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Comparative ROI analysis for

Traumatic Brain Injury with TBSS

and XTRACT masks using DTI and

NODDI models

Maria Baida

Abstract

Traumatic Brain Injury (TBI) is a leading cause of death and disability around the globe.

Di↵usion tensor imaging (DTI) parameters have been the most commonly used metrics

to characterize white matter (WM) microstructures to identify pathology after TBI. More

recently, novel metrics like neurite orientation dispersion and density imaging (NODDI)

metrics based on multi-shell sequences have provided additional insights to understand WM

microstructures. Together with DTI, these metrics predict both short- and long-term impacts

of mild TBI (mTBI) on various neural functions, helping to advance mTBI management

and treatment. Lateralization analysis based on DTI parameters has also been used to

assess neural functions in TBI. When looking at specific brain regions, the region of interest

(ROI) analysis based on tract-based spatial statistics (TBSS) with standard space (e.g.,
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mapping the JHU atlas to MNI152 standard T1 space) has been widely applied to study

mTBI. However, it is facing significant challenges to study moderate-to-severe TBI due to

registration di�culties. Registration challenges come from deformation and lesions in those

patients. Lately developed ROI analysis methods based on probabilistic tractography (e.g.,

FSL XTRACT toolbox) in an individual native di↵usion space give promises to fill the

gap, but the exact advantages and disadvantages compared to using a standard space have

not been well documented. In the present study, the ROI analysis on DTI and NODDI

parameters was performed on dMRI of 106 patients (PT), 18 friend controls (FC), and 18

orthopedic controls (OC) collected from two time points, using both standard-space method

(“TBSS ROI analysis”) and native-space method (“XTRACT ROI analysis”). The test-

retest reliability of these two methods was compared by evaluating the coe�cient of variation

(CV ) at each time point, the Pearson’s correlation (R) between the two time points, the intra-

class correlation coe�cient (ICC) between the two time points, and lateralization index at

each time point. With these statistics, the aim was to determine the precision of the TBSS

ROI analysis and the XTRACT ROI analysis quantitatively in the practice of analyzing a

particular dataset. ROI analysis based on a standard atlas mapped to skeletonized tracts

showed excellent precision and reproducibility, although some regions exhibited site and

scanner di↵erences; ROI analysis based on probabilistic tractography in individual di↵usion

space showed great potentials to classify patients and controls, but with more variability,

encouraging further development and exploration of the pipeline to improve precision and

reliability. These results could provide a new and general reference for choosing analysis

methods in future dMRI studies.
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Chapter 1

Introduction

Di↵usion tensor imaging (DTI) and neurite orientation dispersion and density imaging

(NODDI) have been used to characterize white matter (WM) microstructures and to identify

pathology after mild traumatic brain injury (mTBI)1,2. Palacios et al. (2020) used DTI and

NODDI parameters to predict both short- and long-term impacts of mTBI on various neu-

ral functions, helping to advance mTBI management and treatment1. Due to the growing

impacts of TBI on public health worldwide3,4, it’s important to continue this line of work.

In this project, two-shell di↵usion MRI data of 106 patients (PT), 18 friend controls

(FC), and 18 orthopedic controls (OC) from the TRACK-TBI study (Transforming Research

and Clinical Knowledge in Traumatic Brain Injury)5 were analyzed using DTI and NODDI

models, with a specific focus on comparing two alternative methods for Regions of Interest

(ROI) analysis. The tract-based spatial statistics (TBSS)6 WMROI analysis has been widely

used in previous studies1. One significant limitation is that the standard space does not

always capture individual variability in microstructures, especially in measuring pathological

changes. Recent advancement in probabilistic tractography provides a direction of alternative

methods for individualized measures of WM tracts. In particular, the XTRACT package
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developed by the FSL team is one of the latest pipelines for probabilistic tractography7.

It enables e�cient estimation of an individual’s tractography in the native space. It has

great potential in studying TBI, because patients exhibit a wide range of structural and

functional changes that might not always be detected if being studied by using a standard

space template. The advantages and disadvantages compared to using a standard space have

not been well documented.

In addition to DTI and NODDI parametrics this study also looks at lateralization index

that evaluates the di↵erence between left and right part of the brain. According to the pre-

vious works8–10, it’s known that lateralization index is commonly measured in DTI studies.

