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Abstract

Lattice Filtrations for G2 of a p -adic Field

by

Paul Tokorcheck

In this work we aim to describe, in significant detail, certain filtrations and sequences of

lattices inside of the split octonion algebra O, when O is constructed over the field Qp.

There are several reasons why one would like to consider such lattice filtrations, not the

least of which is the connection that they have to certain filtrations of subgroups of the

automorphism group G2 = Aut(O).

It is an eventual goal to try to uncover previously unknown supercuspidal repre-

sentations of G2 by examining representations of the subgroups making up these subgroup

filtrations, which are known as Moy-Prasad filtrations. When G2 is constructed over Qp,

each of the filtration subgroups will be compact and open, and normal in the previous sub-

group in the filtration, so that the respective quotients are all finite groups. A basic strategy

then, is to identify representations of these finite quotients, extend them to representations

of the filtration subgroups, and then induce them to representations of the whole group G2.

To understand the lattice filtrations that identify the Moy-Prasad filtration sub-

groups, the work of W.T. Gan and J.K. Yu in [7] is indispensable. In their article, they

draw connections between certain lattice filtrations, octonion orders, maximinorante norms,

and points in the Bruhat-Tits building B(G2). Their main idea was to use the norm-

preserving quadratic form inherent in O, along with the natural 8-dimensional representa-

tion of G2 = Aut(O), to create a canonical embedding of the building into B(SO(O)). Since

vii



the latter building had been previously described as the set of “maximinorante norms” on

O, they arrived at an explicit description of B(G2) in terms of certain maximinorante norms

and orders in O.

The present work then attempts to describe all of these structures in detail, be-

ginning with general composition algebras and the construction of the group G2. Then we

will construct the Bruhat-Tits building B(G2) via the coroot lattice of type G2, though

we will mainly concern ourselves only with the standard apartment in B(G2). Finally we

will define our lattice filtrations and draw the connections between them and points B(G2)

outlined in [7], which will reveal the action of the group G2 on its own building. Along the

way, we identify many important structures and facts about the group itself.
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Part I: General Fields
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Chapter 1

Introduction

In Part I, we will review the general theory of composition algebras over a field k,

and their k- algebra automorphisms. Composition algebras come in several different shapes

and sizes, but we generally refer to those of dimension 8 as octionion (or Cayley) algebras.

This will lead us to an initial definition:

Definition 1.0.1. If O is an octonion algebra over a field k, the group G2,O is the group

of k-algebra automorphisms of O.

However, the nomenclature we use implies that when constructed over the field

k = C, the groupG2 should be associated to the exceptional complex semi-simple Lie algebra

g2. A priori, this connection is far from obvious. We deal with this connection in Chapters

4 and 5 where we first describe the Chevalley construction of a group of Lie type from a

Lie algebra, and then identify particular automorphisms of our octonion algebra which act

as the Chevalley generators of the group. These associations between automorphisms and

Chevalley elements will later allow us to describe other structures in G2 very explicitly. We
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will also be able to calculate certain structure constants for G2 by specifying a choice and

ordering of the generators.

Though we will later take k to be the local non-archimedean field k = Qp, the

results discussed in Part I are more general. Therefore we may take k to be any field of

characteristic not equal to 2.
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Chapter 2

Composition Algebras and the

Octonions.

2.1 Objects

Taking k to be an arbitrary field of characteristic not 2, we use standard notation

from vector calculus: namely, the symbols ~ı, ~, and ~k will denote the standard unit vectors

in k3, while ◦ and × will denote the usual dot product and cross product. We begin with

a preliminary definition.

Definition 2.1.1. A composition algebra V is a unital k-algebra1, which is further

endowed with a quadratic form N : V → k, with the following properties:

(a) N is multiplicative.

(b) N is nondegenerate. That is, the associated symmetric bilinear form B is nondegen-

1We do not require V to be either commutative or associative.
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erate, where B is defined by

B(v, w) =
1

2
[N(v + w)−N(v)−N(w)].

The quadratic form N is called the norm of the composition algebra V .2

The nondegenerate quadratic form N places quite a bit of structure on V . For

example, the bilinear form B can be used to define orthogonality in V , in the sense that

v, w ∈ V are called orthogonal if B(v, w) = 0. The quadratic form N also leads to the

following structures:

Definition 2.1.2. Let V be a composition algebra with norm N . Then we have also a

trace, defined on v ∈ V by

T (v) := N(v + 1)−N(v)−N(1) = 2B(v,1),

and an involution, defined on v ∈ V by

v := T (v)1− v.

Lemma 2.1.1. We have the following facts about the identity:

(a) N(1) = 1.

(b) B(1,1) = 1
2 [N(2 · 1)− 2N(1)] = 1

2 [4N(1)− 2N(1)] = 1.

(c) T (1) = 2B(1,1) = 2.

(d) 1 = T (1)1− 1 = 1.

2Though term ‘norm’ in this context is standard, we point out that N is not a norm in the analytic
sense of a normed vector space. In fact, since N maps into an arbitrary field k which will not be ordered in
general, concepts such as ‘positive definite’ or ‘triangle inequality’ are unlikely to have any meaning in our
context. Conversely, the standard norms placed on vector spaces are generally not quadratic.
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Proof. All statements follow directly from the definitions.

We next justify the terminology used in our last definition, and verify a few other

facts.

Lemma 2.1.2. Let V be any composition algebra. Then for all v, w ∈ V :

(a) Both the trace and involution are linear.

(b) The subalgebra of V fixed by the involution is equal to k1.

(c) T (v)1 = v + v.

(d) v = v.

(e) vw = w · v.

(f) B(v, w) = 1
2T (vw) = B(vw, 1).

(g) N(v)1 = vv.

(h) v2 − T (v)v +N(v)1 = 0.

Proof. All statements and their proofs can be found in either [11] or [20].

Looking carefully at Lemma 2.1.2, we see that all of the other structures (N , T ,

and B) can be described solely in terms of the involution. However, it is still necessary for

the resulting N and B to satisfy the properties of Definition 2.1.1, if V is to be considered

a composition algebra.

We now describe a number of examples of compositions algebras.
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(a) The field k itself is a composition algebra of dimension 1, with quadratic form N(v) =

v2, trace given by T (v) = 2v, and trivial involution. This norm is clearly multiplicative

and nondegenerate.

(b) The vector space k× k is an two dimensional k-algebra under component-wise multi-

plication, with identity 1 = (1, 1). The norm form N is given by N(a, b) = ab, which

is again multiplicative and non-degenerate, making this a composition algebra. The

trace is given by T (a, b) = a + b, and the involution is given by (a, b) = (b, a). Note

that this algebra is both associative and commutative.

(c) Perhaps the most well-known composition algebra is the algebra of 2×2 matrices over

a field k, Mat2(k). Here, N is given by the determinant, which gives rise to the usual

trace and involution on Mat2(k):

(
a b
c d

)
=

(
d −b
−c a

)
.

It is well known that the determinant is multiplicative. For non-degeneracy, note that

for v, w ∈ Mat2(k),

B(v, w) =
1

2
[det(v + w)− det(v)− det(w)] = 0

implies that

det(v + w) = det(v) + det(w).

But since the determinant is not an additive homomorphism, for this to be true for all

v ∈ Mat2(k) we have w = 0 necessarily. Therefore Mat2(k) is a composition algebra,
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and all the appropriate relations are satisfied between these structures. Note that this

algebra is associative but not commutative.

(d) Zorn’s octonions[22] O are given as a set by:

O :=

{(
a ~v
~w d

) ∣∣∣∣ a, d ∈ k, and ~v, ~w ∈ k3

}
.

Addition in this set is defined in the regular way (entry-wise), and it also has a

multiplication, given by:

(
a ~v
~w d

)(
α ~φ
~ψ δ

)
=

(
aα+ ~v ◦ ~ψ a~φ+ δ~v − ~w × ~ψ

α~w + δ ~ψ + ~v × ~φ dδ + ~w ◦ ~φ

)
.

The identity is the usual 1 =

(
1 0
0 1

)
, and O is also equipped with a necessary

norm, which is analogous to the determinant in Mat2(k):

N

(
a ~v
~w d

)
= ad− ~v ◦ ~w.

It follows directly from Definition 3 that the trace T on O is the usual trace, defined

as the sum of the diagonal entries, and the involution is

(
a ~v
~w d

)
=

(
d −~v
−~w a

)
.

Showing that this quadratic norm form (determinant) is multiplicative is straightfor-

ward and requires only the identity

(~v × ~φ) ◦ (~w × ~ψ) = (~v ◦ ~w)(~φ ◦ ~ψ)− (~v ◦ ~ψ)(~φ ◦ ~w).

Showing that N is nondegenerate is similar to Example (c):

B

((
a ~v
~w d

)
,

(
α ~φ
~ψ δ

))
= 0

8



implies that

N

(
a+ α ~v + ~φ

~w + ~ψ d+ δ

)
= N

(
a ~v
~w d

)
+N

(
α ~φ
~ψ δ

)
,

which implies that

aδ + αd+ (~v ◦ ~ψ) + (~φ ◦ ~w) = 0.

This will be true for arbitrary a, d ∈ k and ~v, ~w ∈ k3 if and only if α = δ = 0 ∈ k

and ~φ = ~ψ = 0 ∈ k3. The algebra O is therefore a composition algebra. Note that

this algebra is neither associative nor commutative. However, it is alternative, in

the sense of the definition below.

Definition 2.1.3. A k-algebra V is called alternative if, for all v, w ∈ V , we have:

v(vw) = (vv)w,

v(ww) = (vw)w,

v(wv) = (vw)v.

Equivalently, V is alternative if for all v, w ∈ V , the subalgebra generated by v and w is

associative.

Definition 2.1.4. A composition algebra is called split if it contains zero divisors. Other-

wise, it is called non-split.

Since it is not difficult to find zero-divisors in each of the examples 2 − 4 above,

they are all examples of split composition algebras. However, there are examples of com-

position algebras which are not split, such as the field C of complex numbers, Hamilton’s

quaternions H, or Graves’ Octonions OG, all of which are normed division algebras and may

be constructed using the Cayley-Dickson construction from k = R.

9



2.2 Morphisms

Definition 2.2.1. Let (V,N) and (V ′, N ′) be two composition algebras. We call f :

(V,N) → (V ′, N ′) a morphism of composition algebras if it is a morphism of alge-

bras from V to V ′ which additionally preserves the norm form N :

N ′(f(v)) = N(v), ∀ v ∈ V.

While this is a perfectly fine definition, we can also prove that this is always the

case: any morphism of algebras will necessarily preserve N , as outlined in the following

theorem.

Theorem 2.2.1. Let (V,N) and (V ′, N ′) be two composition algebras, and f : (V,N) →

(V ′, N ′) be a morphism of composition algebras. Then N ′(f(v)) = N(v) for all v ∈ V .

Proof. With the hypotheses of our theorem, we choose v ∈ V . Suppose first that v ∈ k1 ⊆

V . In this case, f (as an algebra morphism) acts trivially on v, and in both V and V ′ the

norm of v is just N(v) = vv = v2. Thus f preserves the norm in this case.

Suppose now that v /∈ k1. Examine the ideal I = {P ∈ k[X] | P (v) = 0} ⊆ V .

Note that I contains no nonzero elements of degP ≤ 1 (else v ∈ k1). Since k[X] is a PID,

I = 〈Pv〉 for some monic polynomial Pv ∈ k[X]. In fact, by Lemma 2(h), the characteristic

polynomial v2−T (v)v+N(v)1 is in I, and this must be the unique polynomial equal to Pv

(else you could subtract the two monic polynomials and the result would be linear in I).

If we apply the algebra morphism f to Pv, we find that

f(0) = f

(
v2 − T (v)v +N(v)1

)
= f(v)2 − T (v)f(v) +N(v)1 = 0.

10



Therefore N(v) is also the constant term of the characteristic polynomial of f(v) ∈ V ′, and

our statement follows.

Therefore, morphisms of algebras and morphisms of composition algebras are

equivalent concepts, and the category of composition algebras and their morphisms is ac-

tually a full subcategory of the k-algebras.

Now, it happens that the examples of split composition algebras listed in Section

2.1 are each embedded in the next as composition algebras:

k ↪→ k × k ↪→ Mat2(k) ↪→ O.

For example, we have the diagonal embedding η1 : v 7→ (v, v) of k into k× k. The

(other) diagonal embedding of k × k into Mat2(k) may be given by

η2 : (a, b) 7→
(
a 0
0 b

)
.

Since η1 must preserve the identity, but must also be linear, η1 is unique. However,

the embedding η2 is not unique, nor are the embeddings Mat2(k) ↪→ O. In the latter case,

we may choose any unit vector ~u ∈ k3 (i.e., having u ◦ u = 1) to yield an embedding

η3 :

(
a b
c d

)
7→
(

a b~u
c~u d

)
.

It is easily verified that all of these maps are injective algebra morphisms, and hence they

preserve the respective forms N . In the last map, we will often choose ~u to be equal to

one of the standard basis vectors ~ı, ~, or ~k. When necessary, we will specify our choice of

embedding by writing η~ı(Mat2(k)), η~(Mat2(k)), η~k(Mat2(k)), as appropriate.

11



2.3 Generating and Decomposing Composition Algebras

The goal of this section is to describe how a composition algebra can be decomposed

into a composition algebra of smaller dimension and its orthogonal complement. We will use

this decomposition later to describe certain automorphisms of O, whose action is defined

by the choice of decomposition. A secondary goal is to classify all possible composition

algebras by their dimension, and by whether or not they are split. This will help clarify the

question of “which G2” we refer to at any given time.

Toward these ends, we will describe how to generate a new composition algebra

from an given one, using a variation of the Cayley-Dickson construction. As always, we will

refer to our set of examples for insight.

Let (V,N) be any composition algebra, with its usual structure given by the norm

form N . We form the space W := V ⊕V l, where at this point l is simply a formal variable.

For any nonzero µ ∈ k×, multiplication in W is given by [11]

(a+ bl)(c+ dl) = (ac+ µdb) + (da+ bc)l.

Note that in our previous examples of split composition algebras we have taken

µ = 1. If we take µ = −1, this is simply the familiar Caley-Dickson construction which can

be used with k = R to construct the normed division algebras C, H, and OG.

Proposition 2.3.1. The map a+ bl 7→ a− bl defines an involution on W .

12



Proof. The map clearly has order two, and is k-linear since a is linear on V . We also have:

(a+ bl) · (c+ dl) = (a− bl)(c− dl)

=
(
a · c+ µdb

)
+
(
−da− bc

)
l

= (ca+ µbd)− (bc+ da)l

= (ca+ µbd)− (bc+ da)l

= (ca+ µbd) + (bc+ da)l

= (c+ dl)(a+ bl).

We often write a+ bl = a − bl, but note that there are two distinct involu-

tions present in this expression, one on V and one on W . Thus if we associate V =

{a+ bl ∈W | b = 0}, the involutions on V and W will coincide.

Definition 2.3.1. We define a norm form NW (w) := ww for all w ∈ W , and therefore a

trace TW and bilinear form BW constructed as we described previously.

It is immediate that NW is multiplicative as

NW (vw) = vwvw = vww̄v̄ = vNW (w)v̄ = NW (w)vv̄ = NW (v)NW (w).

However, at this point we do not yet know that the associated BW is non-degenerate. In

fact, this will not always be the case, and thus algebras W constructed in this way may or

may not be composition algebras. Nevertheless, we collect here a number of facts about W

13



which we will have occasion to use later. We will neglect the subscript on our maps N , B,

or T when the context is clear.

Lemma 2.3.1. For all a ∈ V , we have al = la.

Proof. Let v ∈ W be arbitrary. We have that N(v)1 = (vv)1, which we can linearize v as

v = a+ b, and

N(a+ b)1 = ((a+ b)(a+ b))1 = (aa+ ab+ ba+ bb)1

implies that

2B(a, b)1 = ab1 + ba1.

Therefore, if we choose a to be from V and b = l, then B(a, l) = 0 and l = −l, and

0 = −al1 + la1.

Lemma 2.3.2. For all a, b ∈ V , we have that (ab)l = b(al), and l(ab) = (lb)a.

Proof. Let v, w ∈ W be arbitrary. Using the same arguments as the last lemma, we use

the alternative property of W to write N(v)w = (vv)w = v(vw), which we can linearize as

v = c+ d, and

N(c+ d)w = (c+ d)((c+ d)w)

= (c+ d)(cw + dw)

= c(cw) + c(dw) + d(cw) + d(dw)

= (cc)w + c(dw) + d(cw) + (dd)w
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implies that

2B(c, d)w = c(dw) + d(cw).

Now, we can again choose c, w ∈ V and d = l, so that

0 = 2B(c, l)w = c(lw) + l(cw)

= −c(lw) + l(cw)

= −c(wl) + (cw)l,

which implies that

c(wl) = (wc)l.

Our statement follows, and the second statement is obtained by taking conjugates of the

first.

Lemma 2.3.3. We have the following identities on the element l ∈W :

(a) l2 = µ.

(b) bl = −bl for every b ∈ V .

(c) TW (bl) = bl + bl = 0.

(d) NW (bl) = blbl = −blbl = −bbl2 = −NV (b)µ.

Proof. All are immediate from the definitions and previous lemmas.
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Lemma 2.3.4. Suppose that W is a composition algebra; i.e., that BW is nondegenerate.

Associate

V = {a+ bl ∈W | b = 0} and V l = {a+ bl ∈W | a = 0} .

Then V l = V ⊥.

Proof. For a ∈ V and bl ∈ V l, we have:

BW (a, bl) = N(a+ bl)−N(a)−N(bl)

= (a+ bl)(a+ bl)− aa+NV (b)

= (a+ bl)(a− bl)− aa+NV (b)

= (aa+ µ(−b)b) + (−ba+ ba)l − (aa) +NV (b)

= 0.

Therefore V l ⊆ V ⊥. Now, suppose that w ∈ V ⊥. Write w = a+ bl ∈ V ⊥ ⊂W . Then

BW (w, V ) = BW (a+ bl, V ) = BW (a, V ) +BW (bl, V ) = BW (a, V ).

and this last expression equals zero if and only if a = 0 by nondegeneracy of BW . Therefore

V l = V ⊥.

From these considerations, when the constructed W is a composition algebra, we

may write W = V ⊕ V l, and this sum is both direct and orthogonal. However, we have

not yet determined the conditions under which NW will be nondegenerate. The following

theorem was originally proven by A. Hurwitz in [9] in the case of the normed division

algebras over R but has since been extended to include arbitrary fields.
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Theorem 2.3.1. All composition algebras are obtained by repeated doubling, starting from

k1. Composition algebras of dimension 1 or 2 are commutative and associative, those of

dimension 4 are associative but not commutative, and those of dimension 8 are alternative,

but neither commutative nor associative. The constructed norm NW on W will be nondegen-

erate if and only if V was associative. Therefore the possible dimensions of a composition

algebra are 1, 2, 4, and 8.

