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Abstract

Intelligent Control and Planning for Industrial Robots

by

Yu Zhao

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Industrial robots are widely used in a variety of applications in manufacturing. Today, most

industrial robots have been pushed to work near their hardware design limits. Therefore, it is

essential to develop advanced control techniques to further improve the performance of industrial

robots. This dissertation focuses on efficient motion planning and effective trajectory tracking

control for flexible robots. The difficulties of this work arise from the facts that 1) due to the

complicated nonlinear mapping between robot configuration space and workspace, the constraints

applied in one space are difficult to transfer to another space, 2) due to the inherent mechanical

flexibility, static and dynamic deflections between actuators and robot end-effector are frequently

observed, and they degrade the overall trajectory tracking performance. In regards to these issues,

this dissertation proposes several methods to improve motion control performance of industrial

robots.

Regarding motion planning, an optimal control based approach is presented. Because of the in-

herent complexity of the motion planning problem for articulated robots with multiple joints, most

existing solutions decompose motion planning as path planning and trajectory planning problems.

Because of the implementation of manual or random sampling approaches in path planning, the re-

sulting solution is in general suboptimal. This dissertation proposes to formulate motion planning

as a general nonlinear optimal control problem. A practical numerical method is investigated for

trajectory optimization as one solution to the underlying optimal control problem. Intelligent dis-

cretization and automatic differentiation techniques are introduced to make the proposed approach

highly efficient.

Regarding trajectory tracking of robots with compliant components, two kinds of flexibility

are considered. One kind of flexibility comes from the compliant transmission elements, i.e.,

joint flexibility. For robot with joint flexibility, back-stepping control is designed to achieve high

performance of trajectory tracking. To address model uncertainties in the system, a radial basis

function network is introduced for online adaptive compensation. Lyapunov stability theory is used

to prove the stability of the proposed adaptive controller. A data-driven approach for the structural

design of a radial basis function network is also presented to effectively reduce the computation

load.
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Another kind of flexibility comes from the compliant links, which is known as link flexibility.

Industrial robots equipped with large articulated structures as end-effectors are good examples

of robots with link flexibility. One popular and promising approach for vibration suppression

involving flexible links is input shaping. However the time delay introduced by input shaping is

not permissible for time stringent applications. In this dissertation two modified input shaping

approaches are presented to suppress residual vibration of end-effectors without introducing time

delay to the entire motion. Considering the control signal generated from input shaping does

not necessarily seem to be the best for robotic application, optimal vibration suppression is also

discussed based on the proposed efficient numerical method for trajectory optimization.
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Chapter 1

Introduction

1.1 Background

An industrial robot is an automatically controlled, re-programmable multipurpose manipulator,

which is programmable in three or more axes [1]. Today, industrial robots are widely used in a

variety of applications in manufacturing, including but not limited to welding, painting, assembly,

palletizing, inspection, and testing. Since the development of industrial robots has been mainly

dictated by the automotive industry, high cost efficiency, reliability, and productivity have been

the focus of the research and development work of robot manufacturers. In order to maximize

productivity, most robots have been pushed to work near their hardware design limits. To further

improve the performance of industrial robots in terms of speed and accuracy, advanced control

approaches become the key technology.

In regards to controlling the motion of an industrial robot, there are two important topics for

cost reduction and performance improvement [2, 3]:

• motion planning: given a task, generating a feasible motion reference that optimally drives

the robot from the initial configuration to the target configuration

• motion control: given the optimal motion reference, performing the movement on a physical

robot exactly as intended

As an important topic in the field of robotics, motion planning has been studied for more than

three decades. However due to the complicated nonlinear mapping between robot configuration

space and the workspace, as well as complicated robot dynamics constraints, it remains challeng-

ing to find a feasible and optimal trajectory efficiently. One practical solution to the problem of

motion planning is generating time optimal trajectories that accommodate kinematic and dynamic

constraints with manually selected key points This solution is simple and effective in a mass pro-

duction system where the manufacturing schedule only changes occasionally. In such a production

process which requires low flexibility, it is allowed to obtain a good predefined motion for robots

using time consuming manual tuning. However, in the current era of automation and data exchange
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in manufacturing, existing simple solutions do not meet the requirement of mass customization.

In order to achieve highly flexible production, robot motion planning should be performed in an

efficient and automated way.

Motion control is another important topic to achieve high performance of the robot’s controller.

The most of current motion controllers utilize a standard assumption that robot manipulation in-

volves only rigid bodies and ideal transmission components. However this assumption can be

considered valid only for slow motion and small interaction forces [4]. In practice, static and

dynamic deflections introduced by mechanical flexibility are non-negligible when a robot is per-

forming high acceleration motion with heavy payload. The mechanical flexibility comes from

two sources: compliant transmission components and slender structural design. Today, high vol-

ume production in modern manufacturing systems is pushing robots to operate at their speed and

payload limits, which is expensive to address by replacing robot hardware. In order to meet the

stringent performance requirement, mechanical flexibility should also be taken into account in the

design of the motion controller. These flexibilities may also be considered in the motion planning

stage.

1.2 Motivation and Contribution

Neuroadaptive Control for Trajectory Tracking of Flexible Joint Robots

Most industrial robots utilize the indirect drive mechanism. The indirect drive design adopts actu-

ators with high speed and low torque output, and transmission units with large gear ratios. Though

this design effectively reduces the cost of industrial robots, non-negligible dynamic deflection is

introduced when a robot is performing high speed motion. Furthermore, mismatched sensing and

control makes it difficult to estimate and compensate for model uncertainties. In this dissertation,

a neuroadaptive control, which is essentially a neural network based adaptive backstepping con-

trol approach, is proposed to deal with the joint flexibility and model uncertainty. The stability of

the proposed approach is analyzed using Lyapunov stability theory. A data-driven approach is also

proposed for the training of the neural network, which is used to compensate for model uncertainty.

The effectiveness of the proposed controller is verified by simulation of a 6-axis industrial robot.

Zero Time Delay Input Shaping for Smooth Settling of Industrial Robots

Precise motion control is desired in a variety of industrial robot applications. In order to achieve

precise and rapid rest-to-rest motion, overshoot and residual vibrations should be minimized. In

this dissertation, a modified input shaping approach is developed to address these problems. The

time delay introduced by conventional input shaping technique is fully compensated in the pro-

posed approach. Experimental results on an industrial robot show the effectiveness of the proposed

approach.
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Modified Zero Time Delay Input Shaping for Industrial Robot with Flexible

Link End-Effector

Input shaping is an effective approach for vibration suppression in a variety of applications. How-

ever the time delay introduced by input shaping is not desired in some applications. Current tech-

niques that try to reduce the time delay do not guarantee zero time delay or may cause non-smooth

motion, which is harmful for the service life of the actuators. In order to guarantee zero time delay,

as well as the smoothness of motion, a modified zero time delay input shaping is proposed in this

work. Experimental results are used to show the advantage of the proposed approach.

Robot Motion Planning Based on Efficient Trajectory Optimization

Robot motion planning, including path planning and trajectory planning, can be formulated and

solved as a general optimal control problem. However since no analytical solutions for nonlin-

ear optimal control problems can be found easily, existing motion planning techniques decompose

path planning and trajectory planning as two independent problems and typically result in subop-

timal solutions. In this dissertation, an efficient numerical method for trajectory optimization is

investigated as one practical solution to solve the nonlinear optimal control problem for motion

planning. The effectiveness of the proposed approach is demonstrated using examples of planar

and spatial robots.

Optimal Vibration Suppression for Industrial Robot with Flexible

End-Effector

Industrial robots with flexibility are inherently under-actuated mechanical systems. When robot

end-effector shows flexibility due to the slender structural design, no external sensor is available

for feedback control. Model based feedforward control is one practical choice for vibration sup-

pression of robots with flexible end-effector. Though input shaping is proven to be a simple and

effective approach, there is no guarantee about optimality and feasibility under constraints of ac-

tuator limitations. This dissertation proposes to deal with vibration suppression as an optimal

control problem. Using the proposed efficient trajectory optimization technique, the optimal con-

trol problem for vibration suppression can be solved effectively. Simulations and experiments on

an industrial robot have been performed to demonstrate the effectiveness of the proposed approach.

1.3 Dissertation Organization

The rest of this dissertation is organized in two parts. In Part I, a series of works related to in-

telligent control techniques are presented. Chapter 2 presents the design of trajectory tracking

controller for robots with flexible joints. The design and stability analysis of a backstepping con-

trol is presented to compensate the flexibility. The design and training method of a neural network

to compensate model uncertainties in the mismatched system is also presented. Chapter 3 presents
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a zero time delay input shaping approach for smooth settling of industrial robots with flexibility.

Experimental results on a heavy load industrial robot are presented. Chapter 4 presents a modified

zero time delay input shaping approach for residual vibration suppression of industrial robots with

flexible end-effector. The modification focuses on the improvement of smoothness of the control

signal generated by the zero time delay input shaping.

Part II discusses intelligent planning technique. Chapter 5 presents an efficient numerical

method for trajectory optimization. The proposed trajectory optimization is implemented to solve

robot path planning and trajectory planning problems simultaneously under both kinematic and

dynamic constraints. Chapter 6 presents optimal vibration suppression based on the efficient nu-

merical method used for motion planning.

Chapter 7 concludes this dissertation. Possible extensions of this dissertation research are

discussed as well as future directions of this research.
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Part I

Intelligent Control
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Chapter 2

Neuroadaptive Control for Trajectory

Tracking of Flexible Joint Robots

2.1 Introduction

Today, most industrial robots have indirect drives for high power/weight ratio and low cost. How-

ever, it is hard for indirect drive robots to achieve high trajectory tracking accuracy because of the

flexibilities in transmission units in each robot joint [5]. Such flexibilities introduce time-varying

mismatches between the positions of actuators and the driven links, which will result in degrada-

tion of the tracking performance [4].

Several control approaches have been proposed for robots with flexible transmission units.

Some of these approaches require an accurate robot dynamic model: e.g., feedback linearization

[6], singular perturbation based approach [7], and the model based feedforward control [8]. Other

approaches are model free approaches: e.g., iterative learning control [9] and nonparametric learn-

ing control based on Neural Network (NN) techniques [10].

The model based controller relies on a good model. If the model is either too simple to accom-

modate all complex characteristics in the robots, or too complicated to identify actual dynamics

and parameters, the performance of the controller will be poor due to modeling errors. On the other

hand, model free approaches can provide reasonable performance most of time because no analytic

model is required except that the tuning of the controller may be time consuming or data ineffi-

cient. For example, iterative learning control may require many iterations before a good control

input can be learned for a specific trajectory while NN always requires large data sets for training

the controller.

To address such problems, in this chapter, a neuroadaptive controller, which is essentially a

neural network based adaptive backstepping control, is proposed. Instead of only using a dynamic

model of the robot, an auxiliary model parameterized by a neural network is used to approximate

the modeling error. The controller is designed in two stages: an off-line training stage and an

online adaptive training stage. To train for a specific trajectory, it takes only at most two iterations

until convergence and only requires the data from the first iteration.
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Actuator

Driven Link

Tool Center Point (TCP)

Payload
Transmission

Unit
6-Axis Industrial

Robot

Figure 2.1: 6-axis indirect drive robot

2.2 Neuroadaptive Control of Indirect Drive Robots

Dynamical System Model

For a N DOF industrial robot, there are 2N generalized coordinates [11, 12, 4]:

ΘΘΘ =
[
qqqT θθθT

]T ∈ R
2N

where qqq ∈ R
N refers to the link positions, and θθθ ∈ R

N refers to the actuator positions.

The dynamic model of the system is

MMM(qqq)q̈qq +CCC(qqq, q̇qq)q̇qq +GGG(qqq) = dddℓ +KKK(RRR−1θθθ − qqq) +DDD(RRR−1θ̇θθ − q̇qq)
︸ ︷︷ ︸

yyy

(2.1a)

JJJmθ̈θθ =τττ + dddm +RRR−1
[

KKK(qqq −RRR−1θθθ) +DDD(q̇qq −RRR−1θ̇θθ)
]

(2.1b)

where MMM(qqq) ∈ R
N×N , JJJm ∈ R

N×N are the inertia matrices for link motion and actuator motion

respectively; CCC(qqq, q̇qq)q̇qq ∈ R
N is Coriolis and centrifugal force; GGG(qqq) ∈ R

N is the gravity term;

yyy = KKK(RRR−1θθθ − qqq) +DDD(RRR−1θ̇θθ − q̇qq) is the transmission torque between the actuator and the robot

link; τττ ∈ R
N is torque generated by actuators; KKK ∈ R

N×N and DDD ∈ R
N×N are diagonal matrices

representing stiffness and damping of the transmission units respectively; RRR ∈ R
N×N is diagonal
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matrix representing gear ratio; dddℓ ∈ R
N and dddm ∈ R

N are disturbances applied the links and

actuators respectively. The input to the system is the actuator torque τττ , and output of the system is

the link position qqq.

The disturbances dddℓ and dddm include complex friction, transmission error mentioned in [13, 14],

and actuator-link interaction mentioned in [4]. It is difficult to build a parametric model for all the

disturbances, but in general, they can be modelled as dddℓ ≈ dddℓ(qqq, q̇qq, θθθ, θ̇θθ), dddm ≈ dddm(qqq, q̇qq, θθθ, θ̇θθ).

Backstepping Control

Backstepping control, as discussed in [15], is a control method that is developed for nonlinear

dynamical systems with recursive structure. The design of backstepping control involves designing

controllers that progressively stabilize a series of subsystems.

An indirect drive robot has such a kind of recursive structure. The first subsystem is expressed

as (2.1a), and the second subsystem is expressed as (2.1b). Design of backstepping control of

indirect drive robot consists of two steps. The first step designs the control law for (2.1a) with the

transmission torque yyy as input, and the second step designs the control law for (2.1b) with motor

torque τττ as input. In the first step, the designed controller stabilizes the trajectory tracking error to

0. In the second step, the designed controller stabilizes the transmission torque error to 0.

First step: Letting the reference trajectory of an indirect drive robot be qqqd, q̇qqd, q̈qqd, the trajectory

tracking error is defined as

eee = qqqd − qqq (2.2)

According to [16], a filtered-error term rrr can be defined as

rrr = ėee+KKKpppeee (2.3)

whereKKKp ∈ R
N×N is a positive definite gain matrix with the minimum singular value σmin(KKKp) >

0. Since (2.3) can be considered as a stable system with rrr as input, and eee as output, therefore

stabilizing tracking error eee is equivalent to stabilizing filtered error rrr.

lim
t→∞

rrr = 0 ⇒ lim
t→∞

eee = 0 (2.4)

In order to stabilize the tracking error eee, a desired transmission torque yyyd can be designed as

[16]

yyyd =KKKrrrr +MMM(qqq)(q̈qqd +KKKpėee) +CCC(qqq, q̇qq)(q̇qqd +KKKpeee) +GGG(qqq)− dddℓ

where KKKr ∈ R
N×N is a positive definite gain matrix.

Second step: The error between desired transmission torque yyyd and the actual interaction torque

through flexible transmission unit yyy is

sss = yyyd − yyy (2.5)

In order to design a control law that stabilize the transmission torque error sss to 0, we first

construct a Lyapunov function L,

L =
1

2
rrrTMMM(qqq)rrr +

1

2
sssTAAAsss
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where AAA = JJJmRDRDRD−1. Since JJJm, RRR, DDD are diagonal, positive definite matrices, AAA is positive

definite.

The time derivative of the filtered error in the first step can be derived as:

MMM(qqq)ṙrr = MMM(qqq)[ëee+KKKpėee]
= MMM(qqq)[q̈qqd − q̈qq +KKKpėee]
= MMM(qqq)(q̈qqd +KKKpėee)−MMM(qqq)q̈qq

Substituting the dynamic model (2.1a), the formulation can be further derived as:

MMM(qqq)ṙrr = MMM(qqq)(q̈qqd +KKKpėee)− [dddℓ +KKK(RRR−1θθθ − qqq) +DDD(RRR−1θ̇θθ − q̇qq)
−CCC(qqq, q̇qq)q̇qq −GGG(qqq)]

= MMM(qqq)(q̈qqd +KKKpėee) +CCC(qqq, q̇qq)q̇qq +GGG(qqq)− dddℓ − yyy
= MMM(qqq)(q̈qqd +KKKpėee) +CCC(qqq, q̇qq)[q̇qqd +KKKpeee− rrr] +GGG(qqq)− dddℓ − yyy
= MMM(qqq)(q̈qqd +KKKpėee) +CCC(qqq, q̇qq)(q̇qqd +KKKpeee) +GGG(qqq)− dddℓ

︸ ︷︷ ︸

fff

−CCC(qqq, q̇qq)rrr + yyyd − yyy
︸ ︷︷ ︸

s

−yyyd

The time derivative of the transmission torque error can be derived as:

AAAṡss = AAA(ẏyyd − ẏyy)

= AAA[ẏyyd −KKK(RRR−1θ̇θθ − q̇qq) +DDD(RRR−1θ̈θθ − q̈qq)]

= AAA[ẏyyd −KKK(RRR−1θ̇θθ − q̇qq)]−ADADAD(RRR−1θ̈θθ − q̈qq)

= AAA[ẏyyd −KKK(RRR−1θ̇θθ − q̇qq)]− JJJmRRR(RRR−1θ̈θθ − q̈qq)

= AAA[ẏyyd −KKK(RRR−1θ̇θθ − q̇qq)] + JJJmRRRq̈qq − JJJmθ̈θθ

Substituting the dynamic model (2.1b), the formulation can be further derived as:

AAAṡss = AAA[ẏyyd −KKK(RRR−1θ̇θθ − q̇qq)] + JJJmRRRq̈qq − [τττ + dddm −RRR−1yyy]

= AAA
[

ẏyyd −KKK(RRR−1θ̇θθ − q̇qq)
]

+ JJJmRRRq̈qq +RRR−1yyy − dddm
︸ ︷︷ ︸

hhh

−τττ

After substituting yyyd in the first step, and the time derivatives above, the time derivative of L is:

L̇ = 1
2
rrrTṀMM(qqq)rrr + rrrTMMM(qqq)ṙrr + sssTAAAṡss

= 1
2
rrrTṀMM(qqq)rrr + rrrT [fff −CCC(qqq, q̇qq)rrr + sss− yyyd] + sssT (hhh− τττ)

= 1
2
rrrT

(

ṀMM(qqq)− 2CCC(qqq, q̇qq)
)

rrr + rrrTsss− sssTrrr + rrrT (fff − yyyd) + sssT (hhh+ rrr − τττ)

= 1
2
rrrT

(

ṀMM(qqq)− 2CCC(qqq, q̇qq)
)

rrr + rrrT (fff − yyyd) + sssT (hhh+ rrr − τττ)

With the skew symmetric property of ṀMM(qqq) − 2CCC(qqq, q̇qq) [12], the time derivative of L can be

further simplified:

L̇ = rrrT (fff − yyyd) + sssT (hhh+ rrr − τττ)
= −rrrTKKKrrrr + sssT (hhh+ rrr − τττ)
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Letting τττ = hhh + rrr +KKKssss, where KKKs ∈ R
N×N is a positive definite gain matrix. The time

derivative of L is then negative definite.