Thus it is important to evaluate lateralization metrics in the two pipelines that are tested

in this project.

This study aims to compare these two methods by: (1) measuring the variability of

ROI analysis results to infer the precision of each method; (2) assessing the test-retest

reproducibility to estimate the reliability of each method11,12. The hypothesis of this project

was that the two methods will not lead to di↵erent conclusions regarding DTI and NODDI

di↵erences between patients and controls. However, TBSS ROI analysis results are expected

to show greater precision and reliability, while XTRACT ROI analysis pipeline is expected

to show greater inter-subject variability.
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Chapter 2

Methods

2.1 Participants and image acquisition

In this study a subset of the multi-site collaboration database of the TRACK-TBI project

was analyzed5. This subset contains 106 patients (PT), 18 friend controls (FC), and 18

orthopedic controls (OC) from 4 di↵erent sites, detailed in Table 2.1. Whole-brain di↵usion

MRI and T1 were collected from each subject at two time points approximately 6 months

apart. Di↵usion MRI was performed with multi-slice single-shot spin-echo echo-planar pulse

sequence, acquired at b = 1000 (echo time = 94 ms; repetition time = 2900 ms) and 3000

s·mm�2 (echo time = 122 ms; repetition time = 3500 ms), both for 64 di↵usion-encoding

directions (slice thickness = 2.4 mm; slice gap= 0 mm; matrix= 96 ⇥ 96; FOV = 230

mm). Separate b = 0 s·mm�2 volumes were acquired in the reversed phase-encoding di-

rection for each di↵usion shell with corresponding acquisition parameters to be used for

susceptibility distortion correction. Sagittal three-dimensional (3D) inversion recovery fast

spoiled gradient-recalled echo T1-weighted images were acquired with 256-mm FOV and 200

contiguous partitions (1.2 mm) at 256 ⇥ 256 matrix.
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Table 2.1: Basic information of database in the current study by site.

Site # of subjects Scanner model
Baylor College of Medicine 53 Siemens Trio

Harvard Medical School/Massachusetts General Hospital 15 Siemens Skyra
University of California San Francisco 52 Siemens Skyra

Froedtert and Medical College of Wisconsin 22 GE MR750

2.2 DTI processing

The FMRIB Software Library (FSL) version 6.0.2 (Oxford, UK) was used for image pro-

cessing and DTI parameters computation. Susceptibility induced distortions were corrected

using FSL’s topup13 on each di↵usion shell. FSL’s Eddy14 command was used on the di↵u-

sion data to correct for motion and eddy current distortions, skull stripping, outlier replace-

ment15, susceptibility-by-movement 16 and slice-to-volume17 correction. For each subject,

eddy current correction was run once on the individual b1000 shell and once with concate-

nated b1000 and b3000 multi-shell data. The Di↵usion Toolbox (dtifit) in FSL was used on

the individually processed b1000 data to calculate fractional anisotropy (FA), which repre-

sents the integrity of white matter tracts, and mean di↵usivity (MD), which describes the

average mobility of water molecules. Multi-shell processed data were normalized to their

corresponding b0 image to account for di↵erences in echo time. This normalized multi-shell

data were used to quantify NODDI parameters with the Accelerated Microstructure Imaging

via Convex Optimization (AMICO) Toolbox18. The NODDI parameters that were quantified

include: the neurite density index (NDI), which infers the strength of neurite connections,

orientation dispersion index (ODI), which reflects the spatial configuration of the neurite

structures and free water fraction (FISO), which captures the volume of free water in tissue

at the microstructural level.
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2.3 TBSS analysis

A voxel-wise tract-based spatial statistics (TBSS) were performed on the FA map using

FSL’s TBSS package for each site. The FA maps at both time points for each subject in the

site were registered to the FMRIB58 FA template in MNI152 standard space. The MNI152

standard-space T1-weighted average structural template image was derived from nonlinear

registration and averaging of 152 structural images into a common coordinate19. Each FA

map was transformed by combining the non-linear transform to the target FA image and

the a�ne transform from the determined target image to MNI152 space. The registered FA

maps were then averaged and thinned to generate a mean FA skeleton to represent the center

of all white matter tracts. The FA white matter skeleton was thresholded to FA > 0.2 to

exclude voxels containing gray matter and partial volume e↵ects. Each subject’s FA data

at both time points were projected onto this mean skeleton to get individual skeletonized