Proof. For general fields, proofs of these statements may be found in either [11], [13], or

[20].

With this result, for a fixed field k we may now refer to composition algebras of

dimension 2 as quadratic k-algebras (and denote them by K), composition algebras of

dimension 4 as quaternion k-algebras (and denote them by B), and composition algebras

of dimension 8 as Cayley or octonion k-algebras (and denote them by C). We will continue

to refer to general composition algebras as either V or W .

In our examples of split composition algebras, we see that k × k can indeed be

decomposed in this way; given (a, b) ∈ k × k, we can write:

(a, b) =

(
a+ b

2
,
a+ b

2

)
+

(
a− b

2
,
a− b

2

)
(1,−1).

The splitting element l in this case is (1,−1), and we can check that for all a, b ∈ k and
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corresponding (a, a), (b, b) ∈ η1(k) ⊂ k × k,

B
(
(a, a) , (b, b) (1,−1)

)
=

1

2
T
(
(a, a) (b,−b)

)
=

1

2
T
(
(a, a) (−b, b)

)
=

1

2
T
(
(−ab, ab)

)
=

1

2
(−ab+ ab)

= 0.

Therefore the two images V, V l are indeed orthogonal.

Also, we may associate k × k with its image (the diagonal matrices) in Mat2(k),

and have the following decomposition:

(
a b
c d

)
=

(
a 0
0 d

)
+

(
b 0
0 c

)(
0 1
1 0

)
.

The splitting element here is l =

(
0 1
1 0

)
.

Finally, we examine the algebra O. Here, the splitting element will depend on the

choice of embedding, and for our three chosen embeddings (with ~u equal to either ~ı, ~, or

~k), we use (respectively) the splitting elements:

J :=

(
0 ~
~ 0

)
, K :=

(
0 ~k
~k 0

)
, I :=

(
0 ~ı
~ı 0

)
.

Again, the images η~ı(Mat2(k)) and η~ı(Mat2(k))J are orthogonal, and respectively for the

other choices of embedding. Explicitly, an element of O may be decomposed in any of the
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following ways:

(
a 〈v1, v2, v3〉

〈w1, w2, w3〉 d

)
=

(
a v1~ı
w1~ı d

)
+

(
v2 w3~ı
−v3~ı w2

)(
0 ~
~ 0

)
(2.1)

=

(
a v2~
w2~ d

)
+

(
v3 w1~
−v1~ w3

)(
0 ~k
~k 0

)
(2.2)

=

(
a v3

~k

w3
~k d

)
+

(
v1 w2

~k

−v2
~k w1

)(
0 ~ı
~ı 0

)
. (2.3)

These decompositions will be used extensively in later computations.
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Chapter 3

Automorphisms of the Split

Octonion Algebra.

3.1 Generalities

Now the we have defined the split octonion algebra O, we shift our focus to its

automorphism group Aut(O). It will be assumed that any composition subalgebras of O

that are mentioned here are precisely those split algebras described in our previous examples.

We remind the reader that k may be any field of char k 6= 2.

Definition 3.1.1. Let W be a composition algebra and V be a composition subalgebra of

W . We will use Aut(W/V ) to denote the set of k-algebra automorphisms of W which act

trivially on V . It is clear that these form a subgroup of the group Aut(W ). However, since

the composition algebras V,W will not be fields in general, we will not refer to these as

“Galois groups” despite the similarities in notation and definition.1

1These groups are referred to in this way in [11] and some other sources.
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Note that any automorphism of any composition algebra W is unital and linear,

and thus preserves the embedded copy of k ⊂ W . Therefore we can write Aut(W/k) or

Aut(W ) interchangeably, without loss of meaning.

In order to understand the fairly complicated group Aut(O/k) = Aut(O), it is

helpful to consider some of its more notable subgroups. We list a few important subgroups

below, and describe how they arise. To save on notation, we will denote by g−T the

transpose inverse of a matrix g. There will be nothing lost by this abbreviation, since these

two operations commute.

3.2 A subgroup isomorphic to SL3(k)

We begin with a definition, the claims of which will be verified in the following

propositions.

Definition 3.2.1. The group SL3(k) is embedded in Aut(O/k) via the morphism

θ : SL3(k) ↪→ Aut(O/k),

where, for g ∈ SL3(k), the element θ(g) is defined by

[θ(g)]

(
a ~v
~w d

)
=

(
a g~v

g−T ~w d

)
.

Proposition 3.2.1. The maps θ(g) : O→ O are automorphisms for each g ∈ SL3(k).

Proof. It is easily verified that each θ(g) is linear, and invertibility follows from g itself

being invertible.
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To show that θ(g) is multiplicative, we first note that given any two vectors ~v, ~w ∈

k3, and any invertible matrix g ∈ GL3(k), we have

g~v ◦ g−T ~w = (g~v)T (g−T ~w)

= ~vT gT (g−T )~w

= ~vT ~w

= ~v ◦ ~w.

It is less obvious (though still true) that under the same conditions one has

g~v × g ~w = (det g)(g−T )(~v × ~w).

However, in our case we assume g ∈ SL3(k), so the above determinant is equal to one.

Armed with these facts, we now verify that

[θ(g)]

(
a ~v
~w d

)
[θ(g)]

(
α ~φ
~ψ δ

)
=

(
a g~v

g−T ~w d

)(
α g~φ

g−T ~ψ δ

)

=

(
aα+ g~v ◦ g−T ~ψ ag~φ+ δg~v − g−T ~w × g−T ~ψ

αg−T ~w + δg−T ~ψ + g~v × g~φ dδ + g−T ~w ◦ g~φ

)

=

(
aα+ ~v ◦ ~ψ g(a~φ+ δ~v − ~w × ~ψ)

g−T (α~w + δ ~ψ + ~v × ~φ) dδ + ~w ◦ ~φ

)

= [θ(g)]

((
a ~v
~w d

)(
α ~φ
~ψ δ

))
.

Proposition 3.2.2. The map θ is an injective morphism of groups.

Proof. This verification is elementary, and requires only the the fact that matrix inversion

and transposition commute.
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We can easily see that the action of θ leaves the diagonal entries of an octonion

element unchanged, which means that for K = k × k ⊂ O we have that θ(SL3(k)) ⊆

Aut(O/K). In fact, we can do better:

Proposition 3.2.3. Fix a tower of composition algebras satisfying k ⊂ K ⊂ B ⊂ C. The

image θ(SL3(k)) in Aut(O) is equal to Aut(O/K).

Proof. A proof of this may be found on pages 71− 72 of [11].

3.3 Some subgroups isomorphic to SL2(k)

In this definition, we begin with the particular embedding η~ı : Mat2(k) ↪→ O,

which corresponds to a choice of decomposition of v ∈ O as v = η~ı(a) + η~ı(b)J , as discussed

in Section 2.3. We will discuss the other embeddings of Mat2(k) into O later on.

Definition 3.3.1. For the choice of embedding η~ı, we have a related embedding of groups

γ~ı : SL2(k) ↪→ Aut(O/k),

where γ~ı(g) is defined in the following way: after decomposing v ∈ O into v = η~ı(a)+η~ı(b)J ,

with a, b ∈ Mat2(k), apply the element g:

[γ~ı(g)]
(
η~ı(a) + η~ı(b)J

)
= η~ı(a) + η~ı(gb)J.

Proposition 3.3.1. The maps γ~ı(g) : O→ O are automorphisms for each g ∈ SL2(k).

Proof. Again, it is easily verified that γ~ı(g) is linear, and invertibility follows from g itself

being invertible. That it is also multiplicative depends upon the fact that g ∈ SL2(k) and
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det g = 1, for in such a case the involution on Mat2(k) = Mat2(k) corresponds to inversion:

g = g−1. Therefore,

[γ~ı(g)]((a+ bl)(c+ dl)) = [γ~ı(g)]((ac+ db) + (da+ bc)l)

= (ac+ db) + (g(da+ bc))l

= (ac+ d(g−1g)b) + (g(da) + g(bc))l

= (ac+ (dg)(gb)) + ((gd)a+ (gb)c)l

= (ac+ (gd)(gb)) + ((gd)a+ (gb)c)l

= (a+ (gb)l)(c+ (gd)l)

= [γ~ı(g)](a+ bl) · [γ~ı(g)](c+ dl).

Proposition 3.3.2. The map γ~ı is an isomorphism of groups:

γ~ı : SL2(k)→ Aut
(
O/η~ı(Mat2(k))

)
.

Proof. Since the matrices a, b, g all associate, γ~ı is a homomorphism of groups from SL2(k)→

Aut(O). It is obvious that the map γ~ı has trivial kernel. Also, from the definition of γ~ı the

element g acts only on the second component of the decomposed a+ bl, and therefore acts

trivially on the image η~ı(Mat2(k)) in O. Therefore, SL2(k) ⊆ Aut
(
O/Mat2(k)

)
.

Conversely, let φ ∈ Aut
(
O/η~ı(Mat2(k))

)
. We already have that O ∼= η~ı(Mat2(k))⊕

η~ı(Mat2(k))l for some element l ∈ Mat2(k)⊥ with N(l) 6= 0. Since algebra automorphisms

preserve norms and thus orthogonal subspaces, φ maps Mat2(k)⊥ ∼= η~ı(Mat2(k))l into itself,

and therefore φ(l) = ul, for some u ∈ Mat2(k). In fact, N(l) = N(φ(l)) = N(ul) =
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N(u)N(l) implies that N(u) = 1. Therefore, for a+ bl ∈ O,

φ(a+ bl) = φ(a) + φ(b)φ(l) = a+ b(ul) = a+ (ub)l.

The last equality in the above follows from Lemma 2.3.2.

Recall that this definition began with a choice of decomposition a+ bl in the sense

of the last section. Likewise, we can start with any embedding of Mat2(k) into O, and end

up with a similarly defined embedding of SL2(k) into Aut(O). All of the verifications we

have just performed can also be verified for other embeddings. In this way, each embedding

of Mat2(k) into O will yield a distinct copy of SL2 into Aut(O).

3.4 Some (other) subgroups isomorphic to SL2(k)

For each embedding of Mat2(k) into O we now describe another, distinct way of

embedding SL2(k) into Aut(O). Again, we describe the construction with respect to the

embedding η~ı, though there is no reason to prefer this choice.

Definition 3.4.1. For the choice of embedding η~ı, we have a related embedding of groups,

δ~ı : SL2(k) ↪→ Aut(O/k).

Here, after decomposing an element v ∈ O into v = η~ı(a) + η~ı(b)J , with a, b ∈

Mat2(k) as before, we apply the element g in a different way:

[δ~ı(g)](η~ı(a) + η~ı(b)J) = η~ı(gag
−1) + η~ı(bg

−1)J.

That δ~ı(SL2(k)) ⊆ Aut(O/k), and that δ~ı is an injective morphism of groups, are

both verifications very similar to those of Section 3.3. Again, all verifications hold regardless

of the choice of initial decomposition.
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Unlike the previous cases however, we note that δ~ı(g) will act trivially on a ∈

Mat2(k) for all g ∈ SL2(k) if and only if a is a scalar matrix. Thus, the automorphisms

constructed in this way all preserve the field k (or rather, its isomorphic copy in O; after

all, they are linear), but do not preserve K or any copy of Mat2(k), and this copy of SL2(k)

is not subgroup of the form Aut(W/V ) as described before.

3.5 Matters of Notation

While the embedding of SL3(k) into G2 was relatively straightforward, the various

embeddings of SL2(k) required us to make a number of choices. We wish to create a notation

for these associated automorphisms that will be even more descriptive, and be consistent

with notation that we will use in later chapters. First, note that so long as only one choice

of embedding Mat2(k) ↪→ O is used, composition of the automorphisms of type γ and δ will

simply correspond to matrix multiplication, since all of the involved matrices will be part

of the same embedded copy of Mat2(k) ⊂ O, and will associate.

Second, we note that SL2(k) is generated by matrices of the form:

(
1 x
0 1

)
and

(
1 0
y 1

)
, with x, y ∈ k.

Therefore, each embedded copy γ(SL2) ⊂ Aut(O) is likewise generated by those automor-

phisms of O which act by these matrices, that is, by the automorphisms:

γ

(
1 x
0 1

)
and γ

(
1 0
y 1

)
, with x, y ∈ k.

Each embedded copy of δ(SL2) is also generated by the automorphisms analogous to these.
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Definition 3.5.1. We will denote the following embeddings of the additive group k+ into

the multiplicative group SL2(k) as follows:

e+ : s 7→
(

1 s
0 1

)
and e− : s 7→

(
1 0
s 1

)
.

So, for a fixed η : Mat2(k) ↪→ O, we consolidate all of our notation by defining the following

maps from additive group k+ to the group Aut(O):

γ+ = γ ◦ e+, δ+ = δ ◦ e+,

γ− = γ ◦ e−, δ− = δ ◦ e−.

Defined by a composition of injective morphisms, the maps above are all themselves

injective morphisms from the additive group k+ to the group Aut(O), and there are 12 such

maps. As an example, with x ∈ k, the automorphism δ−~ (x) acts on an element a+ bK ∈ O

as

δ−~ (x)(a+ bK) =

((
1 0
x 1

)(
a

)(
1 0
−x 1

))
+

((
b

)(
1 0
−x 1

))(
0 ~k
~k 0

)
.

It is precisely these automorphisms γ±(s) and δ±(t), for s, t ∈ k, that will act as

our Chevalley generators in the remaining chapters. The automorphisms θ(g) corresponding

to the SL3(k) subgroup will make a significant contribution as well.
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Chapter 4

Chevalley Groups

4.1 Background

Historically, the identification of many abstract simple groups was done via a

careful consideration of simple complex Lie groups. For example, if one defines the group

SL2(C) to be the group of two-by-two matrices of determinant one, then the field C may

be easily replaced by any field or commutative ring (with identity) without alteration of the

definition.

But this strategy requires one to construct and study each simple Lie group indi-

vidually. Moreover, many other groups which were known (at least formally) to exist via an

association to a Lie algebra or root system, failed to admit such a simple definition. Theo-

retically, all such algebraic groups can be considered as subgroups of GLn satisfying some

polynomial conditions on the entries, though the size of n and the nature of the polynomial

conditions proved to be elusive. At the time of Chevalley’s work in [4], only the exceptional
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group G2 had admitted1 such an identification.

The strength of Chevalley’s construction is that it allows us to study all groups

which arise from an abstract root system simultaneously, regardless of their association

to any particular Lie algebra or field. In its basic form, this construction will begin with

a root system, and then identify a set of generators for the group which are in families

corresponding to the roots in the root diagram. One then imposes a set of relations on

these generators which will yield the desired group structure. These relations are explicitly

described in [21], from which the main part of this section is taken. A group constructed

in this manner will be called a Chevalley group.

Our goal in this chapter is to justify the use of the name G2 for Aut(O) by identi-

fying the generators of Aut(O) established in the last section with the Chevalley generators

coming from the root diagram of the Lie Algebra g2, and then verifying that our generators

satisfy the needed Chevalley relations.

4.2 Abstract Root Systems

To define a Chevalley group G, we require only an abstract, reduced root system.

We therefore proceed with a few definitions.

Definition 4.2.1 ([14]). Let E be a finite-dimensional real inner product space with inner

product (·, ·) and norm squared | · |2. An abstract, reduced root system in E is a finite

set Φ of nonzero elements of E such that

(a) Φ spans E.

1The group G2 was treated for the first time in [5] and [6]. In Chevalley’s introduction of [4], he states
that he has himself applied this method to the groups F4, E6, and E7 in an unedited and unpublished work.

29



(b) If α and β are in Φ, then
2(β, α)

|α|2
is an integer.

(c) For each α, β ∈ Φ, the reflection sα(β) := β − 2(β, α)

|α|2
α is also a root in Φ.

(d) For each α ∈ Φ, if nα ∈ Φ then n = ±1.

We may choose a decomposition of Φ into positive and negative roots Φ =

Φ+ t Φ−. The way that we choose this decomposition is unimportant, so long as the

positive roots satisfy the following properties:

(a) For any nonzero α ∈ Φ, exactly one of α and −α is positive.

(b) The sum of positive roots is positive (when it is a root at all).

Then, among the positive roots we can find the set of simple roots ∆, which are

defined by the property that if δ ∈ ∆, then δ cannot be written δ = α+ β for α, β ∈ Φ+.

Definition 4.2.2. Let W denote the Weyl group of isometries of E, generated by the

elements sα (from root axiom (c)) which reflect a root β across the hyperplane orthogonal

to α in E.

Definition 4.2.3. An abstract root system is said to be reduced if α ∈ ∆ implies 2α /∈ ∆.

After making some choice of simple roots ∆ = {α1, α2, . . . , αn} (here n = dimE),

we define the factors

Aij =
2(αi, αj)

|αi|2
.

From the root axiom (b), we are guaranteed that Aij ∈ Z. Then, the Cartan

matrix of Φ (with respect to ∆) is defined to be the n×n matrix A = (Aij). Although this
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matrix will depend not only on our choice of simple roots, but also on their enumeration,

distinct choices will lead to matrices which are conjugate by some permutation matrix.

The combinatorial properties imposed on the entries of this matrix by the root

axioms lead to the classification of all such Cartan matrices, and to the notion of the Dynkin

diagram. The classification of all Dynkin diagrams, and therefore all abstract reduced root

systems, is well-known and can be found in references such as [8] or [14].

4.3 The Chevalley Construction

We build our Chevalley group G = GΦ(k) from a root system Φ and a field k. The

Chevalley generators of G will each be elements of the form eα(t), parameterized by t ∈ k

and α ∈ Φ. From these basic generators one can also construct the following secondary

elements:

Definition 4.3.1. For t ∈ k×, define:

wα(t) := eα(t)e−α(−t−1)eα(t),

hα(t) := wα(t)wα(−1).

Having these generators and group elements, we describe the relations which define

the group G, taken from [21, pg 66]:

(a) The eα are each homomorphisms from the additive group of k into G, that is:

eα(s+ t) = eα(s)eα(t) for all s, t ∈ k.

(b) If α, β ∈ Φ with α+ β 6= 0, then

[eβ(t), eα(s)] =
∏

eiα+jβ(Nijs
itj),
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where the product is taken over all (strictly) positive integers i, j ∈ Z such that

iα+ jβ ∈ Φ, and the Nij are each integers depending on α, β, but not on s, t.

(c) Each hα is multiplicative in k×; i.e., hα(s)hα(t) = hα(st) for all s, t ∈ k×.

