Title

Total Syntheses of (+)-Peniciketals A-B and (-)-Diocollettines A Exploiting a Photoisomerization/Cyclization Union Protocol

Permalink

https://escholarship.org/uc/item/2rz3s8p0

Journal

The Journal of Organic Chemistry, 86(19)

ISSN

0022-3263

Authors

Deng, Yifan
Zou, Yike
Yang, Chia-Ping H
et al.

Publication Date

2021-10-01
DOI
10.1021/acs.joc.1c01635

Peer reviewed

Total Syntheses of (+)-Peniciketals A-B and (-)-Diocollettines A Exploiting a Photoisomerization/Cyclization Union Protocol

${ }^{\text {a Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United }}$ States
${ }^{\text {b }}$ Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
${ }^{\text {c Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, }}$ 10461, United States

Abstract

A late-stage photoisomerization/cyclization union tactic, in conjunction with Type I Anion Relay Chemistry (ARC) permits enantioselective total syntheses and then biological evaluation of (+)peniciketals A and B. The photochemical protocol was further showcased by an efficient threestep construction of the architecturally complex polycyclic skeleton found in (-)-diocollettines A. The mechanism and diastereoselectivity of the photochemical protocol have also been explored by both experiment and DFT calculations.

Graphical Abstract

(-)-Diocollettines A
(+)-Peniciketal A: $\mathrm{R}=\mathrm{OH}$
(+)-Peniciketal B: $\mathrm{R}=\mathrm{H}$
Photoisomerization/Cyclization Union

[^0]
1. INTRODUCTION

The peniciketals A-C (1-3; Scheme 1), reported by Pan and Zhu in 2014, ${ }^{1}$ constitute an architecturally intriguing family of benzo-fuzed spiroketals that were found to possess significant anticancer activity. The unprecedented structure of the peniciketals, assigned by X-ray diffraction and NMR spectra, contains a benzannulated spiroketal and a benzo-fused 2,8-dioxabicyclo[3.3.1]nonane skeleton. Both peniciketals A and B(1-2) possess the benzofused [6,6]- spiro-ring while A bears a $\mathrm{C}(3)-\mathrm{OH}$. Peniciketal $\mathrm{C}(3)$ instead possesses a benzo-fused [5,6]-spiro-ring and also bears a $\mathrm{C}(3)-\mathrm{OH}$.

Peniciketal A (1) was further demonstrated by Pan and Zhu to display selective cytotoxicity against both leukemia cells $\left(\mathrm{IC}_{50}=3.2 \mu \mathrm{M}\right.$ against HL-60 cell line) and human non-small lung cancer cells $\left(\mathrm{IC}_{50}=22.33 \mu \mathrm{M}\right.$ against A549 cell line $)$, but less toxic when treated with normal cells. ${ }^{2-4}$ As we report here, with synthetic samples, the cytotoxicity and selectivity of peniciketal A-B is valid, with synthetic peniciketal B more potent than A against lung cancer cell lines. Given the unique structures of the peniciketals, in conjunction with their potential as antitumor drug lead candidates, we were attracted to launch synthetic studies toward members of the peniciketal family and eventually to potential analogs for structureactivity relationship studies.

Our group has had a long-standing interest in the development of novel photochemical protocols for construction of fused polycyclic natural products, for example the paniculides, ${ }^{5}$ hibiscone C, ${ }^{6}$ echinosporin, ${ }^{7}$ and recently the danshenspiroketallactones. ${ }^{8}$ The potential to partner with Anion Relay Chemistry (ARC), ${ }^{9}$ also developed in our laboratory, would extend considerably this construction paradigm. To this end, we reported the first enantioselective syntheses of (+)-peniciketals A-B earlier this year. ${ }^{10}$ In this synthesis, Type I ARC was employed to synthesize the benzo-fused spiro-ring ${ }^{11}$ and a new photoisomerization/cyclization union strategy was developed for the rapid access to the complex benzo-fuzed bicyclo[3.3.1]nonane structure. The reaction mechanism was proposed as outlined in Scheme 2: trans-enone A was irradiated under UV-A light (335nm) to undergo isomerization to cis-isomer \mathbf{B}, which under the acid condition undergoes cyclization to form diene \mathbf{C}. Protonation of \mathbf{C} then generates carboxonium \mathbf{D}. At this stage, a stereoselective $[3+3]$ cyclization between diene \mathbf{D} and nucleophiles $\mathbf{4}$ delivers the complex benzo-fused bicyclo[3.3.1] nonane skeleton \mathbf{E}.

We further envision the photochemical protocol would hold potential for the rapid construction of oxygen-containing 6/5/5 tricyclic ring skeletons, recently disclosed in nature to include diocollettines A (5), ${ }^{12}$ streptoglycerides A-D (6-9) ${ }^{13}$ and two bafilomycin derivatives (10-11) ${ }^{14}$ (Scheme 3a). Diocollettines A, isolated in 2016 from the rhizomes Dioscorea collettii, also displayed moderate anticancer activity with an IC_{50} value of $20.15 \mu \mathrm{M}$ against human lung cancer NCL-H460 cell line. ${ }^{12}$ To date, two total syntheses of diocollettines A have been reported. ${ }^{15,16}$ Inspired by the second synthesis from the Kuwahara group, ${ }^{16}$ we reasoned the proposed photoisomerization/cyclization protocol would be an efficient method to construct such polycyclic ring skeletons in a straightforward fashion under very mild conditions (vide infra). That is, as proposed in Scheme 3b, we envision that under irradiation with UV-A light and acidic conditions, the in-situ generated
oxonium C, when treated with 1,3-dihydroxyacetone (12), would undergo a tandem oxaMichael addition/aldol/acetalization reaction sequence to furnish the $6 / 5 / 5$ tricyclic ring skeleton \mathbf{F} in a one-flask manner. As such, this photochemical protocol would also serve as an efficient method to construct such polycyclic natural products.

Herein we report a full account on the development of the above photoisomerization/ cyclization union tactic, first with a model system, and then showcased with the total syntheses of peniciketals A-B (1-2) and an efficient 3-step synthesis of diocollettines A (5). Computational studies of the mechanism and diastereoselectivity of this photochemical protocol, as well as biological evaluation of peniciketals A and B , are also reported.

2. RESULTS AND DISCUSSION

Synthetic Analysis and Model Experiments.

From the retrosynthetic perspective, we envisioned the disconnection of peniciketals at the featured bicyclo[3.3.1] nonane core presented the possibility of the late-stage photochemical union to unite the northern and southern hemispheres ($\mathbf{1 3}$ and $\mathbf{1 4}$ respectively). The [6,6]spiroketal 14 would be assembled by a Type I ARC tactic from commercially available linchpin 15 and two different electrophiles 16 and (+)-17. ${ }^{17}$

We initiated the synthesis with model reactions to validate the photoisomerization/ cyclization union tactic with enone (+)-18 and commercial resorcinol 19 (Scheme 5a). Under UV-A light and acidic conditions the desired adduct (+)-20 was isolated in 45\% yield with $>20: 1 d r$ (entry 1). Following an investigation of acid catalysts and solvents, we determined that under the optimal condition ($20 \mathrm{~mol} \%$ camphor sulfonic acid (CSA) and 0.2 M THF solution), adduct (+)-20 could be obtained in 80% yield (entry 3). Key intermediate diene (+)-21 was isolated and characterized as a single isomer. Control experiments were conducted to support the proposed mechanism (Scheme 5b). First, (+)-21 was resubjected to acidic condition in the dark with $\mathbf{1 9}$ to afford (+)-20 in 61% yield. We also conducted the reaction in dark and found neither isomerization nor cyclization occurred without UV-A irradiation.

Computational Studies of the Model System.

As illustrated (Scheme 5b), attack of resorcinol 19 from either the top or bottom face of the oxocarbenium generated from (+)-21 would produce two possible diastereomers, but $(+)-\mathbf{2 0}$ was the only diastereomer observed experimentally. We applied DFT calculations to explore the stereoselectivity of this reaction. At the outset, we proposed that the initial Michael addition of $\mathbf{1 9}$ to the oxocarbenium determines the stereochemical outcome of the overall transformation. We therefore calculated the geometries and energies of the two stereoselective Michael addition transition states with the ω B97X-D/def2svp/CPCM(THF) method (Figure 1). ${ }^{18}$ Attacking from the si face of the oxocarbenium (TS1a) proceeds via a pseudo chair conformation of the dihydropyran ring, where the C1-Me is in the gauche conformation with $\mathrm{C} 2-\mathrm{H}$, leading to formation of the CC bond. Alternatively, attacking from the re face of the oxocarbenium (TS1b) would assume a pseudo boat conformation of the dihydropyran ring, where $\mathrm{C} 1-\mathrm{Me}$ is located more towards an eclipsed conformation
with C2-H (a dihedral angle of 32°). The latter results in disfavored steric interactions. The preference for a higher energy pseudo boat conformation for TS1b is to avoid the undesired 1,3-diaxial interaction of the axial-Me group with 19 when attacking from the reface, via a pseudo chair conformation TS1b-ax; this conformation increases the barrier height to $17.6 \mathrm{kcal} / \mathrm{mol}$. Therefore TS1a $(12.9 \mathrm{kcal} / \mathrm{mol})$ is preferred over TS1b $(14.9 \mathrm{kcal} / \mathrm{mol})$. TS1a leads to Michael addition adduct INT1a ($4.4 \mathrm{kcal} / \mathrm{mol}$) which is thermodynamically uphill (Figure 2), but proton transfer generates a stable oxocarbenium intermediate INT2a $(-10.0 \mathrm{kcal} / \mathrm{mol})$. Cyclization followed by another proton transfer generates the product $(+)-\mathbf{2 0}$, which has a free energy of $-25.1 \mathrm{kcal} / \mathrm{mol}$ relative to the neutral starting material $(+)-21$ and 19. No cyclization transition state was located. The other pathway starting from TS1b could generate the diastereomer 20a that is not observed by experiments and is disfavored in both kinetic and thermodynamic perspectives.

