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Abstract

Bio-Inspired Artificial Olfactory System

by

Ping-Chen Huang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jan Rabaey, Chair

The escalating statistical variation of device behaviors in the nano-scale era has led to a
search for alternative computational paradigms where randomness can be treated as oppor-
tunities rather than nuisance. This will allow computational systems to be built with circuits
designed at the nominal case and have better access to the advantages of scaled technolo-
gies. Such computational paradigms may emerge as we explore the information processing in
the biological sensory systems, which achieve unparalleled performance and energy efficiency
with mediocre and unreliable components. Implementations of signal processing tasks such
as feature extraction, learning, or recognition can especially benefit from bio-inspired com-
putational models. In this thesis, we present a bio-inspired artificial olfactory system, which
consists of an analog feature extraction front end that operates efficiently in the low-precision
regime and a spike pattern classifier that exploits the randomness in circuits.

The analog front end implements a novel trainable feature extraction algorithm for metal-
oxide gas sensor arrays. The algorithm extracts one composite feature of all analytes and
transforms the sensor responses into concentration-invariant spike patterns. This composite
feature is extracted by performing the gradient decent algorithm during training. This 6-
channel analog frond end consumes 519 nW/channel in the training mode, and 463 nW/chan-
nel in the recognition mode.

The spike pattern classifier consists of a transformation of the input spikes into high-
dimensional sparse vectors and a cortical memory model. The transformation is based on
a random sampling scheme that can be efficiently performed with circuits exhibiting large
parametric variations. Moreover, sparse representations allow fast and robust pattern storage
and retrieval with associative memories such as the correlation matrix memory. Its realized
today that hyper-dimensional computing architectures like this may be a perfect match to
the emerging nano-scale devices. We show how this classifier can be densely and efficiently
implemented in a 3-D CNFET-RRAM technology.
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Chapter 1

Introduction

We are nearing the end of a long, historically unique, and profoundly transformative trend
in the device miniaturization of information technology. As devices shrink to molecular di-
mensions, current practices and assumptions will lead to increasingly inefficient systems.
Emerging nano-devices have been actively sought as successors to the silicon CMOS field-
effect transistors (FETs). Although they are not immediately ready to replace silicon FETs,
some of their unique properties have opened a new door for alternative computing paradigms
that could build much more efficient systems. In the first part of this chapter, the motiva-
tion to explore new architectures is given. Next, the promise of neuro-inspired computing
and its return are discussed. Finally, the research goal is stated and the organization of this
dissertation is provided.

1.1 The Need for New Computing Models

1.1.1 The End of Moore’s Law1

At the end of Moore’s Law, we are getting diminishing gains from technology scaling. Fig-
ure 1.1 shows the microprocessor trend over the past 40 years [1]. Even if transistor count
keeps rising, the clock frequency leveled off a decade ago - the power has reached the limit.
Therefore, as the number of cores increases exponentially, the improvement of single-thread
performance is only incremental.

What makes technology scaling worse is the increasing variability. As technology scales
from 45 nm to 12 nm, the threshold variation increases by almost four times [2]. Although
the threshold voltage (and supply voltage) has stopped scaling down, this will still cause
severe reliability issues. To ensure reliable operation, the overhead from adding more and
more operational margins will soon offset the intrinsic advantage of scaling.

The other problem of scaling the planar CMOS technology is the on-chip interconnect,
which has taken up 90% of volume in an IC chip today. Figure 1.2 shows the scaling trends

1To be more accurate, it’s actually Denard’s Law that is ending.
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Figure 1.1: Microprocessor trend over the past 40 years. Adapted from [1].

Figure 1.2: Scaling trends of gate and interconnect delays. Adapted from [3].
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of gate and interconnect delays [3]. The interconnect RC delays are increasing exponentially
with scaling. Therefore, interconnect is dominating device power consumption, performance
and cost.

Eventually, the semiconductor industry will need a approach to supplement and extend
CMOS beyond its fundamental scaling limit.

1.1.2 Emerging Nanotechnologies

Fundamental Scaling Limits of Charge-Based Logic Devices

How much further can the present CMOS-based technology be scaled? A theoretical analysis
[4], [5] based on a two-well model for the source-gate-drain structure of an FET (Figure 1.3)
derived the minimum barrier width amin and height Ebmin such that a electron is either in
the drain or source with 50% probability by thermionic emission or quantum mechanical
tunneling. It is shown that amin = 1.5 nm and Ebmin = kT ln2 , where k is the Boltzmann
constant, and T is the absolute temperature. An additional constraint requiring minimization
of energy dissipated in changing potential well sets amin = 5 nm.

Figure 1.3: Idealized model of the potential barrier separating the source drain potential wells,
where w is the well width, a is the barrier width, and Eb is the barrier energy. Adapted from
[5].

Since high-volume manufacturing technology for the 16 nm node is currently being
ramped to full production, the 5 nm generation may go into manufacturing in 7 years or
in 2020. Consequently, scaling of CMOS-based information technology will face fundamen-
tal limits within the next 5-7 years or by 2020. This determines a need to have any new
technology for extending CMOS in place by that time.

Emerging Logic Devices

For emerging logic devices, the quantitative assessment and benchmark by ITRS [6] and
investigations between 2011-2013 [7] suggest that substantial progress has been made in
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demonstrating devices beyond conventional CMOS. Specifically, a bifurcation is observed
that some devices appear to hold promise for higher speed operation than CMOS (e.g. Mott
FET, carbon nanotube FET (CNFET)), while others might provide a route to lower power
consumption (e.g. nanowire FET, negative capacitance ferroelectric). For example, an ideal
CNFET inverter at 32-nm can have 13X of improvement in Energy-Delay-Product compared
to a 32-nm CMOS inverter [8]. At 22-nm and 16-nm nodes, the advantage over silicon CMOS
can improve to 20X [9]. This is due primarily to near ballistic electrical transport in CNTs.
However, each emerging device still has challenges to overcome before any of them can be
considered as an ”heir” to the silicon CMOS FET. In CNFET technology, for example,
the challenges remain controlling the percentage of metallic CNTs grown or deposited on
substrate, CNT alignment and positioning, getting high density aligned CNTs [10], and the
difficulty of addressing individual CNTs with source, drain, and gate contacts within a dense,
interconnected circuit [7].

Fundamental Scaling Limit of Charge-based Memory

Current memory technologies (DRAM, SRAM, and flash) are based on storing electron
charges in a storage node. States 0 and 1 are created by the presence or absence of electrons
in the charge storage node. A theoretical analysis based on a barrier model (Figure 1.4)
[11] shows that the minimum barrier height Ebmin to suppress thermionic emission and the
minimum barrier width amin to suppress tunneling are Ebmin = 1.42 eV, and amin ≈ 5 nm,
for a retention time of 10 years2.

Figure 1.4: Barrier model of charge-based memory. Adapted from [11].

However, both DRAM and flash cannot reach this theoretical limit. From the Space-
Action metric [12], DRAM achieves optimum performance in the 40-50 nm regime. As the
size of the DRAM approaches the scaling limit, the access time will dramatically increase
due to the serial resistance of the cell capacitor. Also, there is still no known manufacturable
solution for DRAM beyond the 20 nm node [13].

The scalability of flash memory is limited by the gate stack - practical minimum size
of a floating gate cell is roughly 10 nm. As of the time of this writing, production NAND

2This is for non-volatile memories. For smaller retention times, e.g., 50-100 ms, typical for DRAM, Ebmin

and amin can be smaller.
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flash has been scaled to a critical dimension of 16 nm [14] and 3D Vertical NAND [15, 16]
has entered commercial production. However, endurance and rention have become strongly
degraded as flash tunnel oxides become thinner, leading to extensive error correction code
(ECC) schemes and substantial redundant storage requirements [17].

In contrast, SRAM scalability has no obvious hard limiting factor to prevent it from
reaching the theorectical limit [11]. However, a significant challenge for SRAM scaling is
the increasing variability that will result in the failure of the cell. Moreover, minimum cell
area cannot be maintained below 45 nm, if the minimum supply voltage and data retention
voltage are to be minimized [18].

Emerging Memory Devices

According to the taxonomy of memory technologies from ITRS [13], emerging memory
devices include ferroelectric memory and resistance switching memories (RRAM). Among
RRAM, Redox RAM (ReRAM) technologies have advanced rapidly for the past few years.
Overall ReRAM assessment is similar or better than existing CMOS-based nonvolatile mem-
ories [19]. This is due to its promising scalability, dense integration, and CMOS-compatibility.
Some recent breakthroughs in ReRAM significantly enhanced its perceived potential, for ex-
ample, a 32-Gb multi-layer NAND-scale array demonstration [20].

Scalability below 10 nm is predicted for all emerging memories. For ReRAM, it’s operation
and switching relies on the conductive filament in the metal-oxide, as shown in Figure 1.5
[21]. Since the size of the conductive filament is less than 10 nm, in principle it can scale
down to sub-10 nm regime [22]. It’s also reasonable to conclude that other emerging memories
that rely on filamentary switching will scale to the same dimensions as standard filamentary
ReRAM.

Figure 1.5: Conductive filament in the metal-oxide RRAM. Adapted from [21].

Except for ferroelectric memory, all of the emerging memory technologies are two terminal
resistance switching devices. This makes them amenable to an efficient crossbar configuration.
This is the most dense possible configuration, as each individual device only occupies an
area of 4F 2 [17], where F is the minimum feature size of the device. The other advantage of
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ReRAM is that the fabrication temperature is CMOS back-end-of-the-line (BEOL) process
compatible and no special material is required.

Generally, all emerging memories are scored low in the ”operational reliability” cate-
gory [17]. This is due to their variability in switching between the low-resistance state (LRS)
and the high-resistance state (HRS) and also the lack of long term reliability.

However, the memresistive behavior [23] exhibited in the emerging memories have enabled
efficient implementation of synaptic function that is very difficult to realize by devices in
conventional technologies. This has enabled alternative computing paradigms that could be
much more efficient than today’s von Neumann-based systems.

The 3D Nano Promises and Challenges

As mentioned previously, on a deeply-scaled CMOS chip, an enormous amount of power
and performance compromise are wasted on the interconnects. The greatest barrier holding
today’s processors from reaching higher computing speeds lies not in transistors but in the
communication with memory. However, recent breakthroughs in monolithic 3D integration
have demonstrated a visible new path ahead: from 3D integration of CNFET logics [24],
3D integration of CNFETs with silicon CMOS logics [25], to the 3D integration of CN-
FET/silicon CMOS logic and ReRAM memory [26]. The most important breakthrough is to
interweave memory devices with computing devices. Figure 1.6 shows a four-layer prototype
built by Stanford researchers. The bottom and top layers are logic transistors. Sandwiched
between them are two layers of memory. The use of inter-layer vias (ILVs) to connect between
various layer allows massive vertical interconnect density [26], maximizing the benefits of 3D
integration. This has vastly reduced the ”commuting time” between the processor and the
memory, and will make the a chip much faster.

Figure 1.6: Monolithic 3D integration of logic and memory devices. Credit: M. Shulaker.
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Although the 3D integration technology offers great density, the large variabilities and
error/failure rates of the emerging logic and memory devices pose a great challenge for
building a reliable system. Moreover, to reduce energy per operation and to minimize the
heat flux, circuits built from such devices essentially must operate in a low signal-to-noise
ratio (SNR) regime. A system requiring high SNR operation will simply fail, or will need
overly designed circuits with large operational margins to work - this option will no longer
be affordable as the system size scales up. Therefore, before device research comes up with
solutions for making better and more reliable devices, we may need to seek solutions at the
architectural-level: could there be an alternative computing model that can perform reliable
computation efficiently with large number of devices exhibiting significant variations and
failures? This has therefore led to a search for new computing models.

1.2 The Search for New Computing Models

Figure 1.7 illustrates the concept of traditional and alternative computing paradigms. In the
traditional platform, the information processing architecture/algorithms presume its under-
lying computations are executed deterministically and reliably, whereas the devices today
exhibit large variations. Therefore, the system level reliability is usually achieved by cir-
cuit/logic level reliability. As mentioned above, the cost of make each computing element
precise and reliable will soon become unaffordable and offset the intrinsic advantages of
scaled technologies. Therefore, the mapping is very inefficient.

In the alternative paradigms, we are looking for architecture/algorithms that expect the
statistical natures in the computing elements, so that reliable computation can be achieved
without the devices needing to behave precisely and reliably. Hence the circuits do not need
to be over-designed and can be designed in the efficient regime. Therefore, the mapping is
inherent efficient.

Figure 1.7: Traditional and alternative computing paradigms.

In fact, the natural world represents a gold mine of problem solving algorithms, yet this
potential is largely untapped. Collective behaviors that operate without central control to
regulate activity and growth are ubiquitous in nature. For example, neurons act collectively
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as networks to produce sensations, cognition and motions, while each individual neuron
is prone to variations and failure. Many animal groups regulate their movement without a
leader, such as bird flocks or fish schools. Social insects live in colonies, which forage, maintain
their nests, and reproduce based on simple local cues and interactions. It is shown that three
environmental constrains might have shaped the nature’s evolution of collective behavior
[27]: the patchiness of the resource, the operating costs of maintaining the interaction network
that produces collective behavior, and the threat of rupture of the network.

Since a large network of today’s nano-devices is very similar to a network of biological
organisms, future nano technologies may need to be used in computing paradigms like those
in nature, where functions emerge as the collective behavior of the devices interacting locally
and does not require each individual to be precise and reliable. Among natural computations,
neural computation is one of the most sophisticated and advanced. While it is not consid-
ered general purpose, the brain performs functions such as feature extraction, recognition,
learning, and decision making very well. Therefore, neuro-inspired computing may lead to
cheap and efficient processors for cognitive applications.

1.3 The Return of Neuro-Inspired Computing

1.3.1 The Recurring Waves of Neuro-Inspired Computing

Speaking of neuro-isnpired computing, it’s not a new term. It has seen few times of booms
and winters over the past several decades.

The first wave occurred between the 40’s and the 60’s. It began with McCullogh-Pitts’
model (1943), Hebbian learning (1949), and then Frank Rosenblatt’s perceptron (1958). Since
a single-layer of perceptrons was shown to have severe limitations for solving complex prob-
lems in Minskey and Papert’s book Perceptrons (1969), all the research funds was diverted
to the field later called artificial intelligence (AI). Hereafter, virtually no research at all was
done in connectionism for 10 years.

The second wave occurred between the 80’s and the 90’s. In 1982, John Hopfield intro-
duced a form of neural network that can learn and retrieve patterns in a completely new way.
Around the same time, David Rumelhard proposed a new method called back-propagation to
train multi-layer perceptrons. These two discoveries revived the field of connectionism. Dur-
ing this period, Carver Mead recognized that neuro-inspired computing could be promising
for building more efficient computing systems and had promoted neuromorphic systems [28].
However, the technology at that time was not able to make it an attractive alternative. There
was no efficient and simple way to implement adaptive function either, making it difficult to
build large learning networks.

The third wave is happening right now. It is because we are getting better understanding
of some neural functions. Between late 80s and early this century, there have been many
important theories developed, such as the Boltzman machine [29] (which later evolved into
deep learning), Sparse Distributed Memory (SDM) [30] (later generalized to hyperdimen-
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sional computing [31]), and the Sparse Coding [32], etc. Also, the success of deep learning
(e.g. Google Brain) has triggered a surge of efforts to build machines that can process data
in much the same way the brain does [33]. In addition, the emerging nanotechnologies have
enabled some neural functions and architectures that were previously very difficult or im-
possible to be built. Therefore, if anyone can figure out how the brain makes use of noisy
neurons to compute and apply it to the emerging technologies, the information technology
could be revolutionized. These are why there is significant investment today in combining
the research of computational neuroscience and engineering.

1.3.2 Features of Neural Computation

The brain is a wonder of millions of years of evolution. Here are some of the important
features of neural computation.

• Brains are the most energy-efficient systems in the world : The human brain performs
more than 1016 FLOPS (floating-point operations per second) with only 20 W of power
consumption [34]. This is 2-3 orders of magnitude more efficient than today’s most
energy-efficient silicon equivalence.

• Robustness in the presence of component defects and variations : For example, human
can have complete visual color perception with incomplete deployment of color re-
ceptors [35]. Also even though neural responses are highly variable (with Fano factor
σ/µ ≈ 1 [36]), the neural system can still perform reliable functions.

• Amazing performance with mediocre components : The neural systems do not have pre-
cise and excellent neural components. However, the use of collective computation by
low to moderate-precision units can actually perform more complex and precise com-
putations. For example, the auditory system can tell difference of time arrival within 10
µs with cells having time constant of 1 ms [34]. The olfactory system can discriminate
104-105 of odors with slight differences of chemical structures using olfactory receptors
having broad reception ranges [37].

• Seamless interaction of the analog world : Each sensory modality uses specific kind of
sensor to sense analog information from the world. The useful information or features
are extracted using analog processing. It was point out that the use of physical functions
in analog computation is the key to its energy efficiency [28].