Though G is presently only an abstract group, devoid of any topological or geo-

metric properties, the relations just given still impart a significant amount of structure onto

the group. For example, one can show that structure constants Nij described in (b) will

be equal to either ±1,±2, or ±3 for any initial Φ or choice of ∆. There is great deal more

theory which comes directly from the Chevalley construction alone, the best treatments of

which can be found in [4] and [21].

From our generators, we define the following subgroups:

Definition 4.3.2 ([16]). If G = GΦ(k) is a Chevalley group constructed as we have just

described, then let

T :=
〈
hα(t)

〉
,

N :=
〈
wα(t)

〉
,

where α ∈ Φ and t ∈ k×. Then T ≤ G is called the Cartan subgroup of G.

The subgroup N will also play a role, as evidenced by the following proposition.

Proposition 4.3.1. Let T and N be as described above, and W be the Weyl group of Φ

described in Definition 13. Then:

(a) T is normal in N .
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(b) The map φ : N →W that sends wα(t) to the reflection sα induces an isomorphism of

N/T with W .

Proof. Proof of this may be found in [21], Lemma 22.

4.4 When More is Known

Though the theory of abstract Chevalley groups is extensive, quite a bit more can

be said if we associate to the root system its appropriate Lie group or Lie algebra. For

example, at the end of the last section, we were able to define the subgroup T and the Weyl

group N/T of G without any topological references whatsoever. Of course, in the case that

k = C and G is a semisimple complex Lie group, T will be the familiar maximal torus of G,

and its Lie algebra will be a Cartan subalgebra of g. These considerations are unnecessary

in the abstract case, but in this setting, one often considers the roots to be homomorphisms

defined on such a maximal torus. We will describe these homomorphism in Chapter 7 where

we define the coroot system.

In the case that a root system Φ can be identified with a well-known algebraic

group G, then we might identify known generators of G which are in correspondence with

our Chevalley generators eα(t). Describing the precise correspondence between various gen-

erators and roots usually involves some (sometimes lengthy) calculation. A simple example

of such an identification is described in Section 4.5.

On the other hand, if one attaches to the root system its appropriate semisimple

complex Lie algebra g, there is an explicit connection of the root α to the generator e via
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the exponential map. One can choose a root space decomposition

g = h
⊕
α∈Φ

gα

with a suitable choice of root vectors Eα from their respective root spaces that satisfy certain

algebraic properties. Chevalley showed in [4] that such a basis {Hδ, Eα} of g (appropriately

called a Chevalley basis) always exists. One can then formally exponentiate each basis

element Eα against an invariant t to arrive at elements eα(t) := exp(tXα), which generate a

group GChev. This group GChev is precisely the Chevalley group corresponding to g. Since

t is an invariant which can be taken from any field, this approach is general. We will discuss

this exponentiation strategy in more detail in Chapter 5.

4.5 An Example

The group SL2(k) can be constructed from rank one root diagram having two

roots, Φ = {α,−α}, which is shown in Figure 4.1 along with its single line of reflection.

However, we have already discussed (in Section 3.5) two generators of SL2(k), when con-

sidered as group of matrices. Therefore we can make the association, for t ∈ k:

eα(t) =

(
1 t
0 1

)
, e−α(t) =

(
1 0
t 1

)
.
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α−α

Figure 4.1: The root diagram of type A1.

From these generators, we calculate that

wα(t) = eα(t)e−α(−t−1)eα(t)

=

(
1 t
0 1

)(
1 0
−t−1 1

)(
1 t
0 1

)
=

(
0 t
−t−1 0

)
,

hφ(t) = wφ(t)wφ(−1)

=

(
0 t
−t−1 0

)(
0 −1
1 0

)
=

(
t 0
0 t−1

)
.

Note that the Chevalley relations (a) and (c) are easily verified, while relation (b) is trivial

in this case. We see that the hα(t) indeed generate the maximal torus of diagonal matrices in

SL2(k). We can also calculate that W = N/T = Z/2Z, which corresponds to our intuition

from the root diagram A1.

One may consult [16] for a similar discussion of the group Sp4(k), corresponding

to the root system C2. In our next chapter we will make an identification of Chevalley

generators eα(t) to automorphisms in Aut(O), though in this case it will not be so obvious

that our choices of automorphisms actually generate this entire automorphism group. We

will therefore need to apply some extra argument.
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Chapter 5

Chevalley Generators of G2

5.1 Background and Strategy

As mentioned in Section 4.4, one strategy for identifying Chevalley generators of

a Chevalley group G is to first identify a Chevalley basis of the corresponding Lie algebra

g. For us, with g = g2, we can allow a choice of simple roots ∆ = {γ, δ}, with δ the short

root as shown in Figure 5.1, and a corresponding root space decomposition.

δ

γ

δ

γ

δ

γ

Figure 5.1: The root diagram of type G2.
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Definition 5.1.1. A Chevalley basis for the Lie algebra g = g2 is a basis for g

C = {Hγ , Hδ, Eφ}φ∈Φ

which satisfies the following axioms:

(a) [Hγ , Hδ] = 0.

(b) [Hγ , Eφ] = 2(γ,φ)
(φ,φ) Eφ, and [Hδ, Xφ] = 2(δ,φ)

(φ,φ) Eφ.

(c) [Eφ, E−φ] = aHγ + bHδ, where φ = aγ + bδ.

(d) [Eφ, Eψ] = 0, if φ+ ψ 6= 0 and φ+ ψ /∈ Φ.

(e) If φ+ ψ 6= 0 and φ+ ψ ∈ Φ, and r is the integer occurring in the φ-string through ψ

given by ψ − rφ, . . . , ψ, . . . , ψ + qφ, then

[Eφ, Eψ] = ±(r + 1)Eφ+ψ.

Exponentiating each basis element Eφ will give group elements eφ(t) = exp(t·Eφ) in

GChev2 and exponentiating the Chevalley basis relations will show that the eφ(t) necessarily

satisfy the Chevalley group relations. Examples of this construction can be found in either

[4] or [21].

However, in our case we already have candidates for our Chevalley generators, the

γ± and δ± automorphisms, and we will soon show directly that they satisfy the Chevalley

group relations. Therefore we would like to use a slightly reversed argument. We will rather

describe a specific Lie algebra g of Cartan type G2, and a basis of this algebra, such that

when our basis is exponentiated it gives precisely our automorphisms γ± and δ±. Since

we will have verified the Chevalley group relations, our choice of basis will necessarily be a
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Chevalley basis in g, and our γ± and δ± automorphisms will generate a Chevalley group of

type G2.

To summarize, we will have the following structures:

(a) A Lie algebra g2.

(b) A Chevalley basis b of g2.

(c) The Chevalley group GChev2 generated from exponentiated Chevalley basis elements.

(d) The automorphism group Aut(O).

(e) The subgroup Gγ,δ ⊆ Aut(O) generated by the automorphisms γ± and δ±.

Our arguments will show that Gγ,δ ∼= GChev2 . The fact that Gγ,δ is actually all of

Aut(O) will be addressed using a result of George Seligman from [17]. Seligman uses as g2

the algebra of derivations of O, and therefore we will follow suit.

5.2 Associations and Verifications

We note again that the root diagram of type G2 shows 12 roots, 6 long and 6 short.

Similarly, we also have the 12 maps of type γ and δ, each of which are homomorphisms

from the additive group k+ into the group Aut(O). Therefore we can identify each γ with a

long root in Φ, and each δ with a short root. This identification is shown in Figure 5.2. We

should note that the relative associations are precise; once a choice of association is made

between the two simple roots and particular automorphisms, the rest follow necessarily.

Proposition 5.2.1. The automorphisms γ± and δ±, as placed in Figure 5.2, satisfy the

Chevalley group relations.
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δ+
~ı

δ−~kδ+
~

δ−~ı

δ+
~k

δ−~

γ−~

γ+
~ı

γ−~k

γ+
~

γ−~ı

γ+
~k

δ+
~ı

δ−~kδ+
~

δ−~ı

δ+
~k

δ−~

γ−~

γ+
~ı

γ−~k

γ+
~

γ−~ı

γ+
~k

δ+
~ı

δ−~kδ+
~

δ−~ı

δ+
~k

δ−~

γ−~

γ+
~ı

γ−~k

γ+
~

γ−~ı

γ+
~k

Figure 5.2: The association of the automorphisms of O to the roots of G2.

Proof. First, each automorphism γ and δ is a homomorphism from the additive group of k

to the multiplicative group of Aut(O) by Definition 3.5.1.

According to the third Chevalley relation, we wish to show that the automorphisms

corresponding to the hα are multiplicative. Since wα and hα are defined in terms of a single

α ∈ Φ, the associated automorphisms will be built using a single choice of embedding of

Mat2(k) into O. Therefore composition of the involved automorphisms just corresponds to

multiplication of the involved matrices. Moreover, all matrices involved will associate with

each other.

For example, if eα = δ+
~ı , then wα(t) corresponds to an automorphism which acts
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on an element of O, split with respect to ~ı:

[wα(t)](a+ bJ) = a+ (eα(t)e−α(−t−1)eα(t)b)J

= a+

((
1 t~ı
0 1

)(
1 0
−t−1~ı 1

)(
1 t~ı
0 1

)
b

)
J

= a+

((
0 t~ı
−t−1~ı 0

)
b

)
J.

Likewise, in this case hα will correspond to an action by a matrix of the form

[hα(t)](a+ bJ) = [wα(t)wα(−1)](a+ bJ)

= a+

((
0 t~ı
−t−1~ı 0

)(
0 −~ı
~ı 0

)
b

)
J

= a+

((
t 0
0 t−1

)
b

)
J.

Again, since a single root is fixed in the Chevalley definition of hα, the action of the corre-

sponding automorphism will always be with respect to a diagonal matrix in SL2(k). There-

fore actions of hα(s)hα(t) and hα(st) will be identical.

The computations necessary to verify the second Chevalley relation and identify

the necessary Nij are given in Appendices A and B, completing our proof.

For now, denote by Gγ,δ ⊆ Aut(O) the group generated by our γ± and δ±. Though

we have not yet proven that these automorphisms actually generate all of Aut(O), we still

have a valid definition of the subgroup T ⊂ Gγ,δ generated by

T :=
〈
hα(t) | α ∈ Φ, t ∈ k×

〉
.

This leads us to the following proposition.
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Proposition 5.2.2. Let Ts be the maximal torus of diagonal matrices in SL3(k). Then the

image θ (Ts) ⊂ Aut(O) is equal to T =
〈
hα(t) | α ∈ Φ, t ∈ k×

〉
⊂ Gγ,δ.

Proof. Since θ is an morphism of groups the image θ(Ts) can be generated by the two

elements

θ

 t
t−1

1

 and θ

 1
t
t−1

 ,

for t ∈ k×. It is then an easy calculation that

hγ+
~k

(t) = γ~k

(
t
t−1

)(
a ~v
~w d

)
=

(
a v3

w3 d

)
+

((
t
t−1

)(
v1 w2

−v2 w1

))
·
(

0 ~ı
~ı 0

)
=

(
a 〈tv1, t

−1v2, v3〉
〈t−1w1, tw2, w3〉 d

)

= θ

 t
t−1

1

( a ~v
~w d

)
,

and likewise that as automorphisms,

θ

 1
t
t−1

 = γ~ı

(
t
t−1

)
= hγ+

~ı
(t).

Therefore Ts ⊆ T . Conversely, while the subgroup T is defined to be generated by the hα

for α ∈ Φ, it may actually be generated by a smaller subset of these hα. For example, it is

immediate from the definitions that

hγ+
~ı

(t) = hγ−
~ı

(t−1),

hγ+
~

(t) = hγ−
~

(t−1),

hγ+
~k

(t) = hγ−
~k

(t−1).
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Also, from the above considerations we can show that

hγ+
~k

(t)hγ+
~ı

(t) = θ

 t
t−1

1

 θ

 1
t
t−1

 = θ

 t
1

t−1

 = hγ−
~

(t).

For the toral elements corresponding to short roots δ, we calculate:

hδ+
~ı

(t) = δ~ı

(
t
t−1

)(
a ~v
~w d

)
=

(
t
t−1

)(
a v1

w1 d

)(
t−1

t

)
+

((
v2 w3

−v3 w2

)(
t−1

t

))(
0 ~
~ 0

)
=

(
a 〈t2v1, t

−1v2, t
−1v3〉

〈t−2w1, tw2, tw3〉 d

)

= θ

 t
1

t−1

 θ

 t
t−1

1

( a ~v
~w d

)

= hγ−
~

(t)hγ+
~k

(t)

(
a ~v
~w d

)
.

In this way all hδ may be generated from different combinations of the hα, or equivalently,

by the image θ(Ts). Therefore T ⊆ Ts and our statement follows.

5.3 The Algebra of Derivations of O

Our next task is to specify a Lie algebra of Cartan type G2, and identify an

appropriate Chevalley basis of that algebra. Toward this, we make the following definition.

Definition 5.3.1. We denote by DerO the set of derivations on O, that is, the set of

k-linear operators D : O→ O satisfying, for all x, y ∈ O

D (xy) = xD(y) +D(x)y.

It is elementary to show that DerO is closed under commutation [d1, d2] = d1d2 −

d2d1 and thus DerO is a Lie algebra over k. In [10], N. Jacobson begins with this definition
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and proves that DerO is a simple, 14-dimensional Lie algebra of Cartan type G2. In fact,

this statement can be extended to any field of characteristic not 2 or 3; c.f. [17, Theorem

5]. Another portion of Seligman’s work proves the following:

Proposition 5.3.1 ([17]). Let char k 6= 2, 3, 5, 7, 11, 13, 17, and O be the octonion algebra

constructed over k. Then the representation

ρ : Aut(O) −→ Aut(DerO)

g 7−→
(
D 7→ g−1Dg

)
is an isomorphism of groups.

Definition 5.3.2. Let ad denote the adjoint representation of DerO,

ad: DerO −→ End(DerO)

D 7−→ [D,−],

and by the simplicity of DerO, this is faithful.

Definition 5.3.3. Let DernilO := {D ∈ DerO | adD is nilpotent.} We then define the

exponential map into the automorphism group of DerO:

exp: DernilO −→ Aut(DerO)

D 7−→ exp(t · adD),

where exp is defined by

exp(X) :=
∞∑
k=0

Xk

k!
,

where the sum terminates as X is assumed to be ad-nilpotent.
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This gives us a diagram which describes the relationships we have so far:

DernilO −→exp
Aut(DerO)

∼←−
ρ

Aut(O).

Now suppose that C = {Hα, Hβ, Eφ} is a Chevalley basis of g2. If the Ephi are

ad-nilpotent (as will be the case for us), then we exponentiate our basis elements and define

eα(t) := exp(t · adEα) ∈ Aut(DerO).

In this case we have the following theorem.

Theorem 5.3.1 ([17]). Let char k 6= 2, 3, 5, 7, 11, 13, 17, and O be the octonion algebra

constructed over k. Let GChev2 ⊂ Aut(DerO) be the group generated by all automorphisms

of DerO of the form

eα(t) = exp(t · adEα),

where Eα runs through all the root vectors relative to all standard Cartan subalgebras of

DerO. Then GChev2 coincides with the full automorphism group Aut(DerO), and therefore

GChev2
∼= AutDerO ∼= Aut(O).

We note that Seligman proves this theorem by describing an explicit Chevalley

basis of DerO, and exponentiating that specific basis. Also, [17] does not explicitly describe

any individual automorphisms in Aut(O). We will be choosing our own basis for DerO,

but by [21, page 6], any Chevalley basis of DerO is unique up to some sign changes and

automorphisms of DerO, so Seligman’s results will still be valid for our choices.
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5.4 A Chevalley Basis of DerO

According to our last theorem, we are left to show that our automorphisms γ±

and δ± are of the required form for some Chevalley basis elements Eα, in which case we

will have that Gγ,δ = GChev2 = Aut(O). We do this by taking the algebraic derivative of

each of the automorphisms we have.

We begin with the long roots automorphisms γ±. Define Eγ± ∈ End(O) by:

Eγ±(x) := lim
t→0

γ±(t)x− x
t

.

That is, for each u ∈ {±~ı,±~,±~k} we have x = a+ blu and

Eγ+u (a+ blu) = lim
t→0

γ+
u (t)x− x

t

= lim
t→0

1

t

((
0 t
0 0

)
b

)
lu

=

((
0 1
0 0

)
b

)
lu.

Likewise, for Eγ−u ∈ End(O) we have

Eγ−u (a+ blu) =

((
0 0
1 0

)
b

)
lu.

Next we apply the same operation to the short roots δ±, using the same definitions:

Eδ±(x) := lim
t→0

δ±(t)x− x
t

.

Again, for each u ∈ {±~ı,±~,±~k} and x = a+ blu we have

Eδ+u (a+ blu) = lim
t→0

δ+
u (t)x− x

t

= lim
t→0

1

t

[((
1 t
0 1

)
(a)

(
1 −t
0 1

)
− (a)

)
+

(
(b)

(
0 −t
0 0

))
lu

]
=

[(
0 1
0 0

)
, a

]
+

(
b

(
0 −1
0 0

))
lu.
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In this expression the square brackets denote the commutator bracket. Likewise, for Eδ−u ∈

End(O) we have

Eδ−u (a+ blu) =

[(
0 0
1 0

)
, a

]
+

(
b

(
0 0
−1 0

))
lu.

These define a set {Eφ}φ∈Φ. It can be checked directly that each of these Eφ is

are derivations, and nilpotent with E2
φ = 0, so for any other D ∈ DerO:

ad (Eφ)3(D) = ad(Eφ)2(EφD −DEφ)

= ad(Eφ)(−2EφDEφ)

= 0.

Thus each ad (Eφ)3 = 0 and Eφ is ad-nilpotent. It is also clear that the Eφ exponentiate to

our original octonion automorphisms.

For the two simple roots δ = δ+
~ı and γ = γ−~k

in ∆, define

Hγ := [Eγ , E−γ ] and Hδ := [Eδ, E−δ].

Proposition 5.4.1. The combined set b := {Hγ , Hδ, Eφ | φ ∈ Φ} defines a Chevalley basis

of DerO.

Proof. The Chevalley group relations can be recovered by the Chevalley basis relations via

exponentiation, and vice versa via differentiation. Therefore the elements Eφ will satisfy

the relevant Chevalley basis relations, while Hγ , Hδ were constructed in order to satisfy

their needed relations.

Now, let b′ be any other Chevalley basis for DerO. We have a Lie algebra morphism

f : b′ −→ b
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which maps basis elements to corresponding basis elements, and this map is injective as

DerO is simple. Therefore b is linearly independent and our statement follows.
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Part II

Part II: Local Fields
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Chapter 6

Introduction

In Part II we discuss certain structures in G2 that arise only when it is constructed

over a local, non-archimedean field. In particular, we will take k = Qp, though many results

will be true in a more general context. We will assume that the reader is familiar with basic

notions related to local non-archimedean fields. If not, [18] or [19] are standard references.