Total Syntheses and Biological Evaluation of Peniciketals A and B.

We began the synthesis of peniciketals A and B (1 and 2) with the common northern hemisphere $\mathbf{1 3}$ (Scheme 6a). The initial devised route was to disconnect $\mathbf{1 3}$ via a WeinrebNahm ketone synthesis to ester 22 and Weinreb amide 23. To this end, TBS protection of the naturally abundant andcommercially available atraric acid 24 delivered 22 in 90% yield. The Weinreb amide (-)-23 was then prepared in 84% yield via amidation of a, β unsaturated ester (-)-26, which in turn could be constructed from (S)-3-hydroxy-butanoate $(+)-\mathbf{2 5}$ in a 4 -step sequence. ${ }^{19}$ At this stage, we found with freshly prepared lithium 2,2,6,6tetramethylpiperidide (LTMP), the deprotonation of $\mathbf{2 2}$ went completely to generate the ortho-ester meta-OTBS benzylic anion 27, which was stable at $-78{ }^{\circ} \mathrm{C} .{ }^{20}$ In the same pot, slow addition of a pre-cooled solution of (-)-23 into anion $\mathbf{2 7}$ solution delivered the desired 1,2-addition product (-)-28, albeit in only 35% yield. The presumed reason for the low yield was competition with 1,4 -addition. ${ }^{20}$ Although a variety of conditions were explored, we were not able to increase the yield of (-)-28. Removal of the THP group then completed the synthesis of the northern hemisphere (+)-13. Although having arrived successfully at (+)-13, the 7 -step route (7.4% overall yield) did not appear suitable for a large-scale synthetic venture.

We therefore devised an alternate scalable synthetic route to (+)-13. We envisioned that the northern hemisphere (+)- $\mathbf{1 3}$ could be disconnected into ester $\mathbf{2 2}$, acyl chloride $\mathbf{2 9}$ and chiral alcohol (+)-30, via a 2 -step cross-coupling/olefin metathesis sequence (Scheme 6b). At this stage, the in-situ formed anion 27 was stable for transmetallation with ZnCl_{2} at $-78{ }^{\circ} \mathrm{C}$. The following addition of acyl chloride 29 and palladium catalyst then permitted the Negishi cross-coupling ${ }^{21}$ reaction to afford the desired adduct $\mathbf{3 1}$ in 80% yield on gram-scale. The following cross-metathesis to complete the synthesis of (+)- $\mathbf{1 3}$ was then achieved in 84% yield in the presence of Hoveyda-Grubbs II promoter. ${ }^{22}$ The second route permitted construction of the highly functionalized enone (+)-13 in only 3 steps in 60% yield and 675 $\mathrm{mg}(+)-\mathbf{1 3}$ was prepared.

We next explored construction of the southern hemisphere (14) of peniciketal A (Scheme 7). The synthesis of the requisite benzyl bromide $\mathbf{1 6}$ for Type I ARC proposed in Scheme 4 started with commercially available compound 32, which was then converted
to resorcinol $\mathbf{3 3}$ in 5 steps. ${ }^{23}$ Benzyl bromide $\mathbf{1 6}$ was then constructed from $\mathbf{3 3}$ via a 3 -step sequence of TBS protection, DIBAL-H reduction and removal of TBS groups. The Type I ARC union was then initiated by nucleophilic attack of the deprotonated linchpin $\mathbf{1 5}$ to epoxide (+)-17 to generate alkoxide 36. Upon the addition of HMPA, [1,4]-Brook rearrangement ${ }^{24}$ then translocated the silyl group from the carbon to the oxygen to generate the resulting carbanion $\mathbf{3 7}$. Capture with the second electrophile $\mathbf{1 6}$ in turn completed the three-component union to afford adduct 38. Without further purification, the crude adduct 38 was directly treated with $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}$ and CaCO_{3} to remove both the TMS and dithiane groups and as such furnished (+)-39 in an overall 64% yield in 2 steps on a 2-gram scale. We then attempted to achieve the global removal of all four TBS groups in one step. Unfortunately, with various fluorine reagents tested, including TBAF, HF, and their buffers, only decomposition of (+)-39 was observed. We next turned to acidic conditions including PTSA and CSA. Again, a significant decomposition of (+)-39 was observed under these conditions. Pleasingly we finally found with $5 \mathrm{~mol} \% \mathrm{NaAuCl}_{4}$ in MeOH , the two aliphatic TBS groups were selectively removed followed by a high diastereoselective spiroketalization to afford (-)-41 as a single diastereomer! Completion of the synthesis of the southern hemisphere (-)-14 was then achieved by TBS removal with TBAF; $360 \mathrm{mg}(-)-\mathbf{1 4}$ was prepared.

Having constructed both the northern and western fragments (+)-13 and (-)-14 respectively, we turned to the late-stage photoisomerization/cyclization union protocol (Scheme 8). Under irradiation, the photoisomerization of (+)-13 followed by [3+3]-cyclization with (-)-14 successfully generated the desired coupling adduct (-)-43 in 72% yield ($d r=13: 1$). Direct reduction of the ester in (-)-43 to aldehyde to complete the synthesis of peniciketal A (1) proved unsuccessful. Therefore, we detoured with TBS protection and DIBAL-H reduction to generate alcohol analog (-)-46. As it turned out, TBS protection of (-)-43 was necessary, otherwise the naked phenol group would decompose in the further oxidation step. Finally, oxidation of (-)-46 with Dess-Martin periodinane (DMP) and TBS removal delivered over 100 mg synthetic (+)-peniciketal A (1). The NMR spectra $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and single-crystal X-ray including anomalous dispersion of synthetic (+)-1 were identical to the literature values reported by Pan and Zhu. ${ }^{1}$

With the total synthesis of (+)-peniciketal A (1) accomplished, we next turned to the total synthesis of peniciketal B(2). To this end, Barton-McCombie deoxygenation ${ }^{26}$ of $(-)-\mathbf{4 3}$ was first explored (Scheme 9). However, only a trace amount of product (-)-47 was observed. We therefore started the synthesis with Barton-McCombie deoxygenation of (-)-41. Pleasingly, the deoxygenation of (-)-41 successfully yielded (-)-48 without any epimerization. After TBS removal, 90 mg of the requisite southern hemisphere (-)-49 for peniciketal B (2) was obtained. Again, the late-stage photochemical union of northern hemisphere (+)-13 and southern hemisphere (-)-49 furnished the coupling adduct (-)-47 in 73% yield $(d r=12: 1)$. Completion of total synthesis of peniciketal B (2) was finally achieved with the same 4-step reduction/oxidation elaboration of (-)-47; 22 mg synthetic (+)-peniciketal B (2) was obtained with an overall 24% yield in 8 steps from (-)-41. The spectral properties of the synthetic (+)-2 proved identical to literature values.

With both synthetic (+)-peniciketals A (1) and B(2) in hand, we next turn to study their cytotoxicity against lung cancer cells (Table 1). Peniciketals A (1) displayed moderate cytotoxicity against two human lung cancer cell lines A549 cells and H1975 with IC_{50} values of 16.4 and $14.3 \mu \mathrm{M}$, respectively, which are similar to the literature values, ${ }^{2}$ Interestingly, it turned out peniciketal B (2) displayed more cytotoxic against both lung cancer cell lines ($\mathrm{IC}_{50}=6.8 \mu \mathrm{M}$ against A 549 and $7.3 \mu \mathrm{M}$ against H 1975). The selectivity of peniciketals was also validated. Lower toxicity to human normal cells IMR90 was observed for both synthetic peniciketals A (1) and B (2).

Total Synthesis of Diocollettines A.

To validate the potential application of this photochemical protocol in the construction of $6 / 5 / 5$ tricyclic ring skeletons, we next turned to the total synthesis of diocollettines A (5, Scheme 10). Beginning with aldehyde 52, the reported asymmetric allylation was performed to deliver the desired homoallylic alcohol (-)-53, ${ }^{15}$ which in turn underwent olefin crossmetathesis with $\mathbf{5 4}$ to produce the requisite enone (-)-55 in 82% yield. Irradiation of enone (-)-55 generated oxonium 56 in situ and then the oxo-Michael/adol/acetalization reaction cascade with 12 successfully furnished (-)-diocollettines A (5) in a single step as a single diastereomer on a 48 mg scale. The spectral properties of synthetic (-)-5 proved identical to the literature values. ${ }^{12}$ This result suggests that this photochemical protocol can serve as an efficient method to construct this structural array of $6 / 5 / 5$ tricyclic natural products.

3. CONCLUSIONS

In summary, highly convergent total syntheses of (+)-peniciketal A (1) and B(2), along with an efficient 3-step total synthesis of (-)-diocollettines A (5) have been achieved. The longest linear sequence for the synthesis of (+)-peniciketal A (1) is 17 steps from commercially available acid 32. The key transformation in these syntheses is the development and application of photoisomerization/cyclization union protocol to construct both benzo-fused bicyclo[3.3.1]nonane structure and 6/5/5 tricyclic ring skeleton. DFT calculations revealed the origin of the high stereoselectivity of the photochemical protocol.

4. Experimental Section

General Information.