FA maps. The voxels within the skeleton were values from the nearest relevant tract center

by searching perpendicular to the local skeleton structure for the maximum value in the

FA image of the subject. Each subject’s FA, MD, NDI, ODI, and FISO maps were then

registered and projected onto the white matter skeleton. White matter tract masks were

obtained by mapping the Johns Hopkins University (JHU) ICBM-DTI-81 White-Matter

Labeled Atlas20 regions to the white matter skeleton in MNI15219 space and resampled to

1-mm resolution. Regional values represented by the average voxel value within the selected

JHU white matter tract masks were computed for each subject at both time points across

all generated DTI and NODDI parameter maps.
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2.4 XTRACT processing and analysis

XTRACT is a newly developed FSL software package with a library of standardized trac-

tography protocols to automatically derive and extract individualized white matter tracts

in a subject’s native space. Prior to running XTRACT, the data for each time point per

subject were prepared following FSL’s FMRIB’s Di↵usion Toolbox (FDT) pipeline which

included: (1) brain extraction using the Brain Extraction Tool (BET); (2) fitting the prob-

abilistic crossing fiber model using Bayesian Estimation of Di↵usion Parameters Obtained

using Sampling Techniques (BEDPOSTX) on eddy corrected multi-shell di↵usion data; and

(3) linear (FLIRT) and non-linear (FNIRT) registration of di↵usion space (first b0 volume of

multi-shell data after BET) and structural space (T1 after BET) to standard MNI152 space

at 1mm resolution. XTRACT loops through a list of predetermined seeds and correspond-

ing termination criteria warped from standard space to the subject’s native space and uses

probabilistic tractography (PROBTRACKX2) to define subject specific white matter tracts.

Tract masks were generated with XTRACT and XTRACT-STATS and used to estimate

DTI and NODDI parameter summary statistics including voxel average from within each

masked region, thresholded at 0.1 percent.

2.5 Analysis of regional values

From the above pipelines, for each subject regional values for 5 parameters (FA and MD from

DTI, NDI, ODI, and FISO from NODDI) were computed from both time points. Among

default TBSS and XTRACT regions, 11 out of 48 TBSS regions and 15 out of 42 XTRACT

regions were selected for the current study. The selected regions are shown in table 2.2.

These regions were selected for their anatomical correspondence in both ROI analysis

pipelines, so that the two pipelines can be directly compared. The comparability of selected

6



Table 2.2: List of regions in TBSS and XTRACT methods selected for the current study.

White Matter Tract TBSS regions (11) XTRACT regions (15)
Corticospinal Tract CST – L, CST-R cst-l, cst-r

Superior Longitudinal SLF-L, SLF-R slf1-l, slf1-r, slf2-l, slf2-r,
Fasciculus slf3-l, slf3-r

Uncinate Fasciculus UNC-L, UNC-R uf-l, uf-r
Genu Of Corpus Callosum/ GCC fmi

Forceps Minor
Splenium Of Corpus Callosum/ SCC fma

Forceps Major
The Cingulate Gyrus/ CGC-L, CGC-R cbd-l, cbd-r

Dorsal Cingulum
Middle Cerebellar Peduncle MCP mcp

regions might not always be obvious from labeled names. Specifically, superior longitudinal

fasciculus (SLF) was measured bilaterally as one region in the TBSS pipeline, but as 3

separate components in the XTRACT pipeline. The uncinate fasciculus was labeled as

“UNC” in the TBSS method but “uf” in the XTRACT method. The genu of corpus callosum

(GCC) is comparable to the forceps minor (“fmi”), while the splenium of corpus callosum

(SCC) is comparable to the forceps major (“fma”). The cingulum - cingulate gyrus (CGC) is

comparable to the dorsal cingulum (“cbd”). The regions known to be easily confounded (e.g.,

fornix regions are easily partial volume averaged with cerebrospinal fluid) were excluded.

Some of these regions form pairs of bilaterally measured regions.