One important fact about G2 constructed over Qp is the following, from [1]:

Theorem 6.0.1. For k = Qp, any octonion algebra O constructed over k will necessarily be

split. Therefore, there is only one possible octonion algebra over k = Qp, up to isomorphism.

Therefore in our case, we need only consider the split form of G2. We continue

to follow the work of Bruhat and Tits in Chapter 7, where we construct the standard

apartment of the Bruhat-Tits building B(G2), based on our previous choices of maximal

torus and root systems. Though the building itself is a larger structure, most of our work

will be focused within the apartment itself.

In Chapter 8 we define octonion orders, lattice filtrations and sequences, and
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valuations on O. The narrative there will follow along very closely with [7], and our attempt

will be to place their work in a more concrete setting using the explicit automorphisms we

now have.

50



Chapter 7

Construction of the Standard

Apartment

7.1 Coroots and the Coroot Diagram

We again let Φ be the root system used in the Chevalley construction of our group

G2. We will choose as simple roots δ := δ+
~ı and γ := γ−~k

and the set of positive roots Φ+

corresponding to this choice. We begin by describing the purely abstract coroot system.

Definition 7.1.1. From each root α ∈ Φ, define the corresponding coroot

α∨ :=
2

(α, α)
α =

2

‖α‖2
α.

These coroots will also form an abstract root system Φ∨ of the same rank as Φ, which we

will call the dual root system or coroot system, and denote it by Φ∨.

Since each coroot is just a scaled root, the angle between our simple coroots is

equal to that of the simple roots. It is also easy to see that the coroot corresponding to
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a short root will be long, and the coroot corresponding to a long root will be short. The

coroot system for our group G2 is shown in Figure 7.1, with the simple coroots labeled.

δ∨

γ∨

Figure 7.1: The coroot diagram of g2.

In the setting of algebraic groups, we often like to consider our coroots to to be

homomorphisms from k× → T , where T is some maximal torus of the group. Luckily,

we already have homomorphisms of this type, namely, the hα described in the Chevalley

construction, and which generate such a subgroup T . Therefore we can define the action of

α∨ on k× to be equal to that of hα, for each root α ∈ Φ:

α∨ = hα : k× → T.

In the same setting we would also like to consider our roots themselves to be

homomorphisms α : T → k× for each α ∈ Φ. This association is a bit more complex.

Proposition 7.1.1. For each pair of roots α, β ∈ Φ we have the following identity of

Chevalley elements, where u, t ∈ k×:

hβ(t)eα(u)hβ(t)−1 = eα(t2(α,β)/(β,β)u).
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This defines a map on generators α : hβ(t) 7→ t2(α,β)/(β,β) which then extends to a homo-

morphism α : T −→ k×.

Proof. We refer the reader to [21, Lemmas 19 and 20] and their proofs.

Definition 7.1.2. 1 We denote by X•(T ) the group of characters from T → k× generated

by the roots and by X•(T ) the group of cocharacters from k× → T generated by the coroots.

We next establish a connection between the roots and coroots. It is well known,

or easily calculated, that the root system of type G2 has Cartan matrix A =

(
2 −3
−1 2

)
.

We use these Cartan integers to make the following definiton.

Definition 7.1.3. For δ, γ ∈ ∆ the simple roots in the G2 diagram, define the pairings

〈δ, δ∨〉 :=
2(δ, δ)

(δ, δ)
= 2,

〈δ, γ∨〉 :=
2(γ, δ)

(δ, δ)
= −1,

〈γ, δ∨〉 :=
2(δ, γ)

(γ, γ)
= −3,

〈γ, γ∨〉 :=
2(γ, γ)

(γ, γ)
= 2.

These identifications extend to a non-symmetric bilinear pairing between Φ and Φ∨.

To close this section, we remind ourselves that each coroot is simply a re-scaled

root, so that an explicit connection between roots and coroots can be seen from comparing

the root and coroot diagrams. Seeing that the highest long root, 3δ + 2γ, lies at the same

relative angle as the coroot δ∨ + 2γ∨ should lead us to believe the identity (3δ + 2γ)∨ =

δ∨ + 2γ∨. Indeed, we can verify these connections algebraically by using the following

relation:
1We use this definition as our group G2 is simply-connected and adjoint.
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Proposition 7.1.2. Let α, β ∈ Φ, and sα(β) ∈ W be the reflection of β through the

hyperplane orthogonal to α in the root diagram. Then

(sα(β))∨ = β∨ − 〈α, β∨〉α∨.

Proof. Recall that the coroots have exactly the same relative angles as the roots they are

built from, so from the definition of sα(β) (root axiom (c)), we have

(sα(β))∨ = β∨ − 2(β, α)

(α, α)
α∨.

The definition of 〈α, β∨〉 completes the identity.

Now, suppose that α is any root. Then negative roots and coroots coincide:

(sα(α))∨ = α∨ − 〈α, α∨〉α∨

= α∨ − 2α∨

= −α∨,

and therefore

(−α)∨ = (sα(α))∨ = −(α∨).

Likewise, for γ, δ our long and short (respectively) simple roots:

(sδ(γ))∨ = γ∨ − 〈δ, γ∨〉δ∨

= γ∨ − (−1)δ∨

= δ∨ + γ∨.

Therefore, since the reflection of γ across the hyperplane orthogonal to δ is 3δ + γ,

(3δ + γ)∨ = (sδ(γ))∨ = δ∨ + γ∨.
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Then, we can use the last fact to show that

(sγ(3δ + γ))∨ = (3δ + γ)∨ − 〈γ, (3δ + γ)∨〉γ∨

= δ∨ + γ∨ − 〈γ, δ∨ + γ∨〉γ∨

= δ∨ + γ∨ −
(
〈γ, δ∨〉+ 〈γ, γ∨〉

)
γ∨

= δ∨ + γ∨ − ((−3) + (2))γ∨

= δ∨ + 2γ∨.

Since the reflection of 3δ + γ across the hyperplane orthogonal to γ is 3δ + 2γ,

(3δ + 2γ)∨ = sγ(3δ + γ))∨ = δ∨ + 2γ∨.

Working in this way we can calculate all of the following identities:

(δ + γ)∨ = δ∨ + 3γ∨,

(2δ + γ)∨ = 2δ∨ + 3γ∨,

(3δ + γ)∨ = δ∨ + γ∨,

(3δ + 2γ)∨ = δ∨ + 2γ∨.

Again, since −(α∨) = (−α)∨ for all roots α, this gives the coroot corresponding

to every root.

7.2 Affine Roots, the Apartment, and Hyperplanes

Definition 7.2.1. With T =
〈
hα(t)

〉
and the corresponding choice of roots and coroots,

we define the affine apartment A to be the full coroot space A = E? = X•(T )⊗ R.
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From this definition alone, the apartment of any rank two coroot system (of any

Cartan type) will be identical. However, there is much substructure on A that will serve to

distinguish between such apartments. Toward this, we make some new definitions:

Definition 7.2.2. Let α ∈ Φ, and n ∈ Z. We define a new (affine) functional on A:

α+ n : A −→ R

x 7−→ 〈α, x〉+ n,

and define

Hα+n = {x ∈ A | (α+ n)(x) = 0}

= {x ∈ A | 〈α, x〉 = −n}.

Because 〈−,−〉 is bilinear, this zero locus (α + n)−1(0) forms an affine subspace

of codimension 1 in the plane of coroots. For example, consider the hyperplane Hδ. Since

〈δ, δ∨〉 = 2, the coroot δ∨ will not lie in Hδ. However, we do have:

〈δ, δ∨ + 2γ∨〉 = 〈δ, δ∨〉+ 2〈δ, γ∨〉

= (2) + 2(−1)

= 0.

Since this pairing is bilinear, we also know that 〈δ,−δ∨ − 2γ∨〉 = −〈δ, δ∨ + 2γ∨〉 = 0, and

this is enough to determine the hyperplane Hδ ⊆ A, shown in Figure 7.2.
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Hδ

δ∨

γ∨

Figure 7.2: A hyperplane corresponding to δ.

Likewise, since 〈δ, γ∨〉 = δ(γ∨) = −1, we have that γ∨ lies in the hyperplane Hδ+1.

We also have that

〈δ,−δ∨ − γ∨〉 = −〈δ, δ∨〉 − 〈δ, γ∨〉

= −(2)− (−1)

= −1.

Therefore the coroot −δ∨ − γ∨ also lies in the hyperplane Hδ+1. Again, since our

pairing is bilinear, any linear combination of these two coroots will also lie in our hyperplane.

In Figure 7.3, we display a number of hyperplanes corresponding to the root δ.

We use the same strategy to identify hyperplanes Hγ+n corresponding to the other
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Hδ−(−2)Hδ−(−1) Hδ−(0) Hδ−(1) Hδ−(2)

δ∨

γ∨

Figure 7.3: The hyperplanes corresponding to δ.

simple root γ ∈ Φ. These hyperplanes are shown in Figure 7.4 below. Note that the coroot

γ∨ lies on the hyperplane Hγ−2 as expected, and that the origin is again contained in the

hyperplane Hγ−0.
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Hδ−(−2) Hδ−(−1) Hδ−(0) Hδ−(1) Hδ−(2)

Hγ−(−2)

Hγ−(−1)

Hγ−(0)

Hγ−(1)

Hγ−(2)

δ∨

γ∨

Figure 7.4: The hyperplanes corresponding to γ.

In Figure 7.5, we show the hyperplanes corresponding to the non-simple root 3δ+γ.

Note that according to our calculations in Section 7.1, or by comparing the root and coroot
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diagrams, we have (3δ + γ)∨ = δ∨ + γ∨. We find that

〈3δ + γ, δ∨ + γ∨〉 = 〈3δ, δ∨ + γ∨〉+ 〈γ, δ∨ + γ∨〉

= 3〈δ, δ∨〉+ 3〈δ, γ∨〉+ 〈γ, δ∨〉+ 〈γ, γ∨〉

= 3(2) + 3(−1) + (−3) + (2)

= 2,

as we should expect. The remainder of the H3δ+γ+n hyperplanes are labeled as well.

After all hyperplanes Hα+n for all 12 roots α ∈ Φ have been positively identified,

we see in Figure 7.6 that the standard affine apartment is divided up into infinitely many

30, 60, 90 triangles, each of which is called a chamber of the apartment. For purposes of

later identification, we will refer to the vertices that connect edges at an incidence angle

of 30◦ as type 1 points. Vertices which have incidence angles of 90◦ will be called type 2

points, and those that have incidence angles of 60◦ will be called type 3 points.

Recall that the construction of this apartment was contingent on a choice of max-

imal torus T ⊂ G, or equivalently from a choice of Chevalley generators eα for α ∈ Φ. An

alternate choice of torus will yield a distinct apartment, though the two will have identical

structures. These distinct apartments can be “glued together” along the hyperplane edges,

and the greater structure thus obtained is known as the Bruhat-Tits building B(G2) of

G2. However, in this current work we have already made a steadfast choice of Chevalley

generators, so we will have little need of this larger structure for now, and will focus on the

affine apartment obtained from our choices.
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Hδ−(−2) Hδ−(−1) Hδ−(0) Hδ−(1) Hδ−(2)

Hγ−(−2)

Hγ−(−1)

Hγ−(0)

Hγ−(1)

Hγ−(2)

H3δ+γ−(−2)

H3δ+γ−(−1)

H3δ+γ−(0)

H3δ+γ−(1)

H3δ+γ−(2)

δ∨

γ∨ δ∨ + γ∨

Figure 7.5: The hyperplanes corresponding to 3δ + γ.
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δ∨

γ∨ δ∨ + γ∨

Figure 7.6: The Standard Apartment of G2.
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Chapter 8

Lattice Filtrations and Octonion

Orders

8.1 Lattices and Orders in O

For the current section we will briefly step away from our discussion of roots,

coroots, and the affine apartment. We outline here some general definitions and facts about

octonion orders, in the sense of [7]. We will quickly return to our affine apartment at the

end of Section 8.2.

Also, for the first time the discrete valuation of the field k = Qp will come into

play. Therefore, in this section and for the remainder of this paper, the field over which we

work will be fixed, with k = Qp and the uniformizer p 6= 2.

Definition 8.1.1. A lattice in O is a finitely generated Zp-submodule Λ of O, such that

Λ⊗Qp = O. An order in O is a Zp-lattice which is also a unital subring.
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Definition 8.1.2. A lattice filtration in O is a set of lattices {Λr}r∈R, totally ordered

with respect to containment, satisfying the following axioms:

(a)
⋃
r Λr = O.

(b)
⋂
r Λr = {0}.

(c) If r, s ∈ R and r ≤ s, then Λr ⊃ Λs.

(d) If r ∈ R, then Λs =
⋂
r<s Λr.

Definition 8.1.3. Let {Λr} be a lattice filtration in O. For any r ∈ R, we take

Λr+ =
⋃
r<s

Λs.

The jumps of the lattice (Λr) are the real numbers r ∈ R for which Λr+ 6= Λr.

Definition 8.1.4. A lattice filtration is called a lattice sequence if, for every r ∈ R, we

have Λr+1 = p · Λr.

We should note that a given lattice sequence {Λr} may or may not have lattices

intermediate to Λr and Λr+1 = p · Λr. However, there will be finitely many jumps in the

filtration between 0 and 1. Let ji ∈ R such that 0 < j1 < j2 < · · · < jr−1 < 1, and we have

containments

· · · ( pΛj1 ( pΛ0 ( Λjr−1 ( · · · ( Λj2 ( Λj1 ( Λ0 ( p−1Λjr−1 ( . . .

The maximum number of intermediate lattices for a given sequence is called the

rank of the sequence.

As an example, we may consider the standard lattice Λ := O(Zp) of octonion ele-

ments with purely integer entries. This is certainly a Zp-module of O which, after extending
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scalars, is equal to O, but it is also closed under multiplication and contains the identity.

Therefore it is an order in O.

We may also define the individual lattices of a lattice filtration, with r ∈ R, by

Λr := pbrcΛ = O(pbrcZp).

Note that {Λr} is a lattice sequence by definition. For r ≥ 0, each of these lattices

will be an order in O, but not so for negative r. Also, because of the discrete valuation on

Qp, the jumps of this lattice filtration will occur precisely at r ∈ Z. We will refer to {Λr}

as the standard lattice sequence.

Proposition 8.1.1. Let Λ be the following lattice in O:

Λ =

(
pa1Zp

〈
pa2Zp, pa3Zp, pa4Zp

〉〈
pa5Zp, pa6Zp, pa7Zp

〉
pa8Zp

)
.

That is, the ith entry of an element in this lattice should have valuation at minimum ai.

Then Λ is an order in O if and only if all of the following relations are satisfied:

a2 + a3 ≥ a7, a2 + a5 ≥ 0, a1 = a8 = 0.

a2 + a4 ≥ a6, a3 + a6 ≥ 0,

a3 + a4 ≥ a5, a4 + a7 ≥ 0,

a5 + a6 ≥ a4,

a5 + a7 ≥ a3,

a6 + a7 ≥ a2,
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Proof. We begin with the last condition, that a1 = a8 = 0. For Λ to be an order, it must

first contain the identity, which forces a1 and a8 to be nonpositive. Furthermore, if a1 < 0,

then by performing the multiplication

Λ2 =

(
pa1Zp

〈
pa2Zp, pa3Zp, pa4Zp

〉〈
pa5Zp, pa6Zp, pa7Zp

〉
pa8Zp

)2

,

we see that the upper-left entry of the product will be in

p2a1Zp + pa2+a5Zp + pa3+a6Zp + pa4+a7Zp.

Since 2a1 < a1, this is not contained in pa1Zp for any values of the remaining exponents.

Therefore Λ is not closed under multiplication and is not an order in O. The lower-right

entry of the product can also be examined to show that a8 ≮ 0.

Now suppose that a1 = a8 = 0. Therefore 1 ∈ O, and we check to see when Λ

is closed under multiplication by performing the multiplication Λ2. We will examine each

entry of this product individually.

In the upper-left entry, we find

Zp + pa2+a5Zp + pa3+a6Zp + pa4+a7Zp,

which will be contained in Zp so long as a2 + a5, a3 + a6, a4 + a7 are all nonnegative. This

gives us three more of our relations, and computing the lower-right entry will yield the same

result.

Next, computing the upper-right (vector) entry we find

〈
pa2Zp, pa3Zp, pa4Zp

〉
+
〈
pa2Zp, pa3Zp, pa4Zp

〉
−
〈
pa6+a7Zp, pa5+a7Zp, pa5+a6Zp

〉
This will be contained in Λ if and only if a6 +a7 ≥ a2, a5 +a7 ≥ a3, and a5 +a6 ≥ a4, which
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gives us three more of our relations. The final three relations can be found be examining

the lower-left (vector) entry in the same way.

It is clear from this argument that our standard lattice sequence Λr satisfies all

of these relations trivially. It is also clear that writing out octonion elements in this way is

notationally cumbersome. We introduce some new notation to help:

Definition 8.1.5. We will use the following notation to describe the relevant lattices in O:

Λ

(
a2 a3 a4 a1

a5 a6 a7 a8

)
=

(
pa1Zp

〈
pa2Zp, pa3Zp, pa4Zp

〉〈
pa5Zp, pa6Zp, pa7Zp

〉
pa8Zp

)
.

If the diagonal valuations are absent, they are to be interpreted as zeros. Likewise, we will

denote lattice filtrations in O, indexed by r ∈ R, by:

Λr

(
a2 a3 a4 a1

a5 a6 a7 a8

)
=

{
pbrc · Λ

(
a2 a3 a4 a1

a5 a6 a7 a8

)}
r∈R

=

{
Λ

(
a2 + brc a3 + brc a4 + brc a1 + brc
a5 + brc a6 + brc a7 + brc a8 + brc

)}
r∈R

.

Once again, due to the fact that k = Qp has a discrete valuation, all of these lattice

filtrations are also lattice sequences. The individual lattices in the sequence may or may

not be orders, based on whether or not the indices satisfy the relations in Proposition 8.1.1.

Definition 8.1.6. Given a lattice Λ in O as defined above, the dual lattice associated to

Λ is defined to be

Λ∗ = {x ∈ O | T (xy) ∈ Zp,∀y ∈ Λ}.

Proposition 8.1.2. Let Λ be a lattice in O:

Λ = Λ

(
a2 a3 a4 a1

a5 a6 a7 a8

)
.
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Then

Λ∗ = Λ

(
−a5 −a6 −a7 −a8

−a2 −a3 −a4 −a1

)
.

