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Developing an Efficient Dispatching Strategy to Support 
Commercial Fleet Electrification 

EXECUTIVE SUMMARY 

The past decade has seen a surge in efforts to combat greenhouse gas emissions and promote 
cleaner transportation solutions. This project focuses on the heavy-duty freight transportation 
sector, particularly battery electric trucks (BETs) which offer a promising solution due to their 
zero emissions during operation. 

Motivated by a real-world logistics company's challenge in Southern California, this study aims 
to develop an energy-efficient routing strategy for a BET fleet, considering practical constraints 
such as cargo load, battery capacity, backhauls, partial recharging, and time windows. In 
addition, the proposed strategy incorporates a partial recharging policy, allowing BETs to 
recharge en route, ensuring timely deliveries. 

By classifying this challenge into an extended vehicle routing problem (VRP) using a complete 
directed graph, this study formulates the problem into a mixed-integer linear programming 
(MILP). It adopts a "last-in, first-out" approach for deliveries and backhauls, optimizing vehicle 
utilization and reducing empty runs. Furthermore, the study operates under several key 
assumptions, e.g., linehaul customers are served prior to backhaul customers, and BETs begin 
and end their routes at the depot, starting with a full charge. The methodology is based on an 
adaptive large neighborhood search (ALNS) metaheuristic, addressing the complex optimization 
problem effectively. The proposed approach is further evaluated using real-world dispatching 
data. 

Further investigation reveals the following key findings: 

• The proposed MILP model offers an effective dispatching strategy for BET fleets, 
accommodating customer demand, time windows, and delivery type while minimizing 
energy consumption. 

• A realistic energy consumption model, considering vehicle characteristics and cargo 
load, enhances the accuracy of energy consumption estimation compared to merely 
minimizing travel distance. 

• The ALNS metaheuristic algorithm efficiently solves the proposed problem, showcasing 
its effectiveness and moderate computational time, especially in comparison to baseline 
strategies. 

• The experimentation using real-world freight operation data from a logistics company in 
Southern California validates the practical applicability of the proposed dispatching 
strategy. Compared to the existing baseline strategy, the new approach achieves a 
notable decrease in the fleet-wise energy usage, with reductions between 7% and 40%. 
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Based on the findings, the study suggests the following recommendations: 

• Future work should explore problem variants suited to real-world applications. For 
example, considering uncertain parameters like time windows, service time, and traffic 
conditions could lead to the development of more robust routing strategies. 

• Incorporating non-linear recharging functions can enhance the model's accuracy and 
reflect realistic charging dynamics. This can lead to more precise estimates of charging 
duration and rates during routes. 

• Considering scenarios with uncertain customer information could contribute to a more 
adaptable routing strategy. Incorporating uncertainty models could lead to better 
strategies that account for unexpected changes in customer demands or conditions. 

The study's findings underscore the significance of energy-efficient BET dispatching in modern 
logistics. By providing an accurate and efficient dispatching strategy while considering real-
world challenges, this research contributes to the advancement of sustainable and cost-
effective freight operations. 



 

 1 

1. Introduction  

Over the last decade, there has been an increase in new incentives and regulations aimed at 
reducing greenhouse gas (GHG) emissions and promoting alternative fuel choices in the 
transportation sector. The transportation system is the leading contributor to GHG emissions, 
primarily coming from burning fossil fuels for the vehicular transportation and goods 
movement [1]. For instance, in the US, it accounted for 28% of total GHG emission in 2021 [2]. 
Specifically, the heavy-duty freight transport contribute approximately 23% of total GHG 
emissions in the transportation sector [3], which also has negative in the form of local 
pollutants, such as particular matter and noise. For these reasons, one way to mitigate the 
negative effect of environmental in the freight transportation sector is by using the clean 
heavy-duty vehicles, e.g., battery electric trucks (BET), in the near future [4].  

The aforementioned reasons have led to increasing attention toward the utilization of battery 
electric trucks (BETs), which is one of the promising approaches to achieve green logistics since 
there is zero emission when operating [5]. The application of electric vehicles (EVs) or BETs has 
attracted more interest from various logistics companies as part of their operational fleets for 
conducting last-mile deliveries, e.g., Amazon, DHL, and UPS [6], [7], [8]. Although there are 
several benefits of the BETs, however, it is not trivial to substitute conventional heavy-duty 
diesel trucks (HDDTs) with BETs due to several limitations, e.g., high purchase prices and 
battery replacement costs, limited driving range, potentially long recharging time, and the 
scarcity of public recharging stations. Therefore, a well-planned dispatching strategy is 
necessary to better utilize the BET fleets and conduct the last-mile delivery by logistics 
companies. 

In many realistic logistics systems, one of the major activities is dispatching commercial goods 
by visiting a set of customers with a set of trucks that start and end at the depot and minimizing 
their travel cost, which is known as the vehicle/truck routing problem (VRP) [9]. Other than the 
traditional internal combustion conventional vehicles, designing an efficient fleet dispatching 
strategy for a BET fleet is also crucial, which has been a rise in the related research field during 
the past decades. Due to several realistic constraints of the electric fleet, such studies (e.g., 
[10], [11], [12]) address the electric fleet dispatching problem considering their limited driving 
range, and the possibility of recharging at assigned charging stations, where the goal is 
minimizing the total travel energy or distance cost. Additionally, some other real-life factors 
have been considered when making a dispatching strategy for the electric fleet, such as cargo 
capacity, delivery time windows [11], partial recharging policy [13], and multiple charging rates 
[14]. Those studies show the effects of improving freight transportation efficiencies from 
economic applications and energy efficiency perspectives.  

This study is motivated by a real-world dispatching problem of a large pallet logistics company 
in Southern California, CA. The goal aims to reduce the total energy consumption through an 
energy-efficient routing strategy for the BET fleet, together with the electric recharging plan. 
The green vehicle routing problem (G-VRP) [10] and classic electric vehicle routing problem (E-
VRP) [11] is extended, where the energy consumption is proportional to travel distance. A more 
realistic BET energy consumption model is implemented in this study, considering varying cargo 
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payload and speed. In the context of the BET fleet, a macroscopic energy consumption model 
can estimate the electricity cost for the routes but also provides energy-related information for 
the dispatcher to decide a near-optimal recharging visit. Other than a fully recharging 
restriction, a partial en route policy is considered in this study, which is more realistic and 
efficient in the real-world scenario. The BET fleet can be partially recharged during the route, 
reducing the potential recharging time, and satisfying the customer’s time window.  

The BET dispatching strategy investigated here incorporates the backhauling strategy [15]. 
Specifically, a “last-in, first-out” approach is adopted for deliveries. The fleet departs from the 
depot with fully or partially loaded trailers and first serves linehaul customers who request 
delivery orders. After emptying the trailer, the fleet then serves backhaul customers who 
request pickups and finally terminate at the depot. Implementing the backhauling strategy 
offers several practical advantages. From a sustainable perspective, it reduces the empty 
running of vehicles and increase the degree of vehicle utilization [16]. Additionally, from an 
economic perspective, this strategy helps minimize loading and unloading time. Since the 
trailers are often rear loaded, an appropriate dispatching plan ensures well-organized delivery 
orders when the BET fleet departs from the depot. This eliminates the need for extensive 
rearranging of large pallets or goods at each customer location [15]. 

Therefore, the major contributions of this research are summarized as follows: 

• In this study, an energy-efficient BET dispatching problem is proposed, considering 
limited cargo load and battery capacity, backhauls strategy, partial recharging policy, 
and time windows.  

• To address this problem, this problem is mathematically formulated as an optimization 
problem by devising a directed acyclic graph (DAG), which considers the linked level BET 
energy consumption model. The problem is formulated as a single objective problem 
where the goal is to find an energy-efficient dispatching strategy for the BET fleet. An 
effective adaptive large neighborhood search (ALNS) based metaheuristic approach is 
developed to solve the proposed BET dispatching problem.  

