simple appli-
cation of the Kljun et al. (2004) Lagrangian footprint model.

The ability of this model to predict the area of influence (footprint/field of view of the EC system) and the 
maximum-effect source location (location with the highest contribution) within the footprint (estimated for each 
half-hourly flux value) and its distance from the EC tower are key to our analysis. The spatial extent of an in-
dividual footprint and distance to the maximum contribution location depends on measurement height, surface 
roughness, atmospheric stability, wind direction, and friction velocity. Due to the fine-scale heterogeneity of the 
site no attempt was made in classifying each individual footprint in the current study.

Month ave. 2013 Mean ± SE 2014 Mean ± SE

Variance
 (mean and n) June July August September

June– 
September June July August Sepembert

June– 
September

TA 2.92 (1,391) 5.58 (1,415) 2.99 (1,421 −1.21 (1,438) 2.56 0.55 (1,440) 2.78 (1,486 2.95 (1,391) 0.68 (1,377) 1.75

Prec 16.3 34.8 33.1 32.8 117 37.2 23.9 18.3 33.8 113.2

FC −0.19 (202) −1.99 (207) −2.05 (417) −0.61 (322) −1.31 ± 0.07 −0.59 (774) −1.37 (948) −1.23 (657) 0.13 (521) −0.86 ± 0.04

FCH4 5.70 (213) 29.39 (226) 28.18 (439) 12.57 (428) 19.61 ± 0.42 4.72 (989) 18.53 (1,064) 19.10 (873) 13.54 (896) 13.92 ± 0.26

LE 31.86 (232) 39.05 (283) 31.81 (557) 15.09 (461) 28.13 ± 0.78 32.23 (1,187) 41.18 (1,213) 26.70 (901) 17.60 (736) 31.02 ± 0.51

H 34.17 (248) 47.64 (326) 36.35 (663) 11.16 (586) 29.97 ± 0.97 40.62 (1,342) 64.72 (1,401) 44.53 (1,223) 6.12 (1,182) 40.19 ± 0.78

FCgf −0.89 ± 0.02 −0.45 ± 0.02

Monthly average 2017 Mean ± SE 2018

Variance (mean and n) June July Aug September June–September June July August

TA 0.76 (1,433) 7.41 (1,483) 4.18 (1,484) 1.68 (1,436) 3.54 −0.03 (1,438) 5.74 (1,482) 1.90 (1,484)

Prec 8.4 36.4 47.9 20.3 113 8.2 39 29.3

FC −0.19 (982) −1.86 (926) −1.40 (760) −0.16 (576) −0.95 ± 0.04 −0.18 (729) −1.16 (890) −1.60 (869)

FCH4 4.69 (1,013) 26.98 (796) 34.49 (763) 17.55 (392) 20.05 ± 0.33 3.31 (1,025) 26.17 (601) 41.70 (194)

LE 25.85 (1,192) 37.39 (1,197) 25.13 (1,003) 15.47 (816) 26.95 ± 0.47 14.1 (1,164) 42.35 (1,157) 22.36 (1,152)

H 31.33 (1,236) 40.86 (1,285) 15.33 (1,345) 5.04 (1,140) 23.49 ± 0.54 15.64 (1,155) 43.41 (1,395) 24.62 (1,337)

FCgf −0.73 ± 0.02

Note. In addition, number of datapoints for each month are added in brackets as well as the standard error of the means (SE), as a measure of uncertainty, are included
 for all fluxes (June–September averages).

Table 1 
Monthly and June–September Averages for Air Temperature (TA—°C), CO2 Fluxes (FC—μmol m−2 s−1), CH4 Fluxes (FCH4—nmol m−2 s−1), Latent Heat (LE—
W m−2) and Sensible Heat (H—W m−2), Together With Monthly and June–Septemeber Total Precipitation (Prec—mm) and the June–September Averaged Gap-Filled 
(FCgf) CO2 Fluxes
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Furthermore, footprint models assume stationarity of the flux across space and time. In order to combine 
these spatial and surface characteristics we overlaid the polygon type (LCP, FCP, and HCP) across coordinates 
on a map, allocating coordinates to each maximum flux contribution location derived from wind direction 
and distance allowing an attribution of fluxes to polygon type (Figure 2) while acknowledging the potential 
uncertainty introduced due to the conversion of microtopography to a plane surface, a common feature at 
complex sites.

