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Abstract 

Many large-scale scientific and engineering computations, e.g., some of the Grand Challenge 
problems [1], spend a major portion of execution time in their core loops computing band linear 
recurrences (BLR's). Conventional compiler parallelization techniques [4] cannot generate scalable 
parallel code for this type of computation because they respect loop-carried dependences (LCD's) 
in programs and there is a limited amount of parallelism in a BLR with respect to LCD's. For many 
applications, using library routines to replace the core BLR requires the separation of BLR from its 
dependent computation, which usually incurs significant overhead. In this paper, we present a new 
scalable algorithm, called the Regular Schedule, for parallel evaluation of BLR's. We describe our 
implementation of the Regular Schedule and discuss how to obtain maximum memory throughput in 
implementing the schedule on vector supercomputers. We also illustrate our approach, based on our 
Regular Schedule, to parallelizing programs containing BLR and other kinds of code. Significant 
improvements in CPU performance for a range of programs containing BLR implemented using 
the Regular Schedule in C over the same programs implemented using highly-optimized coded-in
assembly BLAS routines [11] are demonstrated on Convex C240. Our approach can be used both 
at the user level in parallel programming code containing BLR's, and in compiler parallelization of 
such programs combined with recurrence recognition techniques for vector supercomputers. 

keywords: band linear recurrences (BLR's), parallel evaluation of BLR's with resource constraints, programs 

with BLR's, parallel programming, vector supercomputer. 
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1 Introduction 

Systems of linear equations arise in many large-scale scientific and engineering computations such as some of the 

Grand Challenge problems [l, 16), e.g., computational fluid dynamics, weather forecasting, structural analysis, 

plasma physics, etc. Frequently, the discretization of partial differential equations in these computations result 

in band linear systems involving band linear recurrences (BLR's). These band linear systems consume the 

major portion of computing time in these computations [l]. Furthermore, a parallel program that preserves 

loop-carried dependences (LCD's) and contains BLR's is not scalable: the speedup obtained with such a program 

over its sequential counterpart is limited by a constant (usually very small) regardless of how many processors 

are used. As a result, not only solving these band linear systems is time-consuming but also a significant amount 

of resources, e.g., vector processors or processing elements (PE's) in massively parallel computers is wasted. 

Compiler parallelization techniques that respect LCD's [4] cannot turn the programs containing BL R's into 

scalable parallel ones. To compute these programs on parallel computers, special parallel algorithms are devised 

for some of them, e.g., recursive-doubling (19] for 1st-order LR's, modified cyclic reduction for 1st and 2nd

order LR's, cyclic reduction (22) for diagonally-dominant tridiagonal linear solver, "burn-at-both-ends" (12] for 

symmetric positive definite tridiagonal linear solvers. The most frequently used programs for solving band linear 

systems are written into library routines using the different methods mentioned above, e.g., BLAS routines in 

Vector Library on Convex and Scientific Library on Cray. However, three problems arise with using these library 

routines. First, many programs mix band linear systems and other code in the same main loops. Transforming 

these loops to facilitate invoking library routines will make the loops perform significantly worse than parallel 

programming these loops directly. The main reason is that separation of band linear code from the other code 

in the loop severely degrades locality of reference. Another reason is that the library routines conventionally 

destroy the input arrays to store intermediate and final results, which incurs the overhead of keeping multiple 

copies of input arrays for possible later use. Secondly, many other kinds of frequently used band linear programs, 

both standard and hybrid with other codes, are not covered by the library routines, and the number of such 

programs increases as more large-scale computations are created. It would be inefficient, (probably infeasible), 

to create a library routine for each application. Thirdly, none of those parallel programming methods is optimal 

(in terms of execution time) with resource constraints, e.g., with a fixed number of processors independent of 

the problem size. That is, there may exist a faster and more general parallel-programming method than the 

problem-specific methods for the band linear systems. 

Main Results: In this paper, we present a new scalable algorithm, called the Regular Schedule, for parallel 

evaluation of general BLR's (i.e., mth-order LR's form 2': 1). The schedule's regular organization of the com

putation for BLR greatly enhances its scalability and makes it extremely well suited for vector supercomputers 

and massively parallel computers. We describe our implementation of the Regular Schedules and discuss how to 

obtain maximum memory throughput in implementing the schedule using analytical and experimental methods 

on vector supercomputers (our experiments were performed on Convex C240). We also illustrate our approach, 
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based on our Regular Schedule, to parallelizing programs containing BLR and other kinds of code. Significant 

improvements in CPU performance for a range of programs containing BLR implemented using the Regular 

Schedule in C over the same programs implemented using highly-optimized coded-in-assembly BLAS routines 

[11] are demonstrated on Convex C240. Our approach can be used both by programmers in coding parallel 

programs containing BL R's and by compilers in automatic parallelization of such programs in conjunction with 

recurrence recognition techniques for vector supercomputers. 

The rest of the paper is organized as follows. Section 2 briefly reviews related work. Section 3 presents 

the Regular Schedule. Section 4 describes the implementation of the Regular Schedule and discusses how to 

obtain the maximum memory throughput on a vector supercomputer. Section 5 describes our approach based 

on the Regular Schedule to parallelizing programs containing BLR's intermixed with additional code. Section 

6 reports the timing results of several programs containing BLR implemented using the Regular Schedule with 

the same programs implemented using BLAS routines of VECLIB on Convex C240. Section 7 concludes this 

paper with some open problems and future work. 

2 Related Work 

Because of its important role in scientific computing, efficient evaluation of recurrence equations has been studied 

extensively for more than twenty years. The study of Uniform Recurrence Equations (UREs) was introduced 

by Karp, Miller and Winograd in (18] in 1967. Many algorithms in digital signal processing, numerical linear 

algebra, discrete methods for solving differential equations, and graph theory can be reformulated as UREs. 

Much research has been focused on identifying parallelism in UREs which led to efficient implementations 

in regular processor arrays [27, 28, 29]. For a comprehensive treatment of UREs and related work, see the 

dissertation of Roychowdhury [24]. All these works exploited parallelism with loop-carried dependences (LCD's) 

preseved. 