• The proposed dispatching strategy is evaluated on a real-world BET fleet dispatching 
data, including orders, itineraries, and routes. Extensive experiments demonstrate the 
efficiency of the proposed dispatching strategy can reduce total energy consumption 
significantly when compared to a baseline strategy.  

The remainder of this research is organized as follows. In Section 2, a brief review of related 
literature is presented. Section 3 introduces the BET energy consumption model and presents a 
mixed integer programming (MILP) model for the proposed BET dispatching problem. In Section 
4, the proposed ALNS-based metaheuristic algorithm is presented in detail. To assess the 
performance of the proposed solution approach, Section 5 presents computational case studies 
involving the description of real-world dispatching data and the analysis of the solution 
performance. Finally, Section 6 concludes the key findings and points to future research. 
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2. Literature Review 

The literature review focuses on algorithms related to: 1) general fleet dispatching (e.g., generic 
vehicle routing problems), 2) electrification of commercial fleet, and 3) BET fleet dispatching 
and green vehicle routing problem (G-VRP).  

The past two decades have witnessed research interest in green logistics, aiming to improve the 
sustainability of producing and distributing goods and services in the transport sector [17]. To 
achieve the goal of green logistics, such efforts have been made to reduce negative 
environmental impacts based on operation research and mathematical programming 
techniques, which provide an efficient management strategy for the truck fleet. In this section, 
first, the solution methods are briefly reviewed to solve the generic vehicle routing problem 
(VRP). Second, the related work is discussed, focusing on the green vehicle routing problem (G-
VRP) in city logistics. Finally, considering a dispatching with pick-up service in the logistics 
systems, the VRP with backhauls and its applications are reviewed.  

2.1 Fleet Dispatching 

As one of the major aspects of fleet management systems, the VRP is one of the most 
important problems during the operational decision stage. The problem assumes that a 
homogeneous vehicle fleet with limited capacity needs to serve customers’ demand in a single 
visit, and each route should start and end at the same depot. The goal is to minimize the total 
travel cost (usually in terms of total travel distance). Due to the NP-hardness of VRP (i.e., the 
complexity of the problem increases exponentially when the problem size increases) [9], large 
numbers of heuristics and metaheuristics approaches have widely applied to solve the VRP and 
its variants. As the methods may include large neighborhood search (LNS) [18], the adaptive 
large neighborhood search (ALNS) [19], variable neighborhood search [11], etc. 

In [18], Shaw proposed a large neighborhood search (LNS) heuristic algorithm to solve the VRP 
by defining a move as the removal and reinsertion of a set of customer visits. For the removal 
process, a group of related customers is chosen and stored in a removal list. While during the 
reinsertion process, those customers are inserted into the trip iteratively, following the 
predetermined constraints. Therefore, a set of new solutions will be obtained. Extending the 
LNS heuristic approach, Ropke and Pisinger [19] introduced an adaptive large neighborhood 
search (ALNS) metaheuristic approach involving an “adaptive” mechanism in the removal and 
reinsertion process. The authors implemented the ALNS on vehicle routing problems with 
pickup and delivery problems. This method is composed of several sub-heuristics that are used 
with a frequency based on their performance. The ALNS approach shows the advantages of the 
solution performance, which improves the best-known solutions for more than 50% of the 
problems from more than 350 benchmark instances [19]. Considering the energy consumption 
during the dispatching process, Demir et al. [20] studied the pollution-routing problem (PRP), 
an extension of the traditional VRP with time windows. They presented an ALNS-based solution 
framework to find energy-efficient routes considering fuel consumption and greenhouse gases 
emissions.  



 

 4 

2.2 Battery Electric Truck Routing 

As one of the promising alternatives to reduce GHG emissions in the transportation sector, 
developing a dispatching strategy for the electric fleet in city logistics has gained greater 
interest. In [10], Erdoğan and Miller-Hooks proposed a green vehicle routing problem model, 
where the goal is to find an efficient dispatching strategy for a homogenous alternative fuel 
vehicle fleet (including EVs), considering refueling stations and limited driving range. The 
authors developed a saving heuristic and a density-based clustering algorithm to solve the 
proposed problem. Extended [10], Schneider et al. [11] introduced an electric vehicle routing 
problem with time windows and recharging stations (EVRP-TW). The authors implemented a 
metaheuristics algorithm, the variable neighborhood search algorithm hybrid with tabu search 
strategies (VNS/TS). This study used a simulated annealing (SA) heuristic strategy as an 
acceptance criterion to improve the solution quality. Based on the previous studies, Keskin and 
Çatay [13] introduced an electric vehicle routing problem with time windows and a partial 
recharging policy (EVRPTW-PR). An ALNS metaheuristic algorithm was proposed to solve the 
proposed problem. The authors demonstrated the proposed model and solution approach 
improve the best-known solutions in [11]. Dönmez et al. [21] introduced a mixed fleet VRP with 
time windows and partial recharging with multiple chargers (MFVRP-MC). Motivated by the 
progression transition to electric vehicles, they investigated multiple charging configuration 
types for the charging stations when designing the routing strategy for the mixed fleet. To solve 
the proposed problem, they developed an ALNS heuristic algorithm to address the problem. 

The models in the aforementioned literature assume that the energy consumption of the EV 
fleet is proportional to the travel distance. To further investigate a more energy-efficient 
dispatching strategy, Lin et al. [22] developed an energy consumption model for an EV fleet, 
where the goal aims to minimize the total energy consumption during routing and dispatching. 
In [12], Goeke and Schneider addressed the electric vehicle routing problem with time windows 
and a mixed fleet (EVRPMFTW), considering a realistic energy consumption model of an EV and 
fuel consumption of an internal combustion vehicle (ICV). The authors proposed an ALNS-based 
metaheuristics approach to solve the EVRPMFTW and validated it on a real-world instance. 
Zhang et al. [23] introduced an EVRPTW for minimizing energy consumption and developed the 
corresponding mathematical formulation. The authors developed an ant colony (AC) based 
metaheuristics algorithm and compared it with the performance of the ALNS approach [12]. 
Recently, Yu et al. [24] introduced a green mixed fleet dispatching problem with realistic energy 
consumption, aiming to minimize the total GHG consumption of an ICV fleet and the energy 
consumption of an EV fleet. Amiri et al. [25] presented a bi-objective GVRP with a mixed fleet of 
conventional trucks and BETs. An ALNS-based metaheuristic algorithm is used to solve the 
proposed model. A set of real-world instances was used in [25] to evaluate the performance of 
the dispatching strategy. 

Considering a pickup and delivery strategy for EVs, in [26], Yang et al. proposed an electric 
vehicle routing problem with mixed backhauls, time windows, and recharging stations, where 
the goals it to minimize the total travel cost. The authors constructed a multi-dimensional 
representation network to reduce the types of variables and simplify the model structure. The 
augmented Lagrangian relaxation (ALR) model was proposed to solve the proposed problem. 
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Additionally, Yang et al. [27] investigated an integrated electric logistics vehicle recharging 
station location and routing problem with backhauls. The problem aimed to determine the 
selection of a recharging station considering the electric vehicle routing plan and other realistic 
constraints, such as limited battery capacity, recharging capacity, facility construction budget, 
mixed pickup and delivery requests, and time windows. Peng et al. [28] developed a bi-level 
dispatching strategy for the BET fleet and implemented it in a real-world case study. Due to the 
NP-hardness of the GVRP, the upper level uses the k-means clustering approach to decouple 
the customers into different dispatching zones. Then, the author applied the variable 
neighborhood search and AC optimization algorithms to find the near-optimal dispatching 
strategy for the electric truck fleet at the lower level. 

2.3 Vehicle Routing Problem with Backhauls 

In city logistics systems, the vehicle routing problem with backhauls (VRPB) aims to find a cost-
efficient routing plan that meets customer demand. In VRPB, the customers are divided into 
two groups: linehaul customers who require deliveries and backhaul customers who require 
pickups. The linehaul customers are first served, followed by the backhaul customers. In [15], 
Toth and Vigo presented a mixed integer programming model for a general VRPB and 
developed an exact branch-and-bound algorithm to address the VRPB. Extending the classic 
VRPB, Ropke and Pisinger [29] developed a heuristic solver to address variants of VRPB, 
including classic VRPB, VRPB with time windows, mixed VRPB, multiple depot VRPB, etc. The 
authors proposed an improved LNS algorithm as a solver to address those types of VRPB.  

