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Abstract

Introduction: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder-

featuring a brain accumulation of extracellular β-amyloidplaques (Aβ) and intracellular
neurofibrillary tautangles (NFTs). Although cognitive decline is a disease-defining

symptom of AD, sleep dysfunction, a common symptom often preceding cognitive

decline, hasrecently gained more attention as a core AD symptom. Polysomnogra-

phy and othersleep measures show sleep fragmentation with shortening of N3 sleep

togetherwith excessive daytime sleepiness (EDS) and sundowning as themain findings

inADpatients. The latter reflects dysfunction of thewake-promoting neurons (WPNs),

including histaminergic neurons (HAN) located in thetuberomammillary nucleus (TMN)

of the posterior hypothalamus, which projectunmyelinated axons to various parts of

the brain. Histamine’s role in cognitionand arousal is broadly recognized. Selective

targeting of histaminergic subtype-3 and 4 receptors show therapeutic potential in

rodent models of AD andaging.

Method: Based on PubMed, Scopus, and google scholar databases search, this review

summarizes the current knowledge on the histaminergic system in AD and aging, its

therapeutic potential in AD, and highlight areas wheremoreresearch is needed.

Results: Animal studies have demonstrated that pharmacological manipulation of his-

taminergic receptors or histamine supplementation improves cognition in ADmodels.

However, measurements of HA or HA metabolite levels in the human brainand CSF

present contradictory reports due to either lack of power or controls for known

confounders.

Discussion: Systemic studies including broad age, sex, neuropathological diagno-

sis, and disease stage are warranted to fill the gap in our current understanding

of the histaminergic neurotransmitter/neuromodulator system in humans, especially

age-related changes, and therapeuticpotential of histamine in AD-related dysfunction.
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1 INTRODUCTION

Alzheimer’s disease (AD) is an age-associated, irreversible, progres-

sive neurodegenerative disorder. It is the most common cause of

cognitive impairment and dementia among the elderly. About 6.5 mil-

lion Americans > 65 years are living with AD, which is already the

fifth leading cause of death among individuals > 65 years.1 AD is a

mixed proteinopathy having extracellular amyloid beta (Aβ) plaques
and intracellular neurofibrillary tau tangles (NFTs) as its cardinal

neuropathological hallmarks. Glial activation, region-specific neuronal

loss, synaptic remodeling, and synaptic dysfunction are associated

pathological characteristics of AD.2

Sleep cycle disturbances are a common symptom in the early

stages of AD,3 and epidemiological studies have shown a link between

sleep problems and dementia.4,5 Dysfunction of the sleep cycle

in AD features sleep fragmentation with shorter slow-wave sleep

(SWS-N3), excessive daytime sleepiness (EDS), and sundowning.6

EDS is also associated with impaired cognitive functions in elderly

individuals and patients with mild cognitive impairment.7 Measure-

ment of non-rapid eye movement (NREM), slow wave activity (SWA),

and sleep quality may predict the rate of Aβ and tau accumulation

in the cortex.8,9 Poor sleep quality with diminished low frequency

(1 or 0.6 –1 Hz) SWA during NREM sleep and EDS exacerbates Aβ
and tau accumulation by severalfold in elderly individuals.8–10 EDS

has been linked to Aβ accumulation in the precuneus and cingulate

gyrus.11

The histaminergic system is critical for modulating wakefulness,

cognition, neuroinflammation, and neurogenesis.12–14 Our previous

studies have demonstrated a profound loss of subcortical wake-

promoting neurons (WPNs) in AD, including histaminergic neurons

(HAN),15–18 which suggests a primary role ofWPNs inAD-related sleep

dysfunction. Despite the known role of HAN in sleep regulation and

the early involvement of these neurons in AD, there is a lack of under-

standing about their functionduring aging andADprogression. Further

research could lead to the development of targeted treatments for

managing sleep dysfunction, improving quality of life, and potentially

slowing AD progression.

