
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Research on Tensor Computation and Its Application on Data Science

Permalink
https://escholarship.org/uc/item/2rv2h87p

Author
Zheng, Zequn

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2rv2h87p
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Research on Tensor Computation and Its Application on Data Science

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Zequn Zheng

Committee in charge:

Professor Jiawang Nie, Chair
Professor Todd Kemp
Professor Julian McAuley
Professor Rayan Saab
Professor Lawrence Saul

2023

Copyright

Zequn Zheng, 2023

All rights reserved.

The dissertation of Zequn Zheng is approved, and

it is acceptable in quality and form for publication

on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

Dedicated to my family.

iv

TABLE OF CONTENTS

Dissertation Approval Page iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita and Publications . x

Abstract . xi

Chapter 1 Introduction . 1
1.1 Tensors and Tensor decompositions 1

1.1.1 Notation . 2
1.1.2 Flattening matrices 3
1.1.3 Reshaping of tensor decompositions 5

1.2 Generating Polynomials 6
1.3 Low-rank tensor approximation 8
1.4 Multiview learning . 9

Chapter 2 Low-Rank Tensor Decompositions and Tensor Approximations 10
2.1 low-rank tensor decompositions 11

2.1.1 An algorithm for computing tensor decompositions 13
2.1.2 Tensor decompositions via reshaping 16

2.2 low-rank Tensor Approximations 17
2.2.1 Approximation error analysis 18
2.2.2 Reshaping for low-rank approximations 21

2.3 Numerical Experiments 22
2.4 Conclusions . 29

Chapter 3 Find the Generating Matrices and Tensor Decompositions . . 30
3.1 Case: n1 ≥ r > n2 . 30
3.2 An extension to the case r > n1 36
3.3 Numerical Experiments 47

3.3.1 Case 2 . 48
3.3.2 Case 3 . 50

3.4 Conclusions . 52

v

Chapter 4 Tensor Canonical Correlation Analysis 53
4.1 TCCA as a Tensor Approximation Problem 53
4.2 The Algorithm for TCCA 55
4.3 Numerical Experiments on Real Data 57
4.4 Conclusion . 63

Bibliography . 64

vi

LIST OF FIGURES

Figure 4.1: Sensitivity analysis on data Caltech101-7 59

Figure 4.2: Results of compared methods on Caltech101-7 59

Figure 4.3: Sensitivity analysis on data Scene15 62

vii

LIST OF TABLES

Table 2.1: Performance of Algorithms 2.2.1 27

Table 2.2: Comparison with GEVD . 28

Table 3.1: Rank decompositions of random tensors 49

Table 3.2: Comparison with Normal Forms method 49

Table 3.3: Random tensors with error in Case 2 50

Table 3.4: Rank decompositions of random tensors in Case 3 51

Table 3.5: Random tensors with error in Case 3 52

Table 4.1: Data sets used . 58

Table 4.2: Mean accuracy of three compared methods 60

Table 4.3: Mean accuracy on dataset Scene15 62

viii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my parents for their unwavering

love, encouragement, and support throughout my academic journey. Their sacri-

fices and belief in my abilities have been a constant source of motivation for me to

pursue my passion for applied mathematics and complete this thesis.

I am deeply grateful to my advisor, Prof. Jiawang Nie, for his invaluable

guidance, mentorship, and expertise. His continuous support, patience, and en-

couragement have been instrumental in shaping my research direction and pushing

me to excel in my studies. I am truly fortunate to have had the opportunity to

work with him.

I would also like to express my gratitude to my coauthor, Li Wang, for her

contributions to this research project. Her insights, collaboration, and dedica-

tion have enriched the quality of my work and made this thesis more robust and

comprehensive.

Finally, I would like to thank my dear friends for their encouragement, and

companionship throughout this journey. Their presence, words of encouragement,

and shared experiences have made this challenging endeavor more enjoyable and

meaningful.

Chapter 2 in full, has been submitted for publication. The thesis author is

the coauthor of the preprint “J. Nie, L. Wang, and Z. Zheng. Low Rank Tensor

Decompositions And Approximations, 2022. arXiv: 2208.07477.”

Chapter 3 in full, is currently being prepared for submission for publication,

which is a joint work with Nie, Jiawang and Yang, Zi.

Chapter 4 in full, is a reprint of the material as it appears in Pacific Journal

of Optimization 2023 [45]. The dissertation author coauthored this paper with Nie,

Jiawang and Wang, Li.

ix

VITA

2017 BSc (Hons) in Computing Mathematics, City Univer-
sity of Hong Kong

2017-2023 Graduate Teaching Assistant, University of California,
San Diego

2023 Ph. D. in Mathematics, University of California San
Diego

PUBLICATIONS

J. Nie, L. Wang, and Z. Zheng. Higher Order Correlation Analysis for Multi-View
Learning, Pacific Journal of Optimization, 2023.

J. Nie, L. Wang, and Z. Zheng. Low Rank Tensor Decompositions And Approxi-
mations, Submitted, 2022.

x

ABSTRACT OF THE DISSERTATION

Research on Tensor Computation and Its Application on Data Science

by

Zequn Zheng

Doctor of Philosophy in Mathematics

University of California San Diego, 2023

Professor Jiawang Nie, Chair

Tensors or multidimensional arrays are higher order generalizations of ma-

trices. They are natural structures for expressing data that have inherent higher

order structures. Tensor decompositions and Tensor approximations play an im-

portant role in learning those hidden structures. They have many applications in

machine learning, statistical learning, data science, signal processing, neuroscience,

and more.

Canonical Polyadic Decomposition (CPD) is a tensor decomposition that

decomposes a tensor to a minimal number of summation of rank 1 tensors. While

for a given tensor, Low-Rank Tensor Approximation (LRTA) aims at finding a new

one whose rank is small and that is close to the given one.

We study the generating polynomials for computing tensor decompositions

and low-rank approximations for given tensors and propose methods that compute

tensor decompositions for generic tensors under certain rank conditions. For low-

rank tensor approximation, the proposed method guarantees that the constructed

tensor is a good enough low-rank approximation if the tensor to be approximated

is close enough to a low-rank one. The proof built on perturbation analysis is

presented.

xi

When the rank is higher than the second dimension, we are not able to find

the common zeros of generating polynomials directly. In this case, we need to

use the quadratic equations that we get from those generating polynomials. We

show that under certain conditions, we are able to find the tensor decompositions

using standard linear algebra operations (i.e., solving linear systems, singular value

decompositions, QR decompositions). Numerical examples and some comparisons

are presented to show the performance of our algorithm.

Multi-view learning is frequently used in data science. The pairwise correla-

tion maximization is a classical approach for exploring the consensus of multiple

views. Since the pairwise correlation is inherent for two views, the extensions to

more views can be diversified and the intrinsic interconnections among views are

generally lost. To address this issue, we propose to maximize the high-order tensor

correlation. This can be formulated as a low-rank approximation problem with the

high-order correlation tensor of multi-view data. We propose to use the generat-

ing polynomial method to efficiently solve the high-order correlation maximization

problem of tensor canonical correlation analysis for multi-view learning. Numerical

results on simulated data and two real multi-view data sets demonstrate that our

proposed method not only consistently outperforms existing methods but also is

efficient for large scale tensors.

xii

Chapter 1

Introduction

1.1 Tensors and Tensor decompositions

In this section, we review some basics about tensors, tensor decompositions,

generating polynomials, and multi-view learning.

Let m and n1, . . . , nm be positive integers. A tensor of order m and dimension

(n1, . . . , nm) is an array F that is indexed by integer tuples (i1, . . . , im) with 1 ≤
ij ≤ nj (j = 1, . . . ,m), denoted by

F = (Fi1,...,im)1≤i1≤n1,...,1≤im≤nm . (1.1.1)

The space of all tensors with real (or complex) entries is denoted as Rn1×···×nm (or

Cn1×···×nm). m is the order of the tensor F . The first order tensors (m = 1) are

vectors and the second order tensors (m = 2) are matrices. For m ≥ 3, they are

called m-order tensors. Let F be a field (either the real field R or the complex field

C). For vectors v1 ∈ Fn1 , . . . ,vm ∈ Fnm , their outer product v1 ⊗ . . . ⊗ vm is a

tensor in Fn1×···×nm for all 1 ≤ ij ≤ nj (j = 1, . . . ,m)

(v1 ⊗ · · · ⊗ vm)i1,...,im = (v1)i1 · · · (vm)im . (1.1.2)

An outer product like v1 ⊗ . . . ⊗ vm is called a rank-1 tensor. For an m-order

tensor F ∈ Fn1×···×nm , there exist tuples (vs,1, . . . ,vs,m) (s = 1, . . . , r) with each

vs,j ∈ Fnj , and integer number r, such that

F =
r∑

s=1

vs,1 ⊗ · · · ⊗ vs,m. (1.1.3)

1

The smallest such r is called the rank of F in the field F, denoted as rankF(F).

If rankF(F) = r, (1.1.3) is called a rank-r decomposition in the field F. In the

literature, rankC(F) is also called the candecomp-parafac (CP) rank of tensor F
[50] and (1.1.3) is called the CP decomposition of tensor F .

For a given tensor F , the tensor decomposition problem is to recover the

rank decomposition (1.1.3) which is similar to matrices decompositions. However,

tensor decomposition is not necessarily unique up to scaling and ordering. A

generic tensor’s rank cannot be determined with dimension information only. This

means if we want to find its tensor decomposition we need to find its rank first.

There are many works on the uniqueness of tensor decompositions [7, 51, 17, 19, 40].

Frequently used methods for tensor decomposition given rank include Alter-

nating Least Square(ALS) and Nonlinear Least Square(NLS). Those methods are

optimization-based and use alternative linear least square. For three way tensors,

we also have some algebraic methods like generalized eigenvalue decomposition

(GEVD) [33, 36]. But those methods require the rank not greater than at least

two dimensions(ie. n1, n2) condition. There are also ’algebraic’ methods available

like [18, 20, 56]. Those methods apply linear algebra type operations to construct

a new tensor then apply GEVD to decompose the new tensor to find the decom-

position of the original one. Hence they obtain a better bound compared with

GEVD. They can outperform ’optimization-based’ methods for some rank reach

lower bound of uniqueness condition cases. For more study on tensor Decompo-

sition of tensors with other properties like Symmetric, Hermitian. We refer to

[3, 43, 46, 32] .

Tensor decompositions have been applied to many fields. Including signal

processing [39, 4, 8],neuroscience[11], chemistry[42], machine learning [25, 1, 63,

28, 24] and so on.

1.1.1 Notation

We reserve m ≥ 3 as order of tensors, n1 ≥ . . . ≥ nm as dimensions of

tensors. The symbol N (resp., R, C) denotes the set of nonnegative integers (resp.,

real, complex numbers). Uppercase letters (i.e., A) denote matrices, (A)i,j denotes

the (i, j)th entry of matrix A, and Curl letters (i.e., F) denote tensors. For a

complex matrix A, AT denotes its transpose, A∗ denotes its conjugate transpose.

2

null(A) denotes the null space of A. col(A) denotes the column space of A. Bold

lower case letters (i.e., v) denote vectors, (v)i denotes the ith entry of vector v,

and diag(v) is the n× n diagonal matrix whose diagonal entries are the elements

of the n dimensional vector v. For a decomposition of tensor F =
∑r

s=1 Fs =∑r
s=1 v

s,1⊗· · ·⊗vs,m, denote U (i) = [v1,i, ...,vr,i], i ∈ {1, 2, · · · ,m}. We call those

U (i) ∈ Cni×r the decomposition matrices of tensor F and

F = U (1) ◦ ... ◦ U (m) =
r∑

i=1

(U (1)):,i ⊗ . . .⊗ (U (m)):,i, where U (i) ∈ Cni×r.

For sets A and B, A ⊔B is the union of two sets. For matices A and B, denote

their columns by a1, . . . , an and b1, . . . ,bn. Khatri-Rao product is denoted by ⊙,

A⊙B :=


a11b1 . . . a1nbn

...

an1b1 . . . annbn

 where A =


a11 . . . a1n
...

an1 . . . ann

 .

Given matrix M ∈ Cp×nt (vector v ∈ Cnt), and tensor F ∈ Cn1×n2×...×nm , we

define the tensor matrix (vector) product as

F̂ = F ×t M ∈ Cn1×...×nt−1×p×nt+1×...×nm ,

or F̂ = F ×t v ∈ Cn1×...×nt−1×1×nt+1×...×nm ,

where F̂i1,...,it−1,:,it+1,...,im = MFi1,...,it−1,:,it+1,...,im or vTFi1,...,it−1,:,it+1,...,im .

Kruskal rank or k-rank, is the largest number r such that any subset of

columns of A has at most r linear independent vectors. When we say a matrix

A ∈ Ca×b has full Kruskal rank, we are referring to krank(A) = min(a, b).

1.1.2 Flattening matrices

We partition the dimensions n1, n2, ..., nm into two disjoint groups I1 and I2

such that we minimize the difference∣∣∣∏
i∈I1

ni −
∏
j∈I2

nj

∣∣∣.
Up to a permutation, we write that I1 = {n1, . . . , nk}, I2 = {nk+1, . . . , nm}. For

convenience, denote that

I = {(ı1, . . . , ık) : 1 ⩽ ıj ⩽ nj, j = 1, . . . , k} ,
J = {(ık+1, . . . , ım) : 1 ⩽ ıj ⩽ nj, j = k + 1, . . . ,m} .

3

For a tensor F ∈ Cn1×...×nm , the above partition gives the flattening matrix

Flat(F) := (Fı,ȷ)ı∈I,ȷ∈J . (1.1.4)

This gives the most square flattening matrix for F . Let σr denote the closure of

all rank-r tensors in Cn1×...×nm , under the Zariski topology (see [12]). The set σr is

an irreducible variety of Cn1×···×nm . For a given tensor F ∈ σr, it is possible that

rank(F) > r. This fact motivates the notion of border rank:

rankB(F) = min {r : F ∈ σr} , (1.1.5)

For every tensor F ∈ Cn1×...×nm , one can show that

rankFlat(F) ⩽ rankB(F) ⩽ rank(F). (1.1.6)

A property P is said to hold generically on σr if P holds on a Zariski open subset

T of σr. For such a property P, each u ∈ T is called a generic point. Interestingly,

the above three ranks are equal for generic points of σr for a range of values of r.

Lemma 1.1.1. Let s be the smaller dimension of the matrix Flat(F). For every

r ⩽ s, the equalities

rankFlat(F) = rankB(F) = rank(F) (1.1.7)

hold for tensors F in a Zariski open subset of σr.

Proof. Let ϕ1, . . . , ϕℓ be the r × r minors of the matrix

Flat(
r∑

i=1

xi,1 ⊗ · · · ⊗ xi,m). (1.1.8)

They are homogeneous polynomials in xi,j(i = 1, . . . , r, j = 1, . . . ,m). Let x denote

the tuple (x1,1, x1,2, . . . , xr,m) . Define the projective variety in Pr(n1+···+nm)−1

Z = {x : ϕ1(x) = · · · = ϕℓ(x) = 0} . (1.1.9)

Then Y := Pr(n1+···+nm)−1\Z is a Zariski open subset of full dimension. Consider

the polynomial mapping π : Y → σr,

(
x1,1, x1,2, . . . , xr,m

)
7→

r∑
i=1

(
xi,1
)
⊗ · · · ⊗

(
xi,m

)
. (1.1.10)

4

The image π(Y) is dense in the irreducible variety σr. So, π(Y) contains a Zariski

open subset Y of σr (see [53]). For each F ∈ Y , there exists u ∈ Y such that

F = π(u). Because u /∈ Z, at least one of ϕ1(u), . . . , ϕℓ(u) is nonzero, and hence

rankFlat(F) ⩾ r. By (1.1.6), we know (1.1.7) holds for all F ∈ Y since rank(F) ⩽

r. Since Y is a Zariski open subset of σr, the lemma holds.

By Lemma 1.1.1, if r ⩽ s and F is a generic tensor in σr, we can use

rankFlat(F) to estimate rank(F). However, for a generic F ∈ Cn1×···×nm such

that rankFlat(F) = r, we cannot conclude F ∈ σr.

1.1.3 Reshaping of tensor decompositions

A tensor F of order greater than 3 can be reshaped to another tensor F̂ of

order 3. A tensor decomposition of F̂ can be converted to a decomposition for F
under certain conditions. In the following, we assume a given tensor F has the

decomposition (1.1.3). Suppose the set {1, . . . ,m} is partitioned into 3 disjoint

subsets

{1, . . . ,m} = I1 ∪ I2 ∪ I3.

Let pi = |Ii| for i = 1, 2, 3. For the reshaped vectors
ws,1 = us,i1 ⊠ · · ·⊠ us,ip1 for I1 = {i1, . . . , ip1},
ws,2 = us,j1 ⊠ · · ·⊠ us,jp2 for I2 = {j1, . . . , jp2},
ws,3 = us,k1 ⊠ · · ·⊠ us,kp3 for I3 = {k1, . . . , kp3},

(1.1.11)

we get the following tensor decomposition

F̂ =
r∑

s=1

ws,1 ⊗ ws,2 ⊗ ws,3. (1.1.12)

Conversely, for a decomposition like (1.1.12) for F̂ , if all ws,1, ws,2, ws,3 can be

expressed as rank-1 products as in (1.1.11), then the equation (1.1.12) can be

reshaped to a tensor decomposition for F as in (1.1.3). When the flattened tensor

F̂ satisfies some conditions, the tensor decomposition of F̂ is unique. For such

a case, we can obtain a tensor decomposition for F through the decomposition

(1.1.12). A classical result about the uniqueness is the Kruskal’s criterion [31].

5

Theorem 1.1.2. (Kruskal’s Criterion, [31]) Let F = U (1) ◦U (2) ◦U (3) be a tensor

with each U (i) ∈ Cni×r. Let κi be the Kruskal rank of U (i), for i = 1, 2, 3. If

2r + 2 ⩽ κ1 + κ2 + κ3,

then F has a unique rank-r tensor decomposition.

The Kruskal’s Criterion can be generalized for more range of r as in [7].

Assume the dimension n1 ⩾ n2 ⩾ n3 ⩾ 2 and the rank r is such that

2r + 2 ⩽ min(n1, r) + min(n2, r) + min(n3, r),

or equivalently, for δ = n2 + n3 − n1 − 2, r is such that

r ⩽ n1 +min{1
2
δ, δ}.

If F is a generic tensor of rank r as above in the space Cn1×n2×n3 , then F has a

unique rank-r decomposition. There following is a uniqueness result for reshaped

tensor decompositions.