Researchers have also investigated many realistic models to accommodate practical 
constraints. For example, Nagy and Salhi [30] proposed a MILP model for the single and 
multiple depot vehicle routing problem with pickups and deliveries, where the goal is to find a 
cost-efficient dispatching strategy for a set of linehaul and backhaul customers. An integrated 
heuristic method was proposed in this study to solve VRPB. To investigate a large size 
dispatching problem in a logistics company, Salhi et al. [31] considered a more realistic routing 
and distribution problem, the fleet size and multi-depot VRPB. This problem aims to determine 
the composition of the vehicle fleet and optimize their dispatching strategy, which minimizes 
the total travel cost. In [32], Chávez et al. presented a multi-depot vehicle routing problem with 
backhauls, where the vehicle fleet is collecting after the delivering process. The authors 
proposed a multi-optimization approach based on a Pareto ant colony optimization (PACO) 
approach to solve the proposed problem with respect to three objectives of travel distance, 
travel time and total energy consumption. 
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3. Overview of BET Fleet Dispatching System 

3.1 System Architecture 

The proposed BET fleet dispatching problem aims to find an energy-efficient dispatching 
strategy for a set of linehaul and backhaul customers. The effect on energy consumption of 
combining two separate flows can be described as follows: the forward flows from the 
dispatching center to the delivery orders, and the backward flows from the pickup orders to the 
dispatching center. In this section, the problem is formulated by devising a mixed integer mixed 
programming model on a directed acyclic graph. 

Figure 1 illustrates an example of the proposed dispatching problem, involving seven linehaul 
customers (D1-D7) who request deliveries, four backhaul customers (P1-P4) who request 
pickups, two charging stations (CS1 and CS2), and a dispatching center (depot) where the BET 
fleet fully charged when starting the daily operation. A homogenous fleet of BETs is fully 
recharged when departing the depot, and the commercial goods are loaded in the trailer 
according to the dispatching sequences assigned by the proposed strategy. The percentage 
value in each arc/flow shows the battery SOC when the BET arrivals at each vertex or departs at 
the CS. It should be noted that the BET can visit the CS at most once and the maximum SOC 
after recharging is 80%. 
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Figure 1. A toy instance for the BET dispatching problem with backhauling. 

3.2 BET Fleet Dispatching with Backhauls and Time Window Constraints 

The BET dispatching problem with backhauls and time windows concerns a set of clustered 
customers with known delivery types, demand, address, appointment time windows, and 
service times. The dispatching center receives the customers’ information, then makes a 
precedence dispatching strategy for a homogeneous fleet of BETs with limited cargo payload 
capacity and battery capacity. The goal is to create the most energy-efficient routes that 
simultaneously satisfy the demand of linehaul customers and collect goods from the backhaul 
customers. The assumptions in the BET dispatching problem are presented in the following: 

• Each BET serves exactly one route. 

• Each customer (either linehaul or backhaul) is visited exactly once.  

• For each route, all linehaul customers should be visited before backhaul customers. 

• The BET fleet is fully recharged before departure at the depot, which partial/full loaded 
the requested delivery orders for the linehaul customers. The destination is at the same 
depot. 



 

 8 

• The operation time for the BET fleet is restricted to 8 hours. 

• The total demand of both linehaul customers and backhaul customers are considered 
separately and cannot exceed the truck cargo payload capacity. 

• The BET fleet has limited battery capacity and is fully recharged when departing from 
the depot. It can be partially recharged at the recharging station at most once if needed.  

• The energy consumption of the BET fleet is monitored which is a non-linear function 
with the travel distance. The truck load, speed, and gradient of the terrain are 
considered within the energy consumption model. 

3.3 Problem Formulation 

3.3.1 Assumptions 

The BET dispatching problem can be defined as a complete directed graph 𝒢 =

(𝒩′𝑂,𝐷 ∪ ℛ, 𝒜 ), where 𝒩′𝑂,𝐷 denotes the vertices including all customers’ nodes 𝒩 and 

depot (𝑂, 𝐷), and ℛ represents recharging stations. A set of customers 𝒩 can be partitioned 
into two groups {𝐿, 𝐵}, where the set 𝐿 = (1, 2, … , 𝑛) represents the linehaul customers, and 
the set 𝐵 = (𝑛 + 1, 𝑛 + 2, … , 𝑛 + 𝑚) denotes the backhaul customers. Each customer 𝑖 ∈ 𝒩 
has an assigned delivery type with demand 𝑞𝑖 (positive if pick-up, negative if delivery), service 
time 𝑠𝑖 and time window [𝑒𝑖 , 𝑙𝑖], where 𝑒𝑖 and 𝑙𝑖 denotes the earliest and latest service starting 
times, respectively. All BETs should departure from the depot 𝑂 and returns at 𝐷, with a 
maximum load capacity 𝐶 and a battery capacity 𝑄. 

Extending the integer linear programming formulation and notation of [15], the set of arc 𝒜 =
𝐴1 ∪ 𝐴2 ∪ 𝐴3 is defined. Specifically, let 𝐴1 = {(𝑖, 𝑗) ∈ 𝐴: 𝑖 ∈ 𝐿 ∪ 𝑂, 𝑗 ∈ 𝐿 ∪ ℛ} denote all 
forward flows (i.e., from the depot to the linehaul vertices), 𝐴2 = {(𝑖, 𝑗) ∈ 𝐴: 𝑖 ∈ 𝐵 ∪ ℛ, 𝑗 ∈ 𝐵 ∪
𝐷} represent the backward flows include all backhauling vertices, and the interface arc 𝐴3 =
{(𝑖, 𝑗) ∈ 𝐴: 𝑖 ∈ 𝐿 ∪ ℛ, 𝑗 ∈ 𝐵 ∪ 𝐷}. Each arc (𝑖, 𝑗) is associated with a travel distance 𝑑𝑖𝑗 and 

travel time 𝑡𝑖𝑗. Define 𝛥𝑖
+ = {𝑗: (𝑖, 𝑗) ∈ 𝒜, 𝑖 ∈ �̅�} which denotes the forward of 𝑖, and 𝛥𝑖

− =

{𝑗: (𝑗, 𝑖) ∈ 𝒜, 𝑖 ∈ �̅�} which denotes the backward of 𝑖. 

3.3.2 Energy Consumption Model 

 

Figure 2. Calculation of required energy on arc. 
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Figure 2 shows the calculation of required energy consumption of a BET. First, the mechanical 
power 𝑃𝑀 is determined using the model presented in [33]. In mechanical power, it determines 
the energy consumption based on factors such as travel distance, vehicle weight, speed, 
acceleration, etc. Second, the mechanical power 𝑃𝑀 is translated into the electric power 𝑃𝐸 that 
the electric motor needs to provide the required amount of mechanical power. Third, the 
electric energy needed by the electric motor is converted to the amount of power that has be 
taken from the battery 𝑃𝐵 based on the battery discharge efficiency [23].  