2 SLEEP AND WAKE CYCLE

In mammals, sleep is defined as reduced body movement and elec-

tromyographic activity; responsiveness to external stimuli and breath-

ing rates, closed eyes, altered body position, and a specific cyclical

electrical brain wave architecture.19 Confluent evidence supports the

role of sleep in memory function and consolidation, homeostasis,

immune response, and metabolism.20–22 Sleep–wake dysfunction is

a feature of many neurodegenerative disorders.23 Evidence shows a

bidirectional feed-forward mechanism involving poor sleep and exac-

erbation of abnormal protein deposits, as illustrated in recent work

focusing on the glymphatic system and synaptic homeostasis hypoth-

esis. The glymphatic system is a network of perivascular systems that

promote the cerebrospinal fluid (CSF)movement into the brain. It plays

RESEARCH INCONTEXT

1. Systemic review: We searched for papers with key-

words “Alzheimer’s disease,” “aging,” “cognitive decline,”

“sleep-wake cycle,” “hypothalamus,” “tuberomammillary

nucleus,” “wakefulness/arousal system,” “histamine,” “his-

taminemetabolites,” “CSF” in databases PubMed, Scopus,

and Google Scholar. A total of 217 full articles in English

were screened, and after applying our inclusion criteria,

69 articles were included in the final article.

2. Interpretation: Previous studies have established his-

tamine’s role in maintaining wakefulness, cognitive pro-

cessing, and inhibition of post-translational modification

of proteins. Animal studies have demonstrated the cogni-

tive benefits of pharmacological modulation of histamin-

ergic receptors. However, the role of cerebral histamine

in the initiation and progression of Alzheimer’s disease

(AD) in humans is not well understood.We identified sev-

eral areas that require further research. For example, the

cerebrospinal fluid levels of histamine metabolites may

differ in agingwith AD, and sex, age, and the disease state

as factors influencing these changes.

3. Future directions: This review provides an overview and

consolidates the current understanding of the relation-

ships among age, AD, and the histaminergic system. Thus,

it sets the foundation for future studies to explore the

potential of histamine as a therapeutic target in AD and

leveraging existing drugs thatmodulate the histaminergic

system as a treatment for AD.

a critical role in the clearance of toxic Aβ, tau, and α-synuclein.24–26

The CSF-mediated drainage of metabolic waste to the lymph nodes is

under circadian control and depends on the polarization of aquaporin-

4 channels.27 SWS has been shown to play a role in modulating CSF Aβ
levels. Additionally, SWS may have an impact on synaptic strength.28

Reduced synaptic activity has been linked to a decrease in intersti-

tial fluid Aβ levels, while the exocytosis of synaptic vesicles has been

linked to an increase in extracellular Aβ.29 This suggests that SWSmay

protect against Aβ accumulation in the cortex.

A system of wake-promoting, sleep-promoting, and circadian neu-

rons regulate sleep.30,31 Wakefulness is primarily sustained by the

ascending arousal system, which consists of two components of sub-

stantial heterogeneous cell populations. The first branch, or dorsal

cholinergic pathway to the thalamus, originates from the two choliner-

gic structures in the brainstem (pedunculopontine tegmental nucleus

[PPT] and the laterodorsal tegmental nucleus [LDT]).30,31 PPT/LDT

neurons activate the relay and reticular nuclei of the thalamus to

maintain wakefulness and modulate consciousness.12 They are most

active during wakefulness and rapid eye movement (REM) sleep and

discharge slow waves during NREM sleep. The second branch, or
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monoaminergic or extra-thalamic pathway, originates from the rostral