Proof. We perform a simple calculation (on the level of sets) to determine the octonion

elements which satisfy this condition. Set

Λ∗ =

(
pd1Zp

〈
pd2Zp, pd3Zp, pd4Zp

〉〈
pd5Zp, pd6Zp, pd7Zp

〉
pd8Zp

)
.

Then we multiply Λ∗ · Λ, writing our vectors as columns for convenience:
pd1Zp

 pd2Zp
pd3Zp
pd4Zp


 pd5Zp

pd6Zp
pd7Zp

 pd8Zp




pa1Zp

 pa2Zp
pa3Zp
pa4Zp


 pa5Zp

pa6Zp
pa7Zp

 pa8Zp

 .

Since we are only concerned with the trace of this product, we only consider its diagonal

entries. For the upper-left entry, we find that

pd1+a1Zp + pd2+a5Zp + pd3+a6Zp + pd4+a7Zp,

which will be in Zp for all element of Λ precisely when:

d1 = −a1, d3 = −a6,

d2 = −a5, d4 = −a7.

Likewise, the lower-right entry will yield

pd5+a2Zp + pd6+a3Zp + pd7+a4Zp + pd8+a8Zp,

which will be in Zp for all element of Λ precisely when:

d5 = −a2, d7 = −a4,

d6 = −a3, d8 = −a8.
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Translating this result to the notation we have defined gives us the desired result.

8.2 Maximinorante Algebra Valuations

In a general context, let V be any unital k-algebra with k a local non-archimedean

field. We would like to extend our regular valuation val : k → Z to a valuation on all of V ,

denoted also by val, in such a way that the two valuations coincide on k ⊆ V .

Definition 8.2.1 ([7]). Let V be any unital k-algebra with k a local non-archimedean field.

A valuation1 on V is a map val : V → R ∪ {∞} such that for all v, w ∈ V :

(a) val(v + w) ≥ inf{val(v), val(w)}.

(b) val(av) = val(a) + val(v) for all a ∈ k.

(c) val(v) =∞ if and only if v = 0.

We call val an algebra valuation if it additionally satisfies:

(d) val(v · w) ≥ val(v) + val(w).

We reiterate that in expression (b), the valuation on a is the regular valuation

defined on k, while the valuation on v and av is the one defined on V .

Since the k-algebra that we would like to discuss is also a composition algebra

with a quadratic norm N and an associated nondegenerate bilinear form B, we give some

adjectives to describe the relationship between these structures.

1In [7], these maps are called a norm on V . Since we will work with composition algebras which already
have a norm N , we will avoid this term in the current context.
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Definition 8.2.2. ([7]) Let (V,N) be a composition algebra over k, with char k 6= 2. We

say that an algebra valuation val on V minorizes N and B if, for all v, w ∈ V ,

val(B(v, w)) ≥ val(v) + val(w).

Among valuations, we say that val1 ≥ val2 if val1(v) ≥ val2(v) for all v ∈ V . Thus, if val is

a maximal element in the set of algebra valuations minorizing N and B, we say that val is

maximinorante.

Proposition 8.2.1. There is a bijection between the set of valuations val on O, and the set

of lattice sequences on O.

Proof. Given a valuation val : O→ R ∪ {∞}, we construct the individual lattices

Λval
r := {x ∈ O | val(x) ≥ r}.

Since val(p · Λ) = val(p) + val(Λ) = 1 + val(Λ), we have that

Λval
r+1 = {x ∈ O | val(x) ≥ r + 1} = p · Λval

r ,

and this is indeed a lattice sequence in O.

Conversely, let {Λr} be a lattice sequence, and let x ∈ O. Let Λx be the smallest

(with respect to containment in the lattice sequence) member of {Λr} containing x, and let

val(x) := r. Note that since 0 ∈ O is contained in every lattice of every sequence, there is

no such ‘smallest member’ of {Λr} which contains it, and from this we get condition (c) of

the definition of algebra valuations. Condition (b) follows from the fact that for x ∈ O and

a ∈ R we have Λax = aΛx.

Finally, for condition (a), let x, y ∈ O. Then in the sequence {Λr}, we may assume

(without loss of generality) that Λx ⊂ Λy and val(x) ≥ val(y). Then, since Λy contains
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both x and y and thus x + y, and Λx+y is the smallest such lattice, we have Λx+y ⊂ Λy.

Therefore

val(x+ y) = inf{val(x), val(y)}.

Given the above bijection, we find that the definitions of this chapter are all

connected via the following important theorem.

Theorem 8.2.1 ([7, Theorem 7.3]). There is a bijection between the points in the building

B(G) of G = Aut(O) and the set of maximinorante algebra valuations for (O, N). In this

bijection, the type 1 points of B(G) correspond to those algebra valuations which take values

in val(k), which in turn correspond to maximal orders in O.

We now have several different but related structures: maximinorante algebra val-

uations on O, certain lattice sequences and orders in O, and points in our apartment A.

Theorem 8.2.1 establishes a direct connection between these objects, and will allow us to

label our apartment A in significant detail.

8.3 Orders of Type 1

By Theorem 8.2.1, the type 1 points are in bijection with the maximal orders in

O. We will denote the set of maximal orders by V1, and we describe some of these maximal

orders below.

We recall that SL3(k) ⊂ G2 acts on octonion elements by the map θ, as defined

in Section 3.2. Therefore it also acts on lattices in O. In particular, consider the following

71



toral elements of Ts ⊂ SL3(k):

g =

 p 0 0
0 p−1 0
0 0 1

 and g−T = g−1 =

 p−1 0 0
0 p 0
0 0 1

 .

Applying the associated automorphism θ(g) to the standard lattice sequence gives the fol-

lowing result:

θ(g) (Λ) =

(
Zp g · Z3

p

g−T · Z3
p Zp

)
=

(
Zp

〈
pZp, p−1Zp,Zp

〉〈
p−1Zp, pZp,Zp

〉
Zp

)
= Λ

(
1 −1 0 0
−1 1 0 0

)
.

Proposition 8.3.1. The lattice

Λ = Λ

(
1 −1 0 0
−1 1 0 0

)

is a maximal order in O.

Proof. It is easily checked that Λ satisfies the properties of Proposition 8.1.1. In particular,

the sum of each column in the matrix of valuations is equal to zero. Any lattice containing

Λ must have an decreased valuation in at least one entry, which would cause the relevant

sum to become negative, in which case the lattice in question would not be an order.

Note that there are six orders (total) which are analogous to this one, each pro-

duced by an analogous toral element hα(p), where p is the uniformizer and α ranges over

the six long roots, associated to the six short coroots. These hα(p) can be interpreted as

acting by θ automorphisms via the matrices p 0 0
0 p−1 0
0 0 1

 ,

 1 0 0
0 p 0
0 0 p−1

 ,

 p−1 0 0
0 1 0
0 0 p

 ,
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and their inverses. The six maximal orders created by these toral elements are identified in

yellow in Figure 8.2. In this way, the torus of SL3(k), which is equal to the torus T in G2 by

Proposition 5.2.2 and the same torus used to identify the coroot lattice and the apartment,

acts on its apartment by translation. More specifically, T acts transitively on the type 1

vertices of A.
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Figure 8.1: The Highlighted Area of the Apartment

Λ

Λ

(
0 −1 1
0 1 −1

)
Λ

(
1 −1 0
−1 1 0

)

Λ

(
1 0 −1
−1 0 1

)

Λ

(
0 1 −1
0 −1 1

)

Λ

(
−1 1 0
1 −1 0

)
Λ

(
−1 0 1
1 0 −1

)

Figure 8.2: Maximal orders associated to the vertices of type 1.
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While the conditions given by Gan and Yu have been sufficient to determine the

maximal orders associated to each of our type 1 vertices, according to Theorem 8.2.1, there

are also lattice sequences (resp. maximinorante valuations) associated to each of these

points of A.

Creating a lattice sequence from each of our type 1 orders Λ is straightforward, by

noting that

· · · ( p2Λ ( pΛ ( Λ ( p−1Λ ( p−2Λ ( · · ·

This construction is independent of the type 1 maximal order Λ that we choose

to start from. Now that we have a lattice sequence identified with each Λ, we also have an

associated algebra valuation as defined in Proposition 8.2.1; for each x ∈ A:

val1(x) = sup{r ∈ R | x ∈ Λr).

In this case, we have identified all our structures by first starting with a maximal

order in O, constructing a lattice sequence, and then identifying an algebra valuation val1

constructed from that lattice sequence. For later points in A, we will need to do this in

a reverse order, by first defining an algebra valuation and then constructing our lattice

sequence. When that occurs, it will be useful for us to have a more detailed description

of val1. Toward that end, we choose a standard basis b = {b±1, b±2, b±3, b±4} for O as an
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8-dimensional k-vector space, with

b1 =

(
0 〈1, 0, 0〉
0 0

)
, b−1 =

(
0 0

〈1, 0, 0〉 0

)
,

b2 =

(
0 〈0, 1, 0〉
0 0

)
, b−2 =

(
0 0

〈0, 1, 0〉 0

)
,

b3 =

(
0 〈0, 0, 1〉
0 0

)
, b−3 =

(
0 0

〈0, 0, 1〉 0

)
,

b4 =

(
1 0
0 0

)
, b−4 =

(
0 0
0 1

)
.

For each maximal order Λ, define an intermediate function (depending on Λ)

vΛ
1 : b → Z on these basis elements, and extend to scalar multiples using the identity

vΛ
1 (aibi) = val(ai) + vΛ

1 (bi). Finally, define our valuation:

val1(x) := min
i

{
vΛ

1 (aibi)
}
, for x =

∑
aibi ∈ O.

For example, given the lattice sequence constructed from the order

Λ = Λ

(
1 −1 0
−1 1 0

)
,

we define the intermediate function

vΛ
1 (bi) =


0, if i ∈ {±4,±3}
1, if i ∈ {2,−1}
−1, if i ∈ {1,−2}.

(8.1)

Then, for any lattice element x ∈ Λ0 = Λ

(
1 −1 0
−1 1 0

)
, we have that

val1(x) = min
i

{
vΛ

1 (aibi)
}

= min
i

{
val(ai) + vΛ

1 (bi)
}

= min {val(a1)− 1, val(a2) + 1, val(a−1) + 1, val(a−2)− 1, val(a±3), val(a±4)}

≥ 0.
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Likewise, for any lattice element x ∈ Λ2 = Λ

(
3 1 2 2
1 3 2 2

)
, we have that

val1(x) = min
i

{
vΛ

1 (aibi)
}

= min
i

{
val(ai) + vΛ

1 (bi)
}

= min {val(a1)− 1, val(a2) + 1, val(a−1) + 1, val(a−2)− 1, val(a±3), val(a±4)}

≥ 2.

As another example, given the lattice sequence constructed from the order

Λ = Λ

(
0 −1 1
0 1 −1

)
,

we define a distinct intermediate function

vΛ
1 (bi) =


0, if i ∈ {±4,±1}
1, if i ∈ {2,−3}
−1, if i ∈ {3,−2}.

This will define another algebra valuation consistent with this new type 1 vertex.

As a final example, for the standard lattice sequence Λr, we can simply take

vΛ
1 (bi) = 0 for all bi, in which case our valuation becomes val1(x) = min {val(ai)}. This

defines an algebra valuation unique to the origin of A.

It is easily verified that these algebra valuations are consistent with those that

we have defined formally in Proposition 8.2.1, and satisfy all the needed properties and

necessary relations to their respective lattice sequences. Other, analogous algebra valuations

may be identified for the lattice sequences corresponding to any other type 1 point in A.

77



8.4 Orders of Type 2

With regard to the type 2 vertices of the apartment A, we use the following

proposition which is a restatement of Lemma 9.4 and Theorem 9.14 of [7].

Proposition 8.4.1 ([7]). Let V2 be the set of orders Λ in O satisfying:

(a) Λ ( Λ∗ ( p−1Λ.

(b) Λ∗2 ⊂ p−1Λ.

Then V2 is in bijection with the set of vertices of type 2 in B(G2). Let Λ1 ∈ V1 and Λ2 ∈ V2.

Let x1 be the type 1 vertex in B(G2) associated to Λ1, x2 be the type 2 vertex associated to

Λ2. Then x1 is incident to x2 if and only if Λ2 ⊂ Λ1.

Proposition 8.4.2. Let Λ be the following lattice in O:

Λ = Λ

(
1 0 0 0
0 1 0 0

)
.

Then Λ is a type 2 order in O; i.e., it satisfies the conditions of Proposition 8.4.1.

Proof. That Λ is an order is easily checked by verifying the conditions of Proposition 8.1.1.

We also have Λ∗ = Λ

(
0 −1 0 0
−1 0 0 0

)
, and clearly

Λ

(
1 0 0 0
0 1 0 0

)
( Λ

(
0 −1 0 0
−1 0 0 0

)
( Λ

(
0 −1 −1 −1
−1 0 −1 −1

)
.
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so condition (a) is satisfied. Next we calculate Λ∗2:

Λ∗2 = Λ

(
0 −1 0 0
−1 0 0 0

)2

=


Zp

 Zp
p−1Zp
Zp


 p−1Zp

Zp
Zp

 Zp




Zp

 Zp
p−1Zp
Zp


 p−1Zp

Zp
Zp

 Zp



=


p−1Zp

 Zp
p−1Zp
p−1Zp


 p−1Zp

Zp
p−1Zp

 p−1Zp


= Λ

(
0 −1 −1 −1
−1 0 −1 −1

)
.

In this case, we have that Λ∗2 = p−1Λ, so condition (b) is also satisfied and Λ is a type 2

order in O.

Since this order is contained in both the standard lattice sequence Λ and also in

the sequence Λ

(
1 0 0 0
0 1 0 0

)
, the vertex associated to it in A is incident to both of the

associated vertices of the other two. But there is only one such vertex in the building,

labeled in red in Figure 8.2.

There will likewise be five more orders of a similar form, which we also identify in

red and place in their appropriate positions in Figure 8.3. The type 1 vertices continue to

be shown in yellow for reference.

In this case, we define our related structures by first defining algebra valuations

corresponding to each of these type 2 points. Using our geometric intuition from A, and

noting that each type 2 vertex lies in between two type 1 vertices, we can define the relevant
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Λ

Λ

(
0 0 1 0
0 1 0 0

)
Λ

(
1 0 0 0
0 1 0 0

)

Λ

(
1 0 0 0
0 0 1 0

)

Λ

(
0 1 0 0
0 0 1 0

)

Λ

(
0 1 0 0
1 0 0 0

)
Λ

(
0 0 1 0
1 0 0 0

)

Figure 8.3: Octonion orders associated to the vertices of type 2.

valuation by averaging the two type 1 valuations.

Following with our previous examples, take Λ = Λ

(
1 0 0 0
0 1 0 0

)
, and for our

chosen basis B of O, take the intermediate function

vΛ
2 (bi) =

1

2
vΛ

1 (bi),

with the vΛ
1 defined in (8.1) of the last section. That is:

vΛ
2 (bi) =


0, if i ∈ {±4,±3}

1/2, if i ∈ {2,−1}
−1/2, if i ∈ {1,−2}.

We use this to find the valuation of several octonion elements. For a lattice element
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x ∈ Λ = Λ

(
1 0 0 0
0 1 0 0

)
we have:

val2(x) = min

{
val(a1)− 1

2
, val(a2) +

1

2
, val(a−1) +

1

2
, val(a−2)− 1

2
, val(a±3), val(a±4)

}
≥ min

{
1

2
,
1

2
,
1

2
,
1

2
, 0, 0

}
= 0.

For a lattice element x ∈ Λ∗ = Λ

(
0 −1 0 0
−1 0 0 0

)
we have:

val2(x) = min

{
val(a1)− 1

2
, val(a2) +

1

2
, val(a−1) +

1

2
, val(a−2)− 1

2
, val(a±3), val(a±4)

}
≥ min

{
−1

2
,−1

2
,−1

2
,−1

2
, 0, 0

}
= −1

2
.

For a lattice element x ∈ p−1Λ = Λ

(
0 −1 −1 −1
−1 0 −1 −1

)
we have:

val2(x) = min

{
val(a1)− 1

2
, val(a2) +

1

2
, val(a−1) +

1

2
, val(a−2)− 1

2
, val(a±3), val(a±4)

}
≥ min

{
−1

2
,−1

2
,−1

2
,−1

2
,−1,−1

}
= −1.

This valuation leads us to the lattice sequence

· · · ( p−1Λ ( Λ∗ ( Λ ( p(Λ∗) ( pΛ ( · · ·

Again, algebra valuations and lattice sequences for all type 2 vertices can be found in this

way.
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8.5 Orders of Type 3

Next, we turn to the vertices of type 3 in A. Again, the following proposition is a

restatement of Lemma 9.12 and Theorem 9.14 of [7].

Proposition 8.5.1 ([7]). Let V3 be the set of orders Λ in O satisfying:

(a) Λ ( Λ∗ ( p−1Λ.

(b) M := pΛ∗2 + Λ is a self-dual lattice.

Then V3 is in bijection with the set of vertices of type 3 in B(G2). Take Λ1 ∈ V1, Λ2 ∈ V2,

and Λ3 ∈ V3. Let xi be the type i vertex in B(G2) associated to Λi. Then:

(a) x1 is incident to x3 if and only if Λ3 ⊂ Λ1.

(b) x2 is incident to x3 if and only if Λ3 ⊂ Λ2.

Corollary 8.5.1. The triangle formed in B(G2) by {x1, x2, x3} is a chamber if and only if

Λ3 ⊂ Λ2 ⊂ Λ1.

To identify these type 3 orders, it is best to use the incidence condition described

in the above proposition. That is, a type 3 order must simultaneously be contained in each

of the orders which have associated vertices incident to its vertex. For example, we may

examine the vertex marked in blue from Figure 8.2. It should be contained in Λ and also

in each of the following orders:

Λ

(
1 0 0 0
0 1 0 0

)
, Λ

(
1 −1 0 0
−1 1 0 0

)
,

Λ

(
0 0 1 0
0 1 0 0

)
, Λ

(
0 −1 1 0
0 1 −1 0

)
.
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It should also be contained in a sixth, as yet unidentified type 2 order, but the information

we have so far is sufficient to determine that our type 3 lattice must be the following:

Λ = Λ

(
1 0 1 0
0 1 0 0

)
.

Proposition 8.5.2. Let Λ be the following lattice in O:

Λ = Λ

(
1 0 1 0
0 1 0 0

)
.

Then Λ is a type 3 order in O; i.e., it satisfies the conditions of Proposition 8.5.1.