The mechanical power 𝑃𝑀 of a BET is needed to overcome rolling, drag and wind resistance, 
and gravitational force as well as to enable the acceleration (𝑎). With the rolling resistance 
factor 𝑐r , the total vehicle mass 𝑀 and the gravitational constant 𝑔, and the gradient angle 𝜃, 
the rolling resistance 𝐹𝑟 can be determined as  

𝐹r = 𝑐r ⋅ 𝑀 ⋅ 𝑔 ⋅ cos (𝜃). (1) 

The aerodynamic resistance 𝐹a is a function of the speed 𝑣, the aerodynamic drag coefficienct 
𝑐d, 𝜌a the air density and the frontal area 𝐴. Then, the aerodynamic resistance can be 
calculated by 

𝐹a =
1

2
⋅ 𝜌a ⋅ 𝐴 ⋅ 𝑐d ⋅ 𝑣2 . (2) 

Therefore, the total mechanical power 𝑃𝑀 is: 

𝑃M = (𝑀 ⋅ 𝑎 +
1

2
⋅ 𝑐d ⋅ 𝜌 ⋅ 𝐴 ⋅ 𝑣2 + 𝑀 ⋅ 𝑔 ⋅ sin(𝜃) + 𝑐r ⋅ 𝑀 ⋅ 𝑔 ⋅ cos (𝜃)) ⋅ 𝜈. (3) 

To calculate the mechanical power requirement 𝑃𝐸  of the BET on the linked level arc (𝑖, 𝑗), the 
model presented in [22] and [23] is used, which is a linear function of vehicle weight and a 
quadratic form of vehicle speed. To simplify the problem, the total weight is assumed to be 
𝑀 = 𝑤 + 𝐶𝑖𝑗 where 𝑤 and 𝐶𝑖𝑗 represent the curb weight and load carried by the BET, 

respectively, the distance for the arc (𝑖, 𝑗) is represents as 𝑑𝑖𝑗. Therer, the mechanical energy 

required by the BET is shown as follows: 

𝑃𝐸𝑖𝑗
≈ 𝑃𝑀(𝑑𝑖𝑗/𝑣𝑖𝑗) =

𝑃𝑀𝑑𝑖𝑗

𝑣𝑖𝑗
= 𝛼𝑖𝑗(𝑤 + 𝐶𝑖𝑗)𝑑𝑖𝑗 + 𝛽𝑣𝑖𝑗

2 𝑑𝑖𝑗. (4) 

where, 𝛼𝑖𝑗 = 𝑎 + 𝑔sin 𝜃𝑖𝑗 + 𝑔𝐶𝑟cos 𝜃𝑖𝑗  is an arc specific constance, and 𝛽 = 0.5𝐶𝑑𝐴𝜌 is a 

vehicle specific constant. In this problem, the vehicle speed is assumed to be constant, and the 
result is represented by kilowatt hour (kWh). 

Hence, to compute the battery power demand on a graph, the motor efficiency (𝑒𝑓𝑓𝑚) and 
battery discharging efficiency (𝑒𝑓𝑓𝑑) of a BET are taken into consideration in the model. The 
electric energy consumption 𝐸𝑖𝑗 for traveling this arc can be calculated by: 

𝐸𝑖𝑗 = 𝑒𝑓𝑓𝑑 ∙ 𝑒𝑓𝑓𝑚 ⋅ 𝑃𝐸𝑖𝑗
= 𝑒𝑓𝑓𝑑 ∙ 𝑒𝑓𝑓𝑚 ⋅ [𝛼𝑖𝑗(𝑤 + 𝐶𝑖𝑗)𝑑𝑖𝑗 + 𝛽𝑣𝑖𝑗

2 𝑑𝑖𝑗]. (5) 
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3.3.3 Objective Function 

The BET dispatching problem extend the classic EVRPTW [11], and the goal is to minimize the 
total energy consumption to serve a set of customers, considering precedence constraint (first-
out, last-in), cargo load capacity, battery capacity, and partial en route recharging policy. The 
variables and parameters used in this study are summarized in Table 1. 

Table 1. Variable definitions 

Variable  Description  

𝑚𝐵 Set of BETs available at the depot 

𝒩 Sets of customer vertices 

𝐿 Sets of linehaul customer vertices 

𝐵 Sets of backhaul customer vertices 

𝐾 A total number of BETs in operation 

ℛ Recharging station(s) 

𝑟 Recharging rate 

𝑑𝑖𝑗 Distance between vertices i to j 

𝑡𝑖𝑗 Travel time between vertices i to j 

𝐸𝑖𝑗 Energy consumption between vertices i to j 

𝑇𝑂 Earliest departure time 

𝑇𝐷 Latest return time 

𝐶 Cargo payload capacity 

𝑄 BET maximum battery capacity 

𝑞𝑖 Demand at vertex (positive if pick-up, negative if drop-off) 

𝑒𝑖 Earliest start of service time at vertex i 

𝑙𝑖 Latest start of service time at vertex i 

𝑠𝑖 Service time at vertex i 

𝜏𝑖 Decision variable specifying the time of arrival at vertex i 

𝑘𝑖  
Decision variable specifying the visit to recharging station vertex i. 
0 if customer, 1 if charging station. 

𝑢𝑖 Decision variable specifying the remain cargo on arrival at vertex i 

𝑦𝑖 Current SOC for BET 𝑣𝐵 when arrive at vertex i 

𝑌𝑖 Finish charging SOC for BET 𝑣𝐵 at vertex i 

𝑥𝑖𝑗 
Binary decision variable. 0 if the route from i to j is not visited by 
BET 𝑣𝐵, 1 otherwise 
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Thus, the BET dispatching problem can be formulated as a mixed-integer programming as 
follows: 

𝑚𝑖𝑛 ∑ 𝑒𝑓𝑓𝑑 ∙ 𝑒𝑓𝑓𝑚 ∙ [𝛼𝑖𝑗(𝑤 + 𝐶𝑖𝑗)𝑑𝑖𝑗 + 𝛽𝜈𝑖𝑗
2 𝑑𝑖𝑗] ∙ 𝑥𝑖𝑗𝑖∈𝒩′𝜊∪ℛ,𝑗∈𝒩′

𝐷∪ℛ,𝑖≠𝑗  (6) 

Subject to: 

(Demand and flow balance constraints) 

∑  𝑖∈Δ𝑗
− 𝑥𝑖𝑗 = 1, 𝑗 ∈ 𝒩 ∪ ℛ  (7) 

∑  𝑗∈Δ𝑖
+ 𝑥𝑖𝑗 = 1,   𝑖 ∈ 𝒩 ∪ ℛ (8) 

∑ 𝑥𝑖𝑗 − 𝑥𝑗𝑖 = 0,𝑗∈ 𝒩′𝐷∪ℛ ,i ≠𝑗 ∀𝑖 ∈ 𝒩′𝑂 ∪ ℛ (9) 

∑  𝑖∈Δ𝑂
− 𝑥𝑖𝑗 = 𝐾 (10) 

∑  𝑖∈Δ𝐷
− 𝑥𝑖𝑗 = 𝐾 (11) 

(Vehicle constraints) 

𝑦𝑂 = 𝑄, ∀𝑗 ∈  𝒩 ∪ ℛ (12) 

∑ 𝑥𝑂𝑗 ≤ 𝑚𝐵𝑗∈ 𝒩∪ℛ  (13) 

(Recharging visit constraints) 

∑  𝑗∈(𝐷∪𝒩∪ℛ) 𝑥𝑖𝑗 ≤ 1, ∀𝑖 ∈ ℛ (14) 

(Recharging time with time window) 

𝑇𝑂 ≤ (𝑡𝑖𝑗 + (1 − 𝑘𝑖)𝑠𝑖 + 𝑘𝑖 ∙
𝑌𝑖 − 𝑦𝑖

𝑟
) 𝑥𝑖𝑗 ≤ 𝑇𝐷, 

∀𝑖 ∈ 𝑂 ∪ 𝒩 ∪ ℛ, 𝑗 ∈ (𝐷 ∪ 𝒩 ∪ ℛ), 𝑖 ≠ 𝑗 (15) 

𝑌𝑖 = 𝑀𝑖𝑛{3600 ∙ 𝑟, (𝑄 − 𝑦𝑖)}, ∀𝑖 ∈ ℛ (16) 

(Time window constraints) 

𝜏𝑖 + (𝑠𝑖 + 𝑡𝑖𝑗)𝑥𝑖𝑗 − 𝑙0(1 − 𝑥𝑖𝑗) ≤ 𝜏𝑗

∀𝑖 ∈ 𝑂 ∪ 𝒩 ∪ ℛ, ∀𝑗 ∈ 𝑗 ∈ (𝐷 ∪ 𝒩 ∪ ℛ), 𝑖 ≠ 𝑗
 (17) 