• 3D integration of memory and computation: Unlike a digital microprocessor where
there is a centralized computing unit and a separate memory unit, the computation
and memory are intimately integrated and distributed in the brain. Therefore, there
is no ’von Neumann bottleneck’ as in a microprocessor. The brain has closely coupled
its algorithms with the implementation [38], unlike the standard engineering practices
where algorithm design is mostly independent from how it will be implemented. More-
over, the fantastic 3D interconnect technology allows a fan-in and fan-out of 6,000
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connections per neuron [34] compared to roughly 6 of a logic gate in the microproces-
sor. These might also be why the brain has achieved unparallel performances.

1.3.3 Opportunities of Neuro-Inspired Computing

Given the features of neural computation and the properties of current and emerging tech-
nologies, we can summarize the opportunities of neuro-inspired computing as follows.

• To exploit the properties in neural computing, including robustness to variations/fail-
ures and efficient low resolution processing through massively parallel computing, and
to ensure efficient operation in the most informative regions of the input statistics
through adaptation and feedback.

• To efficiently realize some hard cognitive problems, such as artificial olfaction, vision,
classification, detection, and decision making, etc.

• To leverage the opportunity while mitigating the challenges in the emerging nanotech-
nologies. For example, hyper-dimensional computing paradigm [31] that is very difficult
or even impossible in a 2D platform can be efficiently implemented in a 3D logic and
memory integration platform while be very robust to device variations and failures.

1.4 Research Goal

The research goal of this thesis work is to develop an efficient neuro-inspired implementation
for feature extraction and classification. As a demonstration, we have chosen the application
to be artificial olfaction. First, it’s because gas sensor signals are considered static and easier
to deal with, compared with audio and video signals. Second, since so far there are very
rare research efforts or commercial products of integrated signal processing front end for
gas sensor arrays, we believe we can have good contributions to this field. Third, other
than traditional applications in explosive detection, in food or pharmaceutical industry, it
is predicted that there is an increasing market of integrated gas sensors in smart phones
or handsets for health monitoring (e.g. breath analysis) and environmental monitoring [39].
Therefore, an integrated artificial olfactory system may find its application soon.

1.5 Thesis Outline

The thesis is organized as follows.
Chapter 2 provides an overview of the information processing in the sensory pathway, with

an emphasis on the olfactory system. Based on the understanding of the biological sensory
pathway, the architecture for the artificial olfactory system is proposed, which consists of
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an analog feature extraction front end and a spike pattern classifier. Finally an information-
theoretic framework is developed to evaluate the energy efficiency of signal representations
and to systematically optimize a design at both the architectural and circuit level.

Chapter 3 describes the design of the analog gas sensing front end. The analog front end
implements a novel trainable feature extraction algorithm for metal-oxide gas sensor arrays.
The algorithm extracts one composite feature of all analytes and transforms the sensor
responses into concentration-invariant spike patterns. This composite feature is extracted
by performing the gradient decent algorithm during training. This 6-channel analog frond
end consumes 150nW/channel in the training mode, and 250nW/channel in the recognition
mode.

Chapter 4 describes the spike pattern classifier consisting of a sparse transformation of
the spike patterns and a cortical memory model. The transformation is based on a random
sampling scheme that can be efficiently performed with circuits exhibiting large paramet-
ric variations. Moreover, sparse representations allow fast and robust pattern storage and
retrieval with associative memories such as the correlation matrix memory. As mentioned
in previous sections, hyper-dimensional computing architectures like this may be a perfect
match to the emerging nanotechnologies. We show how this classifier can be densely and
efficiently implemented in a 3-D CNFET-RRAM technology.

Chapter 5 concludes by summrizing the key contributions and suggesting directions of
future research.
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Chapter 2

System Overview

In this chapter, an overview on the biological olfactory pathway is given, including the sens-
ing mechanism in the olfactory epithelium (OE), the combinatorial coding in the olfactory
bulb (OB), and the overcomplete representation in the primary olfactory cortex (OC). Next,
a signal processing architecture inspired by the olfactory pathway is proposed for artificial
olfaction. Finally, an information-theoretic framework and a joint architectural and circuit
level optimization methodology are provided to systematically determine the optimum ar-
chitecture for efficiency.

2.1 The Biological Olfactory Pathway

Probably the oldest sensory system in the nature, the olfactory system concerns the sense of
smell. Through the sense of smell, humans and other mammals can perceive a vast number
and variety of chemicals in the external world. It is estimated that humans can sense 104 to
105 chemicals as distinct odors. Even a slight change in the chemical structure of an odorant
can change its perceived odor. How do mammals detect so many different environmental
chemicals? And how does the brain translate those chemicals into diverse odor perceptions?

Unlike visual and auditory systems, the mechanisms of mammalian olfaction remained
a mystery until early this century. The discovery of the olfactory receptors and the combi-
natorial coding in the mammalian olfactory system by Richard Axel and Linda Buck was
awarded the Nobel Prize in 2004. The first half of this section is primarily from the Nobel
Lecture on their discovery [37]. The second half describes the computational principle behind
the sparse and overcomplete representations in the primary cortex [32], [40], [41] and how
such representation might be subsequently processed.

The signal processing in the olfactory system can be roughly divided into three stages, as
shown in Figure 2.1. The first stage is in the olfactory epithelium (OE), where odorants
are initially detected by millions of olfactory sensory neurons. These neurons then transmit
signals to the olfactory bulb (OB) of the brain, which then relays those signals to the
olfactory cortex (OC). From there, olfactory information is sent to a number of other
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brain areas, including higher cortical areas thought to be involved in odor discrimination,
and deep limbic areas thought to mediate emotional and physiological effects of odors.

Figure 2.1: The olfactory pathway. Adapted from [37].

2.1.1 Sensing in the Olfactory Epithelium

The olfactory epithelium contains millions of olfactory sensory neurons, as shown in Fig-
ure 2.2. At the surface of the epithelium, each neuron extends cilia into the nasal lumen,
allowing it to be in contact with odorants dissolved in the nasal mucus. Each neuron com-
municates with the brain via a single axon extending to the olfactory bulb.

Figure 2.2: Structure of the olfactory epithelium. Adapted from [37].
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Olfactory Receptors

How do these neurons detect odorants? In Axel and Buck’s experiments, they discovered a
family of G protein-coupled receptors (GPCRs) that are expressed exclusively by olfatory
sensory neurons. These receptors, though related, vary extensively in their amino acid se-
quences. This is how the receptors interact with odorant with different structures. Figure 2.3
shows the structure of one olfactory receptor. Odorants can bind to the extracellular part
of the receptor and activate the G protein, which will initiate subsequent messengers and
trigger a change of gene expression within the nucleus.

Figure 2.3: Topology of an odor receptor in the membrane. Individual amino acid residues are
indicated by balls. Red balls indicate residues that vary extensively among odor receptors.
Adapted from [37].

Later studies indicate that humans have about 350 different olfactory receptors and mice
have about 1000. Each neuron can express only one olfactory receptor gene, and each receptor
gene is expressed in several thousands of neurons. Neurons expressing the same receptor gene
are distributed within one zone in the olfactory epithelium, as shown in Figure 2.4.

Figure 2.4: Expression zones in the olfactory epithelium. Zones expressing different receptor
genes are marked in different colors. Adapted from [37].
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The Combinatorial Coding

How do olfactory receptors respond to odorants? By examing the responses of different
receptors to different odorants, it is concluded that odor receptors are used combinatorially
to encode odor identities. As conceptually illustrated in Figure 2.5, each olfactory receptor
can detect multiple odorants, and each odorant can activate multiple different receptors. It
was shown that such combinatorial code can actually maximize the mutual information [42].

Figure 2.5: Combinatorial receptor codes for odors. Adapted from [37].

2.1.2 Signal Integration in the Olfactory Bulb

How does the brain translate an odorant’s combinatorial receptor code into a perception?
Each olfactory sensory neuron in the olfactory epithelium sends a single axon to a spherical
structure called glomerulus in the olfactory bulb. Since there are only 2000 glomeruli while
there are 10 million olfactory sensory neurons, there is a massive convergence in the olfac-
tory bulb. Axons of thousands of olfactory sensory neurons expressing the same olfactory
receptor converge in only 2-4 glomeruli dedicated to the same olfactory receptor, as shown
in Figure 3.42. This allows a high degree of signal integration.

This further indicates that sensory information that is broadly organized and interspersed
in different zones in the nose is transformed into a stereotyped sensory map in the bulb.
Remarkably, this map is virtually identical in different individuals. This bulb map is likely
to be important for stimulation of odor memories. Sensory neurons in the epithelium are
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short lived and are continuously replaced. However, the bulb map remains constant over
time, assuring odorants can elicit distant memories.

Figure 2.6: Convergence of signals from the OE to the OB. Adapted from [37].

Therefore, in the nose the code for an odor is a dispersed ensemble of neurons, each
expressing one olfactory receptor. In the bulb, the code is a specific combination of glomeruli
and have a similar spatial arrangement among different individuals. This is illustrated with
two examples in Figure 2.7.

Figure 2.7: Odor coding in the OE and the OB. Adapted from [37].



CHAPTER 2. SYSTEM OVERVIEW 17

2.1.3 Dimensionality Exanpsion in the Olfactory Cortex

What happens to this information at higher levels of the brain to ultimately generate odor
perceptions?

Mitral cells in the bulb relays the signals from glomeruli to the olfactory cortex. The
olfactory cortex is composed of a number of distinct anatomical areas. The largest area
is called the piriform cortex (PC). In the 80’s, it was shown that a tracer placed in one
small region of this cortex would back-label mitral cells in many parts of the bulb [43]. This
indicates that the organization of sensory information in the olfactory bulb could not be
recapitualted in the cortex. How the information is organized in the olfactory cortex was a
mystery.

By developing a genetic method to trace neural circuits, Buck’s experiments found that
signals from one type of receptor in the bulb project to multiple areas in the olfactory cortex,
with a divergence ratio about 1:20 to 1:30, as shown in Figure 2.8.

Figure 2.8: Stereotyped map in the olfactory cortex. Signals of the same type of olfactory
receptor (marked with the same color) project to multiple spots in the cortex. Adapted from
[37].

This map in the cortex is markedly different: Signals from different receptors are spatially
segregated in different glomeruli in the OE and OB. In contrast, different receptor signals
overlap extensively in the OC and single cortical neuron receives signals from a combination
of glomeruli expressing different receptors. Moreover, it was shown that in rat primary olfac-
tory cortex, odor-evoked firing activity is sparse and distributed across the cortical neuron
population [44]. Therefore, after the convergence of signals from OE to OB, the combina-
torial code in OB is transformed to an overcomplete and sparse representation in the OC.
Figure 2.9 illustrates how signals are arranged in these three stages.
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Figure 2.9: Signals of different receptors converge in the OB and then diverge into the OC.
Adapted from [37].

Sparse Coding with Overcomplete Basis Functions

What is the significance of this dimensionality expansion? In fact, such dimensionality expan-
sion also exists in the visual system: from the lateral geniculate nucleus (LGN) to the primary
visual cortex (V1) [45]. Therefore, the sparse coding theory for V1 simple cells [32], [40], [41]
may provide useful insight here. As will be explained shortly, such dimensionality expan-
sion allows the neurons in the cortex to learn the higher-order structure of the inputs and
represent the input with as few active neurons as possible.

It’s postulated that one important goal of sensory coding is to transform the redundancy
(statistical dependence) in the input information to more effective representations for later
stages of processing [40]. If we consider a code in terms of an autoencoder network, the
design of the code is to find the optimized encoder W and decoder M such that information
loss is minimized:

min
W,M
|x− x̂|2, (2.1)

where x is the input information, and x̂ is the recovered information.
Figure 2.10 shows two coding strategies under two different constraints [46]. According

to the information theory, the best code is the one that can preserve the input information
with least number of bits. This is the compact code in Figure 2.10(a), where the constraint
is imposed on the number of elements representing the information. This can be achieved by
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principle component analysis (PCA) or singular value decomposition (SVD). Since each out-
put element represents a basis function in an orthonormal set, the input data is decorrelated
at the output. It has been noted that Hebbian learning can find the principle components
under the right conditions [47]. It was also shown that such redundancy reduction strategy
is used in the early visual system [48]. However, the limitation is that it considers only the
redundancy due to linear pairwise correlations of the input data and is not sufficient to
account for the receptive field of neurons found in the cortex. Such representation also has
many drawbacks: First, information can easily be lost due to a failure or malfunction of a
neuron. Second, every output neuron has high activity for all inputs. Therefore, this code
might be suitable in situations where only limited output dimensionality is available.

Figure 2.10: Two coding strategies in term of autoencoder networks. Adapted from [46].

The idea of sparse coding (Figure 2.10(b)) is based the assumption that the sensory
system is organized to achieve as complete a representation of the input information as
possible with minimum number of active neurons [49]. Not only the proportion but also the
actual number of active neurons is reduced. Therefore, the constraint of the sparse code is
not on the number of total neurons. Rather, it allows a much greater number of neurons to
code, and constrains the number of active neurons.

The receptive field of simple cells in mammalian primary visual cortex is characterized
as spatially localized, oriented and bandpass, similar to the basis functions in the wavelet
transform. Also, the firing of neurons in V1 is sparse and distributed across all neurons. This
has led to a conjecture that neurons in the primary visual cortex have adapted themselves
to the higher-order structures in the input, such that the response histogram is highly non-
Gaussian [40], as shown in Figure 2.11. This is further confirmed by the fact that convolving
a Gabor filter with natural images yields highly non-Gaussian responses. And the Gabor
function resulting in the highest kurtosis in the response histogram resembles the receptive
fields found in V1.

But how do neurons in V1 arrive at such receptive fields from natural images? It was
demonstrated that placing only two global objectives is sufficient to account for the principal
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Figure 2.11: Projection pursuit. The left part shows the state space of a two-dimensional data
set. The right part shows the distribution of the projection onto the axes. When the axes
are aligned with the data structure, the response shows a high degree of kurtosis. Adapted
from [40].

spatial properties of simple-cell receptive fields: (1) that information to be preserved, and (2)
that the representation be sparse [32]. Figure 2.12 shows the resulting basis functions learned
from natural images. It can be seen that except for some low-frequency basis functions, most
of them are localized, oriented and bandpass.

As for why using an overcomplete basis - i.e. the number of code elements (basis functions)
is greater than the effective dimensionality of the input space, it was shown that sparsifica-
tion with an overcomplete basis will make each unit more selective to stimulus properties [41]
and create more diversities of features in the basis. Several theories had proposed that nat-
ural images actually lie along a low-dimensional manifold embedded in a N-dimensional
hyperspace [50], [51]. Therefore, it is suggested that the advantage of overcomplete coding
is that the manifold becomes flattened out in the space defined by overcomplete basis, mak-
ing it easier for higher cortical areas to learn structures in the data (i.e., the shape of the
manifold) [52].

The other reason for overcomplete representations is that the higher-level cortices are
hypothesized to compute with high-dimensional vectors [31]. As will be described in Chap-
ter 4, the brain might have leveraged some subtle properties in the hyper-space such that its
computation is highly robust to component variations and failures.

Not only in mammalian visual cortex, there are evidences of sparse coding in other sys-
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Figure 2.12: Resulting basis functions of sparse coding. Adapted from [32].

tems and species, such as in the mushroom body of locusts [53], auditory cortex in mice [54],
hippocampus in rats and primate [55], etc. Although there is no direct evidence for sparse
coding in mammalian olfactory cortex, this still provides useful insight for the design of a
bio-inspired system.

2.1.4 Computations in Higher-Level Cortices

The computations in higher-level areas are still poorly understood. However, several im-
portant biologically plausible models have demonstrated alternative computing paradigms
intertwining computation and memory, for example, the Hopfield network [56], the Sparse
Distributed Memory for the the cerebellum [30], self-organizing maps, and Hierarchical Tem-
poral Memory (HTM) [57], etc.

Recent years, more and more research efforts are devoted to probabilistic models, infer-
ence, and recurrent networks, such as Boltzman machines, deep learning, long-short term
memory networks, etc. Some of them have been proved powerful in analyzing the big data.
We are looking forward to the future advancement in computational neuroscience that may
revolutionize the human information technology.

2.2 Architecture Overview

In light of the biological olfactory pathway, an architecture for artificial olfaction is proposed,
as shown in Figure 2.13.

The analytes are first sensed by N gas sensors. Because most gas sensors are broadly
responsive, an array of different sensor types must be used to produce unique signatures for
different analytes. This is similar to the combinatorial coding in the olfactory epithelium and
the olfactory bulb. The sensor output vector is denoted by s and has a dimension of N .
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Figure 2.13: System architecture.

