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Abstract

From Linked and Knotted Plasma, Electromagnetic, and
Gravitational Radiation to Shockwaves on Rotating Black

Holes

Joseph M. Swearngin

Building off senior and master thesis work, we present a class of topological

plasma configurations characterized by their toroidal and poloidal winding num-

bers, nt and np, respectively. The case of nt = 1 and np = 1 corresponds to the

Kamchatnov-Hopf soliton, a magnetic field configuration everywhere tangent to

the fibers of a Hopf fibration so that the field lines are circular, linked precisely

once, and form the surfaces of nested tori. We show that for nt ∈ Z+ and np = 1,

these configurations represent stable, localized solutions to the magnetohydro-

dynamic equations for an ideal incompressible fluid with infinite conductivity.

Furthermore, we extend our stability analysis by considering a plasma with finite

conductivity and estimate the soliton lifetime in such a medium as a function of

the toroidal winding number.

Torus knot topology is also inherent in electromagnetic and gravitational radi-

ation. We show this by constructing spin-N fields based on the elementary states

of twistor theory. The twistor functions corresponding to the elementary states ad-

mit a parameterization in terms of the torus knots’ poloidal and toroidal winding

x



numbers, allowing one to choose the degree of linking or knotting of the associ-

ated field configuration. We describe the topology of the gravitational fields and

their physical interpretation in terms of their tidal and frame drag phenomenol-

ogy. Using the gravito-electromagnetic formalism, we show that the torus knot

structure is exhibited in the tendex and vortex lines for the analogous linearized

gravitational solutions.

We extend the definition of hopfions to include a larger class of spin-h fields

and use this to classify the electromagnetic and gravitational hopfions of different

algebraic types. The fields are constructed through the Penrose contour integral

transform; thus, the singularities of the generating functions are directly related to

the geometry of the resulting physical fields. We discuss this relationship and how

the topological structure of the fields is related to the Robinson congruence. Since

the topology appears in the lines of force for both electromagnetism and gravity,

the gravito-electromagnetic formalism is used to analyze the gravitational hopfions

and describe the time evolution of their tendex and vortex lines. We thus obtain

similar configurations based on the same topological structure but varying spin-h

algebraic types. The null and type N fields propagate at the speed of light, while

the non-null and type D fields radiate energy outward from the center. Finally,

we discuss the type III gravitational hopfion, which has no direct electromagnetic

analog, but find that it still exhibits some characteristic features common to the

other hopfion fields.
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In the complete non-linear theory we present an exact solution of Einstein’s

equation that describes the gravitational shockwave of a massless particle on the

horizon of a Kerr-Newman black hole—generalizing the Dray-’t Hooft solution to

the case of a rotating background. The back-reacted metric is of the generalized

Kerr-Schild form and is Type II in the Petrov classification. We show that if the

background tetrad is aligned with shear-free null geodesics, and the background

Ricci tensor satisfies a simple condition, all nonlinearities in the perturbation will

drop out of the curvature scalars. We reformulate Einstein-Hilbert gravity in the

first-order formalism of Elie Cartan and find that the Riemann curvature tensor

is the Yang-Mills gauge curvature of a local Lorentz group gauge connection. We

derive and make heavy use of the method of spin coefficients (the Newman-Penrose

formalism) in its compacted form (the Geroch-Held-Penrose formalism).
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Chapter 1

Introduction

Isaac Newton introduced the concept of an abstract space-filling gravitational

force field to describe celestial motions in terms of the laws which govern the mo-

tion of bodies on Earth. Electromagnetism, introduced to describe the interactions

and motion of electric charges and their fluid-like currents, was the first empir-

ically accessible relativistic field theory to be developed. The intuitive physical

descriptions of electromagnetic lines of force evolved alongside abstract mathemat-

ical constructs like vector calculus. As electromagnetism grew to accommodate

more phenomena such as light and its interaction with matter, we had to develop

even more abstract forms of algebra and calculus to write predictive models.

Electromagnetism is our most well-understood relativistic field theory because

we can experience it in our everyday lives and describe it in common sense. We are

all taught that electric and magnetic fields are to be initially defined operationally

through their effects on charge and current distributions. Only much later, after

relativity and Ricci’s tensor calculus, did we begin to study the algebraic structure

1



Chapter 1. Introduction

of the Faraday tensor Fµν = 2∂[µAν]. Additional layers of abstraction appear when

considering the algebraic structures associated with the spinor representations of

the Lorentz group SO(1, 3). This thesis is heavy in these spinor abstractions, yet

we can keep in contact with the phenomenological world by turning our variables

back into electric and magnetic fields. Since the spinor representation of SO(1, 3)

is SL(2,C) we will be dealing heavily in symmetric spinors with two SL(2,C)

indices. Since SL(2,C) ∼= SO(3,C) in the sense of group homeomorphism we will

frequently encounter expressions with complex linear combinations of the electric

and magnetic fields in both vector Ea + ıBa and tensor form Fµν + ı ∗ Fµν . The

reward we reap for this level of abstraction is that we can solve field equations

much more straightforwardly and construct solutions to higher spin equations

from lower spin fields.

In contrast, General Relativity (GR) is far too weakly coupled to our daily

lives for it to be intuitive beyond the Newtonian approximation. Humans don’t

experience the effects of curvature in a way that lends itself to common sense

operational definitions1. Historically, this implies that building intuition in GR is

hampered by the abstract data structures of differential geometry, which encode

physical degrees of freedom in non-intuitive ways. In the case of gravity, we start

1This is true of Yang-Mills fields in the Standard Model.

2



Chapter 1. Introduction

Figure 1.1: The (a) magnetic field and (b) energy density of Kamchatnov’s Hopf
Soliton.

with complicated arrays2, and we deduce to find the operational degrees of freedom

in them.

In this work, we study the relationship between electromagnetism and gravity.

The presentation will be a bit ahistorical, as we first introduce and study the

physics of knotted fields in plasma3,4. In the first work, we describe an infinite

class of topological solitons. These solutions are sufficiently elementary as to be

easily written down yet non-trivial enough that they possess a robust set of prop-

erties that are preserved when generalizing first to radiative EM fields and finally

to gravitation by way of twistor theory5. We used these fields as a sort of mathe-

2Some, but not all arrays, are bonafide tensors. The Levi-Civita connection famously is not
a tensor.

3I wrote two theses [1, 2] and one paper [3] on these topics is not contained in this thesis.
The reader is encouraged to read that paper as a pre-introduction to this thesis. My two other
theses are worth reading as well. They will be made available to the interested reader.

4We are proceeding in a pseudo-ahistorical fashion since Kamchatnov constructed his Hopf
solitons in the early 1980s as part of a research program to generalize non-abelian magnetic
monopoles [4]. We came across Kamchatnov’s work, Fig. 1.1, after showing that Rañada’s
knots of light, Fig. 1.3, were spin-1 twistor elementary states which were introduced at least a
decade before everything else [3, 5].

5We obtain a whole family of relativistic fields, each of which possesses the same characteristic
structure as the plasma solitons. All fields will be finite energy and topologically non-trivial.
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Chapter 1. Introduction

Figure 1.2: The Hopf fibration as a filling of R3 parameterized by points on a
sphere. (a) Each point on the sphere is a circle and any two circles are linked. (b)
All the points on a parallel of latitude fill out a torus. (c) The north and south
poles are degenerate tori, each a circle, with the north pole mapping to a circle
through infinity.

matical dye that we inject into an otherwise abstruse mathematical construction,

allowing us to see what properties and phenomena survive the generalization pro-

cess. The plasma articles [6,7] primarily serve to establish the phenomenology of

field line topology through the concept of magnetic helicity [8, 9] thought of as a

sort of average linking density of magnetic field lines. A relativistic discussion of

helicity, first introduced in [10], accounts for electric and magnetic helicities and

their dynamic exchange.

Chapters 3 and 4 in this thesis are extensions of our previous work relating

knots of light to elementary states in twistor theory [3]. We started by noting that

4



Chapter 1. Introduction

Figure 1.3: Rañada’s knot of light at t = 0 (1st row) and t = 1 (2nd row).

the Hopf fibration, Fig. 1.2, played a fundamental role in two seemingly unrelated

things - Rañada’s knots of light6 [11] and the Robinson congruence of twistor7

theory [13]. We were studying them in parallel, hoping that we would eventually

understand them well enough to see the connection we started collaborating with

Jan Willem Dalhuisen. He was approaching the problem by considering Robin-

son’s theorem, which relates solutions of the massless spin-N field equations8 to

null shear-free geodesic congruences.

Dalhuisen showed the correspondence held, and the knots of light could be

obtained from Robinson’s theorem as applied to the Robinson congruence [14].

6The electric, magnetic, and Poynting vector fields are each tangent to the fibers of three
orthogonal Hopf fibrations, see Fig. 1.3, thus at each point {E⃗, B⃗, S⃗} form an orthogonal basis
for the lab frame.

7The Robinson congruence’s spacial components are tangent to the twisted fibers of the Hopf
fibration, and their central role in the formalism motivated the name twistor [12,13].

8The massless spin-h field equations are linear differential equations for symmetric spinor
fields given by ∇AA′

1φA1···A2h
(x) = 0 and its complex conjugate. Table 1.1 gives the physical

interpretations of each field.
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Chapter 1. Introduction

Spin Field Eq. Spinor Eq. Physical Interpretation
0 □φ = 0 □φ = 0 Klein-Gordon Field
−1

2
∇AA′

φA = 0 Weyl Field (LH)
+1

2
∇AA′

φA′ = 0 Weyl Field (RH)
−1 dF = 0 ∇AA′

φAB = 0 Electromagnetism (LH,ASD)
+1 d ∗ F = ∗J ∇AA′

φA′B′ = 0 Electromagnetism (RH,SD)
−3

2
∇AA′

φABC = 0 Rarita–Schwinger field (LH)
+3

2
∇AA′

φA′B′C′ = 0 Rarita–Schwinger field (RH)
−2 DCab = 0 ∇AA′

φABCD = 0 Gravity (LH,ASD)
+2 ∇[aCbc]de = 0 ∇AA′

φA′B′C′D′ = 0 Gravity (RH,SD)

Table 1.1: The massless spin-h field equations and their physical interpretation.

Roger Penrose was able to provide some important notes to us while he was visiting

Leiden University as the Lorentz Chair. He suggested that the knot of light must

be related to the elementary states and suggested a calculation for us to try. His

suggestion bore fruit, and we found that we could construct the knots of light from

the simplest elementary state employing a complex contour integral known as the

Penrose transform. This result was my undergraduate honors thesis [1]. Having

a foothold in the formalism, we rapidly generalized the results from spin-1 EM

to spin-2 linearized gravitational fields called the type-N gravitational hopfions.

We obtained an entire relativistic family of spin-N fields [2, 3] with the type-N

gravitational hopfion being the spin-2 field. The twistor generalization of the

knots of light and the resulting class of fields constituted my master’s thesis at

the University of Leiden.
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Chapter 1. Introduction

Visualizations of the plasma and radiative EM fields were critical because the

qualitative topology of the fields is far easier to process visually than mathemat-

ically grasp. The distinctive pattern of Villarceau circles9 was the mathematical

dye that was first present in the plasma fields in Fig 1.1. Once we had generalized

the fields to gravitational radiation, we wanted to see where this dye emerged.

To visualize the curvature of these fields, we turned to the gravitoelectromag-

netic (GEM) formalism which Kip Thorne’s group at Caltech had been using to

visualize space-time curvature [15–19]. In this version of GEM, one projects the

curvature tensor onto a given lab frame in such a way that all the curvature de-

grees of freedom are encoded in two trace-less symmetric spatial tensors10 called

the gravitoelectric tidal tensor Eij, and the gravitomagnetic frame drag tensor Bij.

This projection gives the 1+3 dimensional decomposition of the curvature tensor

in the lab frame. The GE field’s eigenvectors describe the two axes along which

the gravitational field tidally stretches or compresses test objects11. The GM

tensor’s eigenvectors describe the two axes around which frame dragging causes

clockwise or counterclockwise precession of test gyroscopes. The last eigenvector

9The fibers of the Hopf map project on to R3 are a collection of space-filling circles, each
twisting around the surface of a torus, and each linked with every other exactly once, as in Fig.
1.2.

10Exactly these conditions define the spin-2 subset of the tensor algebra uj
⊗

vj .
The quadrupole tensor in a multipole expansion is exactly of the same form Qij =∫
ρ(r)

(
3
2rirj −

1
2

∥∥r⃗∥∥2δij) d3r.
11A gravitational test object is an object which does not back react on the geometry by

contributing stress-energy.
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Chapter 1. Introduction

Figure 1.4: The kinetic effects of the GEM fields in the comoving frame of a
spacecraft: (a) Tidal stretching (b) Tidal compression (c) Clockwise differential
precession (d) Counterclockwise differential precession

for each GE and GM tensor describes the axis along which these kinetic effects

vanish.

The type-N hopfion possesses a purely conformal curvature, so we decomposed

the Weyl curvature tensor following the visualization method of Nichols’, et al.

[15–17] and we plotted the integral curves of the GE and GM eigenvectors to

visualize the lines of force for gravitational fields. We were astonished by the plots

when they came out. Every time we plotted the integral curves of the eigenvector

fields, we obtained a collection of Villarceau circles12. The field lines for the Type-

N gravitational hopfion were precisely two copies of a knot of light. The dye passed

12The conformal curvature spinor can also be thought of as the spin-2 SO(3,C) quadrupole
tensor Eij+ıBij similarly to the Maxwell spinor being thought of as the SO(3,C) vector Ei+ıBi

see Stephani, et el. [20].
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Chapter 1. Introduction

through the abstruse artifice that is the twistor formalism and came out relatively

unscathed, albeit with some doubling. Something topologically non-trivial was

going on, but it was not the same as in EM. The time evolved field lines for the

GE and GM fields were not the same as the time evolved fields for the knot of

light13. For the knot of light, we could prove that the topology of the initial data

is conserved under time evolution, yet we had no such way of knowing if this were

true for the GEM fields. However, surveying the time-evolved plots convinced

us that, more than likely, there was conservation occurring. This result was the

topic of the second thesis [2] I wrote while obtaining my master’s degree at the

University of Leiden. This result is also presented in the theses of Dalhuisen [21]

and Amy Thompson [22].

Chapter 3 begins right after we completed the analysis for the type-N grav-

itational hopfion. The Penrose transform takes as its argument a homogeneous

holomorphic twistor function which acts as twistor space representation of the

massless fields [13, 23, 24] and the homogeneity of the function determines the

spin of the field on space-time. From our previous work, it was clear that the

generating function for the knot of light could easily be changed to obtain a grav-

itational field by changing the homogeneity of the function but leaving the other

13The time evolution was closely related though. The time evolved fields were all related
by local duality transformations. This relationship to local duality transformations will be
meaningful later.
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Chapter 1. Introduction

parameters fixed. The generating function was of the form

f(Z) =
(C̄γZ

γ)c(D̄δZ
δ)d

(ĀαZα)a(B̄βZβ)b
.

The abstract properties of the elementary states have been known since the

early years of twistor theory, yet we still know very little about the physical role

of these fields. We conjectured that the exponents {a, b, c, d} of the twistor gener-

ating functions were related to the integers which parameterized the solitons we

introduced in Chapter 2. Tedious computations revealed that this was the case,

and we deduced the relationship between the powers in the generating function

and the toroidal and poloidal winding numbers of the solitons. In this way, we

see the abstract pole structure of the generating function become the more phys-

ically intuitive winding numbers of the knot! We obtained torus knot EM and

gravitational fields by computing the fields from the Penrose transforms. The EM

fields were the same as the linked and knotted fields obtained by Kedia, et al. [25]

confirming the conjecture.

In Chapter 4 we continued to explore the gravitational fields through the Pen-

rose transform. The Penrose transform is at its most basic level, incredibly clever

use of Cauchy’s residue theorem, which relates the value of a complex contour

integral to the singularities of the integrand. The complex variable of integration

is a complex homogeneous coordinate on S2 of light null-directions at a point [2].

10
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By controlling the residues, we were able to generalize the torus knot EM fields

into any algebraic type and any spin, thus obtaining an entire relativistic family of

torus knotted spin-N fields. The spin-1 EM fields and spin-2 gravitational fields

both possessed strikingly similar field line configurations. When one considers the

type-(1, 1) EM fields, it is possible to observe the transfer of topology between the

electric and magnetic fields precisely as one would have expected from the formal-

ism of Arrayás and Trueba [10]. One can (see Fig. 4.2) arrange the initial field

data such that the electric field lines are all Villarceau circles with no magnetic

field and evolve it towards a state where the magnetic field is all Villarceau circles

and the electric field vanishes, thus achieving complete conversion of all electric

helicity to magnetic helicity in the limit as t → ∞. The gravitational general-

ization of these fields exhibits precisely the same sort of phenomenon. However,

there did not seem to exist any literature on what we believed should be called

gravitational helicity.

Some clues seem to point towards a generalization of helicity to gravity. Elec-

tromagnetism is a gauge theory, and the geometry and topology of gauge theories

are well studied. Our work thus far strongly suggested that the Riemann curva-

ture tensor was more similar to the Faraday tensor than a traditional education

would lead one to believe. The excess of indices in the Riemann tensor is not a

11
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problem since a Yang-Mills field strength tensor14 has four indices if you expand

the collectivized gauge group indices. Moreover, Arrayás and Trueba showed

the topological currents associated with the electric and magnetic helicities to be

Chern-Simons-like tensors for the vector potential Aµ and its field strength tensor

Fµν . If we could find a way to identify the gauge connection which leads through a

Yang-Mills equation to the Riemann curvature, we could construct the Yang-Mills

Chern-Simons-like term for that connection and develop a theoretical construct

for gravitational helicity.

Thus we find ourselves at the beginning of the Chapter 5. We needed to find

a formulation of differential geometry similar to gauge theory. We found precisely

this in Elie Cartan’s version of differential geometry, which he named the method

of moving frames. We derived the Newman-Penrose and the GHP equations from

the Cartan structure equation, assuming the metric in the tangent space is of

Newman-Penrose form. The details are given at the beginning of Chapter 5.

Cartan’s differential geometry confirmed that the spin connection was the local

Lorentz gauge field hidden inside gravity and that its gauge curvature was indeed

the Riemann curvature 2-form. Gauge fixing this local Lorentz group down to a

local GHP subgroup gave us the GHP formalism associated with two new gauge

covariant derivatives (þ and ð)15.

14A Yang-Mills field is the generalization of an EM field to a non-abelian gauge group.
15A repeating theme in our work is that gravity tends to display properties which mimic the

degrees of freedom of a pair of gauge fields.

12



Chapter 1. Introduction

Figure 1.5: From left to right Jan Willem Dalhusien, Alexander Burinskii, Joseph
Swearngin, Amy Thompson, Dirk Bouwmeester.

During my first master’s degree, I had the pleasure of studying with Alexander

Burinskii16. Burinskii has studied the Kerr solution and its generalizations for his

entire career. He wanted to know the relationship between the Kerr congruence

and twistor theory. Specifically, he wondered if there existed a twistor generating

function for the Kerr congruence and if it could be used, through the Penrose

transform, to imbue a class of massless fields with the structure of the Kerr con-

gruence in the same way that we had used that same transform to generate a class

of massless fields with the Hopf structure of the Robinson congruence. As it turns

out, Bramson had this idea much earlier, which he implemented via the rank-2

symmetric kinematic twistor [26]. While teaching us about the Kerr congruence,

16He was in attendance when I defended my first master’s (see Fig. 1.5) who introduced me
to Roy Kerr over breakfast at the Marcel Grossmann meeting that occurred the same year.
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he also introduced two very important things that factor heavily into my next

project. Kerr’s theorem and its relation to the Debny-Kerr-Schild form of the

general type-D metrics, gµν = ηµν +h(x)lµlν where lµ is null with respect to both

the full metric gµν and the flat metric ηµν .

The metric for a plane-fronted parallel-propagated wave, pp-wave space-time,

is given in Kerr-Schild form17 is

ds2 = −2dudv + 2P−2dξdξ̄ − 2H(u, ξ, ξ̄)dudu

= −2du(dv −H(u, ξ, ξ̄)du) + 2P−2dξdξ̄

= −2ẽ1ẽ2 + 2ẽ3ẽ4

where the null frame ẽa is

ẽ1 = du ẽ2 = dv −H(u, ξ, ξ̄)du

ẽ3 = P−1dξ ẽ4 = P−1dξ̄.

17In flat space, the metric with respect to a null frame is

ds2 = −2dudv + 2P−2dξdξ̄

= −e1e2 + e3e4,

where e1 = du, e2 = dv, e3 = P 1dξ, and e4 = P−1dξ̄. P is a real function of the coordinates
xµ = {u, v, ξ, ξ̄}. A null Cartesian coordinate basis has P = 1 and a null spherical polar basis
has P = (1 + ξξ̄).
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Figure 1.6: From Penrose’s paper [27] depicting a plane fronted impulsive wave.

An impulsive wave or shockwave has H(u, ξ, ξ̄) = δ(u)h(ξ, ξ̄) and the Ein-

stein equation18 reduces to the 2D Poisson equation 2∂ξ∂ξ̄h = 8πTuu. For the

Aichelberg-Sexl (AS) shockwave, h(ξ, ξ̄) = ln(ξξ̄), and the stress-energy tensor

is given by Tαβ = δ(u)δ(ξ)∂αu ∂βu which represents a massless particle moving

along the outgoing null direction u located at ξ = 0. The AS shockwave was

originally derived in [28] as the ultra-boost limit of a Schwarzschild black hole.

An AS shockwave is an uncharged, non-rotating black hole moving at the speed

of light.

Penrose describes these space-times [27] as two copies of Minkowski space glued

together in a "warped and shunted fashion" along the null hyperplane u = 0. The

18The Weyl and Ricci curvature have only one component which are given respectively by
Ψ4 = δ(u)∂ξ∂ξ̄h and Φ22 = δ(u) ∂ξ∂ξ̄h.
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"warped and shunted fashion" by which the two flat halves are glued together in

the cut and paste method shown in Fig. 1.6 is made manifest by identifying the

frame ẽa as a shifted version of the flat frame ea. Thus,

ẽ1 = e1 ẽ2 = e2 −H(u, ξ, ξ̄)e1 (1.1)

ẽ3 = e3 ẽ4 = e4. (1.2)

Gravitational shockwaves are a special class of metrics possessing a disconti-

nuity that represent the solution to Einstein’s equation for a propagating massless

particle in a background space-time. Yoni Bentov, the teaching assistant for my

first quantum field theory courses, was now a post-doc and had been recently

studying gravitational shockwaves in the context of the black hole information

problem. The Dray and t’Hooft solution [29] Fig. 1.7 represents an exact so-

lution to Einstein’s equations for a massless particle on the future horizon of a

Schwarzschild black hole. The shockwave does not represent a test particle as

it backreacts on the geometry and its presence perturbs the event horizon. This

backreaction plays a fundamental role in the study of black hole statistical me-

chanics [30–33]. All these results utilized the Dray and t’Hooft solution, not the

more complicated but astrophysically more relevant Kerr black hole.

Yoni says that when setting out to learn something, one must find a suffi-

ciently complex problem to which one can apply it. The problem we chose was
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Figure 1.7: Behaviour of ray optics in the Dray-t’Hooft geometry Reproduced
from Ref. [34]. Here Matzner illustrates the cut and paste method of Penrose as
applied to the Dray-t’Hooft solution.
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to generalize Dray-t’Hooft from a Schwarzschild background to the Kerr-Newman

background. Both the Dray-t’Hooft solution and its generalization by Sfetsos [35]

to charged d-dimensional black holes could both be written in the generalized

Kerr-Schild form gµν = ĝµν + S(x)lµlν where ĝµν is the Schwarzschild metric for

Dray-t’Hooft or the Reissner–Nordström metric for Sfetsos. In either case lµ was

the tangent vector to the Schwarzschild congruence. We reconstructed both met-

rics by writing the hatted metrics in terms of a principal frame and then shifting

the principal frame precisely along the Schwarzschild congruence. Our method

was a uniquely frame-centered approach that highlighted the role of a special

null shear-free geodesic congruence associated with the hatted metric. The Kerr

metric also possesses its own null shear-free geodesic congruence from which one

may complete a principal frame for which the hatted line element takes the form

ds2 = −e1e2 + e3e4. Shifting the frame ea, we construct a new frame ẽa, thereby

obtaining a new solution to Einstein’s equation representing a massless particle

on the future horizon of a rotating and charged black hole.
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Chapter 2

Knotted Fields in Plasma

2.1 Topological Solitons in Condensed Matter Sys-

tems

Hopfions have been shown to represent localized topological solitons in many

areas of physics - as a model for particles in classical field theory [36], fermionic soli-

tons in superconductors [37], particle-like solitons in superfluid-He [38], knot-like

solitons in spinor bose-einstein (BE) condensates [39] and ferromagnetic materi-

als [40], and topological solitons in magnetohydrodynamics (MHD) [4]. The Hopf

fibration can also be used in the construction of finite-energy radiative solutions

to Maxwell’s equations and linearized Einstein’s equations [3]. Some examples are

Rañada’s null EM hopfion [11,41] and its generalization to torus knots [42,25,43].

Topological solitons are metastable states. They are not in an equilibrium,

or lowest energy, state, but are shielded from decay by a conserved topological
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quantity. The energy E is a function of a scale factor, typically the size R of the

soliton, so that the field could decrease its energy by changing this parameter.

However, the topological invariant fixes the length scale and thus the energy. In

condensed states (superconductors, superfluids, BE condensates, and ferromag-

nets) the topological structure is physically manifested in the order parameter,

which is associated to a topological invariant. For example, the hopfion solutions

in ferromagnets are such that the Hopf fibers correspond to the integral curves of

the magnetization vector m⃗. The associated Hopf invariant is equal to the linking

number of the integral curves of m⃗.

For many systems the solution can still decay by a continuous deformation

while conserving the topological invariant. Another physical stabilization mech-

anism is needed to inhibit collapse [44]. For example, this can be achieved for

superconductors with localized modes of a fermionic field [45], for superfluids by

linear momentum conservation [38], for BE condensates with a phase separation

from a second condensate [46], and for ferromagnets with conservation of the spin

projection Sz [47].

2.2 Topological Solitons in MHD

In MHD, the topological structure is present in the magnetic field. The topo-

logical soliton of Kamchatnov has a magnetic field everywhere tangent to a Hopf
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fibration, so that the integral curves of the magnetic field lie on nested tori and

form closed circles that are linked exactly once. The Hopf invariant is equal to the

linking number of the integral curves of the magnetic field, which is proportional

to the magnetic helicity. In addition to the topological invariant, another con-

served quantity is required. MHD solitons can be stabilized if the magnetic field

has a specific angular momentum configuration which will be discussed below.

Because of the importance of topology in plasma dynamics, there has previ-

ously been interest in generalizing the Kamchatnov-Hopf soliton [48]. The topol-

ogy of field lines has been shown to be related to stability of flux tube configura-

tions, with the helicity placing constraints on the relaxation of magnetic fields in

plasma [49, 50]. Magnetic helicity gives a measure of the structure of a magnetic

field, including properties such as twisting, kinking, knotting, and linking [8, 9].

Simulations have shown that magnetic flux tubes with linking possess a longer

decay time than similar configurations with zero linking number [51–53]. Re-

cently, higher order topological invariants have been shown to place additional

constraints on the evolution of the system [49,54,55]. The work presented in this

chapter distinguishes itself from these topological studies of discrete flux tubes in

the sense that we are considering the topology and stability of continuous, space-

filling magnetic field distributions. Furthermore, our results are analytic, rather

than based on numerical simulations.
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There are many applications where magnetic field topology has a significant

effect on the stability and dynamics of plasma systems. For example, toroidal

magnetic fields increase confinement in fusion reactors [56, 57], and solving for

the behavior of some magnetic confinement systems is only tractable in a coordi-

nate system based on a known parameterization of the nested magnetic surface

topology [58, 59, 57]. In astrophysics, the ratio of the toroidal and poloidal wind-

ing of the internal magnetic fields impacts many properties of stars, including

the shape [60, 61] and momentum of inertia [62], as well as the gravity wave sig-

natures [63] and disk accretion [64] of neutron stars. The new class of stable,

analytic MHD solutions presented in this chapter may be of use in the study of

fusion reactions, stellar magnetic fields, and plasma dynamics in general.

The MHD topological soliton is intimately related to the radiative EM hopfion

solution. The EM hopfion constructed by Rañada is a null EM solution with

the property that the electric, magnetic, and Poynting vector fields are tangent

to three orthogonal Hopf fibrations at t = 0. The electric and magnetic fields

deform under time evolution, but their field lines remain closed and linked with

linking number one. The Hopf structure of the Poynting vector propagates at the

speed of light without deformation. The EM hopfion has been generalized to a

set of null radiative fields based on torus knots with an identical Poynting vector

structure [25]. The electric and magnetic fields of these toroidal solutions have
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integral curves that are not single rings, but rather each field line fills out the

surface of a torus.

The time-independent magnetic field of the topological soliton is the magnetic

field of the radiative EM hopfion at t = 0

Bsoliton(x) = Bhopfion(t = 0,x). (2.1)

The soliton field is then sourced by a stationary current

j(x) =
1

µ0

∇×Bsoliton(x). (2.2)

We will use this relationship, along with the generalization of the EM hopfion to

toroidal fields of higher linking number, in order to generalize the Kamchatnov-

Hopf topological soliton to a class of stable topological solitons in MHD. We will

also discuss how the helicity and angular momentum relate to the stability of these

topological solitons.

2.3 Generalized Kamchatnov-Hopf Solitons

We construct the generalized topological soliton fields using Eqs. (2.1) and

(2.2) applied to the null radiative torus knots. The time-independent magnetic

field of the soliton is identical to the magnetic field of the radiative torus knots
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at t = 0. The magnetic field is sourced by a current, resulting in a stationary

solution.

The torus knots are constructed from the Euler potentials1:

α =
(r2 − t2 − 1) + 2ız

r2 − (t− ı)2
(2.3)

β =
2(x− ıy)

r2 − (t− ı)2
. (2.4)

where r2 = x2+y2+z2. As Ref. [25] points out, at t = 0 these are the stereographic

projection coordinates on S3. The magnetic field of the torus knots is obtained

from the Euler potentials for the Riemann-Silberstein vector F = E+ ıB.2

The solitons are found by taking the magnetic field of the torus knots at t = 0

B = Im[∇αnt ×∇βnp ] |t=0 . (2.5)

Each (nt, np) with nt, np = 1, 2, 3... represents a solution to Maxwell’s equa-

tions. A single magnetic field line fills the entire surface of a torus. These tori

are nested and each degenerates down to a closed core field line that winds nt

times around the toroidal direction and np times around the poloidal direction,

1These Euler potentials are maps from R3 −→ C. At each point in R3 the ordered pair
(α, β) ∈ C2. When t = 0 the ratio ξ(x, y, z) = β(0, x, y, z)/α(0, x, y, z) is a Hopf map composed
with stereographic projection from S3 −→ R3.

2Note that the Riemann-Silberstein construction is a non-standard use of Euler potentials.
We are following the method in Ref. [25].
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Figure 2.1: One lobe of the field configuration for np = 1 and nt = 2. (a) A
single, closed core magnetic field line. (b) The core field line is surrounded by
nested toroidal surfaces, shown in cross section. (c) A complete magnetic surface
filled entirely by one field line.

as illustrated in Figure 2.1. A complete solution for a given (nt, np) is composed

of pairs of these nested surfaces that are linked and fill all of space as shown in

Figure 2.2. For ng = gcd(nt, np), the solution is a magnetic field with 2ng linked

core field lines (knotted if nt > 1 and np > 1). If nt = 1 and np = 1, the solution

is the Kamchatnov-Hopf soliton. We will analyze these fields and how the linking

of field lines affects the stability of magentic fields in plasma. In particular, for

np = 1 and nt ∈ Z+, we will show that these fields can be used to construct a new

class of stable topological solitons in ideal MHD. The solutions with np ̸= 1 are

not solitons in plasma, and their instability will be discussed in Section 2.4.1.
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Figure 2.2: Topological solitons in MHD with np = 1 and (a)nt = 2, (b)nt = 3,
and (c)nt = 4. A single magnetic field line fills out each of the linked, toroidal
surfaces.

2.4 Stability Analysis

In this section we assume the plasma is an ideal, perfectly conducting, in-

compressible fluid. In a fluid with finite conductivity, the magnetic field energy

diffuses. Under this condition, one can estimate the lifetime of the soliton as will

be shown in Section 2.5.

First we consider the case where the poloidal winding number np = 1 and

the toroidal winding number nt is any positive integer. These will be shown to

represent stable topological solitons in ideal MHD. In the next section, we will

consider the solutions with np ̸= 1. Using the method in this chapter, these do

not represent stable solitons, and we will discuss how this instability relates to the

angular momentum.
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To analyze the stability of these solutions, following the stability analysis in

Ref. [4]3, we study the two scaled quantities of the system - the length scale R

which corresponds to the size of the soliton and B0 which is the magnetic field

strength at the origin. (The length scale R is also the radius of the sphere S3

before stereographic projection.) First we change to dimensionful coordinates by

taking

{x, y, z} →{ x
R
, y
R
, z
R
} (2.6)

|B (0, 0, 0) | =B0. (2.7)

The stability depends on three quantities - energy, magnetic helicity, and angular

momentum - which are functions of R and B0. For a perfectly conducting plasma,

the magnetic helicity hm is an integral of motion and is thus conserved. The

magnetic helicity is also a topological invariant proportional to the linking number

of the magnetic field lines. If the field can evolve into a lower energy state by a

continuous deformation (therefore preserving the topological invariant) then it

will be unstable. However, we will show that such a deformation does not exist

because the angular momentum M is also conserved and serves to inhibit the

spreading of the soliton.

3Note that Ref. [4] uses CGS units and we use SI units in our analysis. The reference also
has a typo - Eq. (45) should have a factor of R2 instead of R.
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The magnetic helicity is defined as

hm =

∫
A ·Bd3x (2.8)

where A = Im[αnt∇βnp ] is the vector potential. From Eqs. (2.3)-(2.5), it follows

that

hm =
2nt

(nt + 1)
π2B2

0R
4. (2.9)

The MHD equations for stationary flow are satisfied for a fluid with velocity

v = ± B

(µ0ρ)
1
2

. (2.10)

The energy of the soliton is given by

E =

∫ (
ρv2

2
+

B2

2µ0

)
d3x (2.11)

=

∫
B2

µ0

d3x

so that

E =
2ntπ

2

µ0

B2
0R

3 (2.12)

∝hm

R
.
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The angular momentum is

M =ρ

∫
[x× v]d3x (2.13)

=

(
ρ

µ0

)1/2

4ntπ
2B0R

4ŷ

where we took the positive velocity solution. We find that the conserved quantities

hm and M fix the values of R and B0,

R =

(
1

8π2nt(nt + 1)

(
µ0

ρ

)
|M |2

hm

) 1
4

, (2.14)

B0 =2nt(nt + 1)

(
ρ

µ0

)1/2
hm

|M |
,

thus inhibiting energy dissipation. This shows that the solution given in Eqs.

(2.3)-(2.5) (and shown in Figure 2.2) represents a class of topological solitons

characterized by the parameter nt ∈ Z+ for np = 1.

2.4.1 Angular Momentum and Instability for np ̸= 1

For np ̸= 1, the angular momentum for all nt is zero. Some examples of fields

with nt = 1 and different np values are shown in Figure 2.3. The field lines fill

two sets of linked surfaces. For a given pair of linked surfaces, the field in each

lobe wraps around the surface in opposite directions. In Figure 2.3 the red and

blue surfaces wind in opposite directions. This means that the contribution to
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the angular momentum of the two field lines cancels. In this case the length scale

is not fixed by the conserved quantities. The energy can therefore decrease by

increasing the radius and the fields are not solitons.

Figure 2.3: The magnetic surfaces for nt = 1 and (a)np = 2, (b)np = 3, and
(c)np = 4. Solutions with np ̸= 1 have zero angular momentum and are therefore
not stable solitons. The magnetic field lines in each lobe wind in opposite direc-
tions, represented by the red and blue surfaces.

2.5 Finite Conductivity and Soliton Lifetime

To include losses due to diffusion, we need to consider a plasma with finite

conductivity. We can estimate the soliton lifetime by dividing the energy by

dE/dt, calculated before any energy dissipation [4]. Since this is the maximum

rate of energy dissipation, we can obtain a lower bound on the time it takes for
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the total energy to dissipate. Thus,

dE

dt
=
1

σ

∫
j2d3x (2.15)

=(3nt + 7n2
t + 5n3

t )
π2B2

0R

µ2
0σ

. (2.16)

The resulting lifetime is

tnt ≥
3nt

3nt + 7n2
t + 5n3

t

µ0σR
2. (2.17)

For higher nt, the lifetime decreases although the helicity in Eq. (2.9) increases.

This result is interesting as we would have expected from the results regarding

flux tubes mentioned previously that the lifetime would increase with increasing

helicity.

2.6 Conclusion

We have shown how to construct a new class of topological solitons in plasma.

The solitons consist of two linked core field lines surrounded by nested tori that

fill all of space. The solutions are characterized by the toroidal winding number

of the core field lines and have poloidal winding number one in order to have

non-zero angular momentum. We have shown that the conservation of linking

number and angular momentum give stability to the solitons in the ideal case. We
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are currently studying the stability of these solutions in a resistive plasma using

numerical simulations. Finally, we note that there may be related generalizations

of the hopfion fields in other physical systems, such as superfluids, Bose-Einstein

condensates, and ferromagnetic materials.
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Linked and Knotted Gravitational
Radiation

3.1 Background

Knots and links are quite remarkable given that they are as old and ubiq-

uitous as ropes and thread and yet have only relatively recently seen a rigorous

formulation within mathematics. The study of knots and links has enjoyed a close

relationship with physics since its inception by Gauss [65]. Today the application

of these topological structures in theoretical physics is more widespread than it has

ever been, from fault resistant quantum computing [66], hadron models [36, 67],

topological MHD and fluid mechanics [4,6], classical field theories [41,42,3], quan-

tum field theory [68,69], DNA topology [70], to nematic liquid crystals [71] just to

name a few. In this chapter, we shall focus on the application of an important class

of knots, torus knots, to classical electromagnetic and gravitational radiation.
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A hopfion is a field configuration based on a topology derived from the Hopf

fibration. The electromagnetic hopfion (EM hopfion) is a null solution to the

source free Maxwell equations such that any two field lines associated to either

the electric, magnetic, or Poynting vector fields (EBS fields) are closed and linked

exactly once [41]. When an EM hopfion is decomposed onto hyperplanes of con-

stant time there always exists a hyperplane wherein the EBS fields are tangent

to the fibers of three orthogonal Hopf fibrations. If one extends the Poynting

vector to be a future pointing light-like 4-vector its integral curves comprise a

space filling shear-free null geodesic congruence dubbed the Robinson congruence

by Roger Penrose.

Rañada [11] rediscovered the EM hopfion solution and noted that its topology

was invariant under time evolution. The search for generalizations of the hopfion

solution led to the introduction of a set of non-null EM solutions based on torus

knots [72], but the topology was not preserved during time evolution. Around the

same time, the Kerr-Robinson theorem was used to derive the hopfion from the

Robinson congruence itself using 2-spinor methods [14]. Inspired by the role of

the Robinson congruence in the evolution of the hopfion, the conservation of field

line topology was tied to the shear-free property of the Robinson congruence [73].
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3.2 Complex Analytic and Twistor Methods

The fundamental role of the Robinson congruence and its connection to the

topology of physical systems leads one to consider its relationship to twistor theory.

It has long been known that complex contour integral transforms can be used to

find the solution to real PDEs. In 1903, Whittaker used this technique to construct

the general solution to Laplace’s equation [74]. In 1915, Bateman extended this

method to give solutions to the vacuum Maxwell equations [75]. Twistor theory

was developed by Roger Penrose in the late 1960’s as an extension of the sl(2,C)

spinor algebra. From this perspective, the complex analytic structure of Bateman

can be related to the geometry of spinor fields on space-time [76], which encode

linear and angular momentum and are represented by two SL(2,C) spinors πA′

and ωA. The linear momentum is the flagpole of πA′ so that pa = πA′
π̄A and the

angular momentum bivector is related to ωA by

Mab = iω(AπB)ϵA
′B′

+ c.c.

These spinors are combined into a single object Zα =
(
ωA, πA′

)
called a twistor.

In this formalism, massless linear relativistic fields are expressed in the form of

symmetric spinor fields. In 1969, the general solution to the massless spin-N
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field equations was given as a complex contour integral transform now called the

Penrose transform [77].

Within the twistor framework the solutions of the massless spin-N equations

are represented by the Penrose transform of homogeneous twistor functions (see

the Appendix in Section 3.7). The elementary states are a canonical example

of such functions whose singularities define Robinson congruences on Minkowski

space M. The space-time fields corresponding to the elementary states are finite-

energy, and in the null case are everywhere non-singular [78]. For integer spin

fields, the expansion of a solution over the elementary states in twistor space T

is related to the expansion over spherical harmonics in M through the Penrose

transform [79]. These properties have made the elementary states the topic of

many studies [5,80,81], and for many problems it is assumed that considering the

elementary states is sufficient to describe any solution [82].

While investigating these twistor functions and their connection to field topol-

ogy in M, we have previously shown that the EM hopfion and the analogous

gravitational hopfion are elementary states of twistor theory [3]. Using the ear-

lier construction for EM fields by Bateman [75], Kedia, et al. have shown that

the EM hopfion is the simplest case in a set of null EM fields based on torus

knots [25]. Here we show that field configurations based on all the torus knots

are contained within the elementary states of twistor theory. The Hopf fibration

appears as the degenerate case whereby the linked and knotted toroidal structure
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degenerates down to the linked hopfion configuration. This generalization leads to

a construction for spin-N fields based on torus knots. We will focus our analysis

on the spin-1 and spin-2 fields, where the topology is physically manifest in the

field lines.1

The concept of tendex and vortex lines, gravitational lines of force for a par-

ticular observer, was developed by Nichols, et al. [15], who were motivated by the

desire to understand the non-linear dynamics of curved space-time in a more intu-

itive, directly physical way than previous approaches. The physical understanding

of the electromagnetic field is based upon the decomposition of the Faraday field

strength tensor onto hyperplanes of constant time yielding two spacial vector fields

interpreted as the electric and magnetic fields. Analogously, the Weyl curvature

tensor admits a decomposition onto constant time hyperplanes yielding two spa-

cial tensors called the gravito-electric (GE) and gravito-magnetic (GM) tensors.