Theorem 1.1.3. (Reshaped Kruskal Criterion, [7, Theorem 4.6]) For the tensor

space Cn1×n2×···×nm with m ⩾ 3, let I1∪I2∪I3 = {1, 2, ...,m} be a union of disjoint

sets and let

p1 =
∏
i∈I1

ni, p2 =
∏
j∈I2

nj, p3 =
∏
k∈I3

nk.

Suppose p1 ⩾ p2 ⩾ p3 and let δ = p2 + p3 − p1 − 2. Assume

r ⩽ p1 +min{1
2
δ, δ}. (1.1.13)

If F is a generic tensor of rank r in Cn1×n2×···×nm, then the reshaped tensor F̂ ∈
Cp1×p2×p3 as in (1.1.12) has a unique rank-r decomposition.

1.2 Generating Polynomials

This subsection introduces generating polynomials. For the convenience of

discussion, in the following, we assume n1 ≥ n2 ≥ . . . ≥ nm and consider tensors

whose rank r ≤ n1. We denote indeterminate variables

x1 = (x1,2, ...x1,n1), x2 = (x2,2, ...x2,n2), ..., xm = (xm,2, ...xm,nm).

6

By setting xj,1 = 1 for ∀j ∈ {1, 2, ...,m}, the (i1, i2, ..., im) element of F can be

viewed as a monomial x1,i1x2,i2 ...xm,im . Let

M :=
{
x1,i1 ...xm,im | 1 ≤ ij ≤ nj, 1 ≤ j ≤ m

}
, M = span{M}. (1.2.1)

Let J be a subset of {1, 2, ...,m}, denote

J c := {1, 2, ...,m}\J,

MJ :=

{
x1,i1 ...xm,im | ij = 1, ∀j ∈ J c

}
, MJ = span{MJ}. (1.2.2)

Each F ∈ Cn1×...×nm is indexed by (i1, . . . , im) with

1 ≤ i1 ≤ n1, . . . , 1 ≤ im ≤ nm.

Since (i1, . . . , im) is uniquely dertermined by the multi-linear monomial x1,i1 , . . . , xm,im ∈
M, we can equivalently index F as

Fx1,i1
...xm,im

:= Fi1,...,im . (1.2.3)

The tensor in Cn1,...,nm can be equivalently indexed by multi-linear monomials in

M. For F ∈ Cn1,...,nm , define the operation on polynomial in M as

⟨
∑
µ∈M

cµµ,F⟩ :=
∑
µ∈M

cµFµ. (1.2.4)

In the above, cµ is a complex scalar.

Definition 1.2.1. For some J ⊆ {1, 2, ...,m} and F ∈ Cn1×n2×...×nm, we call

p ∈ MJ a generating polynomial for F if

⟨pq,F⟩ = 0 ∀q ∈ MJc . (1.2.5)

Example 1.2.2. Consider an order-3 rank-2 tensor F ∈ C3×3×3, where

F =
[
F:,:,1 F:,:,2 F:,:,3

]
=


−10 48 70

−10 −64 −50

−5 10 20

22 −16 −58

−42 0 78

3 −6 −12

−1 44 49

−29 −68 −19

−4 8 16

 .

(1.2.6)

It has a generating polynomial p ∈ M{1,2} defined by

p := (3x1,1 + x1,2)(−2x2,1 − x2,2).

7

We can check p is a generating polynomial by using definition 1.2.1. Since p ∈
M{1,2}, for all q ∈ M{3}, we want to check ⟨pq,F⟩ = 0. We have

pq = (3x1,1 + x1,2)(2x2,1 + x2,2)x3,i3 for 1 ≤ i3 ≤ n3,

We have 6F1,1,i3+3F1,2,i3+2F2,1,i3+F2,2,i3 = 0 for i3 = 1, 2, 3. Therefore ⟨pq,F⟩ = 0

for all q ∈ M{3}, p is a generating polynomial.

1.3 Low-rank tensor approximation

Mathematically, LRTA is equivalent to solving a nonlinear least square prob-

lem. For a given tensor F ∈ Fn1×···×nm , and a given small integer number r, LRTA

is to find r tuples v(s) := (vs,1, . . . ,vs,m) ∈ Fn1 × · · · × Fnm (s = 1, . . . , r), which

gives a minimizer to the following nonlinear least square problem (the norm below

is Frobenius norm for tensors)

min
v(1)∈Fn1 ,··· ,v(m)∈Fnm

∥∥F −
r∑

s=1

vs,1 ⊗ · · · ⊗ vs,m
∥∥2. (1.3.1)

Different from the matrix case, the best rank-r tensor approximation may not

exist [14]. This is because the set of tensors, whose ranks are less than or equal

to r, may not be closed. A very popularly used method to find approximations

for a given tensor is the alternating least squares (ALS) method [9, 30], which is

easy to implement, while its convergence property is generally not very satisfying.

When r = 1, problem (1.3.1) is called the best rank-1 approximation, several

other methods were proposed in the past few years, for example, higher order

power iterations [13], semidefinite relaxations [44], SVD-based algorithm [23]. For

a generic tensor F , the best rank-1 approximation is unique [21]. For r > 1,

there exist various works on best rank-r approximations, e.g., [9, 50, 54], most of

these methods are designed based on ALS, which are easy to implement, but their

performance is generally not satisfying, and convergence properties are in general

not guaranteed. We refer to [9, 10, 22] for recent research study on LRTA.

8

1.4 Multiview learning

Multi-view learning is a learning paradigm for multi-view data, which has

been widely used for a variety of real applications. Specifically, multi-view data

contain sets of samples, each of which is depicted by different characteristics. For

example, an image can have different feature descriptors such as color, texture and

shape. A webpage can contain text and images, as well as hyperlinks to other

web pages. Due to the heterogeneous features extracted from each view, multi-

view learning becomes a hot topic in the field of machine learning to reduce the

heterogeneous gap among multiple views by maximizing the consensus of multiple

views in some latent common space. A variety of multi-view learning methods

have been proposed in the literature. Among them, canonical correlation analysis

(CCA), originally designed for measuring the linear correlation between two sets of

variables [27], has been the workhorse for learning a common latent space between

two views [61], and it is extended to various different learning scenarios such as

more than two views [41, 47], nonlinear [2] and sparse [26] representations. Its

usefulness and those of its variants have been well demonstrated in many scientific

domains [57]. Correlation as a measurement is originally defined for two sets of

variables. The extension from two sets to more than two sets can be diversified,

see [47] for twenty combinations of objectives and constraints.

Correlation as a measurement is originally defined for two sets of variables is

often used to impose consensus among multiple views such as canonical correlation

analysis (CCA) [27] and its variants [61, 57, 41, 47, 2, 26]. Pairwise correlation is

a common criterion to capture the intrinsic interconnections of two views [47], but

for more than two views, the intrinsic interconnections among all views are lost.

To overcome the above issue, high-order tensor correlation methods are proposed

by directly modeling the interconnections via a tensor. [41] introduces tensor CCA

(TCCA) by maximizing the high-order tensor correlation, which not only general-

izes correlation between two views but also explores the high-order correlation for

more than two views. However, the maximization of high-order tensor correlation

using ALS in [41] is suboptimal.

9

Chapter 2

Low-Rank Tensor Decompositions

and Tensor Approximations

Tensor decompositions are closely related to generating polynomials. We

are interested in a set of polynomials whose roots imply a tensor decomposition.

Suppose the rank r ⩽ n1 is given. For the convenience of notation, denote the

label set

J := {(i, j, k) : 1 ⩽ i ⩽ r, 2 ⩽ j ⩽ m, 2 ⩽ k ⩽ nj}. (2.0.1)

For a matrix G ∈ C[r]×J and a triple τ = (i, j, k) ∈ J , define the bi-linear polyno-

mial

ϕ[G, τ](x) :=
r∑

ℓ=1

G(ℓ, τ)x1,ℓxj,1 − x1,ixj,k ∈ M{1,j}. (2.0.2)

The rows of G are labelled by ℓ = 1, 2, ..., r and the columns of G are labelled by

τ ∈ J . We are interested in G such that ϕ[G, τ] is a generating polynomial for a

tensor F ∈ Cn1×n2×...×nm . This requires that

⟨ϕ[G, τ] · µ,F⟩ = 0 for all µ ∈ M{1,j}c .

The above is equivalent to the equation (F is labelled as in (1.2.3))

r∑
ℓ=1

G(ℓ, τ)Fx1,ℓ·µ = Fx1,ixj,k·µ. (2.0.3)

Definition 2.0.1. When (2.0.3) holds for all τ ∈ J , the G is called a generating

matrix for F .

10

For given G, j ∈ {2, . . . ,m} and k ∈ {2, . . . , nj}, we denote the matrix

M j,k[G] :=


G(1, (1, j, k)) G(2, (1, j, k)) . . . G(r, (1, j, k))

G(1, (2, j, k)) G(2, (2, j, k)) . . . G(r, (2, j, k))
...

...

G(1, (r, j, k)) G(2, (r, j, k)) . . . G(r, (r, j, k))

 . (2.0.4)

For each (j, k), define the matrix/vector
A[F , j] :=

(
Fx1,ℓ·µ

)
µ∈M{1,j}c ,1⩽ℓ⩽r

,

b[F , j, k] :=
(
Fx1,ℓ·xj,k·µ

)
µ∈M{1,j}c ,1⩽ℓ⩽r

.
(2.0.5)

The equation (2.0.3) is then equivalent to

A[F , j](M j,k[G])T = b[F , j, k]. (2.0.6)

The following is a useful property for the matrices M j,k[G].

Theorem 2.0.2. Suppose F =
∑r

s=1 u
s,1 ⊗ ... ⊗ us,m for vectors us,j ∈ Cnj . If

r ⩽ n1, (us,2)1...(u
s,m)1 ̸= 0, and the first r rows of the first decomposing matrix

U (1) := [u1,1 · · · ur,1]

are linearly independent, then there exists a G satisfying (2.0.6) and satisfying (for

all j ∈ {2, . . . ,m}, k ∈ {2, . . . , nj} and s = 1, . . . , r)

M j,k[G] · (us,1)1:r = (us,j)k · (us,1)1:r. (2.0.7)

2.1 low-rank tensor decompositions

Without loss of generality, assume the dimensions are decreasing as n1 ⩾

n2 ⩾ · · · ⩾ nm. We discuss how to compute tensor decomposition for a tensor F ∈
Cn1×···×nm when the rank r is not bigger than the highest dimension, i.e., r ⩽ n1.

As in Theorem 2.0.2, the decomposing vectors (us,1)1:r are common eigenvectors of

the matrices M j,k[G], with (us,j)k being the eigenvalues respectively. This implies

that the matrices M j,k[G] are simultaneously diagonalizable. This property can be

used to compute tensor decompositions.

Suppose G is a matrix such that (2.0.6) holds and M j,k[G] are simultaneously

diagonalizable. That is, there is an invertible matrix P ∈ Cr×r such that all the

11

products P−1M j,k[G]P are diagonal for all j = 2, . . . ,m and for all k = 2, . . . , nj.

Suppose M j,k[G] are diagonalized such that

P−1M j,k[G]P = diag[λj,k,1, λj,k,2, . . . , λj,k,r] (2.1.1)

with the eigenvalues λj,k,s. For each s = 1, . . . , r and j = 2, . . . ,m, denote the

vectors

us,j := (1, λj,2,s, . . . , λj,nj ,s). (2.1.2)

When F is rank-r, there exist vectors u1,1, . . . , ur,1 ∈ Cn1 such that

F =
r∑

s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m. (2.1.3)

The vectors us,1 can be found by solving linear equations after us,j are obtained for

j = 2, . . . ,m and s = 1, . . . , r. The existence of vectors us,1 satisfying the tensor

decomposition (2.1.3) is shown in the following theorem.

Theorem 2.1.1. Let F = V (1) ◦ ... ◦ V (m) be a rank-r tensor, for matrices V (i) ∈
Cni×r, such that the first r rows of V (1) are linearly independent. Suppose G is

a matrix satisfying (2.0.6) and P ∈ Cr×r is an invertible matrix such that all

matrix products P−1 ·M j,k[G] ·P are simultaneously diagonalized as in (2.1.1). For

j = 2, . . . ,m and s = 1, . . . , r, let us,j be vectors given as in (2.1.2). Then, there

must exist vectors u1,1, . . . , ur,1 ∈ Cn1 such that the tensor decomposition (2.1.3)

holds.

Proof. Since the matrix P =
(
p1 · · · pr

)
is invertible, there exist scalars c1, . . . , cr ∈

C such that

F1:r,1,...,1 = c1p1 + c2p2 + · · ·+ crpr. (2.1.4)

Consider the new tensor

H :=
r∑

s=1

csps ⊗ us,2 ⊗ · · · ⊗ us,m.

In the following, we show that F1:r,:,...,: = H and there exist vectors u1,1, . . . , ur,1 ∈
Cn1 satisfying the equation (2.1.3).

By Theorem 2.0.2, one can see that the generating matrix G for F is also a

generating matrix for H, so it holds that

⟨ϕ[G, τ]p,F⟩ = ⟨ϕ[G, τ]p,H⟩ = 0, for all p ∈ M{1,j}c . (2.1.5)

12

Therefore, we have

⟨ϕ[G, τ]p,H−F⟩ = 0, for all p ∈ M{1,j}c . (2.1.6)

By (2.1.4), one can see that

(H−F)1:r,1,...,1 = 0. (2.1.7)

In (2.1.6), for each τ = (i, 2, k) ∈ J and p = 1, we can get

(H−F)1:r,:,1,...,1 = 0.

Similarly, for τ = (i, 2, k) ∈ J and p = x3,j3 , we can get

(H−F)1:r,:,:,1,...,1 = 0.

Continuing this, we can eventually get H = F1:r,:,:,...,:. Since the matrix (V (1))1:r,: is

invertible, there exists a matrix W ∈ Cn1×r such that V (1) = W (V (1))1:r,:. Observe

that

F = W ×1 F1:r,:,:,...,: = W ×1 H.

Let us,1 = W · (csps) for s = 1, . . . , r. Then the tensor decomposition (2.1.3)

holds.

2.1.1 An algorithm for computing tensor decompositions

Consider a tensor F ∈ Cn1×n2×···×nm with a given rank r. Recall that the

dimensions are ordered such that n1 ⩾ n2 ⩾ · · · ⩾ nm. We discuss how to compute

a rank-r tensor decomposition for F . Recall A[F , j], b[F , j, k] as in (2.0.5), for

j > 1. Note that A[F , j] has the dimension Nj × r, where

Nj :=
n2 · · ·nm

nj

. (2.1.8)

If r ⩽ Nj, then the matrices A[F , j] have full column rank for generic cases. For

instance, r ⩽ N3 if m = 3 and r ⩽ n2. Since N2 is the smallest, we often use the

matrices A[F , j] for j ⩾ 3. For convenience, denote the label set

Υ := {(j, k) : 3 ⩽ j ⩽ m, 2 ⩽ k ⩽ nj}. (2.1.9)

13

In the following, we consider the case that r ⩽ N3. For each pair (j, k) ∈ Υ,

the linear system (2.0.6) has a unique solution, for which we denote

Y j,k = M j,k[G].

For j = 2, the equation (2.0.6) may not have a unique solution if r > N2. In the

following, we show how to get the tensor decomposition without using the matrices

M2,k[G]. By Theorem 2.0.2, the matrices Y j,k are simultaneously diagonalizable,

that is, there is an invertible matrix P ∈ Cr×r such that all products P−1Y j,kP

are diagonal for every (j, k) ∈ Υ. Suppose they are diagonalized as

P−1Y j,kP = diag[λj,k,1, λj,k,2, . . . , λj,k,r] (2.1.10)

with the eigenvalues λj,k,s. Write P in the column form

P =
(
p1 · · · pr

)
.

For each s = 1, . . . , r and j = 3, . . . ,m, let

vs,j := (1, λj,2,s, . . . , λj,nj ,s). (2.1.11)

Suppose F has a rank-r decomposition

F =
r∑

s=1

us,1 ⊗ ...⊗ us,m.

Under the assumptions of Theorem 2.0.2, the linear system (2.0.6) has a unique

solution for each pair (j, k) ∈ Υ. For every j ∈ {3, ...,m}, there exist scalars

cs,j, cs,1 such that

us,j = cs,jv
s,j, us,1 = cs,1ps.

Then, we consider the sub-tensor equation in the vector variables y1, . . . , yr ∈ Cn2

F1:r,:,...,: =
r∑

s=1

ps ⊗ ys ⊗ vs,3 ⊗ · · · ⊗ vs,m. (2.1.12)

There are rn2 · · ·nm equations and rn2 unknowns. This overdetermined linear

system has solutions such that

ys = cs,2u
s,2, for some cs,2 ∈ C.

14

After all ys are obtained, we solve the linear equation in z1, . . . , zr ∈ Cn1−r

Fr+1:n1,:,...,: =
r∑

s=1

zs ⊗ ys ⊗ vs,3 ⊗ · · · ⊗ vs,m. (2.1.13)

After all ys, zs are obtained, we choose the vectors (s = 1, . . . , r)

vs,1 =

(
ps

zs

)
, vs,2 = ys.

Then we get the tensor decomposition

F =
r∑

s=1

vs,1 ⊗ vs,2 ⊗ · · · ⊗ vs,m. (2.1.14)

Summarizing the above, we get the following algorithm for computing tensor

decompositions when r ⩽ n1 and r ⩽ N3. Suppose the dimensions are ordered

such that n1 ⩾ n2 ⩾ · · · ⩾ nm.

Algorithm 2.1.2. (Rank-r tensor decomposition.)

Input A tensor F ∈ Cn1×...×nm with rank r ⩽ min(n1, N3).

Step 1 For each pair (j, k) ∈ Υ, solve the matrix equation for the solution Y j,k:

A[F , j]Y j,k = b[F , j, k]. (2.1.15)

Step 2 Choose generic scalars ξj,k. Then compute the eigenvalue decomposition

P−1Y P = D for the matrix

Y :=
1∑

(j,k)∈Υ
ξj,k

∑
(j,k)∈Υ

ξj,kY
j,k.

Step 3 For s = 1, . . . , r and j ⩾ 3, let vs,j be the vectors as in (2.1.11).

Step 4 Solve the linear system (2.1.12) for vectors y1, . . . , yr.

Step 5 Solve the linear system (2.1.13) for vectors z1, . . . , zr.

Step 6 For each s = 1, . . . , r, let vs,1 =

(
ps

zs

)
and vs,2 = ys.

Output A tensor rank-r decomposition as in (2.1.14).

15

The correctness of Algorithm 2.1.2 is justified as follows.