The first stage of processing is feature extraction. Instead of immediately digitizing the
inputs for digital signal processing, analog primitives are used here to achieve high efficiency.
As will be shown in Section 2.3, increasing the degrees of freedoms (sensors) allows analog
circuits to operate in the low-power and low-precision regime while achieving the same output
precision. This analog front end implements a novel trainable feature extraction algorithm
that encodes the analyte identities into spike patterns while decoupling the concentration
information to spike delays. It also has a learning mechanism to adapt its parameters to the
input statistics. The output spike pattern is denoted as a N -dimensional vector t. Chapter
3 describes the detail of this feature extraction front end and the chip testing results.

The second part is a spike pattern classifier, consisting of a transformation of the input
spikes into sparse vectors and a cortical memory model. The transformation is based on
a random sampling scheme that can be efficiently performed with circuits exhibiting large
parametric variations. This allows the use of minimum-sized devices and operation in the low-
voltage regime. As mentioned, sparse representations allow fast and robust pattern storage
and retrieval with associative memories, such as the correlation matrix memory used here.
Through an overcomplete basis, the spike patterns are transformed into a sparse vector y
with dimension M � N . During the training phase, the correlation matrix memory takes
the pattern y and its associated word w as inputs. During the recognition phase, the memory
outputs the word z that is associated with the input pattern. Both w and z have an arbitrary
dimension U . The algorithms and how it can be implemented in an 3D CNTFET-RRAM
technology are described in Chapter 4.
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2.3 An Information-Theoretic Framework for Joint

Architectural and Circuit Level Optimization

In exploring new computing paradigms, it is essential to have a certain comparison framework
for evaluation. In this section, an information-theoretic framework is developed to compare
signal representations and to systematically optimize the architectures.

In the sensory processing on biosensors, the nature of the input signal is analog. For
processing tasks such as feature extraction or pattern recognition, a precise restitution of
the information is not required. In most systems, the input signal is immediately digitized and
all the processing is performed in the digital domain. However, it has long been recognized
and demonstrated experimentally that low precision analog may be a more efficient way when
certain extent of distortion is allowed [58, 59, 60, 61]. Hence a first fundamental question is:
What is the most efficient signal representation for a given processing task? That is, when
and where is it advantageous to use analog, digital, or other types of signal representations?

It is known that nervous systems do not behave like digital computers. Instead, the
information of neural signals is encoded in the time domain without explicit quantization.
Can such signaling yield better energy efficiency on silicon? In Section 2.3.1, we revisit the
information-theoretic framework set forth by [58], [60] to compare the efficiency of different
circuit-level signal representations. In this framework, the signal representation system is
viewed as a noisy channel which transfers the information. The criterion to evaluate the
goodness of a certain signal representation is the energy per transmitted information bit. We
use this framework to investigate the efficiency of one particular continours-time discrete-
valued (CTDV) representation and compare it to the digital approach. The results suggest its
potential in the low precision regime, similar to the properties of continuous-time continuous-
valued (CTCV) and discrete-time continuous-valued (DTCV) representations [58], [60]. In
Section 2.3.2, we first present a problem of distinguishing fixed number of analytes using
multiple sensors. Then a joint architectural and circuit level optimization is demonstrated
on this problem to determine the optimum number of sensors.

2.3.1 Circuit-Level Comparison

Four types of signal representations have been identified [60], [61] as shown in Figure 2.14.
In [60], it is shown that on-chip communication links based on CTCV and DTCV repre-
sentations yield similar behaviors as compared to the discrete-time discrete-valued (DTDV)
one: in the low-precision regime, the CTCV and DTCV systems are more efficient than the
DTDV system; whereas in the high-precision regime, DTDV system is more efficient. As for
the CTDV system, where information is encoded in the time domain rather in the amplitude,
it is still less understood and is believed to be the way neurons encode information. Could it
be an efficient scheme for on-chip signaling? In the following, we investigate its performance
through a on-chip communication link model and evaluate it under a comparison framework.
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Figure 2.14: Four types of signal representations.

The Methodology

Figure 2.15: Different signaling systems as noisy channels.

First, on-chip communication links are treated as noisy channels [58], [60], [62]. To com-
pare different signal representations, the same analog input X(t) is fed into different systems
as shown in Fig 2.15. Then the signal will be represented in different forms X̂(t). Secondly, the
power dissipation P is related to different output SNR’s (as a measure of the signal fidelity)
by varying the design parameter w (eg. number of bits in the DTDV system or the mean
firing rate in the CTDV system). The output information rate R is approximated with the
rate-distortion function of Gaussian-distributed signals [63], given by R = fslog2SNR where
fs is the signal bandwidth.1 Finally, the energy per information bit Eb is obtained by dividing
the power dissipation in each system by the delivered information rate, i.e. Eb = P/R.

The methodology here is different from that in [60] in the evaluation of the power dis-
sipation and the information rate. Here we evaluate the power dissipated in converting the
input signal into different signal representations as well as the power dissipated on the in-
terconnect, rather than the input power required to drive the interconnect. This is because
different signaling schemes should be compared under the same input power. Second, the
information rate is obtained with the rate-distortion function instead of the channel capacity.
Although both have similar forms, they differ in the bandwidth used in the formulas and

1For signals that are not Gaussian-distributed, the rate-distortion function for the particular input am-
plitude distribution should be used. We use this approximation because of its simple and explicit relationship
with the SNR. Although the absolute bit energies may be deviated, the relative bit energies between the
DTDV and CTDV systems are still valid.
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Figure 2.16: Modeling of a on-chip digital communication link and the parameters in the
model. The interconnect parameters are based on UMC’s 90nm CMOS Technology.

their meanings. The bandwidth in the channel capacity formula is the channel bandwidth,
which is in the order of the GHz; whereas that of the signal can be ten to hundred times
smaller.

Modeling On-Chip Communication Links

DTDV System The model shown in Figure 2.16 represents a on-chip digital link where
an analog signal is sampled by a b-bit A/D converter, transmitted over b parallel wires and
recovered by a b-bit DAC followed by a low-pass filter. The input signal used here is a sinusoid
with a certain duration. The tables show the parameters used for simulations in Mathwork
Simulink. They include the input signal, the A/D and D/A converters, the interconnect, and
several possible noise sources affecting the converters and the interconnects. The precision of
the signal can be increased by increasing b. The total energy consumption on the interconnect
is obtained by measuring the total number of transitions on the interconnect. 2

CTDV System We investigate a CTDV representation that encodes information in the
pulse rate [64]. The pulse-rate modulated signal can be generated by driving with the input

2We ignored the power in A/D and D/A converters because we assume their power is a small fraction
of the total power in a large digital system.
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Figure 2.17: Modeling of a pulse-rate modulated communication link and the parameters in
the model.

signal a VCO followed by a pulse generator, as shown in Figure 2.17. The pulses propagate
through the same interconnect, and the signal is recovered by a low-pass filter. The pulse
swing can be reduced by using a coupling capacitor Cc without significant degradation of
the output SNR. The higher the mean frequency f0 of the VCO, the higher the output
SNR. Similarly, the total energy consumption is obtained by measuring the total number of
transitions.

Eb VS. SNR

The simulation results are shown in Figure 2.18. The number of bits in DTDV system ranges
from 3-16. The mean firing rate of the CTDV system ranges from 250-800 MHz. Figure 2.18a
plots the power versus SNR, which is then divided by the effective information rate to obtain
the bit energy versus SNR as shown in Figure 2.18b.

We can see that the pulse rate-modulated signal is more efficient in the low precision
regime, while the digital signaling is more efficient in the high precision regime. This prop-
erty similar to those of CTCV and DTCV representations [60, 61] suggests that CTDV
representation may actually fall into the larger category of ‘analog’ representations. We sus-
pect other analog pulse modulations also exhibit similar properties.

As a final note, even though the digital signaling is more efficient in high precision, its
performance is still limited: the dotted blue line in Figure 2.18 is the ideal digital signaling
where quantization noise is the only noise source. It can be seen that ideally the digital
signaling should have constant Eb while in reality its precision is limited by other noise
sources. Therefore, even with digital signaling, the cost to operate at the high-precision
regime is still high.
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(a) the power versus SNR

(b) the Eb versus SNR.

Figure 2.18: Simulation results for the DTDV and CTDV systems..
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2.3.2 Joint Architectural and Circuit Level Optimization

The analysis above indicates the possible energy savings operating in the low-precision
regime. To take advantage of this opportunity requires signal processing architectures that
operate effectively in this regime. Feature extraction or pattern recognition are processing
tasks that best fit this opportunity: Instead of precisely restituting the input information,
only the useful information (e.g. the identity) needs to be extracted at the output. Therefore,
the output precision can be just as much as needed to represent the useful information.

In this exploration, we choose a problem of distinguishing a fixed number of gas analytes
using multiple sensors. Since the amount of output information that needs to be represented
is fixed, the required precision per degree of freedom decreases as number of sensors increases.
Therefore, the circuits can afford to be noisier and consume less power. In conjunction with
the power-precision model of the computation circuits, the optimum number of sensors can
be derived.

Concentration-Invariant Encoding

Here we consider using multiple carbon black/polymer composite sensors to detect gas an-
alytes. Carbon black/polymer composite sensors are characterized as having simple linear
responses (fractional resistance change ∆R/R) with respect to gas concentration [65]. Sim-
ilar to most gas sensors, each sensor responds to multiple analytes. Suppose there are N
sensors, then the N -dimensional vector response of the sensor array for analyte k, sk, can be
expressed as

sk = ak · c (2.2)

where ak is the signature vector associated with each analyte and c is the gas concentration.
Figure 2.19 illustrates the responses for K analytes in an N -dimensional response space.

Red and blue dots represent responses at two concentration levels cH and cL, respectively.
The goal of the feature extraction task is to extract the signature vector ak from the sensor
response sk. A simple logarithmic transform can do so by separating the identity information
from the concentration information:

logsk = logak + logc (2.3)

If logsk can be linearly transformed to the delays of spikes tk, then the signature vector
would be transformed into a unique spike pattern while the concentration information would
appear as a delay in time, as shown in the right of Figure 2.19. These spikes patterns will
then be used as features for subsequent storage or classification.
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Figure 2.19: Concentration invariant encoding.

Minimum Required Precision Per Degree of Freedom

If the number of total interested analytes K are fixed, and the goal is to distinguish each
analyte for certain amounts of concentration levels, the required precision per degree of
freedom would decreases as the number of sensors (degree of freedoms) increases.

Figure 2.20 shows the simulated sensor responses after logarithmic transform using N=2
and N=3 sensors. The sensors are modeled with parameters from the measurements in [65].
There are total K = 8 analytes in this simulation. As the number of sensors N increases, the
distance between analyte responses gets larger. Therefore, the minimum required precision
of the logarithmic transform in each channel can be lower.

Figure 2.21 shows the minimum required precision of the logarithmic transform per chan-
nel as N increases from 2 to 7. The precision is defined as

log2
Vrange
N
√
dmin

[bits] (2.4)

where Vrange is the output voltage range of logarithmically transformed sensor response, and
dmin is the minimum distance between any two dots in the log response space, calculated by
the program.

Power-Precision Trade-off

In this exploration, we consider an analog logarithmic converter as shown in Figure 2.22a.
In order to compare with a digital implementation, a digital lookup table for logarithmic
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(a) N=2 (b) N=3

Figure 2.20: Analyte responses in the log space with different number of sensors (N).

Figure 2.21: Minimum required precision per degree of freedom.
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transform shown in Figure 2.22b is also considered.

(a) Analog logarithmic converter (b) Digital lookup table (LUT)

Figure 2.22: Logarithmic transform circuits.

Figure 2.23: The power-precision trade-offs.

The power-precision trade-off in the analog logarithmic converter mainly comes from
sizing up the transistors to lower the threshold variations while keeping the closed-loop
bandwidth constant. The trade-off in the digital logarithmic lookup table simply comes from
the adding more columns as output precision increases.
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Both designs are supplied at 0.5 V and simulated with models from ST Microelectronics’
65 nm Low Power (LP) technology. The details of the simulation and power estimation are
described in Appendix A. Figure A.8 shows the resulting power-precision profile of the analog
and digital designs. It can be seen that analog implementation has a notable advantage in
the low-moderate precision regime.

Optimization Methodology

Combining the required precision per degree of freedom (Figure 2.21) and the power-precision
profile (Figure A.8), the required power per degree of freedom P (N) as a function of number
of sensors N can be obtained, as shown in Figure 2.24.

Figure 2.24: The required power per degree of freedom P (N).

Therefore, the optimal number of sensors can be determined by the following objective:

min
N

N · P (N) (2.5)

Plotting N · P (N) versus N in Figure 2.25, we can see that increasing number of sensors
benefits analog implementation. But the decrease of analog power gradually slows down
around 6 to 7 sensors.

To summarize, we have demonstrated a joint architectural and circuit level optimization
method to determine the optimum number of sensors for an analog design. The power savings
with respect to a digital approach is also investigated. Although a specific feature extraction
using logarithmic transform is analyzed here, the comparison framework and the optimization
methodology can be applied in other contexts.
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Figure 2.25: Total power consumption N · P (N).
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Chapter 3

An Analog Gas Sensing Front End

As mentioned in previous two chapters, the biological systems interact with the analog world
seamlessly. The useful information is extracted by extremely efficient analog signal processing
in the early sensory pathways [34]. It is suggested that the neural systems have used the
physics in analog computation to achieve this. In this chapter, we propose an analog signal
processing algorithm for gas sensor arrays. This algorithm can be efficiently implemented in
subthreshold analog circuits. Moreover, by leveraging the degree of freedom in multi-channel
processing, the analog circuits are designed in the low-power and low-precision regime while
achieving the desired output precision.

Among many gas sensing technologies, metal-oxide gas sensors are the most available one
in the market. Due to its high-temperature operation, it used to consume large power on the
heater. However, recent advances in integrating the sensor with MEMS micro-hotplate has
significantly reduced the power and size [66], [67], [68], [69], making them more amenable
for mobile or portable applications. Polymer-based gas sensors, such as those mentioned in
Section 2.3 are very attractive, as they operate in room temperature, have simple linear
response relationship with gas concentration, and can offer great number of varieties. How-
ever, they are extremely sensitive to environmental factors (e.g. humidity, temperature) and
are still hard to be commercialized. Other gas sensors such as electrochemical and optical
sensors can be made selective, but they suffer from limited life time and requiring large gas
cells, respectively. Therefore, in this research, we chose the common metal-oxide sensors to
work with, and developed a dedicated algorithm for an array of metal-oxide sensors. To the
best of our knowledge, this is the first integrated trainable feature extraction front end that
can simultaneously process parallel gas sensor signals.

In the first section this chapter, the sensing mechanism and response property of metal-
oxide sensors are introduced. Next, the feature extraction and learning algorithms for an
array of metal-oxide sensors are proposed. These algorithms are implemented with sub-
threshold analog circuits in CMOS technology. Finally, the testing results are described.
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3.1 Metal-Oxide Gas Sensors

3.1.1 Sensing Mechanism

Metal oxides such as SnO2, ZnO, Fe2O3, and WO2 are intrisically n-type semiconductors. At
temperatures of 200 to 500 ◦C, they respond to reducing gases such as H2, CH4, CO, C2H5,
or H2S by decreasing the resistance.

(a) In clean air (b) In the presence of reducing gases

Figure 3.1: Potential barriers at the grain boundaries in metal-oxide semiconductors. Credit:
FIGARO, Inc.

Figure 3.1 illustrates the sensing mechanism. In clean air (approximately 21% O2), oxy-
gen is adsorbed on the metal oxide surface. With its high electron affinity, adsorbed oxygen
attracts free electrons inside the metal oxide, forming a potential barrier at the grain bound-
aries. This potential barrier prevents electron flow, causing high sensor resistance in clean
air. When the sensor is exposed to combustible or reducing gases, the oxidation reaction of
such gas with adsorbed oxygen occurs at the surface of metal oxide. As a result, the density
of adsorbed oxygen on the metal oxide surface decreases, and the height of the potential
barrier is reduced. Because more electrons can flow through the potential barrier of reduced
height, the sensor resistance decreases. The reactions can be expressed as follows [70].

e+
1

2
O2 → O− (3.1)

R(g) +O− → RO(g) + e (3.2)

where e is the electron from the conduction band of the oxide semiconductor, and R(g) is the
reducing gas.
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3.1.2 Sensor Response Characteristics

The most widely used semiconducting material is SnO2, doped with small amounts of impu-
rities and catalytic metal additives. By changing the choice of impurities and catalysts, many
types of gas sensors can be developed. Typically, metal-oxide gas sensors exhibit relatively
poor selectivity for gases and respond to many gases. Moreover, the response follows a power
law within a certain range of gas concentration [71]. These can be seen in a typical response
profile as shown in Figure 3.2 [72], where R0 represents the sensor resistance in a reference
condition, and RS represents the sensor resistance in the presence of the gas at different
concentrations. Therefore, their responses are usually modeled as:

Figure 3.2: Response profile of FIGARO’s TGS822 sensor for solvent vapor detection.