Linear recurrences (LRs) form one of the most important subclass of UREs. The linearity in LRs allows a 

higher degree of parallelism to be extracted from the LRs beyond preseving LCDs, while the non-linearity in 

general UREs makes it much harder to exploit parallelism beyond LCDs. Kogge and Stone (19) developed the 

recursive doubling technique for computing the first order linear recurrence system and defined some properties 

that extend applicability of their technique to a broader class of problems. Their technique assumes an unlimited 

number of processors. Chen, Kuck and Sameh comprehensively studied parallel evaluation of LR's and BLR's 

and reported an algorithm[6) for computing mth-order BLR's with a fixed number of processors. Hyafil and Kung 

[17] established a time bound for parallel evaluation of the Horner expression, which is equivalent to evaluating 

the last equation in a first-order LR, i.e., evaluating XN only without having to compute x1 , ... , XN-t, Note that 

the Horner expression only requires the final value of the last equation, while the BLR evaluation computes the 

solutions of all equations in the recurrences. Gajski [15) improved the time bound of [6] for computing BLR 

with resource constraints. Recently, Wang and Nicolau [33] further improved on Gajski's results for general 

BLR's (i.e., mth-order LR's) with resource constraints and in particular found the strict time-optimal schedules 
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for (i=i;i<=N;i++) for (i=i;i<=N;i++) { 

x [i] =c [i] +a [i] *x [i-1]; 

} 

(a) 

for ( j = i -m; j < i; j ++) 

x[i]=x[i]+a[i] [j]*x[j]; 

x [i] =x [i] +c [i] ; 

(b) 

Figure 1: (a) first-order linear recurrence code and (b) mth-order linear recurrence code. 

for computing 1st and 2nd-order LR's. 

Prefix sum is the simplest first-order linear recurrence, i.e., all coefficients in the recurrences equal 1 and 

no multiplication is needed. It was extensively studied in [21, 14, 30, 23). The strict time optimal schedule 

for computing parallel prefix sum with a fixed number of processors (independent of problem size) on CREW 

PRAM model was first published in [23). 

3 Regular Schedule-A Scalable Algorithm for BLR 

Definition 3.1 An mth-order linear recurrence system of N equations R(N, m) computes 

i-1 

x; =Ci+ L a;jXj, 0 < m < N, 1:::; i:::; N. 
j=i-m 

R(N, m) is called band linear recurrence (BLR) if m is a fixed number independent of the problem size N. 

To facilitate comparison with other algorithms, we assume that the first m values x1 through Xm of R(N, m) 

are given, and we thus have R(N, m) as follows. 

Xm Cm 

0 

The sequential program for the first and higher order linear recurrence can be written as shown in Figure 

1. Because of the loop-carried dependences, the two loops above cannot be parallelized into scalable parallel 

programs with LCD-preserving parallelization techniques. 

Given a BLR as shown in Figure 1 the idea of a scalable algorithm is to formulate BLR in terms of matrix 

chain multiplication. The associativity of matrix chain multiplication enables us to treat the problem as parallel 

prefix [22, 23), i.e., we can obtain scalable parallel programs by computing redundant look-ahead values and 

producing multiple final results in parallel. 
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Definition 3.2 (Matrix chain multiplication) The vectors throughout this paper are m + 1 dimensional. Let 

Xm = (xm Xm-1 ... Xt 1), initialized to (cm Cm-1 ... Ct 1), be the vector of initial values. Let ih = 
(ak,k-l ak,k-2 ... ak,k-m ck) be a vector of coefficients, and Xk = (xk-l Xk-2 ... Xk-m 1) a vector of 

results, /,; > m. Let e(j) be a vector with the jth element 1 and the rest O's for 1 ::; j ::; m + 1. Let 

Ak = (a[ e(~! e(~l ... e(~i-tJ ~~'+!)) be an (m + 1)-by-(m + 1) matrix. The computation of R(N, m) can be 

expressed in matrix chain multiplication, for m < k ::; N, 

Final value Xk is the first element of the resulting vector Xk. D 

Note that in Definition 3.2, 

( 1)(-T -T -T -T -T ) 
Xk-1 Xk-2 ... Xk-m ak e(t) e( 2 ) ... e(m- 2 ) e(m) 

(ih-1ii[ Xk-l Xk-2 · · · Xk-m+l 1) 

In the vector and matrix multiplication above, only the vector product ik_ 1a[ carries real computation, while 

the vector products of Xk-1e{, j = 1, 2, ... , m - 2, m, merely have its elements shifted one position right with 

second to last element Xk-m shifted out. 

The matrix chain multiplication in Definition 3.2 allows us to treat the parallel computation of R(N, m) 

in similar fashion to parallel prefix computation (23]. Different forms of matrix chain multiplication for BLR 

were used in (6, 17, 15, 33]. However, our Regular Schedule is new and different in its regular and periodic 

organization of the computation that uses the matrix chain multiplication. Algorithm 3.1 describes the generic 

Regular Schedule in terms of matrix chain multiplication for parallel computing R(N, m). It is also called Square 

Schedule as each iteration of its outermost loop produces p2 final results, where p is the number of processors. 

To facilitate presentation and analysis, Algorithm 3.1 can be understood (described) on a concurrent-read

exclusive-write (CREW) parallel machine model (PRAM). Issues of mapping the algorithm onto real vector 

supercomputers will be addressed in Section 4. A CREW PRAM machine is assumed to have p parallel 

processors interconnected with a global memory. Each operation is assumed to take a unit time. A memory 

location can be read simultaneously, i.e., broadcasting of data is allowed, but it can only be written by a single 

processor at a time. 

Algorithm 3.1 

Input: Matrix chain multiplication of R(N, m), Xk 
processors. 