The integral curves of the eigenvector fields of these tensors are called tendex and

vortex lines respectively and represent the gravitational analog of electromagnetic

field lines. This method was elucidated through a series of papers where it was

applied to (I) weak field solutions [15], (II) stationary black holes [16], and (III)

weak perturbations of stationary black holes [17]. This method of GEM decom-

position is well-suited to studying linked and knotted fields because, as we have

1For the Weyl fields, the linked and knotted topology appears in the current.
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shown previously [3], the field topology is manifest in the lines of force for both

the electromagnetic and analogous gravitational solutions.

3.3 Parameterization of the Elementary States

We will now relate the torus knot topology to the twistor elementary states to

obtain solutions to the EM and gravitational spinor field equations.

Torus knots are closed curves on the surface of a torus which wind an integer

number of times about the toroidal direction nt and poloidal direction np as in

Fig. 3.1, where nt and np are coprime and both greater than one. If nt and np are

not coprime, then there are ng = gcd(nt, np) linked curves, each corresponding to

a (nt, np) mod ng torus knot. If either nt or np is equal to one, then the knot is

trivial with ng linked curves.

Figure 3.1: Torus knots (green) wind (nt, np) times around a torus (purple) in
the toroidal and poloidal directions, respectively. Shown here are the cases of
(a) trefoil (2,3) knot, (b) cinquefoil (2,5) knot, (c) septafoil (2,7) knot, and (d)
nonafoil (2,9) knot.
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Following the twistor program, we represent solutions to the massless spin-N

equations in M as the Penrose transform of functions f(Z) in twistor space [13].

The details of the Penrose transform calculation for these fields are given in Section

3.7.

Consider the twistor functions corresponding to the elementary states [5]

f(Z) =
(C̄γZ

γ)c(D̄δZ
δ)d

(ĀαZα)a(B̄βZβ)b
(3.1)

where (ĀαZ
α) is the SU(2, 2) twistor inner product. Choosing a = 1 yields

null/Type N solutions and we must have b = 2h + 1 + c + d to give the correct

homogeneity h = −2h − 2 for a solution with helicity h. We will show that the

class of generating functions of the form2

f(Z) =
(C̄γZ

γ)h(np−1)(D̄δZ
δ)h(nt−1)

(ĀαZα)(B̄βZβ)h(np+nt)+1
, (3.2)

lead to field configurations with a torus knot topology where np and nt correspond

to the poloidal and toroidal winding numbers.

2We use the conventions given in Eq. (3.18) of Section 3.7.
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We choose the dual twistors

Āα = ı(0,
√
2 , 0, 1)

B̄β = ı(−
√
2 , 0,−1, 0)

C̄γ = (0,−
√
2 , 0, 1)

D̄δ = ı(−
√
2 , 0, 1, 0). (3.3)

Āα and C̄γ correspond to Robinson congruences with opposite twist, both with

central axes aligned along the +ẑ-direction. B̄β and D̄δ correspond to Robinson

congruences with opposite twist, but in the −ẑ-direction. This choice leads to

spin-N fields which propagate +ẑ-direction with field line configurations that are

based on a torus knot structure.

3.4 Electromagnetic Torus Knots

After applying the spin-1 Penrose transform to Eq. (3.2), the resulting spinor

field is

ϕA′B′(x) =
(AC′CC′

)np−1(AD′DD′
)nt−1

(AE′BE′)np+nt+1
AA′AB′ (3.4)

Note that the Latin script spinor variables are the spinors associated to the Latin

twistor variable. Ergo, AA′ is defined implicitly by ĀαZ
α = AA′πA′ (see Sec.

3.7). The solution in Eq. (3.4) satisfies the source-free spinor field equation by
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construction and yields the field strength spinor

∇AA′
φA′B′ = 0,

FA′B′AB = φA′B′ϵAB + c.c.

The spin-1 fields are null torus knots with a Poynting vector that is everywhere

tangent to a Hopf fibration and propagates in the ẑ-direction without deformation.

The solutions have the same topology3 as the electromagnetic fields in Ref. [25].

The electric and magnetic vector fields each have the following topological struc-

ture as shown in Fig. 3.2. There are 2ng core field lines, where ng = gcd(nt, np),

which are linked (and knotted if nt, np > 1). Each core line has the same configu-

ration as the corresponding torus knot with (nt, np) shown in Fig. 3.1. With the

choice for C and D given in Eq. (3.3), the poloidal and toroidal winding numbers

for the EM case are related to the exponents in Eq. (3.1) by c = np − 1 and

d = nt − 1. A single core field line is surrounded by nested, toroidal surfaces,

each filled by one field line. A second core field line, also surrounded by nested

surfaces, is linked with the first so that there are 2ng sets of linked nested surfaces

which fill all of space. A complete solution to Maxwell’s equations consists of an

3There is an overall constant factor of 4ntnp in Ref. [25] that does not appear in our con-
struction, but it does not affect the topology.
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electric and a magnetic field orthogonal to each other, both with this field line

structure. The (1,1) case corresponds to the electromagnetic hopfion.

At t = 0 the electric and magnetic fields are tangent to orthogonal torus knots,

as shown in Fig. 3.3 (first row). The fields will deform under time evolution, but

the topology will be conserved since E⃗ · B⃗ = 0 [73, 10].

Figure 3.2: The field line structure based on (2,3) trefoil knot. (a) The core field
line is a torus knot (green). (b) Each field line except the core lies on the surface
of a nested, deformed torus. (c) One field line fills a complete surface (red). (d)
Another field line fills a second surface (blue) linked with the first. The two linked
core field lines and the nested surfaces around them fill all of space.

3.5 Gravito-electromagnetic Torus Knots

The spin-2 solutions will be analyzed in terms of the gravito-electromagnetic

tidal tensors. The Weyl tensor Cabcd can be decomposed into an even-parity

“electric” part Eij corresponding to the tidal field and an odd-parity “magnetic”

part Bij for the frame-drag field, in direct analogy with the decomposition of the

electromagnetic field strength tensor into an electric field and a magnetic field.
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Figure 3.3: A comparison of the spin-1 (EM) and spin-2 (gravity) trefoil knots at
t = 0. The first row is the EM trefoil knot: (a) the electric field, (b) the magnetic
field, and (c) the Poynting vector field. The second row is the gravito-electric
trefoil knot: (d) the negative eigenvalue field e⃗−, (e) the positive eigenvalue field
e⃗+, and (f) the zero eigenvalue field e⃗0.The third row is the gravito-magnetic
trefoil knot: (g) the negative eigenvalue field b⃗−, (h) the positive eigenvalue field
b⃗+, and (i) the zero eigenvalue field b⃗0. The color scale indicates magnitude of the
eigenvalue, with lighter colors indicating a higher magnitude.

For an observer at rest, this gives

Eij = Ci0j0 (3.5)

Bij = − ∗ Ci0j0. (3.6)
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These tensors are symmetric and traceless, and are thus characterized entirely by

their eigenvalues and eigenvectors. One may then study the eigensystem associ-

ated with these matrix-valued fields instead of the Weyl tensor itself, allowing for

a more intuitive approach to understanding the gravitational field. The integral

curves of the eigenvectors of the tidal tensor are called tendex lines and their

eigenvalues define the tidal acceleration along these lines. The integral curves of

the eigenvectors of the frame-drag tensor are called vortex lines and their eigenval-

ues define the gyroscope precession about the vortex lines. Together, the tendex

and vortex lines are the analog of electromagnetic field lines. [15]

After applying the spin-2 Penrose transform to Eq. (3.2), the resulting spinor

field is

ϕA′B′C′D′(x) =
(AF ′CF ′

)2(np−1)(AG′DG′
)2(nt−1)

(AE′BE′)2(np+nt)+1
AA′AB′AC′AD′ . (3.7)

The source-free field equation and Weyl field strength spinor are

∇AA′
φA′B′C′D′ = 0,

CA′B′C′D′ABCD = φA′B′C′D′ϵABϵCD + c.c.

The Weyl tensor can then be decomposed into the GEM components. For Type

N, the eigenvalues for both the GE and GM tensors take the form {−Λ, 0,+Λ},
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with −Λ(x) ≤ 0 ≤ +Λ(x) for all points x in space-time The magnitude of the

eigenvalues is

Λ =
22np−3(1 + r2 + t2 − 2tz)2(r2 − z2)np−1(r4 − 2r2(1 + t2) + (1 + t2)2 + 4z2)nt−1

(r4 − 2r2(−1 + t2) + (1 + t2)2)
5
2
+nt+np

(3.8)

We label the eigenvectors {e⃗−, e⃗0, e⃗+} and {⃗b−, b⃗0, b⃗+} corresponding to the

eigenvalues for the tidal and frame-drag fields respectively. For the zero eigenvalue,

the eigenvectors e⃗0 and b⃗0 are both aligned with the Poynting vector of the null

EM torus knots. For the remaining eigenvectors, we can construct Riemann-

Silberstein (RS) vectors f⃗e = e⃗−+ ie⃗+ and f⃗b = b⃗−+ i⃗b+ which are related to each

other by

f⃗e = eiπ/4f⃗b. (3.9)

At t = 0, the eigenvectors of the GE fields have precisely the same structure as

the EM fields, and the GM eigenvector fields have the same structure but rotated

by 45◦. For the spin-2 case, the poloidal and toroidal winding numbers are related

to the exponents in Eq. (3.1) by c = 2(np − 1) and d = 2(nt − 1). The surfaces

of the e⃗− eigenvector, color-scaled according to the magnitude of the eigenvalue,

for different values of (nt, np) are shown in Fig. 3.4. The other GEM fields can

be constructed by rotating e⃗− according to Eq. (3.9): e⃗+ is found by rotating e⃗−

by 90◦ about the Poynting vector. b⃗− and b⃗+ are found by rotating e⃗− and e⃗+ by
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45◦, respectively. The eigenvalues of the GEM fields for a given (nt, np) have the

same magnitude (color-scaling) given by |Λ(x)| in Eq. (3.8).

Figure 3.4: The eigenvector field e⃗− for the gravitational field based on the
(a) trefoil (2,3) knot, (b) cinquefoil (2,5) knot, (c) septafoil (2,7) knot, and (d)
nonafoil (2,9) knot. The color scaling is the same as in Fig. 3.3.

3.6 Conclusion

Here we have shown that the null EM torus knot solutions correspond to a

class of elementary states characterized the poloidal and toroidal winding numbers

of the associated field configuration. Using the relationship between fields of

different spin in the twistor formalism, we constructed the analogous gravitational

radiation configuration that possesses tendex and vortex lines based on a torus

knot structure. Since the topology is manifest in the tendex and vortex lines, the

gravito-electromagnetic tidal tensor decomposition is a straightforward method

for characterizing these field configurations.
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The elementary states were known as early as the 1970’s [5], however the

explicit forms of their associated spinor and tensor representations on M were

never published.4 The modern rediscovery of these solutions has raised interest in

obtaining a more complete physical understanding of the topological properties

of these fields. The parameterization of the twistor functions corresponding to

the elementary states in terms of the poloidal and toroidal winding indicates that

the torus knot structure is indeed inherent in the elementary states. For both

electromagnetism and gravity, the topology appears in the configuration of the

lines of force.

3.7 Appendix: The Penrose Transform for Spin-N

Torus Knots

To obtain a spinor field φA′
1···A′

2h
(x) with helicity h which satisfies the spin-N

massless field equation

∇AA′
1φA′

1···A′
2h
(x) = 0

we will calculate the Penrose transform

φA′
1···A′

2h
(x) =

1

2πi

∮
Γ

πA′
1
· · · πA′

2h
f(Z)πB′dπB′

(3.10)

4from private discussions with Roger Penrose
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where Γ is a contour on the Celestial sphere of x that separates the poles of f(Z).

Consider the twistor function given by Eq. (3.2)

f(Z) =
(C̄γZ

γ)h(np−1)(D̄δZ
δ)h(nt−1)

(ĀαZα)(B̄βZβ)h(np+nt)+1
.

(For further review of the background material on twistors and the Penrose trans-

form see Ref. [3]). Let Aα = (µA, λ
A′
) be a dual twistor such that

AαZ
α = iµAx

AA′
πA′ + λA′

πA′

≡ AA′
πA′ (3.11)

where Zα = (ixAA′
πA′ , πA′). Similar relations hold for the other dual twistors

BβZ
β ≡ BB′

πB′ , CγZ
γ ≡ CC′

πC′ , and DδZ
δ ≡ DD′

πD′ . We want to write the

Penrose transform as an integral over the CP1 coordinate ζ = π1′/π0′ , so we have

πC′dπC′
= πC′dπD′ϵD

′C′

= π0′dπ1′ − π1′dπ0′

= (π0′)
2d(

π1′

π0′
). (3.12)
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Adopting the canonical spin bases {oA′ , ιA′} we have that

πA′ = π0′oA′ + π1′ιA′

= π0′(oA′ + (
π1′

π0′
)ιA′). (3.13)

Observing that

1

π0′
AA′

πA′ = A0′ +A1′(
π1′

π0′
) (3.14)

and similarly for B, C, and D, we see that the Penrose transform becomes an

integral manifestly over CP1. Thus

φA′
1···A′

2h
(x) =

1

2πi

∮
Γ

f(Z)πA′
1
· · · πA′

2h
πB′dπB′

(3.15)

=
1

2πi

∮
Γ

(C0′ + C1′(
π1′
π0′

))h(np−1)(D0′ +D1′(
π1′
π0′

))h(nt−1)

(A0′ +A1′(
π1′
π0′

))(B0′ + B1′(
π1′
π0′

))h(np+nt)+1

× (oA1 + (
π1′

π0′
)ιA′

1
) · · · (oA2h

+ (
π1′

π0′
)ιA′

2h
)d(

π1′

π0′
)

=
(C1′)h(np−1)(D1′)h(nt−1)

2πiA1′(B1′)h(np+nt)+1

∮
Γ

(ρ+ ζ)h(np−1)(τ + ζ)h(nt−1)

(µ+ ζ)(ν + ζ)h(np+nt)+1

× (oA1 + ζιA′
1
) · · · (oA2h

+ ζιA′
2h
)dζ

where µ = A0′/A1′ , ν = B0′/B1′ , ρ = C0′/C1′ , and τ = D0′/D1′ .

The above change of variables leaves the contour integral in a form that is

straightforward to calculate. The contour Γ is taken to enclose the pole −µ giving
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the result

φA′
1···A′

2h
=

(C1′)h(np−1)(D1′)h(nt−1)

A1′(B1′)h(np+nt)+1
Res
ζ=−µ

(ρ+ ζ)h(np−1)(τ + ζ)h(nt−1)

(µ+ ζ)(ν + ζ)h(np+nt)+1

× (oA1 + ζιA′
1
) · · · (oA2h

+ ζιA′
2h
)

=
(C1′)h(np−1)(D1′)h(nt−1)

A1′(B1′)h(np+nt)+1

(ρ− µ)h(np−1)(τ − µ)h(nt−1)

(ν − µ)h(np+nt)+1

× (oA′
1
− µιA′

1
) · · · (oA′

2h
− µιA′

2h
)

=
(A1′C0′ −A0′C1′)h(np−1)(A1′D0′ −A0′D1′)h(nt−1)

(A1′B0′ −A0′B1′)h(np+nt)+1

× (A1′oA′
1
−A0′ιA′

1
) · · · (A1′oA′

2h
−A0′ιA′

2h
)

=
(ϵC′D′AC′CD′

)h(np−1)(ϵE′F ′AE′DF ′
)h(nt−1)

(ϵA′B′AA′BB′)h(np+nt)+1
AA′

1
· · · AA′

2h

=
(AC′CC′

)h(np−1)(AD′DD′
)h(nt−1)

(AB′BB′)h(np+nt)+1
AA′

1
· · · AA′

2h
. (3.16)

In the case of spin-1 and spin-2, the classical field strength spinors are given by

FA′
1A

′
2 A1A2

= φA′
1A

′
2
ϵA1A2 + φA1A2

ϵA′
1A

′
2

CA′
1···A′

4 A1···A4
= φA′

1···A′
4
ϵA1A2 ϵA3A4 + φA1···A4

ϵA′
1A

′
2
ϵA′

3A
′
4
. (3.17)
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Choosing the standard basis to be the extended Pauli matrices we define the

following symbols, referred to as the Infeld-van der Waerden symbols

σAA′
0 ≡ 1√

2

1 0

0 1

 σAA′
1 ≡ 1√

2

0 1

1 0



σAA′
2 ≡ 1√

2

 0 i

−i 0

 σAA′
3 ≡ 1√

2

1 0

0 −1

 .

(3.18)

The spinor fields are then related to the world tensor description by

Fab = FA′
1A

′
2 A1A2

σA1A′
1

a σ
A2A′

2
b

Cabcd = CA′
1···A′

4 A1···A4
σA1A′

1
a · · ·σA4A′

4
d . (3.19)
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Generalization of Electromagnetic
and Gravitational Hopfions by
Algebraic Type

4.1 Background

Since the earliest days of electromagnetism, when Gauss introduced his integral

for calculating the linking number of two curves in 1833, the topology of physical

fields has been of interest [83]. Around the same time, Faraday developed the

concept of lines of force to give a direct, physical description of electromagnetic

phenomena [84]. By the turn of the 20th century “tangles" or knots in solar

currents were already being observed and could be explained by magnetic effects

[85,86]. Since then, the topological properties of lines of force, such as their linking,

knotting, twisting, and kinking, have been studied in many physical systems [8,9].
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Faraday had also hoped to find a similar intuitive description for gravitational

lines of force. Although he and other scientists such as Maxwell gave much thought

to finding this analogy connecting electromagnetism and gravity, they were never

able to give an adequate explanation or mathematical formulation for this rela-

tionship [87]. In modern times, the connection between massless linear relativistic

fields of different spin has been understood in terms of the SL(2,C) spinor field

equations. In this language, the spin-N equations - the Dirac, Maxwell, Rarita-

Schwinger, and linear Einstein equations - take on a similar form [88]. Their

solutions can be expressed in terms of complex contour integrals allowing one to

construct analogous fields based on topologically non-trivial configurations for any

spin.

The concept of field lines can be applied to gravity, as was once hoped by Fara-

day and Maxwell, by decomposing the curvature tensor into the forces experienced

by a particular time-like observer allowing one to gain an intuitive understanding

of the dynamics of curved space-time [15–17]. This gravito-electromagnetic anal-

ogy provides a direct way of analyzing linked and knotted fields, since the topology

physically manifests in the lines of force for both electromagnetism and gravity.

The topology of lines of force is also related to the dynamics of electromagnetic

fields [73,10,6]. The spin-N correspondence suggests that topology may influence

the dynamics of gravitational fields and the gravito-electromagnetic analogy may

provide an avenue for investigating such effects.
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In this work, we will study fields with a topological structure based on the

Hopf map, which is a surjective map sending great circles on S3 to points on S2,

denoted by

S3 S1−→ S2.

The great circles on S3 are called the fibers of the map, and when stereographically

projected onto R3 correspond to the integral curves of physical fields. These circles

lie on nested toroidal surfaces and each is linked with every other circle exactly

once, creating the characteristic Hopf structure. The homotopy invariant of the

map between two spheres is called the Hopf invariant, or Hopf index. This also

corresponds to the topological invariant on R3, the linking number of the fibers.

Traditionally, the term hopfion has referred to soliton field configurations with

Hopf index unity [89]. These kinds of hopfions have enjoyed a wide variety of

application in many areas of physics [90]. In particle physics, hopfions manifest

as stable knot-like structures in field theoretic descriptions of hadrons [36, 67].

Hopfions have also been shown to represent localized topological solitons in sev-

eral physical systems, including superfluid He phases [38], spinor Bose-Einstein

condensates [39], and MHD descriptions of plasma [4]. It has also been shown

that there exists a radiative solution, referred to as the EM hopfion, which is a

solution to the vacuum Maxwell equations with the property that the field lines
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belonging to either the electric, magnetic, and Poynting vector fields have linking

number one and lie on the surfaces of nested tori [41].

An alternative construction for hopfion fields is based on the Robinson congru-

ence, a null shear-free geodesic congruence that lies tangent to a Hopf fibration

on all constant-time spatial foliations of Minkowski space. Thus a hopfion can

be defined as a field configuration whose principal null directions (PNDs) all lie

tangent to Robinson congruences. The twistor formalism provides a convenient

method for obtaining these hopfions. Given a dual twistor1 Aα = (ωA, π
A′
), there

is an associated spinor field AA = ωA − ixAA′πA′ called the Robinson field whose

flagpole is the Robinson congruence associated with the twistor [91]. This suggests

that a hopfion may be represented entirely using twistors.

Previously, we have used this formalism to construct the null EM hopfion

solutions and find an analogous topologically non-trivial type N gravitational wave

solution [3]. Under time evolution, these radiative fields deform, but maintain

their linked structure while propagating at the speed of light. In this work, we

investigate how twistor methods can be used to find the spin-h hopfion solutions

of different spinor classifications. In particular, we will construct the non-null

electromagnetic, type D and type III gravitational hopfion solutions, and then

characterize the topology of their lines of force. The non-null and type D fields

1For our index conventions, we use lower case Latin letters for Lorentz indices, with i and
j reserved for spatial indices, upper case Latin letters unprimed and primed for spinor and
conjugate spinor indices respectively, and lower case Greek letters for twistor indices.
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do not propagate, but radiate energy from the center of the configuration in all

directions. The type III gravitational hopfion has no analogous EM counterpart,

but can be written as a combination of the null and non-null hopfions. It also

shares some of the distinctive traits of the other hopfions, for example they are

localized, finite-energy fields with linked field line configurations.

4.2 Twistor Integral Methods

We consider the relationship between the singularities of the twistor generating

functions and the geometry of the associated space-time fields. Since the fields

are constructed through a contour integral transform, the poles of the twistor

functions determine the spinor structure of the solutions in Minkowski space [92,

93]. By modifying the twistor function that generates the null EM hopfion, we

find the generating function for a non-null EM solution with linked field lines. In

a similar manner, we use the type N hopfion to construct gravitational hopfions

of different Petrov classifications.

For our analysis, we will consider massless linear relativistic fields of helicity

h, so their spin and helicity values are equivalent. Given a real-valued spin-h field

φA′
1...A

′
2h

written in the self-dual SL(2,C) spinor representation, the field can be

decomposed into 2h single-index spinors called its principal spinors [12]. This is
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described by the relation

φA′
1...A

′
2h

∝ A(A′
1
· · · DA′

2h)
, (4.1)

with the one-index spinors representing the field’s PNDs via their flagpole direc-

tions. Thus, for a hopfion arising from the definition given above, the PNDs of

the spinors A, . . . ,D lie tangent to Robinson congruences.

For example, a null spin-1 field can be written as

φA′B′(x) = f(x)AA′AB′ (4.2)

where AA′ is an SL(2,C) spinor which defines the doubly degenerate principal

null direction of Fab and f(x) is a scalar function that is determined by the elec-

tromagnetic field equation.

This suggests for any helicity h there is an analogous spinor field

φA′
1···A′

2h
(x) = fh(x)AA′

1
· · · AA′

2h
(4.3)

with 2h-fold degenerate PNDs, but we will need to find the scaling function fh(x)

that satisfies the appropriate spin-h field equation.

The twistor formalism allows for the generalization of spin-1 fields to fields of

any spin. The Penrose transform expresses solutions to the massless field equations
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as contour integrals over homogeneous twistor functions F (Z)

φA′
1···A′

2h
(x) =

1

2πi

∮
Γ

πA′
1
· · · πA′

2h
Fh(Z)πB′dπB′

(4.4)

where Γ is a contour on the Celestial sphere of x and

Fh(λZ) = λ−2h−2Fh(Z) (4.5)

so that the degree of homogeneity is related to the helicity by nhom = −2h − 2

[13]. In Section 4.6, we give the explicit calculation of the non-null hopfion fields

as an example to demonstrate how the pole structure of F (Z) determines the

corresponding field geometry through the contour integral in Eq. (4.4).

The twistor function which gives way to the EM hopfion through the Penrose

transform is given by

F1(Z) =
1

(AαZα)(BβZβ)3
. (4.6)

where the contour is taken around the pole defined by Aα. To understand how the

generating function relates to a particular space-time field configuration, consider

the pole structure of Eq. (4.6). The term (A ·Z) has a simple pole and the power

of the (B · Z) term is chosen to give us homogeneity -4, and thus a spin-1 field.

This approach leads directly to the spin-h analogue. We keep the single pole

for the (A ·Z) term and the power of the (B ·Z) term is determined by the relation
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between helicity and homogeneity nhom = −2h−2 from Eq. (4.5). The generating

function for the spin-h hopfion is then

Fh(Z) =
1

(AαZα)(BβZβ)2h+1
. (4.7)

We find the associated spinor field from the Penrose transform of this twistor

function is

φA′
1···A′

2h
(x) =

(
2

Ω|x− y|2

)2h+1

AA′
1
· · · AA′

2h
(4.8)

where Ω is a constant scalar, y is a constant 4-vector determined by the specific

values of Aα and Bβ, and AA′ is the spinor field associated to the twistor Aα

(see Sec. 4.6 for definitions). As expected, we find the solution has a 2h-fold

degeneracy in its PNDs and the Penrose transform has given us the correct form

of the scalar function that will satisfy the field equations.

4.2.1 Petrov Variants

The twistor function in Eq. (4.7) had a single pole which resulted in a spinor

field with all its PNDs degenerate (null EM or type N gravity fields). Changing

the pole structure yields solutions of different Petrov classes. Because the Penrose

transform is a contour integral, when transforming functions with a pole of order

greater than one Cauchy’s integral formula involves the derivative of F (Z). This
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derivative brings the other spinor field, in this case BB′ , into the numerator thus

breaking the degeneracy of the PNDs. For example, the twistor function

Fh(Z) =
1

(AαZα)h+1(BβZβ)h+1
. (4.9)

results in non-null EM {11} or type D gravity {22} fields for h = 1, 2 given by

φA′
1A

′
2
(x) = f1(x)A(A′

1
BA′

2)
(4.10)

φA′
1A

′
2A

′
3A

′
4
(x) = f2(x)A(A′

1
AA′

2
BA′

3
BA′

4)
(4.11)

where AA′ and BA′ define the h-fold degenerate principal null directions. The

details of the Penrose transform for the non-null spin-1 fields are given in Sec.

4.6, and the other field types are found by a similar calculation.

This gives all the classifications of the EM field strength tensor, which has two

PNDs. For gravity we can also extend this to other classifications for which there

is no EM analog, for example hopfion fields of Petrov type III are generated by

F2(Z) =
1

(AαZα)2(BβZβ)4
. (4.12)
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resulting in the field

φA′
1···A′

4
(x) =

(
2

Ω|x− y|2

)2h+1

A(A′
1
AA′

2
AA′

3
BA′

4)
. (4.13)

In summary, the simplest hopfions correspond to homogeneous twistor func-

tions of the form2

F (Z) =
1

(A · Z)1+a(B · Z)1+b
, (4.14)

and the general solution is

φA′
1...A

′
2h

=

(
2

Ω|x− y|2

)a+b+1

A(A′
1
· · · AA′

b
BA′

b+1
· · · BA′

2h)
. (4.15)

The spinor AA′ is the Robinson field of the twistor Aα, and similarly BA′ is the

corresponding Robinson field for the twistor Bβ. Thus the hopfions of different

algebraic type are characterized by two quantities a and b, with 2h = a+ b.

We now see that the null EM and null (type N) gravitational hopfions which

we studied in [3] are elementary hopfions with a = 0. In fact all null hopfions take

this form, as seen from the expression in Eq. (4.15) where, in the case a = 0, the

PNDs are all proportional to the flagpole of AA′ and thus completely degenerate.

2These functions, first introduced by Penrose [5], are a subset of the elementary states of
twistor theory and play a fundamental role in solving problems in twistor space. For more
discussion on the elementary states, see Refs. [78, 81,82].

61



Chapter 4. Generalization of Electromagnetic and Gravitational Hopfions by
Algebraic Type

4.3 Electromagnetic Hopfions

Before we consider the gravitational hopfions, we give a brief overview of the

electromagnetic hopfions. The EM solutions are characterized by h = 1, and

thus have two distinct classifications: fields with two degenerate PNDs (null)

and fields with two distinct PNDs (non-null). The null solution, originally due

to Rañada [41], can be derived using the pullback of the area element on S2

via the Hopf map to generate a field configuration with linked field lines. The

alternative derivation using twistor generating functions presented here can be

used to generalize the null solution to fields of different algebraic type based on

the same topological structure. We use this method to construct the non-null EM

hopfion and explore its properties.

4.3.1 Null EM Hopfion

The null EM hopfion φA′B′ ∼ AA′AB′ is the simplest example of a hopfion,

and exhibits a topologically non-trivial field line structure which is preserved as

time evolves. It is a solution to the vacuum Maxwell equations such that any two

field lines are closed and linked exactly once [94, 42]. When an EM hopfion is

decomposed onto hyperplanes of constant time there always exists a hyperplane

wherein the electric, magnetic, or Poynting vector fields are tangent to the fibers

of three orthogonal Hopf fibrations [95]. The integral curves of the transport
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Figure 4.1: Field line structure of the null EM hopfion: (a) the electric field,
(b) the magnetic field, and (c) the Poynting vector. Row 1 shows the fields at
t = 0 are tangent to three orthogonal Hopf fibrations. The second row shows the
t = 1 configuration, where the electric and magnetic fields have deformed, but the
Poynting vector is still everywhere tangent to a Hopf fibration and is propagating
at the speed of light.

velocity, defined as the ratio of the Poynting vector to the electromagnetic energy

density, do not deform but translate at the speed of light, thus preserving the

topological structure of the field. As time evolves, the electric and magnetic fields

deform, but the topology is conserved, so that the field lines still lie on the surfaces

of nested tori and have linking number one. The field line structure is illustrated

in Figure 4.1.
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To construct these fields from Eq. (4.8), we must first make a choice of the

dual twistors A and B. The dual twistors

Aα = (0,
√
2 , 0, 1)

Bα = (
√
2 , 0, 1, 0)

correspond to Robinson congruences oriented in the +z and −z directions, re-

spectively. The same choice of Aα and Bα is used in conjunction with Eq. (4.15)

to construct the hopfion fields of different algebraic type.

The expressions for the electric and magnetic fields are complicated, but the

solution takes a simple form when written as a Riemann-Silberstein (RS) vector

Fnull = E+ iB (4.16)

=
4

π(−(t− i)2 + r2)3


(x− iz)2 − (t− i+ y)2

2(x− iz)(t− i+ y)

i(x− iz)2 + i(t− i+ y)2


. (4.17)

with r2 = x2+ y2+ z2. We will analyze the gravitational solutions in terms of the

properties of the EM hopfions, such as the energy density u and Poynting vector
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S. For the null case, these are given by

unull =
1

(d(x))3
(1 + x2 + y2 + (t− z)2)2, (4.18)

Snull =
1

(d(x))3
(1 + x2 + y2 + (t− z)2)


2(x(t− z) + y)

2(y(t− z)− x)

x2 + y2 − (t− z)2 − 1


. (4.19)

The term d(x) = (1 + 2(t2 + r2) + (t2 − r2)2) is a function related to the energy

distribution of the field that appears in the expressions for all the hopfions. The

overall scalar factor describes one of the quintessential features of these topological

structures, namely that the energy density is concentrated at the center and falls

off rapidly in the outward radial direction.

4.3.2 Non-null EM Hopfion

The non-null EM hopfion φA′B′ ∼ A(A′BB′) can also be neatly expressed with

a RS vector,

Fnon-null =
2

(−(t− i)2 + r2)3


−2(xz − iy(t− i))

−2(yz + ix(t− i))

(t− i)2 + x2 + y2 − z2


. (4.20)
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At t = 0 the E field for this solution is everywhere tangent to a Hopf fibration,

while B and hence S are identically zero since the RS vector is purely real. For

t ̸= 0, B ̸= 0 and the field line topologies for E and B are not preserved since

E · B ̸= 0, however the fields are still finite energy. The field line structure of S

shows that the solution does not propagate, but rather energy flows outward from

the center of the configuration. These results are collected in Figure 4.2.

There are several known non-null EM configurations based on the Hopf map

that are related to the fields in Eq. (4.20). A solution found using the pullback

method of Rańada is given in Ref. [10]. It is dual to fields described here, so that

F′ → −iFnon-null. Another configuration was constructed by Kiehn [96], which is

related to Eq. (4.20) by a transformation involving a complex shift in time and a

global phase of π/4, given by

F′ → 1√
2
eiπ/4Fnon-null

∣∣∣
t→t+i

. (4.21)

The non-null EM hopfion has the following expressions for the energy density

and Poynting vector

unon-null =
2

(d(x))3
(t4 + 2t2(1 + 3r2 − 4z2) + (1 + r2)2), (4.22)
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Figure 4.2: Field line structure of the non-null EM hopfion. (a) The electric
field lines at t = 0 have the structure of the Hopf fibration. Not shown are B and
S, which are both identically zero at t = 0. For t = 1, (b) the electric field (c)
the magnetic field, and (d) the Poynting vector.

Snon-null =
4t

(d(x))3


x3 + 2yz + x(1 + t2 + y2 − z2)

y3 − 2xz + y(1 + t2 + x2 − z2)

2z(x2 + y2)


. (4.23)

We will see in the next section that these are related to the analogous gravitational

hopfion fields.

4.4 Gravitational Hopfions

The gravitational hopfions are characterized by h = 2, so there are a total of

five distinct non-trivial gravitational hopfions, given by the Petrov types N, D,

III, II, and I which classify the degeneracies of the PNDs. Here we review the

type N, then present the type III and type D hopfions and analyze their structure

using the GEM formalism.
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4.4.1 Review of GEM Tidal Tensors

When analyzing the gravitational hopfions, it is useful to employ the gravito-

electromagnetic (GEM) formalism, especially in cases where one can use this

analogy to extract useful information about a solution from its electromagnetic

counterpart.

For spin-1, the Penrose transform will generate a solution to the source-free

field equation

∇AA′
φA′B′ = 0 (4.24)

from which we construct the field strength tensor3 by

FA′B′AB = φA′B′ϵAB + c.c.

Fab = FA′B′ABσ
AA′

a σBB′

b . (4.25)

For an observer at rest, we can decompose this into the standard electric and

magnetic fields

Eb = Fb0, (4.26)

Bb = − ∗ Fb0 (4.27)

3We use the conventions of Penrose as in Ref. [12], so that xa ↔ xAA′ ≡ xaσAA′

a =

1√
2

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
.
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The integral curves of Eb and Bb are the electromagnetic field lines.

For spin-2, the source-free field equation and Weyl curvature tensor are

∇AA′
φA′B′C′D′ = 0,

CA′B′C′D′ABCD = φA′B′C′D′ϵABϵCD + c.c.

Cabcd = CA′B′C′D′ABCDσ
AA′

a · · ·σDD′

d . (4.28)

In direct analogy with the decomposition of the electromagnetic field, the Weyl

tensor Cabcd can be decomposed into an even-parity “electric" tensor Eij called the

tidal field and an odd-parity “magnetic" tensor Bij called the frame-drag field [15].

For an observer at rest, these are

Eij = Ci0j0 (4.29)

Bij = − ∗ Ci0j0. (4.30)

These tensors are symmetric and traceless, and are thus characterized entirely by

their eigensystem configuration. The GE tensor has eigenvectors whose integral

curves define the tendex lines and the eigenvalues Eℓ are the magnitude of the

tidal acceleration along these lines, where the relative acceleration over a small
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spatial separation ℓ is given by

∆a = −Eℓℓ.

Positive (negative) eigenvalues correspond to a compressive (stretching) force. The

GM tensor has eigenvectors whose integral curves define the vortex lines and their

eigenvalues Bℓ are the magnitude of the gyroscope precession about the vortex

lines

∆Ω = Bℓℓ.

Positive (negative) eigenvalues correspond to a clockwise (counter-clockwise) pre-

cession. The tendex and vortex lines are the gravitational lines of force for an

observer at rest, which represent the analog of EM field lines.

In the GEM formalism, there are two local duality invariants analogous to the

energy density and the Poynting vector in electromagnetism [19]. These are the

super-energy density U and the super-Poynting vector P, given by

U =
1

2
(EijE

ij +BijB
ij) (4.31)

Pi = εijkE
j
lB

kl. (4.32)
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4.4.2 Type N GEM Hopfion

The type N gravitational hopfion, previously studied in [3], has the form

φA′B′C′D′ ∼ AA′AB′AC′AD′ and provides a good starting point for discussing

the use of GEM in studying hopfions. For the type N hopfions, the Weyl de-

composition has eigenvalues for both the GE and GM fields that take the form

{λ−, λ0, λ+}, with λ−(x) ≤ λ0(x) ≤ λ+(x) for all points x in space-time. We will

label the eigenvectors {e−, e0, e+} and {b−,b0,b+} corresponding to the eigenval-

ues for the tidal and frame-drag fields respectively. The type N fields are purely

radiative, so the eigenvalues take the simple form {−Λ, 0,Λ} where Λ(x) is a

function on space-time.

The eigenvectors e0 and b0 are both equivalent to the Poynting vector in

Eq. (4.19) for the null EM hopfion, up to an overall scalar. For the remaining

eigenvector fields, we can construct RS vectors fe = e− + ie+ and fb = b− + ib+

which are related to the RS vector of the null EM hopfion from Eq. (4.16) by

fe = eiπ/4fb (4.33)

= eiArg θFnull (4.34)

where

θ(x) =
√

−(t− i)2 + r2 . (4.35)
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Figure 4.3: The type N gravitational hopfion at t = 0 and t = 1: the tidal fields
(a) e−, (b) e+, and (c) e0; and the frame-drag fields (d) b−, (e) b+, and (f) b0.
The field lines are colored by the relative magnitude of their eigenvalues, with
lighter colors indicating greater magnitude.

The tendex and vortex lines have been plotted numerically in Figure 4.3.

The super-energy and super-Poynting vector for this field are related to the

duality invariants of the null EM hopfion by

U
N
=

1

2
d(x)u2

null, (4.36)

P
N
=

1

2
d(x)unullSnull. (4.37)
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Thus, we find the same Hopf structure that propagates at the speed of light. The

surfaces of constant energy are concentric spheres, as in the spin-1 case, but the

magnitude drops off more quickly in the radial direction.

4.4.3 Type D GEM Hopfion

The type D gravitational hopfion φA′B′C′D′ ∼ A(A′AB′BC′BD′) is the gravita-

tional analog of the non-null EM hopfion, in that its PNDs are split evenly into

two sets. For spin-2, the two sets consist of pairs of doubly degenerate PNDs.

This hopfion has eigenvalue structure {2Λ,−Λ+λ,−Λ−λ}, where λ = 0 at t = 0

simplifying the eigenvalue structure to {2Λ,−Λ,−Λ}. Note that Λ(x) used here

represents a different function than the Λ(x) used before to describe the type N

hopfion; we use the symbol only to describe the overall structure of the eigenval-

ues. This eigenvalue configuration is interesting because at t = 0 the eigenvalues

−Λ±λ coincide, so their eigenvectors collapse into a doubly degenerate eigenspace.

Furthermore, at t = 0, the GE field e2Λ is exactly tangent to a Hopf fibration and

the frame-drag field vanishes, hence the GM eigenvalues and eigenvectors vanish

as well. The values of Λ and λ are rather complicated, so we will not present them

here. The tendex and vortex lines have been plotted numerically in Figure 4.4.

The expressions for the super-energy and super-Poynting vector of the type D

hopfion are quite long, but they take a simpler form when written in terms of the
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Figure 4.4: The type D gravitational hopfion at t = 0 and t = 1: the tidal fields
(a) e−Λ+λ, (b) e2Λ, and (c) e−Λ−λ; and the frame-drag fields (d) b−Λ+λ, (e) b2Λ,
and (f) b−Λ−λ. The frame-drag fields at t = 0 are omitted because they are all
vanishing then. As before the field lines are colored by the relative magnitude of
their eigenvalues, with lighter colors indicating greater magnitude. The fields at
t = 0 in (a) and (c) are presented with the same color scheme to convey the fact
that they really represent a degenerate eigenspace together.

duality invariants of the non-null EM hopfion

U
D
=

1

48
d(x)g

D
(x)u2

non-null (4.38)
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where

g
D
(x) =

(t4 + 2t2(1 + 5r2 − 6z2) + (1 + r2)2)2 − 48t4(x2 + y2)2

(t4 + 2t2(1 + 3r2 − 4z2) + (1 + r2)2)2
(4.39)

and

P
D
=

1

32
d(x)unon-nullSnon-null. (4.40)

Similarly to the non-null EM case, the super-Poynting vector indicates that the

field configuration radiates energy outward from the center in all directions, but

the overall structure does not propagate.

4.4.4 Type III GEM Hopfion

The type III gravitational hopfion φA′B′C′D′ ∼ A(A′AB′AC′BD′) has one set

of triply degenerate PNDs and one unique PND. This hopfion has eigenvalue

structure {λ−, λ0, λ+} = {−Λ, λ,Λ − λ}, where λ = 0 at t = 0. We again note

that the functions Λ(x) and λ(x) used here represent different functions than

those used to describe the type N and type D hopfions. At t = 0, both the GE

and GM fields are tangent to three orthogonal Hopf fibrations, but with different

orientations than the type N configuration. For type III, the eigenvectors e0 and

b0 are not aligned with the super-Poynting vector, but rather are orthogonal to
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Figure 4.5: The type III gravitational hopfion at t = 0 and t = 1: the tidal
fields (a) e−, (b) e+, and (c) e0; and the frame-drag fields (d) b−, (e) b+, and
(f) b0. The field lines are colored by the relative magnitude of their eigenvalues,
with lighter colors indicating greater magnitude.

it (and each other). The tendex and vortex lines have been plotted numerically

in Figure 4.5.

Comparing the type III hopfion to the EM hopfions, we see that the two sets

of local duality invariants are similar. The super-energy is related by

U
III

=
1

16
d(x)g

III
(x)unullunon-null (4.41)
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where

g
III
(x) =

(t4 + 2t2(1 + 7r2 − 8z2) + (1 + r2)2)

(t4 + 2t2(1 + 3r2 − 4z2) + (1 + r2)2)
. (4.42)

The super-Poynting vector can be written in terms of two vector terms that are

exactly the same as the vector terms in the Poynting vectors of the EM fields,

from Eqs. (4.19) and (4.23), up to the overall scalar factors

P
III

=
1

32
d(x)g

III
(x)unon-nullSnull

+
1

16
d(x)unullSnon-null.