2.2.5. Statistics

We applied the bootstrapping approach (Banjanovic & Osborne, 2016) by resampling the flux data 10,000 
times (with replacement) in order to compare the true/population means by looking at their confidence in-
tervals together with the difference in means across all June–September periods as well as by polygon type 
and the degree of significance of differences between individual comparison pairs. The Mann-Kendall (Ken-
dall,  1975; Mann,  1945) and the modified Mann-Kendall trend analysis (Hamed & Rao,  1998) commonly 
applied in hydrometeorological time series (Wang et al., 2020 and reference therein) but also EC time series 
(Euskirchen et al., 2017) was applied to the data in order to investigate existing trends in fluxes or meteorolog-
ical conditions over time and the statistical significance thereof. Prior to applying the modified Mann-Kendall 
trend analysis we assessed the data for existing autocorrelation and partial autocorrelation, a procedure com-
mon in time series analysis, as autocorrelation is known to increase the chances of detecting significant trends 
where in fact there are none. Results summarize the Kendall rank correlation coefficient (τ) indicating the 
trend strength (−1 < τ < 1) as well as the magnitude (S) of the trend (Sen’s slope [Sen, 1968], change in flux) 
together with the significance at the 95% level (p ≤ 0.05) of the observed trend. These analyses were applied to 
daily averages treated separately by the three time periods: snowmelt (April and May), June–Septemeber, and 
freeze-up (October and November) as well as separated by polygon type.

2015 Mean ± SE 2016 Mean ± SE

June July August September
June–
September June July August September

June–
September

6.19 (1,132) 4.33 (1,486) 3.35 (1,488) −0.60 (1,439) 3.17 2.07 (1,438) 5.20 (1,484) 3.04 (1,356) 3.08 (26) 3.46

20 6.7 40.6 18.5 85.8 18 28.9 17.4 19.9 84.2

−1.01 (748) −2.46 (908) −1.82 (259) −0.02 (714) −1.32 ± 0.04 −0.42 (1,110) −1.71 (1,023) −1.09 (439) −1.04 ± 0.03

20.59 (899) 31.04 (673) 25.06 ± 0.45 12.76 (1,238) 25.47 (808) 21.29 (336) 18.27 ± 0.35

56.53 (981) 38.51 (1,258) 33.17 (362) 15.60 (1,016) 36.43 ± 0.62 45.00 (1,297) 39.69 (1,256) 21.30 (712) 37.79 ± 0.61

58.33 (1,063) 61.11 (1,345) 32.85 (422) 7.86 (1,274) 40.95 ± 0.85 62.16 (1,375) 60.92 (1,407) 34.47 (843) 55.24 ± 0.97

−0.84 ± 0.02 −0.74 ± 0.02

Mean ± SE 2019 Mean ± SE

September June–September June July August September June–September

3.01 (414) 2.24 1.99 (1,440) 8.44 (1,488) 5.60 (1,111) 3.67 (1,121) 4.99

11.8 88.3 21.1 67.5 65.2 22.9 176.7

−0.37 (645) −0.83 ± 0.03 −0.50 (868) −2.40 (834) −1.66 (605) 0.04 (380) −1.27 ± 0.04

13.7 (680) 14.61 ± 0.36 7.60 (855) 40.25 (566) 55.76 (10) 28.73 (690) 23.42 ± 0.45

10.96 (846) 23.26 ± 0.44 32.13 (1,138) 37.95 (1,086) 27.63 (723) 14.1 (573) 30.07 ± 0.55

8.79 (1,048) 23.12 ± 0.56 36.91 (1,289) 35.07 (1,374) 17.90 (969) 1.17 (990) 24.3 ± 0.59

−0.52 ± 0.02 −0.74 ± 0.02



Journal of Geophysical Research: Biogeosciences

DENGEL ET AL.