Output: final results x1, x2, ... , XN. 

regular ...schedule-for J3LR ( N, m, p) 
1. for i = m + 2 to N step p2 do 
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2. for j = i to (i + p2 - p) step p do in parallel 
:3. for k=j to (j+p-2) do 
4. A.-= AkAk-1; 

end for 
end for 

5. for j = i - 1 to (i - 1 + p2 - p) step p do 
6. fork= 0 to (p- 1) do in parallel 
7. iJ+k = Xj-1AJ+k; 

end for 
end for 

end for 

0 

The outermost loop labeled "1" in Algorithm 3.1 partitions the problem R(N, m) into chunks of size p2 , 

called period, given p processors. Each iteration of the outermost loop labeled "1" computes p2 final values of a 

period, called current period. In an iteration of the outermost loop labeled "l", two inner-loops labeled "2" and 

"5" in sequence partition a period further into p sections of size p each, a section called a redundant tree. The 

first inner-loop labeled "2" computes redundant values: its outer-loop computes in parallel the redundant values 

in p sections of the current period and its inner-loop labeled "3" computes sequentially the redundant values 

in each redundant tree. The second inner-loop labeled "5" of the outermost loop computes the final values of 

the current period. Its outer-loop travels sequentially computing the final values of each of the p sections in the 

period, and its inner-loop labeled "6" (a do-all type of loop) computes all final values in a section in parallel. 

Example 3.1 Consider computing R(N, 2) on p = 4 processors for N = jp2 + 2 and j ;?: 1. The matrix chain 

multiplication for R(N, 2) can be written as follows, where 2 < k ~ N, 

(1) 

The computation tree for a period is shown in Figure 2. The outermost loop (labeled "1") in Algorithm 3.1 

iterates on periods of size p2 = 42 = 16 and an iteration produces all 16 final values (the X's in Figure 2) of 

a period in the following fashion. The first inner-loop (labeled "2") is a do-all loop; it sends all of its p = 4 

iterations, each computing p-1 redundant values of a redundant tree, to execute in parallel on p = 4 processors. 

For example, R4, Rs, R6 are the three matrices of redundant values on the first redundant tree in Figure 2. The 

innermost loop labeled "3" in the algorithm computes p - 1 = 3 redundant matrix multiplications sequentially, 

thus it takes the time for (p - 1) redundant matrix multiplications to complete the redundant computation in 

a period since the p = 4 redundant trees in a period are computed in parallel. 

The second inner-loop labeled "5" in Algorithm 3.1 computes all final values in a period using redundant 

values produced by the first inner-loop of the algorithm. Its outer-loop labeled "5" is a sequential loop, iterating 

on p = 4 redundant trees in a period, i.e., the second innermost loop labeled "6" produces the final results on 
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M3 M4 M5 M6 M7 M8 M9 MIO Ml 1 M12 Ml3 Ml4 M15 M16 M17 M18 

Figure 2: A period of the computation tree for 2nd-order LR on p = 4 processors. 

top of a redundant tree in parallel by computing a vector-by-matrix multiplication. Since there are p redundant 

trees in a period, the time for computing all final values in a period equals pTv-by-m (where Tv-by-m is the 

time (steps) for a vector-by-matrix multiplication). D 

The following theorem gives the time bound of the regular schedule when the number of processors p > m. 

For p ::; m, a direct application of the column-sweep algorithm (20) will perform the computation in time close 

to optimal. 

Theorem 3.1 Let N = jp2 + m, where j 2': 1. The regular schedule (Algorithm 3.1) computes R(N, m) on p 

processors, where p > m is a constant independent of N, in time 

N 2 m+ 1 
-((2m + 3m)- --(2m2 + m)). 
p 2p 

(2) 

Proof: The execution time of the algorithm for R(N, m) is the execution time of a period of size p2 multiplied 

by the number of periods in N. The computation of the results in a period consists of two phases. In the 

first phase, p processors compute in parallel operations specified by the p redundant trees and each processor 

sequentially multiplies (p - 1) coefficient matrices for p;::: m + 1, which takes m(2m + l)(p - (m + 1)/2) (this 

can be shown by induction on m). In the second phase, p processors compute in parallel p final results on top 

of each of the p redundant trees, which takes Tv-by-m = 2m steps (this can also be shown by induction on 

m). Since there are p redundant trees in a period, the second phase takes pTv-by-m = 2mp steps. Hence, for 

p;::: m+ 1, 

Therefore, 

Tp (period of size p2 ) (time for multiplying (p - 1) coefficient matrices) + pTv-by-m 

m(2m + l)(p- (m + 1)/2) + 2mp. 

Tp(regularschedulefor R(N, m)) (number of periods )Tp (period of size p2) 
N 
-z(m(2m + l)(p - (m + 1)/2) + 2mp) 
p 
N m+l 
-((2m2 + 3m) - -

2
-(2m2 + m)). 

p p 
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By Theorem 3.1, Algorithm 3.1 is scalable in terms of number of processors p. The regular schedule can be 

derived using similar techniques for deriving the Harmonic Schedule presented in (33]. Gajski's algorithm [15] 

achieves the same execution time as the Regular Schedule, under the model of concurrent-read-and-exclusive

write (CREW) parallel random access machine (PRAM), but uses a different formulation and organizes the 

computation differently. When mapped onto real machines, the Regular Schedule will perform better since 

it has better utilization of locality of reference. The algorithm for first-order LR in (7] reduces to the regular 

schedule only for first-order LR, but the blocked first-order formulation for mth-order LR ( m 2: 2) described in [7] 

differs from the regular schedule and has longer execution time. The Regular Schedule is not time-optimal under 

the CREW PRAivl model--both its execution time and program-space efficiency are inferior to many other 

schedules derived using Harmonic Schedule (33). However, its regular organization of the computation makes 

it extremely well suited in practice for vector supercomputers and massively parallel computers. Moreover, the 

fact that the Regular Schedule organizes the computation in periods of the same regular structure makes it a 

good choice for real-time applications (e.g., digital signal processing) where algorithms in (19, 6, 17, 15] do not, 

as will be explained in Section 6. 

4 Implementing the Regular Schedule on a Vector Computer 

Although the regular schedule is scalable, the real machine constraints (e.g., different styles of parallelism 

exploitation, memory access latency, inter-processor communications and operating system of the machines) 

may greatly affect the performance. This section presents our implementation of the regular schedule on a 

vector supercomputer and discusses how to obtain maximum memory throughput using both analytical and 

experimental methods. 

