
UC Irvine
UC Irvine Previously Published Works

Title
Enterotoxigenic Escherichia coli heat-labile toxin drives enteropathic changes in small 
intestinal epithelia

Permalink
https://escholarship.org/uc/item/2pm09648

Journal
Nature Communications, 13(1)

ISSN
2041-1723

Authors
Sheikh, Alaullah
Tumala, Brunda
Vickers, Tim J
et al.

Publication Date
2022

DOI
10.1038/s41467-022-34687-7
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2pm09648
https://escholarship.org/uc/item/2pm09648#author
https://escholarship.org
http://www.cdlib.org/


Article https://doi.org/10.1038/s41467-022-34687-7

Enterotoxigenic Escherichia coli heat-labile
toxin drives enteropathic changes in small
intestinal epithelia

A list of authors and their affiliations appears at the end of the paper

Enterotoxigenic E. coli (ETEC) produce heat-labile (LT) and/or heat-stable (ST)
enterotoxins, and commonly cause diarrhea in resource-poor regions. ETEC
have been linked repeatedly to sequelae in children including enteropathy,
malnutrition, and growth impairment. Although cellular actions of ETEC
enterotoxins leading to diarrhea are well-established, their contributions to
sequelae remain unclear. LT increases cellular cAMP to activate protein kinase
A (PKA) that phosphorylates ion channels driving intestinal export of salt and
water resulting in diarrhea. As PKA also modulates transcription of many
genes, we interrogated transcriptional profiles of LT-treated intestinal epi-
thelia. Here we show that LT significantly alters intestinal epithelial gene
expression directing biogenesis of the brushborder, themajor site for nutrient
absorption, suppresses transcription factors HNF4 and SMAD4 critical to
enterocyte differentiation, and profoundly disrupts microvillus architecture
and essential nutrient transport. In addition, ETEC-challenged neonatal mice
exhibit substantial brush border derangement that is prevented by maternal
vaccination with LT. Finally, mice repeatedly challenged with toxigenic ETEC
exhibit impaired growth recapitulating the multiplicative impact of recurring
ETEC infections in children. These findings highlight impacts of ETEC enter-
otoxins beyond acute diarrheal illness and may inform approaches to prevent
major sequelae of these common infections including malnutrition that
impact millions of children.

Infectious diarrhea remains a leading cause of death and morbidity
among young children in low-middle-income countries where access
to cleanwater and sanitation remains in short supply1. Enterotoxigenic
E. coli (ETEC), initially discovered as a cause of severe, cholera-like
illness2, are one of the most common pathogens associated with
moderate-severe diarrhea among children under the age of 5 years3,4,
and areperennially themost common causeof diarrhea in travelers5 to
endemic regions where these organisms are thought to account for
hundreds of millions of cases of diarrheal illness each year6.

Importantly, ETEC infections have been linked to non-diarrheal
sequelae, including “environmental enteric dysfunction (EED),” a
condition characterized by impaired nutrient absorption, impaired

growth7,8, and malnutrition9,10, adding significantly to the morbidity as
well as deaths fromdiarrhea and other infections11. The risk of stunting
multiplies with each episode of diarrheal illness in children under the
age of two years12, a period during which children residing in impo-
verished areas commonly sustain multiple ETEC infections8. However,
the molecular pathogenesis underlying the intestinal changes asso-
ciated with EED, and the contribution of individual pathogens,
including ETEC, remain poorly understood.

Similarly, toxin-producing E. coli have also been repeatedly iden-
tified in patients with tropical sprue13–15, a condition classically descri-
bed in adults residing for extended periods of time in areas where
ETEC diarrheal disease is common. Like EED, tropical sprue is
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associated with changes to the small intestinal villous architecture,
including ultrastructural alteration of the epithelial brush border
formed by the microvilli16,17, nutrient malabsorption, and wasting.

The basic molecular mechanisms underpinning acute watery
diarrhea caused by ETEC are well-established18. ETEC produces heat-
labile (LT) and/or heat-stable (ST) enterotoxins that activate the pro-
duction of cAMP and cGMP second messengers, respectively, leading
to activation of cellular kinases that in turn modulate the activity of
sodium and chloride channels in the apical membrane of intestinal
epithelial cells to promote net efflux of salt and water into the intest-
inal lumen resulting in watery diarrhea.

LT and cholera toxin (CT) share ~85% amino acid identity, and
both toxins exert their major effects on the cell through the ADP-
ribosylationof the alpha subunitofGs (Gsα), a stimulatory intracellular
guanine nucleotide-binding protein. Inhibition of Gsα GTPase activity
leads to constitutive activation of adenylate cyclase and increased
production of intracellular cAMP19.

In its central role as a second messenger, cAMP governs a diverse
array of cellular processes20 and modulates the transcription of mul-
tiple genes through a number of cAMP-responsive transcriptional
activators and repressors21. cAMP activates protein kinase A (PKA), a
heterotetramer, by liberating its two regulatory subunits from the
catalytic subunits, which are then free to phosphorylate a wide variety
of cytoplasmic and nuclear protein substrates22. PKA largely regulates
transcription by phosphorylation of transcription factors, including
the cyclic AMP response element binding protein (CREB) and the
cAMP-response element modulator (CREM), which bind cAMP-
response elements (CRE) in the promoter regions of target genes21–23.

Notably, cholera toxin (CT), LT, and dibutyryl-cyclic AMP all
induce hypersecretion and impact the architecture of gastrointestinal
epithelia in rodent small intestine24, while small intestinal biopsies of
patients with acute cholera exhibit marked changes in the ultra-
structure of the intestinal brush border, the major absorptive surface
in the small intestine25,26, including shortening and disruption of the
microvilli. Consistent with these observations, studies of young chil-
dren less than two years of age in Bangladesh have specifically asso-

ciated LT-producing ETEC with undernutrition27, suggesting that heat-
labile toxinmay exert effects on intestinalmucosa that extend beyond
acute diarrheal illness.

Here we demonstrate that in addition to the canonical effects of
LTon the cellular export of salt andwater into the intestinal lumen, this
toxin impacts multiple genes involved in the formation of microvilli,
resulting in marked alteration of the architecture of the intestinal
brush border, the major site of nutrient absorption in the small
intestine. These effects are compounded by the alteration of solute
transporters within the brush border epithelia, potentially disrupting
the absorption of multiple essential nutrients.