pons and innervates the hypothalamus and the cortex to modulate

arousal and the behavioral state of wakefulness.12 The extra-thalamic

pathway includes the norepinephrine/noradrenergic (NE) neurons of

the locus coeruleus (LC), serotoninergic neurons (5-HT) from the dor-

sal and median raphe nuclei, dopaminergic (DA) neurons of the ventral

periaqueductal gray matter and the HAN from the tuberomammillary

nucleus (TMN). The extra-thalamic pathway also contains GABAergic,

cholinergic projections from the basal forebrain (BF) and the melanin-

concentrating hormone (MCH) or hypocretin/orexin (ORX) neurons

from the lateral hypothalamus.30 The cholinergic projections of the

BF are also associated with attentional focus and vigilance. Together,

these interconnected pathways maintain and promote wakefulness

and arousal.32

Wake promotion involves several fast-acting and slow-acting neu-

rotransmitters, such as glutamate (Glu), NE, 5-HT, DA, ORX, MCH,

HA, and γ-aminobutyric acid (GABA). ORX, GABA, and Glu have been

studiedmore extensivel in sleep-wake cycle regulation.33 Although the

HAN of the TMN exhibit the most selective wake discharge pattern

in the brain,34 their role in sleep-wake dysfunction in aging and age-

related diseases has been neglected, probably due to its late molecular

characterization compared to otherWPN populations.35

ORX and HA neurons are critical to maintaining the arousal state,

work in synergy, complement each other, and control different aspects

of wakefulness. ORX neurons are involved in motor coordination and

electroencephalogram (EEG) activation. In contrast, theHAN promotes

cortical activation and cognitive activities during wakefulness.36 Fur-

ther, a decline inHA reduces cortical EEGpower in theta rhythmduring

wakefulness and amplitude of slow activity during SWS. Simultane-

ously, the lack of ORX doesn’t influence the quantitative aspect of the

cortical EEG.36 Wake-promoting TMN pathways and sleep-promoting

ventrolateral preoptic nucleus (VLPO) pathways act as a flip-flop

switch for rapid and complete transitions between wakefulness and

sleep.37 In a study, microinjection of L-Glu and H1R inhibitor tripro-

lidine to VLPO resulted in the activation of the VLPO and increased

NREM sleep. The blocking of the GABA receptors in the TMN with

microinjection of bicuculline or L-Glu resulted in an increase in wake-

fulness with a concomitant decline in REM andNERM sleep in Sprague

Dawley rats.37 Pitolisant is a Food and Drug Administration–approved

drug to treat EDS and cataplexy in people with narcolepsy. It is a com-

petitive antagonist and inverse agonist of the histamine receptor 3

(H3R).38 Pitolisant is also being studied as a potential treatment for

central nervous system (CNS) disorders such as epilepsy, obstructive

sleep apnea, and Parkinson’s disease. Several other H3R antagonists

are being tested to treat schizophrenia; AD (GSK239512, ABT-288);

attention-deficit/hyperactivity disorder; EDS in patients with Parkin-

son’s disease (JNJ-31001074), AD (SAR110894), and neuropathic pain

(GSK189254); and to improve cognition and wake-promotion (CEP-

26401).39 In addition, doxepin, a selective blocker of H1R, is also used

at low concentrations (1–6mg) to treat insomnia.40

3 STRUCTURAL ORGANIZATION OF THE
CEREBRAL HISTAMINERGIC SYSTEM

3.1 Localization and anatomy of the mammillary
body and tuberomammillary complex

The human hypothalamus is part of the diencephalon and comprises

≈0.3% of the total brain volume. The hypothalamus is arranged in

four rostrocaudal regions (preoptic, anterior, tuberal, and mammil-

lary) or three mediolateral zones or areas (periventricular, medial, and

lateral).41 The TMN seats on the mammillary region of the posterior

hypothalamus between the arcuate nucleus rostrally and the caudal

part of the medial mammillary nucleus, and the rostral part of the sub-

stantia nigra.42 TMN neurons are the only source of HA in rodents

and humans.43 HANs are large (25–40 μm in diameter), darkly stained,

lipofuscin-laden neurons that extend into the zone basally between the

medial and lateral mammillary nuclei. Humans have between 64,000

to 154,000 HAN.42 The HAN joins the NE and 5-HT fibers of the

ventral branch of the ascending arousal system to innervate the neo-

cortex (Figure 1). In addition to HAN, the TMN also contains GABA,

galanin, substance P, and MCH neurons.41 A detailed account of his-

tamine structure, synthesis, metabolism, andmechanism of action, can

be found in the supporting information (Figures S1, S2).