Our experiments were performed on Convex C240, installed on the campus of University of California at 

Irvine (UCI). Convex C240 is representative of a class of vector supercomputers such as Cray Y-MP, and Fujutsu 

VP's. 

Before discussing programming the regular schedule, we give an overview of relevant portion of Convex C240 

architecture [9)in Figure 3. Convex C240 is a shared memory MIMD vector parallel computer. It has 4 CPU's, 

each performing its own instruction stream, interconnected to a global main memory of upto 2 gigabytes (UCI 

installed 1 gigabytes) via the memory bus. Its memory has five ports allowing simultaneously accesses by all 4 

CPU's plus an I/O subsystem. Each CPU consists of an address/scalar processor (ASP) and a vector processor 

(VP). A VP uses 8 vector registers and 3 pipelined functional units to operate on data, a load/store unit, an 

arithmetic/logic unit and multiply unit. No data cache is provided in a VP. Each functional unit has its own 

micro controller to control the sequence of actions required to perform the instructions dispatched to it, and 

thus the 3 functional units may execute different instructions concurrently. Vector chaining is provided: once 

the result of an instruction has been written into the vector register file, another functional unit may select that 

vector register to be used as an operand for the instruction it is performing. Each vector register has 128 vector 
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CPUO CPU 1 CPU2 CPU3 

ASP ASP ASP ASP 

VP VP VP VP 

l}Jg[;J ITJ g [;] l}Jg[;J ITJ g [;] 
vector register vector register vector register vector register 

file file file file 

Global shared memory 

Figure 3: A programmer's overview of Convex C240 architecture. 

elements with each element having 64 bits. The main memory consists of a total of 32 independent memory 

banks. Memory interleaving is provided on the 32 memory banks 1 to support a pipelined access rate of one long 

word (64 bits) read/write cycle per clock. 

Implementing the regular schedule (Algorithm 3.1) on a vector computer with the architecture above involves 

mapping the processors in Algorithm 3.1 onto the processing elements of the vector computer and placing the 

data across the memory banks so as to obtain maximum memory throughput. In our mapping, a processor in 

Algorithm 3.1 corresponds to a vector register element in the vector processor. The pipelined functional units 

provide the major mechanism to exploit parallelism in programs in a vector processor and depend on the vector 

registers supplying data to be kept fully utilized. Moreover, the number of data elements to be fetched into 

a vector register (i.e., the vector length) can be specified and controlled in the source code. Thus the number 

of processing elements in a vector computer is equal to the number of vector processors multiplied by vector 

:register length. We shall map Algorithm 3.1 to up to 128 processing elements corresponding to a single vector 

processor. One can easily map our algorithm to multiple vector processors in the same fashion. However, this 

mapping does not mean that speedup on the order of ( (#of CPU's) x (vector registerlength)) can be obtained. 

In this paper, we are only concerned with parallel programming in high-level languages and performance tuning 

in source code. Issues such as utilization of chaining will be handled by the Convex compiler. 

With this mapping scheme, it seems intuitive that using full vector register length 128, i.e., mapping our 

algorithm to 128 processing elements, would yield the best performance. However, such intuition is deceiving, 

because of a special property of our algorithm and memory interleaving. The question of choosing the optimal 

register length will be addressed in the remainder of this section. 

1The degree of memory interleaving is thus 32. 
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As an example, the portion of the source code in Convex C of the regular schedule for 2nd-order LR is 

given below. The labels corresponding to the labels in Algorithm 3.1 are added for convenience. The coefficient 

matrices are stored in a sparse format. Referring to Equation 1 of R(N, m) in Example 3.1, coefficients ak,k-2 

(those in the top row of the coefficient matrices) are stored in array aQ, coefficients ak,k- l (those in the second 

row of the coefficient matrices) are stored in array bQ, constants Ck are stored in array cQ. 

Our C code expands Algorithm 3.1 (which is expressed in terms of matrix multiplications) with arithmetic 

operations. The correspondence of Algorithm 3.1 to the C code for R(N, 2) is: loop 1 to L 1, loop 2 to L2. l and 

L2.2, loop 3 to L3, statement 4 to code blocks L4.l and L4.2, loop 5 to L5, loop 6 to L6 and statement 7 to 

L7. Note that loop 2 of Algorithm 3.1 is split into two loops L2.l and L2.2 in our C code. That is because in 

a chain multiplication of p > 2 coefficient matrices for R(N, 2), the first matrix multiplication has 5 arithmetic 

operations as expanded in code block L4. l and the second through (p - 1 )th matrix multiplications have 10 

arithmetic operations each as expanded in code block L4.2. In general, for a chain multiplication of p > m 

coefficient matrices for R(N, m), the jth ( 1 :S j :S m-1) has j(2m+ 1) operations respectively, and the (j + 1 )th 

through (p - l)th matrix multiplications have m(2m + 1) operations each. 

main 0 
{ 

/* 
* regular schedule for computing 2nd-order linear recurrence. 
*/ 

#define H1 1000000 /*problem size. */ 
#define RTH 121 /*redundant tree height. */ 
#define PI RTH*RTH /*period size. */ 
#define H2 H1/PI*PI+PI+2 /* padding to make array size a multiple of 

RTH*RTH plus 2. */ 
register int k, m, i, j, l; 
double x[H2], a[H2], b[N2], c[H2], ar[H2], br[H2]; 

...... /* initialize arrays a[H2], b[H2], c[H2]. */ 

x[1]=c [1]; 
x[2]=c[2]; 
Li: for (m=2; m<=N2; m+=PI) /*do computation of one period at a time. */ 

{ 

/* do simultaneously 1st matrix multiplications on p redundant trees 
in a period. vectorizable. */ 

L2.1: for (i=m+1; i<=m+1+RTH* (RTH-1); i+=RTH) 
{ 

L4.1: ar[i+1]=a[i]*a[i+1]+b[i+1]; 