(4.43)

Thus we see the field is comprised of two distinct structures. The first term in

Eq. (4.43) corresponds to a component of the field that propagates at the speed

of light, which is proportional to the Poynting vector of the null EM hopfion from

Figure 4.1(c). The second term is a component that radiates energy outward

from the center, which is proportional to the Poynting vector of the non-null EM

hopfion from Figure 4.2(d). The two terms combined create the configuration in

4.5, so that as time evolves the linked structure propagates in the +ẑ-direction,

leaving open field lines radiating energy in the −ẑ-direction. This can be seen by

comparing the visualizations of the EM Poynting vectors to the type III gravity

fields in Figures 4.5(c) and 4.5(f).
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4.4.5 Type II and Type I Fields

Finally, we briefly mention the type II and type I fields. It is not possible

to generate algebraically special fields of these types from a twistor function of

the form in Eq. (4.14). Type II fields contain three distinct PNDs, therefore

one must introduce a (C · Z) term into Eq. (4.14), where the twistor Cγ has the

associated spinor field CA′ which becomes one PND. However, when you apply

Cauchy’s integral theorem to the contour integral the derivative requires you use

the product rule, thus the result includes multiple terms. The solution is then a

linear combination of different type II fields. A similar situation arises for type I.

4.5 Conclusion

The beauty of the Penrose transform lies in its complex contour integral na-

ture, which allows for the application of Cauchy’s theorem to bring out the spinor

structure of solutions in M. We used this method to modify the generating func-

tions corresponding to the null EM and type N GEM hopfions and construct a

class of spin-h fields, including the non-null electromagnetic, type D and type III

gravitational hopfions. The gravito-electromagnetic formalism was used to char-

acterize the tendex and vortex structure of the gravitational hopfions and show

that the linked configuration of the Hopf fibration appears in the lines of force.
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The fields based on the Hopf fibration studied here represent some of the most

basic topological structures found in continuous, space-filling configurations. The

methods we have presented could potentially be extended to the construction of

classical electromagnetic and gravitational fields based on more intricate topolog-

ical structures. For example, the radiative hopfions - the null electromagnetic and

type N gravitational hopfions - have been shown to be the simplest case in a class

of solutions with field line structures based on torus knots [25,97]. After the torus

knots, the twist knots are considered to be the next simplest class of knots [98],

and have already been observed in other areas of physics such as polymer mate-

rials [99, 100], DNA organization [101, 102], and quantum field theory [103, 104].

Identifying new field configurations and studying their properties could open new

physical applications, and deepening our understanding of field line topology gives

us insight into the structure and dynamics of physical systems.

4.6 Appendix: Penrose Transform for Non-null Hop-

fions

When the Penrose transform is written as an integral over a CP1 coordinate,

the application of Cauchy’s theorem to generating functions with poles of order

greater than one results in derivative terms which break the degeneracy of the
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PNDs. Here we show the Penrose transform for the non-null spin-1 case, but the

type D and type III spin-2 calculations follow in a similar manner. The calculation

for the null and type N fields is given in Ref. [3].

We will calculate the Penrose transform

ϕ(X)A′B′ =
1

2πi

∮
Γ

πA′πB′F (Z)πB′dπB′

with f(Z) given by Eq. (4.9) with h = 1

F (Z) =
1

(AαZα)2(BβZβ)2
.

Let Aα and Bα be dual twistors associated to the spinor fields AA′ and BB′ ac-

cording to

AαZ
α = iAAx

AA′
πA′ + AA′

πA′

≡ AA′
πA′

BβZ
β = iBBx

BB′
πB′ +BB′

πB′

≡ BA′
πB′ ,

The measure can be written in the form

πC′dπC′
= (π0′)

2dζ.
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We also have the relations

1

π0′
AA′

πA′ = A0′ +A1′ζ,

1

π0′
BA′

πA′ = B0′ + B1′ζ.

Introducing the canonical spin bases {oA′ , ιA′} into the primed spin space S ′ we

have that

πA′ = π0′oA′ + π1′ιA′

= π0′(oA′ + (
π1′

π0′
)ιA′)

= π0′(oA′ + ζιA′). (4.44)

Thus

φA′B′(x) =
1

2πi

∮
Γ

(oA′ + (
π1′
π0′

)ιA′)(oB′ + (
π1′
π0′

)ιB′)

(A0′ +A1′(
π1′
π0′

))2(B0′ + B1′(
π1′
π0′

))2
d(
π1′

π0′
)

=
1

2πi(A1′)2(B1′)2

∮
Γ

(oA′ + ζιA′)(oB′ + ζιB′)

(µ+ ζ)2(ν + ζ)2
dζ (4.45)

where ζ = π1′/π0′ , µ = A0′/A1′ , and ν = B0′/B1′ represent the projective coordi-

nate and poles respectively.

After the variable substitutions, the integral is straightforward. Taking the

contour Γ to enclose the pole −µ and integrating each of the above terms in turn

we arrive at
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1

2πi

∮
Γ

oA′oB′
dζ

(µ+ ζ)2 (ν + ζ)2
= oA′oB′

2

(µ− ν)3

1

2πi

∮
Γ

oA′ıB′
ζdζ

(µ+ ζ)2 (ν + ζ)2
= oA′ıB′

−(µ+ ν)

(µ− ν)3

1

2πi

∮
Γ

oB′ıA′
ζdζ

(µ+ ζ)2 (ν + ζ)2
= oB′ıA′

−(µ+ ν)

(µ− ν)3

1

2πi

∮
Γ

ıB′ıA′
ζ2dζ

(µ+ ζ)2 (ν + ζ)2
= ıB′ıA′

2µν

(µ− ν)3
,

which we reassemble to give the spinor field ϕA′B′ as

ϕA′B′ =
1(

A1′
)2 (B1′

)2 1

(µ− ν)3
(2oA′oB′ − (µ+ ν)(oA′ıB′ + oB′ıA′) + 2µνıB′ıA′)

=
(A1′)(B1′)

(εA′B′AA′BB′)3
(2oA′oB′ − (µ+ ν)(oA′ıB′ + oB′ıA′) + 2µνıB′ıA′)

=
(A1′)(B1′)

(AABA(xa − ya)(xa − ya))3
(2oA′oB′ − (µ+ ν)(oA′ıB′ + oB′ıA′) + 2µνıB′ıA′)

=
2

(AABA(|x− y|2)3
(A1′B1′oA′oB′ − 1

2
(A0′B1′ +A1′B0′)(oA′ıB′ + oB′ıA′) +A0′B0′ıB′ıA′)

=
2

(AABA(|x− y|2)3
(A0′B0′oA′oB′ + 1

2
(A1′B0′ +A0′B1′)(oA′ıB′ + oB′ıA′) +A1′B1′ıB′ıA′)

=
2

(Ω|x− y|2)3
A(A′BB′)

where Ω = AAB
A is a constant scalar and the point y is given by

yAA′
= i

AA′
BA −BA′

AA

ABBB
. (4.46)
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Chapter 5

Gravitational Shockwaves on
Rotating Black Holes

5.1 Motivation

Black holes are thermodynamic systems whose microscopic description we still

do not understand. After the original work on black hole thermodynamics by

Christodoulou [105], Penrose and Floyd [106], Carter [107], Bekenstein [108], and

Bardeen, Carter, and Hawking [109], Hawking justified the analogy between the

surface gravity α and a temperature T by predicting that an isolated black hole

will radiate as a black body at the expected temperature T = α
2π

[110,111]. About

20 years later, Strominger and Vafa vindicated the analogy between the horizon

area A and an entropy S by enumerating microstates in string theory to derive

the expected result S = 1
4
A for extremal black holes in 4 + 1 dimensions [112].
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We will not recount the subsequent history of microstate counting. Suffice

it to say that the calculations from string theory, while eminently laudable, are

restricted to black holes near extremality and may not provide enough insight into

the statistical mechanics behind the conventional black holes of general relativity

for generic values of their parameters. It would be helpful to establish a com-

plementary strategy for black hole statistical mechanics tailored to an expansion

around the Schwarzschild solution.

One such alternative is the S-matrix approach of ’t Hooft [30, 31]. Motivated

by this and by Shenker and Stanford’s investigation of the butterfly effect [32,33],

Kitaev recently proposed a quantum field theory in 0 + 1 dimensions [113] whose

low-energy effective action is that of dilaton gravity1 in 1+1 dimensions [115,116].

Details of this model were explored further by Maldacena and Stanford [117].

Since the equations of motion derived from the effective action admit the AdS2

black hole as a solution [118], we now have an explicit statistical mechanical model

of black hole thermodynamics.

Kitaev’s calculation demonstrates, for the first time, that the thermodynamic

limit of a quantum mechanical model2 can produce a bona fide black hole horizon,

1For a reference on black holes in dilaton gravity in 1+1 dimensions, see the work by Callan,
Giddings, Harvey, and Strominger [114].

2As remarked by Witten, “the average of a quantum system over quenched disorder is not
really a quantum system” [119]. Strictly speaking it is only a quantum mechanical model if the
average captures the physics of a single realization with fixed couplings Jjkℓm. We thank Yonah
Lemonik for a discussion about this important point.
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albeit in lower-dimensional scalar-tensor gravity, not in (3 + 1)-dimensional Ein-

stein gravity. Between this calculation and Maldacena’s conjecture that Type-IIB

string theory is defined nonperturbatively by the partition function of N = 4

supersymmetric Yang-Mills theory [120], the evidence is strong that Hawking’s

famous prediction of information loss [110, 111] points to a deficiency in general

relativity rather than in quantum mechanics.3

The core of ’t Hooft’s reasoning is based not on philosophical prognostication

about theories of everything but on an exact solution of Einstein’s equation that

describes the gravitational backreaction of a massless particle on the future horizon

of a Schwarzschild black hole [29]. We will call this solution the Dray-’t Hooft

gravitational shockwave.4

3Raised on a wholesome diet of statistics, quantum mechanics, and field theory, we espouse
the view that when a classical theory conflicts with a quantum theory we simply jettison the
classical theory. There is no information “paradox” in the sense of a contradiction, there is only
our inability to coarse grain correctly. We agree with Mathur that this proclamation does not
solve anything, since “[y]ou are welcome to do your analysis in either the CFT or the gravity
theory, but at the end you must show me what happens when a black hole forms and evaporates
in the gravity description” [121]. We further agree that “being able to compute the Page curve
in some particular theory is what it means to have solved the black hole information problem,” a
characterization attributed (without citation) to Strominger in the review by Harlow [122]. We
only mean to endorse the search for models in which quantum mechanics and special relativity
coexist unadulterated and whose low-energy effective action is that of general relativity coupled
to gauge fields and matter. From our point of view, the salient logical import of Maldacena’s
conjecture is that N = 4 supersymmetric Yang-Mills theory in 3 + 1 dimensions with gauge
group U(N) is such a model.

4This solution can be viewed on the one hand as the generalization of the Aichelburg-Sexl
shockwave [28] to curved space-time, or on the other hand as an application of Penrose’s “scissors-
and-paste” method for gluing together known solutions of Einstein’s equation to form new so-
lutions [27].
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The solution was generalized to the Reissner-Nordström (RN) black hole by

Alonso and Zamorano [123] and by Sfetsos [35], who also adapted the shockwave

to other static backgrounds. Kiem, Verlinde, and Verlinde [124] deployed a pertur-

bative variant of the Dray-’t Hooft result to investigate the effect of gravitational

interactions on black hole evaporation. Polchinski [125] revisited the solution to

refine ’t Hooft’s “relation between a given black hole S-matrix element and another

with an additional ingoing particle” and in the process reformulated arguments

for the firewall [126,127].5

In his exposition of the S-matrix framework, ’t Hooft did not concern himself

with more general black hole backgrounds, opining that “[c]onceptually, generaliza-

tion of everything we say to these cases should be straightforward” [31]. Perhaps,

but in this paper our principal ambition is to galvanize the search for a statisti-

cal mechanics6 underlying astrophysical black holes [135], whose equilibrium field

configurations are described by the Kerr geometry.7 So if we intend to adapt

5As far as we can tell, the analysis of Kiem, Verlinde, and Verlinde [124] seems to corroborate,
rather than refute, some of the arguments by Marolf and Polchinski [127]. But the former authors
advocated f or black hole complementarity, while the latter authors spearheaded the consortium
that famously proclaimed “complementarity is not enough” [126].

6It has long been suggested, on the grounds of matching absorption cross sections with two-
point functions in the appropriate thermodynamic ensemble, that the microscopic model should
be a conformal field theory. See the seminal works by Maldacena and Strominger [128] and
Cvetič and Larsen [129], and the more recent papers by Castro, Maloney, and Strominger [130],
Bredberg, Keeler, Lysov, and Strominger [131], and Hartman, Song, and Strominger [132].
We would characterize this proposal as a conjectured equivalence at the level of eigenstate
thermalization [133,134].

7This is not quite the most realistic situation, since a black hole found in nature is expected to
be formed from the collapse of a star, while the Kerr solution describes a black hole that always
was and always will be. We will acquiesce to this criticism and leave gravitational collapse for
another day.
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’t Hooft’s blueprint and Kitaev’s recent insights to the microscopics of rotating

black holes, then our very first preliminary step must be to generalize ’t Hooft’s

formula for the transition amplitude.

That is what we do here: We generalize the Dray-’t Hooft gravitational shock-

wave to the Kerr-Newman background, which is the most general asymptotically

flat black hole in four space-time dimensions. Readers who know about the recent

work on gravitational shockwaves and are intimately familiar with the method

of spin coefficients could skip to our metric ansatz described by Eqs. (5.119)

and (5.125), and then to our main result: the Ricci tensor in Eq. (5.217), the

Ricci scalar Φ22 in Eq. (5.225), and the differential operator in Eq. (5.226). We

acknowledge that this provides only the most tentative intimation toward a mi-

croscopic theory of the Kerr-Newman space-time, but it is a new exact solution

of Einstein’s equation and therefore deserves to be studied in its own right.

We should say that at the late stages of our calculation8 we learned that Balasin

generalized the Ricci tensor for the Dray-’t Hooft solution with the express aim

of including rotation in the formalism [136]. But he did not perform the explicit

calculation for the Kerr-Newman family of backgrounds, stating only that “it

would be interesting to apply it to a rotating, i.e. Kerr black hole” and that

“[w]ork in this direction is currently in progress.” Similar comments were made by

8We found Balasin’s paper after we had already computed the Ricci tensor but be-
fore we managed to express it in the relatively compact and geometrical form described by
Eqs. (5.217), (5.225), and (5.226).
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Alonso and Zamorano [123] and by Taub [137]. We have not found later articles

by any of these authors that contain our results.

5.2 The Kerr-Newman black hole

To establish our conventions and provide the necessary context for our result,

we will first review the Kerr-Newman black hole using the method of spin coeffi-

cients. This method was introduced by Newman and Penrose (NP) [138] and later

refined into a “compacted” version by Geroch, Held, and Penrose (GHP) [139].9

Since we would like our work to be accessible to field theorists who do not nec-

essarily live and breathe general relativity, we will present explicit formulas and

concrete calculations instead of intuitive explanations that are often designed more

to impress than to educate.

9Perhaps other theorists could have performed our calculation using ordinary tensor calculus,
but for us the formalism was indispensable. We presume that it is not taught in the standard
graduate curricula only because of its formidable notation and its wanting presentation in the
textbooks that bother to use it. Even among seasoned relativists, it seems that the GHP
incarnation has largely fallen by the wayside. While the original NP paper may be difficult
to parse by modern pedagogical standards, the original GHP paper is, despite some lingering
notational deformities, clear and enlightening. We highly recommend it to any student interested
in the method of spin coefficients.
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5.2.1 Null tetrad

Our description of the space-time will begin with a set of “frame fields”10

{e a
µ(x)}4a=1 , (5.1)

collectively called a “frame,” “tetrad,” or “vierbein.” The frame is designed to bring

the metric tensor gµν to its locally flat form ηab at each point in space-time:

gµν(x) ≡ ηab e
a
µ(x) e

b
ν (x) . (5.2)

The essential insight of Newman and Penrose [138] was to recognize that in general

relativity we often care about the local lightcone structure of the space-time, so

it may be geometrically advantageous to work with a null tetrad instead of the

usual orthonormal one. Motivated by this and by spinorial considerations of no

concern to us here, they introduced a metric in the tangent space that is strictly

10Those who refer to 1-forms as “co-vectors” might prefer to reserve the terminology “frame
fields” for the quantities eµa that define the inverse metric, in which case the quantities eaµ that
define the metric could be called “co-frame fields.” We prefer to use “frame fields” as a catch-all
term that encompasses both objects, just as we prefer to use the symbol “e” for both eaµ and eµa .
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off-diagonal:11

ηab =



0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0


. (5.3)

The notation we will use for the frame fields is12

e a
µ ≡ (−l′µ, −lµ, m

′
µ, mµ) , (5.4)

where lµ and l′µ are independent and real, while mµ is complex with m′
µ ≡ (mµ)

∗.

11We display this elementary definition up front for two reasons. First, one of us, raised
as a particle physicist, was so used to “ηab” being diagonal that it took time to readjust his
raising and lowering reflexes. (Those accustomed to the lightcone are already halfway fluent but
must make peace with the off-diagonal spatial block.) Second, we change metric signature with
respect to the classical references (see Sec. 5.A). A desire to caution, not to be old-fashioned, is
what motivated us to retain the traditional range 1-4 instead of 0-3 for indices in the tangent
space [recall Eq. (5.1)]. In this section we wish to preempt potential pitfalls and will therefore
provide some prophylaxis for the uninitiated. Brevity may be the soul of wit, but it is a scourge
to pedagogy.

12This awkward convention is defined so that eµ
a ≡ gµνηab e

b
ν = (lµ, l′µ,mµ,m′µ). This is

because the traditional presentation of the spin coefficient formalism focuses on the vectors
tangent to null trajectories, and it treats the 1-forms as derived by matrix inversion. For us it is
more convenient to privilege the 1-forms and derive the vectors by matrix inversion. To keep the
notation consistent, we are stuck with e a

µ = (−l′µ,−lµ,m
′
µ,mµ). Note that lowering the tangent

space index on the collection of 1-forms gives eaµ = (lµ, l
′
µ,mµ,m

′
µ). Despite its geometrical

obscurity, this is an extremely convenient object to work with.

90



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

Given a coordinate basis of differential 1-forms13 dxµ, we define a collection of

frame field 1-forms14

ea ≡ e a
µ dx

µ ≡ (−l′, −l, m′, m) . (5.5)

In terms of these, the metric is15

ds2 = −2ll′ + 2mm′ . (5.6)

A tactical advantage of deploying the tetrad formulation is to never have to look

at a metric tensor, so we will not show ds2 explicitly. Instead, we will only show

the functional form of the tetrad. We will first use the standard “Schwarzschild-

like” coordinates (t, r, θ, φ) of Boyer and Lindquist [141], which are appropriate

for describing the experience of an observer far from the black hole.16

The three physical parameters of the black hole are its mass M , its charge17

Q, and its angular momentum J . It is standard practice to trade J for the ratio

13It is the dxµ, not the xµ, that transform linearly under general coordinate transformations.
See pp. 312-313 of Zee [140].

14The traditional notation for the form l′ is n, but we prefer a notation that is manifestly
covariant under the exchange of primed and unprimed quantities [we will get to this in Eq. (5.27)].

15Our convention is such that ordinary multiplication of differential forms denotes the sym-
metric tensor product: for example, ll′ ≡ 1

2 (l ⊗ l′ + l′ ⊗ l). When we intend the antisymmetric
tensor product, we will write the wedge symbol explicitly: l ∧ l′ ≡ 1

2 (l ⊗ l′ − l′ ⊗ l).
16These coordinates are technically applicable anywhere outside the horizon, but their relation

to our ordinary notions of space and time becomes obscure in the ergoregion.
17Some numerical factors are absorbed into Q, whose precise relation to the electric charge of

a test particle depends on a choice of units. We also set c = G = 1.
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a ≡ J/M . It is also both customary and convenient18 to define the “horizon

function” [142]

∆ ≡ r2 − 2Mr + a2 +Q2 ≡ (r − r+)(r − r−) . (5.7)

The inner horizon r− ≡ M −
√

M2 − a2 −Q2 and the outer horizon r+ ≡ M +√
M2 − a2 −Q2 are defined as the solutions to ∆ = 0. In this chapter, we will be

concerned exclusively with the region r ≥ r+, so when we refer to “the” horizon,

we will always mean the outer one.

We will also define a complex function R(r, θ) that generalizes the radial co-

ordinate, along with the value of that function at the north pole, as follows:

R ≡ r + ia cos θ , R0 ≡ r + ia . (5.8)

18It is beyond dispute that defining the horizon function is useful computationally, but its
interpretation should be treated with caution. Consider the situation a = 0 where we recover
the Reissner-Nordström geometry. In Schwarzschild-like coordinates, the metric is analytic
near Q = 0. The series gRN

µν (Q) = gRN
µν (0) + Q ∂Qg

RN
µν

∣∣∣
Q=0

+ O(Q2) is well-defined, and in

these coordinates we have gRN
µν (0) = gSchwarzschild

µν . But the singularity in the maximally ex-
tended Reissner-Nordström solution is timelike, while the singularity in the maximally extended
Schwarzschild solution is spacelike. The point is that the singularity at r = 0 is never null. So
it is not correct to look at the horizon function ∆ = (r − r+)(r − r−) and conclude from it
that in the limit Q → 0, the inner horizon r− merges with the singularity at r = 0: the limit is
discontinuous. While the two metrics in Schwarzschild-like coordinates are smoothly connected
to each other, the maximally extended geometries are not.

92



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

In the above notation, the following null 1-forms describe the Kerr-Newman black

hole:19

l = −dt+
|R|2

∆
dr + a sin2 θ dφ , l′ =

∆

2|R|2

(
−dt− |R|2

∆
dr + a sin2 θ dφ

)
,

m =
1

R
√
2

(
|R|2 dθ + i|R0|2 sin θ dφ− ia sin θ dt

)
, m′ = m∗ . (5.9)

Given these 1-forms, we solve the matrix inversion problem20

e a
µe

ν
a ≡ δ ν

µ , eµ
a e

b
µ ≡ δ b

a (5.11)

for the vectors21 eµ
a = (lµ, l′µ,mµ,m′µ). With these, we can define the Newman-

Penrose directional covariant derivatives:22

D ≡ lµ∇µ , D′ ≡ l′µ∇µ , δ ≡ mµ∇µ , δ′ ≡ m′µ∇µ . (5.12)

19In the limit M → 0 and J → 0 with a ≡ J/M held fixed, these 1-forms describe the “Kerr
congruence” in flat space-time [143]. See, however, the recent work by Gibbons and Volkov [144].

20This is equivalent to solving the “Newman-Penrose normalization conditions”

lµlµ = l′µl′µ = mµmµ = m′µm′
µ = 0 (nullity)

lµl′µ = −1 , mµm′
µ = +1 (normalization)

lµmµ = l′µmµ = lµm′
µ = l′µm′

µ = 0 (orthogonality) . (5.10)

21We will often refer to the components of vectors as vectors themselves. Since the explicit
index structure will clarify whether we mean the components eµ

a or the basis-independent object
eµ
a ∂µ, there should be no risk of confusion.
22Unfortunately, Newman and Penrose reserved the overloaded symbol “δ” for the directional

derivative along mµ. Accordingly, we will not use that symbol to denote any sort of variation.
We will, however, continue to express the Dirac delta function in its standard notation and trust
that the reader will not get confused.
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Once the basic equations of differential geometry are cast in spin coefficient form,

all of the dynamical variables will be invariant under coordinate transformations

on the base space. So the tensors of general relativity will be replaced by scalar

fields.

Without loss of generality, we can then replace the covariant derivatives by

partial derivatives and treat the operators D,D′, δ, δ′ as ordinary vector fields.

For the coordinates in which we expressed the 1-forms in Eq. (5.9), we have:

D = lµ∂µ =
|R0|2

∆
∂t + ∂r +

a

∆
∂φ , D′ = l′µ∂µ =

∆

2|R|2

(
|R0|2

∆
∂t − ∂r +

a

∆
∂φ

)
,

δ = mµ∂µ =
1

R
√
2

(
∂θ +

i

sin θ
∂φ + ia sin θ ∂t

)
, δ′ = δ∗. (5.13)

For lack of a better name, we will say that the forms in Eq. (5.9) and the vectors

in Eq. (5.13) compose the “asymptotic” tetrad. The vector lµ is aligned with a

special class of outgoing null geodesics in the Kerr-Newman geometry, and the

vector l′µ is aligned with the corresponding class of ingoing geodesics. The real

and imaginary parts of mµ span the orthogonal spacelike plane.
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5.2.2 Gauge theory of gravity

There are two ways to express the classical field theory of gravitation, distin-

guished by whether a local invariance under SO(3, 1) is imposed or inferred.23

Drastically oversimplifying a complicated history, we will say that the former is

Cartan’s approach, while the latter is Einstein’s.24

In Cartan’s gravity, we introduce a frame field eaµ, without any reference to a

metric tensor, and impose invariance under

SO(3, 1) : ea(x) → Oa
b(x) e

b(x) . (5.14)

The exterior derivative d does not transform covariantly, so we introduce an

SO(3, 1) algebra-valued 1-form gauge field25

ωa
b ≡ (ωµ)

a
b dx

µ (5.15)

23Kinnersley felt compelled to explain this dichotomy to his doctoral committee almost 50
years ago [145], and we feel obligated to reiterate it today.

24For example, Penrose and Rindler refer to what we call “Cartan’s approach” as the “Einstein-
Cartan-Sciama-Kibble theory” (see Sec. 4.7 in Spinors and Space-time [12, 13]).

25We intentionally evoke Sec. IX.7 of Zee [140] to portray the spin coefficient formalism as
a natural addendum to the usual Cartan formulation of gravity. Along the lines of the “3+1
decomposition” suitable for numerical relativity, we could call the Newman-Penrose notation a
“2+2 decomposition” or a “lightcone 3+1 decomposition” (see Sec. 5.2.8).
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to repair it. The field ωa
b is called the “spin connection,” and the renovated

derivative will be denoted

Da
b ≡ δab d+ ωa

b . (5.16)

Demanding covariance of Eq. (5.16) establishes the transformation law

SO(3, 1) : ωa
b → Oa

c(x)(δ
c
d d+ ωc

d(x))(O
−1)db(x) . (5.17)

We then insist that whatever action we choose26 is to be invariant under Eqs. (5.14)

and (5.17), with eaµ and (ωµ)
a
b being independent variables.

This logic parallels the contemporary presentation of Yang-Mills theory: Step

1 is to introduce a group G and an algebra-valued gauge field Aa
b that behaves as

Aa
b → Oa

c A
c
d (O

−1)db+Oa
c d(O

−1)cb under local G transformations. Step 2 is to

impose, by sheer decree, invariance of the action under this transformation.27 But

gravity is a theory of two classical fields, ea and ωa
b, whereas Yang-Mills theory

has only one classical field, Aa
b.28 In both cases we are discussing only the “pure”

gauge theory,29 without introducing any matter fields.

26To write down the action we must first introduce curvature, which we defer until Sec. 5.2.11.
The reader who is well acclimated to curvature may consult Eq. (5.86).

27This philosophy is also the state of the art in particle physics.
28It is possible to consider a field theory only of the spin connection ωa

b without a frame ea,
but we decline to call that “gravitation.” See, however, a paper by Chamseddine (and references
therein) on how to embed gravity into a higher-dimensional Chern-Simons theory [146].

29Gravity and Yang-Mills theory are to physicists what frame bundles and principal bundles
are to mathematicians.
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In contrast to this conception of gravity, Einstein’s approach is to formulate a

classical field theory of the metric tensor gµν(x), which in physical terms is called

the gravitational field.30 If, as in Eq. (5.2), we decide to rewrite the metric in its

locally diagonalized form, then we infer an inherent ambiguity in the description:

one frame eaµ(x) and another frame e′aµ (x) ≡ Oa
b(x) e

b
µ(x) define the very same

gravitational field

gµν(x) ≡ ηab e
a
µ(x) e

b
ν(x) = ηab e

′a
µ (x) e

′b
ν (x) (5.18)

if and only if ηabOa
c(x)O

b
d(x) = ηcd. This is the definition of gauge invariance in

classical field theory, in this case with gauge group SO(3, 1).

30There are three different quantities that could justifiably be called the “gravitational field.”
Consider the analogy to electromagnetism. In the vernacular, the objects Ei = F 0i and Bi =
1
2ε

0ijkFjk are the electric and magnetic fields. Accordingly, it is customary to refer to A0 and Ai

as the scalar and vector potentials. But members of high society know that matter fields couple
directly to Aµ. So in field theory (whether classical or quantum), it is more enlightening to call
Aµ the electromagnetic (or gauge) field instead of the electromagnetic (or gauge) potential. In
gravity, the situation is even more confusing, since there are three classical fields to consider:
the metric gµν , the Christoffel symbols Γµ

νρ, and the Riemann tensor Rµ
νρσ. (Or, in the tetrad

formalism, we have the frame field eaµ, the spin connection (ωµ)
a
b, and the curvature (Ωµν)

a
b.)

Just as matter fields couple directly to Aµ, matter fields also couple directly to gµν ; or, to use the
incisive lexicon of Zee [140,147], just as charge is defined as what Aµ listens to, energy-momentum
is defined as what gµν listens to. So it is not only consonant with mathematical protocol but also
with physical intuition to refer to gµν as the gravitational field. Electrodynamics aficionados who
would cling to E⃗ and B⃗ until their dying breath could refer to Rµ

νρσ as the gravitational field,
to Γµ

νρ as the gravitational potential, and to gµν as the gravitational pre-potential. But they
should not. Instead they should come to grips with reality and accept that E⃗ and B⃗ are parts
of the electromagnetic curvature. Finally, since the Christoffel symbols (or the spin connection)
arise from the definition of parallel transport, the Γµ

νρ are most mathematically analogous to Aµ

and hence could also be called the gravitational (or gauge) field.
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For all considerations in this chapter, Cartan’s and Einstein’s perspectives will

describe the same physics.31 So we can feel free to gloss over whether the SO(3, 1)

gauge invariance is imposed or inferred. Either way, however, we should emphasize

that this local symmetry has nothing to do with coordinate transformations on

the base space: infinitesimal transformations xµ → xµ + ξµ transform the metric

as gµν → gµν −∇µξν −∇νξµ, while gauge transformations leave gµν unchanged.

5.2.3 Partial gauge fixing

After Newman and Penrose developed the original spin coefficient formalism,

Geroch, Held, and Penrose recognized that specifying a tetrad eµ
a = (lµ, l′µ,mµ,m′µ)

that satisfies the normalization conditions in Eq. (5.11) only partially fixes the

gauge.32

The remaining ambiguity comprises a boost along the outgoing congruence,

the inverse boost along the ingoing congruence, and a rotation of the transverse

31This will happen when and only when our bestiary comprises matter fields that transform
as scalars, vectors, or tensors under coordinate transformations on the base space. The instant
we obtain an import license for the exotic specimen known as spinor, Einstein’s theory is done.
Supergravity, for example, must be formulated according to Cartan, and its study would compel
us to abandon general relativity. In this work, we emphasize only the computational frame-
work of classical field theory, which is why we bring up supergravity instead of the Standard
Model. But the real world is quantum mechanical and made up of fermions. So with or without
supersymmetry, coupling fundamental particles to gravity requires the Cartan formulation.

32Readers who object to this characterization should revisit the original paper [139]. Also,
we should say that only toward the end of our project did we encounter Harnett’s work [148],
which privileges differential forms as we do.
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plane:

GHP : lµ → r(x) lµ , l′µ → 1

r(x)
l′µ , mµ → e iϑ(x) mµ , m′µ → e−iϑ(x)m′µ .

(5.19)

Here r(x) and ϑ(x) are arbitrary real functions, with the restriction that r(x) ̸= 0.

We will say that this transformation generates the “GHP group.” Note that the

subgroup of transformations for which we rephase mµ while holding lµ and l′µ

fixed is the little group for the outgoing and ingoing congruences.

It is convenient to define the complex function

λ ≡ r1/2e iϑ/2 (5.20)

and to rewrite Eq. (5.19) as

GHP : lµ → λλ∗ lµ , l′µ → λ−1λ∗−1 l′µ , mµ → λλ∗−1mµ , m′µ → λ−1λ∗m′µ .

(5.21)

We will say that a function fh,h̄ transforms as the representation33 (h, h̄) of the

GHP group if its transformation law under Eq. (5.21) has the form:

fh,h̄ → λ2hλ∗ 2h̄fh,h̄ . (5.22)

33The bar is part of the name of the weight and does not denote any sort of conjugation.
Readers who dislike this could use an alternative notation such as (h, k).
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To express this we will use the physicist’s standard notation in representation

theory:

fh,h̄ ∼ (h, h̄) . (5.23)

The numbers (h, h̄) are called the weights34 of the function fh,h̄. Such a function

is called “weighted.” An object that cannot be assigned a transformation law of

the form in Eq. (5.22) for any values of (h, h̄) will be called “nonweighted.”35 In

the language of Eq. (5.23), we summarize Eq. (5.21) as

lµ ∼ (1
2
, 1
2
) , l′µ ∼ (−1

2
,−1

2
) , mµ ∼ (1

2
,−1

2
) , m′µ ∼ (−1

2
, 1
2
) . (5.24)

The compacted spin coefficient formalism is just a convenient repackaging of the

original spin coefficient formalism into a presentation that is manifestly covariant

under the GHP group: all quantities that appear explicitly in the equations trans-

form according to Eq. (5.22) for some values of h and h̄. In such a formulation,

only objects with the same weights can be added, and the weights of a product of

34The standard notation in the relativity community is to define p ≡ 2h and q ≡ 2h̄. The
factors of 2 are a matter of taste. Either way, the “boost weight” and the “spin weight” are
defined as 1

2 (p+ q) = h+ h̄ and 1
2 (p− q) = h− h̄ respectively [139]. As a matter of grammatical

construction, we will sometimes refer to (h, h̄) as a singular noun (“weight”) or as a plural noun
(“weights”) depending on whether we describe the representation as a whole or home in on the
particular values of h and h̄ separately.

35Something invariant under Eq. (5.22) is considered to be weighted with weight zero, not
nonweighted.
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objects are the sums of the weights of each object:

fh1,h̄1
∼ (h1, h̄1) , gh2,h̄2

∼ (h2, h̄2) =⇒ fh1,h̄1
gh2,h̄2

∼ (h1 + h2, h̄1 + h̄2) . (5.25)

From Eq. (5.22) we deduce that complex conjugation exchanges the weights:

fh,h̄ ∼ (h, h̄) =⇒ (fh,h̄)
∗ ∼ (h̄, h) . (5.26)

In addition to complex conjugation, there are two discrete transformations under

which the compacted formalism is covariant. The first is the priming transforma-

tion, which is defined to exchange primed and unprimed quantities:

′: lµ ↔ l′µ , mµ ↔ m′
µ . (5.27)

In this way we elevate the notation from Eq. (5.4) to an operation. From Eq. (5.21)

we deduce that priming flips the signs of the weights:

fh,h̄ ∼ (h, h̄) =⇒ (fh,h̄)
′ ∼ (−h,−h̄) . (5.28)
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The second discrete transformation is the Sachs operation,36 which is an analog

of Hodge duality:37

s : (lµ, l
′
µ,mµ,m

′
µ) → (mµ,−m′

µ,−lµ, l
′
µ) . (5.29)

Unlike priming, the Sachs operation does not commute with complex conjugation.

It is extremely convenient to streamline the spin coefficient formalism by using

a notation that is manifestly covariant under priming. The Sachs operation will

instead help us establish geometrical meaning.38

36As far as we know, the first mention of this transformation is in the original GHP paper [139],
in which the authors cited “private communication” with Sachs. In Sec. 4.12 of Spinors and
Space-time [12], Penrose and Rindler cite two papers by Sachs [149,150]. Unless our eyes deceive
us, these papers do not explicitly mention the transformation defined in Eq. (5.29). Presumably
some paper by Sachs does, but we have not conducted an exhaustive investigation.

37The discerning reader will be puzzled by this transformation, since taken literally it instructs
us to exchange the real quantities lµ and l′µ with the complex ones mµ and m′

µ. We will say
that this operation is to be defined “algebraically,” which is a formal way of saying just do it
anyway. If it was good enough for Penrose it will be good enough for us.

38Let us make the following series of tangential observations, which we have not seen anywhere
else. First, the composition of priming with complex conjugation exchanges lµ ↔ l′µ without
touching mµ and m′

µ. Therefore, if we align lµ and l′µ with the trajectories of outgoing and
ingoing null rays, then the combined operation ′∗ acts as a GHP version of time reversal. Second,
along the same lines, complex conjugation exchanges mµ ↔ m′

µ without touching lµ or l′µ; if
we define for the moment Xµ ≡ Re(mµ) and Y µ ≡ Im(mµ), then complex conjugation acts as
(Xµ, Y µ) → (Xµ,−Y µ). This is a GHP version of parity, defined as reflection in a mirror along
one of the spatial directions. Third, we are naturally tempted to identify the Sachs operation
as some kind of GHP notion of “charge conjugation,” which in particle physics is defined to
exchange representations of internal symmetry groups with their conjugate representations. We
do not know if there is any deeper significance to this kind of “CPT” transformation in the
compacted spin coefficient formalism.
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5.2.4 Spin coefficients

The components of the spin connection contracted with the vectors of the null

tetrad are called the spin coefficients.39

Cartan’s first equation of structure40 states that the torsion of space-time

is given by the covariant derivative of the frame fields. Mathematically this is

expressed by defining the torsion 2-form

Θa ≡ Da
b e

b = dea + ωa
b ∧ eb . (5.30)

Following Chandrasekhar [142], we lower an index and define the tangent-space

decomposition of the first term as:

dea = ∂µeaν dx
µ ∧ dxν = 1

2
eµb e

ν
c (∂µeaν − ∂νeaµ) e

b ∧ ec ≡ −1
2
λbac e

b ∧ ec . (5.31)

We then follow Newman and Penrose [138] and define the spin coefficients γabc as

γabc ≡ (ωµ)ab e
µ
c . (5.32)

39They are also called the “Ricci rotation coefficients.” We prefer “spin coefficients” partially
because it matches the term “spin connection,” and partially because we find it confusing to
assign Ricci’s name to elements of the connection in addition to its usual association with parts
of the curvature.

40We insist on this stilted ordering of words to highlight the difference between an “equation
of structure” (a geometrical consequence of transporting the frame) and an “equation of motion”
(an output of the principle of least action).
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The crucial property of antisymmetry in the first two indices,

γabc = −γbac , (5.33)

comes from the definition of ωa
b in Eq. (5.15) as an SO(3, 1) gauge field, which is

a linear combination of the antisymmetric (when both matrix indices are either

up or down) 4-by-4 matrices that generate infinitesimal Lorentz transformations.

In terms of the γabc and the λabc, the torsion 2-form becomes:

Θa =
1
2
(γbac−γcab−λbac) e

b ∧ ec . (5.34)

The fundamental assumption of general relativity is41

Θa = 0 . (5.35)

We can solve this equation for the spin coefficients in terms of the frame fields:

γabc =
1
2
(λabc+λcab−λbca) = eµ

a e ν
c ∇ν ebµ . (5.36)

41Like many intuitively obvious aspects of gravitation, this property is neither obvious nor
intuitive. It is best thought of as the vacuum equation of motion obtained from varying the
action with respect to the spin connection. As per an earlier footnote about the action, we must
introduce curvature before explaining this further.
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This is the tetrad version of metric compatibility. The first form of the γabc in

Eq. (5.36) involves only ordinary partial derivatives and provides a convenient

way to code the spin coefficients in Mathematica.

The second form, involving space-time-covariant derivatives, provides a conve-

nient way to calculate the transformation law for each spin coefficient under the

GHP group [recall Eq. (5.21)]. By computing their behavior under GHP trans-

formations, we learn that the 12 independent γabc fall naturally into three sets:

weighted quantities associated with lµ, weighted quantities associated with l′µ, and

nonweighted quantities that transform as gauge fields.

The weighted spin coefficients associated with lµ, along with their weights, are:

κ ≡ γ311 ∼
(
3
2
, 1

2

)
, τ ≡ γ312 ∼

(
1
2
, −1

2

)
, σ ≡ γ313 ∼

(
3
2
, −1

2

)
, ρ ≡ γ314 ∼

(
1
2
, 1

2

)
.

(5.37)

The weighted spin coefficients associated with l′µ are defined by priming,42 which

flips the signs of the weights:43

κ′ ≡ γ422 ∼
(
−3

2
, −1

2

)
, τ ′ ≡ γ421 ∼

(
−1

2
, 1

2

)
, σ′ ≡ γ424 ∼

(
−3

2
, 1

2

)
, ρ′ ≡ γ423 ∼

(
−1

2
, −1

2

)
.

(5.38)

42Some authors prefer the notation ν ≡ −κ′, π ≡ −τ ′, λ ≡ −σ′, µ ≡ −ρ′, γ ≡ −ε′, and
α ≡ −β′, as originally presented by Newman and Penrose [138]. As Geroch, Held, and Penrose
observed, the priming-covariant notation “not only halves the number of Greek letters needed,
but also effectively halves the number of equations” [139].

43Priming acts on the tetrad labels by exchanging 1 ↔ 2 and 3 ↔ 4. Complex conjugation
leaves 1 and 2 fixed while exchanging 3 ↔ 4.
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The gauge fields of the spin coefficient formalism are defined as

ε ≡ 1
2
(−γ121 + γ341) , β ≡ 1

2
(−γ123 + γ343) , ε′ ≡ 1

2
(−γ212 + γ432) , β′ ≡ 1

2
(−γ214 + γ434) .