4 HISTAMINERGIC SYSTEM IN AGING AND AD

Neuronal vulnerability to age-related diseases depends on multi-

ple aspects, including the length of axonal projects and myelination.

Unmyelinatedor poorlymyelinatedneurons areprone todevelopNFTs

and are vulnerable to oxidative stress (OS).44,45 HANs are predomi-

nantly unmyelinated and send long axonal projections to various brain

parts. In AD, tau NFTs accumulate in the brainstem before they appear

in the entorhinal cortex, the first cortical region to accumulate NFTs.

This pattern alignswith the early accumulation ofNFTs in otherWPNs,

such as the dorsal raphe nucleus and LC.15,46

Age-dependent neurotransmitter synthesis and activity alterations

cause functional decline. The two rate-limiting steps in HA synthesis

are histidine (His) availability and histidine decarboxylase (HDC)

expression and activity. L-His, the HA precursor, declines in the serum

of AD patients.47 However, the cortex, hypothalamus, and midbrain

show an age-dependent, region-specific increase in HA in Sprague

Dawley old rats.48 Exposure to acute stress elevates hypothalamic HA

in aged rats, indicating intact stress response of HAN in 12-month-old

Sprague Dawley rats 49 (Table 1). Given that our current knowledge of

age-specific changes is based on rodent models or cell culture studies

with very few contributions of studies in humans in a context of early

vulnerability of the HA system to AD changes, there is a pressing

need to expand the understanding of the role of the HA system

in AD.
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F IGURE 1 Histaminergic projections in the human brain; histaminergic cells are localized in the tuberomammillary nucleus in the posterior
hypothalamus. Unmyelinated axons innervate the cerebral cortex, striatum, temporal cortex, thalamus, cerebellum, brainstem, and spinal cord

TABLE 1 Histamine and its metabolites in human and rat brain on aging and Alzheimer’s disease

Compound Model Control Aged/stressed AD

Level of

significance Reference

Histamine Sprague

Dawley rat

- 29% increase P< 0.02 Mazurkiewicz-

Kwilecki et al.,

198448

Sprague

Dawley rat

596±25 ng/g wet tissue 720±30 ng/g wet tissue P< 0.01 Mazurkiewicz-

Kwilecki et al.,

198649

Histamine Human — 20%–45% decline P< 0.05 to P<
0.001

Mazurkiewicz-

Kwilecki et al.,

198856

Histamine Human — 20%–55%

increase

P< 0.05 to P<
0.005

Fernández-Novoa

and Cacabelos

200152

Human — Increase in medial

TMN in AD

patients

P= 0.047 Shan et al., 201258

Histidine Human — 15%–30% decline P< 0.05 Panula et al.,

199857

HNMT Sprague

Dawley rat

39% decline P< 0.001 Marurkiewicz-

Kwilecki et al.,

198649

HRF Human 2.91± 1.04 — 1.93± 0.83 P< 0.05 Kim et al., 200159

Baseline

histamine

release

≈230 c.p.m./mg protein

(male) and∼130

c.p.m./mg protein

(female) in

6-month-old

Wistar-Kyoto strain rat

≈145 c.p.m./mg protein

(male) and≈130

c.p.m./mg protein

(female) in

24-month-old

Wistar-Kyoto strain rat

— P< 0.01

(male)

P> 0.05

(female)

Ferretti et al.,

199860

Abbreviations: AD, Alzheimer’s disease; HNMT, histamineN-methyltransferase; HRF, histaminergic releasing factor.
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TABLE 2 Histamine and its metabolites in CSF during aging and in AD