L̇ = −rrrTKKKrrrr − sssTKKKssss < 0

According to Lyapunov stability theory, the dynamical system is asymptotically stable, thus

limt→∞ rrr = 0, limt→∞ sss = 0. According to (2.4), limt→∞ eee = 0.

To sum up, backstepping controller can be designed based on an accurate model of the system

as

yyyd = fff +KKKrrrr (2.6a)

τττ = hhh+ rrr +KKKssss (2.6b)

In this approach, two nonlinear functions fff and hhh are derived to represent the physical model of

the dynamic system.

NN Based Adaptive Backstepping Control

The ideal backstepping controller (2.6a) and (2.6b) is impractical since the exact fff and hhh terms

are not available due to the complexity of any real physical system. Moreover, though ẏyyd and q̈qq
required in the calculation of hhh may be estimated using the system model or by finite difference,

the estimation could be difficult due to noise. One way to accommodate the uncertainty in fff and

hhh is to add a robust feature to the controller, but this approach may not be able to make tracking

error small if large uncertainty exists. Another way is to use an auxiliary model that approximates

the modeling error by an artificial NN. The backstepping controller can then be designed as

yyyd = fffn + f̂ff +KKKrrrr (2.7a)

τττ = hhhn + ĥhh+ rrr +KKKssss (2.7b)

where fffn and hhhn are the nominal system model terms obtained using computer aided design soft-

ware. f̂ff and ĥhh are the auxiliary model terms that approximate the difference between the actual

system and the nominal model. The difference includes estimation errors in the inertia parameters

of the robot, estimation error in the transmission units stiffness and damping parameters, unmod-

eled complex frictions, and transmission errors.

Radial basis function (RBF) network, also known as the functional-link neural network (FLNN)

in [16], is chosen to build this auxiliary model. The reason to use RBF network is that RBF neural

network has the ability to approximate an arbitrary nonlinear function with very simple structure

(only one hidden layer), as shown in [17].

The terms f̂ff and ĥhh can be written as functions of XXX , where XXX ≡
[

qqqTd , q̇qq
T
d , q̈qq

T
d , qqq

T , θθθT , q̇qqT , θ̇θθ
T
]T

is the augmented state that includes the reference trajectory {qqqd, q̇qqd, q̈qqd}. The auxiliary model can

then be formulated as

f̂ff(XXX) = κ1

U∑

i=1

wwwi
1φi(XXX) = κ1WWW

T
1ΦΦΦ(XXX)

ĥhh(XXX) = κ2

U∑

i=1

wwwi
2φi(XXX) = κ2WWW

T
2ΦΦΦ(XXX)

(2.8)
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where κ1 ∈ R and κ2 ∈ R are two constant parameters that scale the neural network weights. U is

the number of neurons used in the RBF network, andΦΦΦ(XXX) =
[
φ1(XXX), · · · , φU(XXX)

]T
is the vector

of activation functions. WWW 1,WWW 2 ∈ R
U×N are scaled weights of the neural networks, where the ith

column of the transposed weight matrices WWW T
1 ,WWW

T
2 ∈ R

N×U are wwwi
1 and wwwi

2.

Gaussian radial basis function is one common choice for the activation function in the RBF

network. A Gaussian radial basis function used in the ith neuron can be formulated as

φi(xxx) = exp

{

−1

2
(xxx− µµµi)

TΛΛΛ−1
i (xxx− µµµi)

}

(2.9)

where µµµi ∈ R
n is the center of the Gaussian radial basis function φi(xxx), and ΛΛΛi ∈ R

n×n can be

called the width parameter. Choosing the center and width of the Gaussian radial basis function

φi(xxx) will be introduced in Section 2.3 as the initial training stage. After the center and width

parameters are determined, the weights of RBF network can be trained using adaptive control. The

adaptation law is designed as

ẆWW 1 = FFF 1κ1ΦΦΦ(XXX)rrrT − γ1FFF 1WWW 1 (2.10a)

ẆWW 2 = FFF 2κ2ΦΦΦ(XXX)sssT − γ2FFF 2WWW 2 (2.10b)

where FFF 1 ∈ R
U×U and FFF 2 ∈ RU×U are positive definite gain matrices, γ1 ∈ R, and γ2 ∈ R are

two extra gains. The uniform ultimate boundedness, which has once been introduced by [16], will

be proved in section 2.4 for both tracking error and neural network weights estimation error.

2.3 Two Stage Training Approach for Neural Network

The training of a RBF network using Gaussian radial basis functions can be divided into two stages

[18]. The first stage determines the placements of the localized units, i.e. Gaussian units in input

space. The second stage then determines the weights of a RBF network. In this chapter, these two

stages are called initial training stage and online training stage.

Initial Training Stage

The centers of the Gaussian radial basis functions of a RBF network should be uniformly and

densely distributed in the domain of the function to guarantee a small approximation error [16].

The width can then be chosen to be the maximum distance between adjacent centers. However, this

is hard to realize by simple discretization if the domain of function has high dimensionality because

too many neurons/radial basis functions are required to cover the function domain. For example,

in section 2.2, the input to the RBF network X could be a 42 dimensional vector if N = 6. Even

only 2 levels are used for the discretization of each dimension, the required neuron number should

be 242 ≈ 4.3980 × 1012, which is even larger than the number of neurons in a human brain. To

avoid this problem, an alternative data-driven approach is proposed in this section.



CHAPTER 2. NEUROADAPTIVE CONTROL FOR TRAJECTORY TRACKING OF

FLEXIBLE JOINT ROBOTS 12

Since any trajectory of a robot can be parametrized by time as XXX = XXX(t), the domain of

function can be limited in a one-dimensional manifold in the high dimensional function domain.

Instead of choosing centers in the high dimensional function domain, the centers can be deter-

mined in the low dimensional manifold, as shown in Fig.2.2. The required number of neurons can

then be reduced.The center and width parameters can be first determined in the low dimensional

manifold using clustering approaches like k-means, as shown in [19], then transfer back to the high

dimensional space.

Center

Width

High dimensional space

Low-dimensional manifold

Figure 2.2: Distributing neurons / radial basis functions in the low-dimensional manifold. Line:

low-dimensional manifold. Points: centers of radial basis functions. Ellipsoid: width of radial

basis functions

Suppose the dimension of the augmented stateXXX is n, then an experiment data set that contains

H data points can be denoted as a H × n matrix as XXXS ≡ [XXX1,XXX2, · · · ,XXXH ]
T . Principle com-

ponent analysis (PCA) can be implemented for dimension reduction [20]. Let the singular value

decomposition of XXXS be

XXXS = PSQPSQPSQT =
n∑

i=1

pppiρiννν
T
i (2.11)

where PPP = [ppp1, · · · , pppH ] is an H ×H orthogonal matrix, QQQ = [ννν1, · · · , νννn] is an n× n orthogonal

matrix, and SSS is an H × n diagonal matrix with SSS[i, i] = ρi, where ρi is the i-th singular value

of XXXS . Since XXXS is actually representing a low-dimensional manifold, the first k(k < n) singular

values will dominate, and ∀i > k, ρi ≈ 0. Thus the data set can be well approximated by a

low-rank approximation X̂XXSk, as in [21],

X̂XXSk =
k∑

i=1

pppiρiννν
T
i (2.12)
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Though this approximation is only linear, k could still be much smaller than n. This approxima-

tion projects all data points approximately to a hyperplane spanned by {ννν1, · · · , νννk}. The center

and width of the Gaussian radial basis functions can be designed on the hyper plane then. The

centers can be designed to be uniformly distributed along the projection of the low dimensional

manifold on the hyperplane, and the widths can be designed to be constants. Suppose there are

U neurons in the neural network. Let the {µµµp1,µµµp2, · · · ,µµµpU} be the coordinates of the centers of

the Gaussian radial basis functions on the hyper plane, and the corresponding width parameters

on the hyper plane be {ΛΛΛp1,ΛΛΛp2, · · · ,ΛΛΛpU}. Let QQQp ≡ [ννν1, ννν2, · · · , νννk]. The centers {µµµ1, · · · ,µµµU}
and the widths {ΛΛΛ1, · · · ,ΛΛΛU} of the Gaussian radial basis functions in the original n-dimensional

space are calculated as

{µµµ1, · · · ,µµµU} = {QQQpµµµp1, · · · ,QQQpµµµpU}
{ΛΛΛ1, · · · ,ΛΛΛU} = {QQQpΛΛΛp1QQQ

T
p , · · · ,QQQpΛΛΛpUQQQ

T
p }

(2.13)

Online Training Stage

After the initial training stage, the vector of activation functions ΦΦΦ(XXX) is determined. The weights

WWW 1 and WWW 2 can then be learned to minimize the difference between the nominal model and the

actual system.

The optimal RBF network weights WWW ∗
1 and WWW ∗

2, which minimize the model difference can be

defined as
WWW ∗

1 = argmin
WWW 1

(sup
XXX

‖fff(XXX)− fffn(XXX)− κ1WWW
T
1ΦΦΦ(XXX)‖)

WWW ∗
2 = argmin

WWW 2

(sup
XXX

‖hhh(XXX)− hhhn(XXX)− κ2WWW
T
2ΦΦΦ(XXX)‖) (2.14)

Since the actual dynamic system model fff and hhh are not available, no supervised learning tech-

nique can be used to train this neural network. Instead of using supervised learning techniques,

the RBF network weights WWW 1 and WWW 2 are trained using adaptive control approach as (2.10a) and

(2.10b) in this chapter. It will be proved in section 2.4 that the network weights are uniformly

ultimately bounded.

2.4 Stability Analysis

This section shows the uniform ultimate boundedness of both trajectory tracking error and the

neural network weights. This can be proved by showing the uniform ultimate boundedness of the

filtered error rrr and the weight difference W̃WW 1 =WWW ∗
1 −WWW 1, W̃WW 2 =WWW ∗

2 −WWW 2.

We introduce three assumptions. a) The domain of fff is compact and simply connected; b) the

domain of hhh is compact and simply connected; and c) fff and hhh are continuous functions. According

to [16, 17], the universal approximation property of radial basis function networks holds. This sug-

gests that the optimal approximation error should be bounded within the domains of the functions,

as
‖ǫǫǫ∗1‖ = ‖fff − fffn − κ1WWW

∗T
1 ΦΦΦ(XXX)‖ ≤ ǫN1

‖ǫǫǫ∗2‖ = ‖hhh− hhhn − κ2WWW
∗T
2 ΦΦΦ(XXX)‖ ≤ ǫN2

(2.15)
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where ǫǫǫ∗1 and ǫǫǫ∗2 are the optimal approximation errors, and ǫN1, ǫN2 are the upper bounds of ‖ǫǫǫ∗1‖
and ‖ǫǫǫ∗2‖. Furthermore, κ1WWW

∗
1 and κ2WWW

∗
2 can be chosen to be constant and bounded matrices, as

κ1‖WWW ∗
1‖F ≤ WB1

κ2‖WWW ∗
2‖F ≤ WB2

(2.16)

where ‖ · ‖F is the Frobenius norm; WB1 and WB2 are upper bounds of the norm of neural network

weights.

To analyze the stability, a Lyapunov function candidate can be chosen as

V = 1
2
rrrTMMM(qqq)rrr + 1

2
sssTAAAsss+ 1

2
tr{W̃WW T

1FFF
−1
1 W̃WW 1}

+1
2
tr{W̃WW T

2FFF
−1
2 W̃WW 2}

(2.17)

where MMM(qqq) is the inertia matrix, rrr, sss, and AAA are defined in section 2.2, FFF 1 and FFF 2 are defined

in the adaptation law (2.10a), (2.10b). Since the optimal neural network weights WWW ∗
1 and WWW ∗

2 are

constant matrices,

˙̃
WWW 1 = −ẆWW 1 (2.18a)

˙̃
WWW 2 = −ẆWW 2 (2.18b)

With the proposed controller (2.7a), (2.7b), the proposed adaptation law (2.10a), (2.10b), and

(2.18a), (2.18b), the time derivative of the Lyapunov function candidate is

V̇ = 1
2
rrrTṀMM(qqq)rrr + rrrTMMM(qqq)ṙrr + sssTAAAṡss

+tr{W̃WW T

1FFF
−1
1

˙̃
WWW 1}+ tr{W̃WW T

2FFF
−1
2

˙̃
WWW 2}

= 1
2
rrrT [ṀMM(qqq)− 2CCC(qqq, q̇qq)]rrr

−rrrTKKKrrrr + rrrTǫǫǫ∗1 + κ1rrr
TW̃WW

T

1ΦΦΦ(XXX)

−sssTKKKssss+ sssTǫǫǫ∗2 + κ2sss
TW̃WW

T

2ΦΦΦ(XXX)

−tr{κ1W̃WW
T

1ΦΦΦ(XXX)rrrT − γ1W̃WW
T

1WWW 1}
−tr{κ2W̃WW

T

2ΦΦΦ(XXX)rrrT − γ2W̃WW
T

2WWW 2}

Using the skew symmetric property of ṀMM(qqq) − 2CCC(qqq, q̇qq), the linearity of trace, and the property

tr(ABABAB) = tr(BABABA), the time derivative of V can be further manipulated as

V̇ = −rrrTKKKrrrr − sssTKKKssss+ rrrTǫǫǫ∗1 + sssTǫǫǫ∗2 − γ1tr{W̃WW
T

1 W̃WW 1}
+γ1tr{WWW ∗T

1 W̃WW 1} − γ2tr{W̃WW
T

2 W̃WW 2}+ γ2tr{WWW ∗T
2 W̃WW 2}

= −
[
rrr
sss

]T [
KKKr 0
0 KKKs

] [
rrr
sss

]

+

[
rrr
sss

]T [
ǫǫǫ∗1
ǫǫǫ∗2

]

− γ1tr{W̃WW
T

1 W̃WW 1}

+γ1tr{WWW ∗T
1 W̃WW 1} − γ2tr{W̃WW

T

2 W̃WW 2}+ γ2tr{WWW ∗T
2 W̃WW 2}
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Let WWW v
i = [www1T

i , · · · ,wwwUT
i ]T be the vectorized WWW i(i = 1, 2), where WWW T

i ∈ R
N×U , wwwj

i is the jth

column of WWW T
i . The time derivative of the V can be written as

V̇ =







rrr
sss

W̃WW
v

1

W̃WW
v

2







T 





ǫǫǫ∗1
ǫǫǫ∗2

γ1WWW
∗v
1

γ2WWW
∗v
2






−







rrr
sss

W̃WW
v

1

W̃WW
v

2







T 





KKKr 0 0 0
0 KKKs 0 0
0 0 γ1III 0
0 0 0 γ2III













rrr
sss

W̃WW
v

1

W̃WW
v

2







(2.19)

According to (2.15), the optimal neural network approximation error is bounded. According to

(2.16), WWW ∗v
i are bounded since ‖WWW i‖F =

√

WWW vT
i WWW v

i = ‖WWW v
i ‖(i = 1, 2). Then

∥
∥[ǫǫǫ∗T1 , ǫǫǫ∗T2 , γ1WWW

∗vT
1 , γ2WWW

∗vT
2 ]T

∥
∥

=
√

‖ǫǫǫ∗1‖2 + ‖ǫǫǫ∗2‖2 + γ2
1‖WWW ∗v

1 ‖2 + γ2
2‖WWW ∗v

2 ‖2
≤

√

ǫ2N1 + ǫ2N2 + γ2
1W

2
B1/κ

2
1 + γ2

2W
2
B2/κ

2
2

, bǫ

Let σl be

σl = min
‖xxx‖=1

xxxT







KKKr 0 0 0
0 KKKs 0 0
0 0 γ1III 0
0 0 0 γ2III






xxx > 0

Let ηηη , [rrrT , sssT , W̃WW
vT

1 , W̃WW
vT

2 ]T . Then from (2.19),

V̇ ≤ −σl

∥
∥ηηη

∥
∥
2
+ bǫ

∥
∥ηηη

∥
∥

=
∥
∥ηηη

∥
∥ (bǫ − σl

∥
∥ηηη

∥
∥)

Therefore

V̇ ≤ −δ‖ηηη‖ < 0, ∀‖ηηη‖ ≥ (bǫ + δ)/σl > 0 (2.20)

where δ > 0 can be any small number.