The comparative analysis was focused on test-retest reliability by computing the coe�-

cient of variation (CV ) of each region at each time point across all subjects, the Pearson’s

correlation (R) between the two time points, and the intra-class correlation coe�cient (ICC)

between the two time points. The CV is computed as the ratio of standard deviation and

mean, which is the reciprocal of signal-to-noise ratio. In a given comparison, a distribution

of regional values with lower CV has lower variability, therefore indicating a higher precision

in the estimation method. Pearson’s correlation and intra-class correlation indicate to what

extent regional values from the first test were replicated by its counterpart from the second

test, with slightly di↵erent assumptions on pooling the total variability. The criterion for

7



Pearson’s correlation is that the probability of null hypothesis (R = 0) is lower than 0.05.

The criterion for intra-class correlation is that ICC > 0.6 is considered a good test-retest

reliability.

Finally, the lateralization index was computed by using the equation: (R�L) ·(R+L)�1,

where R and L denote the right and left values in a bilateral pair, respectively.
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Chapter 3

Results

The analyses described in the Methods section were successfully performed both for control

subjects and patients using both TBSS and XTRACT pipelines. Figure 3.1 shows an example

of TBSS pipeline results for skeletonized FA for one subject from the first site at the first

time point overlapping with mean FA map from the first site visualized with FSLeyes. The

analyses of the TBSS pipeline and XTRACT pipeline achieved results that were di↵erent in

a variety of ways. These di↵erences are visualized and described in the following paragraphs.

Figure 3.1: TBSS method results for skeletonized FA for one subject from the first site at
the first time point overlapping with mean FA map from the first site.
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First, a direct visualization of regional values by scatter plots will be shown. Figure

3.2 shows an example of the regional values of the DTI parameter FA in two regions (SCC

from TBSS and fma from XTRACT). Blue, red, and yellow markers are data from FC,

OC, and PT, respectively. In each cluster of markers, 4 shapes of markers are used to

distinguish between sites (circles for the first site, triangles for the second site, squares for

the third site, and pentagons for the fourth site). In this figure, the FA values from the

TBSS pipeline were higher and less variable across sites and subjects than the FA values

from the XTRACT pipeline. Also, the XTRACT pipeline gave fewer successful estimates as

the number of markers is visibly smaller (especially for FC), whereas the TBSS pipeline had

no miss in estimation.

Figure 3.2: The FA values of “SCC” and “fma” from ROI analysis from the first time point
from all sites in all subjects - friend controls (blue), orthopedic controls (red), and patients
(yellow). Four marker shapes are used to distinguish between sites.

Then, figure 3.3 shows the regional values of DTI and NODDI parameters in the selected

26 regions that are comparable across both TBSS and XTRACT methods and were shown in

the table 2.2, are labeled at the bottom of the figure. The uppercase names are regions from

the TBSS method, and the lowercase names are regions from the XTRACT. Anatomically

comparable regions from the two pipelines are shown in adjacency. The results shown in this

figure are from the first time point in all subjects from all sites. For each region from each

cohort, the mean and the 95% confidence interval for mean estimation are indicated by black

10



error bars. For a region of a cohort with no greater than 5 successfully estimated subjects,

no confidence intervals can be estimated, there only an algebraic average is computed and

indicated as a black bar. Di↵erences between PT and FC and between PT and OC are

characterized by two-sample t-tests. A red star on the x-axis indicates a significant di↵erence

(p < 0.05), whereas a black small dot on the x-axis indicates a non-significant di↵erence.

Figure 3.3: Regional values from ROI analysis on DTI parameters (the top panel for FA, and
the 2nd panel for MD) and NODDI parameters (the 3rd to 5th panels for NDI, ODI, and
FISO, respectively) from the first time point from all sites in all subjects - friend controls
(blue), orthopedic controls (red), and patients (yellow).

Importantly, even though the selected regions are considered closely relevant, it is worth

mentioning that regional values from the TBSS pipeline are based on skeletonized 2D seg-

ments of tracts, whereas the counterparts from XTRACT are based on estimated 3D whole-

tracts. This fundamental di↵erence between the two methods may underline any systematic

11



patterns exhibited in Figure 3.3, qualitatively summarized here: (1) regional values of FA

and NDI from the TBSS pipeline are higher than counterparts from the XTRACT pipeline;

(2) regional values of MD, ODI, and FISO from the TBSS pipeline are lower than coun-

terparts from the XTRACT pipeline; (3) regional values from the XTRACT pipeline are

more variable across subjects than counterparts from the TBSS pipeline; (4) most groups of

data are well characterized by a unimodal distribution, although there are exceptions, for

instance, the TBSS regions CST-L, CST-R, MCP might have bimodal distributions in FA

and NDI values, which can be attributed to site and scanner di↵erences. All the values in

the lower group of bimodal distribution were obtained from the same site, which indicates

that registration from this site for these regions was di↵erent in this site comparing to the

other sites. In most of the XTRACT regions, the larger error bars were seen, especially from

the OC and FC groups. The larger error bars can be attributed to the smaller number of

subjects available for computation of this distribution of these cohorts.