10.1029/2021JG006262

10 of 23

3. Results
3.1. Temporal Variability in Net CO2 Exchange, GPP, and Respiration Over 7 yr

NEE averaged over April to November (Table S1) ranged from −0.59 (SE = 0.03) μmol m−2 s−1 in 2017 to −1.06 
(SE = 0.06) μmol m−2 s−1 in 2013 (negative values indicate carbon uptake from the atmosphere) and NEE averaged 
over June–September varied from −0.83 (SE = 0.03) μmol m−2 s−1 in 2018 to −1.32 (SE = 0.04) μmol m−2 s−1 
in 2015 (Figure 3 and Table 1). There were significant differences in fluxes between some years (bootstrapped, 
95% confidence level using the percentile method; Figure 4), that are partially explained by variation in climate 
over these seven years (see Section 3.4). For example, we can say with 95% confidence that 2013 fluxes were 
somewhere between −0.30 up to −0.60 μmol m−2 s−1 higher (sign convention, more uptake) than 2014, but 2013 
was not different from 2015, having been 0.17 μmol m−2 s−1 lower than 2015 up to −0.14 μmol m−2 s−1 higher 
than 2015 (see confidence interval values in Table S2 for all CO2 [by year] comparisons).

The tundra was a net sink of CO2 in each of the June–September periods (Fig-
ure 5) with 65.4–102.1 g C m−2 cumulative net uptake. Late summer/early 
autumn uptake seen in Figure 5 can possibly be explained by warm tempera-
ture spells promoting continuation in biomass growth and carbon uptake (see 
September averages for air temperature and CO2 fluxes in Table 1). No clear 
trend with length of the snow-free season was found.

There was a weak but significant decreasing trend in April–November NEE 
over the 7 yr (becoming more positive) with τ = +0.066, p = 0.080 with an 
average daily change rate of S = 0.0003 μmol m−2 s−1 but not for the June–
September values.

The weak decreasing trends for April and May (snowmelt) and Octoberand 
November (freeze-up/post photosynthetic season) periods were not signifi-
cant (Table S3).

GPP, based on partitioning NEE, was highest in 2013 and lowest in 2014. To 
investigate ecosystem efficiency in converting light into photosynthate, we 
estimated the LUE as the relationship between PPFD and GPP. The response 
is asymptotic (fitted rectangular hyperbola, Figure 6), with parameters de-
pending on leaf photosynthetic properties and the environment: In our case 
it describes gross photosynthesis, and so the curve passes through the ori-
gin. Parameters estimated from the Michaelis-Menten rectangular hyperbola 
(Amax, b, and LUE) for each month separately are summarized in Table S4. 
June–September GPP and LUE by polygon type were not significantly dif-
ferent from each other.

Figure 4. Mean CO2 and CH4 fluxes, together with their respective confidence intervals (CI) at 95% level (including the 2.5th and 97.5th percentile of the bootstrap 
distribution) after applying bootstrapping (10,000 resamples with replacement) to the data.

Figure 5. Cumulative net CO2 flux (NEE) for June toSeptember, 2013–2019 
estimated from gap-filled data. Gaps longer than 5 days are highlighted in 
pale colors. Due to loss of power at the site there are no data available for 
September 2016 and simply visualized as a straight pale colored line.
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June–September average ecosystem respiration was lowest in 2014 and highest in 2019. High resolution (half 
hourly) values increased exponentially with increasing surface temperature (Figure 7).

No relationship with amount of precipitation nor a lag between respiration and precipitation was found. As with 
NEE, no significant trend was observed in GPP nor respiration over the seven June–September periods.

3.2. Methane Fluxes

CH4 fluxes averaged over each April to November (Table S1), 2013–2019 
period ranged between 10.05 (SE  =  0.25) nmol  m−2  s−1 in 2018 to 19.83 
(SE = 0.41) nmol m−2 s−1 in 2015, while June–September (Table 1) averages 
ranged from 13.92 (SE = 0.26) nmol m−2 s−1 in 2014 to 23.42 (SE = 0.45) 
nmol m−2 s−1 in 2019 (Table 1). Averaged over all years, June–September 
CH4 flux was 18.44 (SE = 0.14) nmol m−2 s−1. Figure 8 shows the cold-sea-
son (April and May/spring snowmelt and October and November/fall freeze-
up) distribution of CH4 fluxes outside the typically reported snow-free June–
September period as well as the whole April–November data range.