Theorem 2.1.3. Suppose n1 ⩾ n2 ⩾ · · · ⩾ nm and r ⩽ min(n1, N3) as in (2.1.8).

For a generic tensor F of rank-r, Algorithm 2.1.2 produces a rank-r tensor decom-

position for F .

Proof. This can be implied by Theorem 2.1.1.

2.1.2 Tensor decompositions via reshaping

A tensor F ∈ Cn1×···×nm can be reshaped as a cubic order tensor F̂ as in

(1.1.12). One can apply Algorithm 2.1.2 to compute the tensor decomposition

(1.1.12) for F̂ . If the decomposing vectors ws,1, ws,2, ws,3 can be reshaped to rank-

1 tensors, then we can convert (1.1.12) to a tensor decomposition for F . This is

justified by Theorem 1.1.3, under some assumptions. A benefit of doing this is

that we may be able to compute tensor decompositions for the case that

N3 < r ⩽ p2,

with the dimension p2 as in Theorem 1.1.3. This leads to the following algorithm

for computing tensor decompositions.

Algorithm 2.1.4. (Tensor decompositions via reshaping.) Let p1, p2, p3 be dimen-

sions as in Theorem 1.1.3.

Input A tensor F ∈ Cn1×···×nm with rank r ⩽ p2.

Step 1 Reshape the tensor F to a cubic tensor F̂ ∈ Cp1×p2×p3 as in (1.1.12).

Step 2 Use Algorithm 2.1.2 to compute the tensor decomposition

F̂ =
r∑

s=1

ws,1 ⊗ ws,2 ⊗ ws,3. (2.1.16)

Step 3 If all ws,1, ws,2, ws,3 can be expressed as outer products of rank-1 tensors

as in (1.1.11), then output the tensor decomposition as in (1.1.3). If one of

ws,1, ws,2, ws,3 cannot be expressed as in (1.1.11), then the reshaping does

not produce a tensor decomposition for F .

Output A tensor decomposition for F as in (1.1.3).

For Algorithm 2.1.4, we have a similar conclusion like Theorem 2.1.3. For

the cleanness, we do not repeat it here.

16

2.2 low-rank Tensor Approximations

When a tensor F ∈ Cn1×...×nm has the rank bigger than r, the linear sys-

tems in Algorithm 2.1.2 may not be consistent. However, we can find linear least

squares solutions for them. This gives an algorithm for computing low-rank tensor

approximations. Recall the label set Υ as in (2.1.9). The following is the algorithm.

Algorithm 2.2.1. (Rank-r tensor approximation.)

Input A tensor F ∈ Cn1×n2×...×nm and a rank r ⩽ min(n1, N3).

Step 1 For each pair (j, k) ∈ Υ, solve the linear least squares problem

min
Y j,k∈Cr×r

∥∥∥∥A[F , j](Y j,k)T − b[F , j, k]

∥∥∥∥2. (2.2.1)

Let Ŷ j,k be an optimizer.

Step 2 Choose generic scalars ξj,k and let

Ŷ [ξ] =
1∑

(j,k)∈Υ
ξj,k

∑
(j,k)∈Υ

ξj,kŶ
j,k.

Compute the eigenvalue decomposition P̂−1Ŷ [ξ]P̂ = Λ with P̂ =
(
p̂1 · · · p̂r

)
is invertible and Λ is diagonal.

Step 3 For each pair (j, k) ∈ Υ, select the diagonal entries

diag[λ̂j,k,1 λ̂j,k,2 . . . λ̂j,k,r] = diag(P̂−1Ŷ j,kP̂).

For each s = 1, . . . , r and j = 3, . . . ,m, let

v̂s,j = (1, λ̂j,2,2, . . . , λ̂j,nj ,s).

Step 4 Let (ŷ1, . . . , ŷr) be an optimizer for the following least squares:

min
(y1,...,yr)

∥∥∥∥F1:r,:,...,: −
r∑

s=1

p̂s ⊗ ys ⊗ v̂s,3 ⊗ · · · ⊗ v̂s,m
∥∥∥∥2. (2.2.2)

Step 5 Let (ẑ1, . . . , ẑr) be an optimizer for the following least squares:

min
(z1,...,zr)

∥∥∥∥Fr+1:n1,:,...,: −
r∑

s=1

zs ⊗ ŷs ⊗ v̂s,3 ⊗ · · · ⊗ v̂s,m
∥∥∥∥2. (2.2.3)

17

Step 6 Let v̂s,1 =

(
p̂s

ẑs

)
and v̂s,2 = ŷs for each s = 1, . . . , r.

Output A rank-r approximation tensor

X gp :=
r∑

s=1

v̂s,1 ⊗ v̂s,2 ⊗ ...⊗ v̂s,m. (2.2.4)

If F is sufficiently close to a rank-r tensor, then X gp is expected to be a

good rank-r approximation. Mathematically, the tensor X gp produced by Algo-

rithm 2.2.1 may not be a best rank-r approximation. However, in computational

practice, we can use (2.2.4) as a starting point to solve the nonlinear least squares

optimization

min
(us,1,...,us,m)

∥∥∥∥F −
r∑

s=1

us,1 ⊗ us,2 ⊗ ...⊗ us,m

∥∥∥∥2. (2.2.5)

to improve the approximation quality. Let X opt be a rank-r approximation tensor

X opt :=
r∑

s=1

us,1 ⊗ us,2 ⊗ ...⊗ us,m (2.2.6)

which is an optimizer to (2.2.5) obtained by nonlinear optimization methods with

X opt as the initial point.

2.2.1 Approximation error analysis

Suppose the tensor F has a best (or nearly best) rank-r approximation

X bs :=
r∑

s=1

(xs,1)⊗ (xs,2)⊗ ...⊗ (xs,m). (2.2.7)

Let E be the tensor such that

F = X bs + E . (2.2.8)

We analyze the approximation performance of X gp when the distance ϵ = ∥E∥ is

small. For a generating matrix G and a generic ξ = (ξj,k)(j,k)∈Υ, denote that

M [ξ,G] :=
1∑

(j,k)∈Υ
ξj,k

∑
(j,k)∈Υ

ξj,kM
j,k[G]. (2.2.9)

18

Recall the A[F , j], b[F , j, k] as in (2.0.5). Note that

A[F , j] = A[X bs, j] + A[E , j],

b[F , j, k] = b[X bs, j, k] + b[E , j, k].
(2.2.10)

Suppose (xs,j)1 ̸= 0 for j = 2, . . . ,m.

Up to a scaling, we can further assume that(
ubs
s,2

)
1
= · · · =

(
ubs
s,m

)
1
= 1. (2.2.11)

Theorem 2.2.2. Let X gp be produced by Algorithm 2.2.1. Let F ,X bs,X opt, E , xs,j, ξj,k

be as above. Assume the following conditions hold:

(i) The subvectors (x1,1)1:r, . . . , (x
r,1)1:r are linearly independent.

(ii) All matrices A[F , j] and A[X bs, j] (3 ⩽ j ⩽ m) have full column rank.

(iii) The first entry (xs,j)1 ̸= 0 for all j = 2, . . . ,m.

(iv) The following scalars are pairwisely distinct∑
(j,k)∈Υ

ξj,k(x
1,j)k, ...,

∑
(j,k)∈Υ

ξj,k(x
r,j)k. (2.2.12)

If the distance ϵ = ∥F − X bs∥ is sufficiently small, then

∥X bs −X gp∥ = O(ϵ) and ∥F − X gp∥ = O(ϵ). (2.2.13)

where the constants in the above O(·) only depend on F and ξ.

Proof. By conditions (i) and (iii) and by Theorem 2.0.2, there exists a generating

matrix Gbs for X bs such that

A[X bs, j](M j,k[Gbs])T = b[X bs, j, k] (2.2.14)

for all j ∈ {2, . . . ,m} and k ∈ {2, . . . , nj}. Note that Y j,k is the least squares

solution to (2.2.1), so for each (j, k) ∈ Υ,

Y j,k = A[F , j]† · b[F , j, k], M j,k[Gbs
0] = A[X bs, j]† · b[X bs, j, k].

(The super script † denotes the Pseudo-inverse of a matrix.) By (2.2.8), for j =

2, . . . ,m, we have ∥∥A[F , j]− A[X bs, j]
∥∥
F
⩽
∥∥F − X bs

∥∥ ⩽ ϵ,∥∥b[F , j, k]− b[X bs, j, k]
∥∥
F
⩽
∥∥F − X bs

∥∥ ⩽ ϵ.
(2.2.15)

19

Hence, by the condition (ii), if ϵ > 0 is small enough, we have∥∥Y j,k −M j,k[Gbs]
∥∥ = O(ϵ). (2.2.16)

for all (j, k) ∈ Υ. This follows from perturbation analysis for linear least squares

(see [15, Theorem 3.4]).

By (2.2.7) and Theorem 2.0.2, for s = 1, . . . , r and (j, k) ∈ Υ, it holds that

M j,k[Gbs]
(
xs,1
)
1:r

=
(
xs,j
)
k

(
xs,1
)
1:r

.

This means that each (xs,1)1:r is an eigenvector of M j,k[Gbs], associated to the

eigenvalue (xs,j)k, for each s = 1, . . . , r. The matrices M j,k[Gbs] are simultaneously

diagonalizable, by the condition (i). So M [ξ,Gbs] is also diagonalizable. Note the

eigenvalues of M [ξ,Gbs] are the sums in (2.2.12). They are distinct from each

other, by the condition (iv). When ϵ > 0 is small enough, M [ξ,Gbs] also has

distinct eigenvalues. Write that

Q =
(
(x1,1)1:r · · · (xr,1)1:r

)
.

Note that Q−1M [ξ,Gbs]Q = D is an eigenvalue decomposition. Up to a scaling on

P̂ in algorithm 2.2.1, it holds that

∥p̂s − xs,1∥2 = O(ϵ), ∥D − Λ∥F = O(ϵ). (2.2.17)

We refer to [6] for the perturbation bounds in (2.2.17). The constants in the above

O(·) eventually only depend on F , ξ.

Note that (ŷs, . . . , ŷr) is the least squares solution to (2.2.2) and

X bs
1:r,:,...,: =

r∑
s=1

xs,1 ⊗ xs,2 ⊗ xs,3 ⊗ · · · ⊗ xs,m. (2.2.18)

Due to perturbation analysis of linear least squares, we also have

∥ŷs − xs,2∥2 = O(ϵ). (2.2.19)

Note that the subvectors (xs,1)r+1:n1 satisfy the equation

X bs
r+1:n1,:,...,:

=
r∑

s=1

(xs,1)r+1:n1 ⊗ xs,2 ⊗ · · · ⊗ xs,m. (2.2.20)

20

Recall that (ẑ1, . . . , ẑr) is the least squares solution to (2.2.3). Due to perturbation

analysis of linear least squares, we further have the error bound

∥(xs,1)r+1:n1 − ẑs∥2 = O(ϵ). (2.2.21)

Summarizing the above, we eventually get ∥X gp −X bs∥ = O(ϵ), so

∥F − X gp∥ ⩽
∥∥F − X bs

∥∥+ ∥∥X bs −X gp
∥∥ = O(ϵ).

The constant for the above O(·) eventually only depends on F , ξ.

2.2.2 Reshaping for low-rank approximations

Similar to tensor decompositions, the reshaping trick as in Section 2.1.2 can

also be used for computing low-rank tensor approximations. For m > 3, a tensor

F ∈ Cn1×n2×···×nm can be reshaped as a cubic tensor F̂ ∈ Cp1×p2×p3 as in (1.1.12).

Similarly, Algorithm 2.2.1 can be used to compute low-rank tensor approximations.

Suppose the computed rank-r approximating tensor for F̂ is

X̂ gp :=
r∑

s=1

ŵs,1 ⊗ ŵs,2 ⊗ ŵs,3. (2.2.22)

Typically, the decomposing vectors ŵs,1, ŵs,2, ŵs,3 may not be reshaped to rank-1

tensors. Suppose the reshaping is such that I1 ∪ I2 ∪ I3 = {1, 2, ...,m} is a union

of disjoint label sets and the reshaped dimensions are

p1 =
∏
i∈I1

ni, p2 =
∏
i∈I2

ni, p3 =
∏
i∈I3

ni.

Let mi = |Ii| for i = 1, 2, 3. By the reshaping, the vectors ŵs,i can be reshaped

back to a tensor Ŵ s,i of order mi, for each i = 1, 2, 3. If mi = 1, Ŵ s,i is a vector.

If mi = 2, we can find a best rank-1 matrix approximation for Ŵ s,i. If mi ⩾ 3, we

can apply Algorithm 2.2.1 with r = 1 to get a rank-1 approximation for Ŵ s,i. In

application, we are mostly interested in reshaping such that all mi ⩽ 2. Finally,

this produces a rank-r approximation for F .

The following is a low-rank tensor approximation algorithm via reshaping

tensors.

Algorithm 2.2.3. (low-rank tensor approximations via reshaping.)

21

Input A tensor F ∈ Cn1×n2×...×nm and a rank r.

Step 1 Reshape F to a cubic order tensor F̂ ∈ Cp1×p2×p3 .

Step 2 Use Algorithm 2.2.1 to compute a rank-r approximating tensor X̂ gp as in

(2.2.22) for F̂ .

Step 3 For each i = 1, 2, 3, reshape each vector ŵs,i back to a tensor Ŵ s,i of order

mi as above.

Step 4 For each i = 1, 2, 3, compute a rank-1 approximating tensor X̂s,i for Ŵ s,i

of order mi as above.

Output Reshape the sum
r∑

s=1

X̂s,1⊗X̂s,2⊗X̂s,3 to a tensor in Cn1×n2×...×nm , which

is a rank-r approximation for F .

We can do a similar approximation analysis for Algorithm 2.2.3 as for The-

orem 2.2.2. For the cleanness, we do not repeat that.

2.3 Numerical Experiments

In this section, we apply Algorithms 2.1.2 and 2.2.1 to compute tensor de-

compositions and low-rank tensor approximations. We implement these algorithms

in MATLAB 2020b on a workstation with Ubuntu 20.04.2 LTS, Intel® Xeon(R) Gold

6248R CPU @ 3.00GHz and memory 1TB. For computing low-rank tensor approx-

imations, we use the function cpd_nls provided in Tensorlab 3.0 [58] to solve

the nonlinear least squares optimization (2.2.5). The X gp denotes the approxi-

mating tensor returned by Algorithm 2.2.1 and X opt denotes the approximating

tensor obtained by solving (2.2.5), with X gp as the initial point. In our numerical

experiments, if the rank r is unknown, we use the most square flattening matrix

to estimate r as in (1.1.4) and Lemma 1.1.1.

Example 2.3.1. Consider the tensor F ∈ C4×4×3 whose slices F:,:,1,F:,:,2,F:,:,3 are

respectively 
27 25 35 42

48 68 80 80

26 24 34 40

33 41 49 66

44 32 52 56

68 76 100 96

42 30 50 52

46 46 62 76

42 26 48 45

64 60 88 76

47 27 53 47

45 37 57 60

 .

22

By Lemma 1.1.1, the estimated rank is r = 4.

Applying Algorithm 2.1.2 with r = 4, we get the rank-4 decomposition F =

U (1) ◦ U (2) ◦ U (3), with

U (1) =


8 6 4 9

8 12 16 12

4 6 4 12

4 12 8 9

 , U (2) =


1 1 1 1

1
2

1 3 1
3

1 1 3 1

1 4 1 2
3

 , U (3) =


1 1 1 1

2 1 1 2

1 2
3

3
4

3

 .

Example 2.3.2. Consider the tensor in C5×4×3×3

F = V (1) ◦ V (2) ◦ V (3) ◦ V (4),

where the matrices V (i) are

V (1) =



10 5 −9 −5 7

8 6 −3 −9 7

−9 −1 7 −3 −1

9 −7 −8 8 −5

−1 10 7 −3 10


, V (2) =


−1 9 −8 8 2

0 −1 −4 6 8

7 −7 −2 2 10

2 10 −3 −1 −3

 ,

V (3) =


5 2 −2 −7 3

9 −3 −7 7 −2

0 −10 10 6 10

 , V (4) =


8 2 −7 10 −5

4 −8 4 −6 −10

5 0 7 −1 −2

 .

By Lemma 1.1.1, the estimated rank r = 5.

Applying Algorithm 2.1.2 with r = 5, we get the rank-5 tensor decomposition

F = U (1) ◦ U (2) ◦ U (3) ◦ U (4), where the computed matrices U (i) are

U (1) =



−400 180 1008 2800 −210

−320 216 336 5040 −210

360 −36 −784 1680 30

−360 −252 896 −4480 150

40 360 −784 1680 −300


, U (2) =


1 1 1 1 1

0 −1
9

1
2

3
4

4

−7 −7
9

1
4

1
4

5

−2 10
9

3
8

−1
8

−3
2

 ,

U (3) =


1 1 1 1 1

9
5

−3
2

7
2

−1 −2
3

0 −5 −5 −6
7

10
3

 , U (4) =


1 1 1 1 1

1
2

−4 −4
7

−3
5

2

5
8

0 −1 − 1
10

2
5

 .

23

Example 2.3.3. Consider the tensor F ∈ C5×5×4 such that

Fi1,i2,i3 = i1 +
i2
2
+

i3
3
+
√

i21 + i22 + i23

for all i1, i2, i3 in the corresponding range. The 5 biggest singular values of the

flattening matrix Flat(F) are

109.7393, 5.2500, 0.1068, 8.325× 10−3, 3.401× 10−4.

Applying Algorithm 2.2.1 with rank r = 2, 3, 4, 5, we get the approximation errors

r 2 3 4 5
∥F − X gp∥ 5.1237× 10−1 6.8647× 10−2 1.0558× 10−2 9.9449× 10−3

∥F − X opt∥ 1.5410× 10−1 1.3754× 10−2 2.6625× 10−3 4.9002× 10−4

For the case r = 3, the computed approximating tensor by Algorithm 2.2.1 and by

solving (2.2.5) is U (1) ◦ U (2) ◦ U (3), with

U (1) =



−0.4973 −7.6813 11.7465

−0.2525 −6.9651 12.4970

−0.0872 −6.0497 13.2858

−0.0132 −5.0521 14.1423

−0.0010 −4.0469 15.0771


, U (2) =



1.0000 1.0000 1.0000

0.5058 0.9211 1.0306

0.1713 0.8167 1.0649

0.0262 0.7003 1.1042

0.0136 0.5807 1.1490


,

U (3) =


1.0000 1.0000 1.0000

0.5075 0.9289 1.0216

0.1756 0.8323 1.0469

0.0399 0.7231 1.0771

 .

