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Abstract

Goal—Our objective is to provide a framework for extracting signals of interest from the 

wearable seismocardiogram (SCG) measured during walking at normal (subject’s preferred pace) 

and moderately-fast (1.34 – 1.45 m/s) speeds.

Methods—We demonstrate, using empirical mode decomposition (EMD) and feature tracking 

algorithms, that the pre-ejection period (PEP) can be accurately estimated from a wearable patch 

that simultaneously measures electrocardiogram (ECG) and sternal acceleration signals. We also 
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provide a method to determine the minimum number of heartbeats required for an accurate 

estimate to be obtained for the PEP from the accelerometer signals during walking.

Results—The EMD-based de-noising approach provides a statistically significant increase in the 

signal-to-noise ratio (SNR) of wearable SCG signals and also improves estimation of PEP during 

walking.

Conclusion—The algorithms described in this paper can be used to provide hemodynamic 

assessment from wearable SCG during walking.

Significance—A major limitation in the use of the SCG, a measure of local chest vibrations 

caused by cardiac ejection of blood in the vasculature, is that a user must remain completely still 

for high quality measurements. The motion can create artifacts and practically render the signal 

unreadable. Addressing this limitation could allow, for the first time, SCG measurements to be 

obtained reliably during movement—aside from increasing the coverage throughout the day of 

cardiovascular monitoring, analyzing SCG signals during movement would quantify the 

cardiovascular system’s response to stress (exercise), and thus provide a more holistic assessment 

of overall health.

Index Terms

Wearable technology; smart and connected health; seismocardiography; empirical mode 
decomposition

I. Introduction

Enabling cardiovascular health monitoring around the clock both for patients with 

cardiovascular diseases (CVDs)—for ‘disease management’—and for healthy persons—to 

potentially provide early detection and prevention of CVDs—is a major focus in the field of 

wearable technology. The prevalence of CVDs is increasing in the U.S. and worldwide: 

according to American Heart Association (AHA), approximately 25% of the US population 

suffers from some sort of CVD and this number is expected to reach 40% in the coming 

decade. At the same time, the costs associated with CVDs are expected to increase from 

$320 billion to $1 trillion [1]. Improving the continuity of care via continuous monitoring as 

well as enabling early detection and prevention of CVDs can potentially reduce both the 

prevalence of and costs associated with CVD.

Myriad non-invasive wearable systems for health monitoring have been developed recently 

in research and commercial settings, including devices that monitor cardiac 

electrophysiology (e.g., heart rate and rhythm monitors) [2]. Additionally, several groups are 

actively researching wearable technologies for monitoring the mechanical aspects of 

cardiovascular health, such as left ventricular function (e.g., cardiac output and systolic time 

intervals, STIs [3]), blood pressure [4], and vascular health (e.g., pulse wave velocity [5]).

One sensing modality for assessing the latter—mechanical aspects of cardiovascular 

function—is ballistocardiography (BCG), a measurement of the vibrations of the body that 

result from cardiac ejection and movement of the blood throughout the vascular tree. These 

body vibrations can be measured with inexpensive and miniature accelerometers, built into 
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small and convenient wearable form factors, from different locations on the body such as the 

ear, wrist and arm [6]–[9]. BCG derived features have been shown to correlate well with 

STIs such as the pre-ejection period (PEP) [10], [11]. If the accelerometer for measuring 

body vibrations is placed on the surface of the chest, then the convention in the literature is 

that the acquired signals are named the seismocardiogram (SCG) [12]–[15]. These chest 

vibrations are due to the movements of the heart and blood; it should be noted though, that 

the accelerometer on the chest can also detect vibrations associated with the closure of the 

valves in frequency bands higher than the SCG (frequency > 20 Hz) [16].

A major challenge for SCG and other mechanical measurements of cardiovascular function 

is that high fidelity signals can only be obtained when the user is stationary. Motion artifacts 

related to walking or other types of movements can reduce the signal-to-noise ratio (SNR) 

and even sometimes render the measured signals unreadable. Hence, most of the prior 

research on wearable sensing of the mechanical aspects of cardiovascular function has 

focused on measurements in the resting state only, or during recovery following a 

perturbation such as exercise. In particular, enabling the estimation of STIs during 

movement, when the cardiovascular system is stressed due to the increased demands of the 

skeletal muscles and skin for blood flow, can likely provide deeper insight into 

cardiovascular function for patients with CVD than measurements at rest alone. SCG 

measurements can potentially address this compelling need, provided that motion artifacts 

can be adequately reduced, and a framework for objectively determining the quality of 

measurements during motion is developed.