In addition, according to [16], MMM(qqq) is positive definite and bounded, thus the Lyapunov func-

tion candidate V can be bounded by quadratic functions:

0 < σ1‖ηηη‖2 ≤ V ≤ σ2‖ηηη‖2 (2.21)

where σ1 is a positive number smaller than one half of the minimum singular values of MMM(qqq), AAA,

FFF−1
1 , FFF−1

2 , and σ2 is a positive number larger than one half of the maximum singular values of the

four gain matrices.

Referring to [16] and [22], uniform ultimate boundedness of ηηη can be guaranteed by (2.20) and

(2.21). Thus there exists t0, such that ∀t ≥ t0, ‖ηηη‖ ≤
√

σ2

σ1

bǫ+δ
σl

. Since δ can be any small number,

this inequality is reduced to ‖ηηη‖ ≤
√

σ2

σ1

bǫ
σl

eventually. This upper bound of ‖ηηη‖ can be made

arbitrarily small by increasing KKKr, KKKs, κ1, κ2, and decreasing γ1, γ2. Thus the trajectory tracking
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error eee and neural network weight estimation error W̃WW 1, W̃WW 2 are uniformly ultimately bounded as

(i = 1, 2)

‖eee‖ ≤ ‖rrr‖
σmin(KKKp)

≤ ‖ηηη‖
σmin(KKKp)

≤ 1

σmin(KKKp)

√
σ2

σ1

bǫ
σl

(2.22a)

‖W̃WW i‖F ≤ ‖ηηη‖ ≤
√

σ2

σ1

bǫ
σl

(2.22b)

2.5 Simulation Results

Joint flexibility is non-negligible when industrial robot is performing high speed motion with heavy

payload. Such kind of motion is dangerous in laboratory environment without reliable perimeter

safeguarding. Moreover, the proposed controller requires direct sensing of the robot link motion,

which is not currently available in the Mechanical Systems Control laboratory at the University of

California, Berkeley. Thus the proposed approach is verified by simulation study. The proposed

controller is implemented to control a 6-axis robot in a high fidelity simulation. In the simulation,

rigid body dynamics of the robot, joint flexibility, motor dynamics, complex friction are all taken

into account. The reference trajectory in the simulation is designed to have high velocity and
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Reference Trajectory of 6-Axis Indirect Drive Robot
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Figure 2.3: Reference trajectory of 6-axis indirect drive robot
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acceleration. The reference trajectory is illustrated in Fig. 2.3, and the acceleration is shown in

Fig. 2.4.
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Figure 2.4: Acceleration of the reference trajectory in Cartesian space

A benchmark controller for industrial robot and the proposed controller are implemented in the

simulation. Nominal dynamical model are used in both controllers. The modelling error includes:

a) link inertia and center-of-gravity; b) friction; c) stiffness and damping of transmission units.

The benchmark controller consists of two parts: torque feedforward control part and feedback

control part. The feedforward part utilizes a nominal rigid body dynamics model of the robot to

compensate the nonlinear dynamics of the 6-axis robot. The feedback control part utilizes a well

tuned proportional−integral−derivative (PID) controller. The benchmark controller has the form

τττ = RRR−1
[
(MMMn(qqqd) + JJJmnRRR

2)q̈qqd +CCCn(qqqd, q̇qqd)q̇qqd +GGGn(qqqd)
]

+KKKP (RRRqqqd − θθθ) +KKKD(RRRq̇qqd − θ̇θθ) +KKKI

∫ t

0

(RRRqqqd − θθθ)

where the subscript n denotes the nominal model. KKKP , KKKD, and KKKI are the PID gains.

The proposed neuroadaptive controller is designed as (2.7a), (2.7b). Two iterations are required

for this approach. The first iteration is mainly used to collect data for designing center and width

of each Gaussian basis function in the RBF network. In the first iteration, only the nominal model

is used and there is no auxiliary model available, i.e., in the first iteration,

yyyd = fffn +KKKrrrr

τττ = hhhn + rrr +KKKssss

For the second iteration of the proposed controller, RBF network is used to build the auxiliary

model as (2.8). In the second iteration, both nominal model and auxiliary model are used in the



CHAPTER 2. NEUROADAPTIVE CONTROL FOR TRAJECTORY TRACKING OF

FLEXIBLE JOINT ROBOTS 18

v
1

-200 -100 0 100

v
2

0

50

100

150

200

250

Center Width

Figure 2.5: Low dimensional manifold from experiment data with designed center and width of

radial basis functions

Time [s]

0 0.5 1 1.5

T
ra

c
k
in

g
 E

rr
o

r 
[m

m
]

-2

0

2

4

6
X Direction Tracking Error

benchmark

1
st

 iter, proposed

2
nd

 iter, proposed

Figure 2.6: Cartesian space tracking error in X direction

controller,

yyyd = fffn + κ1WWW
T
1ΦΦΦ(XXX) +KKKrrrr

τττ = hhhn + κ2WWW
T
2ΦΦΦ(XXX) + rrr +KKKssss

The data from the first iteration is used in the initial training stage before running the second

iteration, i.e. determining the center and width parameters for the RBF network. 50 neurons are

used in this neural network. The 2-D projection of center and width of the radial basis functions
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Figure 2.7: Cartesian space tracking error in Y direction
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Figure 2.8: Cartesian space tracking error in Z direction

are shown in Fig. 2.5. The online training stage takes place during the second iteration. The neural

network weights are trained adaptively as designed in (2.10a) and (2.10b).

The trajectory tracking for the benchmark controller and the proposed controller are shown

in Fig. 2.6, 2.7, and 2.8. Due to modelling error, the trajectory tracking error is large for the

benchmark controller and the first iteration of the proposed controller. But the error is effectively

reduced in the second iteration.

The future work of this research is experimental validation. Before experimental study can

be performed, installation of safeguards for high speed experiments should be finished. The de-

velopment of direct sensing or accurate estimation of robot link motion is also necessary for the
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experimental study.

2.6 Chapter Summary

In this chapter, a neural network based adaptive backstepping control approach is proposed to im-

prove trajectory tracking accuracy of indirect drive robots. An artificial neural network is used

to approximate the difference of actual system and the physical model used for control. A two

stage training approach, which consists of an offline data-driven initial training stage and an online

training stage, was proposed to train the radial basis function network used in the controller. In the

initial training stage, a model based backstepping controller is first implemented for data collec-

tion. The center and width parameters of neurons are then designed based on the motion data. In

the second stage, the same trajectory is used and the weights of neural network are tuned online

to improve the controller performance. Compared to other learning control techniques such as it-

erative learning control, the approach proposed in this chapter requires only at most two iterations

for a specific trajectory, which is more efficient. It is proved that the trajectory tracking error and

the neural network weight estimation error are uniform ultimate bounded. The effectiveness of the

proposed controller is demonstrated using simulation on a six axis indirect drive robot. In order

to perform experimental validation, the future work of this research shall focus on the sensing of

robot link motions and safeguards installation for high speed robotic experiments.
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Chapter 3

Zero Time Delay Input Shaping for Smooth

Settling of Industrial Robots

3.1 Introduction

Industrial robots are widely used in manufacturing. In order to guarantee high product quality,

as well as high productivity, precision position control and rapid rest-to-rest motion are desired

in a variety of applications. However, serious overshoots and residual vibrations are widely and

frequently observed when industrial robots are conducting fast motions [23]. Flexibility introduced

by transmission units is the major cause of these unwanted motions [5, 12, 4]. In order to improve

trajectory tracking performance, the overshoot and the residual vibration must be minimized, and

the flexibility of industrial robots must be taken into account in the controller design .

To address these problems, several approaches are proposed, including singular perturbation

[24, 25, 26], optimal trajectory planning [27, 28, 29], input shaping [30, 31, 32, 33], nonlinear

feedback control [34, 35, 6, 36, 37], and iterative learning control [38, 9]. With a sophisticated

system model, optimal trajectory planning can be implemented to generate an optimal motion ref-

erence to minimize the overshoot and the residual vibration. If such kind of model is not available,

but the states related to the elastic vibration can be measured or observed, singular perturbation

and nonlinear feedback control may be implemented to accommodate unmodeled dynamics and

disturbances. Iterative learning control is another choice to address these problems by learning an

optimal feedforward control when robot performs the same task repeatedly.

Comparing to other approaches, input shaping, which is also known as command shaping, may

be implemented to effectively minimize the overshoot and the residual vibration a) without a so-

phisticated dynamical model; b) without directly measuring elastic vibrations for online feedback;

c) without requirement of repeated tasks. Input shaping was first proposed for smoothing or shap-

ing the inputs of linear second order systems. Later, modifications and extensions were introduced

to handle multiple modes and changing natural frequencies of the system [39]. The robustness of

input shaping was also considered to accommodate parameter uncertainty and disturbances [40].

As one of the easiest and successfully applied feedforward control techniques, input shaping
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has been implemented in a variety of applications ranging from nano-positioning devices to large

industrial cranes [41, 42, 43]. However, there are certain drawbacks of input shaping for industrial

robot applications. One drawback is the time delay introduced by input shaping. For industrial

robots performing rapid rest-to-rest motions, the time delay could slow down the entire task, which

is not desired in industrial applications. Another drawback is that input shaping may change the

original motion reference. In certain applications, like spot welding, an industrial robot is required

to move along a pre-specified trajectory to avoid colliding with work-pieces. If the shaped motion

command does not preserve the path of the original trajectory, there could be a collision between

the robot and the work-pieces. In order to compensate for the time delay, this chapter proposes

a zero time delay input shaping approach. The time delay introduced by input shaping can be

fully compensated. Path constraint is also considered in the design of the proposed input shaping

approach. Experimental results on a 6-axis industrial robot have verified the effectiveness of the

proposed approach.

3.2 Conventional Input Shaping

A review of conventional input shaping techniques is provided in this section[40, 32, 33]. Input

shaping is implemented by convolving a sequence of impulses with the original system input. Each

impulse can excite an oscillatory response. When the amplitudes and time delays are well tuned

such that the oscillatory responses cancel each other, there will be no residual vibration. This

convolutional approach is equivalent to separating the input into different parts with time delay,

and then getting these parts together, as illustrated in Fig. 3.1 [33].

Figure 3.1: Time-delay blocks representing input shaping

The idea of input shaping was first introduced for linear second order systems. Consider a

linear second order system with the transfer function G,

G(s) =
Kω2

0

s2 + 2Dω0s+ ω2
0

(3.1)
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where ω0 is the natural frequency, D is the damping ratio, and K is the static gain. The unit impulse

response y(t) of this linear second order system (3.1) is

y(t) = K
ω0√

1−D2
e−ω0Dt sin(ωdt) (3.2)

where ωd = ω0

√
1−D2 is the damped natural frequency.

Let fIS be a sequence of n impulses

fIS(t) =
n∑

i=1

Aiδ(t− ti) (3.3)

where Ai is the amplitude of the ith impulse, ti is the time delay of the ith impulse. Typically, it is

assumed that
ti+1 > ti
Ai > 0

(3.4)

Convolving this sequence with the original unit impulse, the resulting response YIS(t) for t ≥
tn is

YIS(t) =
∑n

i=1 Aiy(t− ti)

= K
ω0√

1−D2
e−ω0Dt [A(ω0, D) sin(ωdt)

−B(ω0, D) cos(ωdt)]

= K
ω0√

1−D2
e−ω0DtI(ω0, D) sin(ωdt+ φ)

(3.5)

where
I(ω0, D) =

√

A(ω0, D)2 +B(ω0, D)2

A(ω0, D) =
∑n

i=1 Aie
ω0Dti cos(ωdti)

B(ω0, D) =
∑n

i=1 Aie
ω0Dti sin(ωdti)

cos(φ) =
A(ω0, D)

I(ω0, D)

sin(φ) = −B(ω0, D)

I(ω0, D)

(3.6)

The amplitude ratio between the shaped impulse response (3.5) and unshaped impulse response

(3.2) after tn is typically used as the performance index of input shaping[40]. This ratio is also

known as percentage of residual vibration, which is defined as

V (ω0, D) := e−ω0Dtn
√

A(ω0, D)2 +B(ω0, D)2

= e−ω0DtnI(ω0, D)
(3.7)

The term e−ω0Dtn implies that a time delay tn is introduced in the shaped response. This ratio

reflects the effect of the residual vibration suppression. The design objective of input shaping is to

make V ≈ 0.
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For a given system, V depends only on the amplitudes and time delays of the sequence of

impulses fIS . Therefore the design of input shaping is equivalent to the design of the sequence

fIS , which is also known as an input shaper.

One design of the input shaper is called zero vibration (ZV) shaper. There are only two im-

pulses in a ZV shaper. The design of a ZV shaper involves solving a set of equations with con-

straints (3.4)
A(ω0, D) = 0
B(ω0, D) = 0
∑2

i=1 Ai = 1
(3.8)

where the first two equations are derived from that the percentage of residual vibration V = 0,

and the third equation is derived from the requirement that the input shaper has an unity static gain

for avoiding overshoot. The design of a ZV shaper can be chosen as the solution of (3.8) with the

minimum t2. The residual vibrations caused by the two impulses cancel out each other after the

second impulse is applied, as illustrated in Fig (3.2) [33].
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Figure 3.2: Vibration from two impulses cancel each other

Theoretically, the ZV shaper could completely eliminate the residual vibration since V = 0 for

accurately known ω0, D. However, the ZV shaper can be sensitive to modeling errors in practice.

Thus robust design of input shaping was considered. Zero vibration and derivative (ZVD) shaper,

extra-insensitivity (EI) shaper, and specified insensitivity (SI) shaper are commonly used robust

input shapers [44]. Only the specified insensitivity shaper is reviewed here since it provides the

most robust performance in these approaches.

The design of SI shaper can be stated as an optimization problem. The objective is to minimize

the total time delay of the input shaping. On one hand, the constraints of this optimization problem
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come from (3.4). On the other hand, the constrains of this optimization problem come from the

requirement of SI that the percentage of residual vibration is below a given level within a range

of frequencies. It is difficult to derive the analytical form of the percentage of residual vibration

constraint. Instead, an approximate approach called frequency sampling approach is typically

implemented in the design of SI shaper.

In the frequency sampling approach, it is assumed that the natural frequency satisfies ω0 ∈
[ωinf , ωsup], and the resulting percentage of residual vibration is required to be below a given level

V0. A set of frequencies are sampled from the frequency range as {ω1
0, ω

2
0, · · · , ωm

0 }, where m is

the number of samples, and ωi
0 is the ith frequency sample. Suppose n impulses are used in the

shaper, the design of SI shaper can be formulated as

min
A1,··· ,An,t1,··· ,tn

tn

s.t. ti+1 > ti, i = 1, · · · , n
Ai > 0, i = 1, · · · , n
∑n

i=1 Ai = 1

V (ωj
0, D) ≤ V0, j = 1, · · · ,m

(3.9)

When the sample set is large enough to cover the frequency range, the frequency range [ωinf , ωsup]
can be well approximated by the samples. In actual application, as long as the estimated natural

frequency is in the frequency range, SI shaper guarantees good residual vibration suppression per-

formance. The cost of such robust input shaper is longer time delay. Usually more than two

impulses should be implemented, and the overall time delay is longer than ZV shaper.

3.3 Zero Time Delay Input Shaping

The proposed zero time delay input shaping is introduced in this section. A path constraint issue

of implementing input shaping on industrial robot is firstly addressed. The zero time delay input

shaping is then developed based on the path constraint design.

Input Shaping with Path Constraint

In many works, input shaping is applied on single-input single-output systems. In this chapter,

input shaping is implemented on a 6-axis industrial robot, which is a multiple-input multiple-output

system. One natural choice is to implement input shaping on each axis independently. However,

as mentioned in the introduction, this may change the original task space motion reference, which

could result in undesired behaviour of the robot.

For the motion command given in Cartesian space, another intuitive approach is to apply in-

put shaping to the Cartesian space motion command of industrial robots. The corresponding joint

space motion command can be obtained through the solution of inverse kinematics problem. How-

ever, input shaping is “smoothing” the motion command in each direction of the Cartesian space,

thus the shaped motion path can still be different from the original motion path.
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In this chapter, a third approach is developed. Let the Cartesian space motion command be

{x(t), y(t), z(t)}, where the motion time t ∈ [0, T ]. The motion command can be parametrized

with the normalized arc length s, defined as

s(t) =

∫ t

τ=0

√

ẋ(τ)2 + ẏ(τ)2 + ż(τ)2dτ
∫ T

τ=0

√

ẋ(τ)2 + ẏ(τ)2 + ż(τ)2dτ
(3.10)

where s ∈ [0, 1]. The motion command can be parametrized as {x(s), y(s), z(s)}. Input shaping

is then implemented on the normalized arc length s(t). The corresponding joint space motion

command is then obtained through the solution of an inverse kinematics problem.
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Figure 3.3: Comparison of input shaping on joint space motion command, Cartesian space motion

command, and the proposed approach

A comparison of input shaping on joint space motion command, Cartesian space motion com-

mand, proposed approach, and the unshaped motion command is given in Fig.3.3. As shown in the

figure, directly implementing input shaping to joint space motion command results in a large devi-

ation. Implementing input shaping in Cartesian space makes the shaped motion command closer

to the unshaped motion command, but the deviation still exists. The proposed approach preserves

the path of the unshaped motion command.
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Zero Time Delay Shaping

In order to preserve the path of unshaped motion command, the proposed approach in 3.3 is imple-

mented. The input to the system can be chosen as the normalized arc length s(t), t ∈ [0, T ]. Input

shaping is then implemented on the normalized arc length. According to the existing literature,

time delay will inevitably be introduced by traditional input shaping. If robustness is considered

in the design, the time delay could be even longer. In order to eliminate the undesired time delay,

and keep the robust design of input shaping at the same time, the following design procedure is

proposed:

1. Design an input shaping using any approach introduced in the literature. The input shaper

fIS =
∑n

i=1 Aiδ(t− ti) is obtained. The time delay introduced by the input shaping is tn.