Example 2.3.4. Consider the tensor F ∈ C6×6×6×5×4 such that

Fi1,i2,i3,i4,i5 = arctan(i1 + 2i2 + 3i3 + 4i4 + 5i5),

for all i1, i2, i3, i4, i5 in the corresponding range. The 5 biggest singular values of

the flattening matrix Flat(F) are

101.71, 7.7529× 10−2, 2.2870× 10−3, 7.2294× 10−5, 2.0633× 10−6.

Applying Algorithm 2.2.1 with rank r = 2, 3, 4, 5, we get the approximation errors

as follows:

r 2 3 4 5
∥F − X gp∥ 9.8148× 10−3 3.1987× 10−3 5.7945× 10−3 1.0121× 10−5

∥F − X opt∥ 5.3111× 10−3 2.2623× 10−4 3.0889× 10−5 1.7523× 10−6

24

For the case r = 3, the computed approximating tensor by Algorithm 2.2.1 and by

solving (2.2.5) is U (1) ◦ U (2) ◦ U (3) ◦ U (4) ◦ U (5), with

U (1) =



−0.0134 −0.0347 1.5524

−0.0112 −0.0329 1.5525

−0.0094 −0.0312 1.5526

−0.0079 −0.0295 1.5527

−0.0066 −0.0280 1.5528

−0.0056 −0.0265 1.5529


, U (2) =



1.0000 1.0000 1.0000

0.7011 0.8992 1.0001

0.4939 0.8080 1.0003

0.3485 0.7260 1.0004

0.2459 0.6523 1.0006

0.1734 0.5861 1.0007


,

U (3) =



1.0000 1.0000 1.0000

0.5886 0.8523 1.0002

0.3490 0.7258 1.0004

0.2064 0.6183 1.0006

0.1214 0.5269 1.0008

0.0715 0.4489 1.0011


, U (4) =



1.0000 1.0000 1.0000

0.4949 0.8078 1.0003

0.2463 0.6521 1.0006

0.1211 0.5269 1.0008

0.0596 0.4256 1.0011


,

U (5) =


1.0000 1.0000 1.0000

0.4161 0.7656 1.0003

0.1730 0.5862 1.0007

0.0711 0.4489 1.0011

 .

Example 2.3.5. As in Theorem 2.2.2, we have shown that if the tensor to be

approximated is sufficiently close to a rank-r tensor, then the computed rank-

r approximation X gp is quasi-optimal. It can be further improved to a better

approximation X opt by solving the nonlinear optimization (2.2.5). In this example,

we explore the numerical performance of Algorithms 2.2.1 and 2.2.3 for computing

low-rank tensor approximations. For the given dimensions n1, . . . , nm, we generate

the tensor

R =
r∑

s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m,

where each us,j ∈ Cnj is a complex vector whose real and imaginary parts are

generated randomly, obeying the Gaussian distribution. We perturb R by another

tensor E , whose entries are also generated with the Gaussian distribution. We scale

the perturbing tensor E to have a desired norm ϵ. The tensor F is then generated

as

F = R+ E .

25

We choose ϵ to be one of 10−2, 10−4, 10−6, and use the relative errors

ρ_gp =
∥F − X gp∥

∥E∥
, ρ_opt =

∥F − X opt∥
∥E∥

to measure the approximation quality of X gp , X opt respectively. For each case of

(n1, . . . , nm), r and ϵ, we generate 10 random instances of R,F , E . For the case

(n1, . . . , nm) = (20, 20, 20, 20, 10), Algorithm 2.2.3 is used to compute X gp. All

other cases are solved by Algorithm 2.2.1. The computational results are reported

in Tables 2.1. For each case of (n1, . . . , nm) and r, we also list the median of

above relative errors and the average CPU time (in seconds). The t_gp and

t_opt denote the average CPU time (in seconds) for Algorithms 2.2.1/2.2.3 and

for solving (2.2.5) respectively.

In the following, we give a comparison with the generalized eigenvalue de-

composition (GEVD) method, which is a classical one for computing tensor de-

compositions when the rank r ⩽ n2. We refer to [37, 52] for the work about the

GEVD method. Consider a cubic order tensor F ∈ Cn1×n2×n3 with n1 ⩾ n2 ⩾ n3.

Suppose F = U (1) ◦ U (2) ◦ U (3) is a rank-r decomposition and r ⩽ n2. Assume its

first and second decomposing matrices U (1), U (2) have full column ranks and the

third decomposing matrix U (3) does not have colinear columns. Denote the slice

matrices

F1 := F1:r,1:r,1, F2 := F1:r,1:r,2. (2.3.1)

One can show that

F1 = U
(1)
1:r,: · diag(U (3)

1,:) · (U
(2)
1:r,:)

T , F2 = U
(1)
1:r,: · diag(U (3)

2,:) · (U
(2)
1:r,:)

T . (2.3.2)

This implies that the columns of (U
(1)
1:r,r)

−T are generalized eigenvectors of the

matrix pair (F T
1 , F

T
2). Consider the transformed tensor

F̂ = (U
(1)
1:r,r)

−1 ×1 F1:r,:,:, (2.3.3)

For each s = 1, . . . , r, the slice F̂s,:,: = U
(2)
:,s · (U (3)

:,s)T is a rank-1 matrix. The

matrices U (2), U (3) can be obtained by computing rank-1 decompositions for the

slices F̂s,:,:. After this is done, we can solve the linear system

U (1) ◦ U (2) ◦ U (3) = F (2.3.4)

to get the matrix U (1). The following is the GEVD method for computing cubic

order tensor decompositions when the rank r ⩽ n2.

26

Table 2.1: Computational performance of Algorithms 2.2.1 and 2.2.3 and of non-
linear optimization (2.2.5).

r ϵ ρ_gp t_gp ρ_opt t_opt r ϵ ρ_gp t_gp ρ_opt t_opt
(n1,n2,n3)=(50,50,50) (n1,n2,n3)=(60, 50, 40)

10
10−2 1.63 0.08 0.99 1.57

15
10−2 17.49 0.19 0.99 2.17

10−4 6.32 0.10 0.99 1.16 10−4 10.80 0.15 0.99 1.36
10−6 3.84 0.09 0.99 0.83 10−6 5.16 0.20 0.99 1.10

20
10−2 25.83 0.29 0.99 2.99

30
10−2 28.70 0.40 0.98 6.95

10−4 5.41 0.28 0.99 1.99 10−4 15.77 0.37 0.98 3.61
10−6 30.41 0.29 0.99 1.49 10−6 50.96 0.37 0.98 2.27

30
10−2 27.91 0.50 0.98 7.08

45
10−2 35.48 0.61 0.97 25.73

10−4 213.82 0.43 0.98 3.73 10−4 35.03 0.63 0.97 8.08
10−6 17.97 0.47 0.98 2.20 10−6 34.67 0.61 0.97 5.69

(n1,n2,n3)=(100,100,100) (n1,n2,n3)=(150,150,150)

20
10−2 11.21 0.86 1.00 6.36

30
10−2 8.59 2.92 1.00 17.17

10−4 3.48 0.85 1.00 4.24 10−4 3.18 3.05 1.00 11.20
10−6 3.88 0.83 1.00 3.20 10−6 4.24 3.42 1.00 11.75

40
10−2 24.17 1.76 0.99 17.80

60
10−2 49.80 6.04 1.00 87.31

10−4 11.60 1.65 0.99 11.02 10−4 13.77 5.89 1.00 24.96
10−6 11.09 1.61 0.99 7.97 10−6 17.49 6.07 1.00 18.81

60
10−2 18.71 3.40 0.99 28.16

90
10−2 29.44 10.64 0.99 98.78

10−4 26.28 3.41 0.99 17.25 10−4 152.49 10.53 0.99 43.58
10−6 19.12 3.49 0.99 13.14 10−6 17.01 10.06 0.99 26.98
(n1,n2,n3,n4)=(20,20,20,20,10) (n1,n2,n3,n4)=(60,50,40,30)

24
10−2 37.93 0.88 1.00 45.56

20
10−2 31.42 2.78 1.00 31.16

10−4 9.10 0.92 1.00 15.86 10−4 1.17 2.76 1.00 9.39
10−6 715.16 0.91 1.00 15.63 10−6 4.14 2.79 1.00 9.48

48
10−2 166.00 1.95 1.00 270.56

40
10−2 6.99 7.52 1.00 31.81

10−4 161.62 1.93 1.00 40.63 10−4 2.58 7.32 1.00 20.07
10−6 52.01 1.93 1.00 21.71 10−6 2.49 7.22 1.00 20.22

72
10−2 73.70 3.10 1.00 102.90

60
10−2 11.48 9.83 1.00 48.08

10−4 113.13 3.06 1.00 70.13 10−4 6.38 9.80 1.00 38.97
10−6 34.28 3.03 1.00 36.72 10−6 16.35 9.76 1.00 30.38

27

Algorithm 2.3.6. (The GEVD method.)

Input A tensor F ∈ Cn1×n2×n3 with the rank r ⩽ n2.

1. Formulate the tensor F̂ as in (2.3.3).

2. For s = 1, . . . , r, compute U
(2)
:,s , U

(3)
:,s from the rank-1 decomposition of the

matrix F̂s,:,:.

3. Solve the linear system (2.3.4) to get U (1).

Output The decomposing matrices U (1), U (2), U (3).

We compare the performance of Algorithm 2.1.2 and Algorithm 2.3.6 for ran-

domly generated tensors with the rank r ⩽ n2. We generate F = U (1) ◦U (2) ◦U (3)

such that each U (i) ∈ Cni×r. The entries of U (i) are randomly generated complex

numbers. Their real and imaginary parts are randomly generated, obeying the

Gaussian distribution. For each case of (n1, ..., nm) and r, we generate 20 ran-

dom instances of F . Algorithm 2.3.6 is implemented by the function cpd_gevd

in the software Tensorlab. All the tensor decompositions are computed correctly

by both methods. The average CPU time (in seconds) for Algorithm 2.1.2 is de-

noted as time-gp, while the average CPU time for the GEVD method is denoted

as time-gevd. The computational results are reported in Table 2.2. The numeri-

cal experiments show that Algorithm 2.1.2 is more computationally efficient than

Algorithm 2.3.6.

Table 2.2: A comparison for the performance of Algorithms 2.1.2 and 2.3.6.
(n1,n2,n3) r time-gevd time-gp
(40,30,30) 30 0.91 0.29
(50,50,50) 50 4.77 0.85

(100,100,100) 80 12.17 5.54
(150,150,150) 100 79.85 13.30
(200,200,200) 120 161.83 25.71
(250,250,250) 140 285.03 55.71
(300,300,300) 100 306.64 61.38
(400,400,400) 180 934.15 271.21
(500,500,500) 200 1688.98 539.75

28

2.4 Conclusions

.

This Chapter gives computational methods for computing low-rank tensor

decompositions and approximations. The proposed methods are based on gener-

ating polynomials. For a generic tensor of rank r ⩽ min(n1, N3), its tensor decom-

position can be obtained by Algorithm 2.1.2 . Under some general assumptions,

we show that if a tensor is sufficiently close to a low-rank one, then the low-rank

approximating tensor produced by Algorithm 2.2.1 is quasi-optimal. Numerical

experiments are presented to show the efficiency of the proposed methods.

Chapter 2 in full, has been submitted for publication. The thesis author is

the coauthor of the preprint “J. Nie, L. Wang, and Z. Zheng. Low Rank Tensor

Decompositions And Approximations, 2022. arXiv: 2208.07477.”

29

Chapter 3

Find the Generating Matrices and

Tensor Decompositions

In Algorithm 2.1.2, the most important step is to find the generating matrix

G. It requires to solve the linear system

A[F , j](M j,k[G])T = B(F , j, k). (3.0.1)

When the linear system (3.0.1) has a unique solution, the solution must be the

generating matrix we are looking for. However, finding G will be much harder

if the system is underdetermined. In such case, we will solve for a G such that

matrices M j,k[G]’s are commuting.

For the convenience of discussion, we only consider order-3 tensors in the

section. Let F ∈ Cn1×n2×n3 be a rank-r tensor with the rank decomposition

F =
r∑

s=1

us,1 ⊗ us,2 ⊗ us,m.

Recall that we assume n1 ≥ n2 ≥ n3 throughout this chapter.

3.1 Case: n1 ≥ r > n2

When r > n2, the linear systems in (3.0.1) are singular for every j, k. Thus,

we are not able to obtain M j,k[G] by solving (3.0.1). In such case, we have to solve

for a matrix G such that matrices M j,k[G]’s are simultaneously diagonalizable.

Generally, if M j,k[G]’s commute, then they are simultaneously diagonalizable. It

30

enforces the following quadratic equations

M j1,k1 [G]M j2,k2 [G] = M j2,k2 [G]M j1,k1 [G]. (3.1.1)

There exist algebraic and numerical algorithms [12, 55] to solve quadratic

equations [16, 29, 62]. But, those algorithms are generally much more difficult

and expensive than solving linear systems. We observe that there still exist linear

relations inside the quadratic equations (3.1.1). With additional linear equations

in (3.1.1), we are still able to obtain matrices {M3,k[G]}n3
k=2 by solely solving linear

systems.

In following discussion, M3,k[G] is abbreviated as M3,k. We denote Fk :=

F1:r,:,k ∈ Cr×n2 . The linear systems in (3.0.1) for j = 3 can be rewritten as

M3,kF1 = Fk.

There exists a matrix C ∈ Cr×(r−n2) such that F := [F1, C] ∈ Cr×r is nonsingular.

Let Pk := M3,kC ∈ Cr×(r−n2), then we have

M3,kF = [Fk, Pk],

which is equivalent to

M3,k = [Fk, Pk]F
−1.

Thus, commuting equations in (3.1.1) for j1 = j2 = 3 are

M3,iM3,j −M3,jM3,i

= [Fi, Pi]F
−1[Fj, Pj]F

−1 − [Fj, Pj]F
−1[Fi, Pi]F

−1

= 0.

Since F−1 is nonsingluar, we have

[Fi, Pi]F
−1[Fj, Pj]− [Fj, Pj]F

−1[Fi, Pi]

= [Fi, Pi][F
−1Fj, F

−1Pj]− [Fj, Pj][F
−1Fi, F

−1Pi]

= 0.

It directly implies [Fi, Pi]F
−1Fj−[Fj, Pj]F

−1Fi = 0. By writing F−1Fk =

(
(F 1

k)
T

(F 2
k)

T

)
,

we further have

Pi(F
2
j)

T − Pj(F
2
i)

T = FjF
1
i − FiF

1
j . (3.1.2)

31

Thus, equations (3.1.2) can be written as the linear system

A (F)X = B(F̂), (3.1.3)

where

A (F) :=



F 2
3 −F 2

2 0 · · · 0

F 2
4 0 −F 2

2 · · · 0
...

...
...

−F 2
n3

0 0 · · · −F 2
2

0 F 2
4 −F 2

3 · · · 0
...

...
...


∈ C

n2(n3−1)(n3−2)
2

×(r−n2)(n3−1),

X :=


P T
2

P T
3

...

P T
n3

 , B(F̂) :=


(F2F

1
3 − F3F

1
2)

T

(F2F
1
4 − F4F

1
2)

T

...

(Fn3−1F
1
n3

− Fn3F
1
n3−1)

T

 .

(3.1.4)

Suppose that the matrix A (F) has full column rank, then the system (3.1.3) has

the unique solution Pi’s. Thus, the matrices M3,k’s are uniquely determined by

M3,k = [Fk, Pk]F
−1. (3.1.5)

Finally, we apply Algorithm 2.1.2 to construct the decomposition of F . The whole

algorithm is summarized in Algorithm 3.1.1.

Algorithm 3.1.1. Case n1 ≥ r > n2.

Input: The tensor F ∈ Cn1×n2×n3 with rank n2 < r ≤ min(n1, ⌊n2

2
⌋n3).

Step 1 Solve the linear system (3.1.3) to get matrices {Pk}n3
k=2 and obtain {M3,k[G]}n3

k=2

through (3.1.5).

Step 2 Apply Algorithm 2.1.2 with matrices {M3,k[G]}n3
k=2 to find decomposition of

F .

Output: The decomposition of F obtained from Algorithm 2.1.2.

In Algorithm 3.1.1, we assume that the matrix A (F) has full column rank

when r ≤ ⌊n2

2
⌋n3. We can show that this assumption is satisfied generically.

32

Theorem 3.1.2. Let F ∈ Cn1×n2×n3 be a rank-r tensor with the rank decomposition

F =
r∑

s=1

us,1 ⊗ us,2 ⊗ us,m,

where n1 ≥ r > n2 ≥ n3 and r ≤ ⌊n2

2
⌋n3, then the matrix A (F) has full column

rank for generic vectors {us,1, us,2, us,3}rs=1.

Proof. By the construction of the matrix A (F), we know each entry of A (F) is

a rational polynomial in terms of vectors {us,1, us,2, us,3}rs=1. Thus, it suffices to

prove that there exist some vectors {us,1, us,2, us,3}rs=1 such that the corresponding

A (F) has full column rank. For convenience, we denote U i = [u1,i, . . . , ur,i]. We

choose the vectors such that (t = r − n2)

U1
1:r,: = Ir, U

2 = [In2 , v1, . . . , vt], U
3
1,: = e.

It holds that Fk = (F)1:r,:,k = Dk(U
2)T , where Dk = diag(U3

k,:). Then we have

D1 = Ir and hence F1 = (U2)T . We denote that F−1 =

(
ZT

ST

)
for S ∈ Rr×(r−n2).

It holds that

F−1Fk =

(
ZT

ST

)
Fk =

(
ZTDk(U

2)T

STDk(U
2)T

)
=

(
F 1
k

F 2
k

)
.

Thus, we have (F 2
k)

T = U2DkS. Furthermore,

F−1F =

(
ZT

ST

)
[(U2)T , C] = Ir ⇒ ST (U2)T = U2S = 0.

Thus, the columns of S belong to the null space of U2. The spaces col(S) and

null(U2) both have the dimension r − n2, so col(S) = null(B). The null space

null(U2) is spanned by

S̄ := null(U2) =

(
v1 · · · vt

−e1 · · · −et

)
.

There must exist a nonsingluar matrix W such that S̄ = SW . The matrix

I(r−n2)(n3−1) ⊗ W is nonsingluar, so A (F) has full column rank if and only if

33

A (F)I(r−n2)(n3−1) ⊗W has full column rank. Thus, it suffices to consider

F :=



U2D3S̄ −U2D2S̄ 0 · · · 0

U2D4S̄ 0 −U2D2S̄ · · · 0
...

...
...

U2Dn3S̄ 0 0 · · · −U2D2S̄

0 U2D4S̄ −U2D3S̄ · · · 0
...

...
...