} 

br[i+1]=b[i]*a[i+1]; 
c[i+1]=c[i]*a[i+1]+c[i+1]; 
a[i+1]=ar[i+1]; 
b[i+1]=br[i+1]; 

/*do sequentially 2nd thru (p-1)th coeff. matrix multiplications 
on p redundant trees in a period. */ 

L2.2: for (j=m+2; j<=m+RTH-1; j++) 
I• do in parallel jth coeff. matrix multiplications on p 

redundant trees in a period. vectorizable. •/ 
L3: for (k=j; k<=j+RTH• (RTH-1); k+=RTH) 

{ 

L4.2: ar[k+1]=a[k]•a[k+1]+a[k-1]•b[k+1]; 
br[k+1]=b[k]•a[k+1]+b[k-1]•b[k+1]; 
c[k+1]=c[k]•a[k+1]+c[k-1]•b[k+1]+c[k+1]; 
a [k+1] =ar [k+1] ; 
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} 

b[k+1]=br[K+1]; 
} 

/•do sequentially final results on p redundant trees in a period. •/ 
LS: for (i=m; i<=m+RTH• (RTH-1); i+=RTH) 

/• do in parallel final results on current redundant tree. 
vectorizable. •/ 

L6: for (1=1; l<=RTH; l++) 
L7: x[i+l]=c[i+l]+a[i+l]•x[i]+b[i+l]•x[i-1]; 

} 

As commented in our C code, loop L2. l, L3 and L6 can be vectorized by the Convex C parallelizing compiler. 

The symbolic constant RTH (as defined in the code) in these three loops will serve as the vector length. In Loop 

12.1 and 13, RTH will be used as the vector stride measured in long words of 8 bytes on Convex C200 Series 

(the stride is 8 x RTH measured in bytes as in Convex assembly code). That is because consecutive iterations in 

these two loops operate on data that reside in the global memory (RTH (mod 32)) banks apart (recall that 

each iteration does a coefficient matrix multiplication and all RTH iterations work on RTH redundant trees 

in parallel). Hence, RTH as the vector stride will determine how memory accesses are interleaved among the 

32 memory banks, which is a key factor affecting the performance. The following claim provides an analytical 

method for choosing an optimal vector stride based on the architectural features given. 

Claim 4.1 Given that 

1. the startup time for a vector load instruction is Tstartup (at the end of last cycle of the startup duration, 

the first element of the vector is available in the vector register), 

2. the time for a complete round 2 of accesses to memory banks is equal to Tround = lcm(~:·Sv), where Im 

is the degree of memory interleaving, Sv is vector stride measured in long word and lcm is least common 

multiple, and 

3. dis the minimum number of cycles between loads to the same memory bank, 

the time for a vector load with vector stride Sv and vector length Lv is 

Tvld Tstartv.p + (time for complete rounds of accesses) + (time for trailing incomplete round of accesses) 

(3) 

if Lv =: 0 

otherwise 

2If a VP has fetched in sequence data from memory banks Bsvmodim, B2svmodim, •.• , B(k-l)Svmodim such that 
kSv = Sv mod Im, then the VP is said to have done a complete round of accesses. 
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All time intervals are measured in machine clock cycles. Our architecture can achieve a rate of one vector 

element per cycle with full memory interleaving during pipelined access stage (for example, in Convex C200 

Series and several other vector computers). This claim is also applicable to vector store instructions. 

Proof: The idea of Formula 3 is self-explanatory from its first line. 

The term (max{d, Icm(r,7· 5 v)}- km(r,7· 5 v1) gives the waiting interval, explained as follows. When the time 

for issuing a round is less than the time for completing the first access in a round (i.e., d > Icm(r,7• 5 vl), the 

first fetch (thus the following fetches) in the successive round have to wait (max{d, Icm(r,7• 5 v)} - Icm(~·7' 5 ")) = 

(d - lcm(r,7· 8 v)) cycles for the current round to finish. Else, when d:::; Icm(r,7· 5
"), there is no waiting by the 

successive rounds, i.e., (max{d, Icm(~.m,Sv)}- lcm(r,m,Sv)) = O. 
v v 

The time for all complete rounds of accesses is equal to the number of complete rounds multiplied by the 

number of cycles taken by a complete round, given by 

minus a waiting interval because all complete rounds except for the first one may need a waiting interval, when 

l1cm~I:,sv)J 2: 1. Note that the startup cycles for a round (until the first data is available) are not counted 

above because they get overlapped. The time for the trailing incomplete round of accesses is given by 

(L - l LvSv J lcm(Im,Sv)) 
v 1cm(Im, Sv) Sv ' 

plus the waiting time when there is a preceding complete round. D 

vector load rate 
1 

0.8 

0.6 

0.4 

0.2 

The vector load rate 

O ~--2~0---4~0--~60~--8~0---1~0-0--1~2~0~ vector length 

Figure 4: The vector load rate (number of vector elements fetched per cycle) for a vector load instruc
tion vs. vector length for the regular schedule on Convex C240 based on our analysis. 

Plugging into Formula 3 the Convex C240 parameters [8], d = 8 cycles and Tstartup = 12 cycles and 

Lv = Sv =RTH, we get the time for a vector load. In Figure 4, we plotted the curve for vector load rate 

Lv/Tv1d, measured by number of vector elements fetched per cycle, for Lv of 8 through 128. Figure 4 indicates 

that when the vector length is a multiple of 32, 16 (but not of 32) and 8 (but not of 16 nor 32), the vector 

load rate drops to the lowest, the second lowest and the third lowest. The peak vector load rate is obtained 
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for Lv= 127. The curve also indicates that when accesses can be fully interleaved, the vector load rates are 

virtually indistinguishable in the range between Lv = 127 and Lu = 121. 

user CPU time time for parallel prefix 
0.2 
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0.15 
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0.05 
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0 
20 

user CPU time time for 1st-order LR 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
20 

user CPU time time for 2nd-order LR 

vector length 

Figure 5: The user CPU time (in seconds) vs. vector length for parallel prefix (top), 1st-order (middle) 
and 2nd-order (bottom) LR using Regular Schedule measured on Convex C240. 