Proof. Just as in the type 2 case, we may check that Λ is an order by verifying the conditions

of Proposition 8.1.1. Next, in this case Λ∗ = Λ

(
0 −1 0 0
−1 0 −1 0

)
, so clearly

Λ

(
1 0 1 0
0 1 0 0

)
( Λ

(
0 −1 0 0
−1 0 −1 0

)
( Λ

(
0 −1 0 −1
−1 0 −1 −1

)
.

so condition (a) is satisfied. With an aim to producing M , we calculate Λ∗2:

Λ∗2 = Λ

(
0 −1 0 0
−1 0 −1 0

)2

=


Zp

 Zp
p−1Zp
Zp


 p−1Zp

Zp
p−1Zp

 Zp




Zp

 Zp
p−1Zp
Zp


 p−1Zp

Zp
p−1Zp

 Zp



=


p−1Zp

 p−1Zp
p−2Zp
p−1Zp


 p−1Zp

Zp
p−1Zp

 p−1Zp


= Λ

(
−1 −2 −1 −1
−1 0 −1 −1

)
.
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Therefore we have that

M = pΛ∗2 + Λ

= pΛ

(
−1 −2 −1 −1
−1 0 −1 −1

)
+ Λ

(
1 0 1 0
0 1 0 0

)
= Λ

(
0 −1 0 0
0 1 0 0

)
+ Λ

(
1 0 1 0
0 1 0 0

)
= Λ

(
0 −1 0 0
0 1 0 0

)
.

Thus M is self-dual and condition (b) is also satisfied, so Λ is a type 3 order in O.

By applying this method of detecting a type 3 order based on the surrounding,

already identified orders, we can obtain all the type 3 orders. We list those nearest to the

origin in blue, in Figure 8.4.

Λ
Λ

(
0 0 1 0
1 1 0 0

)

Λ

(
1 0 1 0
0 1 0 0

)
Λ

(
1 0 0 0
0 1 1 0

)

Λ

(
1 1 0 0
0 0 1 0

)

Λ

(
0 1 0 0
1 0 1 0

)
Λ

(
0 1 1 0
1 0 0 0

)

Figure 8.4: Octonion orders associated to the vertices of type 3.
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Once more, we define algebra valuations corresponding to the type 3 vertices. This

time we note that each type 3 vertex lies at the barycenter of a triangle created by three

type 1 vertices, and therefore we define the relevant valuation by averaging over the three

type 1 valuations.

To use the work of our examples in Section 8.3, we take Λ = Λ

(
1 0 1 0
0 1 0 0

)
,

and for our chosen basis B of O, take the intermediate function v3(bi) as follows:

vΛ
3 (b1) =

1

3
(−1 + 0 + 0) = −1

3
, vΛ

3 (b−1) =
1

3
(1 + 0 + 0) =

1

3
,

vΛ
3 (b2) =

1

3
(1 + 1 + 0) =

2

3
, vΛ

3 (b−2) =
1

3
(−1− 1 + 0) = −2

3
,

vΛ
3 (b3) =

1

3
(0− 1 + 0) = −1

3
, vΛ

3 (b−3) =
1

3
(0 + 1 + 0) =

1

3
,

vΛ
3 (b4) =

1

3
(0 + 0 + 0) = 0, vΛ

3 (b−4) =
1

3
(0 + 0 + 0) = 0.

We again use this to find the valuation of several octonion elements. For a lattice

element x ∈ Λ = Λ

(
1 0 1 0
0 1 0 0

)
we have:

val3(x) ≥ min

{
1− 1

3
,
2

3
, 1− 1

3
,
1

3
, 1− 2

3
,
1

3
, 0, 0

}
= 0.

For a lattice element x ∈M = Λ

(
0 −1 0 0
0 1 0 0

)
we have:

val3(x) ≥ min

{
−1

3
,
2

3
− 1,−1

3
,
1

3
,
2

3
+ 1,

1

3
, 0, 0

}
= −1

3
.

For a lattice element x ∈ Λ∗ = Λ

(
0 −1 0 0
−1 0 −1 0

)
we have:

val3(x) ≥ min

{
−1

3
,
2

3
− 1,−1

3
,
1

3
− 1,

2

3
,
1

3
− 1, 0, 0

}
= −2

3
.

For a lattice element x ∈ p−1Λ = Λ

(
0 −1 0 −1
−1 0 −1 −1

)
we have:

val3(x) ≥ min

{
−1

3
,
2

3
− 1,−1

3
,
1

3
− 1,

2

3
,
1

3
− 1,−1,−1

}
= −1.
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This valuation leads us to the lattice sequence

· · · ( p−1Λ ( Λ∗ (M ( Λ ( p(Λ∗) ( pM ( pΛ ( · · ·

Once again, algebra valuations and lattice sequences for all type 3 vertices can be found in

this way.

8.6 Other Points in A

We conclude this chapter by identifying the algebra valuations and lattice se-

quences corresponding to a few points in the apartment which do not lie on vertices. In

Figure 8.5, the points that we will address are marked in orange and green.

Λ

Figure 8.5: Other octonion orders in A.

Starting with the point in orange, we note that it is at the barycenter of a triangle
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formed by Λ and two type 3 vertices. Therefore we can use the ‘averaging’ strategy we

have already employed to construct a new algebra valuation corresponding to that point.

However, it will be simpler for us to note that the point also lies two-thirds of the distance

from Λ to a type 2 vertex that we have already identified. Therefore, for each bi ∈ B we

can take

vΛ
4 (bi) =

2

3
vΛ

2 (bi),

where v2 was defined in Section 8.4. More explicitly:

vΛ
2 (bi) =


0, if i ∈ {±4,±3}

1/3, if i ∈ {2,−1}
−1/3, if i ∈ {1,−2}.

Again, our new valuation will be

val4(x) := min
{
vΛ

4 (aibi)
}
, for x =

∑
aibi ∈ O.

Now, we work backwards to find the lattices which will make up our associated

lattice sequence. Let

Λval4
0 = Λ

(
λ1 λ2 λ3 λ4

λ−1 λ−2 λ−3 λ−4

)
be the octonion order identified to our point in A and corresponding to the r = 0 index in

our desired lattice sequence. Then we should have that val4(x) ≥ 0 for all x ∈ Λval4
0 . Recall

that each λi is an integer. Therefore for

min

{
λ1 −

1

3
, λ2 +

1

3
, λ3, λ−1 +

1

3
, λ−2 −

1

3
, λ−3, λ±4

}
≥ 0,

the lowest valuations we may have are λ1 = λ−2 = 1, with the rest equal to zero. Our order

is now identified as

Λval4
0 = Λ

(
1 0 0
0 1 0

)
.
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We note that the next jump in our lattice sequence occurs at Λval4
1/3 , which we may identify

in a similar way, by considering:

min

{
λ1 −

1

3
, λ2 +

1

3
, λ3, λ−1 +

1

3
, λ−2 −

1

3
, λ−3, λ±4

}
≥ 1

3
.

In this case we find that

Λval4
1/3 = Λ

(
1 0 1 1
0 1 1 1

)
.

The following jump in our lattice sequence occurs at Λval4
2/3 , which we again identify:

min

{
λ1 −

1

3
, λ2 +

1

3
, λ3, λ−1 +

1

3
, λ−2 −

1

3
, λ−3, λ±4

}
≥ 2

3
.

In this case we find that

Λval4
1/3 = Λ

(
1 1 1 1
1 1 1 1

)
.

Finally, we identify Λval4
0 :

min

{
λ1 −

1

3
, λ2 +

1

3
, λ3, λ−1 +

1

3
, λ−2 −

1

3
, λ−3, λ±4

}
≥ 1.

In this case we find that

Λval4
1 = Λ

(
2 1 1 1
1 2 1 1

)
= pΛval4

0 .

Therefore we obtain the lattice sequence corresponding to our orange point in A:

· · · ( Λ

(
2 1 1 1
1 2 1 1

)
( Λ

(
1 1 1 1
1 1 1 1

)
( Λ

(
1 0 1 1
0 1 1 1

)
( Λ

(
1 0 0
0 1 0

)
( · · ·

Finally, we tackle the point labeled in green in Figure 8.5, which we notice lie

halfway between Λ and the type 3 vertex that we identified in Section 8.5.1. Therefore we

set

vΛ
5 (bi) =

1

2
vΛ

3 (bi),
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where v3 was defined in Section 8.5.1. Explicitly:

vΛ
5 (b1) = −1

6
, vΛ

5 (b−1) =
1

6
,

vΛ
5 (b2) =

1

3
, vΛ

5 (b−2) = −1

3
,

vΛ
5 (b3) = −1

6
, vΛ

5 (b−3) =
1

6
,

vΛ
5 (b4) = 0, vΛ

5 (b−4) = 0.

Again, our new valuation will be

val5(x) := min
{
vΛ

5 (aibi)
}
, for x =

∑
aibi ∈ O.

We again work backwards to find the lattices which will make up our associated

lattice sequence. Again let

Λval5
0 = Λ

(
λ1 λ2 λ3 λ4

λ−1 λ−2 λ−3 λ−4

)
.

be the octonion order identified to our green point in A and corresponding to the r = 0

index in our desired lattice sequence. Then since

min

{
λ1 −

1

6
, λ2 +

1

3
, λ3 −

1

6
, λ−1 +

1

6
, λ−2 −

1

3
, λ−3 +

1

6
, λ±4

}
≥ 0,

the lowest valuations we may have are λ1 = λ−2 = λ3 = 1, and the rest are equal to zero.

Our order is now identified as

Λval5
0 = Λ

(
1 0 1
0 1 0

)
.

The next jump in our lattice sequence occurs at Λval4
1/6 , which we identify by con-

sidering:

min

{
λ1 −

1

6
, λ2 +

1

3
, λ3 −

1

6
, λ−1 +

1

6
, λ−2 −

1

3
, λ−3 +

1

6
, λ±4

}
≥ 1

6
,
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In this case we find that

Λval5
1/6 = Λ

(
1 0 1 1
0 1 0 1

)
.

We spare the reader the remaining arguments to show that the following lattices

make up the rest of our lattice sequence:

Λval5
1/3 = Λ

(
1 0 1 1
1 1 1 1

)
Λval5

1/2 = Λval5
2/3 = Λ

(
1 1 1 1
1 1 1 1

)
Λval5

5/6 = Λ

(
1 1 1 1
1 2 1 1

)
Λval5

1 = Λ

(
2 1 2 1
1 2 1 1

)
= p · Λval5

0 .

These lattices now form the lattice sequence associated to the green point in our

figure.
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Appendix A

Tables of Chevalley Constants

All calculations performed in this section were done with the aid of the SAGE

software system. The precise code created for this task is included in Appendix B for

reference.

The tables included in this appendix are meant to display the particular constants

Nij which arise from our choices of Chevalley generators for G2. To remind ourselves, our

generators should satisfy the following relations [21, pg 66]:

(a) The eα are each homomorphisms from the additive group of k into G, that is:

eα(s+ t) = eα(s)eα(t) for all s, t ∈ k.

(b) If α, β ∈ Φ with α+ β 6= 0, then

[eβ(t), eα(s)] =
∏

eiα+jβ(Nijs
itj),

where the product is taken over all (strictly) positive integers i, j ∈ Z such that

iα+ jβ ∈ Φ, and the Nij are each integers depending on α, β, but not on s, t.
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(c) Each hα is multiplicative in k×; i.e., hα(s)hα(t) = hα(st) for all s, t ∈ k×.

We have already verified relations (a) and (c) in Section 5.2, so we now concentrate

on relation (b). Figure A.1 shows our chosen Chevalley generators, and their association to

the roots in the G2 root diagram:

δ+
~ı

δ−~kδ+
~

δ−~ı

δ+
~k

δ−~

γ−~

γ+
~ı

γ−~k

γ+
~

γ−~ı

γ+
~k

δ+
~ı

δ−~kδ+
~

δ−~ı

δ+
~k

δ−~

γ−~

γ+
~ı

γ−~k

γ+
~

γ−~ı

γ+
~k

δ+
~ı

δ−~kδ+
~

δ−~ı

δ+
~k

δ−~

γ−~

γ+
~ı

γ−~k

γ+
~

γ−~ı

γ+
~k

Figure A.1: The association of the automorphisms of O to the roots of G2.

In the following series of tables, we label each row with the automorphism α being

applied first, and label each column with automorphisms β having non-trivial commuta-

tor bracket with the first. A trivial commutator bracket will mean that either the two

automorphisms in question commute, or that the Chevalley relation is vacuous; i.e., that

α+β = 0. In the product on the right side of relation (b), we have applied first the β string

in ascending order, and then the 2β string, and then the 3β string. The indices in each Nij

correspond to the linear combination iα+ jβ; i.e., corresponding to the arguments Nijs
itj .
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γ+
~ (t) δ+

~k
(t) δ−~ (t) γ+

~k
(t)

γ+
~ı (s) N11 = 1 N11 = 1 N11 = −1 N11 = −1

N12 = 1 N12 = −1

N13 = 1 N13 = 1

Table A.1: Chevalley constants for commutators of type
[
−, γ+

~ı (s)
]
.

γ−~ (t) δ−~k
(t) δ+

~ (t) γ−~k
(t)

γ−~ı (s) N11 = −1 N11 = −1 N11 = 1 N11 = 1

N12 = 1 N12 = −1

N13 = −1 N13 = −1

Table A.2: Chevalley constants for commutators of type
[
−, γ−~ı (s)

]
.

γ+
~ı (t) δ−~k

(t) δ+
~ı (t) γ+

~k
(t)

γ+
~ (s) N11 = −1 N11 = −1 N11 = 1 N11 = 1

N12 = −1 N12 = 1

N13 = 1 N13 = 1

Table A.3: Chevalley constants for commutators of type
[
−, γ+

~ (s)
]
.
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γ−~ı (t) δ+
~k

(t) δ−~ı (t) γ−~k
(t)

γ−~ (s) N11 = 1 N11 = 1 N11 = −1 N11 = −1

N12 = −1 N12 = 1

N13 = −1 N13 = −1

Table A.4: Chevalley constants for commutators of type
[
−, γ−~ (s)

]
.

γ+
~ı (t) δ−~ (t) δ−~ı (t) γ+

~ (t)

γ+
~k

(s) N11 = 1 N11 = 1 N11 = −1 N11 = −1

N12 = 1 N12 = −1

N13 = 1 N13 = 1

Table A.5: Chevalley constants for commutators of type
[
−, γ+

~k
(s)
]
.

γ−~ı (t) δ−~ (t) δ+
~ı (t) γ−~ (t)

γ−~k
(s) N11 = −1 N11 = −1 N11 = 1 N11 = 1

N12 = 1 N12 = −1

N13 = −1 N13 = −1

Table A.6: Chevalley constants for commutators of type
[
−, γ−~k (s)

]
.
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γ−~k
(t) δ+

~ (t) δ−~k
(t) γ+

~ (t) δ+
~k

(t) δ−~ (t)

δ+
~ı (s) N11 = −1 N11 = −2 N11 = 3 N11 = −1 N11 = 2 N11 = 3

N21 = 1 N21 = −3 N21 = −1 N21 = 3

N31 = 1 N12 = −3 N31 = −1 N12 = 3

N32 = 2 N32 = −2

Table A.7: Chevalley constants for commutators of type
[
−, δ+

~ı (s)
]
.

γ−~ (t) δ−~k
(t) δ+

~ (t) γ+
~k

(t) δ−~ (t) δ+
~k

(t)

δ−~ı (s) N11 = 1 N11 = −2 N11 = −3 N11 = 1 N11 = 2 N11 = −3

N21 = −1 N21 = 3 N21 = 1 N21 = −3

N31 = 1 N12 = 3 N31 = −1 N12 = −3

N32 = −2 N32 = 2

Table A.8: Chevalley constants for commutators of type
[
−, δ−~ı (s)

]
.

γ+
~k

(t) δ+
~ı (t) δ−~k

(t) γ−~ı (t) δ+
~k

(t) δ−~ı (t)

δ+
~ (s) N11 = −1 N11 = 2 N11 = 3 N11 = −1 N11 = −2 N11 = 3

N21 = −1 N21 = 3 N21 = 1 N21 = −3

N31 = −1 N12 = 3 N31 = 1 N12 = −3

N32 = −2 N32 = 2

Table A.9: Chevalley constants for commutators of type
[
−, δ+

~ (s)
]
.
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γ+
~ı (t) δ−~k

(t) δ+
~ı (t) γ−~k

(t) δ−~ı (t) δ+
~k

(t)

δ−~ (s) N11 = 1 N11 = 2 N11 = −3 N11 = 1 N11 = −2 N11 = −3

N21 = 1 N21 = −3 N21 = −1 N21 = 3

N31 = −1 N12 = −3 N31 = 1 N12 = 3

N32 = 2 N32 = −2

Table A.10: Chevalley constants for commutators of type
[
−, δ−~ (s)

]
.

γ+
~ı (t) δ+

~ (t) δ−~ı (t) γ−~ (t) δ+
~ı (t) δ−~ (t)

δ+
~k

(s) N11 = −1 N11 = 2 N11 = 3 N11 = −1 N11 = −2 N11 = 3

N21 = −1 N21 = 3 N21 = 1 N21 = −3

N31 = −1 N12 = 3 N31 = 1 N12 = −3

N32 = −2 N32 = 2

Table A.11: Chevalley constants for commutators of type
[
−, δ+

~k
(s)
]
.