.

We observe that

U2DkS̄ = [In2 , v1, v2, . . . , vt]Dk

(
v1 · · · vt

−e1 · · · −et

)

= [(Dk)1:n2,1:n2 , (Dk)n2+1v1, (Pk)n2+2v2, . . . , (Pk)n2+tvt]

(
v1 · · · vt

−e1 · · · −et

)
= [(Dk)1:n2,1:n2v1 − (Dk)n2+1v1, · · · , (Dk)1:n2,1:n2vt − (Dk)n2+tvt].

Next, we will prove existence of vectors {us,1, us,2, us,3}rs=1 by induction.

Base case: We first show the base case that n2 = 2, r = n2n3

2
= n3. Let

U3 =

(
e 1

Ir−1 e1 + e2

)
.

By direct computation, we find that (t = r − n2 = r − 2)

U2D2S̄ =

(
(v1)1 · · · (vt−1)1 2(vt)1

0 · · · 0 (vt)2

)
,

U2D3S̄ =

(
0 · · · 0 (vt)1

(v1)2 · · · (vt−1)2 2(vt)2

)
,

(U2DkS̄):,j =

{
vk−3 j = k − 3

0 j ̸= k − 3
for k ≥ 4.

The corresponding F has full column rank if and only if the following system only

has the singular solution

U2DiS̄pj − U2DjS̄pi = 0, 2 ≤ i < j ≤ n3, (3.1.6)

where pk ∈ Rt. When 4 ≤ i < j ≤ n3, we have

U2DiS̄pj − U2DjS̄pi = (pj)i−3vi−3 − (pi)j−3vj−3 = 0 ⇒ (pj)i−3 = (pi)j−3 = 0.

34

Therefore, when 4 ≤ i ≤ n3, (pi)k = 0 for 1 ≤ k ≤ t−1, k ̸= i−3. Then, for i ≥ 4,

it holds that

U2D2S̄pi − U2DiS̄p2 = (pi)i−3

(
(vi−3)1

0

)
+ (pi)t

(
2(vt)1

(vt)2

)
− (p2)i−3vi−3 = 0,

(3.1.7)

U2D3S̄pi − U2DiS̄p3 = (pi)i−3

(
0

(vi−3)2

)
+ (pi)t

(
(vt)1

2(vt)2

)
− (p3)i−3vi−3 = 0.

(3.1.8)

By adding above two equations, we get

((pi)i−3 − (p2)i−3 − (p3)i−3)vi−3 + 3(pi)tvt = 0 ⇒ (pi)t = 0, 4 ≤ i ≤ n3.

Plugging in (pi)t = 0 back into (3.1.7) and (3.1.8), we will have (pi)i−3 = (p2)i−3 =

(p3)i−3 = 0 for 4 ≤ i ≤ n3. Then,

U2D3S̄p2 − U2D2S̄p3 = (p2)t

(
(vt)1

2(vt)2

)
+ (p3)t

(
2(vt)1

(vt)2

)
= 0 ⇒ (p2)t = (p3)t = 0.

Summarizing everything above, we know (3.1.6) only has the singular solution and

it implies that F has full column rank for n2 = 2, r = n2n3

2
= n3.

Inductive step: Suppose that F1 ∈ Cn1×n2×n3 has rank r1 = n2n3

2
≤ n1

with decomposing matrices U2
1 , U

3
1 such that F1 has full column rank and F2 ∈

Cn1×m2×n3 has rank r2 = m2n3

2
≤ n1 with decomposing matrices U2

2 , U
3
2 such that

F2 has full column rank. For the dimension (n1, n2 + m2, n3) with rank r =

n2n3

2
+ m2n3

2
≤ n1, we consider

U2 =

(
U2
1 0

0 U2
2

)
, U3 =

(
U3
1 U3

2

)
.

S̄ can be chosen as

S̄ =

(
S̄1 0

0 S̄2

)
.

Then, we will have

U2DkS̄ =

(
U2
1 0

0 U2
2

)(
(Dk)1 0

0 (Dk)2

)(
S̄1 0

0 S̄2

)
=

(
U2
1 (Dk)1S̄1 0

0 U2
2 (Dk)2S̄2

)
.

35

Therefore, the corresponding matrix F̄ can be rearranged as(
F1 0

0 F2

)
.

F1,F2 both have full column rank, so F also has full column rank.

Combining the base case and inductive step, we have the existence for r ≤
min(n1,

n2n3

2
) when n2 is even. The odd n2 can be reduced to n2 − 1. Therefore,

our conclusion holds for r ≤ min(n1, ⌊n2

2
⌋n3).

Theorem 3.1.3. Suppose that F :=
∑r

s=1 u
s,1⊗us,2⊗us,m ∈ Cn1×n2×n3 with rank

min(n1, ⌊n2

2
⌋n3) ≥ r > n2 ≥ n3, then Algorithm 3.1.1 can find the decomposition

of F for generic {us,1, us,2, us,3}rs=1.

Proof. The tensor F satisfies all assumptions of Theorem 3.1.2, so the matrix

A (F) generically has full column rank. Thus, the linear system (3.1.3) has a unique

solution and the matrices M3,k’s can be recovered by (3.1.5). The conclusion will

then follow Theorem 2.1.1.

3.2 An extension to the case r > n1

The condition r ≤ n1 is necessary for constructing the generating polynomials

and generating matrices. Thus, the previous generating matrix based algorithms

cannot be directly applied to the tensor F = U1 ◦ U2 ◦ U3 ∈ Cn1×n2×n3 with rank

r > n1 ≥ n2 ≥ n3. In this case, we can first construct a new tensor F̂ ∈ Cr×n2×n3

such that F̂ := Û1 ◦U2 ◦U3 and Û1 :=

(
U1

Ũ1

)
for some matrix Ũ1. Then construct

a new tensor T ∈ Cr×r×n3 such that T := Û1 ◦ Û2 ◦ U3 and Û2 :=

(
U2

Ũ2

)
for

some matrix Ũ2. After the new tensor T is constructed, previous algorithms can

be applied to find the decomposition of T and subsequently the decomposition of

F .

The new tensor F̂ should have the decomposition F̂ := Û1 ◦ U2 ◦ U3, so it

holds that

F̂1:n1,:,: = F .

36

Let F̂i := F̂:,:,i ∈ Cr×n2 , Fk := F:,:,k for i = 1, . . . , n3 and Dk := diag(U3
k,:), for

k = 1, ..., n3. We may choose a matrix C ∈ Cn1×(n1−n2) such that
(
F1 C

)
is

nonsingular. Denote E :=
(
F1 C

)−1

and E2 := E1+n2:n1,:. Consider the matrix

[(E2F2U
2D2)

T , (U2)T)] ∈ Cr×n1 . Since r > n1, the matrix Ũ1 ∈ C(r−n1)×r can be

chosen such that

Ũ1[(E2F2U
2D2)

T , (U2)T)] = 0. (3.2.1)

We denote Ci = F̂n1+1:r,:,i ∈ C(r−n1)×r, i = 1, . . . , n3. In the following, we will

discuss how to find all matrices {Ci}n3
i=1 to construct such F̃ . By (3.2.1), it holds

that C1 = Ũ1(U2)TD1 = Ũ1(U2)T = 0. We require that F̂1:n1,:,: = F , so

F̂k =

(
Fk

Ck

)
, k = 1, . . . , n3.

Suppose the tensor F̂ satisfies the condition of Theorem 2.0.2, there exists a

generating matrix Ĝ of F̂ such that

M3,k[Ĝ]F̂1 = F̂k, for k = 2, . . . , n3.

There exists a matrix Ĉ ∈ Cr×(r−n2) such that F̂ := [F̂1, Ĉ] ∈ Cr×r is nonsingular.

The matrix Ĉ can be

Ĉ =

(
C 0

0 Ir−n1

)
. (3.2.2)

We denote Pk := M3,k[Ĝ]Ĉ. Then, we have that

M3,k[Ĝ]F̂ =
(
F̂k Pk

)
⇔ M3,k[Ĝ] =

(
F̂k Pk

)
F̂−1. (3.2.3)

The commuting equations are

M3,i[Ĝ]M3,j[Ĝ]−M3,j[Ĝ]M3,i[Ĝ]

=
(
F̂i Pi

)
F̂−1

(
F̂j Pj

)
F̂−1 −

(
F̂j Pj

)
F̂−1

(
F̂i Pi

)
F̂−1

=(
(
F̂i Pi

)
F̂−1

(
F̂j Pj

)
−
(
F̂j Pj

)
F̂−1

(
F̂i Pi

)
)F̂−1

=0.

Since F̂ is nonsingular, the above equation is equivalent to(
F̂i Pi

)
F̂−1

(
F̂j Pj

)
−
(
F̂j Pj

)
F̂−1

(
F̂i Pi

)
= 0. (3.2.4)

37

It implies (
F̂i Pi

)
F̂−1F̂j −

(
F̂j Pj

)
F̂−1F̂i = 0. (3.2.5)

By writing Pi =

(
P 1
i

P 2
i

)
for P 1

i ∈ Cn1×(r−n2), P 2
i ∈ C(r−n1)×(r−n2), we have

(
Fi P 1

i

Ci P 2
i

)
F̂−1

(
Fj

Cj

)
−

(
Fj P 1

j

Cj P 2
j

)
F̂−1

(
Fi

Ci

)
= 0. (3.2.6)

By the construction of F̂ , we know

F̂−1 =

(
E 0

0 Ir−n1

)
. (3.2.7)

Consider the first n1 rows of above equation, we have(
Fi (P 1

i):,1:(n1−n2)

)
EFj + (P 1

i):,1+n1−n2:r−n2Cj

−
(
Fj (P 1

j):,1:(n1−n2)

)
EFi + (P 1

j):,1:(n1−n2)Ci = 0
. (3.2.8)

The rest rows of this equation are(
Ci (P 2

i):,1:(n1−n2)

)
EFj + (P 2

i):,1+n1−n2:r−n2Cj,

−
(
Cj (P 2

j):,1:(n1−n2)

)
EFi + (P 2

j):,1:(n1−n2)Ci = 0.
(3.2.9)

We write E :=

(
E1

E2

)
for E1 ∈ Cn2×n1 , E2 ∈ C(n1−n2)×n1 . After rearranging (3.2.8),

we get

FjE
1Fi − FiE

1Fj = P 1
i

(
E2Fj

Cj

)
− P 1

j

(
E2Fi

Ci

)
. (3.2.10)

Let Vi,j be the row space of FjE
1Fi − FiE

1Fj for i ̸= j ∈ {2, ..., n3} and

Ws := (∩s−1
j=2Vs,j) ∩ (∩n3

j=s+1Vs,j). We prove in Proposition 3.2.2 that Ws is the row

space of

(
E2Fs

Cs

)
when r ≤ (3n3−8)n2

2n3−5
. Let Bs ∈ R(r−n1)×n2 be a matrix whose rows

form an orthogonal basis of the space Ws ∩ null(E2Fs). For each s, there exists a

unique nonsingular matrix Ts ∈ R(r−n2)×(r−n2) such that(
E2Fs

Cs

)
= Ts

(
E2Fs

Bs

)
. (3.2.11)

38

By equations (3.2.11), the equation (3.2.10) is equivalent to

FjE
1Fi − FiE

1Fj = P 1
i Tj

(
E2Fj

Bj

)
− P 1

j Ti

(
E2Fi

Bi

)
. (3.2.12)

For convenience, we denote Xij = P 1
i Tj, Yij = P 1

j Ti. The equation (3.2.12) is

linear in Xij, Yij, so we can solve for Xij, Yij by (3.2.12).

The matrix C2 can be written as C2 = Ũ1D2(U
2)T . By (3.2.1), we have

E2F2C
T
2 = E2F2U

2D2(Ũ
1)T = 0.

That implies row space of C2 equal row space of B2 so there exists a nonsingular

matrix H ∈ C(r−n1)×(r−n1) such that B2 = HC2. The new matrix Ũnew = HŨ1 also

satisfies the condition (3.2.1). Thus, there exists some Ũ1 such that H = Ir−n1 . For

such Ũ1, it holds that C2 = B2 and hence T2 = Ir−n2 by (3.2.11). Consequently,

Xi2 = P 1
i T2 = P 1

i . Afterwards, we have

Xij = Xi2Tj = Xij, j = 3, . . . , n3. (3.2.13)

Therefore, we can obtain {Tj}n3
j=3 by solving (3.2.13). Finally, the matrices {Cs}n3

s=2

are computed directly by (3.2.11). The new tensor F̂ = Û1 ◦ U2 ◦ U3 ∈ Cr×n2×n3

with rank r is such that

F̂1:n1,:,: = F , F̂n1+1:r,:,s = Cs, s = 1, . . . , n3. (3.2.14)

After we get Cis, we will be able to get Pis by solving

(
Fj

Cj

)
E1Fi −

(
Fi

Ci

)
E1Fj =

(
Pi Pj

)

E2Fj

Cj

E2Fi

Ci

 (3.2.15)

Under the assumption in Proposition 3.2.2,


E2Fj

Cj

E2Fi

Ci

 is a full rank matrix ∈

C2(r−n2)×n2 where 2(r − n2) ≤ n2. Therefore (3.2.15) is an overdetermined lin-

ear system, it must have a unique solution. Consider the tensor

T =
(
F̂ Ĉ F̂2 P2 ... F̂n3 Pn3

)
∈ Cr×r×n3 (3.2.16)

39

as in (3.2.3). It is easy to check

T1:n1,1:n2,: = F and T = Û1 ◦ Û2 ◦ U3,

for some Û2 =
(
U2 Ũ2

)T
and

Ũ2 = ((Û1D1)
−1Ĉ)T .

We can apply Algorithm 2.1.2 on T to find the decomposition of F .

All steps of the algorithm are summarized in the following.

Algorithm 3.2.1. Case r > n1.

Input: The tensor F ∈ Cn1×n2×n3 with rank (3n3−8)n2

2n3−5
≥ r > n1.

Step 1 Select the matrix Ĉ as in (3.2.2) such that F̂ = [F̂1, Ĉ] is nonsingluar.

Step 2 Let E be the matrix as in (3.2.7) and E1 = E1:n2,:, E
2 = E1+n2:n1,:. Let

Ws := (∩s−1
j=2Vs,j)∩(∩n3

j=s+1Vs,j) where Vij is the row space of FjE
1Fi−FiE

1Fj

and Bs be the matrix whose rows form an orthogonal basis of the space

Ws ∩ null(E2Fs).

Step 2 Solve equations (3.2.12) to get matrices Xij = P 1
i Tj, Yij = P 1

j Ti and then

solve (3.2.13) to get matrices Ts, s = 2, . . . , n3. Matrices Cs, s = 2, . . . , n3 are

obtained from (3.2.11).

Step 3 Solve (3.2.15) for Ps, s = 2, . . . , n3

Step 4 Let tensor T be the tensor as in (3.2.16). Apply the Algorithm 2.1.2 to find

the decomposition of T = Û1 ◦ Û2 ◦ U3.

Output: The decomposition of F is

F = U1 ◦ U2 ◦ U3, (3.2.17)

where U1 = Û1
1:n1,:, U2 = Û2

1:n2,:.

The construction of F̂ and T requires that Ws in Step 2 of Algorithm 3.2.1

is the row space of the matrix

(
E2Fs

Cs

)
. We prove in the following proposition

that this requirement is true under mild conditions.

40

Proposition 3.2.2. Suppose that n1 < r ≤ (3n3−8)n2

2n3−5
, the matrix [P 1

i , P
1
j] has full

column rank for 2 ≤ i < j ≤ n3, and the matrix(
(E2F2)

T , CT
2 , . . . , (E

2Fn3)
T , CT

n3

)
(3.2.18)

has full Kruskal rank, then the space Ws = (∩s−1
j=2Vs,j) ∩ (∩n3

j=s+1Vs,j) is the row

space of

(
E2Fs

Cs

)
for s = 2, . . . , n3.

Proof. Since the matrix [P 1
i , P

1
j] has full column rank, there exists a nonsingluar

matrix R such that

R[P 1
i , P

1
j] =


Ir−n2 0

0 Ir−n2

0 0

 .

Row operations do not change the row space, so

Vi,j = span{(E2Fi)
T , (E2Fj)

T , CT
i , C

T
j }.

In the following, we will only prove the conclusion for s = 2. All other values

of s can be proved similarly. Let Sk := ∩k
j=3V2,j, then Ws = Sn3 . It is clear that

col[(E2F2)
T , CT

2] ⊂ Sk and Sk ⊂ V2,3 for k = 3, . . . , n3. Since the matrix in (3.2.18)

has full Kruskal rank, it holds that

dimSk ∪ V2,k+1 = min(n2, dimSk + dimV2,k+1 − (r − n2))

= min(n2, dimSk + (r − n2)).

We also have

dimSk+1 = dimSk ∩ V2,k+1 = dimSk + dimV2,k+1 − dimSk ∪ V2,k+1.

We assume by contradiction that for all k = 3, . . . , n3 − 1, it holds dimSk >

n2 − (r − n2) = 2n2 − r, then

dimSk+1 = dimSk ∩ V2,k+1

= dimSk + dimV2,k+1 − dimSk ∪ V2,k+1

= dimSk + 2r − 3n2.

Therefore,

dimSn3−1 = 2(r − n2) + (n3 − 4)(2r − 3n2)

= (2n3 − 5)r − (3n3 − 8)n2 + 2n2 − r

≤ 2n2 − r

41

It contradicts that the assumption that dimSk > 2n2 − r for k = 3, . . . , n3 − 1.

Thus, there must exist some 3 ≤ t ≤ n3 − 1 such that dimSt ≤ 2n2 − r. For such

t, dimSt ∪ V2,t+1 = dimSt + (r − n2) and

dimSt+1 = dimSt + dimV2,t+1 − dimSt ∪ V2,t+1 = r − n2 = dim col[(E2F2)
T , CT

2].

Since col[(E2F2)
T , CT

2] ⊂ Sk for k = 3, . . . , n3 and Sn3 ⊂ St+1, we conclude W2 =

Sn3 = col[(E2F2)
T , CT

2].

Before we show the condition above is generic, we first prove the following

lemma.

Lemma 3.2.3. For some positive integers m1,m2,m3. For a matrix B ∈ Cm2×m3

with krank(B) = r and a matrix A ∈ Cm1×m2 with full rank, krank(AB) ≥
r − dim(null(A) ∩ col(B)).