𝑒𝑖 ≤ 𝜏𝑖 ≤ 𝑙𝑖 , ∀𝑖 ∈ 𝒩′𝑂,𝐷 (18) 

(Demand constraints) 

0 ≤ 𝑢𝑜 ≤ 𝐶 (19) 

0 ≤ 𝑢𝑗 ≤ 𝑢𝑖 − 𝑞𝑖𝑥𝑖𝑗 + 𝐶(1 − 𝑥𝑖𝑗)

∀𝑖 ∈ 𝑂 ∪ 𝒩 ∪ ℛ, ∀𝑗 ∈ 𝐷 ∪ 𝒩 ∪ ℛ, 𝑖 ≠ 𝑗
 (20) 
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(Battery recharging constraints) 

0 ≤ ((1 − 𝑘𝑖) ⋅ 𝑦𝑖 + 𝑘𝑖 ⋅ 𝑌𝑖 − ℎ ∙ 𝐸𝑖𝑗 ) 𝑥𝑖𝑗 ≤ 𝑄, ∀𝑖 ∈  𝒩′
𝑂 ∪ ℛ, 𝑗 ∈  𝒩′

𝐷 ∪ ℛ, 𝑖 ≠ 𝑗 (21) 

(Binary decision variable) 

𝑥𝑖𝑗 ∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝒩′𝑂,𝐷  , 𝑖 ≠ 𝑗 (22) 

The objective function of minimizing the total energy consumption is defined in (6). Constraints 
(7), (10) and (8), (11) impose the indegree and outdegree constraints for the customers nodes 
and the charging stations. Constraints (9) define the flow conservation constraints. Constraint 
(12) ensures the BET is fully charged when departure at the depot. Constraint (13) ensures that 
the operating BETs do not exceed the maximum number of BETs available at the depot. 
Constraints (14)-(16) define the en route recharging policy, each BET is allowed to recharge at 
most once, considering one-hour maximum recharging time as full charge may slowly. 
Constraints (17) and (18) define the arrival time at each vertex should satisfy the time windows. 
Constraints (19) and (20) represent the capacity of each BET does not exceed the maximum 
cargo payload when visiting each vertex, for both inbound and outbound trips. Constraint (21) 
restricts the battery SOC is non-negative when dispatching. Finally, condition (22) defines the 
binary decision variables. 
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4. BET Fleet Dispatching Algorithm Development 

4.1 State-machine Diagram of BET Fleet Dispatching Strategy 

 

Figure 3. A state-machine diagram of BET fleet dispatching strategy. 

The state-machine diagram of the proposed BET fleet dispatching strategy is shown in Figure 3, 
involving the order database, the fleet management system, charging management system, and 
the dispatching algorithm module. The fleet management system collects the dispatching 
information of the customers and generates the road network information (detailed in Section 
5.1) as the inputs of the dispatching algorithm. In the fleet management system, it monitors the 
battery level, cargo weight, and driving time of the BET fleet, which helps making dispatching 
decisions. The charging system provides charging guidance, including the address, and charging 
power for the available recharging stations. The dispatching algorithm generates an energy-
efficient dispatching and recharging scheme based on that information. 

4.2 Proposed ALNS-based Metaheuristic Algorithm 

In this section, the adaptive large neighborhood search (ALNS) framework is introduced to solve 
the proposed BET dispatching problem. The ALNS first introduced by [19], which extended the 
large neighborhood search (LNS) [18], has been demonstrated as a succussed approach capable 
of solving the standard vehicle routing problem with pickup and delivery [29], the electric 
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vehicle routing problem with backhaul and time windows [13], pollution routing problem [33], 
mixed fleet vehicle routing problem [12], etc.  

4.2.1 Algorithm Flow 

The entire framework of the ALNS algorithm is described in Algorithm 1. The algorithm is 
initialized with an energy-feasible solution generated by a constructive heuristic (see Algorithm 
2). In line 2, at the beginning of the main loop of ALNS improvement process, the initial feasible 
solution 𝑆𝑐 is regarded as the current best solution 𝑆𝑏. Additionally, the weight vectors (𝜔− and 
𝜔+) is initialized for the destroy and repair operators, denoted by Γ− and Γ+, respectively. The 
main loop of the ALNS improvement (lines 3-16) is then started and search for a near-optimal 
solution 𝑆𝑏 until the stop criterion is met, where the near-optimal solution 𝑆𝑏 is not improved 
over a predefined iteration (i.e., a non-improved number of iterations 𝜂). To iteratively improve 
the best solution, a set of destroy operators Γ− and repair operators Γ+ are used to modify the 
initial current solution 𝑆𝑐 and obtain a new current solution 𝑆𝑐′. An accept rule is applied to 
determine whether the new current solution 𝑆𝑐 ′ should be accepted for the next iteration. 
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Algorithm 1. Overview of the ALNS framework 

Input: An initial feasible solution 𝑆 generated by initialization phase; 

Output: a set of near-optimal solution 𝑆𝑏 

1: 𝑆𝑐 ←   𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑖𝑛𝑖𝑡𝑎𝑙_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛( ) 

2: 𝑆𝑏 = 𝑆𝑐; 𝜔− =  (1, … , 1); 𝜔+ =  (1, … , 1) 

3: while a non-improved number of iterations 𝜂 is not reached do 

4:  {select a destroy operator 𝜁− ∈ 𝛤− by 𝑃(𝜔𝑖
−)} 

5:  destroy current solution 𝑆𝑐 with destroy operator 𝜁− 

6:  𝑆𝑐′ ← DestroyedOperator (𝑆𝑐)  

7:  {select a repair operator 𝜁+ ∈ 𝛤+ by 𝑃(𝜔𝑖
+)}} 

8:  𝑆𝑐′ ← RepairOperator (𝑆𝑐′) 

9:   if accept_SA(𝑆𝑐′, 𝑆𝑏) then 

10:    𝑆𝑐  ← 𝑆𝑐′ 

11    if 𝑆𝑐′ is better than 𝑆𝑏 then 

12     𝑆𝑏  ← 𝑆𝑐′ 

13    end if 

14:   end if 

15:  Update: the weight of destroy operators 𝜔− and repair operators 𝜔+ 

16: end while 

17: return 𝑆𝑏 

4.2.2 Key Components 

A general ALNS procedure hybrid with a simulated annealing (SA) process is employed as a 
search engine to construct a set of energy-efficient routes for the BET fleet. To develop the 
ALNS-based metaheuristic algorithm, there are four key components: 1) construction of an 
initial energy feasible solution for the BET fleet, 2) destroy operators, 3) repair operators, 4) 
acceptance and termination criteria, and 5) adaptive mechanism. In the following, the main 
components of the ALNS-based solution approach is elaborated. 

1) Construct initial solution 

The initial solution for ALNS is generated by a greedy constructive heuristic (as shown in 
Algorithm 2), which is similar to the method implemented by [34]. Unvisited customers 𝒩 are 
first sorted in a non-decreasing order of linked-level energy consumption and iteratively 
inserted into the solution. Then, during each iteration, a candidate customer is inserted into an 
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appropriate position at the current BET route, leading to the minimum increase in the total 
energy consumption. Once the current route is energy infeasible, a possible recharging 
schedule could be inserted based on a set of available charging stations ℛ. Therefore, the 
remaining unvisited customers are allowed to insert into the current route. When there are no 
vertices can be routed into the current BET route since the battery capacity, time windows, or 
cargo capacity violation, the current route terminates. Then, several new routes are repeated 
as the same strategy until all customers have been visited.  