2. Accelerate the unshaped motion command s(t) to sacc(τ), where t ∈ [0, T ], τ ∈ [0, T − tacc],
and tn < tacc < T .

3. Apply the input shaping designed in the first step to the accelerated motion command s(τ).
The resulting shaped input is SIS = fIS ∗ sacc.

For the second step, let a time scale parameter be k = T−tacc
T

< 1, the accelerated normalized

arc length is

sacc(τ) = sacc(kt) = s(t), t ∈ [0, T ] (3.11)

Suppose there are n impulses in the input shaper (3.3). The resulting shaped motion command

is

SIS(t
′) =

n∑

i=1

Ais
′
acc(t

′ − ti) · u(t′ − ti) (3.12)

where the time variable t′ ∈ [0, T − tacc + tn]; s
′
acc(t

′) is an extension of sacc such that

s′acc(t
′) =

{

sacc(t
′), t′ ∈ [0, T − tacc]

sacc(T − tacc), t′ ≥ T − tacc

and u(t′) is the Heaviside step function that

u(t′) =

{

0, t′ < 0

1, t′ ≥ 0

Comparing to the unshaped motion command s(t), t ∈ [0, T ], the shaped motion command

ends at T − tacc + tn. Since tacc > tn, the end time of the shaped motion command satisfies

T − tacc + tn < T .

The proposed input shaping approach is sketched in Fig.3.4. As shown in the figure, the un-

shaped motion command is first accelerated. After input shaping is applied, time delay is intro-

duced to the accelerated motion command, but there is no time delay between the unshaped motion

command and the shaped motion command.
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The velocity or changing rate of the motion commands are compared in Fig.3.5. As shown

in the figure, it is clear that the shaped motion command ends earlier than the unshaped motion

command, which means that there is no time delay when applying this approach.

3.4 Implementation and Experimental Results

The proposed approach is implemented on a 6-axis industrial robot shown in Fig.3.6. The robot

is performing a rapid rest-to-rest motion (e.g., a typical spot welding motion). The motion of the

endeffector of the robot is measured by a laser tracker. An optical reflector of the laser tracker is

attached to the desired tool center point of the robot. The Cartesian space motion command and

the position measurement from the laser tracker is shown in Fig.3.7. As shown in the figure, there

exists obvious overshoot and residual vibration.
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Figure 3.6: 6-axis industrial robot

Frequency and Damping Ratio Estimation

The natural frequency and damping ratio are required for the design of input shaping. The motion

data measured by the laser tracker is used to estimate these parameters. The residual vibration

of the robot is considered to be caused by the flexibility at each joint of the robot. It is assumed

that the residual vibration of each joint can be fitted into a free vibration of a mass-spring-damper

system, which is a linear second order system. No angular velocity in Cartesian space is measured

in the experiment, thus the joint space velocity is assumed to be calculated using

q̇qq = JJJ(qqq)−1

[
ṗpp
000

]

(3.13)

where qqq = [q1, · · · , q6]T is the set of joint positions of the robot; JJJ(qqq) is the Jacobian matrix of

the robot; ppp = [x, y, z]T is measured Cartesian space position of the robot, in which x, y, z are the
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Figure 3.7: Cartesian space motion command and position measurements

Cartesian space position in x, y, z direction. The calculated joint space velocities during the one of

the residual vibrations in the entire motion are shown in Fig.3.8.
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Figure 3.8: Estimated joint velocity during one of the residual vibrations

Let the time domain response of the free vibration of the linear second order system (3.1) be

η(t):
η(t) = e−Dω0t (C1 cos(ωdt) + C2 sin(ωdt)) (3.14)
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where
C1 = η(0)

C2 = η̇(0)+Dω0η(0)
ωd

(3.15)

The velocity of the free vibration of a linear second order system (3.1) is

η̇(t) = −Dω0e
−Dω0t (C1 cos(ωdt) + C2 sin(ωdt))

ωde
−Dω0t (C2 cos(ωdt)− C1 sin(ωdt))

(3.16)

The frequency and damping parameters of each joint is first roughly estimated using fast

Fourier transformation (FFT). These parameters are further tuned to fit (3.16) using least squares

method. The fitting result is illustrated by one of the results shown in Fig.3.9.
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Figure 3.9: Estimated joint velocity and fitted free vibration

The estimated frequency and damping ratio parameters of each joint are shown in Table.3.1.

(where Jnt is short for Joint)

Table 3.1: Estimated frequency and damping ratio

Parameter Jnt 1 Jnt 2 Jnt 3 Jnt 4 Jnt 5 Jnt 6

Frequency [Hz] 3.7 4.7 5.9 4.3 4.4 4.4

Damping Ratio 0.11 0.12 0.07 0.14 0.23 0.14

The natural frequencies are around 4 Hz. The robot is performing rapid rest-to-rest motion

within its workspace. The natural frequencies at different positions may be different. The same

estimation is repeated at different positions, and the distribution of the mean natural frequencies of

all the joints is shown in Fig.3.10. As shown in the figure, the frequencies are very close.
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Figure 3.10: Distribution of natural frequencies at different positions

Robust Design

In practical application, the design of input shaping must consider robustness since there will be

estimation error of the natural frequency and damping ratio parameters of any practical system.

Furthermore, only one pair of frequency and damping ratio parameters can be used when the

proposed approach is implemented on an industrial robot. According to the parameter estimation

results in 3.4, the frequency and damping ratio parameters are different a) for different joint; b) at

different positions. In order to avoid poor performance due to a bad choice of parameters, robust

design should be considered.

The specified insensitivity design of input shaping is implemented in the experiment. Three

impulses are included in the input shaper. The natural frequency is chosen to be 4.5 Hz in the final

design, and the damping ratio is chosen to be 0.05. The constraint of the SI shaper design is that

the residual vibration level should not exceed 15% of the unshaped motion for the actual natural

frequency 3.6Hz < ω0 < 5.4Hz, which is a ±20% range. The parameters of the input shaper are:

A1 = 0.3369, A2 = 0.4069, A3 = 0.2542, t1 = 0, t2 = 0.0891, and t3 = 0.1766. The SI shaper

design is compared with the standard ZV shaper design in Fig.3.11. The x and y axis indicates

the distribution of frequency and damping ratio parameters, and the z axis indicates the level of

residual vibration. As shown in the figure, the vibration suppression performance is not sensitive

to damping ratio. Comparing to ZV shaper, SI shaper is less sensitive to the change of frequency.
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Experimental Result

The proposed input shaping is implemented on the 6-axis industrial robot. The original motion

command is accelerated by tacc = 0.2. The input shaping is performed on normalized arc length

as shown in Fig.3.4 in section 3.3. The Cartesian space motion command, unshaped motion com-

mand, and shaped motion command are compared in Fig.3.12. Comparing to unshaped motion,
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Figure 3.12: Comparison of motion command, unshaped motion, and shaped motion
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input shaping has effectively reduced the overshoot in the z direction. This result can be observed

more clearly in Fig.3.13. As shown in the figure, the overshoot has been reduced by 1.7 mm, which

is about one third of the unshaped motion.
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Figure 3.13: Effect of the the proposed approach in Z direction

From a practical point of view, the robot is considered to be settled when the residual vibration

is less than 1mm and the robot can start its work (e.g., spot welding). Since the amplitude of the

residual vibration observed is very small, this level of vibration is tolerable for industrial robot

applications. In this case the reduction of the overshoot becomes important as it can help avoid the

collision due to path deviation. The effect of input shaping in the y direction is shown more clearly

in Fig.3.14. While not included in the figure, the conventional SI shaper would have introduced

a delayed response with a delay time of about 0.2 sec. The proposed method does not introduce

such a delay.
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Figure 3.14: Effect of the proposed approach in Y direction

3.5 Chapter Summary

In this chapter, a zero time delay input shaping approach was proposed for smooth settling of an

industrial robot. The proposed approach could fully compensate for the time delay introduced

by the conventional input shaping techniques. Another feature of the proposed approach was the

ability to preserve the path of the unshaped motion command, which made it practical when applied

to multi axis industrial robots. The proposed approach was implemented on a 6-axis industrial

robot. The experimental results showed that the proposed approach could effectively improve the

performance of the robot by reducing the overshoot and no time delay was introduced.



36

Chapter 4

Modified Zero Time Delay Input Shaping

for Industrial Robot with Flexible

End-Effector

4.1 Introduction

Fast and precise motion control is required in a variety of industrial applications, such as spot

welding using industrial robot shown in Fig.4.1. Due to the flexibility in the drive train and end-

effector, nonnegligible residual vibration will appear when the robot is performing a motion at

high speed and/or high acceleration. Residual vibration is undesired because a) large vibration

may cause collision between the robot and the workpiece, b) a robot can not proceed to the next

task until the residual vibration settles, which reduces the production rate.

Figure 4.1: Industrial robots for spot welding
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In order to suppress the residual vibrations without modifying the mechanical structure, ad-

vanced control techniques should be investigated. Input shaping (IS) [33, 31] is one of the most

promising techniques for vibration suppression. Though input shaping is effective, easy to use,

and robust to modelling errors [40], the time delay introduced is not desired in applications with

stringent requirements on operation times.

In order to overcome the time delay problem, techniques including predictive approach [45],

smith predictor [46], equal length shaper [47] and zero time delay input shaping [48] have been

proposed. Some of these techniques such as predictive approach or smith predictor can only par-

tially eliminate the time delay. Equal length shaper and zero time delay input shaping, which utilize

similar ideas, can achieve zero time delay by accelerating the original input. However, the shaped

motion may be non-smooth.The non-smooth motion is undesired since it causes more wear and

decrease the robot service life [49, 50].

In this chapter, a modified zero time delay input shaping approach is proposed to address the

non-smoothness issue. The proposed approach is developed based on the zero time delay input

shaping approach, and thus no time delay is introduced. Comparing to the equal length shaper or

zero time delay input shaping, the proposed modification generates more smooth motion.

4.2 Review of Input Shaping

This section reviews input shaping and zero time delay input shaping. In order to reveal the con-

nection between these two approaches, a convolution representation of input shaping is introduced.

Input Shaping

The idea of input shaping is: separating the input into different parts with time delay, such that the

residual vibration caused by each parts would cancel each other. The structure of input shaping is

represented in Fig. 4.2, where the ’IS’ block represents input shaping. This block divides the input

Figure 4.2: Input shaping

u(t) into several parts with different time delay as illustrated in Chapter 3.

Taking second order linear system as an example. Let the transfer function be

G(s) =
Kω2

0

s2 + 2Dω0s+ ω2
0

(4.1)

where ω0 is the natural frequency, D is the damping ratio, and K is the static gain. Let the input

be an unit impulse signal, as uδ(t) = δ(t). Then the output of this system, i.e. the unit impulse
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response is:

h(t) = K
ω0√

1−D2
e−Dω0t sin(

√
1−D2 ω0t) (4.2)

Refer to [31], let k = exp
(

−Dπ√
1−D2

)

, A1 = 1
1+k

, A2 = k
1+k

, ∆2 = π
ω0

√
1−D2

, then the shaped

input uIS(t) = A1δ(t) + A2δ(t −∆2) can remove residual vibration after ∆2 since the responses

of A1δ(t) and A2δ(t−∆2) are cancelling out each other after ∆2.

From the aspect of convolution, uIS
δ (t) = (uδ ∗ IS)(t), where ∗ is the convolution operator and

IS(t) is a sequence of impulses, known as input shaper:

IS(t) =
n∑

i=1

Aiδ(t−∆i) (4.3)

It turns out that for any input with finite length, such kind of input shaper is able to effectively

suppress residual vibration after delaying the original input by ∆n, which is the time delay of the

last impulse. If the length of input u(t) is T , then the length after input shaping is T +∆n. When

more impulses are added, the input shaping is more robust to modelling error, but the time delay is

longer [40].

Zero Time Delay Input Shaping

The structure of zero time delay input shaping is summarized as shown in Fig. 4.3. Comparing to

the conventional input shaping, an ’accelerate’ block is used to shorten the length of the original

control input. This block makes it possible to totally eliminate the time delay.

Figure 4.3: Zero time delay input shaping

Let T be the length of the input u(t), and ∆n be the time delay introduced by input shaping.

Let a time scale parameter be α = T−∆n

T
< 1, then the accelerated input is

uAcc(t) = u

(
t

α

)

, t ∈ [0, αT ] (4.4)

The length of the accelerated input is αT . Input shaping is applied to the accelerated input

uAcc(t), and time delay ∆n is added to the accelerated input. The length of the shaped input

uIS
Acc(t) is T since

αT +∆n =
T −∆n

T
T +∆n = T (4.5)

As a result, there is no time delay compared to the original input u(t).
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Convolution Representation of Input Shaping

Let h(t) be the impulse response of a linear system. Then the output of input u(t) is

y(t) =

∫ t

0

h(τ)u(t− τ)dτ = (h ∗ u)(t) (4.6)

For conventional input shaping, the output yIS(t) is

yIS(t) = u(t) ∗ IS(t) ∗ h(t) = u(t) ∗ (IS ∗ h) (t) := u(t) ∗ hIS(t) (4.7)

According to Eqn. (4.7), input shaping can be interpreted as modifying the impulse response of

dynamical system. This modification adjust impulse response from h(t) to hIS(t) = (IS ∗ h)(t).
The residual vibration can be suppressed for any input as long as the impulse response is hIS(t).

For zero time delay input shaping, the input has been accelerated to uAcc(t), and the output

yISAcc(t) is

yISAcc(t) = uAcc(t) ∗ IS(t) ∗ h(t) = uAcc(t) ∗ hIS(t) (4.8)

which verifies the point that the residual vibration can be suppressed if hIS(t) is used.

4.3 Modified Zero Time Delay Input Shaping

Comparing to the conventional input shaping, zero time delay input shaping totally eliminates

the time delay. However, this approach shows drawbacks in some applications because of the

accelerated nature of the input signal. Thus a modification of zero time delay input shaping is

developed in this section.

Drawback of Zero Time Delay Input Shaping

A feature of zero time delay input shaping is to accelerate the original input u(t). When the length

of the time delay and the control input are close, the accelerating action results in non-smooth

motion as shown in Fig. 4.4.

In Fig. 4.4, the length of u(t) is close to ∆n, thus the time scale α is close to 0 and a severe

accelerating action is performing on the input u(t). After input shaping, the accelerated input

decomposes, resulting in several peaks in the shaped input. The shaped input is less smooth com-

paring to the original input. If the non-smooth input is used, the changing rate of input could

exceed the actuator’s limit and cause more wear in the actuator’s mechanical parts.

Modified Zero Time Delay Input Shaping

In order to overcome the non-smoothness issue, a modified zero time delay input shaping is pro-

posed. The structure of the proposed approach is summarized in Fig. 4.5.
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Figure 4.5: Modified zero time delay input shaping

Comparing to zero time delay input shaping, the modification here is a compensator block. The

function of this block is to reduce time delay required for input shaping, thus no severe accelerating

action is required for the input u(t).
This section presents the design of this compensator and corresponding input shaper ISf from

the viewpoint of convolution product.

Design of Modified Zero Time Delay Input Shaping In zero time delay input shaping, u(t)
is accelerated by time scale α, but hIS(t) = (IS ∗ h)(t) is not scaled at all. In this chapter, we

consider the idea that accelerating u(t) and hIS(t) by the same time scale α′, such that

uAcc
α′ (t) = u

(
t

α′

)

(4.9)

and hIS
α′ (t) = hIS

(
t
α′

)
. According to the time scaling property of convolution [51], letting yISα′ (t) =

1
α′
hIS
α′ (t) ∗ uAcc

α′ (t), ∀t ∈ [0, α′T ]

yISα′ (t) =
1

α′

∫ t

0

u
( τ

α′

)

hIS

(
t

α′ −
τ

α′

)

dτ = yIS
(

t

α′

)

(4.10)
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Let T be the length of input, and ∆n be the time delay of input shaping. In order to guarantee

zero time delay, α′(T +∆n) = T should be satisfied. Thus

α′ =
T

T +∆n

>
T −∆n

T
= α (4.11)

where α is the time scale of zero time delay input shaping from Eqn. (4.5). Since α′ is larger, the

accelerating action is less severe than that of the zero time delay input shaping. The function of

the compensator and corresponding input shaper is to adjust hIS(t) to 1
α′
hIS
α′ (t).

Compensator The design of the compensator then became a problem to find a signal f(t),
such that the impulse response h(t) can be accelerated and scaled to 1

α′
hα′(t),

hα′(t) = f(t) ∗ h(t) = 1

α′h

(
t

α′

)

(4.12)

The compensator can be designed in either frequency domain or time domain, as long as the

impulse response of the designed filter is f(t). A frequency domain design example will be given

later.

Input Shaper The input shaper can be designed as:

ISf (t) =
n∑

i=1

Aiδ(t− α′∆i) (4.13)

where Ai and ∆i are the same as in Eqn. (4.3).

Since

hIS(t) = (IS ∗ h)(t) =
n∑

i=1

Aih(t−∆i), (4.14)

(hα′ ∗ ISf ) (t) =
n∑

i=1

Ai

h
(

t
α′

−∆i

)

α′ =
hIS

(
t
α′

)

α′ =
1

α′h
IS
α′ (t) (4.15)

Thus the designed input shaper and compensator can adjust hIS(t) to 1
α′
hIS
α′ (t).

Example on a Second Order Linear System Suppose the plant is a second order linear system

with transfer function G in Eqn. (4.1). The impulse response of the system is shown in Eqn. (4.2).