Proof. Since krank(B) = r, there does not exist a nonzero α =
(
α1 ... αr

)T
∈

Cr such that α1B:,i1 + ... + αrB:,ir = 0 for any {i1, ..., ir} ⊂ {1, ...,m3}. If p ̸= 0,

let p := dim(null(A) ∩ col(B)), and v1, ..., vp be a basis for null(A) ∩ col(B) that

satisfies

krank(
(
B v1 . . . vp

)
) = r. (3.2.19)

It is easy to check such a basis always exists. We prove by contradiction, assuming

krank(AB) < r − dim(null(A) ∩ col(B)) = r − p. Hence, there exists a nonzero

α =
(
α1 ... αr−p

)T
∈ Cr−p such that α1(AB):,i1 + ... + αr−p(AB):,ir−p = 0 for

some {i1, ..., ir−p} ⊂ {1, ...,m3}. We have

α1A(B:,i1) + ...+ αr−pA(B:,ir−p) =0

=⇒ A(α1B:,i1 + ...+ αr−pB:,ir−p) =0.

Because krank(B) = r > r − p, α1B:,i1 + ... + αr−pB:,ir−p ̸= 0, we have α1B:,i1 +

...+ αr−pB:,ir−p ∈ null(A) ∩ col(B). That implies

α1B:,i1 + ...+ αr−pB:,ir−p + αr−p+1v1 + ...+ αrvp = 0

for some αr−p+1, ..., αr. That contradicts the (3.2.19). The case p = 0 will be

similar.

We also need a lemma for the Kruskal rank of matrices’ Khatri-Rao product.

42

Lemma 3.2.4 (Lemma 12 in [7]). Let m,n1, ..., nm be positive integers. For generic

U1, ..., Um ∈ Cn1×r, ...,Cnm×r respectively, U1⊙, ...,⊙Um has full Kruskal rank.

Theorem 3.2.5. Suppose that F := U1 ◦ U2 ◦ U3 ∈ Cn1×n2×n3 with rank n1 <

r ≤ (3n3−8)n2

2n3−5
, Let the matrix [P 1

i , P
1
j] and

(
(E2F2)

T , CT
2 , . . . , (E

2Fn3)
T , CT

n3

)
for

2 ≤ i < j ≤ n3 as in Proposition 3.2.2. In generic condition, matrix [P 1
i , P

1
j] has

full column rank, and the matrix(
(E2F2)

T , CT
2 , . . . , (E

2Fn3)
T , CT

n3

)
has full Kruskal rank. Algorithm 3.2.1 finds the decomposition of F .

Proof. We start this proof with the n1 = n2 case. In this case, all the E2Fs for

s = 2, ..., n3 will not exist, if we can show both the matrices(
CT

2 , . . . , C
T
n3

)
(3.2.20)

and (
P 1
2 , . . . , P

1
n3

)
(3.2.21)

have full Kruskal rank for a generic condition, then we are able to prove the

theorem. Consider the tensor

T =
(
F̂ Ĉ F̂2 P2 ... F̂n3 Pn3

)
∈ Cr×r×n3 (3.2.22)

as in (3.2.3). It will have decomposition matrices

T =

(
U1

Ũ1

)
◦

(
U2

Ũ2

)
◦ U3. (3.2.23)

We know

Ci = Ũ1Di(U
2)T P 1

i = U1D2(Ũ
2)T for i ∈ {2, ..., n3} (3.2.24)

and

Pi = M3,i[Ĝ]Ĉ. (3.2.25)

For our tensor F , by (3.2.25), P 1
i s are fully determined by M3,i[Ĝ]s which are fully

determined by Cis. Cis are fully determined by Ũ1. But we only require (3.2.1),

and there is still some freedom in choosing Ũ1.

43

To fully determine (3.2.20) and (3.2.21), we denote bi ∈ Cr for i ∈ {1, ..., r}
be r random vectors. Let bi1 ...bir−n2

be the first r−n2 vectors that make the matrix(
(U2)T bi1 . . . bir−n2

)
(3.2.26)

be of rank r. We let

(Ũ1)Tj,: = bi+j −


U2

bTi1
...

bTij−1


T 

U2

bTi1
...

bTij−1

 bi+j. (3.2.27)

Then it is easy to check this Ũ1 will satisfy (3.2.1) and is fully determined by F
and bis. Therefore, (3.2.20) and (3.2.21) are fully determined.

Now each entry of (3.2.20) and (3.2.21) is a rational polynomial in term of

randomly generated vectors bis and vectors {us,1, us,2, us,3}rs=1. Thus, it suffices

to prove that there exist some vectors bis and {us,1, us,2, us,3}rs=1 such that the

corresponding (3.2.20) and (3.2.21) have full Kruskal rank.

By (3.2.24), we have(
CT

2 , . . . , C
T
n3

)
= U2((U3)2:n3,: ⊙ Ũ1)T ,

(
P 1
2 , . . . , P

1
n3

)
= U1((U3)2:n3,: ⊙ Ũ2)T .

Let B1 ∈ C(r−n1)×r, B2 ∈ Cn3×r be two matrices with

(1) (B2)1,i ̸= 0 for i ∈ {1, 2, ..., r},

(2) B1 ⊙B2 has full Kruskal rank,

(3) (B+
1)

T ⊙B2 has full Kruskal rank.

Such two matrices must exist, because (B2)1,i ̸= 0 is a generic condition, (2) is also

a generic condition by Lemma 3.2.4. Since the Moore-Penrose inverse is unique,

(3) is also a generic condition.

Let

Ũ1 =B1 ⊙ (B2)1,:, Ũ2 = (B+
1)

T ⊙ (B2)1,:, (3.2.28)

U3 =B2 ⊙
(

1
(B2)1,1

... 1
(B2)1,r

)
. (3.2.29)

44

Since (B+
1)

T and B1 have the same row space, there must exist some full rank

U1 = U2 ∈ Cn1×r, such that

Ũ1(U2)T = 0. (3.2.30)

We have

krank(U3 ⊙ Ũ1) = krank(U3 ⊙ Ũ2) = min(r, n3(r − n1)), (3.2.31)

and

krank((U3)2:n3,: ⊙ Ũ1) = krank((U3)2:n3,: ⊙ Ũ2) = min(r, (n3 − 1)(r − n1)).

(3.2.32)

Denote B = ((U3)2:n3,:⊙Ũ1)T and A = U2. Since (U3)1,:⊙Ũ1 = Ũ1 and col((Ũ1)T) =

null(U2), then

dim(null(A) ∩ col(B)) =dim(null(A)) + dim(col(B))− dim(null(A) ∪ col(B))

(3.2.33)

=r − n1 +min(r, (n3 − 1)(r − n1))−min(r, n3(r − n1)).

(3.2.34)

n3(r − n1)− (n3 − 1)(r − n1) = r − n1, therefore, there are 4 possible conditions:

(1) (n3 − 1)(r − n1) ≥ r > n1,

(2) n3(r − n1) ≥ r > (n3 − 1)(r − n1) ≥ n1,

(3) r > n3(r − n1) ≥ n1 > (n3 − 1)(r − n1),

(4) r > n1 > n3(r − n1).

Under the condition (1), krank(B) = r, A is a full rank matrix with dim(null(A)∩
col(B)) = r−n1. Using the Lemma 3.2.3, we have krank(AB) = r−(r−n1) = n1,(
CT

2 , . . . , C
T
n3

)
has full Kruskal rank.

Under the condition (2), krank(B) = (n3−1)(r−n1), A is a full rank matrix

with dim(null(A) ∩ col(B)) = (n3 − 1)(r − n1) − n1. Using the Lemma 3.2.3, we

have krank(AB) ≥ (n3 − 1)(r−n1)− ((n3 − 1)(r−n1)−n1) = n1,
(
CT

2 , . . . , C
T
n3

)
has full krank.

45

Under the condition (3) and (4), krank(B) = (n3 − 1)(r − n1), A is a full

rank matrix with dim(null(A) ∩ col(B)) = 0. Using the Lemma 3.2.3, we have

krank(AB) ≥ (n3 − 1)(r − n1),
(
CT

2 , . . . , C
T
n3

)
has full Kruskal rank.

From (3.2.28), similar as
(
CT

2 , . . . , C
T
n3

)
,
(
P 1
2 , . . . , P

1
n3

)
also has full Kruskal

rank. Therefore, based on Proposition 3.2.2, Algorithm 3.2.1 will be able to find

its tensor decomposition.

For the n1 ̸= n2 case, similarly as above, each entry of(
(E2F2)

T , CT
2 , . . . , (E

2Fn3)
T , CT

n3

)
(3.2.35)

is still a rational polynomial in terms of randomly generated vectors bis and vectors

{us,1, us,2, us,3}rs=1. Thus, it suffices to prove that there exist some vectors bis

and {us,1, us,2, us,3}rs=1 such that the corresponding (3.2.35) and (3.2.21) have full

Kruskal rank. From the n1 = n2 case, since the rank requirement r ≤ (3n3−8)n2

2n3−5

is independent with n1, for some tensor F ∈ Cn2×n2×n3 , there exist a tensor F̂ ∈
Cn1×n2×n3 such that

F̂ =

(
U1

Ũ1

)
◦ U2 ◦ U3. (3.2.36)

This gives a choice for {us,1, us,2, us,3}rs=1. after choose the correct bis, we will have

(3.2.35) for F̂ same as (3.2.20) for F̂ and (3.2.21) for F̂ same as (3.2.21) for F̂ .

They both have full Kruskal rank. Therefore, we are able to apply Algorithm 3.2.1

to find its tensor decomposition.

Example 3.2.6. Let F ∈ C4×4×4 be a tensor with decomposition matrices

U (1) =


1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

U (2) =


1 1 1 1 1

0.2 0.4 0.6 0.8 1

0.22 0.42 0.62 0.82 1

0.23 0.43 0.63 0.83 1



U (3) =


1 1 1 1 1

1.2 1.4 1.6 1.8 2

1.22 1.42 1.62 1.82 22

1.23 1.43 1.63 1.83 23

 .

46

It is easy to check those decomposition matrices are of full k-rank. Using Algorithm

3.2.1, we get the constructed tensor T is

T (:, :, 1) =



2.0000 1.2000 1.0400 1.0080 0

2.0000 1.4000 1.1600 1.0640 0

2.0000 1.6000 1.3600 1.2160 0

2.0000 1.8000 1.6400 1.5120 0

0 0 0 0 1.0000


,

T (:, :, 2) =



3.2000 2.2400 2.0480 2.0096 0.0154

3.4000 2.5600 2.2240 2.0896 0.0115

3.6000 2.9600 2.5760 2.3456 0.0077

3.8000 3.4400 3.1520 2.9216 0.0038

−0.0000 −0.0000 0.0000 1.0000 2.0000


,

T (:, :, 3) =



5.4400 4.2880 4.0576 4.0115 0.0492

5.9600 4.7840 4.3136 4.1254 0.0392

6.5600 5.5360 4.9216 4.5530 0.0276

7.2400 6.5920 6.0736 5.6589 0.0146

−0.0000 −0.0000 1.0000 5.0000 4.0000


,

T (:, :, 4) =



9.7280 8.3456 8.0691 8.0138 0.1204

10.7440 9.0976 8.4390 8.1756 0.1009

12.0960 10.4576 9.4746 8.8847 0.0750

13.8320 12.6656 11.7325 10.9860 0.0416

−0.0000 1.0000 6.0000 17.6000 8.0000


.

Apply Algorithm 2.1.2 on T , we get a tensor decomposition with error 1.5782e−10.

3.3 Numerical Experiments

In this section, we present numerical experiments for tensor decomposition

and compare it with nonlinear least square method in Tensorlab[58]. The experi-

ment is implemented on MATLAB R2018b with a Mircosoft Surface Laptop i5-8250U

CPU @ 1.60GHz 1.80GHz RAM 8G. Tensors are randomly generated by its de-

composition matrix using Matlab’s randn() function. Its decomposition matrix’s

entries follow normal distribution.

47

3.3.1 Case 2

This subsection explores the performance of Algorithm 3.1.1.

Example 3.3.1. Consider the tensor F ∈ C4×3×3 such that

Fi1,i2,i3 = ei1−i2+i3 + (
i1i3
i2

)
1
2 +

i1i3
i2

+ (
i1i3
i2

)2,

for all i1, i2, i3 in the corresponding range. The 4 biggest singular values of the

flattening matrix Flat(F , 1) are

720.29, 6.3723, 1.6688, 1.2767× 10−2.

Applying Algorithm 3.1.1 with rank r = 2, 3, 4, we get the approximation errors

as follows:

r 2 3 4
∥F − output∥ 12.411 2.3448 2.0520× 10−12

For the case r = 4, the computed approximating tensor by Algorithm 3.1.1 is

U (1) ◦ U (2) ◦ U (3), with

U (1) =


1 1 1 e

4
√
2 2 e2

9
√
3 3 e3

16
√
4 4 e4

 , U (2) =


1 1 1 1

1
4

1√
2

1
2

e−1

1
9

1√
3

1
3

e−2

1
16

1√
4

1
4

e−3

 ,

U (3) =


1 1 1 1

4
√
2 2 e

9
√
3 3 e2

 .

Example 3.3.2. In this example we explore the performance of Algorithm 3.1.1

for random tensors. We generate F by decomposition matrices U (i) ∈ Cni×r with

i = 1, . . . , nm, whose entries are complex numbers. Each entry’s real and imaginary

parts are randomly drawn i.i.d. from normal distributions with mean i ∈ 1, 2, ...m

and standard deviation 1. Such tensors are expected to have rank r. We apply

Algorithm 3.1.1 and classic nonlinear least square method with tensor F and r

as input. For each pair (n1, . . . , nm) in Table 3.1 and Table 3.2, we generate 50

instances of random tensors in Cn1×...×nm . For each pair (n1, . . . , nm), we report

the average time (in seconds) consumed by computation and the average error in

48

frobenius norm over 50 random instances for generating polynomial method(gp)

and Nonlinear least square(nls)/Normal Form method(nf) in [56]. The computa-

tional results are summarized in Table 3.1 and 3.2. For such tensors, Nonlinear

least squares failed to get its decomposition with frobenius error within 10−4, while

our method is faster compared with Normal Form method and can get their rank

decompositions efficiently.

Table 3.1: Computational results for rank decompositions of random tensors. Time
(in seconds) is the average of the consumed time.

(n1, . . . , nm) r timenls errornls timegp errorgp
(10,7,3) 9 0.083 NaN 0.001 2.360e-11
(11,9,4) 11 1.324 NaN 0.001 1.317e-10
(30,15,6) 30 3.876 NaN 0.004 1.209e-08
(50,20,10) 50 6.178 NaN 0.0336 1.464e-07
(70,25,10) 70 10.269 NaN 0.0758 1.230e-07
(90,30,20) 90 17.55 NaN 3.333 1.953e-07
(120,50,20) 120 30.9 NaN 7.392 7.813e-07
(150,70,20) 150 50.048 NaN 14.162 1.485e-06

Table 3.2: Computational results for rank decompositions of random tensors for
Normal Forms method (denoted by nf) and our method. Time (in seconds) is the
average of the consumed time.

(n1, . . . , nm) r timenf errornf timegp errorgp
(10,7,3) 9 0.42986 3.5429e-11 0.0043221 2.8905e-11
(11,9,4) 11 0.85329 9.4432e-11 0.0011281 1.2177e-10
(30,15,6) 30 14.311 1.4285e-09 0.0098707 9.6275e-09
(50,20,10) 50 129.91 4.7615e-08 0.060555 7.742e-08
(70,25,10) 70 329.91 1.1512e-08 0.12794 2.4733e-07

Example 3.3.3. In this example, we explore the numerical performance of Algo-

rithms 3.1.1 when the tensor is not but close to a rank r tensor. For the given

dimensions n1, . . . , nm, we generate the tensor

R =
r∑

s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m,

where each us,j ∈ Cnj is a complex vector whose real and imaginary parts are

generated randomly, obeying the Gaussian distribution with mean s. We perturb

R by another tensor E , whose entries are generated with the Gaussian distribution

with mean 0 and standard derivation 1. Then we normalize the perturbing tensor

49

E to have a desired norm ϵ. The tensor F is then generated as

F = R+ E .

Denote X gp be the solution of algorithm 3.1.1, we choose ϵ to be one of 10−3, 10−6, 10−9,

and use the relative errors

ρ =
∥F − X gp∥

∥E∥
,

to measure the approximation quality of the approximating tensors X gp . For each

case of (n1, . . . , nm), r and ϵ, we generate 20 random instances of R,F , E . The

computational results are reported in Tables 3.3. For each case of (n1, . . . , nm)

and r, we list the mean of above relative errors.

Table 3.3: Computational results for rank decompositions of random tensors with
error ϵ in Case 2. The mean of relative errors are shown in the table.

(n1, . . . , nm) r ϵ = 10−3 ϵ = 10−6 ϵ = 10−9

(9,7,4) 9 21.594 17.479 16.683
(11,9,4) 11 36.618 36.166 49.859
(30,15,6) 30 167.51 158.89 96.773
(50,20,10) 50 63.669 59.869 60.7
(70,25,10) 70 86.099 90.508 98.937
(90,30,20) 90 72.643 69.27 164.49
(120,50,20) 120 78.191 77.034 302.22
(150,70,20) 150 127.06 127.11 521.32

3.3.2 Case 3

This subsection explores the performance of Algorithm 3.2.1.

Example 3.3.4. In this example, we explore the performance of Algorithm 3.2.1

for random tensors. We generate F by decomposition matrices U (i) ∈ Cni×r with

i = 1, . . . ,m, whose entries are complex numbers. Each entry’s real and imaginary

parts are randomly drawn i.i.d. from the normal distributions with mean i and

standard deviation 1. Such tensors are expected to have rank r. We apply Al-

gorithm 3.2.1 and classic nonlinear least square method (cpd_nls provided in the

software Tensorlab) with tensor F and r as input. For each pair (n1, . . . , nm) in

Table 3.4, we generate 50 instances of random tensors in Cn1×...×nm . For each pair

(n1, . . . , nm), we report the average time (in seconds) consumed by computation

and the average error in frobenius norm over 50 random instances for generating

50

polynomial method(gp) and nonlinear least square(nls). The computational re-

sults are summarized in Table 3.4. For such tensors, Nonlinear least squares failed

to get its decomposition with frobenius error within 10−4, while our method can

get their rank decompositions efficiently.

Table 3.4: Computational results for rank decompositions of random tensors in
Case 3. Time (in seconds) is the average of the consumed time. Error is the
average error in frobenius norm.