Di↵erences between PT and FC and between PT and OC are characterized by two-sample

t-tests. A red star on the x-axis on the figure 3.3 indicates a significant di↵erence. For FA,

there are 5 TBSS regions and 10 from XTRACT regions that showed significant di↵erences

between PT and control cohorts. For MD, there are 6 TBSS regions and 14 XTRACT

regions that showed significant di↵erences between PT and control cohorts.For NDI, there

are 6 TBSS regions and 9 XTRACT regions that showed significant di↵erences between PT

and control cohorts. For ODI, there are 4 TBSS regions and 5 XTRACT regions that showed

significant di↵erences between PT and control cohorts. For FA, there are 4 TBSS regions

and 5 XTRACT regions that showed significant di↵erences between PT and control cohorts.

This is a qualitative summary. Exact interpretations need future investigation.

To analyze these di↵erences quantitatively, the coe�cient of variation of these regions

was computed. The results are shown in Figure 3.4. The layout of Figure 3.4 is consistent

with Figure 3.3. Regions are labeled on the bottom of the 5th panel. Blue, red, and yellow

12



Figure 3.4: Coe�cient of variation of regional values.

bars show CV values for FC, OC, and PT from the first and second tests, respectively. From

the first test, TBSS regions have significantly higher CV NDI (t(24) = 2.56, p = 0.017), ODI

(t(24) = 4.21, p < 0.001, and FISO (t(24) = 3.47, p = 0.002, and marginally higher FA

(t(24) = 1.94, p = 0.06), but not MD. Consistently from the second test, these di↵erences

are also significant (t(24) = 2.41, p = 0.02 for FA, t(24) = 2.13, p = 0.04 for MD, t(24) =

3.00, p = 0.006 for NDI, t(24) = 4.21, p < 0.001 for ODI, t(24) = 3.28, p = 0.003 for FISO.

Figure 3.4 showed that the CV comparison between the TBSS pipeline outcomes and the

XTRACT pipeline outcomes depends on regions. Specifically, “CST” had higher CV values

than “cst” for all parameters, but otherwise most TBSS regions had lower CV values than

their XTRACT counterparts for FA and MD. It is also noticeable that many bars with a

relatively high CV correspond to a non-unimodal distribution from Figure 3.3, possibly due

to site and scanner di↵erences. Taken together, the CV comparison of the two methods is

not conclusive. Formal mathematical decision on excluding or clustering criteria of capturing

the site di↵erence is necessary, but beyond the scope of the current project.

To measure the test-retest reliability quantitatively, the Pearson’s correlation between

paired regional values from the two time points was computed. The impact of brain injury
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in PT or non-brain injury in OC cannot be ruled out in these evaluations, even if this impact

could be minimal. Therefore, the test-retest reliability assessment for this method should

rely on FC subjects data. The advantage of the TBSS pipeline in reproducibility is true for

the most of the parameters. Table 3.1 reports the statistics of Pearson’s correlation for the 5

parameters for FC. Interestingly, none of the XTRACT regions have shown significant values

for Pearson’s correlation, with exception of fma in MD and FISO parameters. At the same

time most of the TBSS regions have shown the significant values for most of the parameters

for Pearson’s correlation, which indicates excellent reproducibility for TBSS pipeline.

Table 3.1: Test-retest reliability: Pearson’s correlation between two time points for friend
controls (FC).