Results
Heat-labile toxin markedly alters the transcriptomes of
intestinal epithelial cells
Commensurate with the importance of cAMP as a second messenger,
we found that compared to either untreated controls or cells treated
with a catalytically inactive (E211K) mutant of LT, wild-type LT holo-
toxin substantiallymodulated transcription ofmany genes in intestinal
epithelial cells. In RNA-seq studies of polarized Caco-2 intestinal epi-
thelial cells, we found that 3832 genes were significantly (p ≤ 10−5)
upregulated and 3687 downregulated in response to LT, while the
inactive toxin failed to induce significant changes in the transcriptome
(Fig. 1a).However, Caco-2 cells arederived fromdistantmetastases of a
colon cancer tumor in which transcriptomes would likely be altered
relative to untransformed intestinal epithelia28,29, and cAMP signaling is
known to be aberrant in some transformed cells23. Therefore, to
examine a more physiologically relevant target, we next examined the
impact of LT on differentiated small intestinal enteroids. Here, we
found that far fewer genes were differentially expressed (≤10−5), with
746 significantly upregulated, and 561 downregulated in response to
intoxication with LT (Fig. 1b). Notably, however, we found substantial
statistically significant overlap in genes significantly modulated in
Caco-2 cells and enteroids (Supplementary Table 3 andSupplementary
Dataset 1) with the transcription of hundreds of genes significantly up-
or down-regulated in both groups.Geneontology enrichment analysis,
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Fig. 1 | Heat-labile toxin modulates expression of multiple genes in intestinal
epithelia.Model at left depicts the E. coli heat-labile toxin92 based on PDB structure
1LTS with the A1 subunit in blue, the A2 region in yellow, and pentameric B subunit
in green. The E211K mutation of mLT is in the active site of the A1 subunit.
a Scatterplot of RNAseq data right depicts differential expression profiles of Caco-2
cells following exposure to a heat-labile toxin (n = 2) relative to untreated cells

(n = 2) and cells treated with the biologically inactive mLT (n = 2). (Because
expression profiles of untreated andmLT-treated cellswere virtually identical, their
combined expression profiles totaling n = 4 replicates are compared here to LT-
treated cells).b RNA-seq data frompolarized small intestinal ileal enteroids treated
with LT (n = 3) compared to control untreated (n = 3) cells. Differentially expressed
genes were identified by DESeq293.
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as well as ontology-independent investigation of genes (CompBio,
Supplementary Fig. 1) modulated by the toxin, highlighted multiple
cellular components associated with both the development and
function of the absorptive surface of the small intestine (Supplemen-
tary Dataset 2).

Heat-labile toxin impairs the development of small intestinal
microvilli
Small intestinal enterocytes are each covered with hundreds of
microvilli, complex structures comprised of a central core of actin
filaments within protrusions of the plasma membrane. Collectively,
the luminal surface of the intestine formed by these microvilli,
known as the brush border, represents themajor absorptive surface
of the gastrointestinal tract. Three major classes of proteins are
required for the biogenesis of microvilli30 (Fig. 2a). These include (1)
proteins such as villin, epsin, plastin, and EPS8 that bundle parallel
clusters of actin filaments; BAIP2L1 (IRTKS) responsible for
recruiting the EPS bundling protein to the tips of microvilli31; (2)
ezrin, myo1a32, myo6 that link the actin cytoskeleton with the
plasma membrane; and (3) protocadherin molecules CDHR2 and
CDHR5 engaged in extracellular heterotypic complexes between
the tips of the microvilli30 that are stabilized by a tripartite complex
of MYO7B, ANKS4B33, and USH1C33. Interrogation of transcriptional
profiles indicated that the transcription of each of these classes of
genes was significantly altered following exposure to wild-type
heat-labile toxin (Fig. 2b). Similarly, RT-PCR confirmed decreased
expression of multiple genes involved in microvilli biogenesis,
including VIL1 encoding villin (Fig. 3a), and we were able to
demonstrate that production of villin was depressed in polarized

small intestinal enteroids (Fig. 3b and Supplementary Fig. 2). In
addition, TEM images of polarized small intestinal enteroids
exposed to heat-labile toxin demonstrated significantly shortened
and disorganized microvillus structures on the apical surface of
enterocytes (Fig. 3c).

Heat-labile toxin modulates the transcription of multiple brush
border nutrient transport genes
The human solute carrier (SLC) gene superfamily is comprised ofmore
than 50 gene families thought to encode more than 300 functional
transporters34. Many of the SLC proteins are enriched in the small
intestinal brush border, where they transport critical nutrients,
including amino acids, oligopeptides, sugars, and vitamins. We found
that transcription ofmany SLC genes was altered inCaco-2 cells as well
as small intestinal enteroids (Fig. 4a). These included transporters for
Zinc, known both to be deficient in children with enteropathy35, and a
micronutrient critical for intestinal homeostasis. Likewise, transcrip-
tion of SLC19A3 encoding the principal SLC responsible for uptake of
the water-soluble B vitamin thiamine (vitamin B1)36 by differentiated
intestinal epithelial cells lining the surface of intestinal villi of the
proximal small intestine37,38 (Fig. 4b) was repressed as was the pro-
duction of the corresponding protein (supplementary figure 3a).
Moreover, we found that LT treatment of human small intestinal
organoids also interfered with the transcription of the cis-regulatory
element specificity protein 1 (SP1) previously shown to govern the
transcription of SLC19A339–41 (Fig. 4c and Supplementary Fig. 3b).
Finally, we found that thiamine transport was significantly depressed
following exposure to LT (Fig. 4d) providing additional evidence that
ETEC can impair transport of critical nutrients.
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LT-producing ETEC disrupts the absorptive architecture of the
small intestine
To further study the potential impact of ETEC toxins on intestinal
architecture, we performed challenge studies in infant mice. Com-
pared to sham-challenged (PBS) controls, or mice challenged with a
toxin-deficient strain of ETEC, we again noted down-regulation of
genes involved in F-actin bundling, membrane cross-linking, and
intermicrovillus adhesion complex formation, all required for
intestinal microvilli (Fig. 5a) biogenesis. Likewise, on examination of
small intestinal villi we found that the production of villin in
enterocyte brush borders was substantially decreased relative to
sham-challenged controls (Fig. 5b, c). In mice challenged with a
wild-type ETEC isolate thatmakes ST and LT, but not an LT/ST-toxin-
negative mutant (jf4763, Supplementary Table 1), we observed
significant alteration in the architecture of the intestinal brush
border with significant shortening and disorganization of the
microvilli (Fig. 5d, e and Supplementary Fig. 4a–d) reminiscent of
the earlier ultrastructural studies of patients with tropical sprue17