Algorithm 2 Construction of initial feasible solution 

Input: A set of customers 𝒩 = {𝐿, 𝐵}, recharging stations ℛ; 

Output: an energy-feasible solution 𝑆𝑖𝑛𝑖𝑡𝑎𝑙 

1: 𝒩𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝒩 

2: Current route for BET 𝐾𝑖 ∈  𝑚𝐵, 𝑖 ∈ {1, 2, … , 𝑚𝐵}  

3: while unvisited customer 𝒩𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ≠ ∅  do 

4:  𝑝 ← 𝑆𝑎𝑚𝑝𝑙𝑒 𝑎 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑓𝑟𝑜𝑚 𝒩𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑  

5:  if 𝑐 can be inserted in the current solution without violation then 

6:   Find best insertion position for 𝑐 which generate lowest cost 𝑓(𝑆𝑖𝑛𝑖𝑡𝑎𝑙) 

7:   Update: 𝒩𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝒩𝑈𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∖ 𝑝 

8:  if 𝑛 cannot be inserted in the current solution since energy infeasible then 

9:   Find best insertion position for CS ℛ which generate lowest cost 𝑓(𝑆𝑖𝑛𝑖𝑡𝑎𝑙) 

10:  else 

11   Update: start new route for BET 𝐾𝑖+1 

12: end while 

13: return 𝑆𝑖𝑛𝑖𝑡𝑎𝑙 

2) Destroy operators 

The number of customers/vertices 𝑛 to remove is predefined by the destroy rate 𝜖, where  𝑛 = 
𝜖 ∙ 𝒩. The ALNS framework employs four removal operators to find a set of removal vertices 
based on the input 𝑛 and store them in the removal pool 𝐿𝑟𝑒𝑚𝑜𝑣𝑎𝑙 . The removal heuristics are 
detailed as follows: 

Random removal randomly removes some vertices from the BET routes. The procedure 
terminates when 𝑛 customers/vertices have been removed. 

Random path removal destroys an entire consecutive sub-path with 𝑛 vertices.  
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Worst removal iteratively removes 𝑛 unfavorable vertices based on their cost. This operator 
sorts the insertion cost of all customers in descending order by calculating 𝑐𝑖 = 𝑓(𝑠) − 𝑓(𝑠−𝑖), 
where 𝑠−𝑖 is the route without customer 𝑖 and 𝑠 is the route with customer 𝑖. During each 
iteration, the worst vertex contributes the largest insertion cost and will be removed to the 
unvisited list. 

Shaw removal removes a set of 𝑛 customers according to their similarity, which can be 

calculated by the relatedness function Λ(𝑖, 𝑗) = 𝜙1
𝑑𝑖𝑗

max
𝑖,𝑗∈𝒩

(𝑑𝑖𝑗)
+ 𝜙2|𝑒𝑖 − 𝑒𝑗| + 𝜙3

|𝑞𝑖−𝑞𝑗|

max
𝑖∈𝒩

(𝑞𝑖)−min
𝑖∈𝒩

(𝑞𝑖)
 , 

where the weight vector 𝜙 = (𝜙1, 𝜙2, 𝜙3) is used to normalize the relatedness function, 𝑑𝑖𝑗 

represents the distance between customers 𝑖 and 𝑗, |𝑒𝑖 − 𝑒𝑗| is the absolute difference 

between their arrival time, and |𝑞𝑖 − 𝑞𝑗| is the absolute difference of their demand. At the 

beginning of using the Shaw removal algorithm, a customer 𝑖 ∈ 𝒩 is randomly selected as a 
candidate customer to be removed, calculating the most related customer 𝑗 ∈ 𝒩\𝑖. The 
customer with the highest similarity to 𝑖 is the one with the smallest value of Λ(𝑖, 𝑗). Next, the 
most similarly customer is calculated and removed by evaluating relatedness with 𝑗. Finally, this 
operator terminates until 𝑛 vertices have been removed. 

3) Repair operators 

 

Figure 4. An example of repairing process of ALNS. 

After 𝑛 vertices have been removed from a solution, the repair operators are employed to 
reconstruct a new solution by inserting the removed 𝑛 vertices into the incomplete solution. 
Figure 4 shows an example of the repairing process. The following repair operators are used in 
the ALNS framework. 

Greedy insertion iteratively conducts a series of insertions by selecting the best option. At each 

iteration, the operator selects one unassigned customer from the removal pool 𝐿𝑟𝑒𝑚𝑜𝑣𝑎𝑙 . Then, 
it assesses the cost function to determine whether the current insertion yields the minimum 
cost. This insertion process continues until all unvisited customers have been chosen. 
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Regret insertion selects the customer with the highest difference between the cost of the first 
and 𝑘𝑡ℎ best insertion and inserts it into its optimal position. The regret-k value is calculated by 

𝑟𝑒𝑔𝑖,𝑘 = ∆𝑓(𝑖, 𝑝𝑜𝑠𝑖,1) − ∆𝑓(𝑖, 𝑝𝑜𝑠𝑖,𝑘), where ∆𝑓(𝑖, 𝑝𝑜𝑠𝑖,1) represents the cost improvement 

generated by the best insertion, and ∆𝑓(𝑖, 𝑝𝑜𝑠𝑖,𝑘) denotes the cost improvement generated by 

the 𝑘𝑡ℎ best insertion. At each iteration, the operator finds the 𝑘𝑡ℎ best insertion for customer 
𝑖, which generates the highest regret-k value. This approach avoids the myopic behavior of the 
greedy insertion algorithm by not necessarily selecting the task with the lowest cost. In this 
study, the regret-2 insertion method is implemented. 

Greedy insertion with charging stations was introduced in [35], a variation of the greedy 
insertion operator was introduced to handle energy constraints in BET routes that include CSs. 
This operator extends the general greedy insertion approach, which assumes that BETs do not 
visit en route CSs. Initially, the operator inserts customers until the battery SOC violation. Then, 
it computes a near-optimal charging scheme to minimize the deviation from the original BET 
route, allowing additional unvisited customers to be inserted. However, if a feasible charging 
scheme cannot be found in the current solution, the operator will terminate the insertion 
process after adding the customers. 

4) Acceptance and termination criteria 

In order to overcome the local optimal results, a simulated annealing (SA) approach is used to 
accept or reject the new solution 𝑆𝑐′ generated by the ALNS algorithm. There are three 
circumstances in an iteration. If a new solution 𝑆𝑐′ has been found and it is better than or equal 
to the global best solution 𝑆𝑏, the new solution 𝑆𝑐′ will be accepted as a new global best 
solution 𝑆𝑏. If the new solution worse than the global best solution, a SA heuristic algorithm will 

accept the worse solution with the probability 𝑒−(𝑓(𝑆𝑐′)−𝑓(𝑆𝑏))/𝑇, where 𝑓(𝑋) is the total energy 
consumption of solution X, and 𝑇 is the current temperature of a SA heuristic. An initial 
temperature 𝑇𝑖𝑛𝑖𝑡 is predefined, which can be decreased at every iteration by 𝑇 = 𝛿𝑇𝑖𝑛𝑖𝑡, where 
the deteriorate rate 𝛿 ∈ (0, 1). Furthermore, in the ALNS framework, the algorithm terminates 
when the solution does not improve over 𝜂 iterations.  

5) Adaptive mechanism 

This section details the ALNS procedure for solving the BET dispatching problem, which includes 
a set of removal operators Γ− = {𝜁1

−, 𝜁2
−, … , 𝜁𝑁𝐷

− } to destroy vertices (i.e., a few customers and 
CSs), and a set of repair operators Γ+ = {𝜁1

+, 𝜁2
+, … , 𝜁𝑁𝑅

+ } to reinsert unvisited customers or CSs, 
where ND and NR represent the number of destroy and repair operators, respectively. The 
feasible initial solution can be obtained in section Construct initial solution, which can be also 
defined as the current feasible solution 𝑆𝑐. Then, the ALNS procedure iteratively improves 𝑆𝑐 
until the termination criteria meet.  

At each iteration, a removal operator 𝜁− ∈ Γ− and a reinsertion operator 𝜁+ ∈ Γ+ are applied 
to destroy and repair the current solution 𝑆𝑐, respectively. Those operators are selected 
dynamically and adaptively based on the roulette wheel principle. To choose an operator in 
each iteration, two weight vectors are defined, 𝜔− = [𝜔1

−, 𝜔2
−, … , 𝜔𝑁𝐷

− ] and 𝜔+ =
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[𝜔1
+, 𝜔2

+, … , 𝜔𝑁𝑅
+ ], to store the weight of a set of destroy and repair operators, consecutively. 