Compound Metabolite Model Control Aged AD

Level of

significance Reference

Histamine Human 3.4± 1.4 pmol/ml

141.00 pM

(50.00–430.00)

— 8.3±

2.9 pmol/ml

164.50 pM

(50.00−642.00)

P< 0.05

P= 0.51

Fernández-

Novoa and

Cacabelos,

200152

Gabelle et al.,

201755

Histamine

metabolite

tele-

methylhistamine

(t-MeOH)

Human 1.52±

0.23 pmol/ml

2.86±

0.24pmol/ml

— P< 0.005 Prell et al.,

199153

Human 1.93±

0.33 pmol/ml

3.14±

0.24pmol/ml

— P< 0.001 Motawaj et al.,

201054

Human 1126.00 pM

(600.00–

4087.00)

— 1803.00

(317.00−3904.00)

P= 0.70 Gabelle et al.,

201755

Human 2.76±

0.13 pmol/ml

— 2.14±

0.10pmol/ml

P< 0.01 Motawaj et al.,

201054

tele-

methylimidazole

acetic acid

(t-MIAA)

Human

5.60±0.48pmol/ml

7.29± 0.39

pmol/ml

— P< 0.05 Prell et al.,

199153

Human 1232.00 pM

(984.00–

4146.00)

— 1967.50 pM

(367.00–

4144.00)

P= 0.16 Gabelle et al.,

201755

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid.

4.1 Histamine and its metabolites in the CSF

CSF levels of HA metabolites reflect HA activity and thus represent

a window into the changes in the HA system during aging and AD.

Changes in CSF HA levels have been predominantly studied in sleep

disorders, such as narcolepsy, obstructive sleep apnea syndrome,

hypersomnia, and idiopathic hypersomnia. These studies, including

people of ages 4 to 86 years, have aimed to understand the relationship

between CSF levels of hypocretin-1, HA, and tele-methylhistamine

(t-MeHA) in different sleep disorders and to investigate the effects of

age, severity of the disorder, andmedication on CSFametabolites.50,51

Little is known about changes in CSF HA or HA metabolites in aging

or AD, and the few studies available show contradictory results.

Fernández-Novoa and Cacabelos reported significantly increased

CSF-HA levels in AD patients.52 Prell et al. demonstrated that an

age-associated increase in CSF t-MeHA and tele-methylimidazole

acetic acid (t-MIAA) levels were also sex-dependent (Table 2). CSF

t-MeHAand t-MIAAwere higher in females at the base level compared

to males. CSF HA metabolite concentration in males exhibited an

age-associated increase, while females had no such changes. However,

it is worth noting that the study contains only two younger female

participants.53 The primary focus of the study was the effect of

age and sex on levels of HA metabolites in the lumbar CSF, and the

authors did not consider neuropathological diagnosis as an influencing

factor.

Motawaj et al. made a similar observation showing an age-

dependent increase in CSF t-MeHA levels, in which t-MeHA levels

in 80-year-old females were 3.39 ± 0.29 pmol/mL compared to

2.50 ± 0.28 and 1.97 ± 0.36 pmol/mL in 60- and 40-year-old females,

respectively. Similarly, among themales, the t-MeHA levels in 80-year-

old participants were 2.90 ± 0.22 pmol/mL compared to 2.09 ± 0.18

and 1.89 + 0.31 pmol/mL of their 60- and 40-year-old counterparts.54

Further, they compared CSF t-MeHA levels in patients with AD-type

dementia to controls and demonstrated a significant decline in AD

(2.14 ± 0.10 vs. 2.76 ± 0.13 pmol/mL [P < 0.01]). The decline of CSF t-

MeHA was higher among the female AD participants (2.06 ± 0.14 vs.

2.95 ± 0.21 pmol/mL, P < 0.001) than in males (2.26 ± 0.16 vs.