Region FA MD NDI ODI FISO
CST-L R=0.98, p⌧0.001 R=0.96, p⌧0.001 R=0.98, p⌧0.001 R=0.96, p⌧0.001 R=0.77, p⌧0.001
CST-R R=0.97, p⌧0.001 R=0.97, p⌧0.001 R=0.96, p⌧0.001 R=0.96, p⌧0.001 R=0.88, p⌧0.001
cst-l
cst-r
SLF-L R=0.94, p⌧0.001 R=0.89, p⌧0.001 R=0.67, p=0.002 R=0.9, p⌧0.001
SLF-R R=0.95, p⌧0.001 R=0.94, p⌧0.001 R=0.69, p=0.001 R=0.97, p⌧0.001 R=0.67, p=0.002
slf2-l
slf2-r
slf3-l
slf3-r
UNC-L R=0.83, p⌧0.001 R=0.64, p=0.004 R=0.92, p⌧0.001 R=0.84, p⌧0.001
UNC-R R=0.62, p=0.006 R=0.87, p⌧0.001 R=0.93, p⌧0.001 R=0.77, p⌧0.001 R=0.6, p=0.019
uf-l
uf-r
GCC R=0.87, p⌧0.001 R=0.83, p⌧0.001 R=0.73, p⌧0.001 R=0.48, p=0.04
fmi
SCC R=0.85, p⌧0.001 R=0.81, p⌧0.001 R=0.81, p⌧0.001 R=0.89, p⌧0.001 R=0.5, p=0.037
fma R=0.95, p=0.014 R=0.94, p=0.016

CGC-L R=0.89, p⌧0.001 R=0.73, p⌧0.001 R=0.73, p⌧0.001 R=0.78, p⌧0.001 R=0.84, p⌧0.001
CGC-R R=0.86, p⌧0.001 R=0.67, p=0.002 R=0.56, p=0.017
cbd-l
cbd-r
MCP R=0.96, p⌧0.001 R=0.96, p⌧0.001 R=0.97, p⌧0.001 R=0.95, p⌧0.001 R=0.67, p=0.003
mcp

Next, the intra-class correlation coe�cient (ICC) between paired regional values from

the two time points was computed. The results are shown in Figure 3.5. Each bar shows the

average ICC across subjects. The numbers at the very top show the number of subjects each

bar value was averaged from. There was no missing estimate from the TBSS pipeline, there-

fore the number of subjects for ICCs of TBSS regions is always the total number of subjects

(142). In contrast, the XTRACT pipeline has missing estimates depending on the di�culty

of tractography for certain tracts. If several subjects missed either time points for a region,
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the number of paired data for ICC computation would be limited. With this limitation in

mind, the criterion of ICC > 0.6 for “good reproducibility” was used, marked as the dash

line on each panel in Figure 3.5. Bars meeting this criterion are marked with a black star.

Across all panels, most TBSS regions (except FISO for GCC, and ODI and FISO for MCP)

show good reproducibility between the two time points, suggesting trustable precision and

reliability of the method. XTRACT regions do not show reproducibility as much, suggesting

that the method is less stable in measuring regional values of DTI and NODDI parameters,

although NDI in many XTRACT regions were robustly measured. These results are coherent

with Pearson’s correlation results. The meaning of the correlation in the PT cohort between

the 2 time points, has to be treated di↵erently from FC and OC cohorts, because it has

2 components: besides showing the correlation between 2 repeated measurements, it could

also show a potential pathological change between the 2 time points.

Next, the lateralization index was computed for 5 pairs of regions that were bilaterally

measured. Figure 3.6 shows the lateralization index at 2-week time point for all parameters

from all sites in all subjects - friend controls (blue), orthopedic controls (red), and patients

(yellow). Lateralization index is defined as (R � L) · (R + L)�1, where R and L denote

the right and left values in a bilateral pair, respectively. Therefore, the positive value for

lateralization index indicates right-lateralization, which is marked on figure 3.6 by red error-

bars, and the negative value indicates left-lateralization, marked by blue. In general, the

results replicated findings reported in the literature. For example, the FA values of CGC and

CST are left-lateralized8,9,21. It can also be seen that UNC is right lateralized, but UNC has

been reported with varied lateralization10,21. XTRACT regions are qualitatively consistent

with TBSS regions, although with exceptions.
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Figure 3.5: Intraclass correlation coe�cients between paired regional values from the two
time points for FC (the top group of 5 panels), OC (the middle group of 5 panels), and PT
(the bottom group of 5 panels).
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Figure 3.6: Lateralization index of regional values for the first timepoint for all parameters
from all sites in all subjects.
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Chapter 4

Discussion

In this project, the potential of performing ROI analysis of DTI and NODDI parameters in

individual native di↵usion space with probabilistic tractography was explored. In reference

to the ROI analysis based on probabilistic tractography in individual di↵usion space, the

ROI analysis based on a standard atlas mapped to skeletonized tracts showed great precision

with high test-retest reliability between the two time points in the analyzed dataset. The

XTRACT pipeline showed significant reproducibility in many analyzed regions, but with

more variability.