Therefore, the probability of choosing an operator 𝜁 can be calculated by 𝑃𝑡(𝜔) =

𝜔𝑖/(∑  
|Γ|
𝑗=1 𝜔𝑗). After the current solution 𝑆𝑐′ is repaired, a new solution 𝑆𝑐′ is obtained. 

Moreover, in the “adaptive” mechanism, the weight vectors 𝜌− and 𝜌+ will be updated 
dynamically based on the quality of new solution 𝑆𝑐′. A score variable 𝜓 = [𝜑1, 𝜑2, 𝜑3, 𝜑4] is 
employed to assess the performance of the ALNS improvement. For example, a score 𝜑1 
denotes that a new solution 𝑆𝑏 has been found. Similarly, a score 𝜑2 is obtained when an 
improved solution is found. 𝜑3 indicates when a new solution has been accepted by a SA 
heuristic, while the score 𝜑4 is used when the solution is rejected. At the end of each iteration, 
the weight vector updates by 𝜔𝑖 = 𝜆𝜔𝑖 + (1 − 𝜆)𝜓, where 𝜆 ∈ (0,1) is a smooth variable to 
control the sensitivity of the weight vector. 
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5. Case Study 

This section presents the results of the numerical experiments using a real-world case study in a 
full-service supply chain company. To evaluate the performance of the proposed strategy, the 
new results are compared with the historical dispatching data. The mathematical model in 
section 3.2 is implemented in Python 3.9, and all experiments are conducted on a PC with Intel 
Core i7 CPU 3.6 GHz processor and 16 GB RAM. 

5.1 Data Collection 

In this section, the numerical study is conducted and the results are analyzed, using a real-world 
dataset in a full-service supply chain company to evaluate the performance of the proposed 
strategy. Four instances are generated, ranging from 47 to 90 customers based on the real-
world dataset, a typical one-day historical movements of a heavy-duty diesel truck fleet that 
operated in the Riverside and San Bernardino County regions of California.  

For each generated instance in the case study, it contains the geographic coordinates of 
customer locations, as well as information on the delivery types, required demands, time 
windows, and service times. Five customers’ locations are randomly selected, where a linear 
recharging station is in their parking lot. The BET has the flexibility to visit the charging stations 
during operation. Table 2 summarizes the characteristics of the four instances. 

Table 2. Summary of dataset characteristics 

Instance # of Customers # of Linehauls # of Backhauls CSs 

BETVRPB1 47 33 14 5 

BETVRPB2 58 26 32 5 

BETVRPB3 71 39 32 5 

BETVRPB4 90 54 36 5 

The Direction Service Application Programming Interface (DSAPI) provided by 
OpenRouteService [36] is adopted to generate distance and travel duration matrices for the 
truck routes between node-to-node locations, which is more realistic than the Euclidian 
distance. Specifically, those matrices consider the real-world road network, speed limitation 
and restricted zones for heavy-duty trucks. However, to simplify the dispatching problem, the 
traffic conditions are not considered in this study. 

5.1 Parameter Tuning 

In the numerical study, the problem parameter settings used are presented in Table 3 based on 
a real-world scenario. The total operation time is limited to 8 hours, including driving, idling 
when recharging, and service time. In this study, a set of homogenous BETs in the fleet is set, 
with short-range battery capacity (i.e., 300 kWh) or long-range battery capacity (i.e., 452 kWh) 
to evaluate the effect of driving range. Please note that the selection of these two ranges is 
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based on the BET models that are available on the current US market. For instance, Volvo Truck [37] 
provides several electric trucks with two battery sizes, 375 kWh and 565 kWh (both nominal values). To 
safely use the battery and extend its life, this study assumes 80% of the nominal battery capacity sizes, 
i.e., 300 kWh and 452 kWh. 

Table 3. Summary of problem parameters 

Notation  Description  Value 

A  Frontal surface area of a BET [m2]  5 

C  Maximum BET cargo capacity [37] [lbs.]  37,000 

Q  Maximum BET battery capacity [kWh]  {300, 452} 

𝑒𝑓𝑓𝑚  Motor efficiency [23]  1.25 

𝑒𝑓𝑓𝑑  Discharging efficiency [23]  1.11 

𝑐r  Unitless rolling resistance  0.01 

𝑐𝑑   Coefficient of rolling drag  0.7 

𝑤  Vehicle curb weight [lbs.]  8,000 

𝑔  Gravitational constant [m/s2]  9.81 

𝜌a  Air density [km/m3]  1.2041 

𝜃  Road angle   0° 

𝑎  Acceleration [m/s2]  0 

𝜈  Vehicle speed [mph]  68 

𝑠  Loading/unloading time [hour]  (0, 2]  

𝐶  Cargo capacity [lbs.]  22,000 

[𝑇𝑂 , 𝑇𝐷]  Working hour  [8 am, 4 pm] 

𝑟  Recharging rate [kWh/min]  3.96 

Instance BETVRPB2 with 58 customers is used and the ALNS heuristic algorithm is implemented 
with seven restarts to finetune the parameters in this study. Table 4 summarizes the parameter 
settings used in the case study. The bold values are the selected parameters used in the 
experiments. 
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Table 4. Summary of parameters in the experiment 

Variable Value 

Score vector 𝜓 = [𝜔1, 𝜔2, 𝜔3, 𝜔4] [15, 9, 4, 3], [18, 10, 5, 2], 

Decay parameter 𝜆 0.8, 0.85 

Destory percentage 38%, 35% 

Number of removal vertices ⌊𝟎. 𝟑𝟖𝓝⌋, ⌊0.35𝒩⌋ 

Number of non-improved iterations 750, 500 

Shaw removal weight vector 

𝜙 = (𝜙1, 𝜙2, 𝜙3) 

[0.5, 0.25, 0.25], [0.5, 0.30, 0.30] 

SA initial temperature 20, 10 

SA end temperature 0.5, 0.8  

SA deterioration rate 𝛿 0.99991, 0.99900 

5.2 Comparative Experiment 

Comparison of the results to historical movement data and discussion of the implications of the 
results and their impacts on the BET fleet dispatching problem. 

In order to assess the performance of the BET dispatching strategy, the ALNS algorithm is 
applied to solve the real-world instances. The results are compared with a baseline dispatching 
strategy from the supply chain company. The baseline strategy was provided by a routing solver 
in the supply chain company, which has been implemented in real-world freight operations. To 
make a fair comparison between the baseline strategy and the proposed dispatching strategy, 
all historical movements are presumed to be served by a BET fleet and estimated the total 
energy consumption by the objective function (6) for the historical iterations using the same 
distance matrices. Table 5 summarizes the historical iterations as the baseline in the case study. 

Table 5. Summary of real-world historical movements 

Instances # of BETs Total Energy Total_dist  Total_time 

BETVRPB1 5 915 512 13.1 

BETVRPB2 5 1094 490 13.7 

BETVRPB3 5 1406 726 18.5 

BETVRPB4 8 1062 657 22.7 

Using the problem parameter settings shown in Table 3, ten runs are initiated and the best 
solution for each test is recorded. To assess the effect of battery capacity on total energy 
consumption, two case studies with two types of battery capacity are conducted: a short-range 
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BET fleet fitted with a 300-kWh battery and a long-range BET fleet equipped with a 452-kWh 
battery. 