2.58 ± 0.16 pmol/mL). The CSF t-MeHA levels declined in AD patients

over controls by 24%.54 This contrasting CSF t-MeHA profile in aging

and AD individuals is intriguing and needs further study to establish

whether CSF t-MeHA is a possible ADmarker. Gabelle et al. published

an opposite report, which showed an insignificant increment in CSF

t-MeHA levels in AD-type dementia and mild cognitive impairment

compared to controls.55 Although the authors used a precise tech-

nique for quantifying CSF t-MeHA level, the presence of outliers in the

data is evident (Table 2). The outliers and the small sample size con-

found the interpretation of the results. Overall, it is clear that more

studies are needed to understand the relationship between CSF HA

or HA metabolites and AD; fewer studies with contradictory reports

complicate the picture.
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F IGURE 2 Loss of histaminergic neurons in later stages of AD. The
scale bar on the right represents the cell population (mean) in the
TMN. *Denotes statistical significance over control. AD, Alzheimer’s
disease; HDC, histidine decarboxylase; HAN, histaminergic neurons;
TMN, tuberomammillary nucleus

4.2 Histamine in the aging brain and AD

Histamine levels increase in the brain of aging rodents, and it is unclear

if the same is true in humans. Human post mortem studies with con-

trol and AD patients present contrasting findings. While one study

found a maximum HA decline in the frontal cortex in AD brains,56

another found a more severe decline in the temporal cortex and

hippocampus.57 In contrast, Fernández-Novoa andCacabelos reported

a substantial increase in cerebral HA concentration in the AD brain

in discrete regions of the cerebral cortex, with the maximum concen-

trations found in the posterior hypothalamus.52 None of these studies

estimated HA concentration in TMN. A third study found a decline in

HAN in the TMN in AD patients and downregulation of HDC mRNA

only in the medial TMN.58 In our current study on human post mortem

TMNusing thenCounter platformofNanostring,we founda significant

−1.61-fold (P = 0.038) decline in HDC RNA expression in AD patients

(Braak 6, n = 6) over controls (Braak 0, n = 3; unpublished). Finally,

another study found a decline of hippocampal histaminergic releasing

factor (HRF) in the temporal cortex of AD patients,59 with age- and

sex-dependent decline in HA release60 (Table 1). Although contrasting

reports exist regarding brain and CSF HA levels in AD, with a possible

topographical and sex-related variation, a profound loss of HAN is well

established, varying between 57% to 62% in late-stage AD compared

to healthy controls.17,58

Pathological changes in the TMN include loss of HAN and the pres-

enceofNFTs (Figure2).17 The loss ofHANswith preservedHDCmRNA

expression indicates the presence of a compensatory mechanism in

the TMN. The age-dependent increase in HA levels can protect against

OS and neuroinflammation. Studies with cell cultures and a mouse

model of AD (AβPPswe/PSEN1dE9), demonstrate that supplement-

ing HA or His-dipeptides such as anserine or carnosine can modulate

neuroinflammation, OS, and caspase-dependent cell death, and can

rescue the animals from cognitive deficits.61,62 HA protects against

lipopolysaccharide (LPS)-mediated reactive astrogliosis andmicroglio-

sis in the hippocampus by inhibiting Toll-like receptor 4-associated

pro-inflammatory mediators (interleukin-1 beta and HMGB1) while

simultaneously increasing HRF levels,13 critical for strengthening the

synaptic plasticity in the hippocampus.13 Additionally, research has

suggested that HA may inhibit carbonyl stress and post-translational

protein modification by reacting with and stabilizing lipid peroxidation

products.63 Based on the current research and literature, it is clear

that there is a significant lack of understanding about the role of the

histaminergic system in the development and progression of AD.