The transfer function of another system which has impulse response 1
α′
h
(

t
α′

)
is:

GAcc(s) =
Kω2

0

(α′s)2 + 2α′Dω0s+ ω2
0

(4.16)

Then the transfer function F (s) of the compensator can be designed as

F (s) =
GAcc(s)

G(s)
=

s2 + 2Dω0s+ ω2
0

(α′s)2 + 2α′Dω0s+ ω2
0

(4.17)
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which is causal. According to the property of Laplace transformation [52],

GAcc(s) = F (s)G(s) ⇒ 1

α′h

(
t

α′

)

= f(t) ∗ h(t) (4.18)

Thus the impulse response of this compensator f(t) agrees with Eqn. (4.12).

The input shaper can be firstly designed for G(s) using any input shaping design technique.

Then the input shaper for modified zero time delay input shaping can be designed as Eqn. (4.13),

i.e. scale time delay for each impulse.

4.4 Experimental Result

The proposed approach has been tested on a FANUC M-16iB industrial robot with an experimental

flexible payload as shown in Fig. 4.6.

Figure 4.6: Robot with flexible payload

The flexible payload is designed to have a natural frequency similar to the one of a large end-

effector of industrial robot. A wireless accelerometer is attached at the end tip of the payload

for monitoring residual vibration. In the experiment, the robot is performing a rapid rest-to-rest

motion along X direction in the workspace. The motion path is illustrated in Fig. 4.7. The position,

velocity, and acceleration reference along X direction are shown in Fig. 4.9.

From the acceleration measured by the wireless accelerometer, the flexible payload can be ap-

proximately identified as a second order linear system. Figure 4.8 shows the measured acceleration

and the estimated acceleration from the identified model. The identified natural frequency of the

system is 2.55Hz, and the damping ratio is 0.04.
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Figure 4.9: Position, velocity, and acceleration reference along X direction

The measured payload tip acceleration of unshaped motion is shown in Fig. 4.10. The tip

acceleration of residual vibration reaches as large as about 6 m/s2. Moreover, the residual vibration

lasts more than one seconds, which is longer than the duration of the desired motion.

Input shaping, zero time delay input shaping, and modified zero time delay input shaping are

tested in the experiment. All of the three approaches use Zero Vibration and Derivative (ZVD)

shaper as IS(t) for robustness consideration [31]. Figure 4.11 shows the measured payload tip

acceleration for the three approaches. The desired acceleration is also shown as reference.

As shown in Fig. 4.11, the residual vibration can be effectively suppressed by all of the ap-

proaches. The proposed approach and zero time delay input shaping introduce no time delay while

input shaping introduces a time delay which adds about 40% time to the original motion. The

proposed approach shows smoother acceleration than zero time delay input shaping.

In the experiment, α′ = 0.6516, and α = 0.4653. Such time scaling factors mean that in zero

time delay input shaping, the motion reference has been shortened to about 47% of the original
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Figure 4.10: Experiment result of unshaped response

length, while it is only to 65% for the proposed approach. Since the modified zero time delay input
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Figure 4.11: Experiment results of three approaches

shaping avoids severe accelerating action, a smoother robot motion can be used to suppress the

vibration. Figure 4.12 plots the velocity reference in X direction of the proposed approach and

zero time delay input shaping to show the smoothness comparison result more clearly.
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Figure 4.12: Comparison of velocity reference in X direction

4.5 Chapter Summary

In this chapter, a modified zero time delay input shaping approach has been proposed for resid-

ual vibration suppression of industrial robot with flexibility. Comparing to existing input shaping

techniques, the proposed approach can fully compensate the time delay introduced by conventional

input shaping. Furthermore, the proposed approach produces smoother motion than existing tech-

niques for avoiding time delay. Experimental results have been presented to show that the proposed

approach outperforms conventional input shaping and zero time delay input shaping in terms of

time delay and motion smoothness.
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Part II

Intelligent Planning
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Chapter 5

Robot Motion Planning Based on Efficient

Trajectory Optimization

5.1 Introduction

Motion planning problem is important in robotic applications. A motion planning algorithm gen-

erates a continuous motion that connects the initial configuration and target configuration, while

avoiding collision with known obstacles. Though algorithmic motion planning has been studied

for more than three decades, it is still challenging in industrial robot area. The difficulties come

from the complicated geometric structure and highly nonlinear dynamical model of robots. To

address these difficulties, the so-called path-velocity decomposition [53] is implemented in most

existing solutions. The path-velocity decomposition separated into two subtopics in most existing

solutions: path planning and trajectory planning. The path planning problem generates collision

free geometric path in configuration, which focuses the complicated geometric model issue. The

trajectory planning generates time optimal velocity and acceleration profile along the path, which

focuses on the kinodynamic constraints (velocity, acceleration, torque/force bounds). Path plan-

ning can be considered as a mature topic since there is a rich collection of path planning algorithms

[54, 55]. However, motion planning under kinodynamic constraints which involves complicated

robot dynamics still presents a major challenge [56, 57]. Furthermore, though optimality can be

achieved for both path planning and trajectory planning, the path-velocity decomposition can still

lead to sub-optimal solution for the overall motion planning task. This chapter proposes to address

these challenges by modeling motion planning as a general nonlinear optimal control problem.

An efficient numerical method for trajectory optimization is then proposed to solve the underlying

optimal control problem.

This chapter is organized as follows: section 5.2 presents optimal control formulation for robot

motion planning problems, section 5.3 presents an efficient numerical method for trajectory opti-

mization, section 5.4 presents working examples of the proposed approach, and section 5.5 sum-

marizes this chapter.
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5.2 Problem Formulation

Formulation of General Optimal Control Problem

The general optimal control problem is posed formally as follows [58]. Determine the state xxx(t) ∈
R

n, the control uuu(t) ∈ R
m, the vector of static parameters ppp ∈ R

q, the initial time t0 ∈ R, and the

terminal time tf ∈ R that optimizes the performance index (also known as the cost function)

J = Φ[xxx(t0), t0,xxx(tf ), tf ;ppp] +

∫ tf

t0

L[xxx(t),uuu(t), t;ppp]dt (5.1)

subject to the dynamic constraints

ẋxx(t) = fff [xxx(t),uuu(t), t;ppp] (5.2)

the path constraints (including bounds of these variables)

CCCmin ≤ CCC[xxx(t),uuu(t), t;ppp] ≤ CCCmax (5.3)

and the boundary conditions

φφφmin ≤ φφφ[xxx(t0), t0,xxx(tf ), tf ;ppp] ≤ φφφmax (5.4)

The state, control, and static parameter can each be written in component form

xxx(t) =






x1(t)
...

xn(t)




 ;uuu(t) =






u1(t)
...

um(t)




 ;ppp =






p1
...

pq




 (5.5)

The term Φ is called endpoint cost or terminal cost, and L is called running cost or Lagrangian

[59].

In most robotic applications, parameters ppp, initial time t0, and initial state xxx(t0) are pre-defined

and thus will be omitted in this chapter. The objective is to find state xxx(t) and control uuu(t) as

functions of independent variable t ∈ [t0, tf ] that are feasible and optimizing the performance

index. Since functional space is far more complex than the space of real numbers, solving optimal

control problems is more challenging than optimization problems of real numbers.

Formulation of Motion Planning as Optimal Control Problem

The robot motion planning task can be formulated as an optimal control problem by defining the

cost function, dynamic constraints, path constraints, and boundary conditions. In industrial robot

motion planning, time-optimality is the ultimate goal under physical constraints including collision

avoidance, velocity bounds, acceleration bounds, torque/force bounds, or even jerk bounds and

torque-rate bounds. The state trajectory xxx(t) and control trajectory uuu(t) must satisfy the constraints
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of robot dynamics. Following most robot motion planning literatures, this chapter only includes

rigid body dynamics as it is already challenging enough. The state of a robot motion planning

problem can be chosen as joint position and velocity, and the control can be chosen as actuator

torque (for articulated robot with n joints):

xxx(t) =












q1(t)
...

qn(t)
q̇1(t)

...

q̇n(t)












;uuu(t) =






τ1(t)
...

τn(t)




 ; (5.6)

The cost function of a robot motion planning problem can be formulated as:

J = tf +

∫ tf

t0

L[xxx(t),uuu(t), t]dt (5.7)

where the terminal cost Φ = tf . The running cost can be chosen in regards to the problem as an

optional regulation term that penalize large effort or motion.

The dynamic constraints is the robot dynamics. The equation of motion can be derived using

Lagrangian’s equations or Newton-Euler approach.

MMM(qqq(t))q̈qq(t) +CCC(qqq(t), q̇qq(t)) ˙qqq(t) +GGG(qqq(t)) + fff fric(t) = τττ(t)

The equation of motion can be formulated into a state-space form to fit Equation (5.2).

d

dt

[
qqq(t)
q̇qq(t)

]

=

[
q̇qq(t)

MMM(qqq(t))−1
[

τττ(t)−CCC(qqq(t), q̇qq(t)) ˙qqq(t)−GGG(qqq(t))− fff fric(t)
]

]

(5.8)

A set of path constraints can be formulated to accommodate various physical limitations of a

robot. Typical path constraints include but are not limited to

Joint position bounds: qmin
i (t) ≤ qi(t) ≤ qmax

i (t), i = 1, · · · , n (5.9a)

Joint velocity bounds: q̇min
i (t) ≤ q̇i(t) ≤ q̇max

i (t), i = 1, · · · , n (5.9b)

Joint acceleration bounds: q̈min
i (t) ≤ q̈i(t) ≤ q̈max

i (t), i = 1, · · · , n (5.9c)

Joint jerk bounds:
...
qmin
i (t) ≤ ...

q i(t) ≤
...
qmax
i (t), i = 1, · · · , n (5.9d)

Joint torque bounds: τmin
i (t) ≤ τi(t) ≤ τmax

i (t), i = 1, · · · , n (5.9e)

Joint torque rate bounds: τ̇min
i (t) ≤ τ̇i(t) ≤ τ̇max

i (t), i = 1, · · · , n (5.9f)

where joint velocity and acceleration bounds are considered to guarantee smoothness of the gen-

erated motion, joint position bounds and torque bounds are considered for safety and feasibility,

joint jerk bounds and torque rate bounds are considered to address the joint oscillation problem

caused by discontinuous actuator torques [60].
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Figure 5.1: Sphere approximation of robot and obstacles

Besides the physical limitations, collision avoidance can be formulated as additional path con-

straints. Dues to the complicated geometric mapping between robot workspace and configuration

space, it is difficult to represent collision free condition analytically. To simplify the formulation,

a finite number of spheres can be used to approximate the known obstacles and robot links as

shown in Fig. 5.1. The approximation can be performed either manually or automatically using

sphere-trees construction algorithms [61].

Suppose M spheres are used to approximate robot links, and S spheres are used to approximate

obstacles. Let the center and radius of each sphere that representing robot links be cccrobj (qqq(t)), rrobj , j =
1, · · · ,M , the center and radius of each sphere that representing obstacles be cccobsk , robsk , k = 1, · · · , S.

Robot forward kinematics problem can be solved to determine the functional relationship between

joint positions qqq(t) and the location of sphere centers cccrobj (qqq(t)). The collision free constraint can

then be formulated as

‖cccrobj (qqq(t))− cccobsk ‖2 ≥ rrobj + robsk + ǫ, ∀t ∈ [t0, tf ], j = 1, · · · ,M, k = 1, · · · , S (5.10)

where ǫ > 0 is a threshold that guarantee strict collision free condition.

Typical boundary conditions for robot motion planning problem include

Initial state: qi(t0) = q0i , q̇i(t0) = q̇0i , i = 1, · · · , n (5.11a)

Target state: qi(tf ) = qfi , q̇i(tf ) = q̇fi , i = 1, · · · , n (5.11b)

Terminal time bounds : tmin
f ≤ tf ≤ tmax

f (5.11c)

where q0i and qfi are initial and target joint positions of robot joint i, and q̇0i , q̇
f
i are the respective

initial and target joint velocities. tmin
f > 0 is the minimum allowed terminal time, and tmax

f is the

maximum allowed terminal time.

The formulation of robot motion planning is a general nonlinear optimal control problem. Since

there is no analytical solution found for the general problem, numerical methods are investigated

in the next section.
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5.3 Numerical Methods for Trajectory Optimization

Trajectory optimization is the process of designing state and control trajectories that optimize some

measure of performance while satisfying a set of constraints [62]. Generally speaking, trajectory

optimization is a technique for computing an open-loop solution to an optimal control problem.

Since optimal control is a general control strategy, trajectory optimization can be implemented in

a variety of control applications, ranging from aerospaces, transportation, to industrial processes,

robotics, and so on.

In the early years of trajectory optimization research, efforts have been focusing on analytical

solutions based on calculus of variations. Though important results including Hamilton-Jacobi-

Bellman equation and Pontryagin’s maximum principle are proposed, no general analytical solu-

tion can be found (except for the simple linear-quadratic regulator (LQR) problem). As a result,

it is necessary to implement numerical methods for most real-world optimal control problems. A

variety of numerical approaches have been developed during the last several decades.

Review of Numerical Method

Numerical methods have been developed for trajectory optimization[58, 63]. The numerical meth-

ods can be classified into two types: indirect methods and direct methods. Due to the requirements

of complicated derivation of optimality condition and the solution of challenging boundary-value

problems, indirect methods are difficult to be implemented practically. Direct methods have gained

popularity during the last several years. The focus of this chapter is therefore direct methods.

In regards to the direct method, the control trajectory(and state trajectory) is discretized first,

which is known as the transcription procedure [64]. The transcription converts a continuous opti-

mal control problem into a nonlinear optimization problem as follows:

minimize Φ[xxx(t0),xxx(tf ), tf ] +
N∑

i=0

wiL[xxx(Ti),uuu(Ti), Ti]

subject to ẋxx(Ti) = fff [xxx(Ti),uuu(Ti), Ti]
CCCmin ≤ CCC[xxx(Ti),uuu(Ti), Ti] ≤ CCCmax

φφφmin ≤ φφφ[xxx(t0),xxx(tf ), tf ] ≤ φφφmax

(5.12)

where the integration of running cost is approximated using quadrature with weights wi. In the

transcribed problem, {Ti, i = 0, · · ·N} are called knots. As the solution of the transcribed prob-

lem, the optimal control at knots {uuu(Ti), i = 0, · · ·N} (and optimal state at knots {xxx(Ti), i =
0, · · ·N}, and tf ) can be returned by any nonlinear optimization solver. Polynomial interpolation

is then used to approximate the continuous time optimal control trajectory (and state trajectory)

based on the value at knots. The type of polynomial interpolation and quadrature approximation

depends on the transcription method. The schematic of numerical method for trajectory optimiza-

tion is shown in Fig. 5.2.

There are two kinds of transcription approaches [58, 64, 65]: shooting and collocation. The

shooting approach is illustrated in Fig. 5.3a. The decision variables of the transcribed optimization
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Figure 5.2: Schematic of numerical method for trajectory optimization

problem are the {uuu(Ti), i = 0, · · ·N}, which are marked as red dots in the figure. The control uuu(t)
is approximated by arbitrary function approximater (e.g. piece-wise linear function that passes all

red dots in the figure). The cost function J is evaluated by quadrature approximation, in which

the state values xxx(Ti) are calculated using numerical integration of the differential equations that

describe the dynamical system (e.g. Equation (5.2), (5.8) ). The optimization solver tries to adjust

the values of {uuu(Ti), i = 0, · · ·N} such that J is minimized under the condition that the all

constraints are satisfied (e.g. the final state xxx(tf ) reaches a certain goal).

(a) Shooting (b) Collocation

Figure 5.3: Difference between shooting and collocation

The collocation approach is illustrated in Fig. 5.3b. Similar to the shooting approach, {uuu(Ti), i =
0, · · ·N} are decision variables. But unlike the shooting approach, the decision variables also in-

clude {xxx(Ti), i = 0, · · ·N}, which are marked as red dots in the lower part of Fig. 5.3b. The
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state xxx(t) is approximated by arbitrary function approximater. In the transcribed optimization

problem, the dynamic constraint ẋxx(Ti) = fff [xxx(Ti),uuu(Ti), Ti] is applied to guarantee feasibility

of the solution. The optimization solver tries to adjust the values of {uuu(Ti), i = 0, · · ·N} and

{xxx(Ti), i = 0, · · ·N} such that the cost function J is minimized under a set of constraints. In

general, the collocation approach requires more decision variables than the shooting approach, but

the transcribed optimization problem is easier to solve.

Any nonlinear optimization algorithm can be implemented to solve the transcribed problem.

The most commonly used methods are sequential quadratic programming and interior-point meth-

ods. Extensive research has been performed in the past several decades. The research has lead

to extremely versatile and robust softwares for the numerical solution of nonlinear optimization

problems. The details of these two methods are omitted in this dissertation. It is worth noting

that most of optimization solvers are based on gradient descent algorithm, thus the calculation of

Jacobian or Hessian matrix are necessary.

Efficient Numerical Method for Trajectory Optimization

In regards to the schematic of numerical method for trajectory optimization, two parts are playing

the key role: discretization and optimization. An efficient implementation can be designed by

choosing these two components smartly. In this dissertation, the pseudospectral method is chosen

to transcribe the continuous time optimal control problem, and the interior point method with

the support of automatic differentiation is chosen to solve the transcribed discrete optimization

problem. The schematic of the efficient numerical method is illustrated in Fig. 5.4.

Figure 5.4: Frame work of the proposed efficient numerical method
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Intelligent Discretization

It is argued that there exists complicated nonlinear mapping between decision variables and cost /

constraint functions in shooting approaches [64]. The resulting optimization problem can not be

well approximated by local linearized models adopted by most solvers. Collocation approaches

are considered the most powerful methods for solving general optimal control problems.