The results show that the dispatching strategy can solve the BET dispatching problem with time 
windows for all generated instances efficiently. The proposed strategy is compared with the 
baseline strategy by using the relative percentage deviation (𝑅𝑃𝐷𝑎,𝑏,𝑐) with respect to a) the 
total energy consumption, b) total vehicle miles traveled, and c) total travel time. The formula 
to calculate the 𝑅𝑃𝐷𝑎,𝑏,𝑐 is shown as follows: 

𝑅𝑃𝐷𝑎,𝑏,𝑐 =  
𝐶𝑎,𝑏,𝑐(ℎ𝑖𝑠𝑡)− 𝐶𝑎,𝑏,𝑐(𝑜𝑝𝑡)

𝐶𝑎,𝑏,𝑐(ℎ𝑖𝑠𝑡)
× 100%, 

where, 𝐶𝑎,𝑏,𝑐(ℎ𝑖𝑠𝑡) denotes the historical cost and 𝐶𝑎,𝑏,𝑐(𝑜𝑝𝑡) denotes the solutions obtained 
from the dispatching strategy, regarding the aforementioned aspects. 

Table 6. Results for the BET dispatching problem with short-range battery 

Instances # of 
BETs 

Total 
Energy 𝑹𝑷𝑫𝒂 

Total_dist 

𝑹𝑷𝑫𝒃 

Total_time  

𝑹𝑷𝑫𝒄 t*(s) 

BETVRPB1 5 769 16 422 18 11.4 13 357 

BETVRPB2 6 786 28 430 12 12.7 7 711 

BETVRPB3 5 846 39 473 34 12.9 30 2036 

BETVRPB4 7 988 7 606 8 21.1 7 2268 

Total 23 3389 24 1931 19 58.1 15 - 

Note: t* denotes the CPU time. 

Table 7. Results for the BET dispatching problem with long-range battery 

Instances # of 
BETs 

Total 
Energy 𝑹𝑷𝑫𝒂 

Total_dist 

𝑹𝑷𝑫𝒃 

Total_time  

𝑹𝑷𝑫𝒄 t*(s) 

BETVRPB1 5 755 17 414 19 11.3 13 611 

BETVRPB2 5 739 32 397 19 11.7 15 928 

BETVRPB3 5 839 40 465 34 12.5 36 2602 

BETVRPB4 7 947 11 579 12 21.0 7 3086 

Total 22 3280 27 1855 22 56.5 17 - 

Note: t* denotes the CPU time. 

As demonstrated in Table 6 and Table 7, the proposed strategy can reduce total energy 
consumption, ranging from 7% to 40%, compared with the baseline strategy. The columns 
total_dist and total_time describe the total vehicle miles traveled and total travel time under 
the energy-efficient routes, respectively. When using the energy-minimizing objective function, 
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the total energy consumption can be reduced by 24% and 27%, which is not proportional to the 
total vehicle miles traveled since the distribution of the cargo payload may affect the total 
energy consumption for the BET fleet. Additionally, it is observed that using short-range BETs 
may result in more BETs being deployed during operation, as seen in the BETVRPB2 instance 
with a short-range battery. Conversely, the long-range BET fleet can save more energy 
compared with short-range BET fleet, since there may be less detour trips to visit the charging 
stations. 

The historical fleet activities of instance BETVRPB1 and the energy-efficient routes are 
illustrated in Figure 5, with each trip depicted in a different color. As shown in Figure 5, the 
historical data comprises five HDDT trucks, covering a total travel distance of 512 miles. To 
enable a fair energy consumption comparison with the BET fleet, it is assumed that these 
routes are traveled by the BET trucks and subsequently recalculate the total energy 
consumption using the same model (as described in Section 3.3). The historical trips require a 
total energy consumption of 915 kWh. Figure 5 shows energy-efficient routes dispatching 
strategy for problem instance BETVRPB1 with a long-range BET fleet. The total energy 
consumption amounts to 755 kWh, with a tour length of 414 miles. 

 

Figure 5. The historical movements of instance BETVRPB1 with a HDDT fleet. 
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Figure 6. A near-optimal solution for instance BETVRPB1 with a long-range BET fleet. 

Figure 7 and Figure 8 show the energy consumption and total travel distance versus different 
battery capacities, respectively. It can be observed that the cargo weight influences the BET 
energy consumption since the energy consumption is not proportional to the travel distance. 
For instance, in BETVRPB2 with 58 customers, the total energy consumption may be reduced by 
28% when deploying the short-range BET fleet compared with the baseline strategy. However, 
the total travel distance is reduced by 12%. 
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Figure 7. Total energy consumption [in kWh] vs. battery capacity. 

 

Figure 8. Total travel distance [in miles] vs. battery capacity. 
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6. Key Findings and Recommendation 

In this project, an energy-efficient BET dispatching problem with backhauls and time windows is 
investigated. Extended the classic green-vehicle routing problem, this study focuses on a 
homogeneous BET fleet with limited cargo load and battery capacity, a precedence constraint 
for the set of customers composed of linehaul customers who required deliveries and backhaul 
customers who required pickups and their time windows. Moreover, an en route partial 
recharging policy for the BET fleet is incorporated, allowing partial recharging at any available 
charging station, based on the battery state-of-charge (SOC) upon arrival.  

A mixed-integer linear programming (MILP) model is defined whose goal is to make a 
dispatching strategy for a BET fleet to serve all customers that satisfy their demand, time 
windows and delivery type, while minimizing the total energy consumption. A realistic energy 
consumption model of BET is incorporated into the MILP formulation. To highlight the 
efficiency of the proposed model, this study also shows that minimizing the total travel distance 
may underestimate the total energy consumption since the cargo load may affect the total 
energy consumption of BET.  

To solve the proposed problem, a metaheuristic algorithm is developed based on adaptive large 
neighborhoods search (ALNS) framework. To evaluate the performance of the dispatching 
strategy, the model is applied to real-world freight operation data from a logistics company in 
Southern California. The experiment results show that the proposed strategy can solve the BET 
dispatching problem efficiently within a moderate computational time compared with the 
baseline strategy. 

There are several directions in future work. Firstly, more variants of the BET dispatching 
problem based on real-world applications can be considered. For instance, some order 
information may be unknown before designing the routing strategy, such as time windows, 
service time, or traffic conditions. Therefore, an uncertain model can be considered an 
extension in future work. Secondly, a non-linear recharging function (e.g., [14]) can be 
incorporated into the existing model, for better estimating the charging duration and reflecting 
the realistic charging rate dynamics.  
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Data Summary  

Products of Research  

In this project, the real-world dispatching data were collected in support of numerical 
experiments in the Case Study section. The list of data sets with descriptions are organized in 
Table 8. Each of these data products has been uploaded to the NCST Dryad repository. The URL 
to the data is described in the Data Access and Sharing Section.  

The items in Table 8 are organized into their own subdirectory within the Dryad repository for 
this project. This data is necessary for the analysis of the Task 5 results in this project.  

Table 8. Data products that resulted from the project.  

Data description Data Files File Format 

The dispatching data were saved 
in CSV files, including four cases 
where the customers’ sizes range 
from 47 to 90. Additionally, real-
world travel distance and time 
matrices were provided by 
OpenRouteService.  

BETVRPB1.csv 
BETVRPB2.csv 
BETVRPB3.csv 
BETVRPB4.csv 

BETVRPB1_dist.csv 
BETVRPB2_dist.csv 
BETVRPB3_dist.csv 
BETVRPB4_dist.csv 

BETVRPB1_time.csv 
BETVRPB2_time.csv 
BETVRPB3_time.csv 
BETVRPB4_time.csv 

CSV 

Data Format and Content  

The file types and formats are described in Table 8. 

Data Access and Sharing  

The data are made available publicly via the UC Riverside instance of Dryad: 
https://datadryad.org/stash, which is licensed under a CC0 1.0 Universal (CC0 1.0) Public 
Domain Dedication license. The DOI for the dataset is https://doi.org/10.6086/D11974.  

Reuse and Redistribution  

The data should be restricted for research use only. If the data are used, our work should be 
properly cited as: 

Guoyuan Wu, Dongbo Peng, Kanok Boriboonsomsin (2023), Developing an Efficient 
Dispatching Strategy to Support Commercial Fleet Electrification, Project Funded by 
NCST 2022-2023, UC Riverside, Dataset, https://doi.org/10.6086/D11974 

https://datadryad.org/stash
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.6086/D11974
https://doi.org/10.6086/D11974
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