(5.39)

106



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

These are gauge fields in the sense that they combine with the NP derivatives of

Eq. (5.13) to form weighted derivatives:44

þ ≡ D + 2h ε+ 2h̄ ε∗ , ð ≡ δ + 2hβ − 2h̄ β′∗ ,

þ′ ≡ D′ − 2h ε′ − 2h̄ ε′∗ , ð′ ≡ δ′ − 2hβ′ + 2h̄ β∗ . (5.43)

44Since our goal is to teach physics instead of cryptography, let us show explicitly that þ is a
weighted derivative. From the second form of the γabc in Eq. (5.36) and the definition of ε in
Eq. (5.39), we compute the GHP transformation as instructed by Eq. (5.21):

ε = 1
2

(
l′µDlµ +mµDm′

µ

)
→ 1

2

[
l′µD(λλ∗lµ) + λ2mµD(λ−1λ∗m′

µ)
]

= λλ∗ε+ 1
2

[
l′µlµD(λλ∗) + λ2mµm′

µD(λ−1λ∗)
]

= λλ∗ε+ 1
2

[
(−1)(λ∗Dλ+ λDλ∗) + λ2(+1)(λ∗Dλ−1 + λ−1Dλ∗)

]
= λλ∗ε− λ∗Dλ = λλ∗

(
ε− λ−1Dλ

)
. (5.40)

Meanwhile, for the NP derivative D acting on a weighted function fh,h̄ ∼ (h, h̄), we have:

Dfh,h̄ → λλ∗D(λ2hλ∗2h̄fh,h̄) = λ2h+1λ∗2h̄+1Dfh,h̄ + λλ∗D(λ2hλ∗2h̄)fh,h̄

= λ2h+1λ∗2h̄+1Dfh,h̄ + λλ∗
(
2hλ2h−1λ∗2h̄Dλ+ 2h̄λ2hλ∗2h̄−1

)
fh,h̄

= λ2h+1λ∗2h̄+1Dfh,h̄ +
(
2hλ2hλ∗2h̄+1Dλ+ 2h̄ λ2h+1λ∗2h̄Dλ∗

)
fh,h̄

= λ2h+1λ∗2h̄+1
(
D + 2hλ−1Dλ+ 2h̄ λ∗−1Dλ∗

)
fh,h̄ . (5.41)

So the terms with Dλ and Dλ∗ cancel out of the transformation law for the combination þ ≡
D + 2h ε+ 2h̄ ε∗:

(D + 2h ε+ 2h̄ ε∗)fh,h̄ → λ2h+1λ∗2h̄+1(D + 2h ε+ 2h̄ ε∗)fh,h̄ . (5.42)

The reader should be able to adapt this calculation to show that β and β′∗ transform as β →
λλ∗−1(β−λ−1δλ) and β′∗ → λλ∗−1(β′∗+λ∗−1δ′λ∗), in which case ð ≡ δ+2hβ−2h̄ β′∗ transforms
according to ðfh,h̄ → λ2h+1λ∗2h̄−1ðfh,h̄. The reader may also wish to insert Eq. (5.20) into the
transformation laws for the gauge fields to separate the compact and noncompact factors [cf.
Eq. (347) in Sec. 1.8(g) of Chandrasekhar [142]].
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We will refer to the operators þ, þ′, ð, and ð′ as “GHP-covariant derivatives,”

because that is literally what they are.45

Something unusual about this gauge theory is that the covariant derivatives

themselves carry charge. For a weighted function fh,h̄ ∼ (h, h̄), we have:

þfh,h̄ ∼ (h+ 1
2
, h̄+ 1

2
) , þ′fh,h̄ ∼ (h− 1

2
, h̄− 1

2
) (5.44)

ðfh,h̄ ∼ (h+ 1
2
, h̄− 1

2
) , ð′fh,h̄ ∼ (h− 1

2
, h̄+ 1

2
) . (5.45)

This is conveniently summarized as:

þ ∼
(
1
2
, 1
2

)
, þ′ ∼

(
−1

2
,−1

2

)
, ð ∼

(
1
2
,−1

2

)
, ð′ ∼

(
−1

2
, 1
2

)
. (5.46)

Ordinarily, the covariant derivative of an object transforms as the same represen-

tation as the object itself. Not so here.

When calculating in the compacted formalism, it is useful to keep in mind the

following relations between the covariant derivatives of lµ and some of the spin

45Literally as in literally, not as in figuratively.
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coefficients:46

þlµ = κ∗mµ + κm′
µ , þ′lµ = τ ∗mµ + τ m′

µ , ðlµ = ρ∗mµ + σm′
µ . (5.47)

The other equations like this can be obtained by a combination of complex conju-

gation, priming, and the Sachs operation. For a handy table of Sachs conjugates,

please see Eqs. (4.12.52)-(4.12.55) in Spinors and Space-time [12].

5.2.5 Null Cartan equations

The definitions in Eqs. (5.37)-(5.39) are unimpeachable, but it is more practical

analytically to take the torsion-free condition [Eq. (5.35)], written in the form

dea = γabc e
b ∧ ec (5.48)

46To derive Eq. (5.47) from Eq. (5.32), begin with a completely general expansion for a vector.
For example, Dlµ = a lµ + b l′µ + c∗mµ + cm′

µ with undetermined coefficients a, b, c [in this case
(Dlµ)

∗ = Dlµ]. Then contract with lµ, l′µ, mµ, and m′µ, and use the definitions of the spin
coefficients in Eqs. (5.37), (5.38), and (5.39) in the form γabc = eµae

ν
c∇νebµ from Eq. (5.32).

(Also, lµDlµ = 1
2D(lµlµ) = 0.) Then use the representation lµ ∼ ( 12 ,

1
2 ) and the definition of þ

in Eq. (5.43) to get þlµ = κ∗mµ + κm′
µ. Repeat the process for D′lµ and δlµ to get the other

two equations.
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as an operational definition of the spin coefficients. In the Newman-Penrose no-

tation, we have:

dl = −2Re(ε) l ∧ l′ + 2i Im(ρ)m ∧m′ +
[ (

τ−β+β′∗) m′ ∧ l + κm′ ∧ l′ + c.c.
]

dm = (β+β′∗)m ∧m′ − (τ−τ ′∗) l ∧ l′ +
[ (

ρ− 2i Im(ε)
)
m ∧ l′ + σm′ ∧ l′ + c.c.′

]
.

(5.49)

The notation “c.c.′” indicates that the complex conjugate of the primed quantities

should be taken. The defining equation for dl′ can be obtained from that of dl by

priming.47

We will refer to the expressions in Eq. (5.49) as the null Cartan equations. By

computing the exterior derivatives of the forms in Eq. (5.9), arranging them to

match the right-hand sides in Eq. (5.49), and solving the resulting equations, we

can compute the spin coefficients for the Kerr-Newman geometry:

κ = κ′ = σ = σ′ = ε = 0 , ε′ = ρ′ +
2r−r+−r−

4|R|2
,

ρ =
1

R∗ , ρ′ = − ∆

2|R|2
1

R∗ , τ =
ia sin θ√
2 |R|2

, τ ′ =
ia sin θ√
2 (R∗)2

,

β = − cot θ

2
√
2R

, β′ = −
(

r

R∗

)
cot θ

2
√
2R∗

+
ia

2
√
2

1 + sin2 θ

(R∗)2 sin θ
. (5.50)

47The defining equation for dm can be obtained from that of dl by applying the Sachs oper-
ation. Since we do not use a notation that is manifestly covariant under the Sachs operation
(nor should we, since it does not commute with complex conjugation), we provide the equation
for dm explicitly.
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Note that |τ |2 = |τ ′|2, which will be useful later. Also note that a GHP transfor-

mation with48 λ = R1/2 would set τ = τ ′ = ia sin θ√
2R1/2(R∗)3/2

, but we will continue to

work with the asymmetric basis. The products ττ ∗, τ ′τ ′∗, and ττ ′ have weights

(0, 0) and would be unaffected by such a transformation.

5.2.6 Null Cartan equations in compacted form

It ought to be possible to express the null Cartan equations in a manifestly

GHP-covariant form. There are two equivalent ways to approach this issue.

First, in the group-theoretic spirit of restriction to a subgroup, we can break

down the SO(3, 1)-covariant formulation until we obtain reduced versions of the

Cartan equations that retain manifest covariance only under Eq. (5.21). We ex-

plore this in Section 5.C.

Second, in the spirit of Yang-Mills theory on curved space-time, we can take

the space-time-covariant derivative ∇µ and tack on the structure of a gauge theory

with a local invariance under Eq. (5.21).49 To do that, we first collect the GHP

48We should be careful when distributing square roots over complex numbers. Presumably
our glib explanation is fine because Re(R) = r > r+ and |a| < M , while Im(R) = a cos θ, so
Re(R) > |Im(R)|.

49Consider what would happen if we tried to do this for the full SO(3, 1) group: we would
define a covariant derivative (Dµ)

a
b ≡ δab∇µ + (ωµ)

a
b that acts simultaneously on space-time

indices and on tangent-space indices. On a frame field, we have (De)aµ = ∂µe
a
ν−Γρ

µνe
a
ρ+(ωµ)

a
be

b
ν ;

given γabc = eµa∇cebµ, we just get (De)aµ = 0. This is standard fare but worth revisiting here in
the context of the partially gauge-fixed formalism.
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gauge fields into a 1-form

b ≡ 1
2
(−γ12a + γ34a) e

a = −l′ε+ l ε′ +m′β −mβ′ . (5.51)

Then we define the GHP-covariant generalization of ∇µ as follows:50

Ð ≡ ea∇a + 2h b + 2h̄ b∗ = −l′þ − l þ′ +m′ð +m ð′ . (5.52)

This will supply the droids we are looking for. In terms of this exterior derivative,

the null Cartan equations in Eq. (5.49) become:51

Ðl = (ρ−ρ∗)m ∧m′ +
(
τ m′ ∧ l + κm′ ∧ l′ + c.c.

)
,

Ðm = −(τ−τ ′∗) l ∧ l′ +
(
ρm ∧ l′ + σm′ ∧ l′ + c.c.′

)
. (5.53)

Unlike the situation in Eq. (5.49), everything in Eq. (5.53) is weighted, with

Ð ∼ (0, 0).

Arranging the equations in this manner distills the essential physics of null

congruences from cumbersome technical drudgery like whether the curves are

parametrized affinely.52

50The symbol Ð is the capital version of ð.
51The antisymmetrization inherent to the exterior calculus reduces ∇µ to ∂µ.
52It is entirely possible that the GHP gauge fields express some important physical phenomena

that we have not understood.
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5.2.7 Refraction, expansion, twist, and shear

The geometrical significance of the weighted spin coefficients κ, ρ, and σ is

discussed at length in all of the standard references. To make this paper largely

self-contained without excessively rehashing common knowledge, we will provide

a streamlined exposition using the null Cartan equations in their compacted form.

We will drag the formalism kicking and screaming into the twenty-first century by

deriving the dynamical equations for null congruences from an action principle.

We begin by interpreting the exterior derivative of a 1-form.53 Let A be a

1-form and let C be an arbitrary open curve parametrized by a number u with

embedding coordinates Xµ(u).54 Forms exist to be integrated over, so let us define

an action

I[X] ≡
∫
C

A(X) =

∫ u2

u1

du
dXµ(u)

du
Aµ(X(u)) . (5.54)

This is to be thought of as a functional55 of the classical field variables Xµ(u). Now

we investigate what happens as we deform the curve according to the variation56

Xµ(u) → Xµ(u) + ▲µ(u) . (5.55)

53The antagonistic reader who considers this review material should kindly point us to a
standard reference where this is explained clearly.

54This u has no innate relation to “Eddington-like” coordinates for the black hole. We use
this letter to match the notation of Ch. 7 in Spinors and Space-time [13].

55We dislike this pompous word but begrudgingly accept its utility.
56We use the symbol ▲ because the usual variational symbol δ denotes a Newman-Penrose

derivative, and the symbol ∆ has been reserved for the horizon function.
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By the usual steps we obtain (let Ẋµ ≡ dXµ

du
):

I[X + ▲]− I[X] =

∫ u2

u1

du Ẋν ▲µ (∂µAν − ∂νAµ) + ▲µAµ

∣∣u2

u1
+O(▲2) . (5.56)

The antisymmetric derivative thrusts itself upon us. This formula explains why

the natural variation of a 1-form is a 2-form and provides a concrete and explicit

interpretation of dA without resorting to axiomatic definitions.

To derive evolution equations, we bring the endpoints of the curve close to-

gether:57

u2 = u1 + ¢ . (5.57)

Then integrals of the form
∫ u2

u1
duF (u) are to be interpreted as

∫ u1+¢
u1

duF (u) =

0 + ¢F (u1) +O(¢2), and the boundary term is to be interpreted as:

▲µAµ

∣∣u2

u1
= ¢

∂

∂u
(▲µAµ)

∣∣∣∣
u1

+ O(¢2) . (5.58)

The action principle we impose is that the leading order term in the double ex-

pansion in ▲µ and ¢ is decreed to be zero. With ∂
∂u

= Ẋµ∂µ and the fact that

57The cent is a small parameter.
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▲µAµ is a scalar field, we obtain the evolution equation58

Ẋν∇ν(▲
µAµ) = Ẋµ▲ν(∂µAν − ∂νAµ) . (5.59)

The null Cartan equations admit a GHP-covariant formulation, so we may as well

pass to a GHP-covariant notation. We therefore replace Eq. (5.59) with59

ẊνÐν(▲
µAµ) = Ẋµ▲ν(ÐµAν − ÐνAµ) . (5.60)

Now we have a worthy implement. Its input is a 1-form Aµ, a tangent vector Ẋµ,

and a deformation vector ▲µ. We will be interested in evolution along outgoing

null curves,60 so we will feed it a tangent vector

Ẋµ = lµ . (5.61)

To obtain our first evolution equation, we will insert Aµ = lµ into Eq. (5.60).

The result is:

þ(▲µlµ) =
(
κ▲µm′

µ + c.c.
)

. (5.62)

58Everything in this equation is evaluated at u = u1, which we then trivially relabel to just u.
59When interpreting the operator Ðµ = −l′µ þ − lµ þ′ + m′

µ ð + mµ ð′ in this equation, treat
the deformation vector ▲µ as having weight zero.

60The resulting dynamical equations in this subsection will be the manifestly GHP-covariant
versions of the evolution equations in Ch. 7 of Spinors and Space-time [13].
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This is actually just Ẍµ + Γµ
νρẊ

µẊν = sẊµ + F µ with s = 2Re(ε) and F µ =

κm′µ + c.c. in an unfamiliar notation.61 So we learn that Re(ε) = 0 implies affine

parametrization, while κ = 0 implies the geodesic equation.

The spin coefficient κ therefore parametrizes a “force” on outgoing null curves

causing them to bend in the transverse directions. Szekeres has appropriately

referred to κ as the refraction of the congruence [151]. An alternative name could

be the “transverse acceleration.” A colloquial way to phrase the geodesic condition

for null curves is that freely falling light does not refract.

Next we supplicate Eq. (5.60) with the offering Aµ = mµ and obediently deliver

its sermon:

þ(▲µmµ) = ρ▲µmµ + σ▲µm′
µ − (τ−τ ′∗)▲µlµ . (5.63)

61If we generalize the one curve C with tangent vector lµ = Ẋµ to a collection of curves
with tangent vectors lµ = ∂

∂uX
µ(u, y⃗), then we can define a collection of deformation vectors as

▲µ
I = ∂

∂yI X
µ(u, y⃗). Then, because partial derivatives commute, we have

▲µ
I ∂µl

ν − lµ∂µ▲
ν
I = ∂

∂yI
∂Xν

∂u − ∂
∂u

∂Xν

∂yI = 0 .

Furthermore, because we assume the absence of torsion, we have

▲µ
I ∂µl

ν − lµ∂µ▲
ν
I = ▲µ

I (∇µl
ν − Γν

µρl
ρ)− lµ(∇µ▲

ν
I − Γν

µρ▲
ρ
I)

= ▲µ
I∇µl

ν − lµ∇µ▲
ν
I + (Γν

µρ − Γν
ρµ)l

µ▲ρ
I = ▲µ

I∇µl
ν −D▲ν

I .

Combining this with ▲µ
I ∂µl

ν − lµ∂µ▲ν
I = 0, we get

D▲ν
I = ▲µ

I∇µl
ν .

Therefore:
lνD▲ν

I = ▲µ
I lν∇µl

ν = 1
2▲

µ
I∇µ(lν l

ν) = 0 .

So we can peel off ▲µ from Eq. (5.62) and arrive at þlµ = (κm′
µ+c.c.), which is the first relation

listed in Eq. (5.47). Putting this into tensor notation provides the equation in the main text.
Our analysis in this subsection is the same as that of Ch. 7 in Spinors and Space-time, with our
“deformation vector” ▲µ being an alternative perspective on their “connecting vector” qµ. Our
analysis in Sec. 5.2.8, however, will deviate substantially from their point of view.

116



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

From Eq. (5.62) we know that for geodesics (κ = 0), the quantity ▲µlµ is GHP-

covariantly constant. Since it is constant, let us consider the special case where

that constant is zero.

After defining the complex number z ≡ ▲µmµ just to induce visions of complex

analysis, we find that Eq. (5.63) becomes

þz = ρ z + σ z∗ . (5.64)

In the complex plane of the variable z, the real and imaginary parts of ρ parametrize

a dilation and rotation, respectively. Accordingly, Re(ρ) is called the expansion

and Im(ρ) is called the twist.

In the parlance of hydrodynamics, any transformation of the plane into itself

that preserves area but is not a rotation is called a “shearing” transformation. In

the complex plane, this manifests as a transformation that is not holomorphic.

Therefore, the spin coefficient σ is called the complex shear, or just shear for

short.

The primed spin coefficients κ′, ρ′, and σ′ have the analogous interpretations

for the ingoing congruence.
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5.2.8 Timelike expansion and timelike twist

Every bard recounts legends of refraction, expansion, twist, and shear, but

nary a soul tells tales of τ .

We would like to elevate the standing of τ and τ ′ to match the renown of their

colleagues, because these neglected spin coefficients convey the relativistic effects

of rotating bodies at least as directly as Im(ρ) and Im(ρ′) do.

First we relate what we believe to be the original understanding.62 Return to

the progenitor of null dynamics [Eq. (5.60)] with the tangent vector in Eq. (5.61).

Because we insist on evolution along outgoing rays, we cannot isolate τ by feeding

Aµ = lµ or Aµ = mµ into Eq. (5.60); instead we must study τ ′.

Priming the first relation in Eq. (5.53) provides the change in l′µ:

Ðl′ = (ρ′−ρ′∗)m′ ∧m+
(
τ ′ m ∧ l′ + κ′ m ∧ l + c.c.

)
. (5.65)

The resulting dynamical equation is:

þ(▲µl′µ) = τ ′ ▲µmµ + c.c. . (5.66)

62Sachs, who pioneered the optical analogy for interpreting the spin coefficients, does not seem
to have offered an explanation of τ or τ ′ in his original paper [152]. Szekeres, in the paper from
which we extracted the term “refraction” for κ, calls the spin coefficient τ (denoted by Ω in
his paper) the “angular velocity or rotation of the null congruence,” but he does not explain
why [151]. In a subsequent lecture, Sachs seems to have implicitly recognized this interpretation
of τ by also choosing the symbol Ω to denote it, but he does not justify the notation [153].
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Our interpretation of this abstruse formula will be guided by lightcone kinematics

as articulated by Dirac [154].

In an orthonormal frame, we have a direction of evolution we call time, and

we call the rate of change of the other directions with respect to it “velocity.” A

rotation into null coordinates preserves Poisson brackets and hence also defines a

dynamical system within the computational framework of Hamiltonian mechanics.

One null direction is chosen as the direction of evolution, and the other null

direction is formally interpreted as “spatial.”

Therefore, w ithin this formal context, the component lµ▲µ is to be interpreted

as “temporal,” while the components l′µ▲µ, mµ▲µ, and m′
µ▲

µ are to be considered

“spatial.”

Now we make a simple-minded analogy to ordinary classical mechanics. For

circular motion at fixed radius (r = constant) in the equatorial plane (θ = π
2
), the

position vector r⃗, the velocity vector v⃗ ≡ d
dt
r⃗ ≡ ˙⃗r, and the angular velocity vector

Ω⃗ = 1
|r⃗|2 r⃗ × v⃗ in spherical coordinates (r, θ, φ) are

r⃗ = rr̂ , v⃗ = rφ̇ φ̂ , Ω⃗ = −φ̇ θ̂ . (5.67)
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A general vector ▲⃗ = ▲rr̂+▲θθ̂+▲φφ̂ can therefore equally well be expanded in

the (orthogonal but not normalized) basis r⃗, v⃗, Ω⃗, with components:

r⃗ · ▲⃗ = ▲r r , v⃗ · ▲⃗ = ▲φ rφ̇ , Ω⃗ · ▲⃗ = −▲θ φ̇ . (5.68)

If (big if) the vector ▲⃗ satisfies r⃗ · ˙⃗▲ = 0, and if we define the angular velocity as

ω = φ̇, then the middle expression in Eq. (5.68) becomes

d

dt
▲r = ω▲φ . (5.69)

Comparing Eq. (5.68) to Eq. (5.66) within the understanding of lightcone kine-

matics is what gives us the right to call the primed spin coefficient τ ′ the angular

velocity of the outgoing congruence.63 The unprimed spin coefficient τ is the an-

gular velocity of the ingoing congruence. This counterintuitive exchange of primed

and unprimed notation is an unfortunate consequence of demanding uniformity

in Eqs. (5.37) and (5.38).

Now we will offer a complementary point of view based on the Sachs operation

of Eq. (5.29).

63To go further we could write φ̂ = − sinφ x̂+cosφ ŷ, define a complex basis vector m̂ ≡ x̂+iŷ,
and express ▲φ in terms of m̂ · ▲⃗ and its conjugate. But this would belabor the point, which at
any rate is just an analogy.
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The combinations τ±τ ′∗, rather than τ and τ ′ separately, will appear front and

center in the subsequent analysis, so let us consider their meaning and christen

them with appropriate names.64 To do that, we will heed Penrose’s advice65 and

apply the Sachs operation to the real and imaginary parts of ρ.66

The Sachs conjugates of the expansion and the twist are:67

s : Re(ρ) ≡ 1
2
(ρ+ρ∗) → 1

2
(τ+τ ′∗) = − a2 sin(2θ)

2
√
2 |R|2R

,

Im(ρ) ≡ 1
2i
(ρ−ρ∗) → 1

2i
(τ−τ ′∗) =

ra sin θ√
2 |R|2R

. (5.70)

Consequently, we will refer to the quantities τ + τ ′∗ and τ − τ ′∗ as the t imelike

expansion and the t imelike twist, with the factors of 1
2

and 1
2i

omitted solely

because we feel like it.

Note that even though we performed the Sachs operation on spin coefficients

associated with lµ, the result involved both τ and τ ′. While this may be jarring at

first sight, the GHP covariance of the formalism requires it: the spin coefficients

ρ and ρ∗ have the same weights and therefore can be added and subtracted at

64As we saw but did not emphasize, Eq. (5.63) did contain the combination τ−τ ′∗. But we
will wait until Sec. 5.2.14 to study its physical implication.

65See Sec. 3 of the original GHP paper [139] or Sec. 4.14 in Spinors and Space-time [12].
66As an aside, we ruminate briefly on the fact that under the Sachs operation we have σ → −κ.

Evidently skewing lµ away from optimal curves is the timelike analog of shear. In keeping with
the philosophy of this paper, we will content ourselves with this literal account of performing
the Sachs operation and leave any potential reveries on why this had to be so for those more
inclined toward that sort of homeopathy.

67When computing these, take care to remember that the Sachs operation does not commute
with complex conjugation.
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will, but τ and τ ∗ transform differently under Eq. (5.21) and therefore cannot be

added and subtracted in a GHP-covariant way. It is only τ and τ ′∗ that can be

added and subtracted.

If we had started with the spin coefficients ρ′ and ρ′∗ associated with l′µ, then

we would have obtained the same quantities as in Eq. (5.70) up to signs and

complex conjugation, so there is no double counting of variables.

5.2.9 Kruskal-like coordinates

Now we establish our conventions for the null coordinates suitable for defining

quantities at the horizon. Again following Boyer and Lindquist [141], we refer to

these coordinates as “Kruskal-like.”68

These coordinates are expressed conveniently in terms of the surface gravity:69

α =
r+ − r−

2(r2+ + a2)
. (5.71)

68Historically, as far as we know, it was Boyer and Lindquist [141] and Carter [155] who first
explained the maximal analytic extension of the Kerr solution. Our conventions for the Kruskal-
like coordinates will largely track those of Chandrasekhar [142], except that we use U and V
where he uses tanU and tanV .

69We use the symbol “α” for the surface gravity instead of the more conventional “κ” because
the symbol “κ” is already deeply embedded into the spin coefficient formalism.
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The null coordinates U and V for the region outside the black hole will be defined

as70

U ≡ −e−αu , V ≡ +e+αv , u ≡ t− r∗ , v ≡ t+ r∗ , dr∗ ≡
|R0|2

∆
dr . (5.72)

Note that U < 0, which is the standard convention. We choose the integration

constant in the tortoise coordinate r∗ such that the product of U and V is71

UV = − ∆

r+r−

(
r

r−
− 1

)−k

e 2αr , k ≡
r2− + a2

r2+ + a2
+ 1 . (5.73)

With these definitions, the coordinate r viewed as an implicitly defined function

of U and V retains its desirable property from the spherically symmetric case of

depending only on the product UV . In this form, the ratio ∆
UV

is manifestly finite

and nonzero at r = r+:

c ≡ − ∆

UV

∣∣∣∣
r= r+

= r+r−

(
r+
r−

− 1

)k

e−2αr+ . (5.74)

70Our definition of r∗ follows Chandrasekhar’s and is inspired by the simplified functional
form of the metric at the north pole. We mention this to clarify to the beginning student that
the choice of |R0|2 = r2 + a2 instead of |R|2 = r2 + a2 cos2 θ in the numerator of dr∗ is not a
typographical error.

71Since we always work with r > r−, we have dropped the absolute values that emerge from
integrating dr∗. Our coordinates are singular at the inner horizon, and a different set of Kruskal-
like coordinates must be established to cross it.
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For later convenience, we will also record the result of differentiating both sides

of Eq. (5.73):

U∂Ur = V ∂V r =
∆

∆′(r) +
(
2α− k

r−r−

)
∆

. (5.75)

For any function F (r) that depends only on the radial coordinate, we therefore

have:

U∂UF (r) = V ∂V F (r) = F ′(r)U∂Ur and U∂Ur|r= r+
= 0 . (5.76)

We will sometimes use a subscript “+” to label quantities evaluated at the horizon.

For instance, |R+|2 ≡ r2+ + a2 cos2 θ and |R0+|2 ≡ r2+ + a2.

Finally, we define the delayed72 angular coordinate

χ = φ− ΩHt , ΩH =
a

r2+ + a2
. (5.77)

The physical interpretation of the parameter ΩH is the angular velocity at the

horizon.73

72It is high time to retire the anachronistic modifier “retarded” in favor of something less
derogatory.

73We choose the word “at” rather than “of” to emphasize that the reason we may think of the
black hole as a rigid rotating body is that any matter that hits the horizon must rotate at the
universal value of ΩH for the angular velocity [156]. As far as we know, Carter was the first to
prove [157] and emphasize [107] that the angular velocity is constant over the entire horizon.
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5.2.10 A smooth tetrad

Now that we have coordinates suitable for crossing the horizon, we will perform

the following GHP transformation to obtain a tetrad that is smooth at the horizon:

lµ → l̂µ = −Ulµ , l′µ → l̂′µ = −U−1l′µ , mµ → m̂µ = mµ . (5.78)

This describes the special case

λ = λ∗ = (−U)1/2 (5.79)

of the transformation in Eq. (5.21). A hatted function with weights (h, h̄) is

related to its unhatted counterpart by

f̂h,h̄ = (−U)h+h̄ fh,h̄ . (5.80)

The spin coefficients ρ and ρ′ in the hatted basis,

ρ̂ =
1

R∗ (−U) and ρ̂′ =
1

2|R|2

(
∆

UV

)
1

R∗V , (5.81)
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go to zero at the future horizon (U = 0) and the past horizon (V = 0) respectively.

This property furnishes a local definition of each part of the outer horizon.74

Because τ ∼ (1
2
,−1

2
) and τ ′ ∼ (−1

2
, 1
2
), those two spin coefficients are invariant

under the rescaling in Eq. (5.78):

τ̂ = τ , τ̂ ′ = τ ′ . (5.82)

After changing coordinates from (t, r, θ, φ) to (U, V, θ, χ) and performing the GHP

transformation described in Eq. (5.78), we obtain the following new set of tetrad

1-forms:

l̂ =
−1

2α

(
1 +

|R|2

|R0|2
− ΩH a sin2 θ

)
dU − U

V

(
1− |R0+|2

|R0|2

)
a2 sin2 θ

r+ − r−
dV − Ua sin2 θ dχ ,

l̂′=
∆

2|R|2

 1

2α

(
1+

|R|2

|R0|2
−ΩH a sin2 θ

)
dV

UV
+

1

U2

(
1−|R0+|2

|R0|2

)
a2 sin2 θ

r+ − r−
dU− a sin2 θ

U
dχ

 ,

m̂ =
1

R
√
2

[
|R|2 dθ + i|R0|2 sin θ dχ+

ia sin θ

r+ − r−

r + r+
r − r−

∆

UV
(U dV − V dU)

]
.

(5.83)

74We thank Aaron Zimmerman and Leo Stein for emphasizing this to us. In this paper we will
discuss only apparent horizons; in principle there is a nontrivial theorem to prove here, since our
perturbed space-time will not be stationary. A wise man once said, “It is important to stress
that there is no evidence for the existence of black hole event horizons (as opposed to apparent
horizons) in the real world” [158].
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The corresponding directional derivatives are:75

D̂ = −2α |R0|2
UV

∆
∂V − a

U

∆

(
1− |R0|2

a
ΩH

)
∂χ ,

D̂′ =
∆

2|R|2

2α |R0|2

∆
∂U − a

U∆

(
1− |R0|2

a
ΩH

)
∂χ

 ,

δ̂ =
1

R
√
2

[
∂θ +

i

sin θ

(
1− ΩH a sin2 θ

)
∂χ + iα a sin θ (−U ∂U + V ∂V )

]
. (5.84)

We will refer to the forms in Eq. (5.83) and the vectors in Eq. (5.84) as com-

posing the “horizon tetrad.” The reader may verify76 term by term that each

component of the 1-forms in Eq. (5.83) and of the vectors in Eq. (5.84) is finite77

at U = 0 for fixed V , and at V = 0 for fixed U .

75Before the reader objects that the whole point of defining GHP-covariant derivatives in
Eq. (5.43) was that the ordinary NP derivatives do not transform as weighted quantities, we
should clarify that g iven l̂µ and l̂′µ from Eq. (5.78), we define D̂ ≡ l̂µ∂µ and D̂′ ≡ l̂′µ∂µ to
obtain the expressions in Eq. (5.84). For a function fh,h̄ ∼ (h, h̄), it is indeed true that D̂f̂h,h̄ ̸=
−UDfh,h̄ and D̂′f̂h,h̄ ̸= −U−1D′fh,h̄. But, by construction, we do have þ̂f̂h,h̄ = −U þfh,h̄ and

þ̂
′
f̂h,h̄ = −U−1þ′fh,h̄.
76Some of the terms are manifestly finite as written, while others can be put into a form that is

manifestly finite after trading factors of r− r+ for factors of U or V using Eq. (5.73). Note that
1 − |R0|2

a ΩH = − r+r+
r2++a2 (r − r+) = −

(
r+r+
r−r−

)
∆

r2++a2 . Therefore, we have a
∆

(
1− |R0|2

a ΩH

)
=

−
(

r+r+
r−r−

)
ΩH , which is manifestly finite and nonzero at r = r+.

77By “finite” we mean “not infinite.” Often the term “finite” is also taken to mean “nonzero,”
as in “not infinitesimal,” but we do not accept this usage. It is important to notice when, in
addition to being finite, some of the components actually do go to zero. For example, the
timelike Killing vector of the Kerr-Newman space-time is:

V ≡ ∂t +ΩH∂φ = α (−U∂U + V ∂V ) . (5.85)

It is this vector whose components go to zero at U = V = 0. Note that it becomes spacelike as
r → ∞ [159].
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5.2.11 Curvature scalars

The curvature scalars are the components of the Riemann tensor contracted

with the elements of the null tetrad. We will set the stage with Cartan’s definition

of curvature.

The first equation of structure [Eq. (5.30)] linked the covariant derivative of

the frame to the torsion. Besides the frame, we also have the connection. Like

moths to a flame we are led to Cartan’s second equation of structure, linking

the covariant derivative of the connection to the curvature. This is expressed by

defining the curvature 2-form:78

Ωa
b ≡ Da

c ω
c
b = dωa

b + ωa
c ∧ ωc

b . (5.89)

78Now that we have introduced curvature, let us embellish an earlier point about torsion.
(This is standard in the supergravity books but seems largely disparaged otherwise.) Begin
with the action

Sgravity[e, ω] = − 1
16πG

∫
e∧e∧∗Ω = 1

16πG

∫
d4x det(e) (eµae

ν
b−eνae

µ
b )(∂µω

ab
ν +ωac

µ ω b
νc ) . (5.86)

For each classical field, define a response (the symbol ∂ denotes a variational derivative in these
expressions):

E µ
a ≡ 2

det(e)

∂Sgravity

∂eaµ
, S µ

ab ≡
2

det(e)

∂Sgravity

∂ωab
µ

. (5.87)

On contracting with frame fields, we obtain:

E µ
a eaν = −2(Rµν−1

2g
µνR) , S µ

abecµ = γacb−γbca−λacb+(λ d
ad−γ d

ad ) ηbc−(λ d
bd −γ d

bd ) ηac . (5.88)

The first expression is the familiar Einstein tensor, but with a Ricci tensor Rµν that is not
yet symmetric. It is the second expression for which we wrote this footnote. In a universe
without matter fields, the equations of motion are E µ

a = 0 and S µ
ab = 0. Contracting the

equation S µ
abecµ = 0 with ηbc results in γ d

ad = λ d
ad . Inserting this back into S µ

abecµ = 0 then
provides λabc = γabc − γcba, the relation we obtained back in Eq. (5.31) from the torsion-free
condition. Substituting this into E µ

a eaν = 0 then recovers Einstein’s equation in vacuum, and
with it ordinary general relativity.
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This is completely analogous to the Yang-Mills field strength F a
b ≡ (δacd+Aa

c)∧

Ac
b = dAa

b + Aa
c ∧ Ac

b.79

We will need the Riemann tensor in the tangent space:

Rabcd ≡ (Ωµν)ab e
µ
c e

ν
d . (5.90)

This quantity can be split into its trace-free part Cabcd (from the Weyl tensor

Cµνρσ) and its partial-trace part Rab (from the Ricci tensor Rµν ≡ Rρ
µρν). [See

Eq. (5.276) for our convention.]

Enter, Newman and Penrose: The 10 degrees of freedom in Cabcd are to be

collected into 5 complex combinations Ψ0,Ψ1,Ψ2,Ψ3, and Ψ4, which are called

the W eyl scalars [see Eq. (5.282)].

Of the 10 degrees of freedom in Rab, nine are to be assembled into a 3-by-3

hermitian matrix {Φαβ}α,β=0,1,2 whose components are called the Ricci scalars

[see Eq. (5.283)].

79We remind the reader that ωa
b transforms as a connection, not as a matter field in the

adjoint representation. It is the field strength Ωa
b that transforms as the adjoint representation.
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The remaining degree of freedom is to be denoted80 Π. We will call it the

E instein-Hilbert curvature,81 since it is proportional to the Lagrangian of general

relativity (without the
√
− det g ) [see Eq. (5.284)].

These quantities can be defined operationally in the compacted version of the

null Cartan formalism as follows. Just as we collected the GHP derivatives into

a weighted exterior derivative [recall Eq. (5.52)], we collect the weighted spin

coefficients associated with lµ into a 1-form:82

ϖ ≡ γ31a e
a = −κ l′ − τ l + σm′ + ρm ∼ (1, 0) . (5.91)

80The original NP notation for Π was Λ, and this notation was retained in the GHP paper.
Later, Penrose and Rindler generalized the formalism to accommodate a nonnormalized spinor
dyad and introduced a symbol Π ∝ Λ to account for this discrepancy in normalization [12].
But the symbol Λ is already seared into our brains as denoting the cosmological constant, so
we refuse to appropriate it for another common symbol in general relativity. (Our graduate
educations have also imbued the symbol Λ with the meaning of a cutoff in effective field theory.)
Even if we were to introduce spinors we would normalize the dyad. So we adopt the alternative
symbol Π and merrily elide any distinction based on the ambiguous normalization of a quantity
that is of no relevance to this paper. The reader may ask why we should even agonize over this
since Π is just proportional to R ≡ gµνRµν . Good question.

81The usual terminology is “scalar curvature,” but the risk of confusion that would arise
from fastidiously distinguishing between “curvature scalars” and “the scalar curvature” is too
substantial to be worth the effort.

82Penrose and Rindler use the notation S for our ϖ (see Ch. 7 of Spinors and Space-time [13]).
We chose the symbol ϖ because it looks somewhat like ω (the spin connection) and is outlandish
enough that no one seems to have reserved it for anything.
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The weighted exterior derivative of this object defines the compacted curvature

2-form:83

� ≡ Ðϖ . (5.92)

The following notation for the components of � in the tangent-space basis of

2-forms is customary:84

� ≡ (Ψ1 + Φ01) l
′ ∧ l + (−Ψ1 + Φ01)m

′ ∧m

+Ψ0 l
′ ∧m′ + Φ00 l

′ ∧m+ Φ02m
′ ∧ l + (Ψ2 + 2Π)m ∧ l . (5.93)

83Among the few papers that use the compacted formalism only a small fraction favor its
Cartan formulation, so we take some liberty in defining nonstandard notation. As mentioned
in an earlier footnote, a diamond in the rough is the exposition by Harnett [148]. For the GHP
curvature 2-form, he uses the symbol Ω, presumably because it is a standard symbol for the
curvature 2-form in differential geometry. This custom led us to choose the notation Ωa

b in
Eq. (5.89). But we wanted to distinguish the quantity defined in Eq. (5.92) from the SO(3, 1)-
covariant curvature. Aiming to do so without severing the association, we searched for a symbol
visually distinct from but still evocative of Ω. Between this consideration and our gratitude to
Leo Stein for innumerable discussions of differential geometry, the Zodiac symbol � was fixed
uniquely.

84To distinguish the Ψs from the Φs without resorting to index notation we should compute
their behavior under conformal transformations. We will not review this here. Instead we refer
the interested reader to Sec. 5.6 and 6.8 in Spinors and Space-time [12].
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By explicitly calculating the right-hand side of Eq. (5.92) using the definitions of

Ð and ϖ from Eqs. (5.52) and (5.91), we obtain the “GHP equations”:

Φ01 +Ψ1 = þ′κ− þτ − (τ−τ ′∗)ρ− (τ ∗−τ ′)σ , (5.94)

Φ01 −Ψ1 = ð′σ − ðρ− (ρ−ρ∗)τ + (ρ′−ρ′∗)κ , (5.95)

Ψ0 = −þσ + ðκ− (ρ+ρ∗)σ + (τ+τ ′∗)κ , (5.96)

Φ00 = −þρ+ ð′κ− ρ2 + τ ′κ+ τκ∗ − |σ|2 , (5.97)

Φ02 = þ′σ − ðτ − τ 2 − κκ′∗ + ρ′σ + ρσ′∗ , (5.98)

Ψ2 + 2Π = þ′ρ− ð′τ + ρρ′∗ + σσ′ − |τ |2 − κκ′ . (5.99)

Eqs. (5.94) and (5.95) can be solved for Φ01 and Ψ1. Eqs. (5.96), (5.97), and (5.98)

define Ψ0, Φ00, and Φ02, respectively. If we prime these five equations, we will

obtain definitions of Φ21 ≡ Φ′
01, Ψ3 ≡ Ψ′

1, Ψ4 ≡ Ψ′
0, Φ22 ≡ Φ′

00, and Φ20 ≡ Φ′
02.

This leaves us with one equation (which is actually self-prime) but three as

yet undefined curvature scalars: Ψ2, Φ11, and Π.

A salient insight in the GHP paper is that the combinations Ψ2 −Π±Φ11 are

defined by commutators of covariant derivatives and hence have innate geometri-

cal meaning. In our Cartan rendition of the GHP symphony, these commutator
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equations manifest as the following operator85 acting on an arbitrary function

fh,h̄ ∼ (h, h̄):

^ ≡ ÐÐ + 2hϖ ∧ϖ′ + 2h̄ (ϖ ∧ϖ′)∗ . (5.100)

We refer to this operator as the compacted commutator 2-form.

In Yang-Mills theory, the composition of covariant derivatives leaves in its wake

a matrix of 2-forms without any derivatives, namely the curvature. Similarly,

the operator in Eq. (5.100) leaves behind a collection of curvature scalars. The

standard notation for the components of the compacted commutator 2-form in

the usual basis is:

^ ≡ −
[
2h (Ψ2 − Π+ Φ11) + 2h̄ (Ψ∗

2 − Π+ Φ11)
]
l ∧ l′

+
[
2h (Ψ2 − Π− Φ11)− 2h̄ (Ψ∗

2 − Π− Φ11)
]
m ∧m′

− (2hΨ1 + 2h̄Φ01)m
′ ∧ l′ − (2hΦ∗

01 + 2h̄Ψ∗
1)m ∧ l′

+ (2hΨ3 + 2h̄Φ21)m ∧ l + (2hΦ∗
21 + 2h̄Ψ∗

3)m
′ ∧ l . (5.101)

The coefficients of l∧ l′ and m∧m′ provide the two additional independent equa-

tions required to define Ψ2, Π, and Φ11.

85Once we have opened the Pandora’s box of Zodiac symbols, we may as well ladle out another
one. We chose the symbol for Gemini because this operator includes two GHP derivatives,
whereas the operator in Eq. (5.93) contains only one.
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The operational definitions in this subsection completely specify the curvature

in the spin coefficient formalism.

Those encountering this material for the first time might want to work through

Sec. 5.B for an equivalent but more traditional derivation of Eqs. (5.94)-(5.99).

The reader who wants to know where in the depths of Cartan the 2-forms in

Eqs. (5.93) and (5.100) come from should consult the Appendix in Sec. 5.C.