The other important aspect that affects choosing the optimal vector length (or vector stride) is how the 

operating system (OS) works. ConvexOS (8), like UNIX, is not a real time system. Factors such as context 

switching, paging and interrupt servicing may also significantly affect the actual running time with different 

values of Lv. Since these factors are far too complex to model analytically, we have run experiments to determine 

the optimal vector register length. In Figure 5, we show the curves for user CPU time vs. vector lengths of 16 
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through 128 for 3 programs (parallel prefix, 1st-order LR and 2nd-order LR) with 100,000 equations on Convex 

C240. The experimental results in Figure 5 are consistent with our analytical results in that the user CPU time 

with vector strides of multiple of 32, 16 (but not 32) and 8 (but not 32 nor 16) were the longest, the second 

longest and the third longest respectively. All 3 programs obtained the shortest execution time with vector 

length 121. 

5 Programming Based on Regular Schedule 

For standard BLR's (band linear recurrences), the results in Section 3 and 4 can be applied directly to generate 

parallel programs for vector supercomputers. There are many application programs in which BLR's are mixed 

with other computations. The mixture of recurrence with other code poses more challenges in applying the 

Regular Schedule to it than to the standard BLR. Sometimes even recognition of the core recurrence becomes 

non-trivial. However, it is in this kind of situation that fully parallelizing the code will yield better performance 

than separating the core recurrence from other code and replacing it with some prescribed library routine. In 

this section, we outline our approach, based on the Regular Schedule, for parallelizing such programs in this 

section. Our approach can be used both for parallelizing programs with BLR's and for compiler parallelization 

of such programs in conjunction with recurrence recognition techniques. 

Our approach for parallelizing programs with BLR's utilizing the Regular Schedule consists of 3 steps: 

l. Recognizing the BLR's and the dependence of other computations on the core BLR structure m the 

program given; 

2. Construct the matrix chain multiplication for the BLR's and their dependent computation; 

3. Applying the Regular Schedule. 

There exist several methods for compiler recognition of recurrences in loops that can be used in Step 1 of our 

approach described above (since this is not the topic of this paper, we briefly overview these works). Banerjee 

et al [3] showed how the data dependence graph can be used to isolate recurrences so that pattern matching 

techniques can be applied. Ammarguellat and Harrison [2] put forth a method for recognizing recurrence 

relations automatically. Pinter and Pinter [25] gave a graph-rewriting technique for recognizing recurrences by 

unfolding loops. Tanaka [31] provided a framework for both recognition and vectorization of 1st-order linear 

recurrence. Callahan [5] gave an algebraic approach to combining bounded recurrences and generating parallel 

code. 

We illustrate our approach by going through it with Livermore Kernel 19- general linear recurrence equa

tions as shown below. 

main () 
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{ /•Livermore Kernel 19---general linear recurrence equations. •/ 
long argument , k , 1 , i, kb5i; 

} 

double sa[N], sb[N], b5[N], stb5; 

kb5i = O; 

ror ( k=O ; k<N ; k++ ) { 
b5[k+kb5i] = sa[k] + stb5•sb[k]; 
stb5 = b5[k+kb5i] - stb5; 

} 
ror ( i=1 ; i<=H ; i++ ) { 

k = 101 - i ; 

} 

b5[k+kb5i] = sa[k] + stb5•sb[k]; 
stb5 = b5[k+kb5i] - stb5; 

The first loop can be rewritten into an equivalent loop as follows: 

ror ( k=O ; k<N ; k++ ) { 
b5[k] = sa[k] + stb5[k]•sb[k]; 
stb5[k+1] = sa[k] + stb5[k]* (sb[k] - 1); 

} 

The scalar stb5 in the original loop has been privatized (13] into array stb5 [N+1], which enables us to recognize 

that the core recurrence is on the second statement in the new loop. We then construct a matrix chain 

multiplication for the core recurrence as follows: 

[stb5[k] l] = (stb5(1] 1] [ sb(l] -
1 

sa[l] 

where 1 < k :::; N + 1. 

0 l [ sb[2] - 1 
1 sa[2] ~ l [ sb[3] - 1 

sa[3] 
sb[k] - 1 

sa[k] 
(4) 

Once we have constructed the matrix chain multiplication for the core recurrence, we can easily apply our 

Regular Schedule to the chain for computing stb5 [k]. We organize the core recurrence with the computation 

around it according to locality of reference. The resulting loop is given as follows. 

main () 
{ 

/* 11/14/92 
* Livermore Loop Kernel LL19 ---- general linear recurrence equations 
*my parallel program uses the regular schedule. 
•I 

register int k, m, i, j, l; 
double sa[N2], sb[l2], b5[B2], stb5[12], ta[B2], tb[B2]; 

...... /* initialization or arrays. •/ 
ror (m=O; m<=BPI; m+=PI) 

{ 

ror (i=m+1; i<=m+1+PI-RTH; i+=RTH) 
{ 

ta[i]=sa[i]; tb[i]=sb[i]-1; 
} 

£or (j=m+2; j<=m+RTH; j++) 
ror (k=j; k<=j+PI-RTH; k+=RTH) 

{ 

} 

ta[k]= (sb[k]-1)•ta[k-1]+sa[k]; 
tb[k]= (sb[k]-O•tb[k-1]; 

15 



} 

} 

for (i=m; i<=m+PI-RTH; i+=RTH) 
for (1=1; l<=RTH; l++) 

{ 

} 

stb5[i+l]=tb[i+l]+stb5[i]+ta[i+l]; 
b5[i+l]=sa[i+l]+stb5[i+l]+sb[i+l]; 

/+ second loop. +/ 

Similarly, the second loop can be rewritten into an equivalent loop and the matrix chain multiplication for the 

new loop can be constructed, except that the induction variable in the second loop decrements. 