According to Mann-Kendall analysis, there appears to have been an in-
creasing trend in June–September methane fluxes over these seven years 
(Mann-Kendall analysis, τ = +0.111, p = 0.01) with an average change rate 
of 5.47 nmol m−2 s−1 per year. Spring (April andMay) fluxes were very low, 
averaging 1.1 (SE = 0.1) nmol m−2 s−1 with no significant trend across years. 
In contrast, fall (October and November) CH4 fluxes, which averaged 13.93 
(SE = 0.34) nmol m−2 s−1, had a significant increasing trend with an average 
change in rate of 0.125 nmol m−2 s−1 day−1 (p = 0.029; Table S2).

As with CO2 fluxes, the June–September CH4 flux averages varied signif-
icantly between some but not all years (Figure 4). Methane fluxes in 2013 
were higher than 2014, somewhere between 4.75 and 6.68 nmol m−2 s−1 (95% 

Figure 6. Estimated light use efficiency (LUE) curves as the relationship between photosynthetic photon flux density and 
gross primary productivity for June to September, 2013–2019, together with the respective parameters indicating the LUE of 
the polygon tundra for each June–September period. The estimated goodness of fit (R2) for the individual fitted rectangular 
hyperbola of 0.27, 0.22, 0.40, 0.28, 0.15, 0.18, and 0.26 for 2013–2019, respectively, should be taken with caution since R2 
values for non-linear regressions are not always representative.

Figure 7. Ecosystem respiration as a function of surface temperature for June 
to September, 2013–2019 color coded by months.
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confident), while 2013 fluxes were significantly lower than those in 2015, but not statistically significantly dif-
ferent from 2016 (see Table S2).

We saw a positive relationship between CH4 efflux and surface temperature (Figure 9, r2 = 0.23, p ≤ 0.0001), as 
well as very high daily average CH4 fluxes during periods of frequent thawing and refreezing of the surface in 
July and August. No relationship with amount of precipitation was found.

Furthermore, CH4 fluxes correlated with a deepening of the active layer (Fig-
ure 10) during the summer month (maximum thaw depth mid-end August) 
followed by the “zero curtain” (Hinkel et al., 2001) period when the upper 
surface layer starts to refreeze (data not shown here) but with still substantial 
CH4 production in September and the freeze-up season.

3.3. Latent and Sensible Heat Flux

Both latent (LE) and sensible (H) heat showed a decreasing trend over 
the entire 2013–2019 data collection period (τ  =  −0.121, p  =  0.001, 
S = −0.01 W m−2 and τ = −0.187, p ≤ 0.0001, S = −0.022 W m−2, respec-
tively), mainly driven by the decrease in the June–September period: June–
September average H, for example, declined from 55.24 (SE = 0.97) W m−2 
in 2016 to 23.49 (SE = 0.44) W m−2 in 2018. Outside this seasonal period, 
there was a decreasing trend in spring fluxes (τ = −0.116 and −0.127) for 
both quantities and in fall for H fluxes (p = 0.0001) with a change in flux of 
0.06 W m−2.

3.4. Climate Variability 2013–2019

There was significant climate variability over the study period in snow-free 
season dates, rainfall, and temperature. The length of the snow-free season 
varied from 76 days in 2014 to 159 days in 2016. The variation was due to 

Figure 8. Half-hourly CH4 flux (nmol m−2 s−1) density distribution of all 2013–2019 data separated by April and May 
(spring), June–September, October and November (fall/freeze-up), and overall April–November distribution. In addition, 
respective averages (1.11, 18.44, 13.93, and 13.93 nmol m−2 s−1) are highlighted as full black circles along the respective 
x-axis.