5.2.12 Gravitational compass and Petrov classification

Szekeres conjured an elegant theoretical apparatus called the gravitational

compass to interpret the Weyl scalars [160].86 Following his insight, we will say

that Ψ2 describes a Coulomb field, Ψ4 describes a transverse outgoing wave, and

Ψ3 describes a longitudinal outgoing wave. The primed quantities, Ψ0 ≡ Ψ′
4 and

Ψ1 ≡ Ψ′
3, describe the corresponding ingoing waves.87

The Weyl scalars are not gauge invariant: a local SO(3, 1) transformation ea →

Oa
b e

b results in Ψα →
∑4

β=0 QαβΨβ for some matrix Qαβ. (We will see an example

in Sec. 5.4.4.) We can ask how many Ψα can be simultaneously gauged away,

and we can classify space-times based on the answer. This is Chandrasekhar’s

[142] account of the Petrov classification [162] of solutions to the vacuum Einstein

86Since concrete examples always help, we recommend the book on gravitational waves by
Griffiths [161].

87The Coulomb component is self-prime. We might also suggest an alternative notation to
make Szekeres’s interpretation manifest: Ψ⊥ ≡ Ψ4, Ψ∥ ≡ Ψ3, ΨC ≡ Ψ2, Ψ′

⊥ ≡ Ψ0, and Ψ′
∥ ≡ Ψ1.
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equation.88 A desire to elucidate the physics behind each Petrov type is what

drove Szekeres to engineer the gravitational compass.

We will only study two Petrov types: Type D, in which all of the Weyl scalars

besides Ψ2 can be gauged away, and Type II, in which all of the Weyl scalars

besides Ψ2 and Ψ4 can be gauged away.89 Extending the standard terminology

slightly beyond its ordinary usage, we will define a principal frame as any tetrad

basis in which as many Weyl scalars as possible for a given geometry are gauged

away.

The Kerr-Newman black hole is Type D, and its nonzero Weyl scalar is

Ψ2 = − 1

(R∗)3

(
M − Q2

R

)
. (5.102)

It is useful to note that the physical parameters of the black hole are related to

the arithmetic and geometric means of the two horizons:

M = 1
2
(r+ + r−) , ||(a,Q)|| ≡ (a2 +Q2)1/2 = (r+r−)

1/2 . (5.103)

88In the spirit of the Newman-Penrose formalism we should banish any reference to curvature
tensors and formulate our understanding in terms of curvature scalars. This is the benefit of
Chandrasekhar’s presentation. We refer the reader to Sec. 1.9(b) of his book for details. A more
mathematically elegant but physically opaque treatment requires spinors. See Ch. 8 of Spinors
and Space-time [13].

89For a Type II space-time, we can rotate the tetrad to trade a nonzero Ψ4 for a nonzero
Ψ3. This resolves the superficial discrepancy between Chandrasekhar’s [142] and Penrose and
Rindler’s descriptions [13]. Szekeres [160] and Griffiths [161] use the terminology of Penrose and
Rindler.
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We do not know whether this curious fact has any deeper significance.

The charged nature of the Kerr-Newman space-time means that it is not a

vacuum solution. So while the algebraic structure of the Weyl tensor is still

important, it is no longer the whole story.90 In the spin coefficient formalism,

the additional information about the curvature is encapsulated by the following

nonzero Ricci scalar:

Φ11 =
Q2

2|R|4
. (5.104)

The background electromagnetic field required to support this solution will be

given shortly, after a brief interlude about the energy-momentum tensor.

5.2.13 Energy-momentum scalars

In the traditional presentation of the spin coefficient formalism, the Ricci

scalars are considered a stand-in for the contribution of the energy-momentum

tensor by means of Einstein’s equation. We suggest that the matter should be

treated with more deference.

Since the Ricci scalars are defined from the Ricci tensor itself and not its trace-

reversed form,91 we will define “energy-momentum scalars” from the trace-reversed

90Someone equipped with only a black box that spits out the Petrov type would not be able
to distinguish the Kerr geometry (which is a vacuum solution) from the Kerr-Newman geometry
(which requires a Maxwell field).

91This distinction is immaterial in the spin coefficient formalism since the tetrad is null. We
only say this in case the reader wishes to apply the terminology to an orthonormal tetrad or to
a tetrad that is, for example, null in the (x0, x3)-plane and spacelike in the (x1, x2)-plane.

136



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

energy-momentum tensor,

Tµν ≡ Tµν − 1
2
gµν g

ρσTρσ . (5.105)

From these, we define:92

t00 ≡ 4πT11 , t01 ≡ 4πT13 , t02 ≡ 4πT33 , t22 ≡ 4πT22 , t21 ≡ 4πT24 ,

t20 ≡ 4πT44 , t10 ≡ 4πT14 , t12 ≡ 4πT23 , t11 ≡ 2π(T12 + T34) ,

tΠ ≡ 2π
3
(T12 − T34) = −π

3
gµνTµν = +2π

3
gµνTµν . (5.106)

In this notation, Einstein’s equation reads93

Φαβ = tαβ , (5.107)

where α, β ∈ {0, 1, 2}. For the Kerr-Newman solution, the only nonzero entry is

t11, which can be expressed in terms of a complex number ϕ1 called a Maxwell

92This absurd notation is chosen to match that of the Ricci scalars [see Eq. (5.283)].
93This corresponds to the tensorial equation

Rµν = +8π(Tµν − 1
2gµνg

ρσTρσ) ,

chosen to match Eq. (11) in Sec. VI.5 of Zee [140] upon lowering the indices.
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scalar:94

t11 = |ϕ1|2 , ϕ1 =
Q√

2 (R∗)2
. (5.108)

The purpose of this interlude is to emphasize that the equation t11 = |ϕ1|2 is the

statement Tµν = FµρF
ρ
ν − 1

4
gµνFρσF

ρσ in the tangent space, and the equation

Φ11 = t11 is Einstein’s equation in the tangent space. The equation Φ11 = |ϕ1|2 is

a combination of those two steps, not either one by itself.

Specifying the curvature scalars in Eqs. (5.102) and (5.104) and the Maxwell

scalar in Eq. (5.108) completes the description of the Kerr-Newman space-time in

the spin coefficient formalism and technically concludes our review of the pertinent

background material. But there is one further aspect of the geometry that we

would like to explore before moving on to the perturbation.

5.2.14 Spacelike and timelike curvatures

We wish to discuss the curvatures of two-dimensional submanifolds in the

Kerr-Newman space-time.95 Following Penrose and Rindler [13],96 we define the

94The Maxwell scalars are defined as the components of the electromagnetic curvature con-
tracted with the vectors of the null tetrad:

ϕ0 ≡ Fµν l
µmν , ϕ1 ≡ 1

2Fµν (l
µl′ν +m′µmν) , ϕ2 ≡ Fµν m

′µl′ν .

95To some extent this harks back to Smarr’s embedding of the Kerr-Newman horizon into
E3 [163]. The reader may also be interested in the relatively recent work by Gibbons, Herdeiro,
and Rebelo [164], and by Engman and Cordero-Soto [165].

96Penrose and Rindler define K explicitly and refer to it as the “complex curvature.” They do
not define Ks explicitly, but as we said earlier, they do instruct the reader to perform the Sachs
transformation to adapt their work on spacelike submanifolds to timelike submanifolds.
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spacelike curvature K and the t imelike curvature Ks:

K ≡ σσ′ −Ψ2 − ρρ′ + Φ11 +Π , Ks ≡ −κκ′ −Ψ2 + ττ ′ − Φ11 +Π . (5.109)

These quantities appear as natural geometrical objects in the form of the right-

hand side of a commutator of covariant derivatives97 as follows:

ÐÐ = l′ ∧ l ([þ, þ′] + (τ ∗−τ ′)ð + (τ−τ ′∗)ð′) +m′ ∧m ([ð, ð′] + (ρ−ρ∗)þ′ − (ρ′−ρ′∗)þ) + ...

= l′ ∧ l (2hKs + 2h̄K∗
s) +m′ ∧m (−2hK + 2h̄K∗) + ... , (5.110)

where the ellipses stand for the coefficients of m ∧ l, etc., that can be ascertained

from Eq. (5.101).

The real and imaginary parts of K are, up to a conventional factor of 2, the

ordinary notions of intrinsic and extrinsic curvatures in Riemannian98 geometry.

While it may also be useful to define the real and imaginary parts of Ks, they

cannot in general be interpreted as “intrinsic” or “extrinsic” quantities, because

the vectors lµ and l′µ do not form a surface.99 Let us explain as follows.

97Note that in Eq. (5.110) it is not just commutators but commutators plus terms linear in
covariant derivatives that define curvatures. This is because the covariant derivatives themselves
carry charges under the gauge group. [Recall Eq. (5.46).]

98Since we are talking about spacelike subspaces, the terminology “Riemannian” as opposed
to “Lorentzian” (or the more general “pseudo-Riemannian”) is the correct choice.

99We thank Leo Stein for emphasizing this to us.
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Work with the hatted tetrad basis100 and consider the commutators of GHP-

covariant derivatives acting on a function of weight (0, 0) that depends only on

the coordinates (θ, χ) on the horizon:101

[þ̂, þ̂
′
] = (τ̂−τ̂ ′∗)ð̂

′
+ (τ̂ ∗−τ̂ ′)ð̂ (5.111)

[þ̂, ð̂] = ρ̂∗ð̂ + σ̂ð̂
′
− τ̂ ′∗þ̂ − κ̂þ̂

′
(5.112)

[þ̂
′
, ð̂

′
] = ρ̂′∗ð̂

′
+ σ̂′ð̂ − τ̂ ∗þ̂

′
− κ̂′þ̂ (5.113)

[ð̂, ð̂
′
] = (ρ̂−ρ̂∗)þ̂

′
− (ρ̂′−ρ̂′∗)þ̂ (5.114)

Consider what happens at the origin of Kruskal-like coordinates (U = V = 0),

starting from Eq. (5.112) and working down the list, ultimately returning back to

Eq. (5.111).

Since we have aligned the tetrad with shear-free null geodesics, we have κ̂ =

σ̂ = 0; we also know that ρ̂ = 0 at U = 0. Furthermore, we have parametrized the

outgoing null geodesics such that102 ε̂ = 0, and hence þ̂ = D̂. So all we have left

100We will reject the pedagogical abomination of working in the hatted basis but omitting the
hats “for convenience.” Our equations should be read as written: unhatted quantities are to
be computed in the asymptotic basis, and hatted quantities are to be computed in the horizon
basis. If the horizon basis did not also include a GHP rescaling, then both sets of operators
would be related purely by a change of coordinates, in which case there would be no need to
distinguish them.
101The general expressions for the commutators acting on an arbitrary function of the co-

ordinates that transforms as an arbitrary representation of the GHP group are given in
Eqs. (5.311), (5.312), (5.314), and (5.315).
102As is clear from the discussion below Eq. (5.62), requiring the geodesic to be parametrized

affinely only means setting Re(ε) = 0; the meaning of Im(ε) is more obscure. We thank Jan
Willem Dalhuisen for reminding us of this while assessing an early draft of our paper, and we refer
the interested reader to the discussion surrounding Eq. (7.1.20) in Spinors and Space-time [13].
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of Eq. (5.112) is [þ̂, ð̂] = −τ̂ ′∗D̂. We have seen that τ ′ is emphatically not zero in

the rotating background, but from Eq. (5.84) we have

D̂
∣∣∣
U =V =0

= −2α |R0+|2
UV

∆

∣∣∣∣
r= r+

∂V . (5.115)

Acting on a function f(θ, χ), this gives zero. Hence for the situation we are

describing, we have [þ̂, ð̂] = 0. Along similar lines, we will also find [þ̂
′
, ð̂

′
] = 0.

Finally, because once again we know that ρ̂ = ρ̂′ = 0 at U = V = 0, we find

[ð̂, ð̂
′
] = 0. This tells us that the vector fields mµ and m′µ form a surface. The

origin of Kruskal-like coordinates is accordingly called the “bifurcation surface” of

the space-time.103 Physically it is the surface of the black hole revealing itself to

us in a smooth coordinate system, as seen from someone sitting outside at radial

coordinate r > r+.

Whatever its meaning, Im(ε) can be adjusted by means of a little group transformation (i.e.,
m → e iϑ(x)m with l and l′ held fixed). Furthermore, when we set ε = 0, it is not obvious that
ε̂ = 0 as well: the transformation law has to be worked out. See Eq. (5.40).
103Presumably this terminology comes from the literal bifurcation of Kruskal-like coordinates

at U = V = 0.
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For the Kerr-Newman space-time, the real and imaginary parts of the spacelike

curvature (at arbitrary r) are104

Re(K) =
1

2|R|6
{
r2(r2 + a2) +

[
(r2+ + a2)− 4(r+r + a2)− (r2 − r2+)

]
a2 cos2 θ

+4α (r2+ + a2)(r − r+) a
2 cos2 θ

}
, (5.116)

and

Im(K) =
a cos θ

|R|6
{
(r − r+) r+ r + (2a2 + r2) r − r+a

2 cos2 θ

+α(r2+ + a2)
[
(2r+ − r) r + a2 cos2 θ

]}
. (5.117)

Having expounded the spacelike curvature, let us come full circle by going back

to Eq. (5.111) and seeing what we can conclude about the timelike curvature.

We notice immediately that [þ̂, þ̂
′
] depends on ð̂ and ð̂

′
. So if we try to move

points around in the submanifold spanned by lµ and l′µ, we will inevitably end up

104We have not found any substantial simplification of these expressions, so let us just make
the following comments. First, we have traded all dependence on the inner horizon r− for the
surface gravity α, and we have organized Re(K) and Im(K) into terms that do depend on α
and terms that do not. Notice, for example, that at r = r+ the dependence on α drops out of
Re(K). This is perhaps a manifestation of the fact that, as we have just discussed, Re(K)

∣∣
r= r+

should describe the intrinsic curvature of the horizon, which should depend only on quantities
intrinsic to the surface at r = r+ and not on parameters such as r− (and hence α) that depend
on its embedding in the larger 3 + 1 dimensional space-time. Second, note that under a flip in
the direction of rotation of the black hole, namely a → −a, Re(K) is even while Im(K) is odd.
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moving in the spatial directions to which Re(mµ) and Im(mµ) are tangent: the

planes will not “match up” as we attempt to traverse a closed path.

Therefore, the space transverse to the horizon does not form a surface, and

there is no meaningful sense in which the corresponding timelike curvature can be

split into parts “intrinsic” and “extrinsic” to it. That is all we set out to establish.

We have discussed this at length because it provides a concrete mathemati-

cal effect associated with the timelike twist defined in Eq. (5.70). This is how

the physical phenomenon of frame dragging is encoded in the method of spin

coefficients.

The timelike curvature for the Kerr-Newman geometry is:105

Ks =
−2(3r+−2r)rr++2iar+(4r−r+)cos θ+a2[5r−2r+−(2r+−r)cos(2θ)]+2ia3 cos3 θ

4R∗|R|4

+ α (r2+ + a2)
(3r+−r)r − ia(2r−r+) cos θ + a2 cos2 θ

R∗|R|4
. (5.118)

Having traipsed through the background geometry, we are now ready to perturb

it.

105To convince the reader that we have expended a modicum of effort to distill an unintelligible
output from Mathematica, we note that we have organized this expression into an O(α0) term
and an O(α) term, and in each of those we have organized the numerators in powers of a. We
display this insipid formula because we have not seen it anywhere, and, who knows, someone
out there might find it helpful.
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5.3 Shifted tetrad and Kerr-Schild form

Let us begin with the unhatted tetrad that defines the Kerr-Newman back-

ground. We introduce a completely general function S(t, r, θ, φ) and define the

shifted tetrad as follows:

l̃ ≡ l , l̃′ ≡ l′ + S l , m̃ ≡ m . (5.119)

It cannot be emphasized enough that the meaning of l̃′ in components is

l̃′ = l̃′µ dx
µ = (l′µ + Slµ) dx

µ , (5.120)

not l̃′µ dx̃
µ for some shifted coordinate basis dx̃µ. Otherwise the shift would de-

scribe a change of coordinates, not a physical perturbation.

Just as the ordinary metric is defined as ds2 = −2ll′ + 2mm′, we define the

shifted metric as

ds̃2 ≡ −2l̃l̃′ + 2m̃m̃′ = ds2 − 2Sll . (5.121)

Since we have chosen lµ to be tangent to a class of shear-free null geodesics of

the unshifted metric, the shifted metric is of the generalized Kerr-Schild form, as

defined by Taub [137]. If we turn off the angular momentum and the charge and
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choose the particular ansatz106

S =
∆

2r2
U

V
δ(U) f(θ, φ) (a = Q = 0) (5.122)

then we will reproduce exactly the Dray-’t Hooft metric.107 If we turn off the

angular momentum but leave the charge nonzero and use the same functional

form for the ansatz, we will reproduce exactly the metric of Alonso-Zamorano

and Sfetsos.

5.3.1 From Reissner-Nordström to Kerr-Newman

To generalize to the Kerr-Newman background, we will scrutinize the factors

that appear in the ansatz.

First, by revisiting our conventions for the unshifted tetrad and staring at the

definition of the shifted one, we conclude that the factor ∆
2r2

is there to compensate

for the asymmetric normalization108 of lµ relative to l′µ. So the generalization of

106Just to be clear, in this equation we mean ∆ = r(r − 2M), which is the a = Q = 0 limit of
the more general definition for the Kerr-Newman horizon function in Eq. (5.7). This is why it
is convenient to work with ∆ instead of r − 2M for the Schwarzschild solution.
107When comparing this to Dray-’t Hooft [29] and to Sfetsos [35], note that we are working in

their “hatted” coordinate system (which has nothing to do with our hatted tetrad basis). We
also make the trivial modification of using capital letters instead of lowercase letters for the
Kruskal-like coordinates, because we prefer to reserve lowercase letters for the “Eddington-like”
combinations t± r∗.
108It might be worth considering a symmetric normalization in which both null forms are given

an overall factor of
(

∆
2r2

)1/2
. We have not seriously explored this possibility for two reasons.

First, to make our work accessible to beginners, we elected to parallel many of the conventions in
Chandrasekhar’s account of the Schwarzschild and Kerr solutions in Newman-Penrose form [142].
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this factor to the rotating case is clear:

∆

2r2
→ ∆

2|R|2
. (5.123)

Second, we have defined the Kruskal-like coordinates so that they mimic the coor-

dinates in the nonrotating case: the future horizon is still at U = 0 and the radial

function r depends only on the product UV . So we might hope that the factor

U
V
δ(U) could remain unmodified.

Third, we recognize that the function f(θ, φ) is defined only at the origin

of Kruskal-like coordinates (U = V = 0). Extrapolating to the Kerr-Newman

space-time should therefore entail the generalization

(θ, φ) → (θ, χ) . (5.124)

This cross-examination of the Dray-’t Hooft solution coupled with the clear geo-

metrical underpinning of the Newman-Penrose formalism led us to the conviction

that the perturbed Kerr-Newman geometry should be described by the shifted

tetrad in Eq. (5.119) with the following ansatz:

S =
∆

2|R|2
U

V
δ(U) f(θ, χ) . (5.125)

Second, as a practical matter both for calculation by hand and for symbolic manipulation in
Mathematica, we found it inconvenient to deal with square roots of those functions.
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We will call S the “shift function,” and we will call f(θ, χ) the “horizon field.”

When we calculate the curvature scalars, we will work directly with the rescaled

tetrad in Eq. (5.84), thereby enlisting the rescaled shift function

Ŝ = (−U)−2S =
1

2|R|2
∆

UV
δ(U)f(θ, χ) . (5.126)

Like everything else in the hatted tetrad basis, this shift function is finite at the

horizon.

By comparing the GHP representations l′µ ∼ (−1
2
,−1

2
) and lµ ∼ (+1

2
,+1

2
) in

the context of Eq. (5.119), we deduce that the shift function must transform as:

S ∼ (−1,−1) . (5.127)

When interpreting the formulas Eqs. (5.125) and (5.126) in the GHP formalism,

we assign the horizon field f(θ, χ) the weights of the shift function:

f(θ, χ) ∼ (−1,−1) . (5.128)

The remaining factors are to be treated as ordinary functions, not physical degrees

of freedom, and are therefore assigned weights (0, 0).
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By explicit calculation, we will indeed find that the ansatz in Eq. (5.125)

results in a shifted Ricci tensor of the form

R̃µν = Rµν +R shift
UU δ U

µ δ U
ν (5.129)

and therefore correctly generalizes the Dray-’t Hooft metric to a rotating back-

ground.

5.3.2 Preliminary commentary

Before focusing on the explicit result for RUU , we wish to preview an amazing

property of many generalized Kerr-Schild space-times: the Ricci tensor for the

shifted metric will depend only l inearly on the shift function S, provided that the

unshifted tetrad is aligned with the shear-free null geodesics (κ = σ = κ′ = σ′ = 0)

and that the unshifted Φ00 is zero.

This will hold before specializing to our ansatz for S in terms of f : the non-

linearity drops out for a completely general shift function. This crucial property

was in fact noticed by Taub [137] and by Alonso and Zamorano [123]; a related

but even more general property was recently explored by Harte [166].

We will proceed step by step through the spin coefficient formalism to under-

stand why this happens. A practical reason is to provide explicit formulas for the

spin coefficients and curvature scalars of the most general Kerr-Schild metric in
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terms of the spin coefficients and curvature scalars of the background. For the spin

coefficients we maintain full generality in the background, but for the curvature

scalars we will restrict to shear-free geodesic congruences.

5.3.3 Shifted spin coefficients

By shifting both sides of the Cartan equations and solving them, or by shift-

ing the definition of each spin coefficient directly,109 we can express the shifted

spin coefficients in terms of their unshifted values. We will derive the system of

equations obtained from shifting the null Cartan equations in Eq. (5.49).

We start with the simplest case, the equation for dl. First, tilde110 every term:

dl̃ = −2Re(ε̃) l̃∧ l̃′+2i Im(ρ̃) m̃∧ m̃′+

[(
τ̃ − β̃ + β̃′∗

)
m̃′ ∧ l̃ + κ̃ m̃′ ∧ l̃′ + c.c.

]
.

(5.130)

Note that, in keeping with our advisory remark below the original definition of

the shifted tetrad [Eq. (5.119)], we do not tilde the exterior derivative operator.

109This requires first solving the matrix inversion problem in Eq. (5.11) for the shifted vectors.
In the present situation this is simple, but we focus on the Cartan equations to conceivably
enable a more general perturbation. Shifting the spin coefficients directly must be done using
Chandrasekhar’s “λ-symbols” [see Eq. (5.31)]. Otherwise we would have to establish the shifted
space-time-covariant derivative ∇̃µ, defined such that ∇̃µg̃νρ ≡ 0, before adorning each symbol
with its ceremonial tilde.
110American physicists commonly transform the nouns “prime” and “hat” into verbs (“to prime”

and “to hat”) and adjectives (“primed”/“unprimed” and “hatted”/“unhatted”). Here we affirm this
“age-old custom” of functional shift [167] by transforming the noun “tilde” into the verb “to tilde”
and the adjectives “tilded”/“untilded.”
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Begin with the right-hand side. By plugging in the definition of the shifted

tetrad in terms of the unshifted tetrad and using the 1-form property l ∧ l = 0,

we find:

dl̃ = −2Re(ε̃) l∧l′+2i Im(ρ̃)m∧m′+

[(
τ̃ − β̃ + β̃′∗ + κ̃ S

)
m′ ∧ l + κ̃m′ ∧ l′ + c.c.

]
.

(5.131)

Since l̃ = l, we have dl̃ = dl, so the left-hand side can be replaced with the

nontilded version of Eq. (5.130). The four basis 2-forms l∧ l′, m∧m′, m′ ∧ l, and

m′ ∧ l′ are linearly independent, so we can match their coefficients on both sides

to obtain the first set of shifted spin coefficient equations:

Re(ε̃) = Re(ε) , Im(ρ̃) = Im(ρ) , τ̃−β̃+β̃′∗+κ̃ S = τ−β+β′∗ , κ̃ = κ . (5.132)

Next, we repeat the procedure for dl′, starting with its shifted version:

dl̃′ = −2Re(ε̃′) l̃′∧ l̃+2i Im(ρ̃′) m̃′∧m̃+

[(
τ̃ ′ − β̃′ + β̃∗

)
m̃ ∧ l̃′ + κ̃′ m̃ ∧ l̃ + c.c.

]
.

(5.133)
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The steps for the right-hand side of the equation parallel those for dl, resulting

in:

dl̃′ = −2Re(ε̃′) l′ ∧ l + 2i Im(ρ̃′)m′ ∧m+

+

{(
τ̃ ′ − β̃′ + β̃∗

)
m ∧ l′ +

[
κ̃′ +

(
τ̃ ′ − β̃′ + β̃∗

)
S

]
m ∧ l + c.c.

}
. (5.134)

But this time, since l′ = l′ + Sl, the steps for the left-hand side are more compli-

cated. Not only do we require the nontilded equations for both dl′ and dl, we also

require the exterior derivative of the shift function:111

dS ≡ dxµ ∂µS = ea ∂aS = −l D′S − l′DS +mδ′S +m′δS . (5.135)

Then we have, for the left-hand side of Eq. (5.133)

d(l′ + Sl) =
[
−2Re(ε′) + 2Re(ε)S − (DS)

]
l′ ∧ l +

[
2i Im(ρ′)− 2i Im(ρ)S

]
m′ ∧m

+

{(
τ ′ − β′ + β∗ + κ∗S

)
m ∧ l′ +

[
κ′ +

(
τ ∗ − β∗ + β′)S + (δ′S)

]
m ∧ l + c.c.

}
.

(5.136)

111Note that because this involves the 1-forms ea, our expression for dS differs by an overall
sign relative to what one would obtain using the opposite metric signature.
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Matching the coefficients of the basis 2-forms provides the second set of shifted

spin coefficient equations:

Re(ε̃′) = Re(ε′)− Re(ε)S + 1
2
DS , Im(ρ̃′) = Im(ρ′)− Im(ρ)S ,

τ̃ ′ − β̃′ + β̃∗ = τ ′ − β′ + β∗ + κ∗S , κ̃′ + (τ̃ ′ − β̃′ + β̃∗)S = κ′ + (τ ∗ − β∗ + β′)S + δ′S .

(5.137)

Before moving to the final set of equations, it is helpful to take stock of where we

are. We have already solved directly for Re(ε̃), Im(ρ̃), and κ̃, and may thereby

observe that they remain unshifted. We have also solved for Re(ε̃′) and Im(ρ̃′).

By plugging the third equation in Eq. (5.137) into the fourth one, we obtain the

shifted κ′:

κ̃′ = κ′ +
(
δ′ − 2β∗+2β′)S + (τ ∗−τ ′)S − κ∗S2 (5.138)

Recall that S ∼ (−1,−1) and that the GHP-covariant version of δ′ is ð′ = δ′ −

2hβ′ + 2hβ∗. As expected from GHP covariance, the NP derivatives and gauge

fields appear in just the right combination to form a covariant derivative:

κ̃′ = κ′ + ð′S + (τ ∗−τ ′)S − κ∗S2 . (5.139)

On the other hand, the terms involving D, ε, and ε∗ in Re(ε̃′) do not collect

themselves into a GHP-covariant combination. But that too is expected: while
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κ̃′ is a weighted quantity, ε̃′ is not. By solving the matrix inversion problem in

Eq. (5.11) for the shifted tetrad, we obtain the shifted NP derivatives:

D̃ = D , D̃′ = D′ − S D , δ̃ = δ . (5.140)

We will see that ε̃′ does in fact combine with D̃′ to form a shifted þ̃
′
that can be

expressed completely in terms of GHP-covariant quantities. But to prove that, we

will need to solve for the shifted Im(ε̃′), and for that we will need to study dm.

Placing tildes on each term of the defining equation for dm in Eq. (5.49), we

have:

dm̃ = (β̃ + β̃′∗) m̃ ∧ m̃′ − (τ̃ − τ̃ ′∗) l̃ ∧ l̃′ +
(
ρ̃− 2i Im(ε̃)

)
m̃ ∧ l̃′ + σ̃ m̃′ ∧ l̃′

+
(
ρ̃′ + 2i Im(ε̃′)

)
m̃ ∧ l̃ + σ̃′∗m̃′ ∧ l̃ (5.141)

= (β̃ + β̃′∗)m ∧m′ − (τ̃ − τ̃ ′∗) l ∧ l′ + (ρ̃− 2i Im(ε̃))m ∧ l′ + σ̃ m′ ∧ l′

+
[
ρ̃′ + 2i Im(ε̃′) +

(
ρ̃− 2i Im(ε̃)

)
S
]
m ∧ l +

(
σ̃′∗ + σ̃S

)
m′ ∧ l . (5.142)

Since dm̃ = dm, we can equate the coefficients on the right-hand side of Eq. (5.142)

with the nontilded version of Eq. (5.141). This gives us the third set of shifted
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spin coefficient equations:

β̃ + β̃′∗ = β + β′∗ , τ̃ − τ̃ ′∗ = τ − τ ′∗ , ρ̃− 2i Im(ε̃) = ρ− 2i Im(ε) ,

ρ̃′ + 2i Im(ε̃′) + (ρ̃− 2i Im(ε̃))S = ρ′ + 2i Im(ε′) , σ̃′∗ + σ̃S = σ′∗ . (5.143)

This completes the set of equations required to solve for all of the shifted spin

coefficients.

By solving Eqs. (5.132), (5.137), and (5.143), we learn that the weighted spin

coefficients and gauge field associated with lµ do not receive corrections:

κ̃ = κ , τ̃ = τ , σ̃ = σ , ρ̃ = ρ , ε̃ = ε . (5.144)

While it should not be surprising that κ, σ, ρ, and ε do not receive corrections,

it may be unexpected that τ does not shift. It turns out that τ ′ also remains

unshifted:

τ̃ ′ = τ ′ . (5.145)

So the timelike expansion τ + τ ′∗ and the timelike twist τ − τ ′∗ remain unshifted.

Let us emphasize again that at this stage we are dealing with the most general

Kerr-Schild metric and have not assumed anything about the tetrad besides the

original definition of the shift [Eq. (5.119)]. In particular, we have not yet required

the geodesic conditions κ = κ′ = 0 or the shear-free conditions σ = σ′ = 0.
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The weighted spin coefficients and gauge field associated with l′µ do receive

corrections:

κ̃′ = κ′ +
[
ð′ +

(
τ ∗−τ ′

)]
S − κ∗S2 ,

σ̃′ = σ′ − σ∗S , ρ̃′ = ρ′ − ρ S ,

ε̃′ = ε′ − ε∗S + 1
2
DS − i Im(ρ)S . (5.146)

In general, the transverse gauge fields also receive corrections:

β̃ = β + 1
2
κS , β̃′ = β′ − 1

2
κ∗S . (5.147)

Now we will establish our first crucial property of generalized Kerr-Schild metrics:

if we align lµ to be tangent to a geodesic of the background geometry, namely if

κ = 0, then not only do the formulas simplify considerably, but all nonlinearity in

the shift function drops out of the spin coefficients.

This already means that the curvature tensor in the tangent space, which is

the quantity from which the curvature scalars are defined, will depend on the shift

function only to a power no higher than two:

R̃abcd = Rabcd + S R
(1)
abcd + S2R

(2)
abcd . (5.148)
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Furthermore, if the geodesic to which lµ is aligned can also be taken shear-free,

namely σ = 0, then we get σ̃′ = σ as well. Finally, if we also choose l′µ to

be tangent to a geodesic of the background, then the only spin coefficients that

receive corrections are:112

κ̃′ =
[
ð′ +

(
τ ∗−τ ′

)]
S , ρ̃′ = ρ′−ρ S , ε̃′ = ε′−ε∗S+ 1

2
DS− i Im(ρ)S . (5.149)

In this case, the only GHP-covariant derivative that shifts is þ′. The shifted

version acting on a function fh,h̄ ∼ (h, h̄) is:

þ̃
′
fh,h̄ =

[
þ′ − Sþ − (h+h̄)(þS) + 2i(h−h̄)Im(ρ)S

]
fh,h̄ . (5.150)

This vindicates the discussion below Eq. (5.139) and completes our derivation of

the shifted spin coefficients.

Dray and ’t Hooft described two physical effects of the shift on the trajectories

of test particles that might cross it: a translation toward the future horizon, and a

refraction effect [29]. In the spin coefficient formalism, these are described by the

shifted versions of ρ′ and κ′. We will now explain this assertion. The reader may

also wish to consult the analysis of the Dray-’t Hooft geometry by Matzner [34].

112In this formula we have left ε nonzero to treat ε and ε′ more symmetrically.
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5.3.4 Shifted horizon

Let us work in the hatted basis. As we discussed back in Sec. 5.2.10, the future

horizon of this geometry can be defined locally as the subspace of Kruskal-like

coordinates on which the expansion of the outgoing congruence vanishes (ρ̂ = 0).

Similarly, the past horizon is the subspace on which the expansion of the ingoing

congruence vanishes (ρ̂′ = 0).

Recalling the unshifted values of ρ̂ and ρ̂′ in Eq. (5.81) and the shift described

in Eq. (5.149), we find that the coordinate V receives a correction while the

coordinate U does not:

˜̂ρ = ρ̂ =⇒ Ũ = U ,

˜̂ρ′ = ρ̂′ − ρ̂ Ŝ =

(
1 +

U

V
δ(U) f(θ, χ)

)
ρ̂′ ≡

[
1

2|R|2

(
∆

UV

)
1

R∗

]
Ṽ

=⇒ Ṽ − V = U δ(U) f(θ, χ) . (5.151)

This last expression is subtle, because it states that smooth functions of U will

experience no coordinate shift; it is only functions that go as 1
U

near U = 0 that

will experience a discontinuity in the coordinate.

But that is correct: if we interpret Eq. (5.151) as a differential equation in U in

the vicinity of U = 0, as in d(Ṽ−V )
dU

= limU→0
Ṽ−V
U

= δ(U) f(θ, χ), then integration
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gives

Ṽ = V +Θ(U) f(θ, χ) . (5.152)

This is the shift as described by Dray and ’t Hooft and by Sfetsos.

5.3.5 Refraction

We explained back in Sec. 5.2.7 that κ and κ′ describe the refraction of light

rays. Consequently, the result that κ′ becomes nonzero after the shift speaks

for itself. But it is also interesting to ask what happens when we realign the

ingoing null curves with the corrected geodesics. We will content ourselves with

a relatively qualitative discussion of this issue.

Begin with the following rotation113 of the null tetrad:

l → l◦ ≡ l ,

m → m◦ ≡ m+ A l ,

l′ → l′◦ ≡ l′ + A ∗m+ A m′ + |A |2l , (5.153)

where A is an arbitrary nonzero complex function. By comparing the represen-

tations of the GHP group under which l and m transform, namely l ∼ (1
2
, 1
2
) and

113This is called a “rotation of class I.” An analogous rotation that leaves l′ invariant is called
a “rotation of class II.” An alternative name for the GHP transformation is “a rotation of class
III.”
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m ∼ (1
2
,−1

2
), we conclude that the function A should be assigned the weights

(0,−1), and its conjugate the weights A ∗ ∼ (−1, 0) (we remind the reader that

complex conjugation exchanges h ↔ h̄).

Under the transformation in Eq. (5.153), the weighted spin coefficients associ-

ated with l transform as:114

κ → κ◦ = κ , σ → σ◦ = σ + A κ ,

ρ → ρ◦ = ρ+ A ∗ κ , τ → τ ◦ = τ + A ρ+ A ∗σ + |A |2κ . (5.154)

The weighted spin coefficients associated with l′ transform as:

κ′ → κ′◦ = κ′ + A σ′ + A ∗ρ′ + |A |2τ ′ + (A ∗)2
(
|A |2κ− τ − A ∗σ + A ρ

)
+ (þ′ + A ∗ð + A ð′ + |A |2þ)A ∗ , (5.155)

σ′ → σ′◦ = σ′ + A ∗τ ′ − (A ∗)2ρ− (A ∗)3κ− ð′A ∗ − A ∗þA ∗ , (5.156)

ρ′ → ρ′◦ = ρ′ + A τ ′ − (A ∗)2σ − A (A ∗)2κ− ðA ∗ − A þA ∗ , (5.157)

τ ′ → τ ′◦ = τ ′ − (A ∗)2κ− þA ∗ . (5.158)

114These transformation laws are common knowledge, but they are typically presented in the
original Newman-Penrose notation, which makes them unsuitable for civilized prose. We repro-
duce them here mainly for our own convenience, as well as for the beginning student who should
not be required to brandish safety glasses to witness them.
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The GHP gauge fields transform as:

ε → ε◦ = ε+ A ∗κ , β →
◦
β = β + A ε+ A ∗σ + |A |2κ ,

ε′ → ε′◦ = ε′ + A β′ − A ∗(β + τ)− |A |2(ρ+ ε)− (A ∗)2σ − |A |2A ∗κ ,

β′ → β′◦ = β′ − A ∗(ρ+ ε)− (A ∗)2κ . (5.159)

We will be concerned primarily with the spin coefficients κ′ and σ′. We would like

to apply the transformation defined in Eq. (5.153) to the shifted geometry, which

entails putting tildes on both sides of Eqs. (5.155) and (5.156). For the shifted

Kerr-Newman space-time, the rotated κ′ is:

κ̃′◦ = κ̃′ + A ∗ρ̃′ − (A ∗)2τ + |A |2τ ′ + |A |2A ∗ρ

+ (þ̃
′
+ A ∗ð + A ð′ + |A |2þ)A ∗ . (5.160)

Because of the representation A ∗ ∼ (−1, 0), we have for the shifted þ′:

þ̃
′
A ∗ =

[
þ′ − Sþ + (þS) + 2i Im(ρ)S

]
A ∗ . (5.161)
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After this list of technical statements, we come to the main point: realigning l′

with the ingoing geodesics of the shifted space-time requires solving the condition

κ̃′◦ ≡ 0 (5.162)

for the function A . We will not attempt this, which is why we cautioned that

our discussion will be relatively qualitative. But were we to solve Eq. (5.162), we

would find that the shifted ingoing geodesics to which l̃′◦ is now tangent would

exhibit nonzero shear:

σ̃′◦ = −(ð′−τ ′)A ∗ − A ∗(þ+ρ)A ∗ . (5.163)

Apparently the advent of shear along the ingoing geodesic115 congruence is the

manifestation of the Dray-’t Hooft refraction effect in the spin coefficient formal-

ism.

115We will not use Penrose’s preferred word “geodetic” for the adjectival form of the noun
“geodesic.” We understand that an author who would introduce an independent symbol for each
type of hodge duality in four dimensions might also insist on this, but it sounds too academic
for our taste. [See Eq. (4.13.16) in Spinors and Space-time.] The word “geodesic” can function
perfectly as both an adjective and a noun without sacrificing one iota of clarity.
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5.4 Petrov classification for the Kerr-Newman shock-

wave

We will first shift the Weyl scalar Ψ4 ∼ (−2, 0), or more conveniently its

complex conjugate Ψ∗
4 ∼ (0,−2). Since this is just our opening act, we will focus

mainly on the results. Intricate computational details will be reserved for the

main event, the shifted Ricci scalars.

5.4.1 Shifted Ψ4 and physical interpretation

Aligning the background tetrad with shear-free geodesic congruences, but as-

suming an arbitrary shift function S, we find:

Ψ̃∗
4 = ððS + 2τ ðS . (5.164)

To obtain this expression we used the complex conjugate and the prime of Eq. (5.98)

in the forms ð′τ ∗ = −τ ∗2 and ð′τ ′ = −τ ′2, which hold when Φ02 = 0.

To specialize to the shockwave, hat everything and insert the ansatz of Eq. (5.126)

for the shift function. Since the calculation is laborious, it is advantageous to first

enumerate the types of terms that could appear.

Recall that the horizon field f(θ, χ) has weights (−1,−1). Since Ψ∗
4 has weights

(0,−2), we will have to find operators of weights (1,−1). Fortunately, the list of
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such operators that are nonzero at the Kerr-Newman horizon is surprisingly short:

ðð ; τð , τ ′∗ð ; τ 2 , τ ′∗ 2 , ττ ′∗ . (5.165)

In principle we would also need ðτ and ðτ ′∗, but again when Φ02 = 0 those can

be traded for −τ 2 and −τ ′∗2. So the result must have the form

ˆ̃Ψ∗
4 = k0 δ(U)

[
ððf + (k1 τ + k2 τ

′∗)ðf + (k3 τ
2 + k4 τ

′∗ 2 + k5 ττ
′∗)f
]

(5.166)

for some functions ki(θ) that will depend on the parameters r+, a, and α. Whether

by hand or by machine we ultimately find:

k0 = − c
2|R|2 , k1 =

α|R|2
r

, k2 = −2
(
1 + α|R|2

2r

)
, k3 =

(
α|R|2
2r

)2
,

k4 = 1 +
(
1 + α|R|2

2r

)2
, k5 = − α|R|2

r

(
1 + α|R|2

2r

)
. (5.167)

On the way to obtaining this expression, we necessarily encounter terms involving

∂Uδ(U) and ∂ 2
Uδ(U).116 We interpret them according to the distributional edict

of integrating by parts against an arbitrary smooth test function F(U):

∫
dU F(U) ∂ n

U δ(U) =

∫
dU (−1)n ∂ n

U F(U) δ(U) . (5.168)

116We also stumble upon the gargantuan notational implosion “ðδ(U) = δδ(U).”
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It should also be understood, as required by the overall factor δ(U), that all

instances of r in Eq. (5.167) actually denote r+. Let us also note that numerically

we have

τ ′ = − R

R∗ τ
∗ , (5.169)

so it is possible to shuffle terms among the coefficients k3, k4, and k5. The partic-

ular form shown in Eq. (5.167) is what we exhumed upon performing the rituals

to be disclosed in Sec. 5.6.

Recalling the gravitational compass from Sec. 5.2.12, we interpret Eqs. (5.166)

and (5.167) as describing a transverse “outgoing” gravitational wave stuck to the

horizon.117

5.4.2 Static limit

It is worth taking a moment to consider the static limit,118 a → 0, in which

case only the ððf term in Eq. (5.166) survives.