In our experiment, all 6 benchmarks containing BLR intermixed with other code (1st and 2nd-order infinite

impluse response filters, tridiagonal elimination below diagonal, general linear recurrence equations, tridiagonal 

and pentadiagonal linear system solver) were programmed using our approach as illustrated in this section and 

substantial gains in performance were obtained for all of them. We have preliminary evidence that our Regular 

Schedule can facilitate parallel programming code containing BLR intermixed with other code in an integrated 

fashion. Such a comprehensive treatment, where locality of reference is better observed, will gain us more 

performance than treating BLR and its dependent code in a loop separately, as evidenced by our experimental 

results. More detail of our approach is given in [34]. 

6 Results 

We show in Table 1 the CPU performance of benchmark programs containing BLR implemented using the 

BLAS routines of the Convex C240 VECLIB [11] in comparison with the same programs implemented using our 

regular schedule. The CPU performance was measured by the user CPU time in seconds on a single processor 

of Convex C240. Programs using Regular Schedule were implemented in Convex C. The BLAS routines [11] of 

the Convex C240 VECLIB are coded in assembly and highly optimized to the architecture details, and are the 

fastest linear algebra routines installed at UCI. In comparison, the corresponding routines in the Convex SCILIB 

(scientific library) perform noticeably worse (the Convex SCILIB consists of a collection of FORTRAN-callable 

routines identical in name and operation to those found in Cray Research Inc.'s UNICOS Math and Scientific 

Library V5.0 and optimized for the Convex family of supercomputers). 

The first column lists the names of the programs containing BLR. Each program was tested for problem 

sizes of 1 through 4 million (which covers the typical size of some large scale computations (1]). Double precision 

(long word of 8 bytes) floating-point numbers were used for all implementations. The column titled "BLAS 

routine used" lists the BLAS routines used in coding the benchmark programs. The columns titled "user CPU 

time of programs using BLAS" and "user CPU time of programs using regular schedule" give the user CPU time 

of programs using BLAS routines and using our regular schedule respectively. The last column calculates the 

improvements in performance of programs using the regular schedule over the same programs using BLAS. To 

ensure a fair comparison, each pair of implementations (one using BLAS and one using the Regular Schedule) 

for a benchmark were submitted to a single batch job in order to run them in the same system load. A reported 
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problem BLAS user CPU time user CPU time improvement= 

program size N routine of programs of programs (BLAS tune_ 1) 
Our time 

used using BLAS using reg. sch. x 100 

1M clflr1c 0.2717208 0.2:319761 17.133 
Livermore Kernel 11- 2M dflr le_ 0.5541139 0.4570663 21.233 
first sum 3M dflrlc_ 0.8211107 O.G857052 19.7.53 
(parallel prefix) 4M dflrlc_ 1.09989.56 0.9043271 21.633 

1M dflrlp_ 0.4384309 0.3741395 17.183 
1st-order variable 2M dflrlp_ 0.9645480 0. 7856930 22.763 
coefficient linear :3M dflrlp_ 1.4249004 1.1785394 20.90% 
recurrence 4M dflrlp_ 1.9071744 1..5490257 23.123 

1M dslr3_ 1.1777273 0.9467815 24.403 
2nd-order variable 2M dslr3_ 2.4 732273 1.9313057 28.0.53 
coefficient linear 3M dslr3_ 3.8393909 2.9726960 29.153 
recurrence 4M clslr3_ 5.146G683 3.9572833 30.053 

lM dflrlc_ 0.2715408 0.2361474 14.97% 
1st-order constant 2M dflrlc_ 0.5015998 0.4307869 16.443 
coefficient linear 3M dflrlc_ 0.8279383 0. 7015832 18.01 3 
recurrence 4M dflrlc_ 1.0907467 0.9137528 19.37 3 

lM dslr3_ 1.1059383 0.4539557 143.623 
2nd-order constant 2M dslr3_ 2.1921038 0.8800565 149.093 
coefficient linear 3M dslr3_ 3.3299868 1.3073640 154.713 
recurrence 4M dslr3_ 4.4565868 1.7151933 159.833 

IM dflrlc_ 0.4922081 0.3805755 29.333 
1st-order 2M dflrlc_ 0.9748273 0.7471519 30.473 
infinite-impulse response 3M dflrlc_ 1.4668962 1.1153408 31.523 
(IIR) digital filter 4M dflrlc_ 1.9444695 1.4618972 33.013 

lM dslr3_ 1.11110735 0.5384003 106.373 
2nd-order 2M dslr3_ 2.1928480 1.060955() 106.693 
infinite-impulse response 3M dslr3_ 3.2946523 1.5891628 107.323 
(IIR) digital filter 4M dslr3_ 4.3767078 2.1047936 107.943 

lM dflrlp_ 0.7994302 0.4843439 65.053 
Livermore Kernel 5- 2M dflrlp_ 1.7427578 1.0074353 72.983 
tridiagonal elimination 3M dflrlp_ 2.6141367 1.5208398 71.883 
below diagonal 4M dflrlp_ 3.4695270 2.0390878 70.153 

lM dflrlp_ 2.6560849 2.1149698 25.583 
Livermore Kernel 19- 2M dflrlp_ 5.5512174 4.3145384 28.663 
general linear 3M dflrlp_ 8.3932282 6.5352567 28.433 
recurrence equations 4M dflrlp_ 10.9961915 8.5021786 29.333 

lM dftsL 2.6014798 2.2223868 17.063 
tridiagonal linear 2M dftsL 5.1509300 4.3114304 19.473 
system solver 3M dftsL 7.8304542 6.5782649 19.033 
(positive definite) 4M dftsL 10.6140376 8.7562039 21.213 

lM dgbfa_, dgbsL 43.2499651 4.4920359 862.813 
pentadiagonal linear 2M dgbfa_, dgbsL 84.2986218 8.7232152 866.37% 
system solver 3M dgbfa_, dgbsL 128.134129 13.2161077 869.533 

4M dgbfa_, dgbsL 165.5952909 17.0281436 872.483 

Table 1: Performance measured by user CPU time (in seconds) of programs based on the regular 
schedules in comparison with programs based on BLAS routines of the Convex C240 VECLIB. 
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user CPU time for a program is the average of 100 runs. The vector length 121 for vector register was used in 

all our implementations. 