and V. cholerae infections25. Similarly, we found that in mice chal-
lenged with a strain containing an isogenic mutation in eltA (jf571,
Supplementary Table 1) encoding the LT A subunit, which still
makes heat-stable toxins, the microvillus architecture was pre-
served (Fig. 5f, g), suggesting that LT is the principal toxin under-
lying the enteropathic changes to the enterocyte surfaces.

Despite the dramatic toxin-dependent changes to the absorptive
surface of the intestine, the early growth kinetics of suckling mice
challenged a single time with either wild-type bacteria or a heat-labile
toxin deletion mutant were surprisingly similar (Supplementary
Fig. 5A) and paralleled those of sham-challenged controls. However,
enteropathy in young children is thought to reflect damage elicited by
repeated infections. Children in endemic regions typically suffer mul-
tiple ETEC infections before their second birthday, and the risk of
enteropathic sequelae increases multiplicatively per episode8,12.
Therefore, to assess the contribution of repeated ETEC infections to
growth impairment, we compared the growth kinetics of sucklingmice
challenged a single time to those repeatedly infected with wild-type
toxigenic ETEC. These studies demonstrated a clear impact of repe-
ated infection on growth (Supplementary Fig. 5B). Finally, we found
that the growth kinetics of mice repeatedly challenged with wild-type
ETEC H10407 was significantly retarded relative to those challenged
with the isogenic LT-mutant jf876 (Supplementary Fig. 5C). Therefore,
repeated infections in this model appear to recapitulate impacts
observed following repeated ETEC infection in children, and our data
suggest that these features are at least in part driven by LT.

Maternal vaccination with LT prevents brush border disruption
To addresswhether enteropathic changes to the small intestine can be
prevented by vaccination, and to further define the role of LT, we
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vaccinatedmouse damswith heat-labile toxin and examined the brush
border ultrastructure in suckling mice. Vaccinated dams but not sham
vaccinated controls expressed significant levels of IgA and IgG in
breast milk (Fig. 6a), consistent with increased levels of antibodies in
the stomachs of infant mice (Fig. 6b). Notably, we found thatmaternal
vaccination with LT completely abrogated changes to the microvilli
(Fig. 6c, d) further substantiating the importance of LT in driving
changes to the epithelial architecture.

LT modulates key transcription factors that govern enterocyte
development
Despite the marked alteration in transcription mediated by LT, the
majority of genes critical for brush border development lacked
conserved CRE sites23. Therefore, we performed transcription factor
target enrichment analysis42,43 to identify potential transcription
factors responsible for differential regulation of genes significantly
(P < 0.05) upregulated or downregulated by LT in both Caco-2 and
enteroid RNA-seq datasets (Supplementary Table 4 and Supple-
mentary Dataset 1). The upregulated genes were most significantly
(p = 4.2 × −10−3) linked to transcription factor targets of AP-1 enco-
ded by the c-jun gene, previously shown to be regulated by cAMP44,
and to be involved in intestinal epithelial repair45. Notably, however,
downregulated genes weremost significantly enriched in targets for
the HNF4α transcription factor or its intestine-specific paralog
HNF4γ (P = 1.9 × −10−4) that were recently shown to regulate multi-
ple genes required for brush border development46,47. Importantly,
PKA has also been shown to phosphorylate HNF4 α at a consensus
recognition site within the DNA binding domain, shared with HNF4
γ, inhibiting transcription48.

Of note, the transcription of both paralogs was found to be sig-
nificantly depressed following exposure of intestinal epithelia to LT
(Fig. 7a, b), as were levels of HNF4γ in nuclear fractions from toxin-

treated cells (Fig. 7c), suggesting that activation of cAMP can interfere
with transcription mediated by HNF4. To further examine the impact
of LT onHNF4-mediated transcription,we introduced a transcriptional
reporter plasmid containing six tandem copies of the HNF4 tran-
scriptional response element (5′-CAAAGGTCA-3′) linked to a human
codon-optimized Gaussia princeps luciferase into Caco-2 cells. These
assays demonstrated that HNF4-mediated transcription was dramati-
cally reduced in cells treated with LT (Fig. 7d). Similarly, we found that
relative to nuclei of intestinal epithelial cells in ileal segments from
sham-challenged control mice, those from ETEC-challenged mice
exhibited significantly less HNFγ (Fig. 7e) further supporting a role for
ETEC in modulating the production of this important transcription
factor. Chen et al described a “feed-forward regulatory module”
essential to enterocyte differentiation in which HNF4 and SMAD4
transcription factors reciprocally activate each other’s transcription.
As would be predicted from this model, we found that transcription of
SMAD4was also impaired by LT (Supplementary Fig. 6A, B), leading us
to speculate that LT-mediated phosphorylation of HNF4 by PKA,
interrupts this critical transcription module (Supplementary
Fig. 6C–E).

Collectively, the current studies demonstrate that in addition to
their known canonical effects on ion transport that culminate inwatery
diarrhea, ETEC toxins can drive appreciable derangement of enter-
ocyte architecture and function by interfering with key pathways in
intestinal epithelia that govern the formation of mature enterocytes
capable of effective nutrient absorption. These findings have impor-
tant implications for our understanding and prevention of entero-
pathic conditions linked to ETEC.