γ+
~ (t) δ−~ı (t) δ+

~ (t) γ−~ı (t) δ−~ (t) δ+
~ı (t)

δ−~k
(s) N11 = 1 N11 = 2 N11 = −3 N11 = 1 N11 = −2 N11 = −3

N21 = 1 N21 = −3 N21 = −1 N21 = 3

N31 = −1 N12 = −3 N31 = 1 N12 = 3

N32 = 2 N32 = −2

Table A.12: Chevalley constants for commutators of type
[
−, δ−~k (s)

]
.
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Appendix B

Computations in SAGE

1 #OCTONION MUTLIPLICATION

2

3 R.<A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8 , B1 , B2 , B3 , B4 , B5 , B6 , B7 , B8> = PolynomialRing (QQ)

4 def octon ion mult (A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8 , B1 , B2 , B3 , B4 , B5 , B6 , B7 , B8) :

5 C1 , C8 = var ( ’C1 , C8 ’ )

6 alpha1 = vecto r ( [ A2 , A3 , A4 ] )

7 alpha2 = vecto r ( [ A5 , A6 , A7 ] )

8 beta1 = vector ( [ B2 , B3 , B4 ] )

9 beta2 = vector ( [ B5 , B6 , B7 ] )

10 gamma1 = (A1∗beta1 ) + (B8∗ alpha1 ) − ( alpha2 . c r o s s p roduc t ( beta2 ) )

11 gamma2 = (B1∗ alpha2 ) + (A8∗beta2 ) + ( alpha1 . c r o s s p roduc t ( beta1 ) )

12 C1 = (A1∗B1) + ( alpha1 . dot product ( beta2 ) )

13 C8 = ( alpha2 . dot product ( beta1 ) ) + (A8∗B8)

14 product = vecto r ( [ C1 , gamma1 [ 0 ] , gamma1 [ 1 ] , gamma1 [ 2 ] , gamma2 [ 0 ] , gamma2 [ 1 ] ,

gamma2 [ 2 ] , C8 ] )

15 return product
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1 #AUTOMORPHISM DEFINITIONS

2

3 def AutoG2( type , s ign , embedding , constant ,A) :

4 S = matrix ( [ [ 1 , ( ( s i gn +1)%2)∗ constant ] , [ ( s i gn %2)∗ constant , 1 ] ] )

5 i f type == 0 :

6 i f embedding == 0 :

7 M1 = vecto r ( [A[ 0 ] ,A[ 1 ] , 0 , 0 ,A[ 4 ] , 0 , 0 ,A [ 7 ] ] )

8 M2 = matrix ( [ [A[ 2 ] ,A[ 6 ] ] , [ −A[ 3 ] ,A [ 5 ] ] ] )

9 U = S∗M2

10 V = octonion mult (U[ 0 , 0 ] ,U[ 0 , 1 ] , 0 , 0 ,U[ 1 , 0 ] , 0 , 0 ,U

[ 1 , 1 ] , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 )

11 return M1 + V

12 e l i f embedding == 1 :

13 M1 = vecto r ( [A[ 0 ] , 0 ,A[ 2 ] , 0 , 0 ,A[ 5 ] , 0 ,A [ 7 ] ] )

14 M2 = matrix ( [ [A[ 3 ] ,A[ 4 ] ] , [ −A[ 1 ] ,A [ 6 ] ] ] )

15 U = S∗M2

16 V = octonion mult (U[ 0 , 0 ] , 0 ,U[ 0 , 1 ] , 0 , 0 ,U[ 1 , 0 ] , 0 ,U

[ 1 , 1 ] , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 )

17 return M1 + V

18 e l i f embedding == 2 :

19 M1 = vecto r ( [A[ 0 ] , 0 , 0 ,A[ 3 ] , 0 , 0 ,A[ 6 ] ,A [ 7 ] ] )

20 M2 = matrix ( [ [A[ 1 ] ,A[ 5 ] ] , [ −A[ 2 ] ,A [ 4 ] ] ] )

21 U = S∗M2

22 V = octonion mult (U[ 0 , 0 ] , 0 , 0 ,U[ 0 , 1 ] , 0 , 0 ,U[ 1 , 0 ] ,U

[ 1 , 1 ] , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 )

23 return M1 + V

24 else :
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25 print ” Please ente r a ’0 ’ f o r a ’ i ’− type embedding , a ’1 ’ f o r a ’

j ’− type embedding , or a ’2 ’ f o r a ’ k’− type embedding . ”

26 e l i f type == 1 :

27 i f embedding == 0 :

28 M1 = matrix ( [ [A[ 0 ] ,A [ 1 ] ] , [ A[ 4 ] ,A [ 7 ] ] ] )

29 M2 = matrix ( [ [A[ 2 ] ,A[ 6 ] ] , [ −A[ 3 ] ,A [ 5 ] ] ] )

30 T = (S) ∗(M1) ∗(Sˆ−1)

31 U = (M2) ∗(Sˆ−1)

32 V = octonion mult (U[ 0 , 0 ] ,U[ 0 , 1 ] , 0 , 0 ,U[ 1 , 0 ] , 0 , 0 ,U

[ 1 , 1 ] , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 )

33 M = vecto r ( [T[ 0 , 0 ] ,T[ 0 , 1 ] , 0 , 0 ,T[ 1 , 0 ] , 0 , 0 ,T [ 1 , 1 ] ] )

34 return M + V

35 e l i f embedding == 1 :

36 M1 = matrix ( [ [A[ 0 ] ,A [ 2 ] ] , [ A[ 5 ] ,A [ 7 ] ] ] )

37 M2 = matrix ( [ [A[ 3 ] ,A[ 4 ] ] , [ −A[ 1 ] ,A [ 6 ] ] ] )

38 T = (S) ∗(M1) ∗(Sˆ−1)

39 U = (M2) ∗(Sˆ−1)

40 V = octonion mult (U[ 0 , 0 ] , 0 ,U[ 0 , 1 ] , 0 , 0 ,U[ 1 , 0 ] , 0 ,U

[ 1 , 1 ] , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 )

41 M = vecto r ( [T[ 0 , 0 ] , 0 ,T[ 0 , 1 ] , 0 , 0 ,T[ 1 , 0 ] , 0 ,T [ 1 , 1 ] ] )

42 return M + V

43 e l i f embedding == 2 :

44 M1 = matrix ( [ [A[ 0 ] ,A [ 3 ] ] , [ A[ 6 ] ,A [ 7 ] ] ] )

45 M2 = matrix ( [ [A[ 1 ] ,A[ 5 ] ] , [ −A[ 2 ] ,A [ 4 ] ] ] )

46 T = (S) ∗(M1) ∗(Sˆ−1)

47 U = (M2) ∗(Sˆ−1)

48 V = octonion mult (U[ 0 , 0 ] , 0 , 0 ,U[ 0 , 1 ] , 0 , 0 ,U[ 1 , 0 ] ,U
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[ 1 , 1 ] , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 )

49 M = vecto r ( [T[ 0 , 0 ] , 0 , 0 ,T[ 0 , 1 ] , 0 , 0 ,T[ 1 , 0 ] ,T [ 1 , 1 ] ] )

50 return M + V

51 else :

52 print ” Please ente r ’0 ’ f o r an ’ i ’− type embedding , ’1 ’ f o r a ’ j ’−

type embedding , or ’2 ’ f o r a ’ k’− type embedding . ”

53 else :

54 print ” Please ente r ’0 ’ f o r a gamma−type automorphism or ’1 ’ f o r a

de l ta−type automorphism . ”

1 #CHEVALLEY COMMUTATOR

2

3 def Chevalley Commutator ( type1 , s ign1 , embedding1 , constant1 , type2 , s ign2 ,

embedding2 , constant2 ,X) :

4 Z1 = AutoG2( type1 , s ign1 , embedding1 , constant1 ,X)

5 Z2 = AutoG2( type2 , s ign2 , embedding2 , constant2 , Z1 )

6 Z3 = AutoG2( type1 , s ign1 , embedding1 ,− constant1 , Z2 )

7 Z4 = AutoG2( type2 , s ign2 , embedding2 ,− constant2 , Z3 )

8 return Z4

1 #DISPLAY FUNCTION

2

3 def P r i n t E n t r i e s (B) :

4 print

5 print ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”

6 print

7 print B[ 0 ]

8 print B[ 1 ]
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9 print B[ 2 ]

10 print B[ 3 ]

11 print B[ 4 ]

12 print B[ 5 ]

13 print B[ 6 ]

14 print B[ 7 ]

1 #GAMMA I PLUS

2

3 N11 , N12 , N13 , N21 , N23 , N31 , N32 = var ( ’N11 , N12 , N13 , N21 , N23 , N31 , N32 ’ )

4 R.<s , t , a , b , c , d , e , f , g , h> = PolynomialRing (QQ)

5 X = vector ( [ a , b , c , d , e , f , g , h ] )

6

7 V = Chevalley Commutator (0 , 0 , 0 , s , 0 , 0 , 1 , t ,X)

8 W = AutoG2 (0 , 1 , 2 , N11∗ s ∗ t ,X)

9 B = V − W

10 print P r i n t E n t r i e s (B)

11

12 V = Chevalley Commutator (0 , 0 , 0 , s , 1 , 0 , 2 , t ,X)

13 W1 = AutoG2 (1 , 0 , 1 , N11∗ s ∗ t ,X)

14 W2 = AutoG2 (1 , 1 , 0 , N12∗ s ∗ t ˆ2 ,W1)

15 W3 = AutoG2 (0 , 0 , 1 , N13∗ s ∗ t ˆ3 ,W2)

16 B = V − W3

17 print P r i n t E n t r i e s (B)

18

19 V = Chevalley Commutator (0 , 0 , 0 , s , 1 , 1 , 1 , t ,X)

20 W1 = AutoG2 (1 , 1 , 2 , N11∗ s ∗ t ,X)

21 W2 = AutoG2 (1 , 0 , 0 , N12∗ s ∗ t ˆ2 ,W1)
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22 W3 = AutoG2 (0 , 0 , 2 , N13∗ s ∗ t ˆ3 ,W2)

23 B = V − W3

24 print P r i n t E n t r i e s (B)

25

26 V = Chevalley Commutator (0 , 0 , 0 , s , 0 , 0 , 2 , t ,X)

27 W = AutoG2 (0 , 1 , 1 , N11∗ s ∗ t ,X)

28 B = V − W

29 print P r i n t E n t r i e s (B)

30

31 #GAMMA I PLUS

1 #GAMMA I MINUS

2

3 N11 , N12 , N13 , N21 , N23 , N31 , N32 = var ( ’N11 , N12 , N13 , N21 , N23 , N31 , N32 ’ )

4 R.<s , t , a , b , c , d , e , f , g , h> = PolynomialRing (QQ)

5 X = vector ( [ a , b , c , d , e , f , g , h ] )

6

7 V = Chevalley Commutator (0 , 1 , 0 , s , 0 , 1 , 1 , t ,X)

8 W = AutoG2 (0 , 0 , 2 , N11∗ s ∗ t ,X)

9 B = V − W

10 print P r i n t E n t r i e s (B)

11

12 V = Chevalley Commutator (0 , 1 , 0 , s , 1 , 1 , 2 , t ,X)

13 W1 = AutoG2 (1 , 1 , 1 , N11∗ s ∗ t ,X)

14 W2 = AutoG2 (1 , 0 , 0 , N12∗ s ∗ t ˆ2 ,W1)

15 W3 = AutoG2 (0 , 1 , 1 , N13∗ s ∗ t ˆ3 ,W2)

16 B = V − W3

17 print P r i n t E n t r i e s (B)
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18

19 V = Chevalley Commutator (0 , 1 , 0 , s , 1 , 0 , 1 , t ,X)

20 W1 = AutoG2 (1 , 0 , 2 , N11∗ s ∗ t ,X)

21 W2 = AutoG2 (1 , 1 , 0 , N12∗ s ∗ t ˆ2 ,W1)

22 W3 = AutoG2 (0 , 1 , 2 , N13∗ s ∗ t ˆ3 ,W2)

23 B = V − W3

24 print P r i n t E n t r i e s (B)

25

26 V = Chevalley Commutator (0 , 1 , 0 , s , 0 , 1 , 2 , t ,X)

27 W = AutoG2 (0 , 0 , 1 , N11∗ s ∗ t ,X)

28 B = V − W

29 print P r i n t E n t r i e s (B)

30

31 #GAMMA I MINUS

1 #GAMMA J PLUS

2

3 V = Chevalley Commutator (0 , 0 , 1 , s , 0 , 0 , 0 , t ,X)

4 W = AutoG2 (0 , 1 , 2 , N11∗ s ∗ t ,X)

5 B = V − W

6 print P r i n t E n t r i e s (B)

7

8 V = Chevalley Commutator (0 , 0 , 1 , s , 1 , 1 , 2 , t ,X)

9 W1 = AutoG2 (1 , 1 , 0 , N11∗ s ∗ t ,X)

10 W2 = AutoG2 (1 , 0 , 1 , N12∗ s ˆ2∗ t ,W1)

11 W3 = AutoG2 (0 , 0 , 0 , N13∗ s ˆ3∗ t ,W2)

12 B = V − W3

13 print P r i n t E n t r i e s (B)
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14

15 V = Chevalley Commutator (0 , 0 , 1 , s , 1 , 0 , 0 , t ,X)

16 W1 = AutoG2 (1 , 0 , 2 , N11∗ s ∗ t ,X)

17 W2 = AutoG2 (1 , 1 , 1 , N12∗ s ∗ t ˆ2 ,W1)

18 W3 = AutoG2 (0 , 0 , 2 , N13∗ s ∗ t ˆ3 ,W2)

19 B = V − W3

20 print P r i n t E n t r i e s (B)

21

22 V = Chevalley Commutator (0 , 0 , 1 , s , 0 , 0 , 2 , t ,X)

23 W = AutoG2 (0 , 1 , 0 , N11∗ s ∗ t ,X)

24 B = V − W

25 print P r i n t E n t r i e s (B)

26

27 #GAMMA J PLUS

1 #GAMMA J MINUS

2

3 V = Chevalley Commutator (0 , 1 , 1 , s , 0 , 1 , 0 , t ,X)

4 W = AutoG2 (0 , 0 , 2 , N11∗ s ∗ t ,X)

5 B = V − W

6 print P r i n t E n t r i e s (B)

7

8 V = Chevalley Commutator (0 , 1 , 1 , s , 1 , 0 , 2 , t ,X)

9 W1 = AutoG2 (1 , 0 , 0 , N11∗ s ∗ t ,X)

10 W2 = AutoG2 (1 , 1 , 1 , N12∗ s ∗ t ˆ2 ,W1)

11 W3 = AutoG2 (0 , 1 , 0 , N13∗ s ∗ t ˆ3 ,W2)

12 B = V − W3

13 print P r i n t E n t r i e s (B)
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14

15 V = Chevalley Commutator (0 , 1 , 1 , s , 1 , 1 , 0 , t ,X)

16 W1 = AutoG2 (1 , 1 , 2 , N11∗ s ∗ t ,X)

17 W2 = AutoG2 (1 , 0 , 1 , N12∗ s ∗ t ˆ2 ,W1)

18 W3 = AutoG2 (0 , 1 , 2 , N13∗ s ∗ t ˆ3 ,W2)

19 B = V − W3

20 print P r i n t E n t r i e s (B)

21

22 V = Chevalley Commutator (0 , 1 , 1 , s , 0 , 1 , 2 , t ,X)

23 W = AutoG2 (0 , 0 , 0 , N11∗ s ∗ t ,X)

24 B = V − W

25 print P r i n t E n t r i e s (B)

26

27 #GAMMA J MINUS

1 #GAMMA K PLUS

2

3 N11 , N12 , N13 , N21 , N23 , N31 , N32 = var ( ’N11 , N12 , N13 , N21 , N23 , N31 , N32 ’ )

4 R.<s , t , a , b , c , d , e , f , g , h> = PolynomialRing (QQ)

5 X = vector ( [ a , b , c , d , e , f , g , h ] )

6

7 V = Chevalley Commutator (0 , 0 , 2 , s , 0 , 0 , 0 , t ,X)

8 W = AutoG2 (0 , 1 , 1 , N11∗ s ∗ t ,X)

9 B = V − W

10 print P r i n t E n t r i e s (B)

11

12 V = Chevalley Commutator (0 , 0 , 2 , s , 1 , 0 , 1 , t ,X)

13 W1 = AutoG2 (1 , 0 , 0 , N11∗ s ∗ t ,X)
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14 W2 = AutoG2 (1 , 1 , 2 , N12∗ s ∗ t ˆ2 ,W1)

15 W3 = AutoG2 (0 , 0 , 0 , N13∗ s ∗ t ˆ3 ,W2)

16 B = V − W3

17 print P r i n t E n t r i e s (B)

18

19 V = Chevalley Commutator (0 , 0 , 2 , s , 1 , 1 , 0 , t ,X)

20 W1 = AutoG2 (1 , 1 , 1 , N11∗ s ∗ t ,X)

21 W2 = AutoG2 (1 , 0 , 2 , N12∗ s ∗ t ˆ2 ,W1)

22 W3 = AutoG2 (0 , 0 , 1 , N13∗ s ∗ t ˆ3 ,W2)

23 B = V − W3

24 print P r i n t E n t r i e s (B)

25

26 V = Chevalley Commutator (0 , 0 , 2 , s , 0 , 0 , 1 , t ,X)

27 W = AutoG2 (0 , 1 , 0 , N11∗ s ∗ t ,X)

28 B = V − W

29 print P r i n t E n t r i e s (B)

30

31 #GAMMA K PLUS

1 #GAMMA K MINUS

2

3 N11 , N12 , N13 , N21 , N23 , N31 , N32 = var ( ’N11 , N12 , N13 , N21 , N23 , N31 , N32 ’ )

4 R.<s , t , a , b , c , d , e , f , g , h> = PolynomialRing (QQ)

5 X = vector ( [ a , b , c , d , e , f , g , h ] )

6

7 V = Chevalley Commutator (0 , 1 , 2 , s , 0 , 1 , 0 , t ,X)

8 W = AutoG2 (0 , 0 , 1 , N11∗ s ∗ t ,X)

9 B = V − W
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10 print P r i n t E n t r i e s (B)

11

12 V = Chevalley Commutator (0 , 1 , 2 , s , 1 , 1 , 1 , t ,X)

13 W1 = AutoG2 (1 , 1 , 0 , N11∗ s ∗ t ,X)

14 W2 = AutoG2 (1 , 0 , 2 , N12∗ s ∗ t ˆ2 ,W1)

15 W3 = AutoG2 (0 , 1 , 0 , N13∗ s ∗ t ˆ3 ,W2)

16 B = V − W3

17 print P r i n t E n t r i e s (B)

18

19 V = Chevalley Commutator (0 , 1 , 2 , s , 1 , 0 , 0 , t ,X)

20 W1 = AutoG2 (1 , 0 , 1 , N11∗ s ∗ t ,X)

21 W2 = AutoG2 (1 , 1 , 2 , N12∗ s ∗ t ˆ2 ,W1)

22 W3 = AutoG2 (0 , 1 , 1 , N13∗ s ∗ t ˆ3 ,W2)

23 B = V − W3

24 print P r i n t E n t r i e s (B)

25

26 V = Chevalley Commutator (0 , 1 , 2 , s , 0 , 1 , 1 , t ,X)

27 W = AutoG2 (0 , 0 , 0 , N11∗ s ∗ t ,X)

28 B = V − W

29 print P r i n t E n t r i e s (B)

30

31 #GAMMA K MINUS

1 #DELTA I PLUS

2

3 N11 , N12 , N13 , N21 , N23 , N31 , N32 = var ( ’N11 , N12 , N13 , N21 , N23 , N31 , N32 ’ )

4 R.<s , t , a , b , c , d , e , f , g , h> = PolynomialRing (QQ)

5 X = vector ( [ a , b , c , d , e , f , g , h ] )

107



6

7 V = Chevalley Commutator (1 , 0 , 0 , s , 1 , 1 , 2 , t ,X)

8 W1 = AutoG2 (0 , 1 , 1 , N11∗ s ∗ t ,X)

9 B = V − W1

10 print P r i n t E n t r i e s (B)