Our benchmarks are among the most frequently used code (or code segments) containing BLR in scientific 

and engineering computations (3 Livermore Kernels are also found to be such kind of code). Note that, for 

benchmark Livermore Kernel 11-first sum (i.e., parallel prefix), we compare the program implemented using 

BLAS routine "dftrlc_" with the program based on Regular Schedule, where "dftrlc_" computes 1st-order 

constant coefficient LR (which involves multiplication whereas parallel prefix does not). This is a fair comparison 

since the performance difference between involving multiplications and no multiplications is negligible because 

the multiplications and additions in "dftrlc_" are well chained. 

We used "dslr3_", the BLAS routine for 2nd-order variable coefficient LR, in implementing 2nd-order con

stant coefficient LR (which is the best that can be done using BLAS), since BLAS does not provide routines 

for constant coefficient LR beyond 1st-order. The performance gain (in range of 100%) of Regular Schedule 

over BLAS implementation for 2nd-order constant coefficient LR is large because "dslr3_" does not allow pre

computation of partial products of coefficient whereas both "dflrlc_" and Regular Schedule do. For the same 

reason, large performance gain (in range of 100%) of the Regular Schedule versus the BLAS implementation for 

2nd-order infinite-impluse response (IIR) filter was observed. 

The 1st-order and 2nd-order IIR filters are widely used m digital signal processing (DSP) applications. 

They contain 1st-order and 2nd-order constant coefficient LR's with some dependent code respectively. The 

Regular Schedule is extremely well suited for this type of real-time DSP computation, because the inputs to 

filters are usually grouped in windows to feed the parallel processors and this matches the period organization 

of the Regular Schedule. 

Our tridiagonal solver using Regular Schedule is based on the LU decomposition method [22], and is 

numerically stable for userful classes of tridiagonal matrices including positive definite and diagonally dominant. 

We compared our solver against the BLAS tridiagonal solver "dftsL". 

Our implementation of pentadiagonal solver using Regular Schedule is based on the parallel prefix formu

lation in [22] and is numerically stable for some useful classes of pentadiagonal matrices. We implemented the 

BLAS version using "dgbfa.!' and "dgbsl.!', which respectively factors a band coefficient matrix and solves the 

equation. Although the BLAS version is numerically stable for more classes of pentadiagonal matrices than the 

prefix formulation, the large performance gain (in the range of 800%) of the Regular Scheudle over the BLAS 

implementation makes it a feasible choice for the classes of matrices for which it is stable. 

We can observe the following two phenomena in the results. First, when the order of LR increases, the 

performance improvements of Regular Schedule over the BLAS routine also increase, as demonstrated by the 

variable coefficient LR's, constant coefficient LR's and infinite-impluse response (IIR) digital filters. The perfor

mance gain of Regular Schedule over BLAS implementation for higher order LR's would be larger, since BLAS 

does not provide routines for variable coefficient LR's beyond 2nd-order nor for constant coefficient LR's beyond 

1st-order, and thus higher order LR's have to be implemented using BLAS routines for 1st-order or 2nd-order 

LR's. Second, for benchmarks containing BLR and dependent code such as Livermore Kernel 5 and Liver-
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more Kernel 19, the performance improvements of Regular-Schedule-based over BLAS-based implementation 

are higher than for the standard BLR. 

vVe expect to have 5% to 10% more improvement in performance than reported here, if programs using 

Regular Schedule are coded in assembly. 

7 Conclusion and Future Work 

We have presented a new scalable algorithm, called the Regular Schedule, for parallel evaluation of general 

BLR's (i.e., mth-order BLR's for m 2 1). The schedule's regular organization of the computation for BLR 

makes it extremely well suited for vector supercomputers. Moreover, the fact that Regular Schedule organizes 

the computation in periods of the same regular structure makes it a good choice for real-time applications (e.g., 

digital signal processing), whereas algorithms presented in (19, 6, 17, 15] do not have such desirable properties. 

We described our implementation of the Regular Schedules and discussed how to obtain maximum memory 

throughput in implementing the schedule using analytical and experimental methods on vector supercomputers 

(our experiments were performed on Convex C240 vector supercomputer). We also illustrated our approach, 

based on our Regular Schedule for BLR, to parallelizing programs containing BLR and other kinds of code. 

Our approach enables a comprehensive parallelization of programs containing core BLR and dependent code, 

and thus allows a better utilization of locality of reference in programs than separate treatment of BLR code 

and its dependent code. Significant improvements in CPU performance for a range of programs containing BLR 

implemented using the Regular Schedule in C over the same programs implemented using highly-optimized 

coded-in-assembly BLAS routines (11] are demonstrated on Convex C240. Our approach can be used both at 

user level in parallel programming code containing BLR's and in compiler parallelization of such code combined 

with recurrence recognition techniques. 

The Regular Schedule (Algorithm 3.1) is scalable in terms of p, the number of processors. When mapped 

to vector supercomputers, it is also scalable in terms of both number of vector processors and vector register 

length. We have demonstrated this for a single vector processor in this paper. Note that implementations of 

Regular Schedule on a single vector processor does not require synchronization since it operates in SIMD mode. 

For multiple vector processors operating in SIMD mode, if r is the number of vector processors and s is the 

vector register length in a vector processor, then the time bound (as stated in Theorem 3 .1) of the Regular 

Schedule holds with p = rs. Extending Regular Schedule to MIMD multiple vector processors will involve 

synchronization, an issue which we are currently investigating. Future work also includes adapting Regular 

Schedule onto massively parallel machines. 

Since we have converted BLR to the problems of parallel prefix by rewritting them in terms of matrix 

chain multiplication, the numerical properties of Regular Schedule are critical. Recent results (32] on numerical 

properties of parallel algorithms for LR's provide evidence for the numerical stability of our Regular Schedule. 

The results in (32] states that the parallel schedule for LR's by Sameh and Brent(26] using unlimited resources is 

equivalent to the best sequential algorithm for LR's in numerical stability. The precise analysis of the numerical 
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properties of Regular Schedule is beyond the scope of this paper and is left for future work. 
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