Discussion
Understanding the molecular events that lead to sequelae of
undernutrition and growth faltering following ETEC infections may

Fig. 4 | Heat-labile toxin alters the transcription of multiple brush border SLC
genes. a Heatmap indicating key SLC genes modulated by heat-labile toxin (LT)
compared to enzymatically inactive E112K LTmutant (mLT), or untreated (ø) Caco-
2 cells (left) and human small intestinal (ileal) enteroids (Hu235D, right). Bars
indicate absolute log2 fold change values + SE. Comparisons were made with
DESeq293. *p ≤0.05, **p ≤0.01, ***p ≤0.001, ****p ≤ 10−4, *****p ≤ 10−5. Real-time qRT-

PCR confirming LT-mediated modulation of genes in ileal (Hu235D) enteroids
encoding b the major thiamine transporter SLC19A3 and c the SP1 cis-regulatory
element. Data reflect two independent experiments with two replicates each.
dUptake of [3H]-thiamine byHu235D cells is impaired following LT treatment. Data
presented in b–d are from two independent experiments with n = 3 replicates each.
(*<0.05, **<0.01 by Mann–Whitney two-tailed comparisons).
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be key to the effective design of prevention strategies, including
vaccines49. Although the molecular mechanisms involved in the
fluid and ion fluxes into the intestinal lumen leading to diarrhea are
firmly established, only recently has evidence emerged to suggest
that ETEC toxins may incite previously unappreciated changes in
small intestinal epithelia50,51. The present studies, initiated to iden-
tify additional effects of LT, were prompted by an appreciation that
cyclic nucleotides, particularly cAMP, govern amultitude of cellular
pathways, potentially resulting in collateral impacts that extend

beyond the acute episodes of diarrhea. Consistent with this model,
we found that exposure of intestinal cells to heat-labile toxin altered
the transcription of hundreds of genes. A central theme highlighted
in the analysis of these transcriptional alterations is that LT affects
major classes of genes involved in the biogenesis of microvilli and
the function of the intestinal brush border, the major site of nutri-
ent uptake in the small intestine, potentially offering a direct
molecular link to sequelae of malnutrition and impaired growth in
children.
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The potential clinical relevance of the observations reported here
is highlighted by remarkably similar ultrastructural alteration of
intestinal epithelial cells seen in small intestinal biopsies of patients
with acute cholera25 and tropical sprue17. In both entities, the brush
border was noted to be abnormal, with shortened, irregular microvilli.
Importantly, however, despite the structural and functional similarity
between LT and CT, clinical cholera, unlike ETEC infections, has not
been linked to enteropathy or attendant sequelae.Whether this relates
to the repetitive nature of ETEC infections compared to the durable
protective immunity that follows a single V. cholerae infection52 is not
presently clear. Similarly, while tropical sprue remains a leading cause
of malabsorption in regions where infectious diarrhea is prevalent53–55,
the most debilitating forms of this illness have not typically followed
isolated cases of traveler’s diarrhea, but occur in resident populations
or expatriates56 repeatedly assailed by diarrhea while residing in
endemic regions57. Likewise, our data also highlight the potential
importance of repeated infections on the development of sequelae.

The negative impacts of LT on brush border architecture, with a
commensurate reduction in surface area available for nutrient
absorption, are compounded by the alteration of multiple SLC genes
that encode transporters critical for the uptake of essential vitamins
and other molecules. Importantly, small intestinal biopsies obtained
from Zambian children with enteropathy and refractory stunting
exhibited similar changes in SLC gene expression profiles58. The
decreased transcription of molecules required for intestinal zinc
uptake, in cells treated with LT is particularly intriguing given the
known aberrations in zinc absorption in children with
enteropathy35,59,60, the possible contribution of zinc deficiency to
enteropathic changes61, and the salutary effects of zinc in the treat-
ment of children with diarrhea62,63.

Further study will be needed to precisely delineate the role of
ETEC LT and ST enterotoxins, alone and in combination, in driving
enteropathic changes to the intestine and sequelae. ST-producing
ETEC were most strongly associated with moderate to severe diarrhea
in GEMS3, and follow-on studies of children enrolled in these studies

have also linked infections with ETEC encoding heat-stable toxin to
growth faltering7. However, our earlier analysis of a global collectionof
more than 1100 ETEC isolates, including those collected in GEMS,
demonstrated that slightly more than half of all ST-encoding strains
also encoded LT, and that roughly one-third of the isolates overall
encoded LT alone, ST-LT, or ST only64. While LT-producing ETEC have
been specifically linked to malnutrition among children in
Bangladesh27, and our in vitro and animal studies point to the potential
importance of LT, additional effort will be needed to correlate toxin-
induced morphologic and functional perturbation of the intestinal
brush border with outcomes in children. Importantly, the long-term
morbidity associated with ETEC infections does not appear to corre-
late with the severity of diarrhea as both mild illness4, and perhaps
asymptomatic colonization may lead to growth faltering.

Further refinement of animal models that can faithfully recapitu-
late features of enteropathy are also needed. Indeed, conventional
mice lack genes that could be required to reproduce the full effects of
ETEC. For instance, each of the carcinoembryonic antigen cell adhe-
sion molecules (CEACAMs) that are substantially upregulated on
human small intestinal epithelia in response to LT, and which we have
recently shown to play a critical role in ETEC interactions with human
small intestine50, are absent in mice.

While the precise mechanism underlying LT-mediated modula-
tion of genes required for microvillus biogenesis and absorptive
function of the brush border is presently unclear, stimulation of ade-
nylate cyclase invokesmany cAMP-responsive nuclear factors thatmay
serve either to activate or repress transcription. Genes implicated in
the development of microvilli are mostly devoid of consensus palin-
dromic (TGACGTCA) or “half” (CGTCA) cAMP-response element (CRE)
sites within their promoter regions for direct modulation by CREB65,
which typically is involved as a transcriptional activator, and both
CREB and CREM can yield several alternatively spliced variants that
may act as either activators or repressors66. cAMP second messaging
also engages multiple signaling pathways converging at CREB67, and
PKA can phosphorylate and modulate the activity of multiple

5

10

15

20

M
ic

ro
vi

lli
 le

ng
th

 (n
m

) 
x1

02

ns

+ + -
++-

****

****

5

10

15

20

 
aL

T
 Ig

A
 V

m
ax

(m
ill

i-u
ni

ts
/m

in
)

****

IgA
vax + -

vax
ETEC

50

100

150

200
 

aL
T

 Ig
A

/Ig
G

V
m

ax
 (m

ill
i-u

ni
ts

/m
in

)