11

12 V = Chevalley Commutator (1 , 0 , 0 , s , 1 , 0 , 1 , t ,X)

13 W1 = AutoG2 (1 , 1 , 2 , N11∗ s ∗ t ,X)

14 W2 = AutoG2 (0 , 1 , 1 , N21∗ s ˆ2∗ t ,W1)

15 W3 = AutoG2 (0 , 0 , 0 , N12∗ s ∗ t ˆ2 ,W2)

16 B = V − W3

17 print P r i n t E n t r i e s (B)

18

19 V = Chevalley Commutator (1 , 0 , 0 , s , 0 , 1 , 2 , t ,X)

20 W1 = AutoG2 (1 , 0 , 1 , N11∗ s ∗ t ,X)

21 W2 = AutoG2 (1 , 1 , 2 , N21∗ s ˆ2∗ t ,W1)

22 W3 = AutoG2 (0 , 1 , 1 , N31∗ s ˆ3∗ t ,W2)

23 W4 = AutoG2 (0 , 0 , 0 , N32∗ s ˆ3∗ t ˆ2 ,W3)

24 B = V − W4

25 print P r i n t E n t r i e s (B)

26

27 V = Chevalley Commutator (1 , 0 , 0 , s , 1 , 1 , 1 , t ,X)

28 W1 = AutoG2 (0 , 0 , 2 , N11∗ s ∗ t ,X)

29 B = V − W1

30 print P r i n t E n t r i e s (B)

31

32 V = Chevalley Commutator (1 , 0 , 0 , s , 1 , 0 , 2 , t ,X)
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33 W1 = AutoG2 (1 , 1 , 1 , N11∗ s ∗ t ,X)

34 W2 = AutoG2 (0 , 0 , 2 , N21∗ s ˆ2∗ t ,W1)

35 W3 = AutoG2 (0 , 1 , 0 , N12∗ s ∗ t ˆ2 ,W2)

36 B = V − W3

37 print P r i n t E n t r i e s (B)

38

39 V = Chevalley Commutator (1 , 0 , 0 , s , 0 , 0 , 1 , t ,X)

40 W1 = AutoG2 (1 , 0 , 2 , N11∗ s ∗ t ,X)

41 W2 = AutoG2 (1 , 1 , 1 , N21∗ s ˆ2∗ t ,W1)

42 W3 = AutoG2 (0 , 0 , 2 , N31∗ s ˆ3∗ t ,W2)

43 W4 = AutoG2 (0 , 1 , 0 , N32∗ s ˆ3∗ t ˆ2 ,W3)

44 B = V − W4

45 print P r i n t E n t r i e s (B)

46

47 #DELTA I PLUS

1 #DELTA I MINUS

2

3 N11 , N12 , N13 , N21 , N23 , N31 , N32 = var ( ’N11 , N12 , N13 , N21 , N23 , N31 , N32 ’ )

4 R.<s , t , a , b , c , d , e , f , g , h> = PolynomialRing (QQ)

5 X = vector ( [ a , b , c , d , e , f , g , h ] )

6

7 V = Chevalley Commutator (1 , 1 , 0 , s , 1 , 0 , 1 , t ,X)

8 W1 = AutoG2 (0 , 1 , 2 , N11∗ s ∗ t ,X)

9 B = V − W1

10 print P r i n t E n t r i e s (B)

11

12 V = Chevalley Commutator (1 , 1 , 0 , s , 1 , 1 , 2 , t ,X)
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13 W1 = AutoG2 (1 , 0 , 1 , N11∗ s ∗ t ,X)

14 W2 = AutoG2 (0 , 1 , 2 , N21∗ s ˆ2∗ t ,W1)

15 W3 = AutoG2 (0 , 0 , 0 , N12∗ s ∗ t ˆ2 ,W2)

16 B = V − W3

17 print P r i n t E n t r i e s (B)

18

19 V = Chevalley Commutator (1 , 1 , 0 , s , 0 , 1 , 1 , t ,X)

20 W1 = AutoG2 (1 , 1 , 2 , N11∗ s ∗ t ,X)

21 W2 = AutoG2 (1 , 0 , 1 , N21∗ s ˆ2∗ t ,W1)

22 W3 = AutoG2 (0 , 1 , 2 , N31∗ s ˆ3∗ t ,W2)

23 W4 = AutoG2 (0 , 0 , 0 , N32∗ s ˆ3∗ t ˆ2 ,W3)

24 B = V − W4

25 print P r i n t E n t r i e s (B)

26

27 V = Chevalley Commutator (1 , 1 , 0 , s , 1 , 0 , 2 , t ,X)

28 W1 = AutoG2 (0 , 0 , 1 , N11∗ s ∗ t ,X)

29 B = V − W1

30 print P r i n t E n t r i e s (B)

31

32 V = Chevalley Commutator (1 , 1 , 0 , s , 1 , 1 , 1 , t ,X)

33 W1 = AutoG2 (1 , 0 , 2 , N11∗ s ∗ t ,X)

34 W2 = AutoG2 (0 , 0 , 1 , N21∗ s ˆ2∗ t ,W1)

35 W3 = AutoG2 (0 , 1 , 0 , N12∗ s ∗ t ˆ2 ,W2)

36 B = V − W3

37 print P r i n t E n t r i e s (B)

38

39 V = Chevalley Commutator (1 , 1 , 0 , s , 0 , 0 , 2 , t ,X)
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40 W1 = AutoG2 (1 , 1 , 1 , N11∗ s ∗ t ,X)

41 W2 = AutoG2 (1 , 0 , 2 , N21∗ s ˆ2∗ t ,W1)

42 W3 = AutoG2 (0 , 0 , 1 , N31∗ s ˆ3∗ t ,W2)

43 W4 = AutoG2 (0 , 1 , 0 , N32∗ s ˆ3∗ t ˆ2 ,W3)

44 B = V − W4

45 print P r i n t E n t r i e s (B)

46

47 #DELTA I MINUS

1 #DELTA J PLUS

2

3 N11 , N12 , N13 , N21 , N23 , N31 , N32 = var ( ’N11 , N12 , N13 , N21 , N23 , N31 , N32 ’ )

4 R.<s , t , a , b , c , d , e , f , g , h> = PolynomialRing (QQ)

5 X = vector ( [ a , b , c , d , e , f , g , h ] )

6

7 V = Chevalley Commutator (1 , 0 , 1 , s , 1 , 1 , 2 , t ,X)

8 W1 = AutoG2 (0 , 0 , 0 , N11∗ s ∗ t ,X)

9 B = V − W1

10 print P r i n t E n t r i e s (B)

11

12 V = Chevalley Commutator (1 , 0 , 1 , s , 1 , 0 , 0 , t ,X)

13 W1 = AutoG2 (1 , 1 , 2 , N11∗ s ∗ t ,X)

14 W2 = AutoG2 (0 , 0 , 0 , N21∗ s ˆ2∗ t ,W1)

15 W3 = AutoG2 (0 , 1 , 1 , N12∗ s ∗ t ˆ2 ,W2)

16 B = V − W3

17 print P r i n t E n t r i e s (B)

18

19 V = Chevalley Commutator (1 , 0 , 1 , s , 0 , 0 , 2 , t ,X)
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20 W1 = AutoG2 (1 , 0 , 0 , N11∗ s ∗ t ,X)

21 W2 = AutoG2 (1 , 1 , 2 , N21∗ s ˆ2∗ t ,W1)

22 W3 = AutoG2 (0 , 0 , 0 , N31∗ s ˆ3∗ t ,W2)

23 W4 = AutoG2 (0 , 1 , 1 , N32∗ s ˆ3∗ t ˆ2 ,W3)

24 B = V − W4

25 print P r i n t E n t r i e s (B)

26

27 V = Chevalley Commutator (1 , 0 , 1 , s , 1 , 1 , 0 , t ,X)

28 W1 = AutoG2 (0 , 1 , 2 , N11∗ s ∗ t ,X)

29 B = V − W1

30 print P r i n t E n t r i e s (B)

31

32 V = Chevalley Commutator (1 , 0 , 1 , s , 1 , 0 , 2 , t ,X)

33 W1 = AutoG2 (1 , 1 , 0 , N11∗ s ∗ t ,X)

34 W2 = AutoG2 (0 , 1 , 2 , N21∗ s ˆ2∗ t ,W1)

35 W3 = AutoG2 (0 , 0 , 1 , N12∗ s ∗ t ˆ2 ,W2)

36 B = V − W3

37 print P r i n t E n t r i e s (B)

38

39 V = Chevalley Commutator (1 , 0 , 1 , s , 0 , 1 , 0 , t ,X)

40 W1 = AutoG2 (1 , 0 , 2 , N11∗ s ∗ t ,X)

41 W2 = AutoG2 (1 , 1 , 0 , N21∗ s ˆ2∗ t ,W1)

42 W3 = AutoG2 (0 , 1 , 2 , N31∗ s ˆ3∗ t ,W2)

43 W4 = AutoG2 (0 , 0 , 1 , N32∗ s ˆ3∗ t ˆ2 ,W3)

44 B = V − W4

45 print P r i n t E n t r i e s (B)

46
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47 #DELTA J PLUS

1 #DELTA J MINUS

2

3 N11 , N12 , N13 , N21 , N23 , N31 , N32 = var ( ’N11 , N12 , N13 , N21 , N23 , N31 , N32 ’ )

4 R.<s , t , a , b , c , d , e , f , g , h> = PolynomialRing (QQ)

5 X = vector ( [ a , b , c , d , e , f , g , h ] )

6

7 V = Chevalley Commutator (1 , 1 , 1 , s , 1 , 0 , 0 , t ,X)

8 W1 = AutoG2 (0 , 0 , 2 , N11∗ s ∗ t ,X)

9 B = V − W1

10 print P r i n t E n t r i e s (B)

11

12 V = Chevalley Commutator (1 , 1 , 1 , s , 1 , 1 , 2 , t ,X)

13 W1 = AutoG2 (1 , 0 , 0 , N11∗ s ∗ t ,X)

14 W2 = AutoG2 (0 , 0 , 2 , N21∗ s ˆ2∗ t ,W1)

15 W3 = AutoG2 (0 , 1 , 1 , N12∗ s ∗ t ˆ2 ,W2)

16 B = V − W3

17 print P r i n t E n t r i e s (B)

18

19 V = Chevalley Commutator (1 , 1 , 1 , s , 0 , 0 , 0 , t ,X)

20 W1 = AutoG2 (1 , 1 , 2 , N11∗ s ∗ t ,X)

21 W2 = AutoG2 (1 , 0 , 0 , N21∗ s ˆ2∗ t ,W1)

22 W3 = AutoG2 (0 , 0 , 2 , N31∗ s ˆ3∗ t ,W2)

23 W4 = AutoG2 (0 , 1 , 1 , N32∗ s ˆ3∗ t ˆ2 ,W3)

24 B = V − W4

25 print P r i n t E n t r i e s (B)

26
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27 V = Chevalley Commutator (1 , 1 , 1 , s , 1 , 0 , 2 , t ,X)

28 W1 = AutoG2 (0 , 1 , 0 , N11∗ s ∗ t ,X)

29 B = V − W1

30 print P r i n t E n t r i e s (B)

31

32 V = Chevalley Commutator (1 , 1 , 1 , s , 1 , 1 , 0 , t ,X)

33 W1 = AutoG2 (1 , 0 , 2 , N11∗ s ∗ t ,X)

34 W2 = AutoG2 (0 , 1 , 0 , N21∗ s ˆ2∗ t ,W1)

35 W3 = AutoG2 (0 , 0 , 1 , N12∗ s ∗ t ˆ2 ,W2)

36 B = V − W3

37 print P r i n t E n t r i e s (B)

38

39 V = Chevalley Commutator (1 , 1 , 1 , s , 0 , 1 , 2 , t ,X)

40 W1 = AutoG2 (1 , 1 , 0 , N11∗ s ∗ t ,X)

41 W2 = AutoG2 (1 , 0 , 2 , N21∗ s ˆ2∗ t ,W1)

42 W3 = AutoG2 (0 , 1 , 0 , N31∗ s ˆ3∗ t ,W2)

43 W4 = AutoG2 (0 , 0 , 1 , N32∗ s ˆ3∗ t ˆ2 ,W3)

44 B = V − W4

45 print P r i n t E n t r i e s (B)

46

47 #DELTA J MINUS

1 #DELTA K PLUS

2

3 N11 , N12 , N13 , N21 , N23 , N31 , N32 = var ( ’N11 , N12 , N13 , N21 , N23 , N31 , N32 ’ )

4 R.<s , t , a , b , c , d , e , f , g , h> = PolynomialRing (QQ)

5 X = vector ( [ a , b , c , d , e , f , g , h ] )

6
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7 V = Chevalley Commutator (1 , 0 , 2 , s , 1 , 1 , 0 , t ,X)

8 W1 = AutoG2 (0 , 0 , 1 , N11∗ s ∗ t ,X)

9 B = V − W1

10 print P r i n t E n t r i e s (B)

11

12 V = Chevalley Commutator (1 , 0 , 2 , s , 1 , 0 , 1 , t ,X)

13 W1 = AutoG2 (1 , 1 , 0 , N11∗ s ∗ t ,X)

14 W2 = AutoG2 (0 , 0 , 1 , N21∗ s ˆ2∗ t ,W1)

15 W3 = AutoG2 (0 , 1 , 2 , N12∗ s ∗ t ˆ2 ,W2)

16 B = V − W3

17 print P r i n t E n t r i e s (B)

18

19 V = Chevalley Commutator (1 , 0 , 2 , s , 0 , 0 , 0 , t ,X)

20 W1 = AutoG2 (1 , 0 , 1 , N11∗ s ∗ t ,X)

21 W2 = AutoG2 (1 , 1 , 0 , N21∗ s ˆ2∗ t ,W1)

22 W3 = AutoG2 (0 , 0 , 1 , N31∗ s ˆ3∗ t ,W2)

23 W4 = AutoG2 (0 , 1 , 2 , N32∗ s ˆ3∗ t ˆ2 ,W3)

24 B = V − W4

25 print P r i n t E n t r i e s (B)

26

27 V = Chevalley Commutator (1 , 0 , 2 , s , 1 , 1 , 1 , t ,X)

28 W1 = AutoG2 (0 , 1 , 0 , N11∗ s ∗ t ,X)

29 B = V − W1

30 print P r i n t E n t r i e s (B)

31

32 V = Chevalley Commutator (1 , 0 , 2 , s , 1 , 0 , 0 , t ,X)

33 W1 = AutoG2 (1 , 1 , 1 , N11∗ s ∗ t ,X)
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34 W2 = AutoG2 (0 , 1 , 0 , N21∗ s ˆ2∗ t ,W1)

35 W3 = AutoG2 (0 , 0 , 2 , N12∗ s ∗ t ˆ2 ,W2)

36 B = V − W3

37 print P r i n t E n t r i e s (B)

38

39 V = Chevalley Commutator (1 , 0 , 2 , s , 0 , 1 , 1 , t ,X)

40 W1 = AutoG2 (1 , 0 , 0 , N11∗ s ∗ t ,X)

41 W2 = AutoG2 (1 , 1 , 1 , N21∗ s ˆ2∗ t ,W1)

42 W3 = AutoG2 (0 , 1 , 0 , N31∗ s ˆ3∗ t ,W2)

43 W4 = AutoG2 (0 , 0 , 2 , N32∗ s ˆ3∗ t ˆ2 ,W3)

44 B = V − W4

45 print

46 print P r i n t E n t r i e s (B)

47

48 #DELTA K PLUS

1 #DELTA K MINUS

2

3 N11 , N12 , N13 , N21 , N23 , N31 , N32 = var ( ’N11 , N12 , N13 , N21 , N23 , N31 , N32 ’ )

4 R.<s , t , a , b , c , d , e , f , g , h> = PolynomialRing (QQ)

5 X = vector ( [ a , b , c , d , e , f , g , h ] )

6

7 V = Chevalley Commutator (1 , 1 , 2 , s , 1 , 0 , 1 , t ,X)

8 W1 = AutoG2 (0 , 0 , 0 , N11∗ s ∗ t ,X)

9 B = V − W1

10 print P r i n t E n t r i e s (B)

11

12 V = Chevalley Commutator (1 , 1 , 2 , s , 1 , 1 , 0 , t ,X)
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13 W1 = AutoG2 (1 , 0 , 1 , N11∗ s ∗ t ,X)

14 W2 = AutoG2 (0 , 0 , 0 , N21∗ s ˆ2∗ t ,W1)

15 W3 = AutoG2 (0 , 1 , 2 , N12∗ s ∗ t ˆ2 ,W2)

16 B = V − W3

17 print P r i n t E n t r i e s (B)

18

19 V = Chevalley Commutator (1 , 1 , 2 , s , 0 , 0 , 1 , t ,X)

20 W1 = AutoG2 (1 , 1 , 0 , N11∗ s ∗ t ,X)

21 W2 = AutoG2 (1 , 0 , 1 , N21∗ s ˆ2∗ t ,W1)

22 W3 = AutoG2 (0 , 0 , 0 , N31∗ s ˆ3∗ t ,W2)

23 W4 = AutoG2 (0 , 1 , 2 , N32∗ s ˆ3∗ t ˆ2 ,W3)

24 B = V − W4

25 print P r i n t E n t r i e s (B)

26

27 V = Chevalley Commutator (1 , 1 , 2 , s , 1 , 0 , 0 , t ,X)

28 W1 = AutoG2 (0 , 1 , 1 , N11∗ s ∗ t ,X)

29 B = V − W1

30 print P r i n t E n t r i e s (B)

31

32 V = Chevalley Commutator (1 , 1 , 2 , s , 1 , 1 , 1 , t ,X)

33 W1 = AutoG2 (1 , 0 , 0 , N11∗ s ∗ t ,X)

34 W2 = AutoG2 (0 , 1 , 1 , N21∗ s ˆ2∗ t ,W1)

35 W3 = AutoG2 (0 , 0 , 2 , N12∗ s ∗ t ˆ2 ,W2)

36 B = V − W3

37 print P r i n t E n t r i e s (B)

38

39 V = Chevalley Commutator (1 , 1 , 2 , s , 0 , 1 , 0 , t ,X)
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40 W1 = AutoG2 (1 , 1 , 1 , N11∗ s ∗ t ,X)

41 W2 = AutoG2 (1 , 0 , 0 , N21∗ s ˆ2∗ t ,W1)

42 W3 = AutoG2 (0 , 1 , 1 , N31∗ s ˆ3∗ t ,W2)

43 W4 = AutoG2 (0 , 0 , 2 , N32∗ s ˆ3∗ t ˆ2 ,W3)

44 B = V − W4

45 print P r i n t E n t r i e s (B)

46

47 #DELTA K MINUS
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