A few instances of data patterns not meeting the expectations were found. In Figure 3.3, a

bimodal distribution would have characterized the variability better in CST and MCP for FA,

MD, and NDI, than the currently assumed unimodal distribution with Gaussian errorbars.

The lower cluster of each mentioned region consisting of all data from one out of the four

sites was identified, suggesting that the bimodal pattern coincides with site and scanner

di↵erences. These di↵erences seem to also show up in Figure 3.4 as the bimodal variability

led to increased Cv values in both TBSS and XTRACT regions. These patterns bring up an

issue: the cross-sectional analysis between cohorts using t-test becomes confounded, because
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t-test has a parametric assumption that does not hold for bimodal distributions. To improve

the cross-sectional analysis, harmonization across data from di↵erent sites and scanners is

necessary. Together with the lateralization evaluation results, the clinical interpretation of

these di↵erence reported in the current study need further investigations.

Among DTI and NODDI parameters, NDI regional values were relatively robust to

pipeline choice, suggesting that it is a stable metric for characterizing white matter mi-

crostructure. The NDI robustness could be explained by the following fact. In reference

to the DTI parameters, one advantage of the NODDI parameters is that the free water

component is distinguished from neurite density estimation, which makes the measurement

of tract regional values of NDI resistant to contamination from the cerebrospinal fluid. In

general, the results show lower FA, higher MD, and more variation of regional values from

tractography based pipeline than the counterparts from the TBSS pipeline. These di↵er-

ences might be partially attributed to the fact that 3D tract masks are more likely to include

peripheral (non-core) and termination (non-central) zones, and possibly cerebrospinal fluid,

whereas the multi-slice 2D TBSS masks and therefore regional values were estimated from

the skeletonized core of the central part of each tract.

Understanding the nature of probabilistic tractography as a source of analysis result

variability is conforming to the pursuit of reproducibility. Theaud et al. (2020) mentioned

that software stability and random seed generation for tractography should be carefully

considered and tested in assessment of pipeline reproducibility. Additionally, fiber tracking

was constructed as a stochastic process, which by nature will result in non-deterministic

track segments, although one could usually make assumptions to model the distribution 22.

The sources of variability in the XTRACT pipeline should be carefully considered. Due

to the fact that individual native space was used for the XTRACT method, the inter-subject

variability is expected. This can be a desirable advantage of the current pipeline because it

is capable of showing unique individual specificity in white matter microstructure. However,
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the intra-subject variability calls into question the measurement of the precision of this

method. To reduce intra-subject variability and improve the precision in the XTRACT

pipeline, the following strategies could be considered to be further tested: (1) use FreeSurfer

to reconstruct the cortical surface from the individual’s T1 image volume, and use the surface

instead of using a standard T1 template as a seeding reference for tractography; (2) use a

“zeppelin” model instead of a “ball-stick” model for fibres to obtain Bayesian estimation of

the crossing fibres density map, especially when high quality of dMRI data is available.
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Chapter 5

Conclusion

Region-of-interest analysis of di↵usion MRI metrics based on tract-based spatial statistics,

which was widely used to study mTBI, is facing significant challenges to study moderate-

to-severe TBI due to deformation and lesions in those patients. Precise and reproducible

region segmentation based on advanced tractography, with the expectation to show individ-

ual specificity gives promises to fill that gap. In the current study, 2D tract skeleton TBSS

ROI analysis based on a standard atlas mapped to skeletonized tracts exhibited excellent

precision and reproducibility; 3D whole-tract XTRACT ROI analysis based on probabilistic

tractography in individual di↵usion space showed great potentials to classify patients and

controls, but with more variability, encouraging further development and exploration of the

pipeline to improve reliability and precision. Despite the findings reported in the literature,

that suggest that NODDI metrics might have more cross-scanner variability than DTI met-

rics, especially when there are di↵erences in the dMRI sequence such as single-band versus

multi-band echoplanar imaging1,23–25, neurite density index was relatively robust to pipeline

choice, suggesting that it is a stable metric for characterizing WM microstructure.
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