Figure 9. Daily averaged CH4 fluxes (nmol m−2 s−1) measured from April to 
November, 2013–2019, color coded by month.
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changes in both snowmelt and accumulation dates. For example, 2016 had the earliest melt (May 24, the record 
earliest snowmelt since 1902; Cox et al., 2017) and latest autumn accumulation (October 16, record since 1920; 
Alaska Climate Research Center, 2019; National Weather Service, 2019), while 2018 had the longest-lasting 
spring snow cover and hence a delayed photosynthetic period. 2016 was also the driest June–September summer 
season (Table 1), while 2019 had the highest precipitation (176.7 mm, data extracted from the NOAA Barrow 
Atmospheric Baseline Observatory according to Diamond et al., 2013). In the June–September period each year 
June was the coldest and July was the warmest month. Although there was high variability among months (see 
Table 1), the trend across these seven years is that June–September air temperature was slightly increasing (Ta-
ble S3, τ = 0.08, p = 0.09). The 2014 had the coldest and 2019 by far the warmest June–September temperatures 
(Table 1), representing a record year since 1902 (NOAA, 2019). PPFD, in contrast showed a decreasing trend 
(τ = −0.08, p = 0.0002) with 2019 reporting the highest precipitation values and hence cloudiest conditions.

Figure 10. Relationship between daily thaw depths values estimated from soil temperature measurements along a vertical gradient and CH4 fluxes, separated by 
months.
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Incoming spring (April and May) radiation (PPDF) showed a very strong increasing trend over the years 
(τ = 0.305, p ≤ 0.0001, S = 0.578; 2017–2019 were sunnier then previous years and hence warmer spring tem-
peratures), but no significant trend over the October and November fall months. Regarding albedo, no changes 
were observed over the years.

Spring temperatures increased more than did June–September temperatures (τ = 0.104, p = 0.045, S = 0.01°C) 
while the observed increase in October and November temperatures (Table S3) were not significant.

3.5. Attributing Variation in EC Fluxes to Different Polygon Types

To attribute fluxes by polygon type, we mapped the maximum flux-contribution location obtained from our 
footprint analysis (Figure 2) for April to November, 2013–2019, overlaid on a polygon classification map (see 
map in Figure 2).

Fluxes varied among polygon types (Figure  11) and the relative flux rates among types changed over time. 
Measured NEE and CH4 fluxes from low- and flat-centered polygons can be compared across all June–Septem-
ber periods in Table S5. Within a polygon type, there was no significant trend in spring nor June–September 
period NEE (Table S3) while during fall months NEE from FCP showed a weak decrease (sign convention for 
CO2 fluxes, more negative = more uptake, therefore a positive trend means fluxes are becoming more positive; 
p = 0.11), while the τ value of 0.114 for HCP (p = 0. 19) hints at a strong decrease in cold season NEE (i.e., less 
CO2 uptake). For methane, both polygon types showed a positive trend in June–September CH4 fluxes (Table S3). 
There was no detectable trend in spring CH4 fluxes. Fall CH4 fluxes, however, exhibited a significant increasing 
trend in LCPs and marginally significant increasing trend in FCPs.

Figure 11. Mean CO2, CH4 together with latent (LE) and sensible (H) heat fluxes, together with their respective confidence intervals (CI, in red) at 95% level 
(including the 2.5th and 97.5th percentile of the bootstrap distribution) after applying bootstrapping (10,000 resamples with replacement) to the data. Represented are 
low-centered (LCP) and flat-centered (FCP) polygons.
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Based on the bootstrapping approach, fluxes across LCP and FCP were not significantly different (at the 95% 
confidence level) for all June–September periods (Figure 11). Mean CO2 fluxes in low centered polygons were 
higher in 2013 and 2015, while in 2017 low centered polygons CO2 flux means were lower somewhere between 
0.12 and 0.42 μmol m−2 s−1 (Table S6). In contrast, CH4 fluxes appeared to be significantly different in four out 
of 7 yr (Figure 11) when comparing low centered with flat centered polygons.

3.6. Energy Fluxes and Energy Balance by Polygon Type

Energy fluxes were similar across the different polygon types in some years and different in others years (Fig-
ure 11 and Table S6). For example, latent heat fluxes from low-centered and flat-centered polygons were signifi-
cantly different in only 2 yr (2014 and 2019, p < 0.05). In 2014, June–September average LE from low-centered 
polygons was 26.11 (SE  =  0.81) W  m−2 compared to 33.5 (SE  =  0.67) W  m−2 over flat-centered polygons. 
June–September sensible heat values from these polygon types were also significantly different in 2014 and 
2016–2018. Notably, 2014 was the only year in which there was no significant difference among LCP and FCP 
for NEE, GPP, respiration, nor for CH4 fluxes. LE and H, decreased over the study period (Table 1).