In collocation approaches, state and control trajectories are approximately parametrized by

polynomials. Runge’s phenomenon is well known as a problem of polynomial interpolation that

oscillation occurs when interpolation is performed over a set of equispaced nodes using high order

polynomials [66]. Two solutions exist to mitigate this issue: using piecewise low order polynomials

or using special interpolation nodes. The two mitigation solutions lead to two common forms of

collocations: local collocation and global collocation. A local collocation parametrizes state and

control trajectories using piecewise low order polynomials and a global collocation uses high order

polynomials with interpolation nodes that are specially designed. The global collocation is also

known as pseudospectral methods. Pseudospectral methods have increased in popularity in recent

years. The advantage of pseudospectral methods is that the polynomial approximation converges

exponentially fast with the increase of interpolation nodes [58, 67, 68]. If efficiency is the major

concern, then using pseudospectral methods is a good choice since less interpolation nodes can be

chosen to reduce the scale of the transcribed optimization problem.

1. Choice of knots:

In pseudospectral methods, it is assumed that the functions we would like to approximate

have been mapped to the interval ζ ∈ [−1, 1]. Suppose state and control trajectories are

initially defined in T ∈ [t0, tf ], and t0 = 0, then the mapping can be achieved by

ζ = 2
T − t0
tf − t0

− 1 = 2
T

tf
− 1 (5.13)

The knots {ζi, i = 0, · · · , N} in pseudospectral theory are typically chosen to be the root

of orthogonal polynomials. In this chapter, Chebyshev orthogonal polynomials are chosen

for the calculation of knots since it is easy to compute. The Chebyshev-Lobatto points (or

Chebyshev points) are chosen to be

ζi = cos

(
iπ

N

)

, i = 0, · · · , N (5.14)

and thus the knots can be chosen as

Ti =
tf
2

[

cos

(
iπ

N

)

+ 1

]

, i = 0, · · · , N (5.15)

2. Interpolation

The polynomial interpolation in pseudospectral methods can be performed by barycentric

interpolation [68, 69].
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The barycentric interpolation can be formulated as a linear combination of Lagrangian poly-

nomials. For state trajectory and control trajectory, the form is

xi(T ) =
N∑

j=0

xi(Tj)ℓj(T ), i = 1, · · · , n

ui(T ) =
N∑

j=0

ui(Tj)ℓj(T ), i = 1, · · · ,m
(5.16)

where ℓj(T ) is the jth Lagrange polynomial. In barycentric interpolation, a special form of

Lagrange polynomial is implemented. This form can be derived as follows:

ℓj(T ) =
∏

k 6=j(T − Tk)
/
∏

k 6=j(Tj − Tk)

=
∏N

k=0(T − Tk)
/

(T − Tj)
∏

k 6=j(Tj − Tk)
(5.17)

In a special case ℓj(Tj) = 1 if T = Tj . Otherwise let the interpolation weights vj be

vj =
1

∏

k 6=j(Tj − Tk)
, j = 0, · · · , N (5.18)

Let ℓ(T ) =
∏N

k=0(T − Tk), then

ℓj(T ) =
ℓ(T )vj
(T − Tj)

(5.19)

Since
∑N

j=0 ℓj(T ) = 1, the special form of jth Lagrange polynomial can be formulated as

ℓj(t) =
vj

T − Tj

/
N∑

k=0

vk
T − Tk

, j = 0, · · · , N (5.20)

Interestingly, if interpolation weights vj is scaled by an arbitrary constant gain α 6= 0, v′j =
αvj does not affect ℓj . When Chebyshev points are chosen, the interpolation weights vj and

Lagrange polynomials can be simplified as

vj = (−1)j (5.21a)

ℓj(T ) =
(−1)j

T − Tj

/[
N−1∑

k=1

(−1)k

T − Tk

+
1

2

(
1

T − T0

+
(−1)N

T − TN

)]

(5.21b)

for j = 1, · · · , N − 1, and half of the values for j = 0 and N .

The interpolation procedure is not used in the transcription step. Once the decision variables

xi(Tj), ui(Tj), and tf are obtained, the approximate continuous solution can be evaluated

using the interpolation method.
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3. Quadrature

Quadrature is the standard term for the numerical calculation of integrals. The running cost

in integration form can be approximately evaluated by quadrature rules in pseudospectral

methods. Let t0 = 0, the quadrature rule to evaluate the integration of running cost is

∫ tf

0

L[xxx(T ),uuu(T ), T ]dT ≈
∫ tf

0

[
N∑

j=0

ℓj(T )L[xxx(T ),uuu(T ), T ]
]

dT

=
N∑

j=0

wjL[xxx(Tj),uuu(Tj), Tj]

(5.22)

where {wj, j = 0, · · · , N} is a set of quadrature weights. The quadrature weights can be

explicitly defined to be

wj =

∫ tf

0

ℓj(T )dT, j = 0, · · · , N (5.23)

Referring to Equations (5.13) and (5.21b), the jth Lagrange polynomial can be written as

function of ζ ∈ [−1, 1], and Equation (5.23) can be rewritten as

wj =

∫ tf

0

ℓj(T )dT

=
tf
2

∫ 1

−1

ℓsj(ζ)dζ
(5.24)

where

ℓsj(ζ) =
(−1)j

ζ − ζj

/[
N−1∑

k=1

(−1)k

ζ − ζk
+

1

2

(
1

ζ − ζ0
+

(−1)N

ζ − ζN

)]

(5.25)

When Chebyshev points are chosen, the corresponding quadrature rule is called ClenshawCur-

tis quadrature. Explicit expression of the quadrature weights can be found in [70]:

∫ 1

−1

ℓsj(ζ)dζ =
cj
N



1−
⌊N/2⌋
∑

k=1

bk
4k2 − 1

cos(2kζj)



 , j = 0, · · · , N (5.26)

where the coefficients bk, cj are defined as

bk =

{

1, k = N/2

2, k < N/2
, cj =

{

1, j = 0, N

2, j = 1, · · · , N − 1
(5.27)

4. Differentiation matrix

One advantage of polynomial interpolation is that it is easy to approximate derivative easily.
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Let the stacked state and control at knots be

XXX i =






xi(T0)
...

xi(TN)




 , UUU j =






uj(T0)
...

uj(TN)




 (5.28)

where i = 1, · · · , n, j = 1, · · · ,m. The derivatives of the state and control at knots can be

calculated from the polynomial approximation

d

dT
XXX i =

2

tf
DDDXXX i,

d

dT
UUU j =

2

tf
DDDUUU j (5.29)

where DDD is the differential matrix that is used to compute the derivative of the XXX i and UUU j

with respect to ζ ∈ [−1, 1]. The derivation of DDD can be found in [69]. Each element in the

ith row and jth column of the differential matrix can be computed as shown in [67]

Dij =







vj/vi
ζi − ζj

i 6= j

−
∑

i 6=j

Dij i = j
(5.30)

Let

FFF i =






fi [xxx(T0),uuu(T0), T0]
...

fi [xxx(TN),uuu(TN), TN ]




 , i = 1, · · · , n (5.31)

The discretized dynamic constraints can be formulated using differentiation matrix as

DDDXXX i =
tf
2
FFF i, i = 1, · · · , n (5.32)

The intelligent discretization utilizes pseudospectral method to transcribe continuous time op-

timal control problem into optimization problem with decision variables xxx(Tj), uuu(Tj), and tf (for

time-optimal planning problems). The solution to the continuous time optimal control problem can

be well approximated by polynomial interpolation with relatively small amount of discretization

points. Another advantage is that the smoothness of the returned solution can be guaranteed by the

global polynomial approximation.

Automatic Differentiation

In order to further improve the efficiency of the numerical method, automatic differentiation is

introduced to accelerate the solution procedure for the optimization problem.

Lots of optimization solvers are based on gradient descent algorithm. Derivative of objective

function and constraints are frequently evaluated by numerical differentiation approaches, which
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perturbs input to the function in each dimension to obtain an approximation of the derivative using

finite differences. However, numerical differentiation approaches are computationally expensive

for functions with high dimensional input, and inevitably introduces round-off errors. Symbolic

differentiation is one way to avoid round-off errors, however it frequently leads to inefficient code.

Both numerical differentiation and symbolic differentiation are problematic in the calculation of

higher order derivatives like Hessian.

To address the problems in numerical differentiation and symbolic differentiation, automatic

differentiation is introduced. Automatic differentiation is a set of techniques to evaluate derivative

of a function [71]. Automatic differentiation is typically implemented as programming approaches.

The implementation is based on dual number arithmetics. One simple example is to calculate the

derivative of a given function y = F (x). Replace input x with the number x + x′ǫ, where x′ is

a real number and ǫ is an abstract number with the property ǫ2 = 0. Using Taylor expansion, the

function value can be calculated as

y + y′ǫ = F (x+ x′ǫ) = F (x) +
∞∑

i=1

F (i)(x)

i!
(x′ǫ)i = F (x) + F (1)(x)x′ǫ

where F (i)(x) is the ith derivative of function F . Define a dual number

〈x, x′〉 = x+ x′ǫ

then the function F is ‘overloaded’ as

〈y, y′〉 = F (〈x, x′〉) = 〈F (x), F (1)x′〉

When x′ = 1 is used, the function value F (x) and derivative F (1)(x) of function F is directly

obtained by one evaluation as the two components in the returned dual number. More dual com-

ponents can be introduced to handle function with multiple inputs. It is obvious that non round-off

errors are introduced by automatic differentiation. The computational cost of automatic differenti-

ation is lower than numerical differentiation or symbolic differentiation. Efficient implementation

of automatic differentiation includes Adol-C [72], CppAD [73], and FADBAD++ [74]. In this

dissertation, CasADi[75] is chosen for its good usability in MATLAB environment.

5.4 Numerical Examples and Experimental Results

Planar Robot Example

Time-optimal motion planning of a planar wafer-handling robot with kinematic constraints and

workspace collision avoidance requirement is considered. The wafer-handling robot is shown in

Fig. 5.5. This type of wafer handling robot is used to transfer silicon wafers from one point to

another automatically inside a semiconductor manufacturing machine.

The wafer handling robot is designed to have three degrees of freedom for arbitrary planar

positioning purpose. Since wafer transferring is only one small amount work in a semiconductor
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Figure 5.5: Wafer handling robot

manufacturing machine, the workspace of wafer handling robot is designed to be compact. The

geometric model of the wafer handling robot and its workspace is shown in Fig. 5.6. The task of

the planar robot is moving wafer from loading port to unloading port. Three steps can be used for

the motion: picking wafer from loading port to a location near the port, moving to a location near

unloading port, and placing wafer to unloading port. Picking and placing in the first and last step

are easy. Though the design of wafer handling robot has prevented interference among links, the

second step is challenging due to the limited workspace.
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Figure 5.6: Geometric model of wafer handling robot in workspace

Let the three joint positions be qwr
1 (t), qwr

2 (t), and qwr
3 (t), where t ∈ [0, tf ]. The planning

objective is to minimize cycle time for the motion, thus the cost function can be formulated as

Jwr = tf (5.33)
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Wafer handling robots typically come with high torque actuators, thus torque saturation is not

the concern of the planning task. Therefore the ‘robot dynamics’ can be formulated by differential

kinematics. The state and control of this dynamical system can be chosen to be

xxxwr(t) =





qqqwr(t)
q̇qqwr(t)
q̈qqwr(t)



 , uuuwr(t) =
...
qqq wr(t) (5.34)

where qqqwr(t) = [qwr
1 (t), qwr

2 (t), qwr
3 (t)]T is the vector for joint positions. There are 9 states and 3

controls.

The dynamic constraint of this task can be formulated as

d

dt





qqqwr(t)
q̇qqwr(t)
q̈qqwr(t)



 =





000 III 000
000 000 III
000 000 000









qqqwr(t)
q̇qqwr(t)
q̈qqwr(t)



+





000
000
III




...
qqq wr(t) (5.35)

The path constraints of this planning task include bounded joint velocity, acceleration, and jerk

determined by actuator capability. The linear acceleration at wafer center should also be bounded

to avoid sliding of wafers, which particle contamination or even tip-over of wafer [76]. In addition,

collision between the robot and the workspace boundary should be avoided. Sphere approximation

of robot links and the workspace boundary is shown in Fig. 5.7. The sphere centers are denoted
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Figure 5.7: Sphere approximation of planar robot and workspace boundary

by cccwr
j (j = 1, · · · , 8) for robot, and cccbndk (k = 1, · · · , 4) for workspace boundary. The radius are

denoted by rwr
j for robot, and rwr

k for workspace boundary. The workspace is also bounded by

xbnd
min, xbnd

max in X direction and ybndmin, ybndmax in Y direction.
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The path constraints of this problem can be formulated as

Joint velocity bounds: q̇qqwr
min ≤ q̇qqwr(t) ≤ q̇qqwr

max (5.36a)

Joint acceleration bounds: q̈qqwr
min ≤ q̈qqwr(t) ≤ q̈qqwr

max (5.36b)

Joint jerk bounds:
...
qqq wr
min ≤ ...

qqq wr(t) ≤ ...
qqq wr
max (5.36c)

Workspace acceleration bounds: aaawr
min ≤ fffwr (qqqwr(t), q̇qqwr(t), q̈qqwr(t)) ≤ aaawr

max (5.36d)

Workspace bounds:
[
xbnd
min, y

bnd
min

]T ≤ cccwr
j (t) ≤

[
xbnd
max, y

bnd
max

]T
(5.36e)

Corner collision avoidance: ‖cccwr
j (qqq(t))− cccbndk ‖2 ≥ rwr

j + rbndk + ǫ (5.36f)

where cccwr
j can be calculated using forward kinematics of this planar robot. The function fffwr

represents differential forward kinematics for the calculation of workspace acceleration at wafer

center. The kinematic limitations of this robot is listed in Table 5.1.

Table 5.1: Kinematic limits of wafer handling robot

Kinematic limits in joint space

Joint # Velocity(rad/s) Acceleration (rad/s2) Jerk (rad/s3)

1 4.2 8.4 10

2 8.4 16.8 10

3 6.3 12.6 10

Kinematic limits in workspace

Axis Acceleration (mg)

x 100

y 100

The boundary condition can be formulated as Equation (5.11) by specifying initial and tar-

get position, and the bounds for tf . The cost function, dynamic constraints, path constraints, and

boundary conditions are then provided to an optimal control solver. N = 19 is chosen to obtain

20 knots in this task, resulting an optimization problem with 9 × 20 + 3 × 20 + 1 = 241 deci-

sion variables. One initial guess of these variables are obtained by choosing all zero velocities,

accelerations, and jerks. The position variables are initialized to linearly connecting the initial and

the target position. Optimal path and trajectory are simultaneously returned by the optimal control

solver.

Test case 1 The target position is on the right portion in the workspace. The initial guess of

the position trajectory is shown in Fig. 5.8. tf is initialized to be 10 seconds. It is clear that the

initial guess does not provide a feasible trajectory.

The optimization problem is solved using Ipopt solver [77]. All the computation is performed

on a laptop with 2.1 GHz Intel R© CoreTM processor. The optimal control solver takes around 2.6 s

for a one-time initialization of automatic differentiation by CasADi. The optimization solver takes
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t = 0 s t = 3.5354 s t = 4.8485 s

t = 5.8586 s t = 6.9697 s t = 10 s

Figure 5.8: Initial trajectory for motion planning: planar test case 1

t = 0 s t = 0.9877 s t = 1.3546 s

t = 1.6368 s t = 1.9472 s t = 2.7938 s

Figure 5.9: Optimal trajectory: planar test case 1

about 0.6 s to find the optimal trajectory. The returned path is shown in Fig. 5.9. The motion

path has been adjusted automatically such that the there is no collision between the robot and the

workspace boundary. The cycle time of robot motion has been reduced from 10 s to around 2.8

s. The planned joint velocity, acceleration, and workspace acceleration profiles are shown in Fig.

5.10, where ẍwf (t) and ÿwf (t) are the workspace acceleration of wafer center. The variables which

are denoted as functions Ti are the variable values at discretized knots. The discretized values are

interpolated to approximate the optimal solution for the continuous time problem. It is shown in

the figures that joint velocity and acceleration are not getting close to the limits. The joint jerks

are well bounded by the limits. The maximum allowed magnitude of workspace acceleration is 10

mg ≈ 1000 mm/s2, which is not exceeded by the planned motion.

It is worth noting that the planned motion is highly smooth because high order polynomial
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Figure 5.10: Optimized motion profiles for joint velocity, acceleration, jerk, and workspace accel-

eration, test case 1

interpolation is implemented. No obvious oscillation is observed in the interpolation. It is also

worth noting that the polynomial interpolation does not necessarily satisfy constraints in between

knots. This issue can be addressed by using more conservative constraints or more knots.

Test case 2 The target position is on the left portion in the workspace, while the initial posi-

tion is the same as test case 1.

This is the same planning task as that in [76]. The optimization is initialized with tf = 10. It

takes around 2.6 s for a one-time initialization, and about 0.9 s to find the optimal trajectory. The

returned path is shown in Fig. 5.11. The motion path has been adjusted automatically such that

the there is no collision between the robot and the workspace boundary. The cycle time of robot

motion has been reduced from 10 s to about 2.1 s. The planned joint velocity, acceleration, and

workspace acceleration profiles are shown in Fig. 5.12, where ẍwf (t) and ÿwf (t) are the workspace

acceleration of wafer center. The variables which are denoted as functions Ti are the variable values

at discretized knots.
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t = 0 s t = 0.66475 s t = 0.91403 s

t = 1.1633 s t = 1.4334 s t = 2.0566 s

Figure 5.11: Optimal trajectory: planar test case 2

As clearly shown in the figures, the planned joint velocity, acceleration, jerk, and workspace

acceleration are bounded by the design limits. In order to guarantee the interpolated motion does

not exceed the actuator limit, the bounds for joint motion have been designed to be conservative.