*

*

IgGIgA
vax + - + -

breast milk stomach

20

40

60

80

100

IgG
vax + -

aL
T

 Ig
G

 V
m

ax
(m

ill
i-u

ni
ts

/m
in

) ****

a b d

500 nm

c

vax
ETEC +

-
500 nm

vax
ETEC +

+
500 nm

vax
ETEC -

+

day 0 14 28 ~42
birth

~53 LT 10μg (in)

ETEC~105 cfu
tissue collection

n= 5 5 4

Fig. 6 | Maternal vaccination with LT mitigates microvillus disruption in
neonatal mice. Timeline depicts vaccination and challenge (top): maternal intra-
nasal (i.n.) vaccinations with 10 µg LT/immunization (yellow arrows on days 0, 14,
28) and neonatal challenge at 3 days of age (green arrow) followed by sacrifice and
tissue collection at 7 days post-infection (gray arrow). a Kinetic ELISA data of from
triplicate samples of breastmilk anti-LT (IgA, and IgG in n = 2 immunized dams and
1 un-immunized control). *<0.05 by Mann–Whitney two-tailed nonparametric

testing. b Anti-LT antibodies in the gastric contents of neonatal mice at day 53.
****p <0.0001 by Mann–Whitney two-tailed comparisons. c Representative trans-
mission electron microscopy images of brush border microvilli from unvaccinated
mice challenged with wild-type ETEC (left), vaccinated mice challenged with wild-
type ETEC, and vaccinated un-challenged controls. dMicrovillus lengths (based on
image analysis of n = 5 mice group) ****<0.0001 Kruskal–Wallis comparisons.

Article https://doi.org/10.1038/s41467-022-34687-7

Nature Communications |         (2022) 13:6886 7



transcription factors to act either as transcriptional activators or
repressors, including SP168. Notably, putative binding sites for HNF4, a
cAMP-modulated transcription factor48 known to regulate genes nee-
ded for the formation of microvilli46,47, were significantly enriched in
the promotors of genes downregulated by LT. BothHNF4α andHNF4γ
possess canonical PKA recognition sites within their DNA binding
motifs, and PKA phosphorylation of these sites interrupts
transcription69. HNF4 activates the transcription of SMAD4, and in
turn, SMAD4 activates the transcription of HNF470. Both transcription
factors then engage genes needed for the effective differentiation of
stem cells to mature enterocytes70. Modulation of the activity of this
transcription factor by LT would therefore be predicted to have a
marked impact on pathways critical to intestinal epithelial
homeostasis.

We should also note that increases in cellular cAMP can impact
multiple cellular pathways independent of PKA. Included among these
arepathways governedby amore recently discovered family of cellular
cAMP-binding molecules, exchange proteins activated by cAMP
(EPACs). EPACs appear to play critical roles as guanine exchange fac-
tors that regulate GTPase proteins71 and are involved in complex sig-
naling networks implicated in cell growth, differentiation, and
morphogenesis72,73.

cAMP can also exert potent epigenetic influences on transcrip-
tion. CREB-binding protein (CBP) possesses intrinsic histone acetyl-
transferase (HAT) activity74, and can therefore modulate chromatin

remodeling, enhancing access to transcription factors. In addition,
cAMP messaging through PKA leads to phosphorylation-dependent
activation of the histone demethylase enzyme PHF2 to promote the
transcription of multiple genes that can impact the transition from
stem cells to epithelial cells75.

Increased intestinal permeability is a recognized hallmark of
enteropathy in young children in LMICs76. Given the known negative
impacts of cholera toxin on epithelial barrier function77, and its
structural and functional similarity to a heat-labile toxin, LT may exert
additional enteropathic effects beyond the impact on brush border
biogenesis described here.

Altogether it seems likely that multiple pathways governed by
increases in cellular cAMP may underlie the morphologic and func-
tional disruption of the brush border epithelial observed in our stu-
dies. Nevertheless, the data presented here provide compelling
evidence that the heat-labile toxin of ETEC ultimately impactsmultiple
genes required for the biogenesis and function of the brush border,
themajor site of nutrient absorption in the human small intestine. The
findings may have significant implications for our understanding of
sequelae linked to ETEC, including environmental enteropathy in
young children, and tropical sprue in adults. The increased acknowl-
edgement of long-term morbidity linked to ETEC and an improved
understanding of the role of ETEC enterotoxins as drivers of this
morbidity may also strengthen the case for vaccines49 specifically
engineered to prevent both acute illness and sequelae.
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Methods
The studies reported here comply with all relevant ethical regulations
and the study protocols have been approved by the IACUC, Institu-
tional Biosafety, and Institutional Review Boards at Washington Uni-
versity in Saint Louis School of Medicine.

Culture and differentiation of enteroids
Archived small intestinal enteroid specimens derived from biopsy
samples of adult patients undergoing routine endoscopy were
obtained from the Organoids Core of the Digestive Disease Research
Core Center (DDRCC) at Washington University School of Medicine
under Institutional Review Board (IRB) protocol number 201406083.
Cell lines used in these are routinely validated for response to the heat-
labile toxin by cAMP assays (Arbor Assays, Ann Arbor, MI).

Purified crypt cells from the ileum (Hu235D) were resuspended in
Matrigel (BD Biosciences, San Jose, CA, USA) and 15 µL of resuspended
matrix gel was added to each well in 24 well plates. Plates were incu-
bated at 37 °C and 5% CO2 with 50% L-WRN conditioned media (CM)
and 50% primary culture medium (Advanced DMEM/F12, Invitrogen)
supplemented with 20% FBS, 2mM L-glutamine, 100 units/mL peni-
cillin, 0.1mg/mL streptomycin, 10 µM Y-27632 (ROCK inhibitor, Tocris
Bioscience, R&D systems,Minneapolis, MN, USA), and 10 µMSB431541
(TGFBR1 inhibitor, Tocris Bioscience, R&D systems).