Rs

R0

= a[c]−γ (3.3)

The response of a sensor to an analyte is then characterized by a scaling factor a and an
exponent γ. For example, for analyte p and analyte q, their responses from a sensor can be
expressed as follows. (

Rs

R0

)
p

= ap[c]
−γp (3.4)(

Rs

R0

)
q

= aq[c]
−γq (3.5)
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3.1.3 Arrayed Sensing

Since one sensor is not sufficient to distinguish different analytes, different types of sensors
must be used in an array such that the array can produce a unique pattern for each analyte.
Then the responses of the sensor array to analyte p and analyte q can be expressed as vector
responses:

Rp =



(
RS1

R01

)
p(

RS2

R02

)
p

...(
RSN

R0N

)
p

 =


a1pc

−γ1p

a2pc
−γ2p

...
aNpc

−γNp

 (3.6)

Rq =



(
RS1

R01

)
q(

RS2

R02

)
q

...(
RSN

R0N

)
q

 =


a1qc

−γ1q

a2qc
−γ2q

...
aNqc

−γNq

 (3.7)

Figure 3.3 shows the response trajectories for five analytes using three gas sensors. We
can see that as concentration changes, each analyte streaks a unique trajectory in this three
dimensional space.

3.2 Algorithms

As shown in Equations 3.6 and 3.7, each analyte is characterized by a unique scaling vector
a = [a1, a2, · · · , aN ] and an exponent vector γ = [γ1, γ2, · · · , γn], so the goal of the front end
is to extract either the a vector or the γ vector, or even both vectors as the feature for each
analyte. Most feature extraction algorithms require computing and storing all features for all
analytes during learning, and require multiple times of processing during recognition. Here
we propose an efficient feature extraction algorithm that requires computing and storing only
one composite feature during learning, and requires only one processing during recognition.

3.2.1 Feature Extraction

The goal of this feature extraction front end is to get a single unique feature for all input
vectors corresponding to the same analyte. Therefore, the design of the feature extraction
algorithm is aimed to have a certain transformation such that input vectors on the same
trajectory are transformed into one representation.
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Figure 3.3: Response trajectories in the sensor response space.

First, it is reasonable to think that straight trajectories are easier to process. Since
the gas sensor output responses follow a power law (Equation 3.3), the trajectories can
be ”streghtened” by a logarithmic transform. For example, for analyte p and analyte q, their
transformed responses become

log
1

Rp

= −ap + logc · γp (3.8)

log
1

Rq

= −aq + logc · γq (3.9)

Figure 3.4 shows the logarithmically transformed response trajectories from Figure 3.3.
In the 1/logR space, if we can find the vector s closest to all the extrapolated trajectories,

i.e. the virtual intersection as marked in Figure 3.4, then projecting the trajectories onto the
unit sphere centered at s will concentrate each trajectory in a small region on the unit sphere.
The operation of projection is essentially a vector normalization:

log 1
R
− s

||log 1
R
− s||

(3.10)

Figure 3.5 shows the projections on the unit sphere.
If we have the freedom to configure the sensor types such that their responses to target

analytes virtually intersect at s in the 1/logR space, then each trajectory will be concentrated
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Figure 3.4: Sensor responses in the 1/logR space.

Figure 3.5: Projected trajectories on the unit sphere centered at s.
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at one single point, which is then the feature of the corresponding analyte. If not, the
concentrated regions can be considered as noisy outputs. The subsequent pattern recognition
can still distinguish them if the projected regions stay far away enough from each other. In
next section, the learning of the optimum s from a set of analyte responses will be described.
Here we will move on to discuss another way of extracting the feature while preserving the
concentration information.

Concentration-Invariant Encoding

One of the key computational problems of olfaction is concentration invariance [73]. It was
discovered that odors at different concentrations generate families (low-dimensional man-
ifolds) of spatiotemporal representations [74], providing the neural substrate for concen-
tration invariance. It was also suggested that logarithmic encoding is particularly useful
in scale-invariant recognition problems [75], because it makes the relative timing of spikes
independent of the intensity or scale.

In light of these, we may do something different than Equation 3.10. First, note that
(1/logR− s) is actually proportional to γ, assuming that all extrapolated trajectories inter-
sect at s. For example, for analyte p

log
1

Rp

− s = −ap − s + logc · γp (3.11)

= λp · γp + logc · γp (3.12)

= (λp + logc) · γp (3.13)

where λp is a scaler relating (−ap − s) to γp. The feature vector, γp, can then be extracted
by another logarithmic transform:

log(log
1

Rp

− s) = logγp + log(λp + logc) · 1 (3.14)

Similar to the encoding scheme in Section 2.3, if log(log(1/Rp)− s) can be converted to the
timing of spikes tp, then the responses of each analyte will be transformed to a unique spike
pattern, with its concentration information encoded in the delay of the spikes, as shown in
Figure 3.6. This spike pattern is the feature that the subsequent classification unit needs to
recognize.

To summarize, the feature extraction algorithm is

t = log(log
1

R
− s) (3.15)

3.2.2 Learning

As mentioned in the previous section, how to find s given a set of analyte responses? In this
section, we show how to use the gradient decent algorithm to iteratively update s, such that
it will gradually approach the optimum solution each time an analyte is applied.
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Figure 3.6: Analyte responses at different concentrations are transformed to a unique spike
pattern with different delays in time.

Figure 3.7: Updates of s in the x = log(1/R) space.
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Let x = log(1/R). Figure 3.7 shows the response trajectories in the x space. For simplic-
ity, this figure illustrates the case where the number of sensors is 2. However, this algorithm
is for any number of sensors and the following derivation is generalized to N sensors.

During the learning phase, each analyte is applied at two concentration levels c1 and
c2, yielding two responses xk(c1) and xk(c2), where k denotes the k-th analyte. Γk is the
signature vector of the k-th analyte.

Γk = xk(c2)− xk(c1) (3.16)

= γk · log
c2
c1

(3.17)

When s is at this optimal location, (xk − s) should align with Γk. Therefore, the energy
function to be minimized can be defined as the following.

E[s] =
1

2

∑
k

‖ Γk

‖Γk‖
− xk − s

‖xk − s‖
‖2 (3.18)

Accordingly, the update rule is

∆s = −η∂E
∂s

(3.19)

≈ −η
∑
k

(
Γk

‖Γk‖
− xk − s

‖xk − s‖

)
(3.20)

Since s is updated sequentially, the update for each trial is simply

∆s ≈ −η
(

Γk

‖Γk‖
− xk − s

‖xk − s‖

)
. (3.21)

Figure 3.8 shows that updating s according to the update rule (i.e. moving in the direction
of the difference between the normalized (xk − s) vector and the normalized Γkvector) will
lead to the optimum location.

3.3 CMOS Implementation

3.3.1 Architecture Overview

Figure 3.9 shows the gas sensing frontend architecture. It consists of a main signal path
implementing the feature extraction algorithm and a learning unit. During the training
phase, the learning block is activated to iteratively update the voltage vector VS, which will
then be used in the main signal path to perform the feature extraction algorithm.

The input is a vector of sensor resistance RS. After a resistance-to-current conversion, the
log converter relates the currents log-linearly to the output voltage vector VX. VX is then
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Figure 3.8: Updates of s according to the update rule.

subtracted by VS in a voltage-to-current converter and undergoes the second logarithmic
transform. The voltage-to-spike timing converter linearly relates the input voltage to the
output spike delay. Therefore the timing vector of the output spikes t is proportional to
log(log 1

RS
−VS).

Figure 3.9: The analog gas sensing front end architecture.

In this design, a 6-channel frontend has been implemented. The functional block diagram
is shown in Figure 3.10. There are 6 current inputs IIN〈1 : 6〉. These ports can be connected
to real sensors. However, for verifying the chip functionality, we use current inputs to emulate
sensor resistance changes. Each channel consists of two logarithmic converters, a voltage-to-
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current converter, and an integrate-and-fire (IF) circuit that converts voltage to spike timing.
The blocks and ports that are marked blue are used only during learning, including a vector
normalizer, and sample-and-hold (S/H) circuits. As will be detailed in Section 3.3.3, the
response vector VX

k(c1) is sampled by 6 off-chip ADCs through ports VX OUT〈1 : 6〉, stored
in an off-chip memory, and fed back to ports VX DAC 〈1 : 6〉 for computations in Phase II of
each learning trial. Similarly, the updated vector VS is sampled through VS OUT〈1 : 6〉 by
another 6 off-chip ADCs, stored in the off-chip memory, and fed back to ports VS OUT〈1 : 6〉
for computations in next learning trail.

Figure 3.10: The functional block diagram.

This analog learning front end was implemented in TSMC 65-nm 1.2V Low Power (LP)
technology. Figure 3.11 shows the layout. The entire die area is 1.7 mm×1.3 mm, with core
area 0.65 mm×0.55 mm. The supply voltage is 0.6/0.65V1.

1Most blocks are supplied at 0.6 V. However, some blocks have separate supplies to accommodate different
process coreners and can be supplied up to 0.65 V.
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Figure 3.11: Layout of the analog gas sensing frontend.

3.3.2 Impelementation of the Feature Extraction Algorithm

Figure 3.12 shows the circuit implementation of the feature extraction algorithm for each
channel. The op-amp in the input logarithmic converter fixes the input voltage at VR. There-
fore, the sensor resistance RS is converted to current IR = VR/RS. Transistor M3 is biased in
the subthreshold, so VX will be linear to log(1/RS). The op-amps in the V-I converters set
the voltages on the right terminals of the resistors to be VS. Therefore, the current flowing
through the resistor in either one branch is |VX − VS|/R, and 0 in ther other branch. IXN
and IXP are then mirrored and summed to flow through a stack of two transistors biased
in the subthreshold. Hence the output voltage VO will be linear to log(log(VR/R) − VS) as
desired. Finally the integrated-and-fire circuit converts VO to the delay of the spike t through
a linear relationship t = C ·VO/I, where C is the integrating capacitance and I is a constant
current.

The design and measurement results for each block will be described in the following
subsections.
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Figure 3.12: Implementation of the feature extraction algorithm.

Input Logarithmic Converter

Figure 3.13 shows the schematic of the input logarithmic converter. The input current ranges
from 40 nA to 4 uA, and is ratioed down by 100 times with two stages of current mirrors.
Since VR is set at 0.2 V by the feedback loop, this emulates a sensor resistance range from
5 MΩ to 500 MΩ.

Figure 3.13: Schematic of the input logarithmic converter.

A common source amplifier (M1 and M2) instead of a two-input terminal op-amp is used
to set VR. The bias current is 100 nA from the 0.6-V supply. The loop gain is 25 dB and
the loop bandwidth is 1.39 MHz. In the case where VR is directly connected to sensor, this
implements the resistance-to-current conversion IR = VR/RS. Transistor M3 is biased in the
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subthreshold, so its current can be modeled as [76]

IR = I0 · exp
(
VGS3 − VTH3

nV t

)
(3.22)

where VGS3 = VX−VR, V t is the thermal voltage, and both I0 and n are empirical constants.
Therefore,

VX = VR + VTH3 + nV t · ln
(
IR
I0

)
(3.23)

Since VR, VTH3, n, V t, and I0 are all constants, they can be lumped together. The input-
output relationship then becomes

VX = A+B · ln(IR) (3.24)

or

VX = A+B · ln(
VR
RS

) (3.25)

when the sensor is directly connected to VR. Note that the variations in VR, VTH3, and I0
between different channels do not matter because they can be captured by the learning
algorithm. As for n and V t, they are the same for all channels, as these two parameters
depend only on process and temperature.

Figure 3.14 shows the simulated and measured VX versus IIN, where VX is measured
from the output buffer. It can be seen that the input current is logarithmically linear to the
output voltage.

V-I and Log Converters

Figure 3.15 shows the schematic of the V-I converter and the second log converter. The V-I
converter consists of NMOS and PMOS branches for bidirectional current flow. Since current
can only flow in either branch, the function of the V-I converter can be expressed as

IXN , IXP =
|VX − VK |

R
(3.26)

To avoid the mirror pole in a current mirror loaded differential amplifier [77], a combi-
nation of a source follower and a common-gate amplifier is used for better loop stability.
During the training phase, VK is multiplexed between VX DAC and VS DAC to implement
the update. After training, VK is connected to VS DAC. The input common-mode range
of this amplifier is designed from 100 mV to 350 mV to cover the output range from the
previous stage and the range of possible VS. The input resistance is designed at 10 MΩ to
achieve a loop gain of 41 dB. The loop bandwidth is around 480 kHz.
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Figure 3.14: Simulated and measured output voltage versus input current for the input log
converter.

Figure 3.15: Schematic of the VI converter and the second log converter.
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The currents in the NMOS branch IXN and the PMOS branch IXP are mirrored and
summed into a stack of transistors designed in the subthreshold region. Therefore, the output
voltage VO will be linear to log(IXN + IXP ). During the normal operation phase when VK
is conncected to VS DAC, one can derive the expression of VO from Equation 3.26 and
Equation 3.25 to be

VO = D + E · ln(ln
1

RS

− VS) (3.27)

where D, E are constants. This is the feature extraction algorithm as desired (Equation 3.15).
Note the the constant shift D does not need to be matched between channels, because it will
appear as a constant delay shift of the output spikes. Moreover, E = n · V t is the same for
all channels.

Pseudo-Resistor The high resistance at the input of the V-I converter requires large area
if it’s implemented as a passive resistor. A total of 18 such resistors will result in prohibitively
large area. Using a transistor in the linear region, the source-drain voltage cannot be more
than 100 mV. Therefore, in this design, we used pseudo-resistors [78], [79], [80], which can
generate resistance in the order of MΩ to GΩ.

Figure 3.16 shows the implementation of the pseudo-resistor. For a PMOS transistor,
when the bulk terminal is connected to the drain terminal, its threshold is modulated (de-
creased) as VSD increases. Therefore, the IDS-VDS relationship at a constant VGS would be
linearized [78], compared to the normal configuration where the bulk is connected to the
supply voltage. The resistance is determined by VSG.

The pseudo-resistor can be made bi-directional and tunable in the configuration shown
in Figure 3.16b. When one is in bulk-drain connected configuration, the other is diode-
connected. Therefore, the resistance is dominated by the bulk-drain connected one. The
resistance can be tuned by changing the source-gate voltage through IB. In this design,
IB=24 nA.

The drawback of this pseudo-resistor is that it can only operate at VSD <0.4 V, otherwise
the source-well PN junctions becomes forward-baised. In this design, the supply is 0.6 V and
the voltage cross the pseudo-resistor is always less than 0.4 V. The other problem is the
nonlinearity. The resistance variation is about ± 10% of the nominal resistance value.

Measurement Results The pseudo-resistor is characterized by measuring the input cur-
rent IX of the V-I converter when sweeping VX directly from an external source. Figure 3.17
shows the simulation and measurement results when VK is set at 0.25 V. The measured
resistance is slightly lower than 10 MΩ due to the process variation. In this design, each
pseudo-resistor consumes 72 nA from the 0.6-V supply.

The V-I converter is characterized by measuring IX versus VX at different VK ’s. As shown
in Figure 3.18, the IX-VX relationship is maintained at different VK ’s less than 0.35 V. When
VK=0.4 V, the V-I converter operates out of its input common-mode range and therefore
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(a) Bulk-drain connected PMOS transistor. Adapted from [79].

(b) Bi-directional and tunable pseudo-
resistor. Adapted from [80].

Figure 3.16: Implementation of the pseudo-resistor.

cannot maintain the IX-VX relationship correctly. We also measured the output voltage of
the log converter VO versus VX , as shown in Figure 3.19. It can also be seen that same
input-output relationship is maintained until VK=0.4V.

Finally, the functionality of the logarithmic converter is verified by plotting its output
voltage VO versus the measured input current to the V-I converter IX (Figure 3.20). In
this measurement, VK is set at 0.2 V. It can be seen that the output voltage is linear to
log(IX). However, the measured output voltage is about 50 mV higher than the simulation.
It’s because the process was shifted toward the SS corner. Therefore, to ensure linear VX-
log(IX) relationship for IX up to 3 nA. The supply of the V-I and log converter is raised to
0.65 V.

Integrate-and-Fire Circuit

Figure 3.21 shows the schematic of the integrate-and-fire circuit. It is a modified version of the
spiking neuron circuit in [81]. It consists of a comparator, an integrating capacitor C at the
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Figure 3.17: Input current IX = IXN + IXP of the V-I converter (VK=0.25 V).

Figure 3.18: IX versus VX at different VK ’s.
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Figure 3.19: VO versus VX at different VK ’s.

Figure 3.20: VO versus logIX .
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negative input terminal of the comparator, a feedback capacitor CF , an SR latch, a charging
and a discharging path. The output voltage from the previous stage VO is connected to the
positive input terminal of the comparator. When ENB signal transitions to 0, the circuit
converts VO into the delay of the output spike t as follows.

t =
C · VO
IINT

(3.28)

To understand the circuit operation, consider the circuit condition when ENB is initially
high. The output of the OR gate is high. The charging path of C is closed, and the discharging
path of C is open. Therefore, both VC and VSPIKE are at ground potential.