As far as we know, the Weyl scalars for the shifted Reissner-Nordström geom-

etry have not been calculated explicitly, so we will unpack the definitions of the

117We cannot help calling the reader’s attention to the following famous quotation: “Now, here,
you see, it takes all the running you can do, to keep in the same place.” This is originally from
Through the Looking-Glass by Lewis Carroll, but we first encountered its application to the
horizon of a black hole from the textbook on the Kerr geometry by O’Neill [168]. Apparently
the credit for this cultural appropriation should be attributed to the compilation Analog Essays
on Science edited by Stanley Schmidt, but we have not read it.
118Some relativists call the surface on which gtt goes to zero the “static limit.” We prefer the

name “stationary limit surface.” In this paper we will use the terminology “static limit” to mean
“the limit in which the black hole stops rotating,” or more precisely, “a → 0.”
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GHP derivatives at the horizon. Remembering that f ∼ (−1,−1) and therefore

ðf ∼ (−1
2
,−3

2
), and that in the static limit we have β = β′ = β∗ = β′∗, we find:

ððf |a=0 = δδf − 2β δf . (5.170)

We could then mechanically unravel the Newman-Penrose derivatives and perhaps

even use the Dray-’t Hooft constraint equation to simplify the result further, but

we will not.

5.4.3 Shifted Ψ3 and Petrov type

Having discussed Ψ4 in some detail, let us turn to Ψ3. Our generalized Kerr-

Schild metric (with κ = σ = κ′ = σ′) appears to generate this Weyl scalar:119

Ψ̃∗
3 = Ψ∗

3 +
1
4
(þð + ðþ)S + 1

4
(2τ−τ ′∗)þS + 1

4
(2ρ−5ρ∗)ðS − 1

2
[(2τ−τ ′∗)ρ∗ + ðρ∗]S .

(5.171)

By placing hats on everything and specializing to the particular form of our hatted

shift function [see Eq. (5.126)], we find that each term in Eq. (5.171) actually goes

119To arrive at this formula we wrote þð = 1
2 (þð+ðþ)+ 1

2 [þ, ð] and then traded the commutator
for curvature scalars and spin coefficients using Eq. (5.314).
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to zero at U = 0 for fixed nonzero V :

ˆ̃Ψ∗
3 = 0 . (5.172)

Since the unshifted geometry already had a nonzero Ψ2, we arrive at the result:

ˆ̃Ψ0 =
ˆ̃Ψ1 =

ˆ̃Ψ3 = 0 , ˆ̃Ψ2 ̸= 0 , ˆ̃Ψ4 ̸= 0 . (5.173)

This describes a solution of Type II in the Petrov classification.120 To quote

Szekeres, “it can be viewed as a Coulomb field with an outgoing wave component

superimposed” [160].

120For another explicit example of a Type II solution, see Sec. 19.1 of Griffiths [161].
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5.4.4 Newman-Penrose rotation of the shifted Weyl scalars

Under the Newman-Penrose rotation in Eq. (5.153), the Weyl scalars transform

as:

Ψ0 →
◦
Ψ0 = Ψ0 ,

Ψ1 →
◦
Ψ1 = Ψ1 + A ∗Ψ0 ,

Ψ2 →
◦
Ψ2 = Ψ2 + 2A ∗Ψ1 + (A ∗)2Ψ0 ,

Ψ3 →
◦
Ψ3 = Ψ3 + 3A ∗Ψ2 + 3(A ∗)2Ψ1 + (A ∗)3Ψ0 ,

Ψ4 →
◦
Ψ4 = Ψ4 + 4A ∗Ψ3 + 6(A ∗)2Ψ2 + 4(A ∗)3Ψ1 + (A ∗)4Ψ0 . (5.174)

Therefore, were we to realign the ingoing principal null vector so that it would be

tangent to an ingoing null geodesic, we would generate a nonzero Ψ3 while keeping

Ψ2 and Ψ4 nonzero.

So we have a choice: the vector l̃′µ can either be principal or it can be geodesic,

but it cannot be both.

5.4.5 Curvatures of submanifolds

We will calculate the shifted spacelike and timelike curvatures by shifting both

sides of the GHP commutator equations [see Eq. (5.313)]. The shifted spacelike
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curvature for the generalized Kerr-Schild metric is:

K̃ = K + Im(ρ)
[
2 Im(ρ)S + i (þS)

]
. (5.175)

So the intrinsic curvature receives a correction 2[Im(ρ)]2S, while the extrinsic cur-

vature receives a correction Im(ρ)þS. When we turn off the angular momentum,

the twist goes to zero and the spacelike curvature remains unshifted.

For generic angular momenta, if we hat everything and specialize to the shock-

wave ansatz, we will find that both correction terms in Eq. (5.175) go to zero.

For the timelike curvature, we have:

K̃s = Ks − 1
2
(þ2S) + i þ

[
Im(ρ)S

]
. (5.176)

When we turn off the angular momentum and set ε = 0, we recover the simple

formula121 K̃s

∣∣∣
a=0

= Ks − 1
2
D2S. Again, for generic angular momenta, if we hat

everything we will find that the corrections go to zero.

Curiously enough, the gravitational shockwave does not alter the curvatures

of submanifolds in the Kerr-Newman geometry.

121It is perhaps interesting to note that in this case the correction term is real. In the unshifted
spherically symmetric case (that is, for the Reissner-Nordström or Schwarzschild background),
the intrinsic curvature Re(K) happens to equal Re(Ks). So one effect of the shift is to break
that equality.
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5.4.6 Shifted Ψ2

Having computed the shifted timelike and spacelike curvatures, we can readily

compute the correction to the Weyl scalar of weight zero:

Ψ̃2 = Ψ2 +
1
6
þ2S − 1

3
(ρ−ρ∗)þS + 1

3

[
(3ρ−2ρ∗)ρ+ Φ00

]
S . (5.177)

To arrive at this expression, we used the relation122

Φ00 = −(þρ+ ρ2) (if κ = σ = 0) (5.178)

along with the fact that Φ∗
00 = Φ00. Just as we found for the shifted Ψ3, we find

upon disbursing hats and plugging in the ansatz of Eq. (5.126) that the correction

to Ψ2 is actually zero. So while the generalized Kerr-Schild form results in a

shift of Ψ2, that correction vanishes upon specialization to the actual shockwave

geometry.

Appealing again to the gravitational compass [160], we say that the Coulomb

field remains unchanged by the presence of a massless particle on the future hori-

zon.

122For the experts in general relativity, we point out that this is Raychaudhuri’s equation for
null shear-free geodesic congruences. When Φ00 = 0, it tells us that þρ = −ρ2. Given the
interpretation of Re(ρ) from Eq. (5.63), we recognize this as the focusing theorem.
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5.5 Shifted Ricci scalars

Show time. We will first describe the shifted Ricci scalars for the generalized

Kerr-Schild geometry under the assumption κ = κ′ = σ = σ′ for the background,

and then we will specialize to the shockwave.

5.5.1 Ricci scalar of weight (−1,−1): absence of nonlinearity

As a result of the general shift procedure defined by Eq. (5.119), three of

the Ricci scalars will become nonzero. Of these, the apple of our eye will be

Φ22 ∼ (−1,−1).

This quantity is defined by priming the definition of Φ00 in Eq. (5.97):

Φ22 = −
(
þ′ρ′ + ρ′ 2

)
+ ðκ′ + τκ′ + τ ′κ′∗ − |σ′|2 . (5.179)

Using our expressions for the shifted ρ′ from Eq. (5.149) and the shifted þ′ from

Eq. (5.150), and using the weight h = h̄ = −1
2

for ρ′ [recall Eq. (5.38)], we find:

þ̃
′
ρ̃′ = þ′ρ′ + (ρ′þ − ρþ′)S − (þ′ρ+ þρ′)S + (þρ)S2 ,

ρ̃′2 = ρ′2 − 2ρρ′S + ρ2S2 . (5.180)

It is worth keeping in mind the formula for Φ00 under the shear-free geodesic

assumption [Eq. (5.178)].
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Next recall Eq. (5.99), specialized to σσ′ = κκ′ = 0:

Ψ2 + 2Π = −(ð′τ + |τ |2) + þ′ρ+ ρ′∗ρ (5.181)

= −(ðτ ′ + |τ ′|2) + þρ′ + ρ∗ρ′ . (5.182)

The reader who is paying attention has every right to be confused by the second

equality: indeed it turns out that the combination of derivatives and products of

spin coefficients in Eq. (5.181) is in fact equal to its primed version in Eq. (5.182).

This must be so, since both Ψ2 = C1342 and Π = 1
12
(−R12 +R34) are self-prime.

It is a matter of some discretion as to which variables we want to keep and

which variables we want to trade away. We are guided by comparison with the

static limit, which suggests we should express as much as possible in terms of τ

and τ ′ and their derivatives. So we will use Eqs. (5.181) and (5.182) to evict þ′ρ

and þρ′ from Eq. (5.180).

Using our shifted κ′ from Eq. (5.149), we find:

ðκ̃′ = ðð′S + (τ ∗−τ ′)ðS + (ðτ ∗− ðτ ′)S ,

τ κ̃′ + τ ′κ̃′∗ = (τð′ + τ ′ð)S + (|τ |2−|τ ′|2)S . (5.183)
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The aggregate of Eqs. (5.180)-Eq. (5.183) then supplies the preliminary expression:

Φ̃22 = Φ22 + (ρþ′ − ρ′þ)S + Φ00S
2 + ðð′S + τð′S + τ ∗ðS

+
[
2ρρ′ − (ρρ′∗+ρ∗ρ′) + ð′τ + ðτ ∗ + 2|τ |2 + 2(Ψ2 + 2Π)

]
S . (5.184)

It is now clear that when we begin with a background for which Φ00 = 0, all

nonlinear dependence on the perturbation drops out of the curvature scalars.

Terms of O(S2) could not possibly show up elsewhere, because the only curvature

scalar with the appropriate weight to include a product of shifted quantities (in

this case þ′ and ρ′) is Φ22.

Let us reflect on the simple conditions required for this result: κ = σ = κ′ =

σ′ = 0 and Φ00 = 0. Newman in particular has long emphasized the importance

of shear-free geodesic congruences [169], and our calculation exemplifies another

miraculous phenomenon associated with them.
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To make sense of Eq. (5.184) we will rewrite it in a manifestly real form:123

Φ̃22 = Re(Φ̃22) = Φ22 + Re
[
(ρþ′ − ρ′þ)S

]
+ Φ00S

2

+ 1
2

[
ðð′ + ð′ð + (τ+τ ′∗)ð′ + (τ ∗+τ ′)ð + (τ−τ ′∗)ð′ + (τ ∗−τ ′)ð

]
S

+
{
(ρ−ρ∗)(ρ′−ρ′∗) + (ð′τ + c.c.) + 2|τ |2 + 2

[
Re(Ψ2) + 2Π

]}
S .

(5.185)

Experts in the GHP formalism should recognize the combination ðð′+(τ+τ ′∗)ð′+

c.c. as composing part of the generalized Laplacian. Those experiencing the no-

tation for the first time should grab a coffee and work through Sec. 5.D. We will

have much more to say about this shortly, but first let us study the remaining

curvature scalars.

5.5.2 Other Ricci scalars

The Ricci scalar of weight (−1, 0) receives a correction from the general shift:

Φ̃21 = Φ21 +
1
4
(þð′ + ð′þ)S + 1

4
(2τ ∗−τ ′)þS + 1

4
(3ρ−2ρ∗)ð′S + 1

2
(τ ′ρ−2τ ∗ρ∗+ð′ρ)S .

(5.186)

123Or, to mutter a hex from days gone by, we use the “eliminant relation” Im(Φ22) = 0.
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The steps leading to this expression parallel closely those that led to Ψ̃∗
3, surprising

nobody: the combinations Φ21±Ψ3 materialize naturally in the Cartan formalism

as the primed versions of Eqs. (5.94) and (5.95).

For the Kerr-Newman background, we have Φ21 = 0. Once we hat everything

and specialize to Eq. (5.126), we will find that each correction term on the right-

hand side of Eq. (5.186) will go to zero.

Next, we have the Ricci scalar of weight (0, 0):

Φ̃11 = Φ11 +
1
4
þ2S + 1

2

[
Φ00 − (ρ−ρ∗)2

]
S . (5.187)

When we hat both sides and plug in the ansatz, we will find that ˆ̃Φ11 = Φ̂11 = Φ11,

the unshifted value for the Kerr-Newman background.

The Einstein-Hilbert curvature also appears to become nonzero as a result of

the shift:

Π̃ = Π + 1
6

{
1
2
þ2S − (ρ+ρ∗)þS + |ρ|2 S

}
. (5.188)
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But we know that Π is proportional to the Lagrangian of general relativity, so its

first order variation must comport with the standard formula124

SGR[g + h]− SGR[g] =
1
2

∫
d4x (− det g)1/2 T µνhµν +O(h2) . (5.189)

The shift ansatz in Eq. (5.119) effects the metric variation

hµν = −2S lµlν . (5.190)

So varying the action with respect to the shift function S will result in a quantity

proportional to T µνlµlν = T µνlµlν = 4π t00.125

Because the only nonzero energy-momentum scalar for the background metric

is t11 ∝ (lµl
′
ν+ l′µlν+mµm

′
ν+m′

µmν)T µν , we know that t00 = 0 and thereby expect

the O(S) term in Eq. (5.189) to equal zero.126

The nonzero O(S) term in Eq. (5.188) might invite consternation, but we

have to remember that in our entire treatment of general relativity we have been

cavalierly ignoring possible boundary terms in the action. So all we require is that

124The action for general relativity in our notation is SGR = − 3
2π

∫
d4x (−det g)1/2 Π. We use

hµν for the variation of the metric since, as promised, we forsake the traditional notation δgµν
to avoid a possible mixup with the NP derivative δ ≡ mµ∇µ. As we have already discussed, the
O(h2) terms and higher in Π vanish identically.
125This is as good a place as any to remark that, as noticed by Taub [137], the unperturbed

lµ is also null with respect to the perturbed metric: g̃µν l
µlν = (gµν + 2Slµlν)l

µlν = gµν l
µlν +

2S(lµl
µ)2 = 0.

126We thank Alexei Kitaev for proposing this check on our work.
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the O(h) term in Eq. (5.189) should be zero, not necessarily that the shift in Π

itself should be zero.

In the Kerr-Newman background, we have127

(− det g)1/2 = i εµνρσlµl
′
νmρm

′
σ = |R|2 sin θ . (5.191)

After integrating by parts, dropping total derivatives, and using the explicit forms

of D and ρ for the Kerr-Newman background [recall Eqs. (5.13) and (5.50) respec-

tively], we indeed obtain

∫
d4x (− det g)1/2 Π̃ = 0 . (5.192)

This completes our account of the shifted curvature scalars for the generalized

Kerr-Schild geometry. (The Ricci scalars not explicitly enumerated in this section

do not shift.) Now we will specialize the shifted Φ22 to the shockwave ansatz.

127The tetrad form of (−det g)1/2 makes clear that it does not receive a correction under the
shift of Eq. (5.119).
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5.6 Derivatives of the shift

The space-time Laplacian ∇2 = ∇µ∇µ finds refuge in the compacted spin

coefficient formalism within a more general operator □ that can act covariantly

on arbitrarily-weighted functions. (See Sec. 5.D for a derivation.)

This operator readily splits into a “parallel” part □∥ associated with the out-

going and ingoing null directions, and a “perpendicular” part □⊥ associated with

the transverse plane:

□ = −□∥ +□⊥ , (5.193)

where

□∥ ≡ [þ + 2Re(ρ)]þ′ + ′ , □⊥ ≡ [ð + (τ + τ ′∗)]ð′ + ′ . (5.194)

The operator □⊥ will be called the “transverse box.” Evaluating its action on the

shift function is the most technically cumbersome aspect of computing Φ̃22.

We will do our best to show how the sausage is made without belaboring

mindless algebra. By the time this paper is published, we will release a companion

Mathematica notebook to facilitate the inspired reader’s pilgrimage across the

shockwave.
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5.6.1 Key facts

To set up the calculation we will first collect some useful formulas.

From what may seem like a lifetime ago, we recall that U∂Ur = V ∂V r (which

can be traced back to the relation −U∂U + V ∂V = 1
α
∂t). Therefore, acting on a

weight-(0, 0) function F (r), we have:

ðF (r) = 0 . (5.195)

This is our first key fact.

Next we recall the explicit formulas for the timelike expansion and the timelike

twist in the Kerr-Newman geometry [Eq. (5.70)]. They will compose our basic

mnemonic for making sense of complicated algebraic expressions: the trigonomet-

ric functions sin(2θ) and sin θ should evoke τ + τ ′∗ and τ − τ ′∗ respectively.

We will use this to establish additional useful formulas. Treating δ(U) as

having weight (0, 0) and recalling the Newman-Penrose derivatives in Kruskal-like

coordinates [Eq. (5.84)], we find:

ðδ(U) = −α
ia sin θ

R
√
2

U∂Uδ(U) = − α|R|2

2r
(τ−τ ′∗)U∂Uδ(U) . (5.196)

This is our second key fact.
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Finally, we must remember that although functions of r can be treated as

constants, the generalized radial function R = r + ia cos θ is also a function of θ.

Treating this too as a function of weight (0, 0), we compute the following:

ð
(

1

|R|2

)
= − 1

(|R|2)2
ð
(
|R|2

)
= +

a2 sin(2θ)√
2R|R|4

= − 1

|R|2
(τ+τ ′∗) . (5.197)

This is our third key fact.

5.6.2 Integration by parts

We described back in Eq. (5.168) the standard integration by parts procedure

that defines the delta function. Here it will be useful to study two special cases

of that formula.

First consider a distribution O(U)U∂Uδ(U) (where the conditions on O(U)

will be specified shortly), and integrate it against a test function F(U) that falls

off quickly enough to merit dropping the boundary term:

∫
dU O(U)U∂Uδ(U)F(U) = −

∫
dU

[
O(U)F(U) + U∂U(O(U)F(U))

]
δ(U) .

(5.198)
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If ∂U(O(U)F(U)) ∼ Un with n ≥ 0 near U = 0, then the second term evaluates

to zero. We then obtain the following distributional equality:

O(U)U∂Uδ(U) = −O(U) δ(U) . (5.199)

Along similar lines, we will obtain a second distributional equality:

O(U)U∂U(U∂Uδ(U)) = +O(U) δ(U) . (5.200)

Equipped with the key facts in Eqs. (5.195)-(5.197) and the above distributional

equalities, we are ready to face the transverse box.

5.6.3 First-derivative terms

We warm up with a first-derivative term. Specializing to the shockwave ansatz

in Eq. (5.126) and applying our key facts, we obtain the preliminary expression

ðŜ = 1
2

∆
UV

[
ð( 1

|R|2 )δ(U)f(θ, χ) + 1
|R|2ðδ(U)f(θ, χ) + 1

|R|2 δ(U)ðf(θ, χ)
]

= 1
2|R|2

∆
UV

{
δ(U)

[
ð − (τ+τ ′∗)

]
f(θ, χ)− α|R|2

2r
(τ−τ ′∗)U∂Uδ(U) f(θ, χ)

}
.

(5.201)
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Before integrating by parts against a test function, we need to multiply by τ ∗+ τ ′

to obtain the term (τ ∗+τ ′)ðŜ that appears in the transverse box.128

Note that since |τ |2 = |τ ′|2 for the Kerr-Newman space-time, we have

(τ ∗+τ ′)(τ−τ ′∗) = 2i Im(ττ ′) . (5.202)

Using this and the distributional equality in Eq. (5.199), we obtain [also recall

c ≡ − ∆
UV

∣∣
r= r+

from Eq. (5.74)]

(τ ∗+τ ′) ðŜ = − c

2|R|2
δ(U)

{
(τ ∗+τ ′) ð − |τ+τ ′∗|2 + i α|R|2

r
Im(ττ ′)

}
f(θ, χ) .

(5.203)

5.6.4 Second-derivative terms

Returning to Eq. (5.201), we act with ð′ (and skip a few steps now that the

method is presumably clear) to obtain

ð′ðŜ = 1
2|R|2

∆
UV

{
δ(U) ð′ðf −

[
(τ+τ ′∗) δ(U) + α|R|2

2r
(τ−τ ′∗)U∂Uδ(U)

]
ð′f

−
[
(τ ∗+τ ′) δ(U) + α|R|2

2r
(τ ∗−τ ′)U∂Uδ(U)

]
ðf + C f

}
, (5.204)

128Since τ∗ + τ ′ depends on U and V only through r = r(UV ), and since we have already said
such functions can be treated as constants with respect to U∂U for our calculation, it does not
matter in this particular instance whether we integrate by parts before or after multiplying by
τ∗ + τ ′.
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where

C = |τ+τ ′∗|2 δ(U)− iα|R|2
r

Im(ττ ′)U∂Uδ(U)−
(
δ(U) + α|R|2

2r
U∂Uδ(U)

)
ð′τ

−
(
δ(U)− α|R|2

2r
U∂Uδ(U)

)
(ðτ ′)∗ +

(
α|R|2
2r

)2
|τ−τ ′∗|2 U∂U

[
U∂Uδ(U)

]
.

(5.205)

Note that in Eq. (5.204) the coefficient of ð′f is the complex conjugate of the

coefficient of ðf . This did not have to be so, because we are computing ð′ðŜ right

now, not ð′ðŜ + c.c., and in general ð′ð ̸= ðð′.

This quantity ð′ðŜ will be integrated directly against a test function (because

it appears directly in the transverse box, which in turn appears directly in ˆ̃Φ22),

so we can use the distributional equalities in Eqs. (5.199) and (5.200), loosely

expressed as U∂Uδ(U) → −δ(U) and U∂U [U∂Uδ(U)] → +δ(U). Applying these

to Eq. (5.204), we obtain:

ð′ðŜ = − c

2|R|2
δ(U)

{
ð′ð −

[
(τ+τ ′∗)− α|R|2

2r
(τ−τ ′∗)

]
ð′ −

[
(τ ∗+τ ′)− α|R|2

2r
(τ ∗−τ ′)

]
ð

+|τ+τ ′∗|2+ iα|R|2
r

Im(ττ ′)−
(
1− α|R|2

2r

)
ð′τ −

(
1+ α|R|2

2r

)
(ðτ ′)∗ +

(
α|R|2
2r

)2
|τ−τ ′∗|2

}
f(θ, χ) .

(5.206)
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5.6.5 Transverse box

Now we can finish the job. Returning to the first-derivative term in Eq. (5.201)

and adding its complex conjugate, we obtain:

(τ ∗+τ ′)ðŜ + c.c. = − c

2|R|2
δ(U)

{
(τ+τ ′∗)ð′ + (τ ∗+τ ′)ð − 2|τ+τ ′∗|2

}
f(θ, χ) .

(5.207)

Next we obtain the anticommutator of GHP derivatives by taking Eq. (5.204) plus

its complex conjugate:

ð′ðŜ + c.c. = − c

2|R|2
δ(U)

{
(ð′ð + ðð′) +

[
−
(
2(τ+τ ′∗)− α|R|2

r
(τ−τ ′∗)

)
ð′ + c.c.

]

+2|τ+τ ′∗|2 −
(
1− α|R|2

2r

)
(ð′τ + c.c.)−

(
1+ α|R|2

2r

)
(ðτ ′ + c.c.) + 2

(
α|R|2
2r

)2
|τ−τ ′∗|2

}
f(θ, χ) .

(5.208)

We then add Eqs. (5.207) and (5.208) to obtain the transverse box. Notice that,

for reasons morally unbeknownst to us, the |τ + τ ′∗|2 term will cancel out. It also

turns out, by explicit computation, that for the Kerr-Newman geometry we have

ðτ ′ = ð′τ . (5.209)
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There is probably a good reason for this, but it escapes us.129 At any rate, it

implies that the α-dependent parts of the coefficients of ð′τ + c.c. and ðτ ′ + c.c.

drop out.

Therefore, the transverse box acting on the shift function, expressed in terms

of GHP derivatives at the horizon, simplifies to:

□⊥Ŝ = − c

2|R|2
δ(U)

{
(ð′ð + ðð′) +

[
−
(
(τ+τ ′∗)− α|R|2

r
(τ−τ ′∗)

)
ð′ + c.c.

]

−2(ð′τ + c.c.) + 2
(

α|R|2
2r

)2
|τ−τ ′∗|2

}
f(θ, χ) . (5.210)

This completes the most arduous part of the calculation. It bears repeating that

all quantities in Eq. (5.210) are understood to be evaluated at r = r+, as mandated

by the overall delta function.

5.6.6 Laplacian on the squashed sphere

As a matter of principle, we could leave the result for □⊥Ŝ in the form of

Eq. (5.210). But readers familiar with the Dray-’t Hooft solution will recall that

the second-derivative terms collect themselves into the Laplacian on the sphere,

129This can probably be traced back to the GHP transformation that sets τ ′ numerically equal
to τ [recall the discussion below Eq. (5.50)]. That transformation also sets the θ-components
of mµ and m′µ equal, whereas beforehand they were complex conjugates. Because τ and τ ′

depend only on r and θ (not on t or φ), and because ðτ ′ and ð′τ are invariant under GHP
transformations, we should perhaps expect to recover Eq. (5.209). But the more honest way
to describe our thought process is: we blindly computed ðτ ′ and ð′τ using the original tetrad
basis, found that they were equal, then tried to understand why. This footnote is the result of
that introspection coupled with a conviction not to lie to our readers or to ourselves.
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and they might wonder how the Laplacian on the squashed sphere will present

itself here. Since the two-dimensional (henceforth “2d”) spatial Laplacian is not by

itself a GHP-covariant operator, we will have to break GHP covariance to express

□⊥Ŝ in terms of it.

We are happy to indulge such readers. Our shift function S and our hori-

zon field f(θ, χ) have GHP weight (−1,−1). In general, a weighted function

fh,h(θ, χ) ∼ (h, h) has “spin weight” s ≡ h − h̄ = h − h = 0. The shockwave

ansatz has h = −1, but with minimal additional exertion we can understand the

situation for s = 0 but arbitrary h.130

By explicit computation on a function fh,h(θ, χ) of the Kruskal-like angular

coordinates only, we find that the following combination of NP derivatives and

GHP gauge fields reproduces the Laplacian on the squashed sphere:131

130Since complex conjugation exchanges h and h̄, only functions with s = 0 can be taken real.
We therefore assume f∗

h,h = fh,h for simplicity.
131Given that: (1) we have usurped the symbol “□” to represent the generalized (3+1)-

dimensional Laplacian; (2) the ordinary (3+1)-dimensional Laplacian is itself typically denoted
either by □ or by ∇2 = ∇µ∇µ; (3) introducing a vector arrow to define an operator “∇⃗2”
would be readily misconstrued as denoting a 3-dimensional operator

∑3
i=1 ∇i∇i; and (4) the

mathematician’s preferred symbol “∆” already denotes the horizon function, we have officially
exhausted our notational reserves. We considered introducing a symbol ⃝ ≡ ∇ 2

2d since, after
all, what better symbol to complement a box than a circle, especially if we intend to evoke an
association with a sphere (squashed or otherwise). But in the interest of smooth sailing toward
intelligibility instead of a turbulent odyssey into the fever dreams of madmen, we will just stamp
the clunky subscript “2d” onto the usual ∇2 to denote the Laplacian on a two-dimensional spatial
surface. For the Kerr-Newman horizon, the 2d space of interest is the squashed sphere. The line
element for a squashed sphere of radius r is (recall |R|2 = r2 + a2 cos2 θ and |R0|2 = r2 + a2):

ds2 = |R|2dθ2 + |R0|4

|R|2
sin2 θ dχ2 ≡ hij dx

i dxj . (5.211)
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δ′δ + δδ′ − (β + β′∗)δ′ − (β′ + β∗)δ = ∇ 2
2d . (5.213)

So unpacking the GHP derivatives according to their original definitions back in

Eq. (5.43) provides the desired expression:

(ð′ð + ðð′)fh,h(θ, χ) =
{
∇ 2

2d +
[
4h(β − β′∗)δ′ + c.c.

]
+2h

[
(δ′β − δβ′ + c.c.) + 2(|β′|2−|β|2) + 4h|β−β′∗|2

]}
fh,h(θ, χ) .

(5.214)

That is how our coveted 2d spatial Laplacian manifests in our story. Its tragedy is

that while we may find temporary solace in a familiar face, this yearning for cama-

raderie cost us the guidance of GHP covariance, without which we are hopelessly

lost.

The Laplacian ∇ 2
2d ≡ 1√

deth
∂i(

√
deth hij∂j) obtained from this metric is:

∇ 2
2d =

1

|R|2

∂ 2
θ +

(
|R0|2 + a2 sin2 θ

|R|2

)
cot θ ∂θ +

|R|4

|R0|4
1

sin2 θ
∂ 2
χ

 . (5.212)

Those are the only facts about the squashed sphere that we need for now.
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5.7 Ricci tensor

The trace reversed Ricci tensor, being necessary to the gravitational field of

a localized Source, the propensity of a massless particle to generate Curvature,

shall now be realized.

5.7.1 Relation to curvature scalars

We emerge from the chrysalis of the tangent space by translating the usual

prescription Rµν = e a
µ e

b
νRab into the Newman-Penrose notation:

1
2
Rµν = l′µl

′
ν Φ00 + lµlν Φ22 +

[
m′

µm
′
ν Φ02 − (l′µm

′
ν +m′

µl
′
ν) Φ01 − (lµmν +mµlν) Φ21 + c.c.

]
+ (lµl

′
ν + l′µlν +mµm

′
ν +m′

µmν) Φ11 − 3(−lµl
′
ν − l′µlν +mµm

′
ν +m′

µmν)Π .

(5.215)

To evaluate the right-hand side, we first need to tilde everything (to calculate

shifted quantities), and then we need to hat everything (to work in the horizon

basis).

We will specialize directly to the shockwave ansatz, so the only Ricci scalar

that will receive a shift is Φ22. Meanwhile, the unshifted geometry has only a

nonzero Φ11. Therefore, we have for the full (i.e., including the unshifted part)
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Ricci tensor:

1
2
R̃µν = ˆ̃lµ

ˆ̃lν
ˆ̃Φ22 + (ˆ̃lµ

ˆ̃l′ν +
ˆ̃l′µ
ˆ̃lν + ˆ̃mµ

ˆ̃m′
ν + ˆ̃m′

µ
ˆ̃mν)

ˆ̃Φ11

= l̂µl̂ν
ˆ̃Φ22 + (l̂µ

ˆ̃l′ν +
ˆ̃l′µl̂ν +mµm

′
ν +m′

µmν) Φ11 . (5.216)

In the second line we have removed the tildes for quantities that equal their

unshifted counterparts, and we have removed the hats on quantities that do not

get rescaled by factors of U when passing from the asymptotic tetrad to the

horizon one. Also, note that there is no need to place a hat on the Ricci tensor,

because by construction it is invariant under GHP transformations of the tetrad.

Recalling from Eq. (5.119) the premise that launched this travail in the first

place, we isolate the part of the Ricci tensor that results from the shift:

R shift
µν = 2 l̂µl̂ν (

ˆ̃Φ22 + 2Ŝ Φ11) . (5.217)

Returning to our explicit expressions for the tetrad 1-forms in Eq. (5.83), we find

l̂
∣∣∣
U =0

=
|R+|2

α|R0+|2
dU . (5.218)

So we learn first of all that R shift
µν = R shift

UU δ U
µ δ U

ν , as promised.
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5.7.2 Relation to energy-momentum scalars

Meanwhile, the trace-reversed energy-momentum tensor also admits an expan-

sion analogous to Eq. (5.215):

1

4π
Tµν = l′µl

′
ν t00 + lµlν t22 +

[
m′

µm
′
ν t02 − (l′µm

′
ν +m′

µl
′
ν) t01 − (lµmν +mµlν) t21 + c.c.

]
+ (lµl

′
ν + l′µlν +mµm

′
ν +m′

µmν) t11 − 3(−lµl
′
ν − l′µlν +mµm

′
ν +m′

µmν) tΠ .

(5.219)

Anticipating the required energy-momentum tensor term by term, we conclude:

T shift
µν = 4π l̂µl̂ν(

ˆ̃t22 + 2Ŝ t11) . (5.220)

Given that the background Einstein equation is Φ11 = t11 (by construction), all

we have to do is to introduce a t22 such that

ˆ̃Φ22 =
ˆ̃t22 . (5.221)

The whole point of this tale is that the correction to the left-hand side can be

interpreted as the backreaction from a massless particle on the future horizon, so

that is what will populate the right-hand side. Before investigating this matter

(pun intended), we will first complete our calculation of ˆ̃Φ22.
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5.7.3 Final result for Φ22

Returning to our earlier calculation of ðŜ [Eq. (5.201)], multiplying by τ ∗−τ ′,

integrating by parts, and adding the complex conjugate, we obtain the remaining

first-derivative terms:

(τ−τ ′∗)ð′Ŝ + c.c. = − c

2|R|2
δ(U)

{
(τ−τ ′∗)ð′ + (τ ∗−τ ′)ð + α|R|2

r
|τ−τ ′∗|2

}
f(θ, χ) .

(5.222)

Next, we return to our general expression for the shifted Φ22 in Eq. (5.185), hat

it, and recognize that ρ̂′ þ̂Ŝ and (ρ̂−ρ̂∗)(ρ̂′−ρ̂′∗) go to zero at U = 0.

But ρ̂ þ̂
′
Ŝ is more subtle, since hidden inside D̂′ is a partial derivative with

respect to U . Applying Eq. (5.199), we obtain

Re(ρ̂D̂′Ŝ) = αr+
|R0+|2

|R+|4
Ŝ = −1

2

[
ðτ + ð′τ ∗ + 2|τ |2 + 2Re(Ψ2)

]∣∣∣
r= r+

Ŝ . (5.223)

Because ρ̂|U =0 = 0, the terms involving ε̂′ and ε̂′∗ drop out, leaving us with

Re(ρ̂þ̂
′
Ŝ) = Re(ρ̂D̂′Ŝ) = −Re(þ̂

′
ρ̂)Ŝ. To obtain that last equality we used

Eq. (5.99). This makes clear that Re(ρ̂þ̂
′
Ŝ) equals its definition by integration

by parts also at the level of GHP derivatives.

Putting all this together (and using Φ00 = Π = 0), our shifted Φ22 reduces to

the relatively compact form:
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ˆ̃Φ22 =
1
2

{
□⊥ + (τ−τ ′∗)ð′ + (τ ∗−τ ′)ð + (ð′τ + c.c.) + 2|τ |2 + 2Re(Ψ2)

}
Ŝ .

(5.224)

Using our result for □⊥Ŝ in Eq. (5.210) and the relation 4|τ |2 = |τ+τ ′∗|2+|τ−τ ′∗|2,

we finally obtain the beautiful, exquisite, magical expression

ˆ̃Φ22 = − c

4|R|2
δ(U)Df(θ, χ) , (5.225)

where the differential operator D is

D = ð′ð + ðð′ +
[
−(τ+τ ′∗) +

(
1 + α|R|2

r

)
(τ−τ ′∗)

]
ð′ +

[
−(τ ∗+τ ′) +

(
1 + α|R|2

r

)
(τ ∗−τ ′)

]
ð

+ 2Re(Ψ2)− (ð′τ + ðτ ∗) + 1
2
|τ+τ ′∗|2 + 1

2

(
1 + α|R|2

r

)2
|τ−τ ′∗|2 . (5.226)

This is our final result.

It is expressed in terms of quantities that have innate geometrical significance,

in that each operator has a definite GHP weight. When a = 0, we obtain132

D |a=0 = ð′ð + ð′ð + 2Re(Ψ2) . (5.227)

132At r = r+, we have Re(Ψ2)
∣∣
a=0

= − α
r+

.
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As could be anticipated from the Type-D character of the background, we see

that it is part of the Weyl tensor, Re(Ψ2), not the intrinsic curvature, Re(K), that

appears most naturally in the GHP-covariant form of the shifted Φ22 for generic

values of the angular momentum.

On the other hand, the intrinsic curvature presents itself when we trade the

GHP-covariant derivatives for the 2d Laplacian plus its associated ejecta. We first

expand ðf = [δ+2(−1)β−2(−1)β′∗]f and specialize Eq. (5.214) to h = −1. Then

we shuffle the terms around using numerical relations like133

β′ − β∗ = τ ′ (Kerr-Newman) (5.228)

and

|β′|2 − |β|2 = a2

2|R|4
(Kerr-Newman) . (5.229)

In this way we obtain the following alternative form for Eq. (5.226):

D = ∇ 2
2d +

1−αR
r

(τ−τ ′∗)R∗ δ′ + 1−αR∗

r
(τ ∗−τ ′)Rδ

+ 2rα

−2

(
|R|2

|R0|2
Re(K) +

2a2

|R|4

)
+ |τ+τ ′∗|2 +

1 + rα

(
|R|2

2r2

)2
 |τ−τ ′∗|2

 .

(5.230)

133It is possible that these relations embody some hidden meaning. But, for example, the two
sides of Eq. (5.228) do not transform in the same way under Eq. (5.21), so we hesitate to dig
deeper.
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We will refer to the coefficient of f(θ, χ) in ˆ̃Φ22, encapsulated by the term in

Eq. (5.230) without any derivatives, as the “mass term.” It is organized in terms

of the intrinsic curvature at the horizon,134

Re(K)
∣∣
r= r+

=
|R0+|2

2|R+|6
(r2+ − 3a2 cos2 θ) , (5.231)

and quantities that are proportional to some power of the angular momentum.

Expressed in this way, the mass term reeks of Kaluza-Klein, but we will leave that

for another day.135 At any rate, the practical advantage of this form is that it

shows clearly which terms go to zero as a → 0 and which terms do not.

Explicitly, when a = 0 (but Q ̸= 0), we recover the known answer in the

spherically symmetric case:136

ˆ̃Φ22

∣∣∣∣
a=0

= − c

4r2+
δ(U)

(
∇ 2

2d −
2α

r+

)
f(θ, φ) . (5.232)

While the geometrical significance of the mass term in Eq. (5.230) eludes us,

the apparent fact that we can extract from it an overall factor of α does have

134By explicit computation, we find Re(K)
∣∣
r= r+

= 1
4h

ijR
(2d)
ij , where R

(2d)
ij is the Ricci tensor

defined by the metric hij on the squashed sphere [see Eq. (5.211)].
135For example, (deth)1/2/ (−det g)1/2

∣∣∣
r= r+

= |R0+|2/|R+|2. That is probably not a coinci-

dence.
136At r = r+, we have Re(K)

∣∣
a=0

= 1
2r2+

. Also, when a = 0 the delayed angle χ becomes the
ordinary azimuthal angle φ.
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physical significance.137 In the extremal limit, which in this case corresponds to

a2 + Q2 = M2 and hence r− = r+, the surface gravity α goes to zero (as usual),

and the entire mass term vanishes.

As far as we know, the first to point this out in the spherically symmetric

situation was Sfetsos, who interpreted it as a breakdown of the solution [35]. The

effect was recently revisited by Leichenauer in the context of entanglement between

the conformal field theories dual to the asymptotically-AdS generalization of the

Reissner-Nordström black hole [170]. In the context of shockwave scattering, the

vanishing of the mass term in the operator D is what Maldacena and Stanford

call the “βJ enhancement” of the scattering amplitude [117].

But let us not get ahead of ourselves. In this paper we are concerned exclu-

sively with the single-shockwave geometry and its interpretation within general

relativity. The sun will rise tomorrow, and we will have another opportunity to

traverse that wormhole.

137We thank Douglas Stanford for explaining this to us.
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5.8 Energy-momentum tensor

The localized source suitable for our shifted curvature tensor must be described

by an energy-momentum scalar138

ˆ̃t22 = ξ δ(U) δ2(x⃗⊥) (5.233)

for some constant ξ, with all other energy-momentum scalars being zero. (The

notation is such that x⃗⊥ points to a fixed location on the squashed sphere; we will

be more explicit later on.) Only in that case will Einstein’s equation in the form

of Eq. (5.221) reduce to a Green’s function equation at the horizon:

Df(θ, χ) = −4c−1|R+|2 ξ δ2(x⃗⊥) . (5.234)

Harmony with the ancient canons requires only that we announce the desired

energy-momentum tensor and promptly conclude our inquiry. But, as pronounced

back in Sec. 5.2.13, we find this negligence unbecoming.

This paper is formulated exclusively within the computational framework of

classical field theory. Classical field theory is, as the name suggests, a theory of

classical fields. It is not a theory of particles. If we wish to interpret the source of

138More generally, we could have ˆ̃t22 = ξ δ(U)F (x⃗⊥) for some profile F (x⃗⊥) in the angular
directions.
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gravitational field described by Eq. (5.233) as the gravitational backreaction from

a massless particle, then we must define what we mean by “massless particle” in

the language of classical field theory.

The reader who could not possibly care less may skip to Sec. 5.9.

5.8.1 Laplacian at the Kerr-Newman horizon

We begin with some comments about the Laplacian. The equation of motion

for a free, massless,139 real scalar field H ∼ (0, 0) is

(−□∥ +□⊥)H = 0 . (5.235)

Our goal is to construct a solution to this equation in the form of a wave packet

such that, when we send the width of the wave packet to zero, the field disappears

but leaves behind a fixed nonzero energy-momentum concentrated arbitrarily close

to the line U = 0.

It seems imbued in the collective consciousness that a scalar field decomposes

into ingoing and outgoing plane waves near the horizon. This is certainly correct

in the “Eddington-like” coordinates (u, v, θ, χ). The inquisitive student might ask

whether it remains true in the Kruskal-like coordinates (U, V, θ, χ). No earlier

139Because we are doing classical field theory, the terminology here requires clarification. In
the Klein-Gordon equation (∇2− ℓ−2)H = 0, the “mass” parameter ℓ−1 should be thought of as
a correlation length. There is no quantization in the picture, and no intrinsic interpretation of
ℓ−1 as the mass of any particle.
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than last year did a notable article go out of its way to address this point in the

spherically symmetric case [171], so there is reason enough to fixate on it here.140

As always we will let the equations speak for themselves. We first state the

parallel and perpendicular box operators acting on a smooth field configuration

with weight (0,0) at U = 0 for arbitrary fixed nonzero V .

140The reader might also be interested in the relatively recent work by Castro, Lapan, Maloney,
and Rodriguez [172].
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5.8.2 Laplacian and spheroidal harmonics

The parallel box acting on a smooth field configuration H ∼ (0, 0) is141

□∥
∣∣
U =0

H =

[
(2α|R0+|2)2

|R+|2
c−1 ∂U∂V − 2r+

|R+|2

(
α +

a

|R0+|2
∂χ

)
V ∂V

]
H .