To induce differentiation and polarization of enteroids, cells were
washed once to remove Matrigel, followed by trypsinization and cen-
trifugation at 1100 × g for 5min. Cells were then resuspended in 1:1 CM
and primary medium with Y-27632 and SB431541 as described above.
Cells were then plated on semiporous filters (Transwells®, 6.5mm
insert, 24 well plate, 0.4-μm polyester membrane, Corning Incorpo-
rated, Kennebunk, ME, USA) that had been previously coated with
Collagen IV (Millipore Sigma). Transwell® inserts were rinsed with
DMEM/F12 with Hepes, 10% FBS, L-glutamine, Penicillin, and strepto-
mycin. Cells were allowed to grow to confluency in 50% conditioned
media (CM) and then changed to a differentiation medium (5% CM in
primary medium+ROCK inhibitor) for 48 h. Differentiated cells were
used for toxin treatment.

Propagation of Caco-2 cells
Caco-2 intestinal epithelial cells wereobtained fromATCC (ATCCHTB-
37) and cultured at 37 °C, 5% CO2, in Eagle’s MEM supplemented with
20% of fetal bovine serum (FBS). To generate polarized monolayers,
~1 × 105 cells were seeded onto polystyrene membrane filters (0.4μM,
6.5mm diameter insert, Transwell, Corning) and grew for at least a
week prior to toxin treatment. Media was replaced with fresh media
every two days.

Toxin treatment
Polarized differentiated cells were treated with a heat-labile toxin (LT)
in a differentiation medium (100 ng/mL) in a volume of 700 µL at the
basolateral sideof the Transwell insert and 100 µL volumeon the apical
aspect of themonolayer. Treated cells were incubated at 37 °C for 18 h
and then fixed for transmission electron microscopy or fluorescence
microscopy, or lysed for RNA extraction (GE Healthcare, Buck-
inghamshire, UK). LT and mutant LT (E211K, mLT) were kindly pro-
vided by Dr. John D. Clements, Tulane University, New Orleans,
Louisianna, USA.

RNA extraction and cDNA synthesis
RNA was extracted using the Illustra RNAspin Mini RNA extraction
kit (GE Healthcare, Buckinghamshire, UK). Three biological repli-
cates per treatment (untreated and LT treated) were submitted to
the Genome Technology Access Center (GTAC) at Washington
University in St. Louis School of Medicine for RNA-seq library pre-
paration. An Agilent Bioanalyzer was used to determine the integ-
rity of RNA samples. cDNAwas generated using SuperscriptTM ViloTM

cDNA synthesis kit (Invitrogen by Thermo Fisher) after normalizing
RNA concentrations.

RNA-seq library preparation
Library preparation was performed with 10 ng of total RNA, integrity
was determined using an Agilent bioanalyzer. ds-cDNA was prepared
using the SMARTer Ultra Low RNA kit for Illumina Sequencing (Clon-
tech) per the manufacturer’s protocol. cDNA was fragmented using a
Covaris E220 sonicator using peak incident power 18, duty factor 20%,
cycles/burst 50, and time 120 s. cDNA was blunt-ended, had an A base
added to the 3′ends, and then had Illumina sequencing adapters liga-
ted to the ends. Ligated fragments were then amplified for 12–15 cycles
using primers incorporating unique index tags. Fragments were
sequenced on an Illumina HiSeq-2500 using single reads extending
50 bases.

RNA-seq data processing and analysis
RNA-seq reads were aligned to the Ensembl top-level human genome
assemblywith STAR version 2.7.3a. Gene countswerederived from the
number of uniquely aligned unambiguous reads by Subread:feature-
Count version 1.54.1. Read counts were used as input for DESeq2 dif-
ferential gene expression analysis (version 1.24.0)78 with default
settings, and a minimum P value significance threshold of 10−5 (after
false discovery rate [FDR79] correction for the number of tests). Frag-
ments per kilobase per million reads mapped (FPKM) values for rela-
tive gene expression were calculated from DESeq2-normalized read
counts, and Z-scores were calculated per gene using the average and
standard deviations of FPKM values across samples. Log2 fold changes
were identified from differential expression output. Pathway enrich-
ment analysis for KEGG80 and Gene Ontology (GO)81 pathways among
gene sets of interest was performed using the over-representation
analysis tool provided on the WebGestalt42 web server (version 2019).
Heatmap and bar graph visualization was performed with
Microsoft Excel.

Transcript counts were produced by Sailfish version 0.6.3.
Sequencing performance was assessed for the total number of aligned
reads, the total number of uniquely aligned reads, genes and tran-
scripts detected, ribosomal fraction known junction saturation, and
read distribution over known gene models with RSeQC version 2.3.

All gene-level and transcript counts were then imported into the
R/Bioconductor package EdgeR and TMM normalization size factors
were calculated to adjust for samples for differences in library size.
Ribosomal features, as well as any feature not expressed in at least the
smallest condition size minus one sample were excluded from further
analysis and TMM size factors were recalculated to created effective
TMM size factors. The TMM size factors and thematrix of counts were
then imported into R/Bioconductor package Limma and weighted
likelihoods based on the observedmean-variance relationship of every
gene/transcript and sample were then calculated for all samples with
the voomWithQualityWeights function. The performance of the sam-
ples was assessed with a spearman correlation matrix and multi-
dimensional scaling plots. Gene/transcript performance was assessed
with plots of the residual standard deviation of every gene to their
average log count with a robustly fitted trend line of the residuals.
Generalized linear models were then created to test for gene/tran-
script level differential expression. Differentially expressed genes and
transcripts were then filtered for FDR-adjusted p values less than or
equal to 0.05.

The biological interpretation of the large set of features found in
the Limma results were then elucidated for global transcriptomic
changes in known Gene Ontology (GO) and KEGG terms with the R/
Bioconductor packages GAGE and Pathview. Briefly, GAGE measures
for perturbations in GO or KEGG terms based on changes in observed
log2 fold changes for the geneswithin that termversus the background
log2 fold changes observed across features not contained in the
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respective term as reported by Limma. For GO terms with an adjusted
statistical significance of FDR ≤0.05, heatmaps were automatically
generated for each respective term to show how genes co-vary or co-
express across the term in relation to a given biological process or
molecular function. In the case of KEGG-curated signaling and meta-
bolism pathways, Pathview was used to generate annotated pathway
maps of any perturbed pathway with an unadjusted statistical sig-
nificance ofp value ≤0.05. Genes significantlymodulated in bothCaco-
2 cells and enteroids were subjected to further ontology-free analysis
via CompBio v1.4 (PercayAI, Inc., www.percayai.com/compbio)82 to
identify unifying biological themes in sets of genes differentially
expressed between pairwise comparisons of different groups.