As soon as ENB signals low, the discharging path is closed, and the charging path is
open. The integration capacitor is charged from 0 V by the integration current IINT , and VC
increases linearly with time. When VC reaches VO, VSPIKE switches to VDD. The feedback
capacitor CF ensures the secure switching of the circuit. The new value of VC is above the
switching threshold VO of the comparator, and depends on the values of CF and C [81].

Once the pulse begins, the SR latch is set. Therefore, the charging path is closed, and the
discharge path is open. IDISCHARGE sets the discharge rate of C, and thus the width of the
spike. The circuit remains in this state until VC decreases to the switching threshold of the
comparator. At this point, VSPIKE switches to ground potential, and the pulse is complete.

Figure 3.21: Schematic of the integrate-and-fire circuit.

After a spike is fired, the circuit no longer generates spikes because the output of the SR
latch remains high. Only until ENB is brought high and back to low again will the circuit be
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Figure 3.22: Simulation of VC and VSPIKE.

able to generate another spike. Figure 3.22 shows the transient simulation of VC and VSPIKE
after ENB transitions to 0. In this simulation, the switching threshold of the comparator is
set at 0.4 V. The delay of the spike is 175 µs and the width of the spike is about 1 µs.

Comparator Design This integrate-and-fire circuit must work for VO ranging from 0.35
V up to 0.6 V. Therefore, a comparator with wide input range is required. Most comparators
are designed at a particular quiescent input voltage and consumes a lot of static power. In
this design, we used a self-based differential amplifier that can cover the entire input range
from negative to positive supply [82].

The operation of this comparator can be understood through its derivation [82]. Fig-
ure 3.23(a) illustrate two folded-cascode differential amplifiers, each the complement of each
other. While neither of them can cover the entire input range, the combination of them can
do so. In the first step of the derivation, the loads of the two amplifiers are deleted, and
their outputs are connected together to produce fully complementary but externally biased
differential amplifier (Figure 3.23(b)). However, it cannot be biased stably, because any dif-
ference in currents between the top and bottom current sources would result in extreme shift
in amplifier bias voltages.

Without the need to use complicated common-mode feedback circuitry, a simple modi-
fication can result in a complete stabilization of the bias voltages. By connecting all of the
bias inputs to a single internal node, VBIAS, the bias point of the amplifier can be stabilized
through negative feedback, as illustrated in Figure 3.23(c). Any variations in processing pa-
rameters or operating conditions that shift the bias voltage away from their nominal values
result in a shift in VBIAS that corrects the bias voltages through negative feedback.
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Figure 3.23: A self-biased comparator with rail-to-rail input range. Adapted from [82].

In this self-biased amplifier, the top and bottom current sources operate in the linear
region. Consequently, their drain voltages can be set very close to the supply voltages. Since
these two voltages determine the output swing of the amplifier, the output swing can be
very close to the difference between the two supply rails. Another consequence of the linear
operation of these two devices is that the amplifier can provide output switching currents that
are significantly greater than its quiescent current. These two reasons are why it’s suitable
to be used as a comparator.

In this design, the nominal bias current is 64 nA from a supply of 0.6 V. It has a gain of
48.6 dB and a 3-dB bandwidth of 9.7 kHZ. The switching delay is 1.9 µs. Figure 3.24 shows
the Monte Carlo simulation of the switching delay. The 6-sigma delay variation is about 3.7
µs. This variation would be significantly reduced after passing the subsequent inverter in the
integrate-and-fire circuit. In this system, the switching of the comparator does not need to
be fast, as only the matching of delays between channels matters. Therefore, this comparator
can be designed with low power consumption, while having rail-to-rail input range.

Measurement Result Figure 3.25 shows the measured output spike in response to the
transition of enable signal (ENB), which is global to all channels. The delay of the spike for
each channel is measured with respect to the falling edge of ENB. The measured pulse width
of the spike is 1.09 µs.

3.3.3 Implementation of the Learning Algorithm

Implementation Overview

The learning algorithm is mainly implemented by the current normalizer and sampled-and-
hold circuits. By multiplexing VK of the V-I converter between VS DAC (which stores VS
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Figure 3.24: Monte Carlo simulation of the switching delay.

Figure 3.25: Measured output spike in response to the transition of the enable signal (ENB).
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from previous trial) and VX DAC (which stores VX(c1)), the updated VS vector can be
obtained. Each trial of learning is divided into two phases. In Phase I, the analyte is presented
at concentration level c1. In Phase II, the analyte is presented at concentration level c2.

Figure 3.26: System states in Phase I of learning.

Phase I Figure 3.26 is the simplified system block diagram for better understanding the
state changes in different learning phases. The two-column block under the second log con-
verter in each channel represents values stored in off-chip memory. Their values are written
through output ports VX OUT〈1 : 6〉 and VS OUT〈1 : 6〉 from the chip, and are read back
to the chip through input ports VX DAC〈1 : 6〉 and VS DAC〈1 : 6〉. The right column stores
VS value updated from previous trial, and the left column stores VX(c1) in Phase I of the
current trial. The VK node in the V-I converter is multiplexed between these two values to
perform the computation of the update.

During Phase I of learning, the analyte is presented at a concentration level c1, yielding a
vector response VX(c1). This vector is stored in the left column in the memory block through
VX OUT〈1 : 6〉 ports and will be used in Phase II.

Phase IIa In Phase II, the analyte is presented at a concentration level c2, yielding a
vector response VX(c2). In Phase IIa, VK nodes of the V-I converters are connected to
VX(c1), as shown in Figure 3.27. Therefore, the input current vector to the V-I converter
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and subsequently to the current normalizer is

IX =
VX(c2)−VX(c1)

R
(3.29)

The normalizer computes the Euclidean norm of the input vector and outputs:

VRW =
VX

k(c2)−VX
k(c1)

‖VX
k(c2)−VX

k(c1)‖
· IYRW (3.30)

Also, the sample-and-hold circuits sample the VS vector and output:

VS OUT = VS (3.31)

Figure 3.27: System states in Phase IIa of learning (VK = VX(c1)).

Phase IIb In Phase IIb, VK nodes of the V-I converters are switched to VS, as shown in
Figure 3.28. Therefore, the input current vector to the V-I converter and subsequently to
the current normalizer is

IX =
VX(c2)−VS

R
(3.32)
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Figure 3.28: System states in Phase IIb of learning (VK = VS).

The output of the normalizer then becomes

VRW =
VX

k(c2)−VS

‖VX
k(c2)−VS‖

· IYRW (3.33)

As will be described in the following subsection, the sample-and-hold circuit only senses
the difference of its input VRW, so its output value would be updated to

VS OUT′ = VS +

(
VX1(c2)−VX1(c1)

‖VX(c2)−VX(c1)‖
− VX(c2)−VS

‖VX(c2)−VS‖

)
· IYRW (3.34)

Therefore, the VS has been updated according to the update rule.

Analog Euclidian Vector Normalizer Design

Normalization is pervasive, from the frontmost automatic gain control (AGC), to the compu-
tation of orthonormal vectors in principle component analysis (PCA). In [83], a 16-channel
analog normalizer was first demonstrated to perform concurrent scaling of the input vector
such that the peak component value is adjusted to a reference value. A subtractive nor-
malizer was also reported in [84] to implement a reverse water-filling algorithm. However,
a Euclidian vector normalizer, which is essential in algorithms involving the computation
of angles between vectors, hasnt been reported yet. In this section, we present a compact
6-channel analog Euclidian vector normalizer using feedback, without needing to synthesize
the square root of the squared sum and generating replicas to each channel for division. A
calibration method is also provided to overcome the mismatches between transistors.
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Figure 3.29: Basic circuit concept of the current normalizer.

Figure 3.29 shows the basic circuit concept. The schematic shows a 2-channel normalizer
to better illustrate the operation. IX1 and IX2 are input currents, while IW1 and IW2 are
output currents. IY is a current source biased at 30nA. Transistors MFB1-MFB3 form the
feedback loop to adjust VS. Adding one more channel i simply adds one more branch of IXi
and IWi, and one more transistor MY i between transistor MY and the current source IY .
Therefore, in the following derivation, we will generalize the number of channels to N .

If all the transistors are matched and operate in the subthreshold regime, then Equa-
tion 3.35 holds.

I2W1

I2X1

=
I2W2

I2X2

= · · · = I2WN

I2XN
(3.35)

Note that from Equation 3.36 and 3.37:

I2Wi

I2Xi
=

∑
I2Wi∑
I2Xi

(3.36)
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∑
I2Wi = I2Y (3.37)

it can be shown that

IWi =
IXi√∑
I2Xi
· IY (3.38)

Therefore, the output current vector (IW1, IW2, , IWN) is a Euclidian norm of the input
current vector (IX1, IX2, , IXN).

Figure 3.30: The calibration procedure of the current normalizer.

However, any subthreshold circuits are subjected to threshold variations, and Equa-
tion 3.35 to Equation 3.38 no longer hold true. Therefore, a calibration procedure in conjuc-
tion with the V-I converter is proposed, as shown in Figure 3.30. Only the NMOS branch of
the V-I converter is shown for clarity. As mentioned previously, the input currents IX ’s are
generated by V-I converters, converting input voltages VXi to currents IXi = (VXi−VK)/RXi,
where VK is the input bias of the op-amp. Resistors RX ’s and RW ’s are both nominally 10-MΩ
tunable pseudo-resistors as described in Section 3.3.2.
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Step I calibrates the mismatches between IY ’s and IW ’s. By directing all IY to each
branch sequentially (by setting the input voltage of the channel to 0.6V while those of the
rest to VK) and tuning the RW ’s such that each VRW equal to an arbitrary reference voltage,
then the squared sum of VRW ’s will be equal to a fixed value R2

W I
2
Y . That is,∑

V 2
Wi = R2

W I
2
Y (3.39)

Step II calibrates the mismatches between IX ’s and IW ’s, including the threshold mis-
match and the gain error from the current mirror. Let input voltages of all channels VXi’s
are equal. By tuning RX ’s such that all VRW ’s are equal, then the condition described in
Equation 3.40 can be obtained:

V 2
RW1

(VX1 − VK)2
=

V 2
RW2

(VX2 − VK)2
= · · · = V 2

RWN

(VXN − VK)2
(3.40)

From Equation 3.39 and Equation 3.40, the output voltage vector is a Euclidian norm of the
input voltage vector:

VRWi =
VXi − VK√∑
(VXi − VK)2

·RW IY (3.41)

Figure 3.31 shows the output voltages of each channel when all the input voltages VX ’s are
swept from 0 to 0.6V with VK = 0.2V . Before calibration, the maximum difference between
each channel outputs after 0.25V is 9.04 mV. However, after calibration, the difference is
reduced to 1.74 mV. In the regime where VX is close to 0.2V and IX ’s are small (<1nA), the
large output differences are due to the op-amp offsets in the V-I converters.

Figure 3.32 shows the output voltages of each channel when the normalizer is used as a
single channel (a), 2-channel (b), and 4-channel (c) normalizers. The output of the single-
channel normalizer approaches 75.27 mV. The theoretical output voltages of the 2-channel,
and 4-channel normalizers are 75.27/

√
2=53.22 mV, and 75.27/2=37.64 mV. The errors for

the on channels from VX=0.25 to 0.6 V are less than 2.05 mV and 2.81 mV, respectively. The
output error of the 6-channel normalizer in Figure 3.30 with respect to the 75.27/

√
6=30.73

mV is also less than 3mV (9.76%). The errors are mostly due to the nonlinearlity in the
pseudo-resistors.

When VX3 is applied to a square wave toggling between 0.3 V and 0.35 V, while the
inputs for channels 1, 2, 4, 5, 6 are 0.3V, 0.3V, 0.35V, 0.3V, and 0.3V, the rise time and fall
time of channel 3 output for a 500-fF load are 13 µs and 6.2 µs, respectively. The rise time
is mainly limited by the bias current IY . The normalizer consumes a maximum current of
143.5 nA from the 0.6-V supply.

Sample-and-Hold Circuit

Figure 3.33 shows the schematic of the sample-and-hold circuit. The timing between the
clock signal Φ and the input signal VW is shown in Figure 3.34.
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(a)

(b)

Figure 3.31: Outputs voltages (a) before and (b) after calibration when all channels are swept
from 0 to 0.6V with VK=0.2V.
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(a)

(b)

(c)

Figure 3.32: Output voltages when the normalizer has only (a) 1 channel (b) 2 channels (c)
4 channels on. The input of the off-channels are connected to VK=0.2V.
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When Φ is high and ΦB is low, the amplifier is configured in unity-gain feedback. There-
fore, the output of the sample-and-hold circuit is VCM + VOS, where VCM is input bias and
VOS is the offset voltage of the op-amp. Capacitor C2 is connected to VDAC from the off-chip
DAC. Capacitor C1 is connected to the output of the normalizer VW , which does not affect
the output in this phase.

When Φ becomes low and ΦB becomes high, the amplifier is connected in a feedback
through C2. Since the voltage across a capacitor cannot change instantaneously, the output
of the sample-and-hold circuit VSH,OUT becomes VDAC . If VW transitions from VWA to VWB

in this phase, a total charge of C1(VWA − VWB) would be transferred to the output of the
sample-and-hold, resulting in a voltage difference of

∆VSH,OUT =
C1(VWA − VWB)

C2

(3.42)

If C1 = C2, then the output becomes

VSH.OUT = VDAC + ∆VSH,OUT (3.43)

= VDAC + VWA − VWB (3.44)

Therefore, it implements the update function as desired in the learning phase.
This design is inherently immune to the amplifier offset, because only the difference in

the input ∆VW is sensed. Figure 3.35 shows the Monte Carlo simulation of the internal node
between the two capacitors and the output of the sample-and-hold circuit. It can be seen
that even though the amplifier has a large offset variation (≈ 80 mV), the sampled voltage
and updated voltage are the same for all Monte Carlo trials.

Figure 3.33: Schematic of the sample-and-hold circuit.

Figure 3.36 shows the measured sample-and-hold output in response to the clock and a
test point voltage VTP . The transition of VTP will cause the transition of VW in the opposite
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Figure 3.34: Timing between the clock signal Φ and the input signal VW .

Figure 3.35: Monte Carlo simulation for the sample-and-hold circuit.
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Figure 3.36: Measured output of the sampled-and-hold circuit.

direction. Therefore, VW actually transitions to a more negative voltage after clock goes low.
We can see that the sample-and-hold circuit first outputs VCM + VOS. Then after it samples
VDAC , it updates to VDAC + ∆VW when VTP transitions. The large rise time of VTP is due to
its large series resistance. In actual operation, the rise/fall times are those of the normalizer.

In this design, the op-amp consumes 40 nA from the 0.6 V supply. Both C1 and C2

are 500-fF capacitors. The speed of the sample-and-hold circuit is mainly dominated by its
slew rate, because the op-amp is driven to large-signal swings in response to most voltage
differences. The slew rate is about 30 mV/µs.

3.3.4 System Functionality

Test Setup

Figure 3.37 shows the system-level test setup. The FPGA or PC controls Keithely 2612
Source-Meter Units (SMUs) to generate input currents to the chip-on-the-board (COB),
programs the scan bits, as well as generates control signals. The two crucial control signals
during learning are Φ and ΦK : Φ controls the timing of the sample-and-hold circuit, while
ΦK controls the multiplexer to select either VX DAC or VS DAC to the V-I converter, as
shown in Figure 3.10.

During the learning phase, ADCX〈1 : 6〉 and ADCS〈1 : 6〉 sample chip outputs from ports
VX OUT〈1 : 6〉 and VS OUT〈1 : 6〉, respectively. These values are stored in the FPGA/PC
and are then fed back through DACX〈1 : 6〉 and DACS〈1 : 6〉 to ports VX DAC〈1 : 6〉 and
VS DAC〈1 : 6〉, respectively.

Figure 3.38 shows the timing diagram of some important signals for the k-th learning
trial. During Phase I, currents corresponding to sensor resistance Rk(c1) are applied to
IIN〈1 : 6〉. Then signals from VX OUTs (i.e. VX

k(c1)) are acquired by ADCXs, stored in
the FPGA/PC, and fed back to DACXs for the computation in Phase II.
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Figure 3.37: Block diagram of the system-level test setup.

During Phase II, currents corresponding to Rk(c2) are applied. In Phase IIa, ΦK is low,
and VK ’s are connected to VX DAC’s (i.e. VX

k(c1)). In Phase IIb, ΦK is high, and VKs
are connected to VK DACs (i.e. VS

k). Φ transitions before ΦK such that sample-and-hold
circuits can update VS and output to VS OUTs. These values are acquired by ADCSs, stored
in the FPGA/PC, and fed back to DACSs for the computation in next trial. It can be seen
that VS DAC is updated at the end of the trial.

Figure 3.38: Timing diagram for one learning trial.