All substrates whose syntheses were not described were either obtained from commercial suppliers or prepared using the referenced literature procedures. Photochemical experiments were performed in a RayonetTM Srinivasan-Griffin Photoreactor (The Southern new England Ultraviolet Company) using Hitachi FL9BL-B bulbs (part \# 6201-7532). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were collected at 500 MHz on a Bruker Avance III 500 MHz spectrometer. For ${ }^{1} \mathrm{H}-\mathrm{NMR}$, reported chemical shifts are relative to acetone- $d_{6}(\delta 2.05)$ and chloroform $(\delta 7.26)$. For ${ }^{13} \mathrm{C}-\mathrm{NMR}$, reported chemical shifts are relative to acetone- $d_{6}(\delta$ 29.82) and chloroform ($\delta 77.16$). Infrared spectra were measured on a Jasco FT/IR 480 plus spectrometer. Circular dichroism spectra, High-resolution mass spectrometry (HRMS) and single-crystal X-ray structure were determined at the University of Pennsylvania.

Synthesis and Characterization of Compounds.

Compound (+)-18.-To a solution of 1-phenylbut-3-en-2-one ($438 \mathrm{mg}, 3 \mathrm{mmol}, 1 \mathrm{eq}$.) in DCM (20 mL) was added (+)-30 ($1.29 \mathrm{~g}, 15 \mathrm{mmol}$, 5 eq .) in 10 ml DCM under N_{2} atmosphere and HG-II ($38 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.02$ eq.) in DCM $(10 \mathrm{~mL})$. The resulting mixture was refluxed for 2 days before being quenched by exposure to air. The mixture was then concentrated. Purification via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 2$ to $1 / 1$) provided $(+)-\mathbf{1 8}(526 \mathrm{mg}, 2.58 \mathrm{mmol}, 86 \%$ yield $)$ as a colorless oil $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}+13.2$ (c 1.0, acetone); IR (film, cm^{-1}) 3417 (br), 2965, 2925, 1664, 1628, 1454, 1336, 1259, 1118, 982, 846, 703; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{dt}, J=$ $15.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (dt, $J=15.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.87$ (m, 3H), 3.76 (d, $J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34(\mathrm{dd}, J=9.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(125 \mathrm{MHz}$, acetone- d_{6}) $\delta 197.0,145.5,136.0,131.9,130.2,129.0,127.1,66.6,47.2,42.7,23.5$; HRMS (EI) $m / z 204.1143\left[(\mathrm{M})^{+}\right.$; calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}: 204.1150\right]$.

Compound (+)-20.-To a solution of (+)-18 ($40.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.) and $\mathbf{1 9}$ (25 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.) in 1 mL THF was added CSA ($9.3 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv.) under N_{2} and irradiated under UV-A light (355 nm) for 24 hours. The reaction was then quenched with sat. NaHCO_{3} and extracted with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 20$ to $1 / 3$) to afford the desired product $(+)-\mathbf{2 0}(49 \mathrm{mg}, 0.16 \mathrm{mmol}, 80 \%$ yield, $\mathrm{dr}>20: 1):[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}+102.3$ (c 1.4, CHCl_{3}); IR (film, cm^{-1}) 3369 (br), 2926, 1608, 1447, 1334, 1273, 1167, 1084, 978, 744, 702; ${ }^{1} \mathbf{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71-3.65$ (m, 1H), 3.14 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H})$, 2.12 (s, 3H), 1.88 (dd, $J=12.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.53$ (m 2H), 1.49 (dd, $J=12.5,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 155.4,154.9,137.1$, 131.6, 128.4, 127.1, 125.5, 117.8, 110.5, 107.7, 99.5, 65.6, 47.5, 40.6, 32.7, 30.7, 21.6, 8.6; HRMS (EI) $\mathrm{m} / \mathrm{z} 310.1558\left[(\mathrm{M})^{+}\right.$; calcd for $\left.\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}: 310.1569\right]$.

Compound (+)-21 was isolated as a colorless oil as a byproduct in the preparation of (+)-20 ($7 \mathrm{mg}, 0.04 \mathrm{mmol}, 19 \%$ yield, a mixture of E / Z isomers): $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}+65.5$ (c 1.1, acetone); IR (film, cm^{-1}) 3050, 2975, 2925, 2891, 1604, 1489, 1448, 1387, 1326, 1184, 1116, 1057, 957, 825, 749 ; ${ }^{1} \mathbf{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 7.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}$, 2 H), 7.10 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.15 (dd, $J=9.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.99 (ddd, $J=9.4,6.2,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.13$ (dqd, $J=9.8,6.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (ddd, $J=17.8,6.2,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.17$ (ddt, $J=17.7,10.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(125$ MHz , acetone- d_{6}) $\delta 152.0,137.9,129.5,129.0,127.1,126.4,126.2,108.5,72.3,32.5,21.5$; HRMS (EI) $\mathrm{m} / \mathrm{z} 186.1040\left[(\mathrm{M})^{+}\right.$; calcd for $\left.\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}: 186.1045\right]$.

Compound 22.-To a solution of the atraric acid 24 ($1.96 \mathrm{~g}, 10 \mathrm{mmol}, 1 \mathrm{eq}$.$) in DCM$ $(40 \mathrm{~mL})$ was added 2,6-lutidine ($3.42 \mathrm{~g}, 32 \mathrm{mmol}, 3.2 \mathrm{eq}$.) and TBSOTf ($6.34 \mathrm{~g}, 24 \mathrm{mmol}$, 2.4 eq.) under N_{2} atmosphere at $0^{\circ} \mathrm{C}$. The reaction was stirred overnight and then quenched with a sat. NaHCO_{3} solution, followed by extraction with DCM. The combined organic layers were dried, concentrated and purified via chromatography (EtOAc/hexanes $=1 / 40$) to
provide the product $22\left(3.82 \mathrm{~g}, 9.0 \mathrm{mmol}, 90 \%\right.$ yield) as a pale-yellow oil: IR (film, cm^{-1}) $2929,2858,1731,1601,1570,1473,1409,1330,1282,1152,1123,827,780,676,{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}$, 9H), $1.00(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0$, 156.1, 152.3, 135.0, 119.6, 118.6, 114.9, 51.7, 26.0, 25.9, 20.4, 18.6, 18.4, 11.3, -3.8, -4.0; HRMS (EI) $\mathrm{m} / \mathrm{z} 367.1758$ [(M- $t \mathrm{Bu})^{+}$; calcd for $\left.\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}_{2}: 367.1761\right]$.

Compound (-)-23.-To a solution of acrylate (-)-26 ($2.8 \mathrm{~g}, 12.3 \mathrm{mmol}, 1 \mathrm{eq}$. , prepared in 27% yield over 4 steps following the same literature procedure) ${ }^{19}$ and dried N, O dimethylhydroxylamine hydrochloride ($2.4 \mathrm{~g}, 24.6 \mathrm{mmol}, 2$ eq.) in THF (30 mL) was slowly added $i-\mathrm{PrMgCl}\left(27 \mathrm{~mL}, 2 \mathrm{M}\right.$ in THF, $54 \mathrm{mmol}, 4.4$ eq.) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes and then quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The resulting mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 3$ to $1 / 1$) to provide the diastereomers (-)-23 ($2.65 \mathrm{~g}, 10.3 \mathrm{mmol}, 84 \%$ yield, $\mathrm{dr}=1: 1$) as a colorless oil:[$\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-9.8\left(c 1.3, \mathrm{CHCl}_{3}\right)$; IR (film, cm^{-1}) 3498, 2939, 1668, 1633, 1417, 1380, 1125, 1074, 1027, 993, 873, 812, 690; ${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $_{3}$) $\delta 7.00-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.46-$ $6.40(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.68(\mathrm{~m}, 0.5 \mathrm{H}), 4.63-4.61(\mathrm{~m}, 0.5 \mathrm{H}), 3.93-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 1.5 \mathrm{H})$, $3.66(\mathrm{~s}, 1.5 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 0.5 \mathrm{H}), 2.45-2.30(\mathrm{~m}, 1.5 \mathrm{H})$, $1.79-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.11$ $(\mathrm{d}, J=6.3 \mathrm{~Hz}, 1.5 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,166.7,144.1,143.7$, $121.0,120.8,98.4,95.9,72.4,70.3,62.8,62.4,61.8,40.6,39.6,32.4,31.1,31.0,25.6,25.5$, 21.7, 19.9, 19.6, 91.1; HRMS (EI) $m / z 257.1644$ [(M) ${ }^{+}$; calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}$: 257.1627].

Compound (-)-28.-To a solution of diisopropylamine ($2.2 \mathrm{~g}, 22 \mathrm{mmol}, 2.2 \mathrm{eq}$.) in THF $(20 \mathrm{~mL})$ was added $n \mathrm{BuLi}\left(8.8 \mathrm{~mL}, 2.5 \mathrm{M}\right.$ in hexanes, $22 \mathrm{mmol}, 2.2$ eq.) at $-78^{\circ} \mathrm{C}$. The resulting mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 30 minutes before it was cooled to -78 ${ }^{\circ} \mathrm{C}$. A solution of ester $22(6.36 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ eq.) in THF (20 mL) was added slowly and the red solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes before a solution cooled to $-78{ }^{\circ} \mathrm{C}$ of amide (-)-23 ($2.57 \mathrm{~g}, 10 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (20 mL) was added via cannula. The mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ and was then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The resulting mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 10$ to $1 / 5$) to provide the diastereomers (-)-28 (2.17 g, $3.5 \mathrm{mmol}, 35 \%$ yield, $\mathrm{dr}=1: 1$) as a colorless oil: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-2.4(c$ $1.0, \mathrm{CHCl}_{3}$); IR (film, cm^{-1}); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{~s}$, $1 \mathrm{H}), 6.17-6.12(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.59(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.45(\mathrm{~m}$, $1 \mathrm{H}), 2.49-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 1.5 \mathrm{H}), 1.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.7$ (196.73), 196.7 (196.65), 168.6, 156.5 (156.54), 156.5 (156.50), 153.0 (153.04), 153.0 (153.01), 144.3, 143.8, 132.3, 132.2, 131.3, 131.2, 120.4 (120.40), 120.4 (120.36), 119.5, 119.4, 115.5, 115.4, 98.3, 96.2, 72.2, 70.4, 62.9, 62.6, 51.8 (51.84), 51.8 (51.82), 46.0, 45.8, 40.6, 39.5, 31.2, 31.0, 25.9, 25.8, 25.6, 25.5, 21.7, 20.0, 19.7, 19.3, 18.5, 18.4, 11.3, -3.9, -4.1; HRMS (EI) $\mathrm{m} / \mathrm{z} 620.3552\left[(\mathrm{M})^{+}\right.$; calcd for $\left.\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{O}_{7} \mathrm{Si}_{2}: 620.3565\right]$.