Quantitative real-time PCR
Quantitative real-time PCR was performed using a QuantStudio 3 real-
time detection system (Applied Biosystems). Fast SYBR Green master
mix (Applied Biosystems/Thermo Fisher) was used for qPCR analysis.
Disassociation curve analysis wasperformed to assess the specificity of
amplification for each sample, and PCR product size was verified by
agarose gel electrophoresis. Percent expression was normalized by
GAPDH and analyzed using the comparative threshold cycle (Ct)
method. Amplification of SLC19A3 transcripts from small intestinal
enteroids was performed as recently described83 with relative gene
expression normalized to β actin. HNF4a, HNFg, and SMAD4 gene
expression was determined by TaqMan (Thermo Fisher) using vali-
dated primer and probe sets. Primers and TaqMan probes used in this
study are listed in Supplemental Table 2.

Transcriptional reporter assays
To assess the impact of LT on HNF4-mediated transcription, pTR104
(GeneCopoeia) carrying six copies of the HNF4 transcriptional
response element upstream of a secreted Gaussia luciferase (Gluc)
reporter gene was transfected (FuGENE, Promega) into confluent
Caco-2 cells. Media (EMEM, ATCC) were exchanged 24 h after trans-
fection, and after an additional 24 h, baseline samples of media were
removed from each well and stored at −80 °C. Wells were then treated
with a heat-labile toxin (100ng/ml) overnight (16 h). At the end of
treatment cell culture supernatants media were transferred to black-
walled microplates (Greiner 655086) and processed as directed
(Secrete-Pair Luminescence, GeneCopoeia, Inc. Rockville, MD), fol-
lowed by luminescence detection (Synergy H1, BioTek). Data were
expressed as Relative Light Units (RLU) before and after treatment
with LT.

SMAD4-mediated transcription was assessed by transient trans-
fection of Caco-2 cells with the SBE4-luc plasmid containing four
copies of the SMAD4 transcriptional response element 5’-GTCTA-
GAC-3'84.

Following treatment with overnight treatment with LT, cells were
resuspended in 80 µl of EMEMmedia andmixed with an equal volume
of ONEGLO EX Reagent (Nano-Glo® Dual-Luciferase® Reporter Assay
System, Promega) for 20min on an orbital shaker at 300 rpm, then
read on the luminometer as above.

Immunoblotting
SLC19A3, SP1. Total protein was extracted from LT toxin-treated
(100ng/ml) humandifferentiated enteroidmonolayers (235D line) and
untreated control using radioimmunoprecipitation assay (RIPA) buffer
(Sigma) containing protease inhibitor cocktail. An equal amount
(∼25μg) of the proteins were loaded on a NuPAGE 4-12% Bris–Tris
gradient gels (Invitrogen) as previously described83, then blotted onto
polyvinylidene difluoride (PVDF) membranes and probed with anti-
SLC19A3 (1:1000; Cat# 13407-1-AP; Proteintech), or anti-SP1 (1:1000;
Cat# ab124804; Abcam) antibodies and together with anti-beta actin
(1:3000; Cat# sc-47778) primary antibodies. The specificity of the
SLC19A3 antibodies was validated in our laboratory previously using

different approaches that include overexpression of tagged protein or
gene silencing85. Anti-SP1 antibodies were validated by the manu-
facturer using knockout cell lysate protein samples. The SLC19A3 and
SP1 protein bands from the blot were then identified with corre-
sponding anti-rabbit IR-800 dye (1:30,000; Cat# 926-32211; LI-COR
Bioscience) and anti-mouse IR-680 dye (1:30,000; Cat# 926-68020; LI-
COR Bioscience) secondary antibodies incubation for 1 h at room
temperature. Relative expression of specific proteinswas calculated by
comparing the fluorescence intensities in an Odyssey infrared imaging
system (LI-COR Bioscience) with respect to the corresponding beta-
actin signal.

Villin. Differentiated LT-treated and control enteroidmonolayers were
lysed using NE-PERTM nuclear and cytoplasmic extraction reagents
(Thermo Scientific). Cell membrane pellets were solubilized in PBS
containing 1% Triton X-100 supplemented with a protease inhibitor
cocktail (PierceTM protease inhibitor mini, Thermo Scientific). Equal
amounts of total protein were loaded on a 4–20% gradient SDS-PAGE
gel (Mini Protean TGX, Bio-Rad), then blotted onto nitrocellulose
membranes and probed with anti-villin mouse monoclonal antibody
(1:1000; Cat# SC-66022; Santa Cruz Biotechnology) followed by
detection with HRP-conjugated anti-mouse secondary antibody
(1:1000; Cat# 7076 S; Cell Signaling Technology). Blots were devel-
oped with Clarity Western ECL substrate (Bio-Rad) and imaged with a
c600 imaging system (Azure Biosystems). Relative Villin expression
signals were then analyzed with respect to corresponding Coomassie-
stained gel using ImageJ analysis software.

Thiamin uptake
Initial rates (30min; at 37 °C) of carrier-mediated thiamin uptake were
examined in LT-treated (100 ng/ml; overnight) and untreated control
differentiated small intestinal enteroid monolayers incubated in
Krebs–Ringer buffer (pH 7.4) containing [3H]-thiamin (15 nM). Enteroid
monolayers were then washed with ice-cold Krebs–Ringer buffer, fol-
lowed by lysis with NaOH and neutralization with 10N HCl. The
radioactive content was counted using a liquid scintillation counter as
described previously83. Uptake of thiamin by its respective and distinct
carrier-mediatedmechanismwas determined by subtracting uptake of
[3H]-thiamin in the presence of a high pharmacological concentration
(1mM) of unlabeled thiamin from uptake in their absence; all uptake
data points were calculated relative to total protein content (in milli-
grams) of the different preparations and presented as a percentage
relative to simultaneously performed controls.