(5.240)

Note that there is a term proportional to V ∂V , which only disappears if we further

restrict to the bifurcation surface at U = V = 0. It remains present in the limit

a → 0.

141Establishing the correct functional form for the GHP-covariant derivatives provides a good
exercise in the compacted formalism: given ε and ε′ from Eq. (5.50), what are ε̂ and ε̂′? The
devoted GHP acolyte will recall that ε and ε′ transform as gauge fields, not as matter fields.
(We use this terminology to evoke a parallel that is meant to be taken literally, at least as far
as the mathematics are concerned.) In particular, for λ = λ∗ = U1/2, we have:

ε̂ = λλ∗(ε− λ−1Dλ) = −U(ε− (−U)−1/2D(−U)1/2) = −Uε− 1
2U

−1D̂U = 0 , (5.236)

and

ε̂′ = λ−1λ∗−1(ε′ − λD′λ−1) = −U−1
(
ε′ − 1

2D̂
′U
)
= −U−1

(
ε′ − α

|R0|2

2|R|2

)
. (5.237)

So indeed we were correct in setting þ̂ = D̂ way back in Sec. 5.2.14. Using the explicit functional
form for ε′ for the Kerr-Newman solution, which we reorganize in terms of α,

ε′ = ρ′ +
r − r+
2|R|2

+ α
|R0|2

2|R|2
, (5.238)

we find the hatted gauge field associated with the ingoing null trajectories:

ε̂′ = ρ̂′ − r − r+
2|R|2U

. (5.239)

Like everything else in the hatted basis, it is finite at U = 0, since r−r+
U

∣∣∣
U =0

= ∆
UV

V
r−r−

∣∣∣
U =0

=

− c V
2α|R0+|2 .
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The perpendicular box is:

□⊥|U =0 H =
1

|R+|2

[
L 2 + α2 a2 sin2 θ V ∂V (V ∂V ) + 2α a

|R+|2

|R0+|2
V ∂V ∂χ

]
H ,

(5.241)

where we have defined the angular operator

L 2 ≡ |R|2∇ 2
2d −

a2 sin(2θ)

|R|2
∂θ = ∂ 2

θ + cot θ ∂θ +
|R|4

|R0|4
1

sin2 θ
∂ 2
χ . (5.242)

The eigenfunctions of this operator can be written as Zℓm(θ) e
imχ, in which case

Zℓm(θ) are the oblate spheroidal harmonics. This merits some discussion, since the

traditional separation of variables for the wave equation in the Kerr background

[155,173] is performed in Boyer-Lindquist coordinates:

Hωℓm(t, r, θ, φ) = e−iωte imφRωℓm(r)Zℓm(θ) . (5.243)

The equation that Brill et al. [173] call the “flat-space angular spheroidal equation”

is (with the mass term set to zero)

 1

sin θ
∂θ(sin θ∂θ) +

(
a2ω2 cos2 θ − m2

sin2 θ

)Zℓm(θ) = −λℓmZℓm(θ) . (5.244)
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If we restrict the discussion to those modes for which

ω = mΩH (5.245)

then we are considering a dependence on t and φ only in the combination χ =

t− ΩHφ:

Hωℓm(t, r, θ, φ) = Hωℓm(r, θ, χ) = e imχ Rωℓm(r)Zℓm(θ) . (5.246)

In that case, we have:

a2ω2 cos2 θ − m2

sin2 θ
= − |R+|4

|R0+|4
m2

sin2 θ
−

2r2+ + a2

|R0+|4
a2m2 . (5.247)

The discrepancy between the quantity on the left and the coefficient of ∂2
χ in

Eq. (5.242) is just a constant. Therefore, Eq. (5.244) restricted to modes satisfying

Eq. (5.245) becomes

L 2Zℓm(θ) = −

(
λℓm −

2r2+ + a2

|R0+|4
a2m2

)
Zℓm(θ) ≡ −Λℓm Zℓm(θ) . (5.248)
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So the ordinary spheroidal harmonics Zℓm(θ) are also eigenfunctions of L 2. Note

that even though they depend only on θ, they are labeled by both ℓ and m.142

5.8.3 Purely outgoing field configurations

An ansatz of the form H(U, θ, χ) will satisfy ∂VH = 0 and hence □∥
∣∣
U =0

H =

0. But that means the Klein-Gordon equation in Eq. (5.235) will simply reduce

to

L 2
∣∣
U =0

H(U, θ, χ) = 0 . (5.250)

So a solution that depends only on U must also have no dependence on θ or χ.

It is of no practical consequence to us that the solution does not depend on the

azimuthal angle χ; but if we wish to localize the particle to a fixed longitude, then

the field configuration must include modes at all values of ℓ.143

An alternative way to express the same thing is to proceed systematically with

separation of variables. For simplicity, consider the Laplacian at the bifurcation

surface, and input the ansatz H(U, V, θ, χ) = X(U, V )Zℓm(θ) e
imχ. Then the

142In the static limit, we recover the usual spherical operator and its eigenvalues:

L 2
∣∣∣
a=0

=
1

sin θ
∂θ(sin θ ∂θ) +

1

sin2 θ
∂ 2
φ , Λℓm|a=0 = ℓ(ℓ+ 1) . (5.249)

143Assuming a normalization such that
∫ π

0
dθ sin θ Zℓm(θ)Zℓ′m′(θ)∗ = δℓℓ′δmm′ , the decompo-

sition 1
sin θ δ(θ) =

∑
ℓ,m Cℓm Zℓm(θ) implies Cℓm =

∫ π

0
dθ Zℓm(θ)∗ δ(θ) = Zℓm(0)∗, which are just

some ℓ- and m-dependent numbers.

201



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

function X(U, V ) would have to satisfy

(∂U∂V + µ2
ℓm)X(U, V ) = 0 , (5.251)

with µ2
ℓm ≡ Λℓm c (2α|R0+|2)−2. As we all learned in kindergarten, this equation

is only chiral when µ2
ℓm = 0, in which case X(U, V ) = XL(U) +XR(V ) for some

functions XL,R. But this happens only when ℓ = m = 0. Undoubtedly there exists

some grammatically correct sequence of words to rationalize this observation, but

we will not venture to ascertain it.

If we rewrite the Laplacian terms of ∂u and ∂v instead of ∂U and ∂V , then the

angular operators will be suppressed near U = 0, and the discussion will proceed

along the lines of that given by Kiem, Verlinde, and Verlinde for the spherically

symmetric case [124].

So if we wish to construct a wave packet whose energy-momentum distribution

is localized at the future horizon and at a fixed location on the squashed sphere,

then we must perform the mode decomposition in Eddington-like coordinates.

The following field configuration is fit for our purpose:

H(U, θ) = N1/2 e−
r2+

4σ2 cos2 θ e−
1

4σ2 (u−u0)2 cos(Pu) . (5.252)
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Here u0 is a constant that we will eventually take to ∞, and σ describes a width

that we will eventually take to 0. We insert the nonstandard factor 4σ2 instead

of 2σ2 because we want the square of H, not H itself, to become a delta function.

The normalization factor N1/2 is chosen in just the right way to leave behind an

energy-momentum P such that

TUU = P δ(U) δ2(x⃗⊥) , (5.253)

where x⃗⊥ = x⃗−x⃗E, and x⃗E points to an arbitrary point on the equator.144 Readers

content with this meager account of the notation should feel free to proceed, while

those looking for more details should work through Sec. 5.E.

5.8.4 Energy-momentum scalars

The trace-reversed energy-momentum tensor for a massless complex scalar

field H is:

Tµν ≡
(
Tµν − 1

2
gµνg

ρσTµν

)
= ∂µH∗ ∂νH + c.c. . (5.254)

144The equator is more temperate than the north pole.

203



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

The energy-momentum scalars [recall our definition in Eq. (5.106)] for this classical

matter field therefore take an especially simple form:

t00 = 8π|DH|2 , t01 = 8πRe(DH∗δH) , t02 = 8πRe(δH∗δH) ,

t22 = 8π|D′H|2 , t21 = 8πRe(D′H∗δ′H) , t20 = 8πRe(δ′H∗δ′H) ,

t10 = 8πRe(DH∗δ′H) , t12 = 8πRe(D′H∗δH) , t11 = 4πRe(DH∗D′H + δH∗δ′H) ,

tΠ = −π

3
gµνTµν = −2π

3
∇µH∗∇µH =

4π

3
Re(DH∗D′H− δH∗δH) . (5.255)

Just as the energy-momentum scalars for a U(1) gauge field can be expressed

as products of complex numbers called Maxwell scalars, the energy-momentum

scalars for a massless complex scalar field are expressed as products of what we

will call K lein-Gordon scalars145

sa ≡
√
2 eµ

a ∇µH =
√
2 (DH, D′H, δH, δ′H) (5.256)

and their complex conjugates.

We could consider these quantities to have definite GHP weights if we assign

the scalar field H the representation (0, 0) under the GHP group (since physical

145We employ the tried and true tactic in physics education of italicizing something to mask
its pointlessness.
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matter fields should not depend on the choice of tetrad), in which case all of the

NP derivatives in Eqs. (5.255) and (5.256) can be replaced with GHP derivatives.

We have treated the complex case for generality; now we will reduce the com-

plex field to a real field by setting

H = 1√
2
H . (5.257)

Let us calculate the Klein-Gordon scalars for the field configuration in Eq. (5.252).

To do that, we will rewrite the asymptotic tetrad146 of Eq. (5.13) in Eddington-like

coordinates (u, v, θ, χ):

D =
2|R0|2

∆
∂v +

a

∆

(
1− |R0|2

|R0+|2

)
∂χ , D′ =

∆

2|R|2

2|R0|2

∆
∂u +

a

∆

(
1− |R0|2

|R0+|2

)
∂χ

 ,

δ =
1

R
√
2

[
∂θ +

i

sin θ

(
1− aΩH sin2 θ

)
∂χ + ia sin θ (∂u + ∂v)

]
. (5.258)

Clearly DH = 0, while

D′H =
|R0|2

|R|2
∂uH ≈ −P

|R0|2

|R|2
N1/2 e−

r2+

4σ2 cos2 θe−
1

4σ2 (u−u0)2 sin(Pu) . (5.259)

146Hatting at this stage would be premature because the field configuration in Eq. (5.252) is
naturally expressed in terms of u, not U .
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The purpose of the wave packet construction is to localize the field in position

space (i.e., |u−u0|
σ

≪ 1), in which case it is delocalized in momentum space (i.e.,

σP

P
≪ 1 with σP ≡ σ−1). The approximation symbol in Eq. (5.259) denotes that

we have dropped a term proportional to u−u0

σ2P
, in line with this aim.

Meanwhile, we also have

δH =
1

R
√
2

[
r2+
4σ2

sin(2θ)H + ia sin θ
|R|2

|R0|2
D′H

]
≈ ia√

2

R∗

|R0|2
D′H . (5.260)

Here we have expanded around θ = π
2

(or, equivalently, defined ϵ ≡ θ − π
2

and

expanded around ϵ = 0) and assumed localization in longitude in the form |θ−π
2
|

σ/r+
≪

1.

At this stage the potentially nonzero energy-momentum scalars are

t22 = 4π (D′H)2, t02 = 4πRe[(δH)2], t21 = 4πRe(D′HδH) , t11 = −3tΠ = 2π |δH|2,

(5.261)

along with those related by conjugation.

5.8.5 The delta function limit

We fix the normalization factor by demanding Eq. (5.233). This condition is

in terms of the hatted tetrad. The relations between the hatted and unhatted
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versions of the pertinent energy-momentum scalars are:

t̂22 = U−2t22 , t̂02 = t02 , t̂21 = −U−1t21 , t̂11 = t11 , t̂Π = tΠ . (5.262)

Suppose we calculate t̂22 and get a finite nonzero result. (Spoiler alert: we will.)

Then Eq. (5.259) will imply that all of the energy-momentum scalars in Eq. (5.261)

are proportional to each other. Because this holds in the unhatted basis, the GHP

scaling law in Eq. (5.262) implies

t̂21 = −U−1t21 ∝ −U−1t22 = −U+1 t̂22 , t̂02 = t02 ∝ t22 = U+2 t̂22 , (5.263)

and similarly t̂11 = 3t̂Π ∝ U2 t22. Since we require t̂22 = ξ δ(U) δ2(x⃗⊥), we have

t̂21 ∝ U δ(U) δ2(x⃗⊥) , t̂02 ∝ U2 δ(U) δ2(x⃗⊥) , (5.264)

and t̂11 = −3t̂Π ∝ U2 δ(U) δ2(x⃗⊥). Acting on smooth test functions F(U), these

are all zero. That is good, because we wanted to satisfy Eq. (5.221).

Having breathed that sigh of relief, we return to Eq. (5.259) and square it,

applying judiciously the machinations of Sec. 5.E.5 to obtain the result:

t̂22 ≈ NP 2

(
r2+ + a2

r2+

)3

(2π)3σ2αr+|U0|−1 δ(U − U0) δ
2(x⃗⊥) . (5.265)
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Setting this equal to ξ δ(U − U0) δ
2(x⃗⊥) finally fixes the normalization factor of

the field configuration in Eq. (5.252):

N1/2 =
1(

2π
r2++a2

r2+

)3/2
Pσ

(
|U0|
αr+

ξ

)1/2

. (5.266)

Readers may well wonder whether there is any insight to be gleaned from

Eq. (5.266) or the steps that led to it. If so they are in good company. Notwith-

standing the relative dryness of this part of the calculation, both sides of Einstein’s

equation have now been given the attention they deserve, and our journey is com-

plete.

5.9 Discussion

Inspired by ’t Hooft’s S-matrix approach to quantum gravity and Kitaev’s re-

cent revival thereof, we have generalized the Dray-’t Hooft gravitational shockwave

to the Kerr-Newman black hole using the method of spin coefficients.147

147We hope we have convinced the reader that the spin coefficient formalism is useful for some-
thing and is worth studying for its own sake. By and large, we encourage the interested reader
to spend at least a solid month diving into Spinors and Space-time. (One of us reminisces about
the pastoral serenity of the Netherlands, and the other renounces the cantankerous metropolis
of Manhattan.) The only major point of contention between us pertains to the abstract index
notation. We were amused to learn that there is a subject in algebraic geometry called “abstract
nonsense” – one of us considers this sufficient precedent to refer to the abstract index notation
as “concrete nonsense.”
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In doing so we have stressed the solution’s generalized Kerr-Schild form [137]

and showed that when the null tetrad for the unshifted geometry is aligned with

shear-free geodesics, and when the unshifted weight-(1, 1) Ricci scalar is zero,148

the shifted curvature scalars depend only linearly on the perturbation. We have

also crusaded for the spin coefficients τ and τ ′ and interpreted the shockwave

solution according to Szekeres’s gravitational compass [160].

We have not attempted to solve the differential equation Df ∝ δ2(x⃗⊥). The

operator D is analytic near a = 0, so we should be able to perturb around the

integral formula of Dray and ’t Hooft [29]. Along those lines, it may be of some

interest to derive an integral formula in terms of spheroidal harmonics, but we

would probably have to resort to numerics for anything beyond a rudimentary

understanding.149

An obvious direction for future research is to perturb other backgrounds by

shifting the tetrad. For example, Taub showed that the Kerr-Vaidya metric is of

the generalized Kerr-Schild form [137]. Our introduction suggests that we should

generalize to the Kerr-AdS space-time, since that might lead to precise statements

about chaos in a putative dual field theory.150

148If we had shifted l instead of l′, then the required curvature condition would be that the
weight-(−1,−1) Ricci scalar should be zero.
149Dray and ’t Hooft themselves “have not attempted to perform the integration explicitly” for

their result [29]. Sfetsos, for his part, did elaborate somewhat on his solutions in Appendix D
of his paper [35].
150We thank Nick Hunter-Jones for this motivational speech. The voracious reader committed

to preempting our next move could compute the out-of-time-ordered correlators and thereby
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We will conclude with a pedantic remark about the effective action for the

horizon field f(θ, χ), which is the classical field variable in our solution.

In general, when we have a classical equation of motion, it is natural to ask

what variational principle could lead to it. Since the Ricci tensor is linear in

f(θ, χ), our equation of motion is linear in the field, so our experience in field

theory might lead us to expect an action quadratic in the field.

But this is not so: the Lagrangian of general relativity is proportional to the

Einstein-Hilbert curvature Π, which we have already seen is l inear in f . All

terms of O(f 2) and higher vanish identically, and, as required by the background

Einstein equation, the integral of the O(f) term is zero, leaving no effective action

at all for the horizon field.

What to make of this? Procedurally, there is another way to vary an action to

get an equation of motion: vary with respect to a different field. If the “equation

of motion” is actually a constraint equation, then it should be implemented in the

calculus of variations with a Lagrange multiplier.

Consider a path integral over all classical fields f(θ, χ) that satisfy Df = 0:151

Z ≡
∫

Df δ (Df) =

∫
Df Df ′ e i

∫
d2x f ′Df . (5.267)

reevaluate the Kerr/CFT conjecture beyond eigenstate thermalization. Lord knows anyone who
actually worked through our paper deserves some recompense.
151For the sake of argument we are only considering the gravitational part of the action. More

generally there should be an f -independent function on the right-hand side of the constraint.
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We have used the Fourier representation of the delta function and thereby intro-

duced152 the classical field variable f ′, which serves as a Lagrange multiplier for

the constraint Df = 0.

The argument of the exponential in Eq. (5.267) is exactly ’t Hooft’s effective

action [30]. This straightforward interpretation of the constraint equation for

the horizon field provides a path-integral sense in which the two shockwaves are

canonically conjugate variables.
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5.A Signature change

In this section, we systematically track down the minus signs that arise when

changing the metric signature from the “mostly minus” convention in Chandrasekhar

[142] and Penrose and Rindler [12] to the “mostly plus” convention in Zee [140].153

In this section, barred quantities will denote those in the old signature (+ −

−−), while unbarred quantities will denote those in the new signature (−+++).154

5.A.1 Basic assumptions

We should first state outright that we will flip the sign of the space-time

metric and the metric in the tangent space. Consequently, our first fundamental

assumption of signature change is:

gµν ≡ ζ ḡµν , ηab ≡ ζ η̄ab , ζ ≡ −1 . (5.268)

The unbarred frame fields eaµ are defined by gµν = ηab e
a
µe

b
ν , and the barred frame

fields ēaµ are defined by ḡµν = η̄ab ē
a
µē

b
ν . The inverse statements are ηab = gµνe

µ
ae

ν
b

and η̄ab = ḡµν ē
µ
a ē

ν
b . So, defining the quantities eaµ ≡ ηab e

b
µ and ēaµ ≡ η̄ab ē

b
µ, we

153One of us is in fact credited for effectuating that sign change, so the duty to write this
section falls squarely on our shoulders.
154We work with an off-diagonal metric, so the scrupulous way to express the signature is: “Let

{λα}4α=1 be the eigenvalues of ηab. Then the old signature is the convention
∑4

α=1 λα = −2,
while our signature is the convention

∑4
α=1 λα = +2.”
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obtain from Eq. (5.268) the requirements:

eaµeaν = ζ ēaµēaν , eµaebµ = ζ ēµa ēbµ . (5.269)

We now have a choice as to which quantities will flip sign. In comparison to

the older references, our null vectors (lµ, l′µ,mµ,m′µ) will not receive a sign flip,

in which case our null f orms (lµ, l′µ,mµ,m
′
µ) ≡ (gµν l

ν , gµν l
′ν , gµν m

ν , gµν m
′ν) will.

It requires attention to infer from this the appropriate index structure, because

the basis is null instead of orthonormal. The correct translation will form our

second fundamental assumption of signature change:

eµa ≡ ēµa , eaµ ≡ ēaµ . (5.270)

That is, we ordain that neither eµa nor eaµ flips sign. What does flip sign is the

quantity with both indices lowered:

eaµ = ζ ēaµ . (5.271)

5.A.2 Spin coefficients flip sign

If we insert the above definitions into the torsion-free condition in Eq. (5.35),

we will find that the spin connection w ith one index up and one index down does
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not flip sign:

ωa
b = ω̄a

b . (5.272)

This means that ωab does flip sign. Unpacking the hidden 1-form index according

to our conventions gives ωab = (ωµ)ab dx
µ. Since dxµ = dx̄µ (no lowering or raising

of indices is involved), we conclude that (ωµ)ab = ζ (ω̄µ)ab. Therefore, recalling

the definition γabc ≡ (ωµ)ab e
µ
c from Eq. (5.32), we find that the spin coefficients

flip sign:

γabc = ζ γ̄abc . (5.273)

Meanwhile, because of Eq. (5.271), the null Cartan equations look the same in

either signature. So Eq. (5.49) looks exactly the same as Eq. (4.13.44) in Spinors

and Space-time [12].

5.A.3 Curvature scalars do not flip sign

Next we engage with the SO(3, 1) field strength, as defined by Eq. (5.89):

Ωa
b = dωa

b + ωa
c ∧ ωc

b. Since ωa
b does not flip sign, neither does Ωa

b:

Ωa
b = Ω̄a

b . (5.274)

This means that the quantity Ωab does flip sign. As an unavoidable conse-

quence, the Riemann tensor in the tangent space with all indices down, Rabcd ≡
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(Ωµν)ab e
µ
c e

ν
d , flips sign:

Rabcd = ζ R̄abcd . (5.275)

It is misleading to simply assert that the Newman-Penrose equations remain fixed

upon changing the metric signature, as if it were to follow like night the day.

Besides the sign from Eq. (5.275), there is also an overall sign convention in

the definition of the curvature scalars, irrespective of the choice of metric signa-

ture. For example, Penrose and Rindler allegedly define Ψ0 ≡ +C1313 [see their

Eq. (4.11.9)] while Chandrasekhar defines Ψ0 ≡ −C1313 [see his Eq. (294) on p. 43],

even though both books use the (+−−−) signature and ostensibly proclaim iden-

tical Newman-Penrose equations. We will return to this precipice of insanity in a

moment.

From the quantity Rabcd, the Weyl tensor in the tangent space with all indices

down is defined as:

Cabcd ≡ Rabcd +
1
2
(ηadRbc + ηbc Rad − ηacRbd − ηbdRac)+

1
6
(ηac ηbd − ηad ηbc) η

efRef .

(5.276)

This quantity flips sign under a change of signature:

Cabcd = ζ C̄abcd . (5.277)
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Since this would be obnoxious to track, we might be tempted to insert an extra

sign in the definition of the Weyl scalars to obviate it. But we will not. The reason

is that, as we forewarned a moment ago, there is an additional sign that comes up;

apparently our conventions up to this point result in an automatic cancellation of

this additional sign with respect to the GHP equations in the original paper and

in Spinors and Space-time. [See Eq. (5.282) for our definitions.]

Meanwhile, since Ra
bcd = ηaeRebcd and Rabcd = ζ R̄abcd, the Ricci tensor in the

tangent space does not flip sign:

Rab ≡ Rc
acb = R̄c

acb ≡ R̄ab . (5.278)

There is yet another overall sign convention, this one pertaining to the Ricci

scalars; and this time, Penrose and Rindler [see their Eq. (4.11.10)] and Chan-

drasekhar [see his Eq. (300) on p. 44] use the same convention. With a sigh heard

’round the world, we decree that this mutually consistent sign is the less conve-

nient choice for our rendition of the formalism, and we hereby excommunicate it

from the definition of the Ricci scalars [see Eq. (5.283)].

The Einstein-Hilbert curvature contains one additional sign relative to the

components in Eq. (5.278):

ηabRab = ζ η̄abR̄ab . (5.279)
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At this point we have a choice: we could accept an extra sign flip, but only at

the cost of flipping the sign of Π in all of the Newman-Penrose equations. One of

the authors insisted on maintaining the sanctity of these equations, and the other

author shrugged in resigned indifference. We therefore define

Π ≡ − 1

24
ηabRab = −ζ

1

24
η̄abR̄ab = +Π̄ . (5.280)

Like night the day.

5.A.4 Extra sign in GHP derivatives

A final important potential source of sign confusion is in the GHP-covariant

derivatives defined in Eq. (5.43). While the spin coefficients flip sign under a

change of metric signature, the NP derivatives do not. This means there must be

an extra sign in the definition of the GHP derivatives, so that the sign flips from

the spin coefficients cancel out.
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To track this down, consider the definition of the GHP derivatives in the

(+−−−) signature:155

þ̄ ≡ D̄ − 2h ε̄− 2h̄ ε̄∗ , ð̄ ≡ δ̄ − 2h β̄ + 2h̄ β̄′∗ ,

þ̄′ ≡ D̄′ + 2h ε̄′ + 2h̄ ε̄′∗ , ð̄′ ≡ δ̄′ + 2h β̄′ − 2h̄ β̄∗ . (5.281)

If we follow the steps of the calculation in Eq. (5.40) (which is in a footnote, in

case the reader missed it the first time), we see that a certain crucial sign emerges

as a result of whether lµl′µ = −mµm′
µ is +1 or −1. It is this sign that determines

the extra signs in Eq. (5.281) relative to those in Eq. (5.43).

5.B Curvature scalars in the compacted formalism

In this section, we collect and discuss the explicit formulas for the curvature

scalars. While this is standard material on its face, we will take some care to

emphasize our preferred formatting of “curvature scalar on the left, derivatives and

products of spin coefficients on the right.” This rearranging of what are typically

called the “Newman-Penrose equations” is just, for the most part, “solving” the

Newman-Penrose equations for each curvature scalar,156 although we have not

155We remind the reader that the bar on h̄ is part of the name of the weight and therefore has
nothing to do with the other barred notation of this section.
156In this form the NP equations seem to be the same as the null Gauss-Codazzi equations of

Vega, Poisson, and Massey [174].
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seen our method for computing the spacelike and timelike curvatures in any of

the standard references.

We do this to emphasize that the spin coefficient formalism is just a convenient

way of organizing differential geometry. The Newman-Penrose equations should

be read as definitions of the Weyl scalars and of the Ricci scalars, consistent with

the philosophy of the spin coefficient formalism that once we specify a tetrad we

should never again see a tensor index.

Properly interpreted, the Newman-Penrose equations in no way involve any

field equations. They are purely geometrical definitions of the curvature, equiva-

lent to the individual components of Cartan’s second structure equation; they are

not equations of motion to be solved.157

The nongravitational fields enter only when we either write down the most

general solution to the gravitational Bianchi identities (which correspond to a

covariant conservation law for the most general two-index symmetric tensor), or

when we explicitly introduce other fields into the action and define the energy-

157To beat a dead horse with another dead horse, let us elaborate further. The NP equations
describe only “free” gravity (i.e., the Weyl tensor) and the left-hand side of the trace-reversed
Einstein equation (i.e., the Ricci tensor), not the energy-momentum distribution on the right-
hand side. While the Weyl tensor and the Ricci tensor describe locally independent degrees of
freedom, they are related globally by the gravitational analog of Gauss’s law (i.e., the Bianchi
identities). This relation constitutes an entire discipline by itself, so we will simply defer to two
authoritative references: the introduction to Szekeres’s interpretation of the Weyl scalars [160],
and the discussion surrounding Eq. (4.10.12) in Spinors and Space-time [12], which explains that
“the derivative of Tab may be regarded as a source for the gravitational spinor field ΨABCD.”
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momentum tensor as the variational derivative of their action with respect to the

metric.

Without further ado, we begin with the obligatory formulas that are regurgi-

tated in every textbook on the subject, starting with the Weyl scalars and their

weights:

Ψ0 ≡ C1313 ∼ (2, 0) , Ψ1 ≡ C1312 ∼ (1, 0) , Ψ2 ≡ C1342 ∼ (0, 0) ,

Ψ3 ≡ Ψ′
1 = C2421 ∼ (−1, 0) , Ψ4 ≡ Ψ′

0 = C2424 ∼ (−2, 0) . (5.282)

These five complex numbers account for the 10 real degrees of freedom in the Weyl

tensor.
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The Ricci scalars are defined as158

Φ00 ≡ 1
2
R11 ∼ (1, 1) , Φ01 ≡ 1

2
R13 ∼ (1, 0) , Φ02 ≡ 1

2
R33 ∼ (1,−1) ,

Φ22 ≡ Φ′
00 =

1
2
R22 ∼ (−1,−1) , Φ21 ≡ Φ′

01 =
1
2
R24 ∼ (−1, 0) ,

Φ20 ≡ Φ′
02 =

1
2
R44 = Φ∗

02 ∼ (−1, 1) , Φ10 ≡ Φ∗
01 =

1
2
R14 ∼ (0, 1) ,

Φ12 ≡ Φ∗
21 =

1
2
R23 ∼ (0,−1) , Φ11 ≡ 1

4
(R12 +R34) ∼ (0, 0) . (5.283)

In total, the collection of fields Φαβ with α, β = 0, 1, 2 can be considered a Hermi-

tian 3-by-3 matrix, which accounts for 9 of the real degrees of freedom in the Ricci

tensor. The last degree of freedom is defined by the weight (0, 0) combination of

158The following unrepentant diatribe should be attributed solely to one of the authors and for
a personal touch will eschew the royal “we.” The author Y. B. begins: While I reluctantly accept
most of the Newman-Penrose hieroglyphics, I must disavow the notation for the Ricci scalars.
A far better notation would be, for example, to label these components by their weights: say
Φ(h,h̄) where h and h̄ take the appropriate values +1, 0,−1. Or just work with Rab = eµae

ν
bRµν ,

untainted by fanciful obscurity. A novel and foreign notation should only be introduced when it
provides useful information or affords some efficient means of calculation. The Newman-Penrose
notation for the Ricci scalars does neither. (Even if I were to introduce spinors the notation
would be uncalled for: labeling the Φαβ by their dyad components, as is also standard, poses
no threat to pedagogical decency.) An apologist might defend this atrocity on the grounds that
Einstein’s equation with an electromagnetic field takes the form Φαβ = ϕαϕ

∗
β . Well done: a bad

notation on one side of an equation can match an equally bad notation on the other side. Stop
the presses: the entire discipline of differential geometry should be tailored exclusively to the
special case of a U(1) gauge field. Never mind that a Maxwell field is but one type of classical
field that could couple to gravity. Never mind that this entire paper is about the gravitational
backreaction from a massless scalar. This flimsy justification might satisfy a radio astronomer,
but it holds no sway over a quantum field theorist. Furthermore, labeling the components by
their weights would achieve the same thing. But instead I am told to remember that the Maxwell
scalars are labeled by 1 − h ∈ {0, 1, 2} instead of h ∈ {+1, 0,−1}, and that the Ricci scalars
follow suit. There is no good reason to compel a bright eyed, bushy tailed student to decipher
such arcane scripture. Since my primary goal in this paper is to explain a new result to existing
practitioners in the field, I have not seriously attempted to overhaul a convention that has been
standard since before the passage of the Civil Rights Act. Instead, I resign myself to leaving
this footnote for the consideration of future generations who might be more willing to deal with
it.
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tetrad vectors orthogonal to the combination that defines Φ11. We refer to this

remaining degree of freedom as the Einstein-Hilbert curvature:

Π ≡ 1
12
(R12 −R34) = − 1

24
Rµν g

µν . (5.284)

As emphasized in the main text, we prefer to privilege the 1-forms over the vectors

and therefore define everything in the Cartan formalism. To continue this line of

reasoning, we recall the definition of the curvature 2-form from Eq. (5.89) as the

field strength of the SO(3, 1) gauge group:

(Ωµν)
a
b = ∂µ(ων)

a
b + (ωµ)

a
c (ων)

c
b − (µ ↔ ν) . (5.285)

Then we lower the index a and contract the base-space 2-form indices with the

vectors of the null tetrad:

Rabcd ≡ (Ωµν)ab e
µ
c e

ν
d . (5.286)

The goal now is to write this in terms of the γabc that we defined in Eq. (5.32).

Because we believe, heaven forbid, that it should be possible for a reader to

actually learn something from a research paper, we will show this explicitly.
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First, since γabc ≡ (ωµ)ab e
µ
c , we have (ωµ)ab = γabc e

c
µ. Therefore:

∂µ(ων)ab = ∂µ(γabc e
c
ν ) = ∂µγabc e

c
ν + γabc ∂µe

c
ν . (5.287)

Contracting with eµ
c e

ν
d and relabeling some indices gives:

∂µ(ων)ab e
µ
c e

ν
d = eµ

c ∂µγabe δ
e
d + γabe e

µ
c e ν

d ∂µe
e
ν = eµ

c ∇µγabd + γabe e
µ
c e

ν
d ∂µe

e
ν .

(5.288)

That last equality is one reason we show each step: since γabc carries no tensor

indices, we can replace the partial derivative acting on it by a covariant derivative.

This is what will give us the right to claim that we get Newman-Penrose directional

derivatives in the resulting expressions.

Next, recalling the definition λabc ≡ −eµ
a e

ν
c ∂µebν − (µ ↔ ν) = γabc − γcba from

an earlier footnote [see Eq. (5.31)], and defining eµ
a ∇µ ≡ ∇a, we find:159

[
∂µ(ων)ab − (µ ↔ ν)

]
eµ
c e

ν
d = ∇cγabd −∇dγabc − γabe(γ

e
c d − γ e

d c) . (5.289)

Notice that this expression is manifestly odd under a ↔ b (since γabc = −γbac),

and that it is manifestly odd under c ↔ d (because it was defined from a 2-form

in the base space). Further note, however, that it is not manifestly invariant

159Notice that some of the terms that are O(γ2) come from the dω part of Ωa
b. So as far as

the curvature is concerned, it is not a completely trivial matter to go from the spin connection
to the spin coefficients.
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under the exchange ab ↔ cd. It may or may not be secretly invariant under that

exchange after the use of some identities (it is), but the formula as written is not

manifestly invariant under that exchange.

Having said that, let us return to Eqs. (5.285) and (5.286) and transcribe the

ω2 terms into spin coefficient notation:

[
(ωµ)ae (ων)

e
b − (µ ↔ ν)

]
eµ
c e

ν
d = γaec γ

e
bd − γaed γ

e
bc . (5.290)

Combining the results of Eqs. (5.289) and (5.290), we find the Riemann tensor in

the tangent space in terms of the spin coefficients:

Rabcd = Xabcd + Yabcd + Zabcd , (5.291)

where:

Xabcd ≡ ∇cγabd −∇dγabc , Yabcd ≡ −γabe(γ
e

c d − γ e
d c) , Zabcd ≡ γaec γ

e
bd − γaed γ

e
bc .

(5.292)

Because of the 2-form origin of the indices c and d, the quantity Zabcd is

manifestly odd under c ↔ d. However, unlike Xabcd and Yabcd, it is not so obvious
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from Eq. (5.292) as written whether Zabcd = −Zbacd. Let us check:

Zbacd = γbec γ
e
ad − γbed γ

e
ac = −γebc γ

e
ad + γebd γ

e
ac

= −γe
bc γead + γe

bd γeac = +γe
bc γaed − γe

bd γaec

= −γe
bd γaec + γe

bc γaed = −(γe
bd γaec − γe

bc γaed) = −Zabcd . (5.293)

Since all we had to do was relabel some indices and use the known antisymmetry

property γabc = −γbac, we are inclined to conclude that the formula for Zabcd as

written is fairly construed as being manifestly odd under a ↔ b. But the real test

is whether a straightforward transcription of Zabcd and Zbacd into Newman-Penrose

notation will result in the same formulas up to an overall sign. It turns out that it

will, so we will in fact consider Rabcd as written to be manifestly odd under a ↔ b

and manifestly odd under c ↔ d.

The curvature in the form of Eq. (5.292) is the geometrical quantity from

which the Newman-Penrose equations are derived: the left-hand side is a curva-

ture quantity, and the right-hand side comprises derivatives and products of spin

coefficients. The resulting formulas will not be manifestly invariant under the in-

terchange symmetry ab ↔ cd, and this is the origin of many seemingly mysterious

identities in the spin coefficient formalism.
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5.B.1 Weyl scalars with nonzero weight

We will derive the expression for Ψ0 as an example, and then we will simply

state the result for Ψ1. (Then Ψ3 ≡ Ψ′
1 and Ψ4 ≡ Ψ′

0 will be defined by priming.)

From Eq. (5.282), we are instructed to focus on the component C1313. From

the relation between Cabcd and Rabcd [recall Eq. (5.276)], and from the purely

off-diagonal nature of the tangent space metric [recall Eq. (5.3)], we conclude

that we only have to calculate R1313. Recalling the three sets of terms defined in

Eq. (5.292), we begin:

X1313 = ∇1γ133 −∇3γ131 = −∇1γ313 +∇3γ311 = −Dσ + δκ . (5.294)

Since everything must collect itself into GHP-covariant combinations, we should

expect terms like εσ and βκ to show up. Indeed they will:

Y1313 = −γ13e(γ
e
1 3 − γ e

3 1)

= +γ131(γ123 − γ321) + γ132(γ113 − γ311)− γ133(γ143 − γ341)− γ134(γ133 − γ331)

= −γ311(−γ213 − γ∗
421)− γ312(0− γ311) + γ313(−γ413 − γ341) + γ314(−γ313 − 0)

= −κ[−(β − β′∗)− τ ′∗]− τ(−κ) + σ[−ρ∗ − (ε− ε∗)] + ρ(−σ)

= (β − β′∗)κ+ τ ′∗κ+ τκ− ρ∗σ − (ε− ε∗)σ − ρ σ . (5.295)

226



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

But there must be more terms, because κ ∼ (3
2
, 1
2
) and σ ∼ (3

2
,−1

2
), and therefore

the number of terms involving β′∗ and ε∗ has to differ from the number of terms

involving β and ε. Our expectation is vindicated by the final set of terms:

Z1313 = γ1e1 γ
e
33 − γ1e3 γ

e
31 = −γ111γ233 − γ121γ133 + γ131γ433 + γ141γ333

+ γ113γ231 + γ123γ131 − γ133γ431 − γ143γ331

= 0− (−1)2γ211γ313 + (−1)2γ311γ343 + 0

+ 0 + (−1)2γ213γ311 − (−1)2γ313γ341 − 0

= −(ε+ ε∗)σ + κ(β + β′∗) + (β − β′∗)κ− σ(ε− ε∗)

= −2εσ + 2βκ . (5.296)

The total tally in Y1313 +Z1313 provides (−3ε+ ε∗)σ and (3β − β′∗)κ. Meanwhile,

recalling þ ≡ D + 2hε+ 2h̄ε∗ and ð ≡ δ + 2hβ − 2h̄β′∗, we have

þσ = (D + 3ε− ε∗)σ , ðκ = (δ + 3β − β′∗)κ , (5.297)
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so indeed the result obediently collects itself into a GHP-covariant form. Packag-

ing the result into the sum C1313 = R1313 = X1313 + Y1313 + Z1313, we find:

Ψ0 ≡ C1313 = −
[
þ + (ρ+ ρ∗)

]
σ +

[
ð + (τ + τ ′∗)

]
κ. (5.298)

To compare this explicitly with Eq. (2.23) in the original GHP paper [139] or with

Eq. (4.12.32)(b) in Spinors and Space-time [12], let us relate it to its “barred”

version in the opposite metric signature according to the rules in Sec. 5.A:

Ψ0 = +þ̄σ̄ − (ρ̄+ ρ̄∗)σ̄ − ð̄κ̄+ (τ̄ + τ̄ ′∗)κ̄ ≡ Ψ̄0 . (5.299)

The final equality is written as a definition, because we define Ψ̄0 by taking Penrose

and Rindler’s Eq. (4.12.32)(b) as written and moving all the products of spin

coefficients to the same side as the derivatives of spin coefficients. So our Weyl

scalars will be numerically identical to those in Spinors and Space-time, despite

our use of the opposite metric signature.

Having toiled through this dreary but essential derivation of Ψ0, we will content

ourselves with just the statement of Ψ1:

Ψ1 =
1
2

{
ζ
[
þτ − þ′κ− ðρ+ ð′σ

]
− (τ−τ ′∗)ρ− (τ ∗−τ ′)σ + (ρ−ρ∗)τ − (ρ′−ρ′∗)κ

}
.

(5.300)

228



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

To use our conventions, plug in ζ = −1. To use Penrose and Rindler’s conventions,

plug in ζ = +1.160

As a final remark, let us recall that the Weyl scalars as defined have weights

(h, 0) with h = +2,+1, 0,−1,−2, for Ψ0,Ψ1,Ψ2,Ψ3,Ψ4, respectively. (We will

postpone discussion of Ψ2 until after studying the Ricci scalars of nonzero weight.)

The Weyl scalars with weights of the form (0, h̄) are defined by complex conjuga-

tion and are not traditionally given independent names.

5.B.2 Ricci scalars with nonzero weight

Since we encountered a litany of irritating signs in the derivation of Ψ0, we

feel obliged to repeat the process for at least one Ricci scalar.