Compound (+)-13.

Method 1: To a solution of THP ether (-)-28 ($953 \mathrm{mg}, 1.54 \mathrm{mmol}, 1 \mathrm{eq}$.$) in DCM (8 \mathrm{~mL}$) and methanol (8 mL) was added PPTS ($38 \mathrm{mg}, 0.154 \mathrm{mmol}, 0.1 \mathrm{eq}$.). The resulting mixture was stirred at rt for 2 days and monitored by TLC before being quenched with sat. NaHCO_{3} solution. The resulting mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 2$ to $1 / 1$) to provide the northern hemisphere $(+)-13(768 \mathrm{mg}, 1.43 \mathrm{mmol}, 93 \%$ yield $)$ as a colorless oil: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}+5.7\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$; IR (film, $\left.\mathrm{cm}^{-1}\right) 3436$ (br), 2936, 2860, 1714, 1595, $1411,1261,1151,973,833,779 ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86(\mathrm{dd}, J=15.5,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.3 .91(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $2.34-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}$, $6 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8,168.8,156.6,153.1,143.7$, $132.2,131.6,120.5,119.3,115.5,66.9,51.9,46.0,42.3,25.9$ (25.94), 25.9 (25.86), 23.3, $18.5,18.4,11.3,-3.9,-4.0$; HRMS (EI) $\mathrm{m} / \mathrm{z} 521.2744\left[\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}\right.$; calcd for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{Si}_{2}$: 521.2755].

Method 2: To a solution of $\mathbf{3 1}(720 \mathrm{mg}, 1.5 \mathrm{mmol}, 1 \mathrm{eq}$.$) in \mathrm{DCM}(10 \mathrm{~mL})$ was added a solution of homoallylic alcohol (+)-30 ($645 \mathrm{mg}, 7.5 \mathrm{mmol}, 5 \mathrm{eq}$.$) in 5 \mathrm{ml}$ DCM under N_{2} atmosphere and a solution of HG-II ($19 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.02 \mathrm{eq}$.) in DCM (5 mL). The reaction was refluxed for 2 days before being quenched by exposure to air. The mixture was then concentrated and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 2$ to $1 / 1$) to provide the northern hemisphere (+)-13 (675 mg, $1.26 \mathrm{mmol}, 84 \%$ yield) as a colorless oil: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}$ +5.7 (c 1.0, CHCl_{3}); IR (film, cm^{-1}) 3436 (br), 2936, 2860, 1714, 1595, 1411, 1261, 1151, 973, 833, 779; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86(\mathrm{dd}, J=15.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, 6.17 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.30(\mathrm{~m}, 2 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8,168.8,156.6,153.1,143.7,132.2,131.6,120.5$, $119.3,115.5,66.9,51.9,46.0,42.3,25.9$ (25.94), 25.9 (25.86), 23.3, 18.5, 18.4, 11.3, -3.9, -4.0; HRMS (EI) $\mathrm{m} / \mathrm{z} 521.2744$ [($\left.\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$; calcd for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{Si}_{2}$: 521.2755].

Compound 31.-To a solution of TMP ($425 \mathrm{mg}, 3 \mathrm{mmol}, 1.2$ eq.) in THF (5 mL) was added $n-\mathrm{BuLi}\left(1.2 \mathrm{~mL}, 2.5 \mathrm{M}\right.$ in hexanes, $3 \mathrm{mmol}, 1.2$ eq.) at $-78^{\circ} \mathrm{C}$. The resulting mixture was warmed to rt and stirred for 30 minutes before cooled to $-78^{\circ} \mathrm{C}$. A solution of $\mathbf{2 2}(1.06$ $\mathrm{g}, 2.5 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (5 mL) was added and the red solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 hours before $\mathrm{ZnCl}_{2}(6 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, $3 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added. The mixture was stirred for 30 minutes at $-78^{\circ} \mathrm{C}$ and was then warmed up to rt and stirred for 30 minutes. A solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(145 \mathrm{mg}, 0.125 \mathrm{mmol}, 0.05 \mathrm{eq}$.) in 5 mL THF was prepared under N_{2} and was added into the reaction mixture at rt. Acryloyl chloride 29 ($495 \mathrm{mg}, 5.5 \mathrm{mmol}$, 2.2 eq.) was then added and the resulting reaction mixture was stirred at rt overnight before quenched by water. The resulting mixture was extracted with EtOAc. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography (EtOAc/hexanes $=1 / 20)$ to provide the enone $\mathbf{3 1}\left(960 \mathrm{mg}, 2.0 \mathrm{mmol}, 80 \%\right.$ yield) as a colorless oil: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}$ IR (film, cm^{-1}) 2939, 2856, 1717, 1597, 1564, 1468, 1409, 1153, 1123, 966, 833, 780, 677; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.37(\mathrm{dd}, J=17.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=16.9$
$\mathrm{Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H})$, 0.98 (s, 9H), $0.18(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.2,168.6$, 156.6, 153.1, 135.6, 132.0, 128.5, 120.5, 119.3, 115.5, 51.8, 45.6, 25.9, 25.8, 18.5, 18.4, $11.3,-3.9,-4.1$; HRMS (EI) $\mathrm{m} / \mathrm{z} 463.2338\left[\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}\right.$; calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{Si}_{2}$: 463.2336].

Compound 34.-To a solution of $\mathbf{3 3}$ ($4.1 \mathrm{~g}, 15 \mathrm{mmol}, 1 \mathrm{eq}$.) in DCM (60 mL) was added 2,6-lutidine ($5.14 \mathrm{~g}, 48 \mathrm{mmol}, 3.2 \mathrm{eq}$.) under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes and then TBSOTf ($9.5 \mathrm{~g}, 36 \mathrm{mmol}, 2.4 \mathrm{eq}$.) was added. The resulting mixture was stirred at rt overnight and then was quenched with a sat. NaHCO_{3} solution, and extracted with DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 40$) to provide the product $34\left(6.63 \mathrm{~g}, 13.2 \mathrm{mmol}, 88 \%\right.$ yield) as a colorless oil: IR (film, cm^{-1}) 2929, 2893, 2858, 1718, 1596, 1473, 1408, 1333, 1256, 1192, 1158, 1066, 966, 835, 781; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.51(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}$, $9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0$, $156.4,153.0,134.9,122.3,119.0,114.9,52.2,31.6,25.9,25.8,18.5,18.4,11.5,-3.8,-4.0$; HRMS (EI) $\mathrm{m} / \mathrm{z} 502.1568\left[(\mathrm{M})^{+}\right.$; calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{BrO}_{4} \mathrm{Si}_{2}: 502.1570\right]$.

Compound 35.-To a solution of $\mathbf{3 4}(6.63 \mathrm{~g}, 13.2 \mathrm{mmol}, 1 \mathrm{eq}$.) in toluene (60 mL) was added DIBAL-H ($33 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, $33 \mathrm{mmol}, 2.5$ eq.) under N_{2} atmosphere at -78 ${ }^{\circ} \mathrm{C}$. The reaction was then warmed up to $0^{\circ} \mathrm{C}$ and stirred for 3 hours. The resulting mixture was quenced with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, washed with 0.5 N HCl , and extracted with EtOAc. The organic layers were dried over MgSO_{4}, concentrated and purified via chromatography (EtOAc/hexanes $=1 / 20)$ to provide the product $35(5.21 \mathrm{~g}, 11 \mathrm{mmol}, 86 \%$ yield) as a white solid: m.p. $84-85^{\circ} \mathrm{C}$; IR (film, cm^{-1}) 3342 (br), 2929, 2891, 2857, 1572, 1470, 1412, 1324, $1259,1134,1075,996,839,780 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H})$, $4.62(\mathrm{~s}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{br}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 6 \mathrm{H}), 0.19(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,153.4,135.5,123.6,121.7,115.2,57.0$, 32.2, 26.2, 25.9, 18.8, 18.4, 12.0, -3.3, -4.0; HRMS (EI) $m / z 474.1614\left[(\mathrm{M})^{+}\right.$; calcd for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{BrO}_{3} \mathrm{Si}_{2}$: 474.1621].

Compound 16.—To a solution of the alcohol 35 ($4.74 \mathrm{~g}, 10 \mathrm{mmol}, 1 \mathrm{eq}$.) in DCM (50 mL) was added 2,6 -lutidine ($2.14 \mathrm{~g}, 20 \mathrm{mmol}, 2.0 \mathrm{eq}$.) under N_{2} atmosphere at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes and then TBSOTf ($3.96 \mathrm{~g}, 15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hours and then was quenched with a sat. NaHCO_{3} solution. The resulting mixture was extracted with DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 100$ to $1 / 40$) to provide the benzyl bromide $16(5.3 \mathrm{~g}, 9 \mathrm{mmol}, 90 \%$ yield) as a colorless oil: IR (film, cm^{-1}) 2929, 2890, 2858, 1572, 1473, 1411, 1324, 1257, $1133,1064,1005,958,839,779,{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H})$, $4.72(\mathrm{~s}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 6 \mathrm{H}), 0.12(\mathrm{~s}$, $6 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.1,152.3,136.2,123.8,121.0$, 115.6, 57.3, 32.7, 26.2, 26.1, 25.9, 18.7, 18.4, 18.3, 12.0, -3.5, -4.0, -5.2; HRMS (EI) m/z 588.2487 [(M)+; calcd for $\mathrm{C}_{27} \mathrm{H}_{53} \mathrm{BrO}_{3} \mathrm{Si}_{3}$: 588.2486].