Figure 3.39 shows the testing setup. The chip is bonded to the daughter board. Two



CHAPTER 3. AN ANALOG GAS SENSING FRONT END 69

mother boards generate all the bias/supplies, as well as buffer signals. The outputs of the
chip are connected to a multi-channel ADC board, stored in PC, and fed back to a multi-
channel DAC board.

The input currents are provided by three Keithley 2612B 2-Channel SMUs. Figure 3.40
shows the input current excitations for the entire functionality test, including learning and
feature extraction. During learning, in addition to the six analyte responses, two auxiliary
responses are applied to help convergence of the algorithm. For each analyte, two current
levels corresponding to sensor responses for the gas analyte at two concentration levels c1
and c2 are applied. After the learning phase, the same set of current excitations for the six
analytes are applied again to verify the concentration-invariant spike encoding.

Figure 3.39: The testing setup.

State Evolution

Figure 3.41 shows the simulated state evolution of VS from an initial state. The state con-
verges around the desired final state (0.19, 0.19, 0.19, 0.19, 0.19, 0.19) V. Figure 3.42 shows
the simulated final states (in black) from 64 initial states (in megenta). These 64 initial states
occupy the vertexes of the hypercube {0.148, 0.234}6 V. All of them converge around the
desired state marked in circle.

The above simulations are for the case where devices are perfectly matched. However, in
reality, device variations will lead to computations deviated from the ideal results. Therefore,
we furthered invested the effect of device mismatches on the convergence behavior.



CHAPTER 3. AN ANALOG GAS SENSING FRONT END 70

Figure 3.40: The input current excitations.

Figure 3.41: Simulated state evolution of VS from an initial state.
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(a) 3D view of the space VX1-VX2-VX3 (b) 3D view of the space VX4-VX5-VX6

Figure 3.42: Simulated final states (in black) from 64 initial states (in megenta) of VS.

Firstly, we tried to understand how much the final state of VS should be close to the ideal
final state. We ued a program to find out a range of VS such that at least four concentration
levels are discriminable for each analyte in the form of output spike patterns. We started
from the case with only the first two sensors, and gradually increased the number of sensors.
It was found that to resolve the same number of concentration levels for each analyte, the
tolerable range of final state VS increases as the number of sensors increases, as shown in
Figure 3.43. As N increases to 6, the allowable range for VS in each dimension increases to
±25 mV. This echoes Section 2.3: as the degrees of freedom increase, the minimum required
precision per degree of freedom decreases. Therefore, the analog circuits can be designed in
the low power and moderate-precision region.

After identifying the tolerable range of VS, we can investigate the effect of device vari-
ations on the convergence behavior. To avoid the daunting Monte Carlo simulation of the
entire system for all initial states, we used the method described in Appendix B to simulate
the final states of VS from 729 initial states {0.15, 0.19, 0.23}6, as shown Figure 3.44. All the
simulated initial states arrive within the tolerable range of VS.

Figure 3.45 shows the measured state evolution of VS from one initial state. The ideal
final state is marked as bars at the right with different colors for different channels. Channel
1 has the largest deviation (36 mV) from the ideal state. Besides the residual errors from
the chip after calibration, this error is mostly attributed to the measurement errors. For
example, the off-chip ADCs and DACs have different reference voltages and gains, causing
a discrepancy between the DAC outputs and the inputs to ADCs. Accumulating this error
for eight iterations results in the deviation from the ideal state. The measurement accuracy
can be improved by setting up an automatic pre-measurement calibration that characterizes
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(a) N = 2 (b) N = 3

Figure 3.43: The tolerable range of final states VS with different number of sensors N .

100

200

300

400

100

200

300

400
100

150

200

250

300

350

400

 

VX1 [mV]VX2 [mV]
 

V
X

3 [
m

V
]

Analyte 1
Analyte 2
Analyte 3
Analyte 4
Analyte 5
Analyte 6
Analyte 7
Analyte 8

(a) 3D view of the space VX1-VX2-VX3

100

200

300

400

100

200

300

400
100

150

200

250

300

350

400

 

VX4 [mV]VX5 [mV]
 

V
X

6 [
m

V
]

Analyte 1
Analyte 2
Analyte 3
Analyte 4
Analyte 5
Analyte 6
Analyte 7
Analyte 8

(b) 3D view of the space VX4-VX5-VX6

Figure 3.44: Simulated worst-case final states (in blue) from 729 initial states (in megenta)
of VS considering device variations.
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Figure 3.45: Measured state evolution from an initial state of VS.

the ADCs and DACs transfer functions to cancel their offsets and gain errors.

Spike Patterns

Figure 3.46 shows the measured output spike patterns. For each analyte, input currents
corresponding to the sensor responses at two concentration levels are applied. All of the
spike delays are measured with respect to the transition of the enable signal (ENB). Except
for Analyte I, a unique spike pattern can be observed for each analyte. The difference between
the spike patterns at different concentrations can be considered as the input noise for the
spike pattern recognizer.

3.3.5 Summary

To summarize, the analog front end implements a novel trainable feature extraction algo-
rithm for metal-oxide gas sensor arrays. The algorithm extracts one composite feature of
all analytes and transforms the sensor responses into concentration-invariant spike patterns.
This composite feature is extracted by performing the gradient decent algorithm during
training. This 6-channel analog frond end consumes 519nW/channel in the training mode,
and 463nW/channel in the normal mode.

The spike-timing encoding and the calibration allow the design of transistor sizes to
be small and therefore lower current consumption. However, the system will eventually be
limited by noise. Table 3.1 shows the simulated total noise at the output of the second
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(a)

(b)

(c)

Figure 3.46: Measured output spike patterns. Each analyte is presented at a low and a high
concentration levels.
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log converter and the gain from the input. The channel precision is calculated respect to
the largest input current (4 µA). The system precision is greater than 4.66 bits/channel.
Figure 3.47 shows the die photograph. The system performance is summarized in Table 3.2.

Table 3.1: Input referred channel precision at different input currents.

IIN[A] Gain[V/A] Total Output Noise
[µV]

Input Referred
Noise Current [nA]

Channel Precision
[bits]

40 n 1.678 M 749 0.44 13.15

400 n 124 k 607 4.89 9.68

4µ 3.33 k 529 158 4.66

Figure 3.47: Die photograph.

Table 3.2: Performance summary of the analog gas sensing front end.

Supply 0.6/0.65 V
Power Consumption 519 nW/channel (learning)

463 nW/channel (normal)
System Precision >4.66 bits/channel (input referred)
Operating Speed 360 µs/trial cycle

As a final remark, in this design, we have demonstrated an integrated sensor signal
processing frontend with a learning mechanism to adapt itself to the input statistics. This
is essential for processors at the sensor nodes that need to accommodate changing inputs



CHAPTER 3. AN ANALOG GAS SENSING FRONT END 76

and environments. Moreover, we used subthreshold analog circuits to directly implement
functions such as logarithmic transforms and normalization. The low-power and low-precision
regime of analog circuits is exploited by using distributed signal processing and calibration.
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Chapter 4

Spike Pattern Classifier in Advanced
Nanotechnologies

After the analyte features are extracted and represented in spike patterns. The next step of
processing is to store these patterns together with their associative identities, and later to
retrieve identities when patterns are presented. As we have seen in Chapter 2, after the olfac-
tory sensory frontend converts the odor information into the activation patterns of glumeruli
in the olfactory bulb, the patterns experience a dimensionality expansion when entering the
cortex. It has long been hypothesized that higher levels of the brain computes with high-
dimensional vectors [85], [86], [30], [31]. In this chapter, the hyper-dimensional computing
paradigm is introduced. Next, a spike pattern classifier based on hyper-dimensional com-
puting is proposed. It consists of a transformation of the input spikes into high-dimensional
sparse vectors and an associative memory model. The transformation uses a random sam-
pling scheme that can be efficiently performed with circuits exhibiting large parametric
variations. An associative memory model is used to perform fast and efficient storage/re-
trieval of sparse vectors. Such computing paradigm could especially be a perfect match to
the emerging 3D nanotechnologies. Finally, the implementation of this spike pattern classifier
in a 3D CNFET-RRAM technology is described.

4.1 Hyper-Dimensional Computing

No two brains are identical, yet they can produce the same behavior, i.e. they can be func-
tionally equivalent. This means that brains with different hardwares accomplish the same
computing. Also, the functions of the brain is highly tolerant of component failures. Electrical
recording from neurons shows that even seemingly simple mental events involve simultaneous
activity of widely dispersed neurons, suggesting that large circuits are fundamental to the
brain’s computing. In [30], [31], it was proposed that the brains have leveraged some subtle
properties in the hyperspace to achieve this.

Figure 4.1 shows the normalized distance histogram of randomly and independently gen-
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erated binary vectors in N-dimensional spaces. As N increases from 10 to 10,000, the normal-
ized distance approaches 0.5. This means with overwhelming probability, vectors randomly
drawn from a hyperspace have the same distance to each other.

Figure 4.1: Normalized distance histogram of binary vectors in N-dimensional spaces.

The Law of Large Numbers governs this behavior. Let x = (x1, x2, · · · , xN), where
x1, x2, · · · , xN are i.i.d. Bernoulli random variables with probability of 0.5 to be 0 or 1.
The normalized distance d between any randomly and independently generated vectors x1

and x2 is

d =
|x1 − x2|

N
(4.1)

=

N∑
i=1

|xi1 − xi2|

N
(4.2)

Since the mean µ of the random variable y = |x1 − x2| is 0.5, the Strong Law of Large
Number guarantees that

p

 lim
N→∞

N∑
i=1

|xi1 − xi2|

N
= µ

 = 1 (4.3)

That is, as N approaches infinity, the normalized distance d converges to µ = 0.5 almost
surely.
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This property has an important implication to the functional equivalence of two different
implementations. It was suggested if a system builds its model of the world from random
patterns [31], i.e., by starting with vectors drawn randomly from the hyperspace, then it’s
possible to achieve functional equivalence from different random origins. It’s because the
equivalence of systems no longer lies in the actual patterns, but lies in the relation of the
patterns to one another in the system.

Consider a random sampling scheme as shown in Figure 4.2. This was originally proposed
as a way to transform patterns into sparse vectors in the hyperspace [30] and is applied here
to our spike pattern recognition problem. Suppose there are N gas sensors, then the output
spike pattern from the front end consists of N spikes. The large circle represents the entire
N -dimensional space spanned by the N spike delays t1, t2, · · · , tN . Each point represents
a vector t, or a particular spike pattern. In this space, there are M samplers, represented
by dotted circles. They are randomly generated from a uniform distribution over the entire
space. Each sampler has a reception range. Whenever a spike pattern falls in its reception
range, it gets activated and outputs one (ym = 1). Otherwise, it outputs zero (ym = 0). The
probability p that a sampler is activated is

p =
Vsampler
Vspace

(4.4)

where Vsampler is the volume of the sampler, and Vspace is the volume of the entire space.
If the spike patterns are also uniformly distributed in this space, then the process of

transforming a spike pattern t into the activation pattern of the samplers y is the same
as the process of randomly and uniformly drawing a binary vector y in the M -dimensional
space, where each element of y, ym, is is a Bernoulli random variable with probability of p
to be 1. It can be shown that, the mean of the inner product between any two activation
patterns y1 and y2 is

E[yT1 y2] = p2M (4.5)

Again, the Strong Law of Large Numbers guarantees that

p
(

lim
M→∞

yT1 y2 = p2M
)

= 1 (4.6)

Therefore, the inner products between any two activation patterns is approximately p2M ,
when M is large. If we can judiciously choose the activation probability p and the number
of samplers M such that p2 �M , then any two activation patterns would be orthogonal to
each other, as shown in the right of Figure 4.2.

However, the most important property of the random sampling is how it can achieve func-
tional equivalence. As shown in Figure 4.2b, if another set of randomly generated samplers
are used to transform the spike patterns, any output vectors will still be orthogonal to each
other. Although they may be different vectors, their relation to each other (orthogonality) is
still preserved. This is similar to the generation of random sensing matrices in compressed



CHAPTER 4. SPIKE PATTERN CLASSIFIER IN ADVANCED
NANOTECHNOLOGIES 80

sensing [87]. This also has a very important implication to the implementation of a system
in that the functions can be reliably performed with components having large variations1.
Since the system level reliability is not achieved by component-level reliability, components
can be designed in the low-power and low-precision region.

Now that the output patterns are mutually orthogonal, a pattern classifier whose opera-
tion involves projection will work.

(a)

(b)

Figure 4.2: Random sampling.

1The variations that we deal with here are process variations. For temporal variations, periodic retraining
is required.
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4.2 Spike Pattern Classifier

The proposed spike pattern classifier consists of a sparse vector generator and an associative
memory. First, their mathematical models are described. Next, the behavior simulation is
given.

4.2.1 Sparse Vector Generator

Figure 4.3 illustrates how to transform spike patterns into sparse, high-dimensional and
orthogonal vectors using the random sampling scheme. This transformation is inspired from
the proposed spatio-temporal integration network for olfactory processing [88], [89], [90], [91].
Again, suppose there are N sensors, then the output from the feature extraction frontend
contains N spikes with a delay vector t = (t1, t2, · · · , tN). The transformation is performed
by M sampling groups. Each group is composed of n < N delay elements. Each delay element
is (permanently) assigned a delay dmj from random and connected to a randomly selected
channel. There is a coincident detector at the output of each group. The coincidence detector
outputs 1 (ym = 1) if the output spikes align, as shown in Figure 4.4.

Figure 4.3: Sparse vector generation using random ’sub’-sampling of the input spikes.

Compared to the address matrix in the Sparse Distributed Memory (SDM) where each
sampler connects to the full dimension of the input vectors [30], here each sampler only



CHAPTER 4. SPIKE PATTERN CLASSIFIER IN ADVANCED
NANOTECHNOLOGIES 82

Figure 4.4: The coincidence detector outputs 1 when output spikes align.

connects to a subset of the input dimension and different samplers connect to different
subsets. This scheme is derived from one variation of the SDM model [92].

How do these samplers look like in the N-dimensional space of spike delays? In Ap-
pendix C, the reception range of the spike sampling groups is derived. It is shown that
each sampling group corresponds to a hyperplane. The orientation of the hyperplane is de-
termined by the subset of selected channels and the delays in the group. Figure 4.5 shows
the geometric interpretation of the spike sub-sampling scheme. In this case, the number of
sensors N is 3, the number of elements per sampling group n is 2, and only three sampling
groups are shown for clarity. Each blue point represents a spike pattern. Whenever a spike
pattern falls on a hyperplane, the group corresponding to that hyperplane gets activated.
It seems that the probability of falling onto a hyperplane is zero. However, in reality, each
coincidence detector has a detection window such that spikes arrive within the window are
considered ’aligned’. Therefore, the reception range of each sampling group is actually the
union of a set of hyperplanes. The probability of falling into this range is then nonzero.

In summary, since the samplers are uniformly and randomly generated and M is large, the
inner product between any two output activation vectors yT1 y2 converges to E[yT1 y2] = p2M .
Since the probability p that a spike pattern falls withing the reception range of a sampler is
very small, then yT1 y2 ≈ 0. Therefore, the output vectors would be mutually orthogonal.

4.2.2 Correlation Matrix Memory

Correlation matrix memory (CMM) [93] is one associative memory model. Similar to other
types of associative memories, it can stores and retrieve patterns effectively when the patterns
are sparse and orthogonal. As in [30], the unnormalized version of CMM is used here. The
combination of the random sampling and an unnormalized CMM resembles the cortex of
cerebellum [30].

Figure 4.6 shows the memory structure. During the storage phase, there are two inputs to
the memory. One is the activation pattern it needs to recognize, y, and the other is the word
associated with the pattern w. The word vector w consists of -1s and 1s and has a dimension
of U . U can be arbitrary as long as U ≥ log2K, where K is the number of analytes. However,
as will be explained shortly, larger U can make the retrieval more effectively. These words are
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Figure 4.5: The geometric interpretation of the random spike sub-sampling. In this case,
N = 3, M = 3, and n = 2.

Figure 4.6: Structure of the unnormalized correlation matrix memory.
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the identities of analytes and can simply be randomly generated vectors. The memory stores
these patterns and words by accumulating their outer products on the memory elements
(Equation 4.7). This is why it’s named the correlation matrix memory.

C =
K∑
k=1

ykw
T
k (4.7)

= YTW (4.8)

Storing the outer products of y’s and w’s is done by adding w to those rows corresponding to
1s in y. Each memory element is an accumulator. Therefore when the other pattern activates
the same row later, the new word will be added on top of the previous written words. This
is unlike the conventional memory where new data overwrites old data.