Confocal microscopy
Cell monolayers were fixed with 2% paraformaldehyde for 30min at
37 °Cand thenwashed3×with PBSprior to blockingwith 1%BSA in PBS
for 1 h at room temperature. Villin expressionwas detected using 1:100
dilution of anti-villin antibodies raised in mice (Santa Cruz Bio-
technology) for 1 h at room temperature, followed by additional 1 h
incubationwith 1:200 dilution of fluorescence-tagged goat anti-mouse
IgG Alexa Fluor 488 (Thermo Fisher) (Supplemental Table 5). Cell
membranes were stained with 1:2000 dilution of CellMask orange
(Invitrogen) and nuclei were counterstained with DAPI (1:1000) and
mounted on glass slides using Prolong Gold antifade reagent (Invi-
trogen). Images were captured and analyzed on a Nikon C2 confocal
microscope equipped with NIS-Elements AR 5.11.01 software (Nikon).

Electron microscopy
For ultrastructural analyses, in vitro-grown differentiated polarized
monolayers of human ileal enteroid samples, as well as mouse intest-
inal biopsy samples, were fixed in 2% paraformaldehyde/2.5% glutar-
aldehyde (Ted Pella, Inc., Redding, CA) in 100mM sodium cacodylate
buffer, pH 7.2 for 2 h at room temperature and then overnight at 4 °C.
Samples werewashed in sodium cacodylate buffer and postfixed in 2%

Article https://doi.org/10.1038/s41467-022-34687-7

Nature Communications |         (2022) 13:6886 10

http://www.percayai.com/compbio
https://www.promega.com/products/luciferase-assays/transfection-reagents/fugene-hd-transfection-reagent/?catNum=E2311


osmium tetroxide (Ted Pella, Inc) 1 h at room temperature. Samples
were then rinsed in dH20, dehydrated in a graded series of ethanol, and
embedded in Eponate 12 resin (Ted Pella, Inc.). Sections of 95 nmwere
cut with a Leica Ultracut UCT ultramicrotome (Leica Microsystems
Inc., Bannockburn, IL), stainedwith uranyl acetate and lead citrate, and
viewedona JEOL 1200EX transmission electronmicroscope (JEOLUSA
Inc., Peabody, MA) equipped with an AMT 8 megapixel digital camera
and AMT Image Capture Engine V602 software (AdvancedMicroscopy
Techniques, Woburn, MA). Images were analyzed using ImageJ soft-
ware for microvilli length and structures.

Identification of potential transcription factor target sites
The CREB targets database65 (http://natural.salk.edu/CREB/) was used
to identify potential categorical CRE full (TGACGTCA) or half (TGACG/
CGTCA) sites within the promotor regions of genes modulated by the
heat-labile toxin. Following previously described protocol23, 5 kilobase
upstream sequences from each human gene were retrieved from
Ensembl86 and were searched for the CREB-binding sites TGACGTCA
and TGACGTAA (and their reverse complements), based on sequences
retrieved from the TRANSFAC87 database (matrix ID: V$CREB_01).
CREB sequence matches were identified in the upstream sequences of
1,302 genes. WebGestalt42 was used for overall functional enrichment
of potential transcription factor binding sequences upstream from
genes thatwere significantly (p <0.05) up- and down-regulated in both
Caco-2 cells and enteroids.

Suckling mouse challenge studies
Studies in mice were performed under protocol 20-0438 approved by
theWashington University in Saint Louis Institutional Animal Care and
Use Committee. In neonatal mouse challenge studies, 3-day-old CD-1
mice (male and female)were inoculatedwithwild-type ETEC (H10407),
isogenic toxin deletion mutants, or sterile PBS (sham negative con-
trols). Inocula were prepared from frozen glycerol stocks maintained
at −80 °C grown overnight (~16 h) in 2ml Luria Bertani (LB) broth in a
shaking incubator (at 37 °C, 225 rpm). Cultures were then diluted 1:100
in 20ml of fresh LB, grown for an additional 2 h, and bacteria were
harvested by centrifugation (6000 rpm, 5min at 4 °C). Pellets were
thenwashedonce in ice-cold sterilePBS, then resuspended to adensity
of ~1 × 105 colony forming units (CFU) per 20 µl inoculum. CFU in each
inoculum were determined by plating serial dilutions LB-agar plates.
Mice were then inoculated with ETEC directly into the stomach
through the abdominal wall using a 31 g insulin needle. Following
infection, mice were marked with tattoo ink to define groups and
returned to the cage. Seven days post-infection, mice were sacrificed,
and the ileal tissue collectedwas fixed formicroscopy or preserved for
RNA extraction.

Bacterial strain construction
The strains used in these studies are described in Supplementary
Table 1. Strain jf4763 is devoid of all enterotoxins and was constructed
from a previously engineered ST-negative mutant of H10407, jf284888.
Briefly, jf2848 was first transformed with pKD46, a lambda red
recombinase helper plasmid with selection on ampicillin.
Jf2848(pKD46) was then transformed with a PCR amplicon generated
with primers _to replace the eltAB genes encoding LT with a specti-
nomycin resistance cassette resulting in jf4763. The strain was subse-
quently validated by PCR and by testing supernatants in GM1
ganglioside ELISA to confirm the lack of LT production.

Vaccination and immunologic assessment
Adult female mouse dams were vaccinated intranasally three times at
2-week intervals with 10 µg LT holotoxin in PBS, with the last dose
administered ~2weeks prior to anticipated delivery. Controlmicewere
mock vaccinated with PBS. Fecal pellets collected from vaccinated
dams were used to assess mucosal responses to LT. To collect breast

milk, the dam was separated from the litter ~2 h prior to milking.
Oxytocin (Sigma O3251), 0.002 IU/g, was injected IP to stimulate milk
production, followed by collection via pipette tip. Anti-LT immune
responses in maternal fecal extracts and breast milk, and stomach
contents and sera of neonates (male and female)were assessedbyGM1
ganglioside89 kinetic ELISA90 for anti-LT IgA and IgG, using plates
coated with GM1 (Sigma G7641), as previously described91.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RNAseq data were deposited at the Sequence Read Archive (SRA) on
the NCBI website https://www.ncbi.nlm.nih.gov/sra under BioProject
accession number PRJNA875141. Primary source data and original
images are available on Figshare as detailed in Supplementary Table 6
of the supplementary information.
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