Compound (+)-39.-To a flamed dried flask was added a solution of dithiane linchpin 15 ($1.06 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ eq.) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}(10 \mathrm{~mL} / 5 \mathrm{~mL})$ under N_{2} atmosphere. The reaction flask was cooled down to $-78^{\circ} \mathrm{C}$ and $n-\mathrm{BuLi}(2.64 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, $6.6 \mathrm{mmol}, 1.32$ eq.) was added. The resulting mixture was warmed up to $0^{\circ} \mathrm{C}$ for 20 minutes and cooled down to $-40^{\circ} \mathrm{C}$. A solution of epoxide (+)-17 (1.08 g, $5 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The resulting solution was stirred at $-40^{\circ} \mathrm{C}$ for 2 hours and then cooled to $-50{ }^{\circ} \mathrm{C}$. A premixed solution of $16(4.4 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) and HMPA (1.8 \mathrm{~g}, 10 \mathrm{mmol}$, 2 eq.) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The reaction mixture was gradually warmed up to rt and stirred overnight before being quenched with a sat. NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The adduct $\mathbf{3 8}$ was inseparable from the excessive 16, and was directly used in the next step. To a solution of 38 in THF (40 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}(4.0 \mathrm{~g}, 10 \mathrm{mmol}, 2 \mathrm{eq}$. and $\mathrm{CaCO}_{3}(2.0 \mathrm{~g}, 20 \mathrm{mmol}, 4 \mathrm{eq}$.). The suspension was stirred vigorously at rt for 30 minutes, then filtrated through Celite. The filtrate was washed with NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 20$) to provide the advanced intermediate $(+)$ - $\mathbf{3 9}$ ($2.4 \mathrm{~g}, 3.2 \mathrm{mmol}, 64 \%$ yield for 2 steps) as a colorless oil: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}+11.5$ (c 1.1, CHCl_{3}); IR (film, cm^{-1}) 3519 (br), 2935, 2892, 2859, 1707, 1571, 1469, 1414, 1321, 1255, 1124, 1076, 901, 834, 778; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~m}$, $1 \mathrm{H}), 4.08-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}$, $3 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}$, $9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}$ $\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.3,154.1,152.3,133.0,123.7,119.2,115.5,68.4,66.9$, $58.2,49.1,48.2,45.7,26.2,26.1,26.0,25.9,24.1,18.7,18.4,18.1,11.9,-3.5,-4.0(-3.96)$, -4.0 (-3.99), -4.0 (-4.00), -4.7, -5.1 (-5.10), -5.1 (-5.12); HRMS (ESI) m/z 777.4765 [(M+Na) ${ }^{+}$; calcd for $\mathrm{C}_{39} \mathrm{H}_{78} \mathrm{O}_{6} \mathrm{NaSi}_{4}$: 777.4773].

Compound (-)-41.—To a solution of (+)-39 (2.04 g, $2.7 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{MeOH}(16$ mL) was added NaAuCl_{4} (dihydrate, $54 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.05$ eq.). The reaction suspension was stirred at rt for 3 hours before quenched with sat. NaHCO_{3} solution. The resulting mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 10$ to $1 / 5$) to provide the desired product (-)-41 (809 mg, $1.6 \mathrm{mmol}, 59 \%$ yield) as a colorless oil: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-81.8$ (c $1.0, \mathrm{CHCl}_{3}$); IR (film, $\left.\mathrm{cm}^{-1}\right) 3533$ (br), 2933, 2860, 1586, 1471, 1429, 1374, 1316, 1255, $1124,1053,984,903,836,779,{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.98(\mathrm{~m}$, $1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}$, 9H), 0.19 (s, 6H), $0.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.5,149.9,128.6$, 117.7, 117.3, 112.5, 97.7, 65.3, 61.6, 59.2, 39.6 (39.60), 39.6 (39.59), 38.5, 26.2, 25.9, 21.5, $18.9,18.4,11.4,-3.0,-4.0,-4.1$; HRMS (EI) $\mathrm{m} / \mathrm{z} 508.3025\left[(\mathrm{M})^{+}\right.$; calcd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}_{2}$: 508.3040].

Compound (-)-14.-To a solution of (-)-41 (711 mg, $1.4 \mathrm{mmol}, 1 \mathrm{eq}$.) in 1 mL THF was added TBAF ($3.5 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, $3.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.) under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour and then quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The resulting mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=$ $2 / 1)$ to provide the southern hemisphere (-) $\mathbf{- 1 4}(360 \mathrm{mg}, 1.29 \mathrm{mmol}, 92 \%$ yield) a white foam.: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-92.1$ (c 1.4, acetone); IR (film, cm^{-1}) 3374 (br), 2935, 1602, 1443, 1344, 1235, 1157, 1093, 992, 837, ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H})$, 6.17 (s, 1H), 4.74 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.18$ (m, 1H), 4.06-3.94 (m, 1H), $3.82(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 155.3,151.8,129.9,112.9,109.2,107.4$, 98.0, 65.4, 61.9, 59.2, 40.4 (40.43), 40.4 (40.42), 39.0, 21.7, 8.5; HRMS (EI) $\mathrm{m} / \mathrm{z} 280.1315$ [(M) ${ }^{+}$; calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}: 280.1311\right]$.

Compound (-)-43.-To a solution of northern hemisphere (+)-13 (620 mg, 1.15 mmol , 1.5 equiv.) and southern hemisphere (-) $\mathbf{- 1 4}(216 \mathrm{mg}, 0.77 \mathrm{mmol}, 1$ equiv.) in 7.5 mL THF was added CSA ($36 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.2$ equiv.). The reaction mixture was evacuated and refilled with N_{2} (3 times) and then irradiated (355 nm) for 48 hours. The mixture was quenched with sat. NaHCO_{3} and extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography (EtOAc/hexanes $=1 / 4$ to $1 / 2)$ to afford the desired product (-)-43 (442 mg, $0.55 \mathrm{mmol}, 72 \%$ yield, $d r=13: 1)$ as a white foam, in conjunction with the recovery of the southern hemisphere (-)-14 (39 mg, $0.14 \mathrm{mmol}, 18 \%):[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-7.5\left(c 1.1, \mathrm{CHCl}_{3}\right.$); IR (film, cm^{-1}) 3459 (br), 2935, 2861, 1722, $1599,1566,1410,1261,1152,1122,1056,997,834,755 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.19$ $(\mathrm{m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=13.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.70(\mathrm{~m}$, $1 \mathrm{H}), 1.50-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.42-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.03(\mathrm{~s} .9 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(125$ MHz , acetone- $\left.d_{6}\right) \delta 169.2,156.2,153.4,152.8,150.2,134.2,126.5,122.7,120.0,117.5$, $115.9,113.9,108.5,99.8,98.2,66.3,65.5,62.0,59.0,52.1,44.4,40.9,40.5,38.4,35.9$, 32.9, 26.5, 26.4, 26.3, 22.0, 21.9, 19.2, 19.0, 12.0, 9.0, -3.3, -3.7, -3.9; HRMS (ESI) m / z $799.4261\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{43} \mathrm{H}_{67} \mathrm{O}_{10} \mathrm{Si}_{2}$: 799.4273].

Compound (+)-45.-To a solution of (-)-43 ($415 \mathrm{mg}, 0.52 \mathrm{mmol}, 1 \mathrm{eq}$.) in DCM (8 mL) was added 2,6-lutidine ($780 \mathrm{mg}, 7.28 \mathrm{mmol}, 14$ eq.) under N_{2} atmosphere at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 10 minutes and then $\operatorname{TBSOTf}(1.37 \mathrm{~g}, 5.2 \mathrm{mmol}, 10 \mathrm{eq}$.) was added. The resulting mixture was stirred at rt for 5 hours before being quenched by a sat. NaHCO_{3} solution. The resulting mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography (EtOAc/hexanes $=1 / 20$) to provide the product $(+)-\mathbf{4 5}(456 \mathrm{mg}, 0.44 \mathrm{mmol}, 85 \%$ yield $)$ as a colorless oil: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}+7.3\left(c 1.4, \mathrm{CHCl}_{3}\right)$; IR (film, $\left.\mathrm{cm}^{-1}\right) 2932,2859,1726,1597,1466$,
$1259,1123,1057,1002,835,776$; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J$ $=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.73(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~d}$, $J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s} .9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}$, $3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),{ }^{\mathbf{1}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,155.6,152.9,151.8,148.2,133.1,126.4,121.1,119.9,117.4,117.2$, $116.6,112.6,99.1,96.2,65.8,64.9,61.2,59.0,51.9,43.8,40.4$ (40.44), 40.4 (40.43), 37.3, $36.1,31.8,26.2,26.0,25.9,25.7,21.7,21.6,18.9,18.6,18.4,18.2,11.6,10.8,-2.7,-3.0$, $-3.7(-3.67),-3.7(-3.70),-3.9,-4.1,-4.5,-4.7$; HRMS (ESI) $\mathrm{m} / \mathrm{z} 1027.6008\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\left.\mathrm{C}_{55} \mathrm{H}_{95} \mathrm{O}_{10} \mathrm{Si}_{4}: 1027.6002\right]$.