Considering all June–September data (Figure 12), energy balance ((LE-H + G)/net radiation) averaged 70% with 
large fluctuations among polygon types, years, and months (range 35%–94%). Such energy balance estimates 
at EC sites include uncertainties introduced by the lack of representativeness of net radiation and soil heat flux 
measurements (fixed point measurements) in the wider area near the eddy flux tower (change in footprint, regard-
ing LE and H), as well as lateral energy losses via subsurface water flows.

No significant difference in energy balance closure was found amongst the different polygons in any year. Across 
years, however, energy balance closure sharply increased for the spring months (τ = 0.24, p ≤ 0.0001) but no 
significant trend in the June–September nor the fall/freeze-up period was observed.

Figure 12. Energy balance for all June–September (2013–2019) data, including net radiation, LE, H, and soil heat flux (G). 
Added linear regression lines together with the respective functions are color coded by year.
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One uncertainty we found in energy balance measurements at our site were the behavior of ground heat fluxes 
over the years. The two continuously running soil heat flux plates (both in LCP) showed no trend in the spring 
but opposing trends during June–September (τ = −0.09, p = 0.06 and τ = 0.101, p = 0.02) and clear increasing 
trends in the fall months (τ = 0.193 and 0.109) with only one being weakly significant (p = 0.07).

4. Discussion
Fluxes of CO2, CH4, and energy over 7 yr (2013–2019), including early spring/snowmelt (April and May), 
June–September and the post photosynthetic period/freeze-up season (October and November) from a polygon 
tundra, EC flux site near Utqiagvik, Alaska are discussed here. An overview of the meteorological conditions 
and flux distribution shows inter- and intra-seasonal variation but also notable spatial variability in partitioned 
flux values.

4.1. CO2 Fluxes

The timing of snowmelt and spring temperatures had a large impact on tundra carbon sequestration. While the 
cumulative sink by the beginning of August 2018 was only 50 g C m−2 (Figure 5), in 2015 (snow-free since 
May and with the warmest spring temperatures of the 7 yr [Table 1]), approximately twice as much carbon was 
sequestered. This said, 2016, the year with the longest snow-free season but lowest precipitation values had in-
termediate carbon uptake (see Figure 5). The snow free season in 2017 and 2018 commenced 3 days apart in late 
June and lasted in both years until 29 September with 2017 having sequestered 30 g C m−2 more than in 2018. The 
2015 and 2019 showed a decline in uptake throughout September though the tundra remained snow free until 22 
September in 2015 and until 9 October in 2019, respectively. Both years had 117 and 121 snow free days, respec-
tively accumulating between 101 and 104 g C m−2. In contrast 2016, the longest snow free season with 159 days 
sequestered only 73 g C m−2 by the end of August.

Our findings show no trend in CO2 uptake linked to snow-free season length, an observation also made in High 
Arctic Siberia by Parmentier et al. (2011) from 8 consecutive years of CO2 EC flux measurements.

The tundra was a net CO2 sink in every of the seven June–September periods, driven by summer uptake (Figure 5) 
at rates similar to those measured by Euskirchen et al. (2012) for Imnavait Creek in the northern foothills of the 
Brooks Range, Alaska, but slightly lower than 119 g m−2 June–August average in the Lena Delta, Siberia (Kutz-
bach et al., 2007). Net CO2 uptake commenced shortly after snowmelt, when air temperatures are still relatively 
low but insolation levels are highest, thus favoring GPP over soil respiration. The strong influence of PPFD (Fig-
ure 6) on Arctic GPP has been documented with EC in high-Arctic polygon tundra in Siberia (Dennis et al., 1978; 
Kutzbach et al., 2007) and at leaf level at our site (Rogers et al., 2019). Ecosystem respiration increased expo-
nentially with surface temperature (Figure 7), as seen in other studies at the BEO (Harazono et al., 2003; Oechel 
et al., 1995) and Lena Delta (Kutzbach et al., 2007).