During the retrieval, only y is present. The successful recognition will retrieve the correct
word associated with the pattern. The first step of retrieval is projection. The input pattern
yr is projected to the correlation matrix C. In this way, we get a weighted sum sr of words
that have been written:

sTr = yTr C (4.9)

= yTr

(
K∑
k=1

ykw
T
k

)
(4.10)

= ||yr||2wT
r + yTr

(∑
k 6=r

ykw
T
k

)
(4.11)

The weights are the inner product of the input pattern and the stored patterns. Therefore,
if y’s are mutually orthogonal, these weights will be small. Furthermore, if w’s are also
mutually orthogonal, they can cancel out each other. This project can be done by summing
up the rows activated by the input pattern.

The second step of retrieval is thresholding. The output word is obtained by taking the
threshold of the sum vector at zero.

zTr = z(sTr ) (4.12)

where z is a thresholding function at zero. Since y’s are mutually orthogonal, the sum is
biased toward the word to be retrieved. Therefore, as long as y’s are orthogonal, the retrieval
will be successful, regardless of the exact patterns of y’s. This is how functional equivalence
can be achieved in hyper-dimensional computing.

4.2.3 Behavior Simulation

Given the mathematical models, the behavior of the spike pattern classifier is simulated.
Figure 4.7 shows the simulation setup. The inputs are K spike patterns, each containing
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Figure 4.7: Simulation setup of the spike pattern classifier.

N spikes. These spike patterns are transformed into high-dimensional sparse vectors y’s.
During the training phase, each pattern y and its associative word w are written into the
memory. During the retrieval phase, we observe how close the retrieved output word is to
the written word when one of these K spike patterns is presented at the input.

In this simulation, 500 randomized trials were run. In each trial, the input spikes to the
system are the same. But the delays of delay elements and the channels they are connected
to are randomly assigned. The delay assignment is according to a distribution from a Monte
Carlo simulation of a delay circuit; the channel assignment is according to a uniform distri-
bution over N . For every trial, after storing all the K patterns and their associated words,
all the K patterns are presented again and all the output words are compared to the written
words.

In this setup, there are K = 8 odor analytes, N = 12 gas sensors, M = 150 sampling
groups, and n = 2 delay elements per group.

As shown in Figure 4.8, strobing these randomized trials provides useful insights on how
the sparse vector generator works. The bottom left plot shows the delays of the last delay
elements over these 500 trials. It can be seen that it has huge variations. The right part of
the figure shows the recorded patterns for the first and second analytes (y1 and y2) in trial
1, trial 2, and trial 500. In these plots, the vertical axis is the the index for the 150 sampling
groups. A horizontal line at an index means the activation of that group. Although y1 and
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Figure 4.8: ’Strobing’ the randomized trials.

y2 look very differently across different trials, they remain orthogonal across trials.
Figure 4.9 shows the performance summary of the spike pattern classifier. Figure 4.9a

is the delay distribution used in this simulation. They are obtained from the Monte Carlo
simulation of a delay cell operating at a very low supply voltage (0.3 V). Because most device
are minimum sized, the delay variation has a Fano facto close to 1 (µ = 533 ns, σ = 461 ns).

Figure 4.9b shows the retrieval fidelity, which is the average flipped bits of the retrieved
output words compared to the input words, averaged over the K words in each trial. We can
see that, although the hardware devices have extreme statistical variations, this architectural
can still perform recognition robustly and therefore have a peaking performance histogram.
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(a) Delay variation of the delay cell

(b) Retrieval fidelity

Figure 4.9: Simulation results.
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4.3 Implementation in Advanced Nanotechnologies

Hyper-dimensional computing could be a perfect match to the emerging 3D technologies.
First, the computing architecture is either very difficult or impossible in traditional planar
technologies, especially where logic and memory devices are separated. However, the emerg-
ing 3D nanotechnologies integrating large number of logic and memory devices makes its im-
plementation possible. Second, as we have just seen, hyper-dimensional computing functions
very robustly under large component variations. Therefore, the large variations and failure
rates in the emerging devices are inherently taken care of in this computing paradigm. In this
section, the monolithic 3D integration platform is first introduced. Next, the sparse vector
generator in a 3D CNFET-RRAM technology is described. Finally the implementation of
the correlation matrix memory using RRAMs is proposed.

4.3.1 The Monolithic 3D Integration Platform

This 3D integration platform is developed by our collaborators in Stanford University [24], [25],
[26]. As mentioned in Chapter 1, CNFET can have an ordor of magnitude energy-delay-
product (EDP) improvement compared to silicon CMOS. Such EDP benefits can also trans-
late into cooling benefits for 3D ICs [94]. First, they have demonstrated monolithic 3D
integration of inter-layer and fully-complementary CNFET logics, as shown in Figure 4.10.
Instead of using Through-Silicon Vias (TSVs), Inter-Layer Vias (ILVs) are used to achieve
high-density integration. A 3D metalic-CNT removal technique using local back-gates is
proposed to overcome the diminishing gate control in higher layers of CNFETs [24].

Figure 4.10: Monolithic 3D integration of inter-layer and fully-complementary CNFET logic
gates. Adapted from [24].

Since silicon CMOS remain indispensable, 3D monolithic integration of CNFET and
silicon CMOS FETs is also demonstrated. This is achieved by a low-temperature (< 180◦C)
CNFET fabrication processing which is compatible with silicon CMOS and can be integrated
in back-end-of-the-line (BEOL), after silicon CMOS processing [25]. Figure 4.11 shows the
correct operation of logic gates composed of both CNFETs and silicon CMOS FETs in
different layers.
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Figure 4.11: Monolithic 3D CNFET/silicon FET NOR2 gate. Adapted from [25].

Figure 4.12: Transmission electron microscopy (TEM) images of four vertically stacked layers
in the 3D integration platform. Adapted from [26].
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Finally, to fully interweave logic and memory, they have successfully demonstrated inte-
grating silicon CMOS FETs, RRAMs, and CNFETs monolithically in a 3D stack [26]. As
shown in Figure 4.12, silicon FETs are on the bottom layer, followed by two layes of RRAM,
followed by the top layer of CNFETs. This is likewise enabled by low-temperature RRAM
processing [95].

In the following sections, the implementation of the spike pattern classifier in this tech-
nology is described. The sparse vector generator is implemented with CNFETs and RRAMs;
the correlation matrix memory will be implemented with silicon CMOS FETs and RRAMs.

4.4 Sparse Vector Generator in CNFETs and RRAMs

Figure 4.13 shows the implementation of the delay cell and the coincidence detector. The
delay cell consists of an RRAM and a CNFET inverter. A step timing detector consisting of
an XOR gate and a D flip-flop is used as the coincidence detector.

The RRAM at the input determines the delay of the delay cell. Figure 4.14 shows the
measured delays when the RRAM is in the high-resistance state (HRS) and the low-resistance
state (LRS). The extracted resistance is 840 MΩ at the HRS and 1.4 kΩ at the LRS. To
achieve a target delay variation of σ/µ > 1, the required RRAM variation versus the aver-
age RRAM resistance is plotted in Figure 4.15a. The fabricated RRAMs have an average
resistance of 11 MΩ and a variation of σ/µ = 3.5, as shown in Figure 4.15b. Therefore, the
delay cells can achieve a delay variation σ/µ greater than 1.

Figure 4.16 shows the operation of the coincidence detector. If the timings of the two
input steps are close to each other, the output of the XOR gate is not able to trigger the D
flip-flop, as shown in the left of the figure. However, if these two events are far away enough,
the D flip-flop would be triggered. Therefore, the window that spikes considered aligned is
the hold time of the D flip-flop. The D flip-flop is followed by an inverter to output 1 for
signaling coincident events and 0 for non coincident events.

Figure 4.17 shows the cross-sectional view of the implementation. The first layer is for the
RRAMs and the second layer is for CNFETs. They are densely connected through inter-layer
vias.

Figure 4.13: Implementation of the delay cell and the coincidence detector. Credit: Tony Wu.
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Figure 4.14: Measured output from the CNFET and RRAM delay cell. Credit: Tony Wu.

(a) (b)

Figure 4.15: Required RRAM variation to achieve a delay variation of σ/µ > 1. Credit: Tony
Wu.
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Figure 4.16: Operation of the coincidence detector.

Figure 4.17: Cross-sectional view of the delay cell and the coincidence detector. Credit: Tony
Wu.
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4.5 Correlation Matrix Memory in RRAMs

4.5.1 The RRAM Model

The RRAM available to us is the Hafium-oxide RRAM [96], [97] developed by researchers in
Stanford University. It is usually used in a 3D cross-point array architecture [98] for ultra-
high non-volatile memory applications, as shown in Figure 4.18. We used the 1D filament
model [99], [21] that can be applied to large scale simulations. This model is described as
follows.

Figure 4.18: The 3D cross-point array architecture with RRAM devices at the junctions.
Adapted from [21].

The size of the tunneling gap g, which is the distance between the top of the filament
and the opposite electrode, is the primary state variable determining device resistance. Its
change rate is a hyperbolic function of the input voltage V and the local temperature T :

dg/dt = −v0 · exp(−Ea/kT ) · sinh(γ · a0/L · qV/kT ) (4.13)

where Ea is activation energy (∼0.6 eV), γ is local field polarizability in high-k dielectrics,
a0 is atom spacing (∼ 0.25 nm), L is oxide thickness (∼ 12nm), q is electron charge, k is
Boltzmann constant, and v0 is fitting parameter (∼10 nm/ns). The current conduction is
exponentially dependent on the tunneling gap distance:

I = I0 · exp(−g/g0) · sinh(V/V0) (4.14)

where I0 = 1 mA, g0 = 0.25 nm, and V0 = 0.25 V are fitting parameters from experiments.
I-V curves obtained the experiments are reproduced by this model, as shown in Figure 4.19.

The RRAM variability is introduced by a Gaussian random number δg in the gap dy-
namics:

dg = dg(ideal) + δg (4.15)

The simulated result with δg =0.0224 nm matches the experiments for the temporal variation
with a measured variability of δR/R ∼9%. This is shown in Figure 4.20.
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Figure 4.19: I-V fitting of multi-level resistance states by varying the gap tunneling distance.
Adapted from [21].

Figure 4.20: Measured and modeled gradual resistance change by varying the pulse ampli-
tudes. Adapted from [21].
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4.5.2 Pulsed-Programming of RRAM Resistance

Figure 4.21 shows the change rate of the tunneling gap dg/dt as a function of the applied
voltage, using the model and parameter values from previous section. Because dg/dt is a
hyperbolic sine function of the applied voltage, it is insignificant when the applied voltage is
less than ± 1.5 V. However, when the applied voltage is greater than 2 V, it would experience
a significant change.

Therefore, the RRAM resistance can be programmed using a pulsed-programming scheme
[100], [101]. Figure 4.22 shows the numerical simulation of the applied voltage and the con-
ductance change. In this programming scheme, pulses with alternating voltages between -1
and 1 V are applied to the source and sink terminals of the RRAM. When the applied pulses
at these two terminals do not overlap, only ±1 V of voltage cross the resistor and the con-
ductance change is insignificant. Furthermore, the conductance change caused by the 1-V
pulse is offset by the -1-V pulse. However, when a -1 V pulse overlaps with a 1 V pulse (or
the other way), a -2 V voltage across the RRAM causes significant changes in the tunneling
gap and the conductance.

According to Equation 4.13, a ±2 V voltage will induce a change of the tunneling gap
by ∆g:

∆g = dg/dt|V=±2V ·∆t (4.16)

where ∆t is the pulse width. From Equation 4.14, the conductance will be scaled by a factor
s:

s = exp(∆g/g0) (4.17)

Figure 4.21: The change rate of the tunneling gap dg/dt as a function of the applied voltage
V between the source and sink terminal, for a gap size g of 1nm.
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Figure 4.22: Pulsed programming of the RRAM resistance.

4.5.3 The RRAM Prototype

Figure 4.23 shows how to use the pulsed-programming scheme of RRAM resistance to im-
plement the correlation matrix memory.

In this implementation, each memory cell is simply an RRAM. There are total M × U
RRAMs plus a dummy conlumn of RRAMs, which will be explained shortly. Each RRAM
in these M ×U cells are connected to a word line ym and a data line wu. At the end of each
column there are a current amplifier and a comparator.

During the training phase, the word lines for non selected rows remains at 0 V. For
selected rows, an alternating ±1-V pulse is applied to them. To add an one to the memory
cell, the data line is applied a negative 1 V pulse when word line is at 1 V. This way, a 2-V
voltage will be across that RRAM and cause a conductance increase by s times. Similarly, to
add an minus 1, the data line is applied a +1V pulse when the word line is -1V. Therefore,
a -2V pulse across the RRAM will cause its conductance to decrease by s times.

After trained with all the patterns, the conductance of each RRAM is scaled by s for cmn
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Figure 4.23: The RRAM prototype of the correlation matrix memory.
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times, that is,

Gmu = Gmu(0) · s
∑K

k=1 ym,kwu,k (4.18)

= Gmu(0) · scmu (4.19)

≈ Gmu(0) · (1 + cmux) (4.20)

where cmu is the final value of the memory cell in the correlation operation of CMM (Equa-
tion 4.7), and s = 1 + x.

In the retrieval phase, likewise the selection lines of the non-selected rows remain at 0 V,
while the selected rows are applied an alternating pulse. The computation only happen when
the pulse is at 1 V; the -1V pulse is only to offset the read disturbance on the RRAM. As
mentioned in Section 4.2.2, the retrieval consists of a projection operation and a thresholding.
The projection is done by summing up all the rows that are activated by y, which can be easily
implemented in this architecture. Looking at just one column, the rows that are activated
will have currents flowing through RRAMs, and these current will be summed automatically
at the input of the current amplifier and get amplified to a voltage. Therefore, the summed
current at the end of each column iu is

iu =
M∑
m=1

ymGmu (4.21)

≈
M∑
m=1

ym ·Gmu(0) · (1 + cmux) (4.22)

Compared to the desired sum at the output of each column su (which can be derived
from Equation 4.9),

su =
∑
m

ymcmu (4.23)

there is a nominal term that need to be canceled. This is the reason why the dummy column
is added. The purpose of the dummy column is to generate a bias to be subtracted from each
column. This is done by feeding the output voltage of the dummy column to the negative
comparator inputs of all other columns. Since i0 is

i0 =
∑
m

ymGm0(0) (4.24)

the output of the comparator at each column is as desired for the thresholding operation:
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zu = iu − i0 (4.25)

= z

(∑
m

ymGmu(0)(1 + cmux)−
∑
m

ymGm0(0)

)
(4.26)

≈ z

(∑
m

ymGmu(0)cmux

)
(4.27)

Figure 4.24 summarizes the operations required by the CMM and those performed by
the RRAM prototype.

Figure 4.24: Comparison of the operations required by the CMM and those performed by
the RRAM prototype.

To summarize, in this implementation, there is no active element in the vast majority of
the memory core. Therefore, there is no leakage problem. Also, since the rows are sparsely
activated (activation probability less than 0.1%), the power consumption will be low. The
future work includes behavior simulations taking into account the resistance variations, non-
linearities and variations in the RRAM programming, and eventually building an integrated
prototype of RRAMs and silicon CMOS FET or CNFET peripherals.
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Chapter 5

Conclusions

In this chapter, we conclude with our thesis contributions and future works.

5.1 Thesis Contributions

The main contribution of this thesis is the demonstration of neuro-inspired computing
paradigms for efficient implementation in present and future nano-technologies. The con-
tributions are summarized as follows:

• An information-theoretical framework for joint architectural and circuit level optimiza-
tion (Section 2.3).

• Dedicated feature extraction and learning algorithms for metal-oxide gas sensor arrays
(Section 3.2). The concentration-invariant spike-timing encoding is inspired by the
spatio-temporal firing patterns in the olfactory system.

• Low power CMOS implementation of the analog learning front end (Section 3.3), in-
cluding a novel analog Euclidian vector normalizer (Section 3.3.3).

• A spike pattern classifier based on the hyper-dimensional computing principles (Sec-
tion 4.2), performing reliable computations with devices having large parametric vari-
ations.

• Proposed a way to densely and efficiently implement the spike pattern classifier in a
3D CNFET-RRAM technology (Section 4.3).

5.2 Future Work

The works presented in this thesis are demonstrations of the first step toward alternative
computing on future nano-technologies. Therefore, there are still many aspects that require
further improvements.
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For the analog gas sensing frontend:

• Current system can only deal with one odor analyte at a time. Future direction should
target at detecting mixtures of odors [73].

• In the feature extraction algorithm, the analyte responses in the log space may not
necessarily intersect at a sphere center. Therefore, we suggest using a high-dimensional
manifold instead of a sphere, such that analyte response trajectories are orthogonal to
the manifold surface and the projection will be effective.

• The circuits can adapt themselves to overcome variations/mismatches that cannot be
dealt with by the learning algorithm.

• To be able to deal with sensor drifts.

For the spike pattern classifier:

• The random sampling assumes the inputs are uniformly distributed. For non-uniform
input distributions, either the inputs should be whitened before entering the sparse
vector generator. or the sparse vector generator should have a mechanism to adapt itself
to the input statistics, such as Sparse Coding [32] mentioned in Chapter 2, Foldiak’s
network [102], etc.