Compound (-)-46.-To a solution of (+)-45 (456 mg, $0.44 \mathrm{mmol}, 1 \mathrm{eq}$.$) in \mathrm{DCM}(10 \mathrm{~mL})$ was added DIBAL-H ($1.32 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, $1.32 \mathrm{mmol}, 3$ eq.) under N_{2} atmosphere at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 3 hours before being quenched by sat. Rochelle's salt solution (stirring for 1 hour). The resulting mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography $(\mathrm{EtOAc} /$ hexanes $=1 / 10)$ to provide the product $(-)-46(385 \mathrm{mg}, 0.38$ $\mathrm{mmol}, 88 \%$ yield) as a white foam: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-8.4\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (film, $\left.\mathrm{cm}^{-1}\right) 3464$ (br), 2934, 2856, 1596, 1466, 1416, 1256, 1124, 1057, 1002, 834, 777, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, acetone d_{6}) $\delta 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ $(\mathrm{s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.08-1.03(\mathrm{~m}, 24 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~m}, 18 \mathrm{H})$, $0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 154.2,153.8,149.0$, $135.3,127.9,126.9,119.1,118.4,117.8$ (117.80), 117.8 (117.78), 112.8, 100.0, 96.9, 66.8, $65.9,61.8,59.3,57.0,44.1,41.6,41.1,38.3,36.6,33.6,26.9,26.7,26.6,26.4,26.3,22.0$, 21.7, 19.6 (19.61), 19.6 (19.57), 19.1, 18.8, 12.5, 11.4, -2.4, -2.8, -3.0, -3.7, -4.3, -4.4; HRMS (ESI) $\mathrm{m} / \mathrm{z} 1021.5856\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{54} \mathrm{H}_{94} \mathrm{O}_{9} \mathrm{NaSi}_{4}: 1021.5873\right]$.

Compound (+)-1.-To a solution of the alcohol (-)-46 (340 mg, $0.34 \mathrm{mmol}, 1 \mathrm{eq}$.$) in$ DCM (12 mL) was added DMP ($283 \mathrm{mg}, 0.68 \mathrm{mmol}, 2 \mathrm{eq}$.) and $\mathrm{NaHCO}_{3}(283 \mathrm{mg}, 3.4$ $\mathrm{mmol}, 10 \mathrm{eq}$.). The reaction was stirred at rt for one hour. The resulting mixture was filtered through Celite and concentrated. The crude product was a mixture of the fully-protected aldehyde and ortho-OH aldehyde and was directly used in the next step. To the crude mixture was added TBAF solution ($2 \mathrm{~mL}, 1 \mathrm{M}$ in THF) under N_{2} atmosphere at rt . The reaction was stirred at rt for 36 hours before being quenched by sat $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The resulting mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=2 / 1$) to provide the $(+)-\mathbf{1}(112 \mathrm{mg}, 0.21 \mathrm{mmol}, 62 \%$ yield for 2 steps $)$ as a white foam: m.p. 185-187 ${ }^{\circ} \mathrm{C}$ decompose; $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}+1.8$ (c 1.0, acetone, value obtained from the crystalized sample); IR (film, cm^{-1}) 3370 (br), 2971, 2931, 2873, 1705, 1616, 1445, 1355, 1304, 1254, 1166, 1122,

1097, 1049, 970, 929, 877, 852, 788, 740; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 12.96(\mathrm{~s}, 1 \mathrm{H})$, $10.26(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{br}, 1 \mathrm{H}), 7.27(\mathrm{br}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}$, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.59(\mathrm{~m}$, $1 \mathrm{H}), 3.41$ (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (m, 1H), 2.72 (d, $J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{dd}, J=12.6,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.92$ (bd, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84$ (dd, $J=14.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (bd, $J=13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.63(\mathrm{dd}, J=12.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{td}, J=13.3,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right)$ ठ 196.6, 164.7, 162.9, 153.2, 150.2, 140.4, 126.5, 115.7, 114.4, 114.1, 113.2, 110.5, 108.6, 98.7, 98.2, 66.5, 65.4, 61.9, 58.9, 42.7, 40.8, 40.4, 38.3, 35.9, 33.7, 26.4, 21.8, 21.6, 8.9, 7.4; (ESI) $\mathrm{m} / z 563.2261\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{9} \mathrm{Na}: 563.2268\right]$.

The synthetic (+)-1 was further recrystallized from MeOH as a colorless crystal. 60 mg of synthetic peniciketal A was dissolved in 6 mL hot methanol. The solution was cooled down to $0{ }^{\circ} \mathrm{C}$ slowly and kept in the refrigerator at $0^{\circ} \mathrm{C}$ overnight. 29 mg colorless crystals were collected as (+)-1 tri-methanol crystal $\left(\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{9} \bullet 3 \mathrm{CH} 3 \mathrm{OH}\right)$.

Compound (-)-48.-To a solution of (-)-41 (240 mg, $0.47 \mathrm{mmol}, 1 \mathrm{eq}$.$) in 24 \mathrm{~mL}$ DCM was added pentafluorophenyl chlorothionoformate ($371 \mathrm{mg}, 1.4 \mathrm{mmol}, 3 \mathrm{eq}$.) and pyridine ($186 \mathrm{mg}, 2.35 \mathrm{mmol}, 5 \mathrm{eq}$.) under N_{2} atmosphere at rt . The reaction mixture was then stirred at rt overnight and then quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, washed with 0.5% HCl solution, sat. NaHCO_{3} and water. The resulting mixture was dried over MgSO_{4} and concentrated. The crude yellow product was then dissolved in 7 mL and refluxed under N_{2} atmosphere. A mixture of $\mathrm{Bu}_{3} \mathrm{SnH}(440 \mathrm{mg}, 1.5 \mathrm{mmol}, 3 \mathrm{eq}$.) and AIBN ($37 \mathrm{mg}, 0.23 \mathrm{mmol}$, 0.5 eq.) dissolved in 3 mL toluene was then added to the hot solution. After being heated for 15 min , the color faded and there action was quenched by 0.1 mL water. The solvent was then removed, and the crude was purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 20$) to provide (-)-48 (185 mg, $0.38 \mathrm{mmol}, 80 \%$ yield) as a colorless oil: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-59.3$ (c 1.0 , CHCl_{3}); IR (film, cm^{-1}) 2935, 2861, 1582, 1472, 1372, 1254, 1125, 1001, 904, 835, 779; ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}$, $3 \mathrm{H}), 1.96-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.3,150.0,129.7,118.2,117.4,112.6,95.8,66.9,59.1,39.0,34.3,32.6$, 26.2, 26.0, 21.9, 19.3, 18.9, 18.4, 11.4, -2.9, -4.0, -4.1; HRMS (EI) $\mathrm{m} / \mathrm{z} 492.3102\left[(\mathrm{M})^{+}\right.$; calcd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}_{2}$: 492.3091].

Compound (-)-49.-To a solution of (-)-48 (185 mg, $0.38 \mathrm{mmol}, 1 \mathrm{eq}$.$) in 1 \mathrm{~mL}$ THF was added TBAF ($1 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, $1.0 \mathrm{mmol}, 2.6$ eq.) under N_{2} atmosphere at rt . The reaction mixture was then stirred at rt for 1 hour before being quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The resulting mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography column chromatography (EtOAc/hexanes $=1 / 3)$ to provide the southern hemisphere $(-)-49(90 \mathrm{mg}$, $0.34 \mathrm{mmol}, 89 \%$ yield) as a white foam.: [$\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-68.3$ (c 1.0, acetone); IR (film, cm^{-1}) 3373 (br), 2938, 1602, 1446, 1343, 1229, 1185, 1092, 996, 822; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , acetone- d_{6})
$\delta 7.86(\mathrm{br}, 1 \mathrm{H}), 7.18(\mathrm{br}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=14.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, $1.94-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.12$ $(\mathrm{m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 155.0,151.8$, 130.7, 113.5, 108.9, 107.4, 96.0, 67.2, 58.8, 39.3, 35.0, 33.2, 22.0, 19.9, 8.4; HRMS (EI) $\mathrm{m} / \mathrm{z} 264.1355\left[(\mathrm{M})^{+}\right.$; calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$: 264.1362].

Compound (-)-47.-To a solution of northern hemisphere (+)-13 (209 mg, 0.39 mmol , 1.5 equiv.) and southern hemisphere (-)-49 ($69 \mathrm{mg}, 0.26 \mathrm{mmol}, 1$ equiv.) in 2 mL THF was added CSA ($12 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv.). The reaction mixture was then irradiated $(355 \mathrm{~nm})$ for 48 hours before being quenched with sat. NaHCO_{3}. The resulting mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography (EtOAc/hexanes $=1 / 8$ to $1 / 3$) to afford the desired product $(-)-47(148 \mathrm{mg}, 0.19 \mathrm{mmol}, 73 \%$ yield, $d r=12: 1)$ as a white foam, in conjunction with the recovery of the southern hemisphere (-) $\mathbf{- 4 9}\left(15 \mathrm{mg}, 0.057 \mathrm{mmol}, 22 \%\right.$): $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-1.1$ (c 1.3, CHCl_{3}); IR (film, cm ${ }^{-1}$) 3435 (br), 2937, 2861, 1722, 1599, 1410, 1262, 1123, 1057, 1000, $835,756,674 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ $(\mathrm{d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{br}, 1 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H})$, 3.22 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.75(\mathrm{~m}$, $2 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, 1.09 (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s} .9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, 0.07 (s, 3H); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,155.6,152.3,151.9,148.3,133.0$, 126.7, 121.1, 119.9, 117.0, 115.8, 112.8, 106.4, 99.3, 95.7, 66.8, 65.8, 57.8, 51.9, 43.7, 37.4, $35.6,34.7,32.6,31.8,26.0,25.9,25.7,21.9,21.5,19.4,18.6,18.4,11.6,8.1,-3.7(-3.66)$, $-3.7(-3.69),-3.9,-4.1$; HRMS (ESI) $\mathrm{m} / \mathrm{z} 783.4327\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{43} \mathrm{H}_{67} \mathrm{O}_{9} \mathrm{Si}_{2}$: 783.4324].