5 THERAPEUTIC POTENTIAL OF HISTAMINE
RECEPTORS TO AMELIORATE AGE- OR
AD-ASSOCIATED COGNITIVE DECLINE

Arrang et al.64 characterized H3Rs as presynaptic auto-receptors that

regulate HA release by a negative feedback mechanism. H3Rs are pre-

dominantly expressed in the CNS with a relatively lower expression in

the sympathetic andperipheral nervous systems.64–66 TheseG-protein

coupled H3Rs regulate the release of acetylcholine (ACh), NE, DA, and

5-HT either directly as a presynaptic heteroreceptor or indirectly by

altering the HA levels.43,66 Cognitive impairment in AD is generally

treatedwith acetylcholinesterase inhibitors (AChEi) to counterbalance

the effects of lower ACh neurotransmission; however, the moderate

efficacyofAChEi is a concern,67 and thus, it becomes imperative to look

for targets capable of enhancing ACh neurotransmission.

The H3R mRNA expression in the human prefrontal cortex demon-

strates a sex-dependent significant increase in severe AD dementia

over cognitively intact subjects.58 However, autoradiographic stud-

ies with H3R antagonists (3H GSK189254) in mice and human brains

demonstrated preserved H3R density in the medial frontal cortex

across AD progression; the study was inconclusive regarding the

H3R downstream processes, such as cyclic adenosine monophosphate

(cAMP)/cAMP-response element binding protein (CREB) andphospho-

inositide 3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase

kinase 3 beta (GSK3β) pathways, apoptosis/autophagy, H2R modula-

tion, and inflammatory responses.68 Radioligand [11C]GSK189254has

been used to quantify H3R receptors in humans by positron emis-

sion tomography.69,70 Activation of H3Rs is associated with a decline

in ACh, Glu, and GABA, the neurotransmitters critical for maintaining

cognition.43 Selective blockage of H3Rs demonstrated increased HA,

ACh, NE, and DA release from the hippocampus and anterior cingu-

late cortex and reinstated cognitive integrity in agedWistar rats.71–73

Selective inactivation of H3Rs also enhances neurogenesis in the sub-

granular zone of the hippocampus, a region considered critical for

cognition and highly vulnerable to AD.74 Chronic administration of
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S38093 (an inverse agonist/antagonist of H3R) enhanced hippocampal

neurogenesis in adult 129/SvEvTac, aged C57Bl/6JRj, and in APPSWE

model of AD via upregulation of brain-derived neurotrophic factor

(BDNF) BDNF-IX, BDNF-IV, and BDNF-I transcripts and increased

vascular endothelial growth factor expression in agedmice.75

Pharmacological inactivation of H3R mediates neuroprotection via

cAMP/CREB and PI3K/AKT/GSK3β pathway.76 Inactivation of H3Rs

leads to an increase in the intracellular levels of cAMP, upregu-

lates CREB protein, and mediates protection via downregulation of

AKT/GSK3β in mice (APP/PS1) model of AD.76 The loss of lysoso-

mal function and accumulation of autophagic vesicles are associated

with tau cleavage and spreading.77 Downregulation of the extracel-

lular signal-related kinase (ERK)/CREB pathway impairs autophagy in

human neural stem cells.78 Wang et al. demonstrated that H3R inhibi-

tion rescued the lysosomal impairment by activatingCREB. The pCREB

protein upregulated Atg7 and transcription factor EB (TFEB) expres-

sion, enhanced ablation of Aβ and beta-secretase 1, and reinstated

cognitive integrity in themousemodel (APP/PS1) of AD.79

Further, manipulation of the histaminergic system with an H3R

antagonist resulted in a decline in inflammation in the hippocam-

pus and cerebral cortex with a simultaneous reduction in astroglial

and microglial reactivity in 9-month-old APP/PS1 mice. Inhibition of

H3R altered astrocytic phenotype from reactive A1 to protective A2

astrocytes by increasing the cAMP/CREB phosphorylation and by sup-

pressing phosphorylated nuclear factor kappa-light-chain-enhancer of

beta (NFKβ) cells expression. Treatment of H89 (inhibitor of CREB

signals) impedes H3R activation and provides neuroprotection by

inhibiting astroglial and microglial activation.80 Alachkar et al. demon-

strated that the inactivation of H3Rs by E177 (non-imidazole H3R

antagonist) significantly improved cognition in adult amnestic Wis-

tar rats. However, this inhibition of H3Rs didn’t affect anxiety-like or

locomotor behavior.81

Manipulation of histaminergic receptors with a pharmacological

agent capable of selectively inhibiting H3Rs and stimulating H4Rs

emulated neuroprotective effects on the mouse AD model. In the Aβ
infusion-induced AD model, clobenpropit (CLO), an inverse antago-