4.2. Changes in CH4 Fluxes Over Time

June–September CH4 fluxes showed an increasing trend (Mann-Kendall analysis) between 2013 and 2019, in 
concert with a slight increase in June–September air temperature (Table S3) and a potential deepening of the 
active layer (measurements near the site are done in up to 5 cm increments up to a depth of 0.4 m and 10–20 cm 
increments from 0.4 m downward, see Figure 10). The strong link with air and/or soil surface temperature (Fig-
ure 9) was also found in other Arctic studies (Arndt et al., 2019; Friborg et al., 2000; Sachs et al., 2010; Wille 
et al., 2008; Zona, Oechel, Kochendorfer, et al., 2009). Generally Arctic tundra soil temperatures at deeper depths 
vary too little (thermal inertia) however, to explain the high variability in CH4 fluxes. Zona et al. (2016) and Tay-
lor et al. (2018) estimated that around half of annual Arctic CH4 emissions occur outside the snow-free season, 
with substantial contributions during freeze-up (Mastepanov et al., 2008; Pirk et al., 2015; Tagesson et al., 2012) 
and spring thaw (Raz-Yaseef et al., 2017; Wille et al., 2008) originating from individual pulse events, a phenom-
enon also observed in boreal permafrost regions (Hargreaves et al., 2001; Song et al., 2012). We observed large 
CH4 fluxes during freeze-up in all years (Figures 3, 8, and 9), and substantial spring-thaw pulses only in 2014 
(Raz-Yaseef et al., 2017).
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4.3. Spatial Heterogeneity of Tundra Fluxes

Inundated areas, ponds, and lakes in high-latitude tundra can act as hotspots for both CO2 and CH4 fluxes (Jammet 
et al., 2015, 2017; Langer et al., 2015), contributing to the spatial heterogeneity of high-latitude greenhouse gas 
fluxes. In addition, studies of vegetated drained thaw lake basins (DTLBs) near Utqiagvik found that the age of 
the basins (i.e., time since lake drainage) affects flux rates too (Lara et al., 2015; Sturtevant & Oechel, 2013), 
with higher NEE and GPPs in young DTLBs (Lara et al., 2015; Zona, Oechel, Peterson, et al., 2009). Changes in 
land cover type, age, permafrost thaw, and wetter or drier areas have a potential to impact future polygon tundra 
properties and fluxes in a warming climate (Lara et al., 2015, 2018).

4.4. Impact of Polygonal Features on Tundra Greenhouse Gases

What impact do polygonal features have on tundra greenhouse gases? NEE fluxes from the two dominant polygon 
types, low- and flat-centered polygons, were significantly different during only three years (Figure 11). Regarding 
CH4 fluxes, in the first 3 yr (2013–2015) moister LCPs had higher fluxes (Table S5), followed by 4 yr (2016–
2019) in which FCPs had higher values, with the increase in FCP CH4 fluxes partially explained by an increase 
in seasonal air temperature (p < 0.001) and variation in precipitation (p = 0.067) dynamics, both promoting a 
deepening of the active layer (Douglas et al., 2020).

Polygon type alone did not explain the differences in fluxes. In addition, snow cover distribution is not uniform 
in these ecosystems (Gouttevin et al., 2018; Kępski et al., 2017; Wainwright et al., 2017), with snow depth during 
the first half of the June–September period potentially being more persistent in low-centered polygons than in 
flat- or high-centered polygons (Zona, Oechel, Kochendorfer, et al., 2009).

The result could be that due to wind and snow drift insulating the soil and exposing some flux drivers much later 
in the season than in drier high- and flat-centered polygons, thus contributing to differences in fluxes among 
polygon types. This also applies to spatially changing soil temperatures in the upper most layers of the tundra soil 
during snow melt, as well as the “zero-curtain” (Hinkel et al., 2001) effect later in the season.

4.5. Gas and Energy Fluxes at Polygon Level

This is the first study to attribute eddy fluxes to different polygon types in the footprint. Chamber data can pro-
vide an independent check on the relative patterns we found. Studies near our site (Lara et al., 2015; Sturtevant 
& Oechel, 2013; Vaughn et al., 2016; von Fischer et al., 2010; Wainwright et al., 2015) and in Siberian polygon 
tundra (Sachs et al., 2010; Wagner et al., 2003) report higher CH4 fluxes from low-centered polygons than from 
drier areas such as high- and flat-centered polygons. These studies also found high fluxes from wetter features 
within the polygon landscape, such as depressions and troughs compared to the drier rims, but these fine-scale 
variations cannot be resolved by EC data. Studies have also found high CH4 fluxes from the normally drier FCPs 
during wetter periods, consistent with our observations of the impact of an increase in precipitation.