(n1, . . . , nm) r timenls errornls timegp errorgp
(9,8,6) 11 0.544 NaN 0.00223 3.261e-10

(12,10,10) 14 0.657 NaN 0.00997 1.849e-09
(21,20,10) 29 2.817 NaN 0.0229 2.644e-07
(32,30,10) 40 4.026 NaN 0.0352 7.435e-08
(42,40,20) 55 6.006 NaN 0.241 4.968e-07
(52,50,30) 70 10.392 NaN 0.767 1.392e-06
(64,60,30) 88 14.617 NaN 0.995 1.752e-05
(90,70,30) 100 19.821 NaN 1.566 9.775e-06

Example 3.3.5. In this example, we explore the numerical performance of Algo-

rithms 3.2.1 when the tensor is not but close to a rank r tensor. For the given

dimensions n1, . . . , nm, we generate the tensor

R =
r∑

s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m,

where each us,j ∈ Cnj is a complex vector whose real and imaginary parts are

generated randomly, obeying the Gaussian distribution with mean s. We perturb

R by another tensor E , whose entries are generated with the Gaussian distribution

with mean 0 and standard derivation 1. Then we normalize the perturbing tensor

E to have a desired norm ϵ. The tensor F is then generated as

F = R+ E .

Denote X gp be the solution of algorithm 3.2.1, we choose ϵ to be one of 10−3, 10−6, 10−9,

and use the relative errors

ρ =
∥F − X gp∥

∥E∥
,

to measure the approximation quality of the approximating tensors X gp . For each

case of (n1, . . . , nm), r and ϵ, we generate 20 random instances of R,F , E . The

computational results are reported in Tables 3.5. For each case of (n1, . . . , nm)

and r, we list the mean of above relative errors.

51

Table 3.5: Computational results for rank decompositions of random tensors with
error ϵ in Case 3. The mean of relative errors are shown in the table.

(n1, . . . , nm) r ϵ = 10−3 ϵ = 10−6 ϵ = 10−9

(9,8,6) 10 68.754 110.9 82.53
(12,12,10) 14 62.944 50.438 62.281
(21,20,10) 29 2248.8 4047.4 3273.2
(32,30,10) 40 385.94 330.26 466.02
(42,40,20) 55 681.21 734.26 745.05
(52,50,30) 70 807.05 807.79 813.89
(64,60,30) 88 4951.7 6049.3 6041.6
(90,70,30) 100 5088.5 5015.5 5328.3

3.4 Conclusions

This Chapter gives a novel algorithm for the general nonsymmetric tensor

decomposition problem. Under some generic conditions, we prove that the exact

tensor decomposition can be found by the proposed algorithm using linear algebra

operations only. Numerical examples successfully demonstrate the robustness and

efficiency of our algorithm.

Chapter 3 in full, is currently being prepared for submission for publication,

which is a joint work with Nie, Jiawang and Yang, Zi.

52

Chapter 4

Tensor Canonical Correlation

Analysis

Multi-view learning has attracted much attention in recent years in the com-

munity of machine learning due to its increasing availability of multi-view data

sets in a wide range of scientific domains such as computer vision, computational

biology, and medical imaging analysis. A multi-view data set consists of multiple

objects. Each object is measured from different aspects, e.g., an image can be

described by color, texture, and shapes; A movie clip contains audio, text and

image. Each aspect is called a view, which can be complementary or supplemen-

tary to other views. Multi-view data contain much more information than each

single view, but it simultaneously causes the difficulty of learning models due to

the heterogeneous gap among multiple views. Multi-view learning is proposed to

reduce the heterogeneous gap by enforcing the consistency among multiple views.

4.1 TCCA as a Tensor Approximation Problem

Let {(yi,1, . . . ,yi,m)}Ni=1 be a multi-view data set, with m views and N points.

The vector yi,j ∈ Rnj is the ith data point of the view j residing in the nj-

dimensional space. We are looking for a r-dimensional latent space Rr such that

each yi,j is projected to zi,j ∈ Rr. The projection for the jth view can be repre-

sented by a matrix Pj, that is, zi,j = PT
j yi,j. The higher order canonical correlation

53

ρ of m views is the quantity

ρ :=
N∑
i=1

r∑
s=1

m∏
j=1

(zi,j)s. (4.1.1)

The tensor canonical correlation analysis aims to find optimal projection matrices

P1, . . . , Pm that maximize ρ. When m = 2, ρ reduces to the trace of sample cross-

correlation, which is used in the classical canonical correlation analysis. When m ≥
3, ρ generalizes CCA for capturing higher order correlations, which is inherently

different from the sum of pairwise correlations [47].

The connection of ρ as in (4.1.1) to a tensor can be built based on the t-

mode product of a tensor obtained from the input data with projection matrices

P1, . . . , Pm. The tensor of the input data is the mth order tensor of dimension

n1 × · · · × nm

C :=
N∑
i=1

yi,1 ⊗ · · · ⊗ yi,m. (4.1.2)

Write that Pj = [p1,j, . . . ,pr,j], where ps,j ∈ Rnj is the sth column of Pj. The

higher order canonical correlation ρ can be written as

ρ =
r∑

s=1

(ps,1)T ×1 · · · (ps,m)T ×m C. (4.1.3)

People often pose the uncorrelation constraints for projected points in the latent

common space

1

N

N∑
i=1

zi,jz
T
i,j = PT

j CjPj = Ir, j = 1, . . . ,m, (4.1.4)

where the jth view matrix

Cj :=
1

N

N∑
i=1

yi,jy
T
i,j

Denote the vectors and tensor

us,j := C
1
2
j p

s,j, ps,j := C
− 1

2
j us,j, (4.1.5)

M := C
− 1

2
1 ×1 · · ·C

− 1
2

m ×m C. (4.1.6)

54

Then, we get the tensor correlation maximization problem
max
us,j

∑r
s=1(u

s,1)T ×1 · · · (us,m)T ×m M

s.t. ∥us,j∥2 = 1, s = 1, . . . r, j = 1, . . . ,m,

(us,j)Tus′,j = 0 for all s ̸= s′.

(4.1.7)

The above is equivalent to the rank-r tensor approximation problem
min
us,j ,λs

∥∥∥M−
∑r

s=1 λs · us,1 ⊗ · · · ⊗ us,m
∥∥∥2,

s.t. ∥us,j∥2 = 1, s = 1, . . . r, j = 1, . . . ,m,

(us,j)Tus′,j = 0 for all s ̸= s′.

(4.1.8)

The optimization (4.1.8) requires to compute the best rank-r orthogonal tensor

approximation. This is typically a computationally hard task. Generally, the

orthogonality constraints in (4.1.7) is hard to be enforced, because the rank de-

composition and the orthogonal decomposition are usually not achievable simulta-

neously [34]. For better performance in computational practice, people often relax

the orthogonality constraints (see [41]) and then solve the following relaxation of

(4.1.8):  min
us,j ,λs

∥∥∥M−
∑r

s=1 λs · us,1 ⊗ · · · ⊗ us,m
∥∥∥2,

s.t. ∥us,j∥2 = 1, s = 1, . . . r, j = 1, . . . ,m.
(4.1.9)

After the vectors us,j are obtained by solving (4.1.9), the projection matrices Pj

can be chosen such that ps,j = C
− 1

2
r us,j. We would like to remark that when M is

sufficiently close to a rank-r orthogonal tensor, the optimizer of (4.1.9) is expected

to be close to a rank-r orthogonal tensor.

4.2 The Algorithm for TCCA

For the given multi-view data set {(yi,1, . . . ,yi,m)}ni=1, we can formulate the

tensor M as in (4.1.6). Then compute an approximating tensor for M and use it

to get the projection matrices Pj.

We use the method described in Section 2.2 to compute a rank-r approxima-

tion for M. Suppose the rank r ≤ n1. By (2.0.5), the equation (2.0.3) is equivalent

to

A[M, j](M j,k[G])T = B[M, j, k]. (4.2.1)

55

Due to noises, the linear equation (4.2.1) may be overdetermined or even inconsis-

tent. Therefore, we look for a matrix G that satisfies (4.2.1) as much as possible.

This can be done by solving linear least squares. Let Gls be a least square solution

to

min
G∈C[r]×J

∑
τ=(i,j,k)∈J

∥∥∥∥A[M, j]M j,k[G]T −B[M, j, k]

∥∥∥∥2. (4.2.2)

After Gls is obtained, select generic scalars ξj,k ∈ R obeying the standard normal

distribution and let

M [ξ,Gls] :=
∑

(1,j,k)∈J

ξj,kM
j,k[Gls]. (4.2.3)

We can compute its Schur Decomposition as

Q∗M [ξ,Gls]Q = T, (4.2.4)

where Q = [q1, . . . ,qr] is unitary and T is upper triangular. For s = 1, ..., r,

j = 2, ...,m, let

vs,j := (1,q∗
sM

j,2[Gls]qs, . . . ,q
∗
sM

j,nj [Gls]qs). (4.2.5)

If the noises are big, it may have complex eigenvalue pairs, qs maybe complex and

the above vectors vs,j maybe complex. In computational practice, we can choose

the real part to get a real tensor approximation. Denote the real part of vs,j by

v̂s,j
real. After they are obtained, we solve the linear least squares problem

min
z1,...,zr∈Rn1

∥∥∥∥ r∑
s=1

zs ⊗ vs,2
real ⊗ vs,3

real ⊗ ...⊗ vs,m
real −M

∥∥∥∥2. (4.2.6)

Let (v1,1,v2,1, ...,vr,1) be optimal ones for the least squares problem (4.2.6). Then

we consider the tensor

X gp :=
r∑

s=1

vs,1 ⊗ vs,2
real ⊗ ...⊗ vs,m

real. (4.2.7)

It can be used as an initial point for solving the nonlinear optimization

min
us,j∈Rnj

∥∥∥∥ r∑
s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m −M
∥∥∥∥2. (4.2.8)

By solving (4.2.8), one can improve the quality of the rank-r approximating tensor

X opt. Finally, we get the projection matrices P1, . . . , Pm as in (4.1.5).

The above can be summarized as the following algorithm.

56

Algorithm 4.2.1. (A generating polynomial method for TCCA)

Input: a multi-view data set {(yi,1, . . . ,yi,m)}Ni=1 and an approximating rank r ≤ n1.

Step 1. Generate tensor M ∈ Rn1×···nm as in (4.1.6).

Step 2. Solve the linear least squares (4.2.2) of tensor M for an optimizer Gls.

Step 3. Choose generic ξj,k ∈ R obeying the standard normal distribution and for-

mulate M [ξ,Gls] as in (4.2.3). Compute the Schur Decomposition (4.2.4).

Step 4. For s ∈ 1, ..., r and j ∈ 2, ...,m, compute vs,j as in (4.2.5) and keep its real

part only (vs,j = real(vs,j)). Solve (4.2.6) for optimal solution (v1,1,v2,1, ...,vr,1).

Step 5. Compute an improved solution us,j as in

min
us,j∈Rnj

∥∥∥∥ r∑
s=1

us,1 ⊗ us,2 ⊗ ...⊗ us,m −F
∥∥∥∥2.

Output: The matrices Pj, . . . , Pm as in (4.1.5).

When F is a rank-r tensor, Algorithm 4.2.1 should give a rank-r decomposi-

tion for F . When F is close to a rank-r tensor, Algorithm 4.2.1 is expected to give

a good rank-r approximation. An interesting future work is to study the stability

analysis.

4.3 Numerical Experiments on Real Data

We implement our proposed Algorithm 3 in MATLAB and run numerical ex-

periments in MATLAB 2020b on a workstation with Ubuntu 20.04.2 LTS, Intel®

Xeon(R) Gold 6248R CPU @ 3.00GHz and memory 1TB. We evaluate our algo-

rithm for multi-view feature extraction by comparing it with baseline methods on

two real data sets.

Data description and experimental setup

Two image data sets are used in this experiment: Caltech101-7 [38] and

Scene15 [35], we apply six feature descriptors to extract features of views includ-

ing centrist [60], gist [49], lbp [48], histogram of oriented gradient (hog), color

57

histogram (ch), and sift-spm [35]. Note that Scene15 consists of gray images, so

ch is not used. The statistics of the two multi-view data sets are summarized in

Table 4.1.

Table 4.1: Data sets used in the experiments.
Data set samples class centrist gist lbp hog ch sift-spm

Caltech101-7 1474 7 254 512 1180 1008 64 1000
Scene15 4310 15 254 512 531 360 - 1000

As our main focus is on data sets with more than two views, our proposed

algorithm is evaluated by comparing with multiset CCA (mcca) [59] and tensor

CCA using ALS (als) [41]. For each data, we first apply PCA to each view to

reduce the input dimension to 20 so that the constructed tensors can be properly

handled by tensor-based methods. And then, we split the data into training and

testing sets with a predefined training ratio. All compared methods are run on the

training data to get the projection matrix of each view for a given dimension of

the common space (or rank). To report the testing accuracy, we apply the learned

projection matrix to both training and testing sets of each view, concatenate the

projected features of all views, train linear support vector classifier (SVC) [5] on

training data and evaluate on testing data. The classification accuracy is used as

the evaluation metric. The regularization parameter of the linear SVC is tuned

in {0.01, 0.1, 1, 10, 100}. The experiments of compared methods on each data set

are repeated ten times with randomly sampled training and testing sets, and the

mean accuracy with standard deviation on the ten experiments are reported for

compared methods.

Experiments on Caltech101-7

We tested the overall performance of three compared methods on Caltech101-

7 with all combinations of more than two views. For six views, there are 42

combinations in total. This experiment is conducted on 30% training data and 70%

testing data by running three compared methods on each combination separately

with the size of the common space (or rank) varied from 3 to 20. The experiment

is repeated 10 times on randomly splits drawn from the input data, and the mean

accuracies with standard deviations of three compared methods are reported in

Table 4.2.

58

0.1 0.2 0.3 0.4 0.5 0.6 0.7

training ratio

86

87

88

89

90

91

92

93

A
c
c
u
ra

c
y
 (

in
 p

e
rc

e
n
ta

g
e
)

sift-spm+ch+hog+lbp+gist+centrist

als

ours

mcca

4 6 8 10 12 14 16 18 20

rank

65

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

sift-spm+ch+hog+lbp+gist+centrist

als

ours

mcca

(a) (b)

Figure 4.1: Sensitivity analysis of compared methods with six views on data
Caltech101-7. (a) varying the size of common space on 30% training data; (b)
varying the training ratios over common spaces from 3 to 20.

From Table 4.2, we have the following observations: (i) als outperforms mcca

on three views, but underperforms mcca for more than three views; (ii) Our method

outperforms both als and mcca consistently over all 42 combinations. These re-

sults imply that tensor-based methods can outperform mcca, when a good tensor

approximation solver like our proposed algorithm is applied.

4 6 8 10 12 14 16 18 20

rank

60

65

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

centrist+ch+sift-spm

als

ours

mcca

4 6 8 10 12 14 16 18 20

rank

60

65

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

centrist+lbp+hog+ch

als

ours

mcca

4 6 8 10 12 14 16 18 20

rank

65

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

centrist+gist+lbp+hog+ch

als

ours

mcca

4 6 8 10 12 14 16 18 20

rank

55

60

65

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

gist+hog+ch

als

ours

mcca

4 6 8 10 12 14 16 18 20

rank

65

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

centrist+gist+ch+sift-spm

als

ours

mcca

4 6 8 10 12 14 16 18 20

rank

65

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

centrist+gist+hog+ch+sift-spm

als

ours

mcca

Figure 4.2: Experimental results of compared methods on Caltech101-7 with three,
four and five views over 30% training data.

We further investigate the impact of compared methods in terms of the varied

ranks and the training ratios. In Figure 4.1(a), the mean accuracy of testing data

59

Table 4.2: Mean accuracy and standard deviation of three compared methods on
42 data sets generated from Caltech101-7 over 10 random splits with 30% training
data and rank 20.

views als ours mcca
centrist+gist+lbp 95.23 ± 0.69 95.30 ± 0.73 90.74 ± 0.88
centrist+gist+hog 95.26 ± 0.58 95.32 ± 0.46 90.28 ± 0.96
centrist+gist+ch 92.47 ± 2.21 93.86 ± 0.96 90.66 ± 1.25
centrist+gist+sift-spm 95.56 ± 0.75 95.93 ± 0.39 92.59 ± 0.84
centrist+lbp+hog 94.95 ± 0.63 95.19 ± 0.65 90.09 ± 0.75
centrist+lbp+ch 92.63 ± 0.56 92.97 ± 0.65 90.06 ± 1.04
centrist+lbp+sift-spm 94.82 ± 0.75 95.15 ± 0.71 91.59 ± 0.71
centrist+hog+ch 91.29 ± 1.14 92.62 ± 1.07 89.79 ± 0.68
centrist+hog+sift-spm 93.46 ± 1.34 93.86 ± 1.27 91.15 ± 0.55
centrist+ch+sift-spm 90.24 ± 1.83 92.29 ± 0.94 88.99 ± 0.33
gist+lbp+hog 95.49 ± 0.92 95.63 ± 0.82 90.25 ± 0.85
gist+lbp+ch 93.04 ± 1.11 93.99 ± 0.60 90.93 ± 1.29
gist+lbp+sift-spm 95.71 ± 1.16 96.02 ± 0.60 92.41 ± 0.92
gist+hog+ch 90.86 ± 1.74 91.87 ± 1.92 89.60 ± 0.74
gist+hog+sift-spm 93.02 ± 0.58 93.05 ± 0.52 91.03 ± 0.47
gist+ch+sift-spm 90.14 ± 2.19 92.73 ± 1.09 90.25 ± 0.86
lbp+hog+ch 91.65 ± 1.51 92.98 ± 1.12 89.88 ± 0.67
lbp+hog+sift-spm 93.18 ± 0.77 94.16 ± 1.10 91.21 ± 0.50
lbp+ch+sift-spm 90.48 ± 1.61 92.33 ± 1.10 89.09 ± 0.46
hog+ch+sift-spm 88.35 ± 3.82 91.93 ± 0.94 90.07 ± 0.87
centrist+gist+lbp+hog 92.14 ± 3.41 95.12 ± 1.03 89.14 ± 0.70
centrist+gist+lbp+ch 89.25 ± 2.64 92.41 ± 1.93 90.17 ± 0.87
centrist+gist+lbp+sift-spm 90.05 ± 3.10 94.60 ± 1.25 90.64 ± 0.88
centrist+gist+hog+ch 84.91 ± 4.33 93.01 ± 2.05 89.63 ± 0.53
centrist+gist+hog+sift-spm 88.32 ± 4.01 92.94 ± 0.81 90.42 ± 0.46
centrist+gist+ch+sift-spm 85.30 ± 3.53 92.90 ± 1.94 90.97 ± 0.63
centrist+lbp+hog+ch 87.09 ± 2.72 92.52 ± 1.78 89.29 ± 0.55
centrist+lbp+hog+sift-spm 87.00 ± 5.27 93.30 ± 2.36 89.82 ± 0.58
centrist+lbp+ch+sift-spm 84.64 ± 3.74 92.21 ± 1.96 89.21 ± 0.90
centrist+hog+ch+sift-spm 84.65 ± 3.19 92.31 ± 1.33 90.02 ± 0.51
gist+lbp+hog+ch 86.50 ± 6.35 92.76 ± 1.41 89.11 ± 0.38
gist+lbp+hog+sift-spm 87.96 ± 2.63 93.86 ± 1.21 89.96 ± 0.47
gist+lbp+ch+sift-spm 85.25 ± 3.50 91.93 ± 1.98 90.83 ± 0.60
gist+hog+ch+sift-spm 81.57 ± 5.98 90.82 ± 2.06 90.53 ± 0.54
lbp+hog+ch+sift-spm 83.20 ± 4.93 91.59 ± 1.65 89.89 ± 0.68
gist+lbp+hog+ch+sift-spm 84.38 ± 3.13 91.32 ± 2.46 89.76 ± 0.61
centrist+lbp+hog+ch+sift-spm 86.11 ± 3.49 91.80 ± 2.32 89.48 ± 0.73
centrist+gist+hog+ch+sift-spm 86.67 ± 4.70 92.51 ± 1.11 90.12 ± 0.60
centrist+gist+lbp+ch+sift-spm 88.70 ± 3.73 93.07 ± 1.35 89.96 ± 0.87
centrist+gist+lbp+hog+sift-spm 85.31 ± 4.66 94.17 ± 1.37 89.25 ± 0.47
centrist+gist+lbp+hog+ch 85.75 ± 4.66 92.48 ± 2.10 89.00 ± 0.49
sift-spm+ch+hog+lbp+gist+centrist 87.91 ± 2.98 90.09 ± 2.95 89.33 ± 0.65