Compound (+)-50.-To a solution of (-)-47 (117 mg, $0.15 \mathrm{mmol}, 1 \mathrm{eq}$.) in DCM (4 mL) was added 2,6-lutidine ($225 \mathrm{mg}, 2.1 \mathrm{mmol}, 14 \mathrm{eq}$.) under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes and then TBSOTf ($317 \mathrm{mg}, 1.2 \mathrm{mmol}, 8$ eq.) was added. The resulting mixture was stirred at rt for 5 hours before being quenched with a sat. NaHCO_{3} solution and extracted with DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 20$) to provide the product (+)-50 (122 mg, $0.14 \mathrm{mmol}, 91 \%$ yield) as a white foam: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}+11.6$ (c 1.3, CHCl_{3}); IR (film, cm^{-1}) 2936, 2861, 1724, 1595, 1465, 1260, 1129, 1058, 1001, 969, 836, 758,674 , ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=13.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=$ $16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.55$ (m, 4H), 1.47-1.43 (m, 2H), 1.23-1.21 (m, 1H), 1.11 (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s} .9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,155.6,153.0,151.8,148.2,133.1,126.2,121.1$, $119.9,117.3,117.1,116.7,112.6,99.2,95.8,66.8,65.8,58.7,51.9,43.8,37.3,35.8,34.7$,
$32.5,31.7,26.2,26.0,25.9,25.7,21.9,21.6,19.4,18.8,18.6,18.4,11.6,10.7,-2.7,-3.0$, -3.7 (-3.67), -3.7 (-3.71), -3.9, -4.2; HRMS (ESI) m/z $919.4999\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\left.\mathrm{C}_{49} \mathrm{H}_{80} \mathrm{O}_{9} \mathrm{NaSi}_{3}: 919.5008\right]$.

Compound (-)-51.-To a solution of (+)-50 (106 mg, $0.12 \mathrm{mmol}, 1 \mathrm{eq}$.$) in DCM (1 \mathrm{~mL}$) was added DIBAL-H ($0.36 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, $0.36 \mathrm{mmol}, 3 \mathrm{eq}$.) under N_{2} atmosphere at $-78{ }^{\circ} \mathrm{C}$. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 hours before being quenched by the addition of sat. Rochelle's salt solution. The resulting mixture was stirred for 1 hour at rt . The crude mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography ($\mathrm{EtOAc} /$ hexanes $=1 / 10$) to provide the product (-)-51 (80 mg, $0.09 \mathrm{mmol}, 78 \%$ yield) as a white foam: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-9.9$ (c 1.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (film, cm^{-1}) 3464 (br), 2935, 2857, 1596, 1466, 1415, 1257, 1128, 1058, 1002, 835, 781; ${ }^{1} \mathbf{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.61$ (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.61$ (t, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H})$, $2.69(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.02-2.01$ $(\mathrm{m}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.20-1.16(\mathrm{~m}, 1 \mathrm{H})$, $1.07-1.06(\mathrm{~m}, 24 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right)$ $\delta 154.2,153.8,149.0,135.3,127.8,126.9,119.1,118.2,117.8$ (117.78), 117.8 (117.77), $112.8,100.0,96.4,67.4,66.8,59.3,56.9,44.0,38.2,36.4,35.4,33.5,33.3,26.8,26.6,26.5$, $26.4,22.3,21.7,20.1,19.6,19.5,19.0,12.5,11.4,-2.5,-2.8,-3.0,-3.7$; HRMS (ESI) m / z $891.5059\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$; calcd for $\mathrm{C}_{48} \mathrm{H}_{80} \mathrm{O}_{8} \mathrm{NaSi}_{3}$: 891.5059].

Compound (+)-2.-To a solution of the alcohol (-)-51 ($60 \mathrm{mg}, 0.069 \mathrm{mmol}, 1 \mathrm{eq}$.$) in$ DCM (1 mL) was added PCC ($30 \mathrm{mg}, 0.14 \mathrm{mmol}, 2$ eq.), $\mathrm{NaHCO}_{3}(30 \mathrm{mg}, 0.35 \mathrm{mmol}, 5$ eq.) and $30 \mathrm{mg} 4 \AA$ molecular sieves. The reaction was stirred at rt for 1.5 hours and then filtered through Celite. The crude product was concentrated and directly used in the next step. To a solution of crude product in THF (0.8 mL) was added TBAF $(0.13 \mathrm{~mL}, 1 \mathrm{M}$ in THF) under N_{2} atmosphere at rt . The crude mixture was stirred at rt for 1 hour before being quenched by sat $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography $(E t O A c / h e x a n e s=1 / 2)$ to provide $(+)-2(22 \mathrm{mg}, 0.042 \mathrm{mmol}, 61 \%$ yield for 2 steps) as a white foam: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}+12.9$ (c 1.1, acetone); IR (film, cm^{-1}) 3264, 2933, 2905, 1704, 1620, 1446, 1373, 1355, 1304, 1253, 1163, 1122, 1089, 1053, 998, 974, 926, 873, 755; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right) \delta 12.96(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{br}, 1 \mathrm{H}), 7.19(\mathrm{br}, 1 \mathrm{H}), 6.54(\mathrm{~s}$, $1 \mathrm{H}), 4.67(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.40$ (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.47 (d, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{dd}, J=12.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ $(\mathrm{m}, 1 \mathrm{H}), 1.71-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 6 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 196.6,164.7,162.8$, $153.0,150.2,140.4,127.3,115.6,114.8,114.4,113.2,110.5,108.4,98.6,96.3,67.3,66.5$, 58.5, 42.7, 38.3, 36.1, 35.4, 33.8, 33.3, 30.7, 26.4, 22.2, 21.6, 20.1, 8.9, 7.5; HRMS (ESI) $\mathrm{m} / \mathrm{z} 525.2477\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{O}_{8}$: 525.2488].

Compound (-)-55.-To a solution of (-)-53 (352 mg, $2 \mathrm{mmol}, 1 \mathrm{eq}.)^{15}$ in DCM (12 mL) was added a solution of enone $\mathbf{5 4}\left(1.32 \mathrm{~g}, 10 \mathrm{mmol}, 5 \mathrm{eq}\right.$.) in 6 ml DCM under N_{2} atmosphere and a solution of HG-II ($25 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.02 \mathrm{eq}$.) in DCM (6 mL). The resulting mixture was heated to reflux for 2 days before being quenched by exposure to air. The mixture was then concentrated and purified via chromatography (EtOAc/hexanes =1/2 to $1 / 1$) to provide (-)-55 ($457 \mathrm{mg}, 1.63 \mathrm{mmol}, 82 \%$ yield) as a colorless oil: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-8.3$ (c 1.0, CHCl_{3}); IR (film, cm ${ }^{-1}$) 3437 (br), 3028, 2927, 1663, 1617, 1446, 1229, 984, 749, 695; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (dd, $J=8.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.06$ (dt, $J=14.7,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.83(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.46(\mathrm{~m}, 2 \mathrm{H})$, $1.88-1.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.5,145.3,141.7,137.8,133.0$, 128.7 (128.73), 128.7 (128.67), 128.7 (128.65), 128.6, 128.5, 126.2, 70.1, 41.1, 39.0, 32.1; HRMS (ESI) $\mathrm{m} / \mathrm{z} 281.1537$ [(M+H) ${ }^{+}$; calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}$: 281.1542].

Compound (-)-5.-To a solution of (-)-55 (56 mg, $0.2 \mathrm{mmol}, 1$ equiv.) and $\mathbf{1 2 (3 6 ~ m g , ~}$ 0.4 mmol , 2 equiv.) in 2 mL THF/DMF (3:1) solution was added CSA ($9.3 \mathrm{mg}, 0.16 \mathrm{mmol}$, 0.2 equiv.). (-)-55 is not dissolvable in THF so a mixture solvent of THF/DMF is necessary. The reaction mixture was evacuated and refilled with N_{2} (3 times) and then irradiated (355 nm) for 48 hours. The mixture was quenched with sat. NaHCO_{3} and extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified via chromatography $(E t O A c /$ hexanes $=1 / 1)$ to afford the desired product $(-)-5(48 \mathrm{mg}, 0.14$ $\mathrm{mmol}, 68 \%$ yield, $d r>20: 1$) as a white solid: $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}-113.0(c 0.83, \mathrm{MeOH})$; IR (film, cm^{-1}) 3427, 2927, 2865, 1493, 1452, 1307, 1241, 1061, 913, 816, 756; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.2, \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H})$, $4.29(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2 . .61(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.58(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 144.6,141.9,128.4,128.2,127.8,127.6,125.8$, $125.7,107.5,87.8,78.3,76.7,75.1,63.7,52.6,36.8,32.1,30.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z} 353.1753$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$; calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4}$: 353.1753].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENT

We thank NIH Grant No. CA-19033 for financial support. We thank Drs. Patrick J. Carroll, Michael Gau and C. Ross, III at the University of Pennsylvania for assistance in X-ray structure and HRMS. We also thank Dr. David C. Schultz and the UPenn High-Throughput Screening Core for biological evaluation.