The Arctic tundra not only shows a high spatial heterogeneity in greenhouse gas flux but also in surface energy 
fluxes (Boike et al., 2008; Langer et al., 2011; Lynch, Bonan et al., 1999; Muster et al., 2012; Ohmura, 1981, 1982), 
an interplay between climate drivers (e.g., available radiation/meteorological conditions) and ecosystem proper-
ties (soil, hydrology or wetness, and vegetation cover; Ling & Zhang, 2004; Sedighi et al., 2018). Our estimation 
of the site energy balance was problematic, as it is for nearly all EC systems, due to a mismatch in spatial scale in 
different measurements. While outgoing radiation and soil heat flux were estimated as fixed point measurements, 
turbulent fluxes were averaged over larger areas with a changing footprint, and influenced by microtopograph-
ical features, dry versus wet areas, and lateral losses of energy. Nevertheless, our half-hourly energy balance 
values (mostly above 60%, range 35%–94%) were within the ranges found in other energy balance studies in 
the High Arctic (Lynch, Bonan, et al., 1999 and authors therein; Grachev et al., 2019; Langer et al., 2011; Lund 
et al., 2014).

4.6. Heterogeneity of Polygon Tundra and Land-Surface Models

The heterogeneity of polygon tundra poses a challenge to land-surface models, predictions, and model fidelity. 
For example, a comparison of 40 models (Fisher et al., 2014) as well as a newer comparison study of 11 models 
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by Commane et al. (2017) showed that the spatial patterns in mean NEE for Alaska varied widely among models, 
essentially showing no consistent distribution and some models completely contradicting the outcome from other 
models. A model study of energy fluxes limited to the North Slope of Alaska (Lynch, Bonan et al., 1999; Lynch, 
Chapin, et al., 1999) detailed the difficulty of model validation and performance using data measured at multiple 
sites across similar terrain by multiple research groups, highlighting the uncertainties attached to measurement 
methods and instruments used. Model input affected model outputs by under/over estimating individual land cov-
er features (Wainwright et al., 2015), flux components (Grant, Mekonnen, Riley, Wainwright, et al., 2017), and 
fluxes (Grant et al., 2019; Grant, Mekonnen, Riley, Arora, & Torn, 2017), ultimately illustrating the complexity 
of small-scale variations of the greenhouse gas and energy balance in ecosystem processes at regional scales. 
These numerous studies and models highlight the lack of complete understanding of the complex and heteroge-
neous Arctic polygon tundra, its dynamics, and future development under a changing climate.

5. Conclusion
Seven years of CO2, CH4, and energy fluxes (April to November, 2013–2019) revealed an increasing trend in CH4 
fluxes from Arctic tundra, including increasing fall (freeze up) fluxes as well as a consistent CO2 sink during June 
to September months in each year, at the Barrow Ecological Observatory near Utqiagvik Alaska. There was high 
temporal and spatial variability in NEE, CH4, LE, and H fluxes linked to climate variability and site heterogenei-
ty. To disentangle the heterogeneity of the complex polygonal tundra, we combined a polygon type classification 
(Wainwright et al., 2015) and footprint analysis that allowed us to separate the maximum flux-contribution loca-
tion by polygon type. It revealed which polygon type had higher NEE or CH4 fluxes that varied by time period 
investigated and year. Multi-year, multi-season data were necessary to quantify the long term trends and the 
relationship between spatial patterns (e.g., among polygon types) and climate variability. We hope this approach 
will pave the way for further such studies, extending understanding of the heterogeneity of Arctic ecosystems and 
the use of flux data in land model development, parameterization and validation.

Data Availability Statement
All eddy covariance and meteorological data included in this study are freely obtainable from the AmeriFlux da-
tabase (https://ameriflux.lbl.gov/data/data-availability/) and additional auxiliary data from the US Department of 
Energy Next-Generation Ecosystem Experiments (NGEE Arctic) Data Portal (https://ngee-arctic.ornl.gov/data/).
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