The most important Ricci scalar for our shockwave solution is Φ22 ≡ Φ′
00, which

we define from Φ00 by priming. For this reason, we will derive the expression for

Φ00 in GHP notation explicitly. We begin with

R11 ≡ Ra
1a1 = R3

131 +R4
141 = R4131 +R3141 . (5.301)

160Our use of ζ in Eq. (5.300) differs from our use of ζ in Sec. 5.A. There are only so many
symbols.
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Since complex conjugation exchanges the labels 3 ↔ 4 and leaves the labels 1 and

2 fixed, we have R4131 = R∗
3141 and therefore

Φ00 ≡ 1
2
R11 = Re(R3141) . (5.302)

Returning once more to Eq. (5.292), we compute the three sets of terms that

compose R3141. The first of these is:

X3141 = ∇4γ311 −∇1γ314 = δ′κ−Dρ . (5.303)

So far so good. The next is:

Y3141 = −γ31e(γ
e

4 1 − γ e
1 4)

= +γ311(γ421 − γ124) + γ312(γ411 − γ114)− γ313(γ441 − γ144)− γ314(γ431 − γ134)

= +γ311(γ421 + γ214) + γ312(γ
∗
311 − 0)− γ313(0 + γ414)− γ314(−γ341 + γ314)

= κ[τ ′ + (β∗ − β′)] + τκ∗ − σσ∗ − ρ[−(ε− ε∗) + ρ]

= τ ′κ+ τκ∗ + (β∗ − β′)κ− |σ|2 − ρ2 + (ε− ε∗)ρ . (5.304)
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Once again, this looks promising, but we know there will be more terms because,

for example, ρ ∼ (1
2
, 1
2
) not (−1

2
,+1

2
). Proceeding to the last set, we find:

Z3141 = γ3e4γ
e
11 − γ3e1γ

e
14

= −γ314γ211 − γ324γ111 + γ334γ411 + γ344γ311

+ γ311γ214 + γ321γ114 − γ331γ414 − γ341γ314

= −γ314γ211 − 0 + 0− γ434γ311

+ γ311γ214 + 0− 0− γ341γ314

= −ρ(ε+ ε∗)− (β∗ + β′)κ+ κ(β∗ − β′)− (ε− ε∗)ρ

= −2ερ− 2β′κ . (5.305)

The sum Y3141 + Z3141 therefore bequeaths unto us the combination −(ε+ ε∗)ρ+

(−3β′ + β∗)κ, which is exactly the inheritance we deserve as scholars of the GHP

formalism. Therefore:

R3141 = −þρ− ρ2 − |σ|2 + ð′κ+ τ ′κ+ τ κ∗ . (5.306)
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While the straightforward definition of the tangent space Ricci tensor results in

R11 = 2Re(R3141), it turns out that R3141 is actually real all by itself.161 Therefore,

we have the following formula for the weight (1, 1) Ricci scalar:

Φ00 = −þρ− ρ2 − |σ|2 + ð′κ+ τ ′κ+ τ κ∗ . (5.307)

To compare this with the analogous formula as presented by Penrose and

Rindler, we again apply our rules for changing signature:

Φ00 = +þ̄ρ̄− ρ̄2 − |σ̄|2 − ð̄′κ̄+ τ̄ ′κ̄+ τ̄ κ̄∗ ≡ Φ̄00 . (5.308)

To understand this last definition [which becomes identical to Eq. (4.12.32)(a) in

Spinors and Space-time upon moving the products of spin coefficients to the same

side as the derivatives of spin coefficients], we remind the reader of our discus-

sion immediately after Eq. (5.278). Thus, our Ricci scalars are also numerically

identical to those of Penrose and Rindler.

The Sachs conjugate of Φ00 is the weight (1,−1) Ricci scalar:

Φ02 = −ðτ + þ′σ + ρ′σ + σ′∗ρ− τ 2 − κκ′∗ . (5.309)

161This is an example of the kind of mysterious relation we alluded to earlier, which results
from a lack of manifest invariance under exchanging the first and second pairs of indices in the
symbol Rabcd.
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As we mentioned in the main text, the condition ðτ = −τ 2 when Φ02 = 0 is

the timelike analog of the condition þρ = −ρ2 when Φ00 = 0. (In both cases we

assumed κ = κ′ = σ = σ′ = 0.)

Next, we have the weight (1, 0) Ricci scalar:

Φ01 =
1
2

{
−
(
þτ − þ′κ− ðρ− ð′σ

)
− (τ−τ ′∗)ρ− (τ ∗−τ ′)σ − (ρ−ρ∗)τ + (ρ′−ρ′∗)κ

}
.

(5.310)

We have nothing enlightening to say about this quantity. One observation is that

when κ = σ = 0 it becomes Φ01 = 1
2

[
−(þτ−ðρ)− (τ−τ ′∗)ρ− (ρ−ρ∗)τ

]
, which

exhibits front and center a dependence on both the twist and its Sachs conjugate.

The remaining Ricci scalars of nonzero weight can be defined by priming and

conjugating the definitions already listed: Φ22 = Φ′
00, Φ21 = Φ′

01, Φ10 = Φ∗
01,

Φ12 = Φ∗
21, and Φ20 = Φ∗

02.

5.B.3 Spacelike and timelike curvatures

In Eq. (5.109) we defined the spacelike curvature K and the timelike curvature

Ks. They appear on the right-hand side of two of the commutators of GHP
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derivatives:

[ð, ð′] = −(ρ−ρ∗)þ′ + (ρ′−ρ′∗)þ − 2hK + 2h̄K∗ , (5.311)

[þ, þ′] = −(τ−τ ′∗)ð′ − (τ ∗−τ ′)ð + 2hKs + 2h̄K∗
s . (5.312)

As a practical matter, we can use these equations to solve for these complex

curvatures by acting on a test function ξh with weights (h, 0). When acting on

such a test function, we have:

K ξh = − 1

2h

(
[ð, ð′] + (ρ−ρ∗)þ′ − (ρ′−ρ′∗)þ

)
ξh ,

Ks ξh =
1

2h

(
[þ, þ′] + (τ−τ ′∗)ð′ + (τ ∗−τ ′)ð

)
ξh . (5.313)

This is how we actually calculate these curvatures in Mathematica, and how we

calculate their shifted versions in Eqs. (5.175) and (5.176). In principle we could

go further and simply set h = 1, but leaving h arbitrary provides a good check on

the algebra since it must cancel out for the formalism to be self-consistent.

For the convenience of the reader, we also write down the following “mixed”

commutator of GHP derivatives:

[þ, ð] = −
(
ρ∗ð + σð′ − τ ′∗þ − κþ′)−2h (ρ′κ−τ ′σ+Ψ1)−2h̄ (σ′∗κ∗−ρ∗τ ′∗+Φ01) .

(5.314)
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The commutator [þ′, ð′] can be defined from Eq. (5.314) by priming (recall that

priming flips the signs of the weights):

[þ′, ð′] = −
(
ρ′∗ð′ + σ′ð − τ ∗þ′ − κ′þ

)
+2h (ρκ′−τσ′+Ψ3)+2h̄ (σ∗κ′∗−ρ′∗τ ∗+Φ21) .

(5.315)

Since þ and þ′ are real while ð′ = ð∗, the commutators [þ, ð′] and [þ′, ð] can be

obtained from Eqs. (5.314) and (5.315) by complex conjugation (recall for the

umpteenth time that complex conjugation exchanges h ↔ h̄).

5.B.4 Curvature scalars with weight zero

Once we calculate the spacelike and timelike curvatures, we can express the

curvature scalars of weight-(0, 0) in terms of them along with derivatives and

products of spin coefficients.

The Weyl scalar of weight (0, 0) is:162

Ψ2 =
1
3

[
ρρ′∗ − |τ |2 + þ′ρ− ð′τ − (K +Ks)− κκ′ + ττ ′ + σσ′ − ρρ′

]
. (5.316)

162The quantity ρρ′∗ − |τ |2 − þ′ρ + ð′τ is actually self-prime, although not manifestly so. As
per our previous comments, this comes from Cabcd = Ccdab.
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The Ricci scalar of weight (0, 0) is:163

Φ11 =
1
2

(
K −Ks − κκ′ + ττ ′ − σσ′ + ρρ′

)
. (5.317)

Finally, the Einstein-Hilbert curvature is:

Π = −1
6

[
2
(
ρρ′∗ − |τ |2 + þ′ρ− ð′τ

)
+K +Ks − κκ′ − ττ ′ + σσ′ + ρρ′

]
. (5.318)

This completes our discussion of the curvature in the method of spin coefficients.

To form a mathematically self-consistent gravitational field, the curvature

scalars must satisfy the Bianchi identities. Unlike the situation for rest of the

formalism, we feel that these identities are explained with sufficient clarity in the

standard texts, and we will not discuss them here.

5.C Reduction of SO(3, 1) to the GHP group

In this section, we show how the compacted null Cartan equations in Eq. (5.53),

the compacted curvature 2-form in Eq. (5.93), and the obscure-looking operator

in Eq. (5.100) are embedded within the SO(3, 1)-covariant formalism.

163Reality of the left-hand side requires that Im(K −Ks) = Im(κκ′ − ττ ′ + σσ′ − ρρ′).
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5.C.1 Reduction of the spin connection

First define the following 4-by-4 antisymmetric matrix Wab:

Wab ≡

 0 W

−W T 0

 , W ≡

 ϖ ϖ∗

ϖ′∗ ϖ′

 . (5.319)

Acting on the 1-form frame fields164 ea =



−l′

−l

m′

m


, we find:

Wab ∧ eb =



W ∧

m′

m



W T ∧

l′

l




=



ϖ ∧m′ +ϖ∗ ∧m

ϖ′∗ ∧m′ +ϖ′ ∧m

ϖ ∧ l′ +ϖ′∗ ∧ l

ϖ∗ ∧ l′ +ϖ′ ∧ l


. (5.320)

Next define an improved exterior derivative

đ ≡ d+ 2h b + 2h̄ b∗ with b ≡ −ε l′ + ε′ l + β m′ − β′m . (5.321)

164Now that we regress to matrix multiplication, we express the collection of frame fields as a
column vector.
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Behold by explicit computation that the torsion 2-form

Θa ≡ Da
b e

b (5.322)

can be equivalently expressed as

Θa = đea − Wab ∧ eb . (5.323)

The torsion-free condition therefore implies

đl = ϖ ∧m′ + c.c. , đm = ϖ ∧ l′ + c.c.′ (5.324)

and their primed verisons, which are the null Cartan equations as they appear in

Eq. (5.53).

5.C.2 Reduction of the curvature 2-form

Now let us study the curvature forms. They will emerge most readily from the

first gravitational Bianchi identity165

Da
bΘ

b = Ωa
b ∧ eb . (5.325)

165The second gravitational Bianchi identity is (DΩ)ab ≡ dΩa
b + ωa

c ∧ Ωc
b − Ωa

c ∧ ωc
b = 0.

Our terminology follows the exposition on p. 285 of Nakahara [175].
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From Eq. (5.323), we get:

Da
bΘ

b = (δacđđ − đW a
c + W a

b ∧ W b
c) ∧ ec . (5.326)

By invoking Eq. (5.325) we deduce that the operator on the right-hand side of

Eq. (5.326) is the curvature 2-form.

From the block decomposition of Wab in Eq. (5.319), we first observe that the

middle term on the right-hand side of Eq. (5.326) is purely off-diagonal:

đWab =

 0 đW

−đW T 0

 . (5.327)

Up to priming and complex conjugation, the entire content of this off-diagonal

block is encapsulated by the quantity

đϖ . (5.328)

Next, for notational convenience, we express the Newman-Penrose metric ηab in

terms of a 2-by-2 Pauli matrix:

ηab =

−Σ 0

0 +Σ

 , Σ ≡

0 1

1 0

 . (5.329)
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Then, given Wab from Eq. (5.319), we write W ab as:

W ab = ηacWcdη
db =

−Σ 0

0 Σ


 0 W

−W T 0


−Σ 0

0 Σ

 =

 0 −ΣWΣ

ΣW TΣ 0

 .

(5.330)

Therefore:

Wab ∧ W bc =

WΣW TΣ 0

0 W TΣWΣ

 . (5.331)

Unlike the matrix in Eq. (5.327), this matrix is diagonal. Evidently the curvature

2-form Ωa
b splits into an off-diagonal part whose entries are defined from đϖ and

a diagonal operator

(δ c
a đđ + Wab ∧ W bc) ∧ ec =



(Iđđ +W ∧ ΣW TΣ) ∧

 l

l′



(Iđđ +W T ∧ ΣWΣ) ∧

m

m′




. (5.332)

Using the explicit form of the matrix W from Eq. (5.319), we have

ΣW TΣ =

ϖ′ ϖ∗

ϖ′∗ ϖ

 , ΣWΣ =

ϖ′ ϖ′∗

ϖ∗ ϖ

 . (5.333)
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Therefore, we first find:166

W ∧ ΣW TΣ =

ϖ ∧ϖ′ + (ϖ ∧ϖ′)∗ 0

0 −(ϖ ∧ϖ′ + (ϖ ∧ϖ′)∗)

 . (5.334)

This implies:

(Iđđ +W ∧ ΣW TΣ) ∧

 l

l′

 =

 [đđ +ϖ ∧ϖ′ + (ϖ ∧ϖ′)∗]l

[đđ −ϖ ∧ϖ′ − (ϖ ∧ϖ′)∗]l′

 . (5.335)

Next, we have:167

W T ∧ ΣWΣ =

ϖ ∧ϖ′ − (ϖ ∧ϖ′)∗ 0

0 −ϖ ∧ϖ′ + (ϖ ∧ϖ′)∗

 . (5.336)

Therefore:

(Iđđ +W T ∧ ΣWΣ) ∧

m

m′

 =

 [đđ +ϖ ∧ϖ′ − (ϖ ∧ϖ′)∗]m

[đđ −ϖ ∧ϖ′ + (ϖ ∧ϖ′)∗]m′

 . (5.337)

166The off-diagonal parts are zero because ϖ∧ϖ∗+ϖ∗∧ϖ = 0 by antisymmetry of the wedge
product.
167Again, the off-diagonal terms are zero because ϖ ∧ϖ′∗ +ϖ′∗ ∧ϖ = 0 by antisymmetry of

the wedge product.
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The right-hand sides of Eqs. (5.335) and (5.337) can be summarized as:

[đđ + 2hϖ ∧ϖ′ + 2h̄ (ϖ ∧ϖ′)∗] ea . (5.338)

This is the germ from which Eq. (5.100) sprouts. Why its natural soil is a Bianchi

identity instead of a structure equation remains unclear to us.

5.C.3 Extension to tensor calculus

To go from exterior calculus in the tangent space to tensor calculus on the base

space (and to match the traditional notation), we need to extend the formalism

so that it can act not only on scalar fields but also on vector and tensor fields.

This entails passing from the ordinary exterior derivative

d ≡ dxµ∂µ = eaeµa∂µ = −l′ lµ∂µ − l l′µ∂µ +m′mµ∂µ +mm′µ∂µ (5.339)

to its space-time-covariant generalization:

∇ ≡ dxµ∇µ = ea eµa∇µ = −l′ D − l D +m′ δ +mδ′ . (5.340)

To reproduce the GHP formalism as presented in Spinors and Space-time [12], we

generalize the operator

đ = d+ 2h b + 2h̄ b∗ (5.341)
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to its space-time-covariant version:

Ð ≡ ∇+ 2h b + 2h̄ b∗ = −l′ þ − l þ′ +m′ ð +m ð′ . (5.342)

Then it is appropriate to define the GHP curvature 2-form as

� ≡ Ðϖ , (5.343)

which generalizes the expression đϖ outside the exterior calculus. The diagonal

operator in Eq. (5.338) should be generalized to

^ ≡ ÐÐ + 2hϖ ∧ϖ′ + 2h̄ (ϖ ∧ϖ′)∗ . (5.344)

This is the quantity that encodes the weight-(0, 0) combinations of curvature

scalars in Eq. (5.101). The operator ÐÐ itself encodes K and Ks, as we explained

in Eq. (5.110).

Let us clarify the distinction between Eqs. (5.344) and (5.338).

Inserting đ from Eq. (5.341) into Eq. (5.338) would beget critters like D′ε+Dε′

and δ′β + δβ′.168 They compose the ugliest of the NP equations, those that do

not admit a GHP-covariant formulation.

168On scalar fields we can trade ∂µ for ∇µ and thereby obtain NP derivatives.
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That is fine but not what we want: we are after the GHP commutator equa-

tions, not the corresponding NP equations. Those commutator equations are what

Eq. (5.344) provides.

5.D Laplacian in compacted form

The subject of this paper is the gravitational field of a massless spinless parti-

cle, and the equation of motion for a scalar field involves the Laplacian. If we are

to champion the spin coefficient formalism in earnest, then we ought to express

the operator

∇2 ≡ ∇µ∇µ =
1

| det g|1/2
∂µ

(
| det g|1/2gµν∂ν

)
(5.345)

in terms of GHP derivatives. Because we have only encountered Eqs. (5.193)

and (5.194) in the literature as a cryptic passing remark and in a form that is not

manifestly self-prime,169 we will derive them explicitly.

Let H be a real scalar field. Since the Laplacian involves second derivatives

and since the metric in the spin coefficient formalism is off-diagonal, we begin by

169See Eq. (4.12.45) in Spinors and Space-time [12].
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computing the following two compositions:

D′DH = l′µ∇µ(l
ν∇νH) = l′µlν∇µ∇νH + l′µ(∇µl

ν)∇νH ,

δ′δH = m′µ∇µ(m
ν∇νH) = m′µmν∇µ∇νH +m′µ(∇µm

ν)∇νH . (5.346)

From Eq. (5.47), we have D′lν = (ε′+ ε′∗)lν + τ ∗mν + τ m′ν . Performing the Sachs

operation on this gives δ′mν = (β′ + β∗)mν + ρ′∗lν + ρ l′ν . Therefore, adding the

primed versions to the brew, we find:

l′µ(∇µl
ν)∇νH + ′ = (ε+ε∗)D′H + (τ+τ ′∗)δ′H + ′ ,

m′µ(∇µm
ν)∇νH + ′ = (β+β′∗)δ′H + (ρ+ρ∗)D′H + ′ . (5.347)

With gµν = −l′µlν +m′µmν + ′, we have:

−D′DH + δ′δH + ′ = gµν ∇µ∇νH +
[
−(ε+ε∗)D′H + (ρ+ρ∗)D′H

+(β+β′∗) δ′H − (τ+τ ′∗) δ′H + ′ ] . (5.348)

If we cared only about NP derivatives we would be done, but this would leave the

expression too crabbed for sensible advocacy. As Penrose and Rindler instruct, if
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we think of H as possessing the weight (0, 0), then we have:

þH = DH ∼ (+1
2
,+1

2
) =⇒ þ′þH = [D′ − (ε′+ε′∗)]DH ,

þ′H = D′H ∼ (−1
2
,−1

2
) =⇒ þþ′H = [D − (ε+ε∗)]D′H ,

ðH = δH ∼ (+1
2
,−1

2
) =⇒ ð′ðH = [δ′ − (β′+β∗)]δH ,

ð′H = δ′H ∼ (−1
2
,+1

2
) =⇒ ðð′H = [δ − (β+β′∗)]δ′H . (5.349)

So if we define a generalized Laplacian

□ ≡ −
[
þ + 2Re(ρ)

]
þ′ +

[
ð + (τ + τ ′∗)

]
ð′ + ′ (5.350)

then, when acting on GHP-invariant functions H ∼ (0, 0), we conclude

□H = ∇2H (weight zero only) . (5.351)

When acting on a more general weighted function fh,h̄ ∼ (h, h̄), the generalized

Laplacian in Eq. (5.350) contains extra terms beyond the ordinary Laplacian.

The generalized Laplacian is written in terms of GHP-covariant operators and

is therefore itself GHP-covariant. This makes it the operator we should use. Notice

the presence of the timelike expansion, which appears as the Sachs counterpart to

the term involving Re(ρ).
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5.E Massless particle in classical field theory

In this section, we explain our point-particle limit within classical field theory.

We begin with flat space-time.170

The equation of motion for a real scalar field H is

(∂ 2
t −

3∑
i=1

∂ 2
i )H = 0 . (5.352)

Its general solution is typically expressed as an arbitrary linear combination of

positive frequency solutions:

H(t, x⃗) =

∫
d3p

(2π)32ωp⃗

(
a(p⃗) e−iωp⃗t+ip⃗·x⃗ + c.c.

)
, ωp⃗ = |p⃗| . (5.353)

Because this is classical field theory, the quantity denoted by p⃗ describes a wave

vector, not a momentum. We should refer to p⃗-space as “wave vector space” or

“Fourier space,” but we will persist with the letter p and the patois of quantum

mechanics.

170This section is a bit too Jacksonian (the electrodynamics book, not the 7th President) for
our palette, but once in a blue moon we can swallow our pride and dabble in vector notation.
We thank Justin Wilson for detailed notes on this derivation.
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Our goal is to choose a specific functional form for a(p⃗) such that the resulting

trace-reversed energy-momentum tensor will have the form

Tµν = P δuµ δ
u
ν δ(u) δ

2(x⃗⊥) , (5.354)

where E ≡
∫
du d2x⊥Tuu = P is the energy of the field configuration, and

u ≡ t− n̂ · x⃗ , x⃗⊥ ≡ x⃗− (n̂ · x⃗) n̂ (5.355)

for some unit vector n̂.171

5.E.1 Momentum space distribution

We will try a momentum-space distribution peaked around a fixed momentum

P⃗ = Pn̂ (with P ≡ |P⃗ | > 0):

a(p⃗) = ωp⃗ N
1/2
P e

− 1

2σ2
P

|p⃗−P⃗ |2
. (5.356)

The factor ωp⃗ was chosen to cancel the standard normalization in Eq. (5.353). The

factor N1/2
P is a numerical factor [to be fixed eventually by matching to Eq. (5.354)]

that depends only on P but not on p⃗. The quantity σP is the width in momentum

171We could also define v ≡ t+ n̂ · x⃗, but we will not need it.
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space: we are looking for a distribution that is localized in space and is therefore

delocalized in momentum space. In practice, this will entail the assumption

σP

P
≪ 1 . (5.357)

Plug Eq. (5.356) into Eq. (5.353) and change integration variable to k⃗ ≡ p⃗− P⃗ :

H(t, x⃗) = 1
2
N

1/2
P

∫
d3k

(2π)3
e
− 1

2σ2
P

|⃗k|2−i|⃗k+P⃗ |t+i(k⃗+P⃗ )·x⃗
. (5.358)

Next, use Eq. (5.357) as follows:

|⃗k + P⃗ | =
(
|⃗k|2 + 2P n̂ · k⃗ + P 2

)1/2
≈ P

(
1 +

n̂ · k⃗
P

)
. (5.359)

The expansion is controlled because the factor e
− 1

2σ2
P

|⃗k|2
effectively restricts |⃗k| to

the range [0, σP ]. Therefore,

H(t, x⃗) ≈ 1
2
N

1/2
P e−iP (t−n̂·x)

∫
d3k

(2π)3
e
− 1

2σ2
P

F (k⃗)
+ c.c. , (5.360)

where

F (k⃗) = |⃗k|2 − 2iσ2
P (x⃗− n̂t) · k⃗ = |⃗k − iσ2

P (x⃗− n̂t)|2 + σ4
P |x⃗− n̂t|2 . (5.361)

249



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

With the usual contour integration prescription, we can evaluate the Gaussian

integrals:

H(t, x⃗) = 1
2
N

1/2
P e−iP (t−n̂·x⃗)

(
σ2
P

2π

)3/2

e−
1
2
σ2
P |x⃗−n̂t|2 + c.c. . (5.362)

With u = t− n̂ · x⃗, we have u2 = t2 + (n̂ · x⃗)2 − 2 t n̂ · x⃗, and therefore

|x⃗− n̂t|2 = |x⃗|2 + t2 − 2 t n̂ · x⃗ = |x⃗|2 − (n̂ · x⃗)2 + u2 = |x⃗⊥|2 + u2 . (5.363)

So the field configuration that results from the momentum space distribution in

Eq. (5.356) is H(t, x⃗) ≈ H(u, x⃗⊥), where

H(u, x⃗⊥) = N
1/2
P

(
σ2
P

2π

)3/2

e−
1
2
σ2
Pu2

e−
1
2
σ2
P |x⃗⊥|2 cos(Pu) . (5.364)

5.E.2 Delta functions and Tuu

Our version of the delta function will be defined by a properly normalized

Gaussian whose width goes to zero:

δ(u) = lim
ϵ→0

δϵ(u) , δϵ(u) ≡
1

(2πϵ2)1/2
e−

1
2ϵ2

u2

. (5.365)

250



Chapter 5. Gravitational Shockwaves on Rotating Black Holes

Remember that our goal is to obtain Tuu ∼ δ(u), not H ∼ δ(u). This requirement

will fix the relation between ϵ and σP and specify how to normalize the field

configuration in Eq. (5.364). Since Tµν = ∂µH∂νH, we first compute the partial

derivative with respect to u:

∂uH = N
1/2
P

(
σ2
P

2π

)3/2

e−
1
2
σ2
Pu2

e−
1
2
σ2
P |x⃗⊥|2 [−σ2

Pu cos(Pu) + P sin(Pu)
]
. (5.366)

We will again use the assumption in Eq. (5.357), this time in the form

(
σP

P

)(
u

σX

)
≪ 1 , σX ≡ σ−1

P . (5.367)

As a consequence of being delocalized in momentum (P ≫ σP ), the field configu-

ration is localized about its average position (u ≪ σX ≡ σX). So we can drop the

cos(Pu) term in Eq. (5.366), leaving us with

∂uH = N
1/2
P

(
σ2
P

2π

)3/2

e−
1
2
σ2
Pu2

e−
1
2
σ2
P |x⃗⊥|2 P sin(Pu) . (5.368)

Writing sin2(Pu) = 1
2
[1− cos(2Pu)], we have

(∂uH)2 = 1
2
P 2NP

(
σ2
P

2π

)3

e−σ2
Pu2

e−σ2
P |x⃗⊥|2 [1− cos(2Pu)] . (5.369)
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Like our Ricci tensor, our energy-momentum tensor is distribution valued, so we

define it by its action on arbitrary smooth test functions. Against such a function

of u, with P arbitrarily large, the wildly oscillating term cos(2Pu) can be dropped.

Furthermore, comparing with Eq. (5.365), we find

σ2
P =

1

2ϵ2
, (5.370)

and hence

e−σ2
Pu2

= (2πϵ2)1/2 δϵ(u) =

(
π

σ2
P

)1/2

δϵ(u) . (5.371)

Similarly,

e−σ2
P |x⃗⊥|2 =

(
π

σ2
P

)
δ2ϵ (x⃗⊥) . (5.372)

Therefore, we have found the trace-reversed energy-momentum tensor we were

looking for:

Tuu = (∂uH)2 = 2−4P 2NP

(
σ2
P

π

)3/2

δϵ(u) δ
2
ϵ (x⃗⊥) ≡ P δϵ(u) δ

2
ϵ (x⃗⊥) . (5.373)

This fixes the normalization factor:

NP =
24π3/2

σ3
P P

. (5.374)
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The Fourier coefficient in Eq. (5.356) with the momentum-space delocalization

assumption in Eq. (5.357), the normalization factor in Eq. (5.374), and the coarse-

grained delta function in Eq. (5.365) together define what we mean by a “massless

particle” in classical field theory.

5.E.3 Tui and Tij

Next we will show that Tui and Tij are parametrically suppressed with respect

to Tuu. Let us return to Eq. (5.364) and compute a partial derivative with respect

to xi
⊥:

∂iH = −σ2
PN

1/2
P

(
σ2
P

2π

)3/2

e−
1
2
σ2
Pu2

e−
1
2
σ2
P |x⃗⊥|2 cos(Pu)x⊥i . (5.375)

Therefore,

Tui = ∂uH∂iH = −Pσ2
PNP

(
σ2
P

2π

)3

e−σ2
Pu2

e−σ2
P |x⃗⊥|2 sin(Pu) cos(Pu)

= −σ2
P δϵ(u) δ

2
ϵ (x⃗⊥) sin(2Pu) . (5.376)
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This is a wildly oscillating function that averages to zero against smooth test

functions. Finally, we have

Tij = ∂iH∂jH = −σ4
PNP

(
σ2
P

2π

)3

e−σ2
Pu2

e−σ2
P |x⃗⊥|2 cos2(Pu)x⊥i x⊥j

= − σ4
P

P
δϵ(u) δ

2
ϵ (x⃗⊥) [1 + cos(2Pu)]x⊥i x⊥j . (5.377)

The oscillatory cos(2Pu) term can be dropped, as usual. Meanwhile, the magni-

tude of Tij is suppressed relative to that of Tuu in Eq. (5.373) by the dimensionless

ratio [recall σX ≡ σ−1
P ] (

σP

P

)2( |x⃗⊥|
σX

)2

≪ 1 . (5.378)

So for the field configuration in Eq. (5.364), we indeed have Tµν ≈ δuµδ
u
ν Tuu.

5.E.4 Physical meaning of limit

Let us reflect on what happened. We chose the field configuration in Eq. (5.364)

so that it would describe, roughly speaking, the square root of a delta function,

not an actual delta function. Our definition of the regularized delta function in

Eq. (5.365) and the requirement Tuu ∝ δ(u) δ2(x⃗⊥) from Eq. (5.373) imply that
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our field configuration is:

H(u, x⃗⊥) =
21/2

π3/4P 1/2
σ
3/2
P e−

1
2
σ2
Pu2

e−
1
2
σ2
P |x⃗⊥|2 cos(Pu)

=
22π3/4

P 1/2
σ
9/2
P δσP

(u) δ2σP
(x⃗⊥) cos(Pu) . (5.379)

In the limit σP → 0, we have H(u, x⃗⊥) → 0. Meanwhile, (∂uH)2 → C δ(u) δ2(x⃗⊥)

with C a fixed constant. So the limit we are describing is one in which we take

the field away and leave behind only a localized source of energy-momentum.

This is a sensible point-particle limit of classical field theory.

5.E.5 Spherically symmetric curved space-time

As explained in the main text, the applicable mode decomposition occurs

in the Eddington-like coordinate u = t − r∗, not in the Kruskal-like coordinate

U = −e−αu. For the Schwarzschild or Reissner-Nordström background, we would

use the following series expansion:

H(U, θ, φ) ≡
∑
l,m

∫ ∞

−∞

dω

4π
alm(ω)Ylm(θ, φ) e

−iωu + c.c. (5.380)

For H to be real, the Fourier coefficients must satisfy alm(−ω)∗ = alm(ω). The

choice of normalization is convenient but not standard. Using the usual orthogo-

nality property
∫ 2π

0
dφ
∫ π

0
dθ sin θ Ylm(θ, φ)Yl′m′(θ, φ)∗ = δll′δmm′ , imposing an up-
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per cutoff on the integration over u, and requiring only that H(U, θ, φ) = H(U, θ),

we find

alm(ω) = δm0

∫ Λ

−∞
du

∫ π

0

dθ sin θ Yl0(θ)
∗H(U, θ) . (5.381)

The question now is what distribution to assert for H(U, θ). The choice of wave

packet in u about a value u0 follows exactly the construction in flat space-time,

except with u = t−r∗. The angular delta function, however, requires a few words.

We might like to localize a particle to the north pole of a sphere of radius

r, namely to x⃗N = rẑ. But the usual spherical coordinates are singular there.

To avoid trudging through an obstacle course of coordinate singularities, we will

instead localize a particle to the equator:

x⃗E = r(cosφ x̂+ sinφ ŷ) . (5.382)

A general vector in spherical coordinates is x⃗ = r sin θ(cosφ x̂+sinφ ŷ)+r cos θ ẑ.

The generalization of x⃗⊥ is therefore

x⃗⊥ = x⃗− x⃗N = r
[
−(1− sin θ)(cosφ x̂+ sinφ ŷ) + cos θ ẑ

]
. (5.383)
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We will work with the coordinate µ ≡ cos θ. A regularized delta function in the

angular direction will then take the form

δ2σ(x⃗⊥) = C e−
|x⃗⊥|2

2σ2 , (5.384)

with the overall factor C to be fixed by the normalization condition

1 ≡
∫

d2x⊥ δ2σ(x⃗⊥) = 2πC

∫ 1

−1

dµ e−
|x⃗⊥|2

2σ2 . (5.385)

Implicit everywhere is the limit σ → 0, so we can expand near θ = π
2
. Define

ϵ ≡ θ − π
2
. Then we have172

|x⃗⊥|2 = 2r2(1− sin θ) = 2r2 (1− cos ϵ) = r2ϵ2 +O(ϵ4) . (5.386)

The twin prong of this approximation is that as far as the limits of integration

are concerned, ±1 may as well be taken to ±∞. Therefore:

1 ≈ 2πC

∫ ∞

−∞
dϵ e−

r2

2σ2 ϵ
2

= 2πC

(
2πσ2

r2

)1/2

=⇒ C =
r

(2π)3/2σ
. (5.387)

172The fact that the a priori dependence on φ has disappeared justifies our assumption that
H(U, θ, φ) = H(U, θ).
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So the wave packet we will take for the field configuration is

H(U, θ) = N1/2 e−
1

2σ2 (u−u0)2 e−
r2

2σ2 (θ−
π
2
)2 cos(Pu) , (5.388)

with P interpreted as the momentum of the wave packet. The reader could now

attempt to put this into Eq. (5.381) and calculate the Fourier coefficients explicitly,

at least in some approximation. We will not.

With the understanding of the angular delta function provided above, a cal-

culation completely analogous to the steps in flat space-time would result in a

trace-reversed energy-momentum tensor of the form Tµν = δ u
µ δ

u
ν Tuu, where

Tuu = P0 δ(u− u0) . (5.389)

The final wrinkle is that we want TUU ∝ δ(U), not Tuu ∝ δ(u). By the usual rules

for transforming coordinates, we have:

Tuu = (∂uU)2TUU = α2U2TUU . (5.390)

Therefore,

TUU =
P0

α2U2
δ(u− u0) . (5.391)
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Because U = −e−αu, we know that

δ(U − U0) =
∑
{u0}

1

|U ′(u0)|
δ(u− u0) , U(u0) ≡ U0 . (5.392)

The required condition is u0 = ∞. Because U ′(u) = −αU , we have limu0→∞ δ(u−

u0) = α|U |δ(U), and the correct limit is to take P0 → 0 and u0 → ∞ such that

limU→0
P0

|U | is held fixed. Therefore, defining

P ≡ P0

α2|U |
(5.393)

we obtain the desired expression

TUU = lim
u0→∞

P

|U |
δ(u− u0) = P δ(U) . (5.394)

5.E.6 Rotating space-time

The only real complication relative to the spherically symmetric case is how to

generalize Eq. (5.383). Every student is familiar with the embedding of a sphere of

radius r into 3 Euclidean dimensions by the parametrization x⃗ = r[sin θ (cosφ x̂+

sinφ ŷ) + cos θ ẑ]. What is the correct generalization for the squashed sphere?
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Let µ ≡ cos θ and posit the following embedding of a 2d surface with coordi-

nates (µ, χ) into an auxiliary 3d Euclidean space with coordinates (X, Y, Z) [163]:

X = F (µ) cosχ , Y = F (µ) sinχ , Z = G(µ) . (5.395)

The induced 2d metric on the surface is then

ds22d = dX2 + dY 2 + dZ2
∣∣
Eq. (5.395)

= (F ′2 +G′2) dµ2 + F 2 dχ2 . (5.396)

With dµ2 = sin2 θ dθ2 = (1−µ2) dθ2, we match this induced metric to that on the

squashed sphere of radius r [see Eq. (5.211)] to obtain173

F ′(µ) 2 +G ′(µ) 2 =
r2 + a2µ2

1− µ2
, F (µ) 2 =

(r2 + a2)2

r2 + a2µ2
(1− µ2) . (5.397)

For the parametrization in Eq. (5.395), the equator is defined such that Z =

G(0) = 0. Therefore:

x⃗E = F (0)(cosχ x̂+ sinχ ŷ) , F (0) =
r2 + a2

r
. (5.398)

173Let us check the static limit. When a → 0, we get F (µ)2 → r2(1 − µ2) = r2 sin2 θ =⇒
F (µ) = r(1 − µ)1/2 = r sin θ (taking the positive root), which is correct. In that case F ′(µ) =
−rµ(1− µ2)−1/2 = −2r cot θ, and G′(µ) = r =⇒ G(µ) = rµ = r cos θ (setting the integration
constant to zero), which is also correct.
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A general location on the squashed sphere is x⃗ = Xx̂+Y ŷ+Zẑ. The generalization

of Eq. (5.383) is then

x⃗⊥ = −(F (0)− F (µ))(cosχ x̂+ sinχ ŷ) +G(µ) ẑ . (5.399)

The magnitude squared of this vector is:

|x⃗⊥|2 = (F (0)− F (µ))2 +G(µ)2 . (5.400)

In the vicinity of ϵ ≡ θ − π
2
= 0, we have:

F (µ) = F (0)− (r2 + a2)2

2r3
ϵ2 +O(ϵ3) , G(µ) = −rϵ+O(ϵ3) . (5.401)

Therefore |x⃗⊥|2 = r2ϵ2 +O(ϵ4), and

e−
1

2σ2 |x⃗⊥|2 ≈ e−
r2

2σ2 ϵ
2

. (5.402)

Curiously, the angular momentum parameter a dropped out in this approxima-

tion. The determinant of the metric on the squashed sphere is |R0|4, so the

normalization factor N of the regularized delta function,

δ2σ(x⃗⊥) ≡ N e−
1

2σ2 |x⃗⊥|2 , (5.403)
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is set by

1 ≡ (r2 + a2)

∫ 2π

0

dχ

∫ 1

−1

dµ δ2σ(x⃗⊥) ≈ (r2 + a2) 2πN
∫ ∞

−∞
dϵ e−

r2

2σ2 ϵ2

= (r2 + a2) 2πN

(
2πσ2

r2

)1/2

=⇒ N =
r

(2π)3/2(r2 + a2)σ
. (5.404)

So the replacement r → r2+a2

r
in the normalization is all we need to generalize

the spherically symmetric case. Because it is somewhat jarring to see a function

of θ that is not manifestly periodic, and because any function F (ϵ) = ϵ2 + O(ϵ3)

would do as far as the exponential is concerned, we could replace ϵ2 with sin2 ϵ =

cos2 θ = µ2 in Eq. (5.388).

This completes our chronicle of the field configuration in Eq. (5.252).
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Conclusion

This research project can be traced back to the work of Bouwmeester, and

Irvine [42] who studied Rañada’s solution and outlined an experimental imple-

mentation. Their work on an experimental realization has been extended recently

in [176,177]. Since that original paper, the Bouwmeester group has expanded its

study of topologically non-trivial classical fields into plasmas as well as electromag-

netic and gravitational fields, leading to over a dozen theses [1, 2, 21, 22, 178–194]

and publications [3, 14,6, 97,195,7, 196–198].

We have shown by direct construction that linearized gravitational fields can

possess the same topologically non-trivial features as plasma solitons. Typically

electromagnetism is only thought of as a gauge theory in a quantum mechanical

context associated with magnetic monopoles or Aharonov-Bohm phase factors.

However, in plasma, the gauge field A appears directly in the definition of magnetic

helicity density via the Chern-Simons three form current JCS = A ∧ dA. The
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integral of this 3-form gives a topological charge which is conserved in ideal MHD

since dJCS = 0.

In the context of general electromagnetism we may introduce connections A

and C such that dA = F and dC = ∗F . A dual bundle approach allows us to com-

pute topological currents and topological charges associated with the individual

electric and magnetic fields. Thus, we have two Chern-Simons currents1

JB
CS = A ∧ F = (A⃗ · B⃗)VolR3 +

[
(A⃗× E⃗)⌟VolR3

]
∧ dt

JE
CS = C ∧ ∗F = (C⃗ · E⃗)VolR3 −

[
(C⃗ × B⃗)⌟VolR3

]
∧ dt

and two topological charges

QB
CS =

∫
R3

JB
CS

QE
CS =

∫
R3

JB
CS.

1Typically, the inhomogeneous Maxwell equation is d ∗ F = ∗J , where ∗J is the 1-form
4-current dual to the 3-form d ∗ F . For simplicity and to maximize clarity as to what terms
in an action functional represent currents, we adopt the convention that currents associated
with 1-form gauge fields are 3-forms. In 3-form notation, the electric current 3-form is J =
ρVolR3 − (⃗j⌟VolR3) ∧ dt.
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The two currents yield two continuity equations

dJB
CS = F ∧ F = −2(E⃗ · B⃗)VolM4 =

[
∂t(A⃗ · B⃗)− ∇⃗ · (A⃗× E⃗)

]
VolM4

dJE
CS = ∗F ∧ ∗F = +2(E⃗ · B⃗)VolM4 =

[
∂t(C⃗ · E⃗) + ∇⃗ · (C⃗ × B⃗)

]
VolM4 .

For a finite volume V this yields

∂tQ
B
CS = −2

∫
V

(E⃗ · B⃗)VolR3 +

∫
∂V

(A⃗× E⃗) · n̂ ds

∂tQ
E
CS = +2

∫
V

(E⃗ · B⃗)VolR3 −
∫
∂V

(C⃗ × B⃗) · n̂ ds.

If V = R3 then ∂tQ
B
CS = −∂tQ

E
CS and the electric and magnetic fields exchange

topology. For null fields E⃗ · B⃗ = 0, and thus QE
CS and QB

CS are constants, and

the topology of both the electric and magnetic fields are constant under time

evolution. The total topological current is given by

JEM
CS = 1

2
(JB

CS + JE
CS) (6.1)

whence,

dJEM
CS = 1

2
(F ∧ F + ∗F ∧ ∗F ) (6.2)

= 0, (6.3)
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implies QEM
CS =

∫
JEM
CS is conserved.

We saw the effects of these formulas play out in the plots of Chapters 2-4. In

Ch. 4, we saw linearized gravitational fields with similar topology and topology

exchange.

Differential geometry is defined using the tangent bundle to a manifold. The

tangent bundle is a vector bundle. On the other hand, a Yang-Mills field is

defined on a principal bundle. The difference between the two bundles types is

the fiber’s nature. A vector bundle has vector space fibers, and a principal bundle

possesses group manifold fibers. Luckily, every vector bundle has a principal

frame bundle where the group manifold associated with each point is the group

of transformations that carries one frame into any other frame at the same point.

In this way, we can view Cartan’s method of moving frames as a way of doing

differential geometry on the frame bundle of a manifold. We have seen in Ch.

5 that the Riemann curvature 2-form Ωa
b is the Yang-Mills curvature of the

local so(1, 3) spin connection ωa
b. Everything we have seen thus far leads us to

believe that one should be able to construct a theory of gravitational helicity by

considering the local so(1, 3) Chern-Simons form tr(ω ∧Ω+ 2
3
ω ∧ω ∧ω) since the

integral of this 3-form is proportional to a topological invariant of the manifold

called the Euler character.

Deser first demonstrated [199] that a one-parameter family of global duality

transformation which rotated electric and magnetic fields into each other was a
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symmetry of the Maxwell action2. Later Henneaux and Teitelboim [201] showed

that the vacuum linearized Einstein-Hilbert action possesses a similar symmetry

which globally rotates the GEM fields Eij and Bij into each other. Their equation

V.5 yields the spin-2 generalization of Eq. (6.1) and the charge they obtain from

integrating their current is conserved precisely when EijB
ij = 0. These results

were also obtained by Aghapour, et al. [202,203].

The GEM fields provide a kinetic description of how the curvature of space-

time interacts with materials moving through it. Specifically, wave equations for

EM fields in a gravitational background show how we might construct gravita-

tional wave detectors that can probe all the degrees of freedom of the curvature

tensor. Note that this formalism is exact for gravitational radiation far from the

sources. We hope that these concepts will one day lead to humanity observing

the cosmos with gravitational eyes.

2The astute reader will notice the relation to S-duality in string theory. For a review, we
point the reader towards Gravity and Strings [200].
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