REFERENCES

(1). Liu W-Z; Ma L-Y; Liu D-S; Huang Y-L; Wang C-H; Shi S-S; Pan X-H; Song X-D; Zhu R-X Peniciketals A-C, New Spiroketals from Saline Soil Derived Penicillium raistrichii. Org. Lett. 2014, 16 (1), 90-93. [PubMed: 24283621]
(2). Gao X; Zhou Y; Zheng X; Sun H; Zhang J; Liu W; Pan X Peniciketal A, A Novel Spiroketal Compound, Exerts Anticancer Effects by Inhibiting Cell Proliferation, Migration and Invasion of A549 Lung Cancer Cells. Anticancer Agents Med. Chem. 2018, 18 (11), 1573-1581. [PubMed: 29866018]
(3). Gao X; Zhou Y; Sun H; Liu D; Zhang J; Zhang J; Liu W; Pan X Effects of a Spiroketal Compound Peniciketal A and Its Molecular Mechanisms on Growth Inhibition in Human Leukemia. Toxicol. Appl. Pharmacol. 2019, 366, 1-9. [PubMed: 30660475]
(4). Gao X; Zhou Y; Sun H; Liu D; Zhang J; Zhang J; Liu W; Pan X Analysis of Comparative Proteomic and Potent Targets of Peniciketal A in Human Acute Monocytic Leukemia. Anticancer Agents Med. Chem. 2019, 19 (4), 515-527. [PubMed: 30747080]
(5). Smith AB III; Richmond RE A Common Strategy for Construction of the Paniculides (A-C); Total Synthesis of Paniculide A. J. Org. Chem. 1981, 46 (23), 4814-4816.
(6). Koft ER; Smith AB III. Total Synthesis of Hibiscone C (Gmelofuran). J. Am. Chem. Soc. 1982, 104 (20), 5568-5570.
(7). Smith AB III.; Sulikowski GA; Fujimoto K Total Synthesis of Natural (-)-Echinosporin. Determination of the Absolute Configuration. J. Am. Chem. Soc. 1989, 111 (20), 8039-8041.
(8). Deng Y; Nguyen MD; Zou Y; Houk KN; Smith AB III.; Generation of Dithianyl and Dioxolanyl Radicals Using Photoredox Catalysis: Application in the Total Synthesis of the Danshenspiroketallactones via Radical Relay Chemistry. Org. Lett. 2019, 21 (6), 1708-1712. [PubMed: 30807194]
(9). Deng Y; Smith AB III. Evolution of Anion Relay Chemistry: Construction of Architecturally Complex Natural Products. Acc. Chem. Res. 2020, 53 (4), 988-1000. [PubMed: 32270672]
(10). Deng Y; Yang CH; Smith AB III. Enantioselective Total Synthesis of (+)-Peniciketals A and B: Two Architecturally Complex Spiroketals. J. Am. Chem. Soc. 2021, 143 (4), 1740-1744. [PubMed: 33496178]
(11). Gillard RM; Brimble MA Benzannulated Spiroketal Natural Products: Isolation, Biological Activity, Biosynthesis, and Total Synthesis. Org. Biomol. Chem. 2019, 17 (36), 8272-8307. [PubMed: 31478048]
(12). Jing S; Wang Y; Yan Y; Li X; Li X; Zhao C; Sun J; Qiu P; Man S; Gao W Diocollettines A, An Unusual Tricyclic Diarylheptanoid Derivative from the Rhizomes of Dioscorea collettii. Tetrahedron Lett. 2016, 57 (29), 3215-3217.
(13). Choi B; Park S; Choi D; Shin B; Shin Y; Oh D; Lee H; Lee H; Lee Y; Lee JS; Lee JH; Shin HJ Streptoglycerides A-D with Rare 6/5/5 Tricyclic Ring Skeleton from a Marine Actinomycete Streptomyces species. Org. Lett. 2018, 20 (19), 6037-6040. [PubMed: 30259746]
(14). Li J; Zhao H; Ma Z Cytotoxic Bafilomycin Analogues $6 / 5 / 5$ with Tricyclic Ring System from a Marine-Derived Streptomyces sp. Tetrahedron Lett. 2020, 61 (21), 151874-151876.
(15). Kawamoto Y; Kobayashi T; Ito H Enantioselective Total Synthesis of Diocollettines A. Org. Lett. 2019, 21 (15), 5813-5816. [PubMed: 31246476]
(16). Kawamoto M; Sato S; Enomoto M; Ogura Y; Kuwahara S Total Synthesis of Diocollettines A via an Acid-Promoted Oxa-Michael-Aldol-Acetalization Cascade. Org. Lett. 2019, 21 (24), 10099-10101. [PubMed: 31794233]
(17). (+)-17 is prepared from (+)-30 in 4 steps following literature report: Mohapatra DK; Pulluri K; Gajula S; Yadav JS 13-Step Total Synthesis of Dendrodolide K Following Iterative Barlett-Smith Iodo-carbonate Cyclization. Tetrahedron Lett. 2015, 56 (46), 6377-6380.
(18) (a). Chai J-D; Head-Gordon M Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615-6620; [PubMed: 18989472] (b)Schäfer A; Horn HW; Ahlrichs R Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97 (4), 2571-2577.
(19). Tsutsui H; Mitsunobu O Preparation of O-1~C-6 and O-7~C-14 Fragments of Colletodiol. Tetrahedron Lett. 1984, 25 (20), 2159-2162.
(20). Lewis CN; Spargo PL; Staunton J A Convenient Synthesis of 3-Substituted 8-Methoxy- and 6,8-Dimethoxyisocoumarins. Synthesis. 1986, 11, 944-946.
(21). Negishi E-I; Bagheri V; Chatterjee S; Luo F-T; Miller JA; Stoll AT Palladium-Catalyzed Acylation of Organozincs and Other Organometallics as A Convenient Route to Ketones. Tetrahedron Lett. 1983, 24 (47), 5181-5184.
(22) (a). Garber SB; Kingsbury JS; Gray BL; Hoveyda AH Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 2000, 122 (34), 8168-8179; (b)Gessler S; Randl S; Blechert S Synthesis and Metathesis Reactions of a Phosphine-Free Dihydroimidazole Carbene Ruthenium Complex. Tetrahedron Lett. 2000, 41 (51), 9973-9976.
(23). Elix JA; Jayanthi WK Synthetic Confirmation of the Structure of the Lichen Benzyl Esters Alectorialic and Barbatolic Acids. Aust. J. Chem. 1987, 40 (11), 1841-1850.
(24). Brook AG Molecular Rearrangement of Organosilicon Compounds. Acc. Chem. Res. 1974, 7 (3), 77-84.
(25). Zhang Q; Kang X; Long L; Zhu L; Chai Y Mild and Selective Deprotection of tertButyl(dimethyl)silyl Ethers with Catalytic Amounts of Sodium Tetrachloroaurate(III) Dihydrate. Synthesis. 2015, 47 (1), 55-64.
(26). Barton DHR; McCombie SWJ A New Method for the Deoxygenation of Secondary Alcohols. J. Chem. Soc. Perkin Trans. 1 1975, 16, 1574-1585

Figure 1.
Computed structures and relative free energies of stereoselective Michael addition transition states with ω B97X-D/def2svp/CPCM(THF) method. Free energies are in $\mathrm{kcal} / \mathrm{mol}$ and relative to the separated species of 21a and 19.

Figure 2.
Computed relative free energies of the key species along the reaction pathways. Free energies are in $\mathrm{kcal} / \mathrm{mol}$ and relative to the separated species of 21a and 19. *Free energies relative to (+)-21 and $\mathbf{1 9}$.

Figure 3.
X-Ray structure determination of (+)-1

Scheme 1. (+)-Peniciketal A-C

Scheme 2. The Proposed Photochemical Union Tactic for Peniciketals A-C
a) Natural Products with oxygen-containing 6/5/5 tricyclic rings

6 Streptoglyceride $A: 6,7$-saturated, $R=H$
7 Streptoglyceride B: 6,7-double bond, $R=H$
8 Streptoglyceride A: 6,7-saturated, $R=2$-aminobenzoy
9 Streptoglyceride B: 6,7-double bond, $R=2$-aminobenzoyl
b) Photoisomerization/cyclization for $6 / 5 / 5$ tricyclic rings

Scheme 3. Photoisomerization/cyclization Union Strategy for 6/5/5 Tricyclic Rings

Scheme 4. Retrosynthetic Analysis of the Unified Synthesis of Peniciketals A-C

${ }^{a}$ Reaction conditions: All yields are isolated. Bronsted acid (cat.), (+)-18 (0.2 $\mathrm{mmol})$ and $19(0.2 \mathrm{mmol})$ were irradiated by UV-A light $(\lambda=355 \mathrm{~nm})$ in THF at rt for $24 \mathrm{~h} . d r$ was measured by ${ }^{1} \mathrm{H}$ NMR.

Scheme 5. Model Studies and Control Experiments

(b) Second Route: Negishi Cross-Coupling/Olefin Cross-Metathesis

Scheme 6. Synthesis of the Northern Hemisphere (+)-13

Scheme 7. Synthesis of the Southern Hemisphere (-)-14

Scheme 8. Total Synthesis of (+)-Peniciketal A

Photoisomerization/cyclization Union

Scheme 9. Total Synthesis of (+)-Peniciketal B

Scheme 10. Total Synthesis of (-)-Diocollettines A

Table 1.
Biological Evaluation of Synthetic Peniciketals

Cell Lines	$(+)-\mathbf{1}$	$(+)-\mathbf{2}$
Lung Cancer Cells A549	$16.4 \mu \mathrm{M}$	$6.8 \mu \mathrm{M}$
Lung Cancer Cells H1975	$14.3 \mu \mathrm{M}$	$7.3 \mu \mathrm{M}$
Lung Normal Cells IMR90	$>50 \mu \mathrm{M}$	$38 \mu \mathrm{M}$

[^0]: *smithab@sas.upenn.edu, houk@chem.ucla.edu.
 ${ }^{\dagger}$ Y.D. and Y. Z. contributed equally to this paper.
 The authors declare no competing financial interest.
 ASSOCIATED CONTENT
 Supporting Information.
 The Supporting Information: (PDF)