It is worth noting that the planned motion is actually faster than that obtained using path-

velocity decomposition approach reported in [76], where the planned motion consists of several

segments. Unlike the path-velocity decomposition approach, in which a sampling based planner

could return non-smooth path that is hard to follow, trajectory optimization based approach is

able to optimize the overall performance of path planning and trajectory planning. Therefore,

the trajectory optimization based approach is able to find a better result than the path-velocity

decomposition based approach.
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Figure 5.12: Optimized motion profiles for joint velocity, acceleration, jerk, and workspace accel-

eration, test case 2

Multiple Joint Industrial Robot Example

Time-optimal motion planning of a 6-axis industrial robot with dynamic constraints is considered

in this example. The industrial robot is supposed to work in a constrained workspace for pick-and-

place tasks. The geometric model of the industrial robot is shown in Fig. 5.13.
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Figure 5.13: Geometric model of a 6 joint industrial robot
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Unlike wafer handling robot, this type of robot does not come with strong actuators to sup-

port high speed motion. Therefore constraints coming from actuator including torque limits and

even torque rate limits should be considered in the planning. Furthermore, kinematics constraints

including joint position, velocity, workspace boundary and obstacle avoidance also apply to this

industrial robot.

Let the joint positions be q1(t), · · · , q6(t), the joint torques be τ1(t) · · · , τ6(t), where t ∈ [0, tf ]
is time. The state and control of this dynamical system can be chosen to be

xxx(t) =

[
qqq(t)
q̇qq(t)

]

, uuu(t) = τττ(t) (5.37)

where qqq(t) = [q1(t), · · · , q6(t)]T is the vector for joint positions, and τττ(t) = [τ1(t), · · · , τ6(t)]T is

the vector for joint torques. There are 12 states and 6 controls. In the motion planning work, the

robot dynamics is simplified by supposing that 1) frictions are negligible, and 2) transmission is

ideal. The simplified robot dynamics can be formulated as

MMM(qqq)q̈qq +CCC(qqq, q̇qq)q̇qq +GGG(qqq) = τττ (5.38a)

JJJmRRRq̈qq = τττm −RRR−1τττ (5.38b)

where JJJm is a diagonal matrix with JJJm(i, i) the inertia of i the motor of the robot. RRR is a diagonal

matrix with RRR(i, i) the gear ratio of the ith joint, and RRR(i, j) = 0 if i 6= j. τττm is the motor torque.

The dynamic constraint of this task can be formulated as Equation (5.8) with fff fric = 0.

The planning objective is to minimize motion time tf . Considering that the motion of human

arm can be promisingly modeled by minimum-jerk model [78], a regulation term of jerk integration

can be included in the cost function for generating robot motion naturally. The cost function can

be formulated as

J = tf + µ

∫ tf

0

...
qqq (t)TQQQ

...
qqq (t)dt (5.39)

where
...
qqq (t) is the jerk of joint motion, µ is the weighting coefficient for regulation term, andQQQ is a

weight matrix designed to penalize large motion of joints with high gear ratios. The weight matrix

QQQ is defined as

QQQ(i, j) =

{

0, j 6= i

1 /RRR(i, i)2 , j = i
(5.40)

Collision free condition is included in the path constraints. The robot links and obstacles are

approximated by spheres for simple and differentiable collision detection for trajectory optimiza-

tion. The sphere approximation of robot links, obstacles, and workspace boundary is shown in Fig.

5.14, where cccj , ccck, rj , and rk are centers and radius of the jth and kth spheres that approximate

the robot links, and cccobsl and robsl present center and radius of the kth sphere that approximate the

obstacle. The workspace boundary is represented by [xbnd
min, x

bnd
max], [y

bnd
min, y

bnd
max], [z

bnd
min, z

bnd
max] in X,

Y, and Z direction respectively.
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Figure 5.14: Sphere approximation of 6-axis robot and obstacle

The path constraints of this problem includes:

Joint position bounds: qqqmin ≤ qqq(t) ≤ qqqmax (5.41a)

Joint velocity bounds: q̇qqmin ≤ q̇qq(t) ≤ q̇qqmax (5.41b)

Workspace bounds:
[
xbnd
min, y

bnd
min, z

bnd
min

]T ≤ cccj(t) ≤
[
xbnd
max, y

bnd
max, z

bnd
max

]T
(5.41c)

Self collision avoidance: ‖cccj(qqq(t))− ccck(qqq(t))‖2 ≥ rj + rk + ǫ, [j, k] ∈ I (5.41d)

Obstacle collision avoidance: ‖cccj(qqq(t))− cccobsl ‖2 ≥ rj + robsl + ǫ (5.41e)

where I is a set of indices indicating possible collision between two balls that approximate robot

links. Motor torque and torque rates should also be included in path constraints. According to

Equation. (5.38b), torque and torque rate constraints can be formulated as

Motor torque bounds: RRRτττmmin ≤ RRRJJJmRRRq̈qq(t) + τττ(t) ≤ RRRτττmmax (5.42a)

Motor torque rate bounds: RRRτ̇ττmmin ≤ RRRJJJmRRR
...
qqq (t) + τ̇ττ(t) ≤ RRRτ̇ττmmax (5.42b)

The actuator limit of the industrial robot in this example is listed in Table 5.2, where joint positions

have been manually tightened for safety reason. The scaled motor torque and torque rate limits are

restricted to be 80% of the original value in the planning algorithm.
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Table 5.2: Actuator limits of 6-joint industrial robot

Limits Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Joint position min qqqmin (deg) -160 -90 -120 -180 -120 -180

Joint position max qqqmax (deg) 170 90 230 180 100 180

Joint speed q̇qq (deg/s) ±165 ±165 ±175 ±350 ±340 ±520

Scaled motor torque RRRτττm (Nm) ±1396.5 ±1402.3 ±382.7 ±45.2 ±44.6 ±32.5

Scaled torque rate RRRτ̇ττm (Nm/s) ±20947.5 ±21034.5 ±5740.5 ±678 ±669 ±487.5

The boundary condition include initial and final position, velocity, acceleration, and terminal

time bound.

Initial position, velocity, acceleration: qqq(0) = qqq0, q̇qq(0) = 0, q̈qq(0) = 0 (5.43a)

Target position, velocity, acceleration: qqq(tf ) = qqqf , q̇qq(tf ) = 0, q̈qq(tf ) = 0 (5.43b)

Terminal time bounds : tmin
f ≤ tf ≤ tmax

f (5.43c)

The cost function, dynamic constraints, path constraints, and boundary conditions can be dis-

cretized N + 1 knots, resulting an optimization problem with 12× (N + 1) + 6× (N + 1) + 1 =
18N + 19 decision variables. Three factors will affect the solution to the optimization problems:

N itself, the regulation weight µ, and the initialization of decision variables.

In general, the solution accuracy will be better if larger N is used, but the optimization will

take longer time. The cycle time for robot motion tf will be shorter if smaller µ is used, but the

optimization will also take longer time. In regards to the initialization, two choices as shown in

Fig. 5.15 can be designed: 1) a naive initialization: designing an straight line initial trajectory in
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Figure 5.15: Initial trajectory for motion planning: multiple joint industrial robot
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joint space without considering feasibility, 2) an intuitive initialization: adding one middle point to

guide the robot off the obstacle, and composing the initial trajectory by combining two trajectories

that connect initial-middle point, and middle-target point respectively.

The naive initialization requires more iterations to solve the optimization problem, and thus

takes longer time. When the initial and target position is the same as Fig. 5.15, N + 1 = 8,

µ = 0.3, and intuitive initialization is used, the planned optimal motion is shown in Fig. 5.16. All

t = 0 s t = 0.35456 s t = 0.55083 s

t = 0.80282 s t = 0.9611 s t = 1.2663 s

Figure 5.16: Planned optimal trajectory of multiple joint industrial robot, N + 1 = 8, µ = 0.3

the computation is performed on the same hardware as that for planar robot example, i.e., a laptop

with 2.1 GHz Intel R© CoreTM processor. The solver takes around 5.9 s for a one-time initialization

for automatic differentiation by CasADi. The optimization takes around 1.2 s to find the optimal

trajectory. The motion path has been automatically adjusted to guarantee smoothness, as well as

avoiding self collision and collisions with workspace boundary or obstacle.

The planned motion takes around 1.27 s to finish while the initial trajectory takes 10 s. The

percentage of the joint velocity and scaled motor torque are shown in Fig. 5.17. The actual optimal

joint velocity and scaled motor torque are computed using larger N (N + 1 = 35) and longer time

(computation time 415.8 s). The difference of the planned motion time tf are close, which is 1.266

s for N + 1 = 8 and 1.251 s for N + 1 = 35. Both of the planning results indicate that the

active limitation of the robot motion is the velocity limit of joint 1 and torque limit of joint 2.

Comparing to the optimal result shown in Fig. 5.18, the planning result using N +1 = 8 is a good

approximation with low computational load.

Several tests have been performed to evaluate the effect of different µ, N , and initialization

methods. The computation time for planning and planned motion time tf are shown in Table 5.3,
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Figure 5.17: Optimal motion profiles for multiple joint robot, N + 1 = 8, µ = 0.3
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Figure 5.18: Optimal motion profiles for multiple joint robot, N + 1 = 35, µ = 0.3

where torque and torque rate bounds are restricted to be 80% of the actual limits. It is clearly

shown that: 1) increasing µ is helpful for shortening the computation time, but will result in slower

planned motion, 2) shorter motion time tf can be obtained by using larger N , but the computation

takes longer time, and 3) naive initialization will result in longer computation time, and sometimes

no solution can be returned. According to the result, N + 1 = 12 is a good choice since the

planned motion time is reasonably close to the possible minimum value, and the computation time

is acceptable. If even faster planning is desired, N + 1 = 8 can be considered. The intuitive

initialization should always be used instead of naive initialization. It is also observed that shorter

motion time can be obtained when µ = 0, but the planned motion is unnatural, for example, the
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planned motions for N + 1 = 12, µ = 0 and N + 1 = 12, µ = 0.3 as shown in Fig. 5.19. In

order to generate natural motion of robot arm, as well as reducing computation time for planning,

a small regulation weight like µ = 0.3 can be chosen for the planning task.

Table 5.3: Computation time (s) / motion time tf (s), with different parameters

µ = 0 µ = 0.3 µ = 10
N+1 NIa IIb NI II NI II

8 2.1 / 1.24 1.9 / 1.25 1.6 / 1.27 1.2 / 1.27 1.8 / 2.02 1.5 / 2.02

10 4.1 / 1.23 4.6 / 1.23 3.3 / 1.34 2.1 / 1.34 2.5 / 2.03 1.5 / 2.03

11 8.0 / 1.25 2.7 / 1.25 5.3 / 1.28 2.9 / 1.28 4.4 / 2.02 2.4 / 2.02

12 7.1 / 1.19 5.5 / 1.19 6.6 / 1.26 3.3 / 1.26 4.1 / 2.03 1.9 / 2.03

14 8.3 / 1.18 6.1 / 1.18 6.3 / 1.25 3.5 / 1.25 8.2 / 2.03 2.6 / 2.03

15 9.8 / 1.18 5.8 / 1.18 11.8 / 1.25 3.5 / 1.25 - / - 2.6 / 2.03

16 9.9 / 1.18 9.2 / 1.18 9.3 / 1.25 3.7 / 1.25 10.5 / 2.03 4.0 / 2.03

18 20.8 / 1.18 7.8 / 1.18 12.6 / 1.25 4.1 / 1.25 7.9 / 2.03 6.5 / 2.03

19 14.9 / 1.18 13.1 / 1.18 15.9 / 1.25 5.2 / 1.25 14.3 / 2.03 4.3 / 2.03

a Naive initialization.
b Intuitive initialization.
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(b) N + 1 = 12, µ = 0.3

Figure 5.19: Optimal multiple joint robot trajectory with different planning parameters

The proposed planning algorithm has been tested using a group of different initial and target

positions. The parameters are chosen to be N + 1 = 12, and µ = 0.3, and intuitive initialization

is implemented. Fig. 5.20 shows the planning results of optimal trajectories. In all the test cases,

good approximations of the time optimal trajectories are returned in about 3 seconds by the pro-

posed planning algorithm. It is also observed that the regulation term has prevented unnatural arm
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motion. Comparing to existing results for motion planning involving only robot dynamics [79, 65],

which requires from 20 seconds to several minutes, the proposed approach is highly efficient.

It is worth noting that the planned motion is a good approximation to the true optimal and fea-

sible trajectory since there is no guarantee that no limitation is exceeded using only interpolation.

A more conservative constraints or more knots can be used to guarantee safety. The planned tra-

jectory should be checked before being executed. If the planned motion is infeasible, either tuning

the constraints or adding more knots will be helpful for planning a feasible trajectory.
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(d) Test case 4

Figure 5.20: Optimal multiple joint robot trajectory with different initial and target positions, N +
1 = 12, µ = 0.3

The planned optimal trajectory of test case 2 in Fig. 5.20 has been used as motion reference in

experiment at the Mechanical Systems Control laboratory at the University of California, Berkeley.
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The actual robot motions are captured from video record as shown in Fig. 5.21. As shown in the

figure, there is no collision between the robot and the obstacle in the workspace.

(a) t = 0 s (b) t = 0.33 s (c) t = 0.56 s

(d) t = 0.8 s (e) t = 0.96 s (f) t = 1.2 s

Figure 5.21: Actual robot motion in experiment

It is observed in the experiment data that the joint velocity and joint torque are all bounded

by the actuator limit. The measured velocity and torque are scaled by the corresponding actuator

limits, as shown in Fig. 5.22.
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Figure 5.22: Measured joint velocity and torque of optimal robot trajectory in experiment

5.5 Chapter Summary

Robot motion planning which involves complicated robot dynamics and geometric constraints is

challenging. Since most approaches decompose motion planning to two subtopics and deal with

them separately, only suboptimal solution can be found. In this chapter, motion planning is mod-

eled as a general nonlinear optimal control problem to address the path planning and trajectory

planning topics simultaneously. An efficient numerical method for trajectory optimization is pro-

posed as one practical solution for the nonlinear optimal control problem. Results on a planar

wafer handling robot and a 6-axis industrial robot have suggested that the proposed approach is

able to find better solution than the current path-velocity decomposition approach. It is also found

that the proposed approach can return a reasonably good solution within a short time. It is worth

investigating improvements to this approach and exploring possibilities to implement it in different

robotic applications.
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Chapter 6

Optimal Vibration Suppression for an

Industrial Robot with Flexible End-Effector

6.1 Introduction

Residual vibration suppression is important to achieve fast and precise motion in real-world indus-

trial robot applications. However, it is challenging to guarantee low level residual vibration when

robots are equipped with large articulated structures as end-effector for specific tasks. One practi-

cal example is robot equipped with large spot welding gun as shown in Fig. 6.1. The overall robotic

Figure 6.1: Industrial robot with large spot welding gun.

system becomes under-actuated because of the link flexibility introduced by slender design of end-

effector. Since there is no external sensor available for the measurement of actual motion of robot

end-effector, the residual vibration can not be simply controlled by feedback control using only
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joint actuators of industrial robot. One popular and promising model based feedforward control

approach for this problem is input shaping. However the time delay introduced by input shaping

is not allowed for time stringent applications unless intelligent modification can be implemented

to guarantee zero time delay. Inspired by the success of input shaping, this chapter focuses on

improving the performance of vibration suppression by fully taking advantage of the model infor-

mation. Considering input shaping does not necessarily to be the best choice for robotic vibration

suppression applications, an optimal control based vibration suppression is proposed based on the

efficient trajectory optimization technique introduced in Chapter 5. Simulation and experiment

results are presented to demonstrate the effectiveness of the proposed approach.

This chapter is organized as following: section 6.2 introduces a dynamical model of industrial

robot with flexible end-effector, section 6.3 presents formulation of vibration suppression as op-

timal control problem, section 6.4 implements the proposed approach to working examples, and

shows experimental results on an industrial robot equipped with experimental flexible end-effector,

and section 6.5 summarizes this chapter.

6.2 Dynamical System Model

Industrial robots on the factory floor such as the one in Fig. 6.1 are not available in the Mechanical

Systems Control laboratory at the University of California, Berkeley. A smaller industrial robot

equipped with an experimental flexible payload in Fig. 6.2 is used for this dissertation research.

The flexible payload is designed to have similar natural frequency and damping as the flexible

end-effector of a larger industrial robot.

Figure 6.2: Industrial robot with experimental flexible payload.
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The dynamical model of the system can be decomposed into two components: robot dynamics

and end-effector dynamics.

Robot Dynamics

Though mechanical flexibility exists in the transmission units of industrial robot, the joint elas-

ticity is negligible comparing to the link flexibility introduced by slender end-effectors. In this

chapter, is is supposed that joint frictions are negligible and ideal joint transmission is applied.