• The correlation matrix memory is only suitable for recognizing one pattern at a time.
For mixture of patterns, the patterns may need to be manipulated and decoded as in
a hyper-dimensional computer [31].

In today’s cloud center, the machine learning kernels require thousands of servers burning
MWatts of power. Eventually invention in the kernel architecture for efficient hardware
implementation will be dictated. For example, Deep Learning based on neural nets have
been very successful in pattern recognition, adaptive control, etc. However, it is mostly
implemented in traditional platforms such as GPUs. The bottleneck between the processing
unit and the memory storage will require in-memory computing architectures in the future.
This is when the 3D nano comes into play.

Given that nature and evolution have found in the human brain a (optimal?) solution
balancing size, power budget, cell complexity/size, and wiring density, the lessons we have
learned for future nano ICs include:

• 3D integration

• Locality

• Massive distributed parallel processing with in-memory computing

• Robust data representations
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• Optimization of cell complexity/size versus interconnect density and speed

At the waning day of Moore’s Law, we may need to take a fresh look on how optimal
computational engines can be built. Based on our knowledge of physics, materials, nano-
devices, noise and energy constraints, can we derive what such an optimal solution could
look like for a physical computer? This might be the time when the paths between physical
and biological information processing are converging. Therefore, a true understanding of
information-theoretic and thermodynamic trade-off’s will be needed. And the advance in
this exciting field will require the collaboration of neuroscientists, architects, circuit and
device engineers.
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Appendix A

Power-Precision Models

In terms of signal representations, the precision in bits b is defined as

b =
1

2
log2SNR (A.1)

where SNR is the signal-to-noise ratio. In analog circuits, the power is usually linear to the
output SNR, whereas in digital circuits, the power is linear to b. Therefore, the analog power
is exponential to b while digital power is linear to b:

PA ∝ SNR = 22b (A.2)

PD ∝ log2SNR = 2b (A.3)

This leads to an argument that analog circuits are more efficient in the low-precision regime,
while digital circuits are more efficient in the high-precision regime [61].

To understand whether this arguments applies to computations, we investigated a specific
case, i.e. logarithmic transform. In this appendix, the power-precision relationships for analog
and digital logarithmic transforms are derived.

A.1 Analog Logarithmic Transform

Figure A.1 shows the schematic of the logarithmic amplifier. If transistor Mf is biased in
subthreshold, the output voltage is linear to the log of the input current:

∆vo =
A

A+ 1
nVtln

(
iIN
IBIAS

)
(A.4)

where iIN = IBIAS + ∆iIN .
This logarithmic amplifier is designed in ST Microelectronics’ 65 nm SVTLP process.

With a supply voltage of 0.5 V, ID1 = 2.5 nA, ID2 = 1.3 nA, CL = 500 fF, the amplifier
achieves a gain of 43.2 dB and a closed-loop bandwidth of 90 kHz. The DC response is shown
in Figure A.2.
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Figure A.1: Schematic of the logarithmic amplifier.

Figure A.2: DC response of the logarithmic amplifier: Vo versus logiin.
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The output noise of the amplifier is inversely proportional to the load capacitance:√
v2on,T ∝

(
1

ID1

+
1

IBIAS

)
Av1gm2

CL
, (A.5)

and the bandwidth of amplifier is the unity-gain bandwidth of the loop-gain:

BW ≈Av1gm2

CL
(A.6)

Therefore, to decrease the output noise, the load capacitance is increased. To keep the same
bandwidth, the transistors must be sized up. Hence the total bias current increases.

Table A.1 shows the simulated current consumption, output noise and output voltage
variations at different sets of sizing factors S1, S2, and Sf . These sizing factors are the
scaling factors of transistor sizes in the first stage, second stage of the op-amp, and that
of the feedback transistor Mf . As transistor sizes increase, not only the output noise Von,T
decreases, the standard deviation of the amplifier offset σVOS,a

and that of the output voltage
σVo decrease as well. In this case, the output precision is actually dominated by device
variations, not by the thermal noise.

Table A.1: Current consumption, output noise, and output voltage variation at different
sizing factors.

S1 S1 Sf CL
(pF)

ITOT
(nA)

BW
(kHz)

Von,T
(µV)

σVOS,a

(mV)
σVO
(mV)

1 1 1 0.5 4.585 90 762 9.54 16.69
2 2 2 0.8 8.676 90 544 7.57 11.16
4 4 4 1.5 15.236 90 372 6.11 8.35
8 8 8 2.5 29.496 90 279 4.57 5.90
16 16 16 4.75 58.11 90 198 3.33 4.17
32 32 32 9 105.41 90 143 2.38 2.95
64 64 64 18 230.01 90 101 1.68 2.09

From Figure A.2, the output range corresponding to 60 dB input dynamic range (0.1-100
IBIAS) is roughly 250 mV. Then the output precision in terms of bits can be defined as
follows.

R = log2

 VL

2

(√
v2on,T + σ2

V o

)
 (A.7)
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A.2 Digital Logarithmic Transform

Figure A.3 shows a look-up table for digital logarithmic transform. It consists of a 10-bit
decoder (comparable to the 60-dB input dynamic range in the analog logarithmic amplifier),
and a NAND-ROM. There are B outputs corresponding to B bits of precision.

Figure A.3: Digital look-up table (LUT) for logarithmic transform.

This digital LUT is implemented in ST Microelectronics’ LVTLP process and operated
at a supply of 0.5 V. The sizes of the transistors are determined by DC output levels in the
worst-case configurations. As shown in Figure A.4, the left branch shows the worst case for
output low, and the right branch shows the worst case for output high.

A.2.1 Leakage Power Estimation

The leakage power is estimated by taking the average of the maximum and minimum leakage
currents for the three scenarios: precharge, 1-evaluated, and 0-evaluated. The worst and best
cases for these three scenarios are shown in Figure A.5.

Assuming equal precharge and evaluation period, the leakage power is then

PLeakage =
1

2
[PPRE + αP0 + (1− α)P1]×B (A.8)

where α is fraction of zeros in the LUT, which can be calculated using a program.
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Figure A.4: The worst case configurations for output low (left) and output high (right).

Figure A.5: Leakage estimation for the NAND-ROM.



APPENDIX A. POWER-PRECISION MODELS 108

A.2.2 Dynamic Power Estimation

Figure A.6 shows the schematic for load capacitance estimation. Assuming a wire capacitance
of 0.2 fF/µm2 and a wire resistance of 0.2 Ω/sq, the word line capacitance is CWL = 0.2f ×
20µm×B = 4BfF . Since the maximum wire capacitance is CW,max = 0.2×1024µm2 = 205
fF, the average wire capacitance is CW,ave = 103fF .

Figure A.6: Schematic for loading capacitance estimation.

Figure A.7: Different branchings in two-input and three-input decoders.
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Since the inputs are grouped into two or three, there are two kinds of branchings in the
decoder chains, as shown in Figure A.7. The dynamic power of the decoder is

PDEC =npredecPpredec,ave + nnandPnand,ave +
1

2
Cw,aveV

2
DDf (A.9)

where npredec = 64, Ppredec,ave = 271 pA, nnand = 1024, Pnand,ave = 50 pA, and f = 100 kHz.
The dynamic power also includes the clock power PCK , the power to drive the bit line

PBL, and the power to drive the word line PWL:

PCK = CckloadV
2
DDf ×B (A.10)

PBL = αCBLV
2
DDf ×B (A.11)

PWL = CWLV
2
DDf (A.12)

A.2.3 Total Power Consumption

Therefore, the total power consumption of the digital LUT logarithmic transform is

PTOT = PLeakage + PDEC + PCK + PBL + PWL (A.13)

which is a function of the output precision B.

A.3 Analog VS. Digital

Finally, the simulated power of the analog logarithmic transform and the estimated power of
the digital logarithmic transform LUT as a function of the output precisionB are summarized
in Table A.2 and plotted in Figure A.8. It can be concluded that analog logarithmic transform
is more efficient in the low-precision regime, while digital logarithmic transform is more
efficient in the high-precision regime.

Table A.2: Simulated analog power and estimated digital power of the logarithmic transform
as functions of output precision.

Digital Precision
[bits]

Digital Power
[nW]

Analog Precision
[bits]

Analog Power
[nW]

2 57.505 2.9 2.2925

4 59.97 3.48 4.338

6 62.487 3.9 7.618

8 65 4.4 14.748

10 67.51 4.9 29.055

12 70.29 5.4 57.705

14 72.86 5.9 115
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Figure A.8: The power-precision relationship of the analog and digital logarithmic transforms.
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Appendix B

Error Analysis

This appendix provides error modeling of the analog learning frontend and investigates how
it impacts the convergence behavior of the learning algorithm.

B.1 Error Modeling

Figure B.1 shows error sources for computation in the learning phase. Note that the output
variations from the input logarithmic converters will be captured by the learning algorithm,
and that the sample-and-hold circuit is immune to device mismatches/variations, the errors
come from the V-I converter, and the normalizer. In this figure, only one channel (channel
i) is shown for clarity. However, the error analysis is generalized to N channels.

Figure B.1: Modeling the errors due to device mismatch for the computation in the learning
phase.
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B.1.1 Errors from the V-I Converters

Ideally, the V-I converter should produce an output current of

IXi =
VXi − VSi
RXi

.

However, in reality, due to device mismatches, the actual output current is

IXi =
VXi − VSi
RXi

·
(
Ai1Ai2Ai3

rXi

)
(B.1)

where rXi, Ai1, Ai2, and Ai3 are random variables nominally at 1. rXi is the factor that
resistance RXi is scaled by, Ai1 is due to the amplifier offset ∆VSi:

Ai1 = 1 +
∆VSi

VXi − VSi
,

Ai2 is due to the mismatch between Ma and Mb in the first stage of current mirroring:

Ai2 =
I0a
I0b

(W/L)a
(W/L)b

· exp
(
VTHb − VTHa

nVt

)
,

and Ai3 is due to the mismatch between Mc and Md in the second stage of current mirroring:

Ai3 =
I0c
I0d

(W/L)c
(W/L)d

· exp
(
VTHd − VTHc

nVt

)
.

B.1.2 Errors from the Normalizer

Ideally, the output currents IW ’s and input currents IX ’s of the normalizer should be related
as follows.

I2W1 = I2X1 ·
1

K

I2W2 = I2X2 ·
1

K
...

I2WN = I2XN ·
1

K

where K is a function of the voltage V at the source of transistor M7. Also the output current
IW ’s and the inner branch currents IY ’s should be related as follows.
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I2W1 = IY 1IY

I2W2 = IY 2IY
...

I2WN = IY NIY

However, due to device mismatches, output currents are related to input currents through
β’s.

I2W1 = I2X1 · β1 ·
1

K

I2W2 = I2X2 · β2 ·
1

K
...

I2WN = I2XN · βN ·
1

K

for example,

β1 =
I03I04(W/L)3(W/L)4
I01I02(W/L)1(W/L)2

· exp
(
VTH1 + VTH2 − VTH3 − VTH4

nVt

)
.

And the output currents are related to inner branch currents through α’s.

I2W1 = α1IY 1IY

I2W2 = α2IY 2IY
...

I2WN = αNIY NIY

for example,

α1 =
I03I04(W/L)3(W/L)4
I05I07(W/L)5(W/L)7

· exp
(
VTH5 + VTH7 − VTH3 − VTH4

nVt

)
.

Note that IY 1 + IY 2 + · · ·+ IY N = IY , then(
β1
α1

I2X1 +
β2
α2

I2X2 + · · ·+ βN
αN

I2XN

)
1

K · IY
= IY .
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Therefore,

1

K
=

I2Y∑ βi

αi
I2Xi

.

The output voltages VRW ’s then become

V 2
RWi = R2

WiβiI
2
Xi ·

1

K
(B.2)

= R2
Wiαi ·

βi

αi
I2Xi∑ βi

αi
I2Xi

I2Y (B.3)

B.2 The Output Error

Combining Equation B.1 and Equation B.3, the output voltages expressed in terms of the
input voltages are

V 2
RWi = R2

Wiαi ·

βi

αi

(VXi − VSi)2

R2
Xi

A2
i∑ βi

αi

(VXi − VSi)2

R2
Xi

A2
i

I2Y . (B.4)

where Ai = Ai1Ai2Ai3. In vector notation, the output voltage vector can be expressed as

VRW =


rW1
√
α1

rW2
√
α2

...
rWN
√
αN

 · ∗





√
β1

α1

Ai1

rX1√
β2

α2

Ai2

rX2

...√
βN

αN

AiN

rXN


· ∗


VX1 − VS1
VX2 − VS2

...
VXN − VSN




u

·RW IY (B.5)

≡ s1. ∗

s2. ∗


VX1 − VS1
VX2 − VS2

...
VXN − VSN



u

·RW IY (B.6)

Therefore, the input vector (VX1−VS1, VX2−VS2, · · · , VXN−VSN) first undergoes an element-
wise multiplication (.*) with vector s2, then a vector normalization ((.)u), and finally another
element-wise multiplication with vector s1.
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From block-level Monte Carlo simulations, the worst-case variations in the parameters
are as follows.

rWi = 1± 30%

αi = 1± 30%

βi = 1± 25%

Ai

rXi
= 1± 40%

Therefore,
√
βiAi/

√
αirXi could vary between 0.46 to 1.87, and rWi

√
αi could vary between

0.59 to 1.48.
If 1−∆1 ≤ s1, s2, · · · , sN ≤ 1 + ∆2, it can be shown that

s. ∗ x =


s1x1
s2x2
s3x3
s4x4
s5x5
s6x6

 =


(1 + ∆2)x1
(1 + ∆2)x2
(1 + ∆2)x3
(1−∆1)x4
(1−∆1)x5
(1−∆1)x6


will result in the largest angle between s. ∗ x and x.

Therefore, in the simulation of the convergence behavior of the learning algorithm, the
worst-case vectors s1, s2 are used in the computation of each update.

s1 =


1.87
1.87
1.87
0.46
0.46
0.46

 , s2 =


1.48
1.48
1.48
0.59
0.59
0.59

 .

The final states for 720 initial states using this method are those shown in Figure 3.44.
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Appendix C

Geometric Interpretation of Spike
Sampling

This appendix provides the derivation of the reception range of the spike sampling groups
and its geometric interpretation. They corresponds to hyperplanes with different orientations
in the N-dimensional space of spike delays.

C.1 Parameters

This section summarizes the parameters that were defined previously and parameters that
will be used in the following analysis.

K: Size of the data set; number of odor analytes.

N : Input dimension; number of sensors.

M : Output dimension; number of sampling groups.

n: Number of elements in each sampling group; n ≤ N .

T: K ×N matrix; timing patterns.

T =


t11 t12 · · · t1N
t21 t22 · · · t2N
...

... · · · ...
tK1 tK2 · · · tKN

 (C.1)
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dm: n-element vector; delays of the n elements in the mth sampling group.

dm =


dm1

dm2
...

dmn

 (C.2)

Nm: Set of indices of the channels that are connected to the mth sampling group. That is,
Nm ⊂ {1, 2, · · · , N} and |Nm| = n. These n elements are uniformly and randomly
selected from {1, 2, · · · , N}.

TNm : The K × n submatrix of T by extracting the columns of T according to the indices
in Nm; these are the timing patterns seen by the mth group. This is illustrated by
Figure C.1.

tNm,k: The kth row of the TNM
matrix; this is the timing pattern of the kth analyte seen by

the mth group.

Figure C.1: Extracting columns of T according to the indices in Nm to form TNM
.

C.2 Reception Ranges

Given the delay dm of group m, what is the set of timing patterns that will activate this
group? More specifically, we want to find the set of timing patterns t satisfying

tTNm + dm = s1, 0 < s <∞. (C.3)

In vector notations, this set of t can be expressed as

t = s1v1 + s2v2 + · · ·+ sN−n+1vN−n+1 + p (C.4)
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where

v1 =



1
1
...
1
0
0
...
0


, v2 =



0
0
...
0
1
0
...
0


, v3 =



0
0
...
0
0
1
...
0


, · · · , vN−n+1 =



0
0
...
0
0
0
...
1


, p =



−dj1
−dj2

...
−djn

0
0
...
0


. (C.5)

0 < sj <∞, j = 1, 2, · · · , N − n+ 1, and v1,v2, · · · ,vN−n+1 are linearly independent.
According to the definition in geometry [103], the set of t is a (N − n + 1)-dimensional

affine subspace of RN . If n = 2, this is a (N − 1)-dimensional affine subspace of RN , i.e. a
hyperplane in RN .

Figure C.2 shows the geometric interpretation. In this case, N = 3, and n = 2. Only
three reception ranges are shown for clarity. It can be seen that the reception range for each
group is a hyperplane in R3, i.e. a plane. The orientation of the planes depends on the subset
of input channels Nm that a group is connected to and also the delays in the group.

Figure C.2: The geometric interpretation of the random sampling groups. In this case, N = 3
and n = 2.
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