60

obtained by three compared methods varies when the training ratio increases from

10% to 70%. Due to the complexity of the tensor approximation problem, both als

and our method show larger fluctuations than that of mcca when the training ratio

increases. However, our method consistently outperforms both als and mcca over

all tested training ratios. In Figure 4.1(b), we show the mean accuracy of compared

methods on 10 random splits with 30% training data by varying rank from 3 to

20 on six views. In addition, we show the mean accuracy of compared methods

on varied ranks on 30% with respect to combinations of different views in Figure

4.2. All these results demonstrate a similar trend with respect to testing accuracy

when the rank increases from 3 to 20: mcca shows better performance on small

ranks, but our method outperforms both mcca and als on large ranks, and overall

our method obtains the best performance over all tested ranks. From Figure 4.1,

we can see that our model on 30% training data shows the worst results comparing

to other training ratios. This implies that the results in Figure 4.1 show the worst

results of our method, which still outperforms other two methods as shown in

Figure 4.2.

Experiments on Scene15

The experiments same as in section 4.3 are performed on data Scene15. In

Table 4.3, tensor-based methods including both als and ours outperform mcca on

all view combinations. Our method outperforms als on three and four views, while

it is competitive to als on five views. Figure 4.3 demonstrates the sensitivity of

compared methods by varying the rank and the training ratios. On data Scene15,

the tensor-based methods are consistently better than mcca over all tested training

ratios, while our method outperforms als on large ranks and is competitive on small

ranks. These results are consistent with the observations on Caltech101-7 in section

4.3, especially on relatively large ranks.

61

Table 4.3: Mean accuracy and standard deviation of two compared methods on 16
data sets generated from Scene15 over 10 random splits with 30% training data
and rank 20.
views als ours mcca
centrist+gist+lbp 65.91 ± 1.45 66.66 ± 1.12 57.01 ± 0.81
centrist+gist+hog 67.21 ± 1.15 67.73 ± 1.08 58.47 ± 0.88
centrist+gist+sift-spm 70.40 ± 1.48 72.68 ± 1.70 64.34 ± 1.65
centrist+lbp+hog 60.29 ± 1.80 62.32 ± 1.56 53.63 ± 0.72
centrist+lbp+sift-spm 60.30 ± 1.83 65.43 ± 1.45 58.10 ± 1.46
centrist+hog+sift-spm 63.05 ± 1.98 67.45 ± 1.24 58.11 ± 1.24
gist+lbp+hog 61.08 ± 1.33 62.86 ± 1.20 54.20 ± 0.74
gist+lbp+sift-spm 65.82 ± 1.68 68.88 ± 1.30 59.23 ± 1.42
gist+hog+sift-spm 63.12 ± 3.94 67.13 ± 2.28 54.71 ± 1.76
lbp+hog+sift-spm 57.08 ± 2.54 60.58 ± 1.32 51.01 ± 2.05
centrist+gist+lbp+hog 62.33 ± 2.21 63.83 ± 2.11 51.07 ± 0.72
centrist+gist+lbp+sift-spm 61.96 ± 3.02 65.34 ± 1.62 55.56 ± 1.08
centrist+gist+hog+sift-spm 62.41 ± 3.08 63.67 ± 3.70 58.69 ± 1.19
centrist+lbp+hog+sift-spm 54.63 ± 3.26 57.98 ± 2.37 51.77 ± 1.57
gist+lbp+hog+sift-spm 58.93 ± 3.18 61.28 ± 2.26 50.05 ± 1.15
centrist+gist+lbp+hog+sift-spm 60.72 ± 2.87 60.35 ± 3.33 49.11 ± 1.49

4 6 8 10 12 14 16 18 20

rank

30

35

40

45

50

55

60

65

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

gist+lbp+hog+sift-spm

als

ours

mcca

4 6 8 10 12 14 16 18 20

rank

30

35

40

45

50

55

60

65

70

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

centrist+gist+lbp+sift-spm

als

ours

mcca

4 6 8 10 12 14 16 18 20

rank

30

35

40

45

50

55

60

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

centrist+lbp+hog+sift-spm

als

ours

mcca

0.1 0.2 0.3 0.4 0.5 0.6 0.7

training ratio

46

48

50

52

54

56

58

60

62

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

gist+lbp+hog+sift-spm

als

ours

mcca

0.1 0.2 0.3 0.4 0.5 0.6 0.7

training ratio

52

54

56

58

60

62

64

66

68

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

centrist+gist+lbp+sift-spm

als

ours

mcca

0.1 0.2 0.3 0.4 0.5 0.6 0.7

training ratio

48

50

52

54

56

58

60

A
c
c
u

ra
c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

centrist+lbp+hog+sift-spm

als

ours

mcca

Figure 4.3: Sensitivity analysis of compared methods with four views on data
Scene15. (top row) varying the size of common space on 30% training data; (bot-
tom row) varying the training ratios over common spaces from 3 to 20.

62

4.4 Conclusion

In this chapter, we propose to use the so-called generating polynomials [43]

for computing approximations for given tensors. First, we estimate generating

polynomials by solving linear least squares. Second, we find their approximately

common zeros, which can be done by computing Schur decompositions. Third,

we construct a approximation from those zeros, by solving linear least squares.

Our main conclusion is that if the tensor to be approximated is close enough to

a one, then the constructed tensor is a good enough approximation. The proof

is built on perturbation analysis of linear least squares and Schur decompositions.

The proposed methods can also be applied to compute approximations efficiently,

especially for large scale tensors.

The proposed approximation method using generating polynomials is applied

to solve the problem of tensor canonical correlation analysis (TCCA). First, we re-

formulate TCCA as the approximation problem over the high-order correlation

tensor of multi-view input data. Second, the real part of the solution obtained

by our proposed approximation method is proved to be a good initial solution to

existing TCCA methods. Finally, we evaluate our TCCA algorithm on two real

data sets for multi-view feature extraction by comparing it with baselines. Experi-

mental results show that our TCCA method consistently outperforms TCCA with

ALS and the pairwise correlation approach in terms of different number of views.

Chapter 4 in full, is a reprint of the material as it appears in Pacific Journal

of Optimization 2023 [45]. The dissertation author coauthored this paper with Nie,

Jiawang and Wang, Li.

63

Bibliography

[1] Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus
Telgarsky. Tensor decompositions for learning latent variable models, 2014.

[2] Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical
correlation analysis. In International conference on machine learning, pages
1247–1255. PMLR, 2013.

[3] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaragha-
van. Smoothed analysis of tensor decompositions, 2014.

[4] Zehong Cao, Yu-Cheng Chang, Mukesh Prasad, M. Tanveer, and Chin-Teng
Lin. Tensor decomposition for eeg signals retrieval. 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), Oct 2019.

[5] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector
machines. ACM transactions on intelligent systems and technology (TIST),
2(3):1–27, 2011.

[6] Françoise Chatelin. Eigenvalues of Matrices. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, 2012.

[7] Luca Chiantini, Giorgio Ottaviani, and Nick Vannieuwenhoven. Effective cri-
teria for specific identifiability of tensors and forms. SIAM Journal on Matrix
Analysis and Applications, 38(2):656–681, Jan 2017.

[8] Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin
Zhao, Cesar Caiafa, and HUY ANH PHAN. Tensor decompositions for sig-
nal processing applications: From two-way to multiway component analysis.
IEEE Signal Processing Magazine, 32(2):145–163, Mar 2015.

[9] Pierre Comon. Tensor decompositions, state of the art and applications. arXiv
preprint arXiv:0905.0454, 2009.

[10] Pierre Comon and Lek-Heng Lim. Sparse representations and low-rank tensor
approximation. 2011.

[11] Fengyu Cong, Qiu-Hua Lin, Li-Dan Kuang, Xiao-Feng Gong, Piia Astikainen,
and Tapani Ristaniemi. Tensor decomposition of eeg signals: A brief review.
Journal of Neuroscience Methods, 248:59 – 69, 2015.

64

[12] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms.
An Introduction to Computational Algebraic Geometry and Commutative Al-
gebra. Springer Cham, 2013.

[13] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best
rank-1 and rank-(r 1, r 2,..., rn) approximation of higher-order tensors. SIAM
journal on Matrix Analysis and Applications, 21(4):1324–1342, 2000.

[14] Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the
best low-rank approximation problem. SIAM Journal on Matrix Analysis and
Applications, 30(3):1084–1127, 2008.

[15] James W. Demmel. Applied Numerical Linear Algebra. SIAM, January 1997.

[16] J. E. Dennis and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Society for Industrial and Applied
Mathematics, 1996.

[17] Ignat Domanov and Lieven De Lathauwer. On the uniqueness of the canon-
ical polyadic decomposition of third-order tensors—part i: Basic results and
uniqueness of one factor matrix. SIAM Journal on Matrix Analysis and Ap-
plications, 34(3):855–875, 2013.

[18] Ignat Domanov and Lieven De Lathauwer. Canonical polyadic decomposition
of third-order tensors: Reduction to generalized eigenvalue decomposition.
SIAM Journal on Matrix Analysis and Applications, 35(2):636–660, Jan 2014.

[19] Ignat Domanov and Lieven De Lathauwer. Generic uniqueness conditions for
the canonical polyadic decomposition and indscal. SIAM Journal on Matrix
Analysis and Applications, 36(4):1567–1589, 2015.

[20] Ignat Domanov and Lieven De Lathauwer. Canonical polyadic decomposition
of third-order tensors: relaxed uniqueness conditions and algebraic algorithm,
2016.

[21] Shmuel Friedland and Giorgio Ottaviani. The number of singular vector tuples
and uniqueness of best rank-one approximation of tensors. Foundations of
Computational Mathematics, 14(6):1209–1242, 2014.

[22] Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature survey of
low-rank tensor approximation techniques. GAMM-Mitteilungen, 36(1):53–78,
2013.

[23] Yu Guan, Moody T Chu, and Delin Chu. Convergence analysis of an svd-
based algorithm for the best rank-1 tensor approximation. Linear Algebra and
its Applications, 555:53–69, 2018.

[24] Bingni Guo, Jiawang Nie, and Zi Yang. Learning diagonal gaussian mixture
models and incomplete tensor decompositions, 2021.

65

[25] Alexandros Haliassos, Kriton Konstantinidis, and Danilo P. Mandic. Super-
vised learning for non-sequential data with the canonical polyadic decompo-
sition, 2020.

[26] David R Hardoon and John Shawe-Taylor. Sparse canonical correlation anal-
ysis. Machine Learning, 83(3):331–353, 2011.

[27] Hotelling Harold. Relations between two sets of variates. Biometrika,
28(3/4):321–377, 1936.

[28] Nikos Kargas and Nicholas D. Sidiropoulos. Supervised learning and canon-
ical decomposition of multivariate functions. IEEE Transactions on Signal
Processing, 69:1097–1107, 2021.

[29] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society
for Industrial and Applied Mathematics, 1995.

[30] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications.
SIAM review, 51(3):455–500, 2009.

[31] Joseph B. Kruskal. Three-way arrays: rank and uniqueness of trilinear de-
compositions, with application to arithmetic complexity and statistics. Linear
Algebra and its Applications, 18(2):95 – 138, 1977.

[32] Brett W. Larsen and Tamara G. Kolda. Practical leverage-based sampling for
low-rank tensor decomposition, 2020.

[33] Lieven Lathauwer. A link between the canonical decomposition in multilinear
algebra and simultaneous matrix diagonalization. SIAM J. Matrix Analysis
Applications, 28:642–666, 01 2006.

[34] Lieven Lathauwer and Bart De Moor. A multi-linear singular value decom-
position. Society for Industrial and Applied Mathematics, 21:1253–1278, 03
2000.

[35] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene categories. In
2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pages 2169–2178. IEEE, 2006.

[36] S. E. Leurgans, R. T. Ross, and R. B. Abel. A decomposition for three-way
arrays. SIAM Journal on Matrix Analysis and Applications, 14(4):1064–1083,
1993.

[37] S. E. Leurgans, R. T. Ross, and R. B. Abel. A decomposition for three-way
arrays. SIAM Journal on Matrix Analysis and Applications, 14(4):1064–1083,
1993.

66

[38] Fei-Fei Li, Rob Fergus, and Pietro Perona. Learning generative visual models
from few training examples: An incremental bayesian approach tested on 101
object categories. Computer vision and Image understanding, 106(1):59–70,
2007.

[39] Lek-Heng Lim and Pierre Comon. Multiarray signal processing: Ten-
sor decomposition meets compressed sensing. Comptes Rendus Mécanique,
338(6):311–320, 2010.

[40] Benjamin Lovitz and Fedor Petrov. A generalization of kruskal’s theorem on
tensor decomposition, 2021.

[41] Yong Luo, Dacheng Tao, Kotagiri Ramamohanarao, Chao Xu, and Yonggang
Wen. Tensor canonical correlation analysis for multi-view dimension reduc-
tion. IEEE transactions on Knowledge and Data Engineering, 27(11):3111–
3124, 2015.

[42] Kathleen R. Murphy, Colin A. Stedmon, Daniel Graeber, and Rasmus Bro.
Fluorescence spectroscopy and multi-way techniques. parafac. Anal. Methods,
5:6557–6566, 2013.

[43] Jiawang Nie. Generating polynomials and symmetric tensor decompositions,
2015.

[44] Jiawang Nie and Li Wang. Semidefinite relaxations for best rank-1 ten-
sor approximations. SIAM Journal on Matrix Analysis and Applications,
35(3):1155–1179, 2014.

[45] Jiawang Nie, Li Wang, and Zequn Zheng. Higher order correlation analysis
for multi-view learning, 2022.

[46] Jiawang Nie and Zi Yang. Hermitian tensor decompositions. SIAM Journal
on Matrix Analysis and Applications, 41(3):1115–1144, 2020.

[47] Allan Aasbjerg Nielsen. Multiset canonical correlations analysis and mul-
tispectral, truly multitemporal remote sensing data. IEEE transactions on
image processing, 11(3):293–305, 2002.

[48] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (7):971–987, 2002.

[49] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holis-
tic representation of the spatial envelope. International journal of computer
vision, 42(3):145–175, 2001.

[50] Anh-Huy Phan, Petr Tichavskỳ, and Andrzej Cichocki. Fast alternating ls
algorithms for high order candecomp/parafac tensor factorizations. IEEE
Transactions on Signal Processing, 61(19):4834–4846, 2013.

67

[51] John A. Rhodes. A concise proof of kruskal’s theorem on tensor decomposi-
tion. Linear Algebra and its Applications, 432(7):1818–1824, 2010.

[52] Eugenio Sanchez and Bruce R. Kowalski. Tensorial resolution: A direct tri-
linear decomposition. Journal of Chemometrics, 4, 1990.

[53] Igor Schafarevich. Basic algebraic geometry i—varieties in projective space,
1988.

[54] Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer. Optimization-
based algorithms for tensor decompositions: Canonical polyadic decompo-
sition, decomposition in rank-(l_r,l_r,1) terms, and a new generalization.
SIAM Journal on Optimization, 23(2):695–720, 2013.

[55] Bernd Sturmfels. Solving systems of polynomial equations. 2002.

[56] Simon Telen and Nick Vannieuwenhoven. A normal form algorithm for tensor
rank decomposition. ACM Trans. Math. Softw., 48(4), dec 2022.

[57] Viivi Uurtio, João M Monteiro, Jaz Kandola, John Shawe-Taylor, Delmiro
Fernandez-Reyes, and Juho Rousu. A tutorial on canonical correlation meth-
ods. ACM Computing Surveys (CSUR), 50(6):1–33, 2017.

[58] N. Vervliet, O. Debals, and L. De Lathauwer. Tensorlab 3.0 — numerical
optimization strategies for large-scale constrained and coupled matrix/tensor
factorization. In 2016 50th Asilomar Conference on Signals, Systems and
Computers, pages 1733–1738, 2016.

[59] Javier Vía, Ignacio Santamaría, and Jesús Pérez. A learning algorithm for
adaptive canonical correlation analysis of several data sets. Neural Networks,
20(1):139–152, 2007.

[60] Jianixn Wu and James M Rehg. Where am i: Place instance and category
recognition using spatial pact. In 2008 Ieee Conference on Computer Vision
and Pattern Recognition, pages 1–8. IEEE, 2008.

[61] Xinghao Yang, Liu Weifeng, Wei Liu, and Dacheng Tao. A survey on canonical
correlation analysis. IEEE Transactions on Knowledge and Data Engineering,
2019.

[62] Ya-xiang Yuan. Recent advances in numerical methods for nonlinear equations
and nonlinear least squares. Numerical Algebra, Control and Optimization, 1,
03 2011.

[63] Qingchen Zhang, Laurence T. Yang, Zhikui Chen, and Peng Li. An improved
deep computation model based on canonical polyadic decomposition. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 48(10):1657–1666,
2018.

68