The robot dynamics can be simplified as rigid body dynamics. Letting the joint positions of

a 6-joint robot be qqq = [q1, q2, q3, q4, q5, q6]
T

, the joint torque through transmission unit be

τττ = [τ1, τ2, τ3, τ4, τ5, τ6]
T

, and the actuator torque be τττm = [τm1, τm2, τm3, τm4, τm5, τm6]
T

,

the simplified robot dynamics can be formulated as

MMM(qqq)q̈qq +CCC(qqq, q̇qq)q̇qq +GGG(qqq) = τττ

JJJmRRRq̈qq = τττm −RRR−1τττ

where JJJm is a diagonal matrix with JJJm(i, i) the inertia of i the motor of the robot. RRR is a diagonal

matrix with RRR(i, i) the gear ratio of the ith joint, and RRR(i, j) = 0 if i 6= j. The simplified robot

dynamics can be formulated as one equation

[MMM(q) +RRRJJJmRRR] q̈qq +CCC(qqq, q̇qq)q̇qq +GGG(qqq) = RRRτττm (6.2)

Dynamics of Flexible End-Effector

The flexible end-effector is assumed to be simplified as a single mass-spring-damper system as

shown in Fig. 6.3. Let

xxx = fff fw(qqq) (6.3)

be the Cartesian space position of the tool center point (the origin of the tool frame), where fff fw is

the forward kinematics function of a robot with only rigid body parts. Let rrr be the tip elastic defor-

mation of the end-effector, and yyy be the tip position of the end-effector, then yyy can be formulated

as

yyy = xxx+ rrr (6.4)

The mass-spring-damper system can be modeled as a second order system. The equation of

motion can be formulated as

Mpÿyy = Cp(ẋxx− ẏyy) +Kp(x− yx− yx− y) +Mpggg +NNN (6.5)

where ggg is the gravitational acceleration, NNN is constraint force, Mp is the mass of payload, Kp is

the spring stiffness, and Cp is the damping coefficient. Let iii, jjj, kkk be unit vectors along X, Y, and Z

directions in the tool frame, the following assumption is made in our experiment setup

rrr = r1iii+ r2jjj + r3kkk, r2 = rrr · jjj = 0, r3 = rrr · kkk = 0 (6.6)
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Tool Frame

Figure 6.3: Simplification of flexible payload as mass-spring-damper system.

This assumption implies that the residual vibration only occurs in the X direction in the tool

frame, while the deformation along Y and Z direction can be ignored due to the structural design.

Projecting the equation of motion to the X direction in the tool frame, the dynamics of the flexible

end-effector can be formulated as

Mpÿyy · iii = Cp(ẋxx− ẏyy) · iii+Kp(x− yx− yx− y) · iii+Mpggg · iii (6.7)

where constraint force NNN is eliminated because no constraint force is applied in the motion direc-

tion. The time derivative of flexible deformation can be derived as

rrr = y − xy − xy − x = r1iii (6.8a)

ṙrr = ẏyy − ẋxx = ṙ1iii+ r1ωωω × iii (6.8b)

r̈rr = ÿyy − ẍxx = r̈1iii+ 2ṙ1ωωω × iii+ r1ǫǫǫ× iii+ r1ωωω × (ωωω × iii) (6.8c)

where ωωω = ω1iii + ω2jjj + ω3kkk is the angular velocity of the tool frame, and ǫǫǫ = ω̇ωω is the angular

acceleration of the tool frame.

Referring to Equation (6.8c), the tip acceleration is

ÿyy = ẍxx+ r̈1iii+ 2ṙ1ωωω × iii+ r1ǫǫǫ× iii+ r1ωωω × (ωωω × iii) (6.9)

Using the properties of cross product, the X-axis component of the tip acceleration can be

derived as
ÿyy · iii = ẍxx · iii+ r̈1iii · iii+ 2ṙ1(ωωω × iii) · iii

+r1(ǫǫǫ× iii) · iii+ r1 [ωωω × (ωωω × iii)] · iii
= ẍxx · iii+ r̈1 + r1 [ωωω × (ωωω × iii)] · iii
= ẍxx · iii+ r̈1 − r1(ωωω × iii) · (ωωω × iii)

(6.10)

Since

ωωω × iii = (ω1iii+ ω2jjj + ω3kkk)× iii = −ω2kkk + ω3jjj (6.11)
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Letting ẍxx = ẍ1iii + ẍ2jjj + ẍ3kkk, the X-axis component of the tip acceleration can be further

derived as

ÿyy · iii = ẍ1 + r̈1 − r1(ω
2
2 + ω2

3) (6.12)

Similarly, there is
(ẋxx− ẏyy) · iii = −ṙrr · iii

= − (ṙ1iii+ r1ωωω × iii) · iii
= −ṙ1

(6.13)

and

(xxx− yyy) · iii = −rrr · iii = −r1 (6.14)

Substituting (6.12), (6.13), and (6.14) into Equation (6.7), the equation of motion of the flexible

end-effector can be formulated as

Mpẍ1 +Mpr̈1 −Mpr1
(
ω2
2 + ω2

3

)
= −Cpṙ1 −Kpr1 +Mpggg · i (6.15)

or

ẍ1 + r̈1 − r1
(
ω2
2 + ω2

3

)
= − Cp

Mp

ṙ1 −
Kp

Mp

r1 + ggg · i (6.16)

Let

v1 = ṙ1

the dynamics of flexible end-effector can then be formulated as the state space model

ṙ1 = v1 (6.17a)

v̇1 = − Cp

Mp

v1 −
Kp

Mp

r1 +
(
ω2
2 + ω2

3

)
r1 − ẍ1 + ggg · i (6.17b)

6.3 Problem Formulation

The vibration suppression of flexible end-effector can be formulated as an optimal control problem

and solved using trajectory optimization technique. One fundamental difference between optimal

vibration suppression and optimal trajectory planning is that no time optimality is required in

vibration suppression applications. Therefore the motion time tf is fixed in the optimal control

problem for vibration suppression.

In this work, it is assumed that ggg · iii = 0 at the beginning and end of the reference trajectory.

Refer to Equation (6.17b), there will be no residual vibration if 1) r1(tf ) = 0, 2) ṙ1(tf ) = 0, and 3)

ẍ1(tf ) = 0 are satisfied. However, the residual vibration is not guaranteed to be 100% eliminated

by planning on a simplified dynamical model. In order to reduce residual vibration as much as pos-

sible, the residual elastic energy stored in the flexible end-effector should be minimized. Inspired

by the integral of time-weighted absolute error (ITAE) and integral of time-weighted squared error

(ITSE) criteria in feedback controller gain tuning works [80, 81, 82], the integral of time-weighted

elastic energy (ITEE) can be used as the cost function of optimal control. The design of ITEE is
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expected to reduce residual elastic energy at the end of the robot motion, and thus reduce residual

vibration level. The objective of the optimal control problem is

min J =

∫ tf

0

t
1

2
Kpr

2
1dt (6.18)

The dynamic constraint of this problem can be formulated as the combination of robot dynam-

ics Equation (6.2) and flexible end-effector dynamics Equation (6.17b)

q̈qq = [MMM(qqq) +RRRJJJmRRR]−1 [RRRτττm −CCC(qqq, q̇qq)q̇qq −GGG(qqq)] (6.19a)

r̈1 = − Cp

Mp

ṙ1 −
Kp

Mp

r1 +
(
ω2
2 + ω2

3

)
r1 − ẍ1 + ggg · i (6.19b)

with forward kinematics xxx = fff fw(qqq) and ẍ1 = ẍxx · iii.
The path constraints of this problem include:

Joint position bounds: qqqmin ≤ qqq(t) ≤ qqqmax (6.20a)

Joint velocity bounds: q̇qqmin ≤ q̇qq(t) ≤ q̇qqmax (6.20b)

Motor torque bounds: RRRτττmmin ≤ RRRτττm(t) ≤ RRRτττmmax (6.20c)

Motor torque rate bounds: RRRτ̇ττmmin ≤ RRRτ̇ττm(t) ≤ RRRτ̇ττmmax (6.20d)

In addition, the planned robot motion should not deviate from the original motion too much.

In this work, the desired robot motion is designed to be a straight line. The deviation constraint is

formulated as angular velocity bounds and translational velocity bounds off the motion direction.

Angular velocity bounds: ‖ωωω‖min ≤ ‖ωωω(t)‖ ≤ ‖ωωω‖max (6.21a)

Translational velocity bounds: ẋimin ≤ ẋi(t) ≤ ẋimax, i ∈ Ioff (6.21b)

where Ioff is the index set for directions other than motion direction (in this work the Y and Z

directions, Ioff = {2, 3}).

The boundary condition include fixed initial and final position, velocity, acceleration, jerk,

elastic deformation, and deformation rate. In addition, the final acceleration and jerk of the elastic

deformation are also fixed to guarantee minimum residual vibration.

Initial position, velocity, acceleration, jerk: qqq(0) = qqq0, q̇qq(0) = 0, q̈qq(0) = 0,
...
qqq (0) = 0 (6.22a)

Final position, velocity, acceleration, jerk: qqq(tf ) = qqqf , q̇qq(tf ) = 0, q̈qq(tf ) = 0,
...
qqq (tf ) = 0

(6.22b)

Initial, final elastic deformation and rate: r1(0) = 0, ṙ1(0) = 0, r1(tf ) = 0, ṙ1(tf ) = 0
(6.22c)

Final deformation acceleration and jerk: r̈1(tf ) = 0,
...
r 1(tf ) = 0 (6.22d)
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6.4 Numerical Examples and Experimental Results

In this work, the proposed optimal control based vibration suppression is implemented in the 6-

joint industrial robot with flexible payload shown in Fig. 6.2. The actuator limits are shown in

Table 5.2. As shown in Fig. 6.4, the reference trajectory is designed to be a straight line with fixed

orientation.

Target Configuration

Initial Configuration

Figure 6.4: Reference trajectory of robot with flexible end-effector.

The reference trajectory has bounded velocity, acceleration, and jerk. The Cartesian space

acceleration profile of the reference trajectory is shown in Fig. 6.5. The maximum acceleration is

around 10 m/s2, which is relatively high for the flexible payload. If no time delay is desired, input

shaping based technique is guaranteed to generate non smooth motion. The proposed approach
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Figure 6.5: Cartesian space acceleration profile of reference trajectory.

approach is implemented for residual vibration suppression of this reference trajectory. N+1 = 15



CHAPTER 6. OPTIMAL VIBRATION SUPPRESSION FOR AN INDUSTRIAL ROBOT

WITH FLEXIBLE END-EFFECTOR 83

knots are chosen to discretize the optimal control problem formulated in Sec. 6.3. The efficient

trajectory optimization approach proposed in Chapter 5 takes 1.2 s to solve the problem. The

optimized Cartesian space acceleration profile is show in Fig. 6.6. The maximum acceleration is

reduced to around 7 m/s2. The optimized trajectory is not a straight line anymore, but the deviation

is negligible. The comparison of X direction acceleration from the original reference trajectory,

trajectory adjusted by input shaping based approach, and optimized trajectory by the proposed

approach is shown in Fig. 6.7.
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Figure 6.6: Optimized Cartesian space acceleration profile.
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Figure 6.7: Comparison of X direction acceleration from different motion reference.

The joint velocity profile of reference trajectory and the optimized trajectory are shown in Fig.

6.8. Comparing to the original reference trajectory, the joint velocity distributes more even in the

optimized trajectory, which reduces the peak magnitude of the velocity.

The optimized trajectory has been used as motion reference in both simulation and experiment.

Simulation

The response of the dynamical system is simulated using a high fidelity robot simulator which

takes robot dynamics, flexible end-effector dynamics, and controller into consideration. When the

original reference trajectory has been used as motion reference, the simulation shows long settling
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(a) Reference trajectory

0 0.2 0.4 0.6 0.8
-3

-2

-1

0

1

2

3

joint 1

joint 2

joint 3

joint 4

joint 5

joint 6

(b) Optimized trajectory

Figure 6.8: Joint velocity profile of reference trajectory and optimized trajectory.

time before residual vibration disappears. There is almost no residual vibration observed when

the optimized trajectory is used. The simulated elastic deformations using reference trajectory and

optimized trajectory have been shown in Fig. 6.9. The simulated tip accelerations using reference

trajectory and optimized trajectory are shown in Fig. 6.10.

0 1 2 3 4 5

-60

-40

-20

0

20

40

60

80

(a) Reference trajectory
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(b) Optimized trajectory

Figure 6.9: Simulated elastic deformation using different motion reference.

As shown in the figures, both the elastic deformation and the tip acceleration indicate that if no

model uncertainty exists, the tip motion can be perfectly stopped at tf .

Experimental Results

The optimized trajectory has been experimented on a 6-joint industrial robot shown in Fig. 6.2.

A wireless accelerometer is mounted on the tip of the flexible payload to monitor the residual

vibration. Obvious residual vibration is observed when the original reference trajectory is used as

motion reference. The tip acceleration of residual vibration reached as large as about 10 m/s2. The

optimized trajectory has successfully reduced the residual tip acceleration to around 1 m/s2. The
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Figure 6.10: Simulated tip acceleration using different motion reference.

desired tip acceleration, tip acceleration using original reference trajectory as motion reference,

and tip acceleration using optimized trajectory as motion reference are shown in Fig. 6.11.
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Figure 6.11: Measured tip acceleration from accelerometer.

It is observed in the experiment data that the joint velocity and joint torque are all bounded

by the actuator limit. The measured velocity and torque are scaled by the corresponding actuator

limits, as shown in Fig. 6.12.
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(a) Joint velocity
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(b) Joint torque

Figure 6.12: Measured joint velocity and torque in experiment.

It is also observed visually that the residual vibration is suppressed effectively. However due

to model uncertainty and imperfect servo control, the residual vibration is not eliminated perfectly.

Careful system identification and controller gain tuning would be helpful to further improve the

performance of the proposed vibration suppression approach.

6.5 Chapter Summary

Residual vibration suppression is important to achieve fast and precise motion for robotic appli-

cations. In this chapter, an optimal control based approach for residual vibration suppression is

proposed. The robot dynamics, a simplified flexible end-effector model, and the actuator limits

are utilized to adjust the robot motion reference to guarantee smoothness, feasibility, and optimal

vibration suppression performance. Trajectory optimization technique proposed in Chapter 5 is im-

plemented to solve the optimal control problem for residual vibration suppression efficiently. The

proposed approach has been applied in both simulation and experiment on a 6-joint industrial robot

equipped with flexible payload. The results have demonstrated the effectiveness of the proposed

approach. Future work of this topic includes improving model accuracy, necessary modifications

for complicated trajectories with orientation changes, and issues related to practical deployment in

robot controllers.
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Chapter 7

Conclusion and Future Work

7.1 Concluding Remarks

This dissertation presented a series of works on performance improvement of existing industrial

robots. These works are summarized as follows:

Intelligent Control

Chapter 2 has presented a neural network based adaptive backstepping controller for trajectory

tracking of industrial robots with non-negligible transmission flexibility and model uncertainties.

Theoretical analysis has guaranteed the stability of the backstepping controller for flexible joint

robot without model uncertainty. To address model uncertainties in the system, a neural network

was introduced for on-line adaptive compensation. The stability of the proposed controller was

established using Lyapunov stability theory. Simulation work on a 6-joint industrial robot demon-

strated the effectiveness of the proposed approach.

Chapter 3 presented a zero time delay input shaping approach for smooth settling of indus-

trial robot with joint flexibility. The time delay issue in conventional input shaping technique is

addressed by the proposed approach. Path constraint was taken into consideration for implementa-

tion on multi-joint industrial robot. Experimental results on a 6-joint industrial robot demonstrated

the performance improvement in terms of overshoot reduction.

Chapter 4 presented a modified zero time delay input shaping approach for residual vibration

suppression of industrial robot with flexible end-effector. The proposed approach focused on the

improvement of zero time delay input shaping technique by increasing motion smoothness. Based

on an analysis of conventional input shaping and zero time delay input shaping using convolu-

tion representation, a model based compensator was introduced to reduce the non-smoothness of

zero time delay input shaping. Experimental results on an industrial robot equipped with flexible

payload showed the effectiveness of the proposed approach.
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Intelligent Planning

Chapter 5 presented an optimal control based approach for robot motion planning. The proposed

approach solved path planning and trajectory planning problems simultaneously. As one practical

solution for the general nonlinear optimal control problem introduced for motion planning, an

efficient numerical method for trajectory optimization is presented. Simulations and experimental

results showed that the proposed approach can return a reasonably good solution within a short

time.

Chapter 6 presented an optimal control based approach for residual vibration suppression of

industrial robot with flexible end-effector. The proposed approach takes full advantage of existing

dynamical model of industrial robot and flexible end-effector. A smooth motion reference was

generated by the efficient trajectory optimization technique presented in Chapter 5. Actuator lim-

itations were taken into consideration to guarantee feasibility of the generated motion reference.

The effectiveness of the proposed approach was shown by simulations and experimental results on

a 6-joint industrial robot equipped with flexible payload.

7.2 Future Work

Several open issues arise during the course of this research. Addressing these issues may be future

directions of this research.

Full State Sensing

Joint flexibility is a practical issue in industrial robots with a heavy payload. The research work

in Chapter 2 has assumed full access to the robot’s states, including actuator states and robot

link states. However most existing industrial robots do not have sensors for robot link position,

which is essential for high accuracy trajectory tracking control. In order to address this issue,

the development of robot link state sensing is necessary. One possible direction is to investigate

hardware design like the DLR lightweight robot [83] and integrated robot joint encoder mentioned

in [2], another possible direction is to utilize extra low cost sensors and investigate model based

state observer [84].

Efficient Collision Checking

The efficient trajectory optimization approach in Chapter 5 is highly efficient in dealing with mo-

tion planning problems which only involve robot dynamics. It is found that the most time con-

suming part in the robot motion planning work is collision checking using a sphere approximation.

The reason is that the number of collision-free constraints grows quadratically as the number of

spheres used for approximation increases. Efficient collision checking which uses less geometric

elements (e.g. [85]) can be investigated to improve the efficiency of motion planning.
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System Identification

Most existing industrial robots are not equipped with sensors for the deformation measurement of

flexible end-effectors, and thus no feedback control can be used for the residual vibration suppres-

sion. In order to guarantee the optimal control based vibration suppression in Chapter 6 works

well for arbitrary trajectory, it is necessary to fit a good dynamical model of the mechanical sys-

tem. The identification task is challenging because of limited observations, noisy measurement

data, and unmodeled dynamics. Identification approaches based on Bayesian theory is one possi-

ble direction to achieve good estimation of physical parameters. It is also interesting to consider

on-line identification approaches based on dual-estimation.
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