nist of H3Rs with partial H4R agonist, had a profound neuroprotective

effect over BF2694, an inverse antagonist of H3R.82 Stimulating H4Rs

and blocking H3R improves blood–brain barrier integrity in a rat AD

model. Shan et al.83 confirmed the anti-inflammatory potential ofH4Rs

in the LPS-mediated neuroinflammation model. The overexpression

of H4R inhibited pro-inflammatory cytokines tumor necrosis factor α,
IL-1β, IL-6, and IL-12 in LPS-stimulated highly aggressively proliferat-

ing immortalized microglial cells. The anti-inflammatory effect of the

H4R agonist 4-MeH was reversed when the LPS+4-MeH cells were

pre-treated with an H4R antagonist. The H4R agonist exerts anti-

inflammatory function by inhibiting the release of pro-inflammatory

cytokines and phosphorylation of NFkβ p65, p38 mitogen-activated

protein kinase, and ERK1/2.83 Although the exact role of H4R is

unclear, the results from various studies have provided a substantial

backup for the candidature of the H4R agonist as an effective agent to

mitigate the inflammation of the AD brain.

6 CONCLUSION AND PERSPECTIVE

Evidence indicates that AD-specific vulnerability of WPNs is associ-

ated with sleep dysfunction in patients suffering from AD. Further,

pathological changes in the HAN correlate with cognitive deficits.

The evolutionarily conserved signaling molecule HA acts as a neuro-

transmitter and is critical for the sleep–wake cycle, maintenance of

biological rhythm, temperature regulation, and possibly cognition. As

a neuromodulator, HA influences the activity of various neurotrans-

mitters, including the cholinergic, glutamatergic, and nor-adrenergic

systems through multiple HA receptors. Rodent studies with pharma-

cological manipulation of HA receptors corroborate the pro-cognitive

potential of HA. Inhibition of H3R lowers lipid peroxidation and neu-

roinflammation by reducing reactive gliosis and upregulation of pro-

tective astrocytes. It also modulates autophagy by upregulating Atg7

andTFEBexpression via pCREB. TheH3Rantagonists/inverse agonists

have been shown to improve sleep–wake dysfunction and facilitate

clearance of Aβ, tau, and other toxic metabolites and institute a home-

ostatic milieu that inhibits neuronal loss. In addition, the relatively

preserved H3R density in AD makes it a vital candidate for therapeu-

tic strategies. Less research is available on the histamine receptorH4R,

but H4R agonists have anti-inflammatory properties thatmay enhance

the effects of H3R agonists. Therefore, targeting the histaminergic

neurotransmission system with an H3R antagonist/inverse agonist or

H4R agonist, either alone or in combination, could be a promising new

approach for treating AD.

Studies measuring HA or HA metabolite levels in the human brain

and CSF present conflicting reports and often lack power or control

for known confounders. Intriguingly, CSFHAmetabolite levels demon-

strate an age-dependent and sex-independent increase, whereas they

decline in AD significantly. Therefore, systemic studies examining fac-

tors that may affect HA or HA metabolites in the brain and CSF,

including age, sex, neuropathological diagnosis, and disease stage, are

warranted and may inform on the utility of HA as a biomarker for

AD. Also, mechanisms associatedwithHA-mediated post-translational

modification of protein require elucidation.

Our review of the histaminergic system demonstrates critical gaps

in knowledge and gross neglect of the histaminergic system and its role

in AD progression. The role of cerebral HA in the progression of AD

deserves further investigation.
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