In this paper, we use a small wearable patch adhered on the sternum to simultaneously 

measure electrocardiogram (ECG) and SCG signals during walking at different speeds. We 

focused initially on walking, since it is the most common form of motion that nearly all 

people perform during the day, and is the basis for the commonly-used clinical stress test 

named the 6-minute walk test [17], [18]. The 6-minute walk test has emerged as a non-

invasive and inexpensive method for assessment of submaximal exercise capacity of patients 

with heart failure (HF) [18]. Studies have shown that different parameters obtained from the 

test, such as walking distance and left ventricle ejection fraction, can provide prognosis of 

the disease in patients with HF [19], [20].

The objectives of this research were: (1) to provide a framework, using data driven methods 

such as empirical mode decomposition (EMD) [21]–[23], to reduce motion-artifact 

corruption in the SCG signals during walking, (2) to compare the performance of the SCG 

with a state-of-the-art, commercially available impedance cardiogram (ICG) sensor for 

estimation of PEP during walking, and (3) to provide a method to objectively determine the 

minimum number of heartbeats before an accurate estimate of PEP can be generated using 

feature detection techniques. This work focuses on methods that can be used with SCG 

signals, but can also be extended to other sensing modalities such as photoplethysmography 

(PPG) for de-noising signals during walking and, concordantly, assessing cardiovascular and 

respiratory health.
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II. Methods

A. Protocol

Data were collected from 17 young, healthy subjects (Gender: 11 males and 6 females, Age: 

25±4 years, Weight: 72.5±13.6 kg and Height: 1.7±0.1 m) under a protocol approved by the 

Institutional Review Board at the Georgia Institute of Technology. The protocol was divided 

into three different phases to analyze how both surface and speed of walking affects the 

measured acceleration signals. These three phases are explained below:

• Phase 1: Walking on level ground at the subject’s normal pace for 6 minutes, 

followed by 2 minutes of recovery.

• Phase 2: Walking on a treadmill at 1.34 m/s for 5 minutes, followed by 1–2 

minutes of recovery.

• Phase 3: Walking on level ground at a brisk pace for 5 minutes, followed by 1 

minute of recovery. Specifically, the walking speed during this test was estimated 

to be 1.45±0.13 m/s.

Walking in each phase was preceded by a baseline reading in which each subject was asked 

to stand upright in a resting state for 1 minute. However, only 3 subjects completed all three 

phases, while another 7 subjects participated in both normal and treadmill walking. The 

remaining 7 subjects only completed the last part of the protocol that involved walking at a 

brisk pace on level ground. The subjects who completed more than one phase of the protocol 

were given 10–15 minutes of resting time between different phases.

B. Hardware

In all sets of data, the ECG and acceleration signals were collected with a novel wearable 

patch as shown in Fig. 1. The wearable patch, an improvement upon our previous version 

described in [13], recorded data onto a micro Secure Digital (micro-SD) card. The patch 

housed an ATMEGA1284P micro-controller (Atmel Corporation, San Jose, CA). The ECG 

sensor used an analog-front-end (AFE) integrated circuit with an on-board analog-to-digital 

converter (ADS1291, Texas Instruments, Dallas, TX) while BMA280 (Bosch Sensortec 

GmbH, Reutlingen, Germany) was selected for the accelerometer in the patch. The patch, 

along with 3 pre-gelled electrodes, weighed 38.2 g. Along with the wearable device, ECG 

and ICG signals were also measured using the BNEL50 and BN-NICO wireless 

measurement modules (BIOPAC Systems, Inc., Goleta, CA) to provide a reference gold-

standard for the assessment of PEP. All the signals from both the custom wearable patch and 

Biopac sensors were sampled at 1 kHz. They were synchronized by tapping both the sensors 

before and after the start of measurements for all types of walking, and performing re-

sampling in post-processing accordingly.

C. Pre-Processing of Data

The signals from the Biopac and wearable patch sensors were aligned using the tapping 

artifacts introduced at the beginning and end of each recording. The ECG signals from both 

the sensors were time-stamped. Once the tapping artifacts were manually determined at the 

beginning of the recording, the ECG R-peaks were detected from both ECG signals. The 
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peaks were then aligned and the signals between these were re-sampled, using cubic 

interpolation, to have equal numbers of samples. However, during walking, sometimes noise 

was present in the ECG signal from one sensor and not in the other. Hence, the signals were 

manually checked and time axis information was also utilized to obtain correct 

synchronization. The ECG, ICG and accelerometer signals were band-pass filtered using 

finite impulse response (FIR) filters (Kaiser window, cut-off frequencies: 0.8 – 40 Hz for the 

ECG, and, 0.8 – 35 Hz for the ICG and dorso-ventral (D-V) component of acceleration 

signals) as shown in Fig. 2(a). Once all the signals were filtered, the D-V and ICG signals 

were segmented into individual frames called ‘heartbeats’ using the ECG R-peaks from the 

corresponding ECG signals. The collection of extracted frames, called an ensemble, were 

averaged to obtain ensemble-averaged traces with reduced noise as compared to individual 

heartbeats. The averaged traces can either be obtained using a specific number of heartbeats 

in an ensemble or by defining an ensemble in the form of an interval and averaging 

heartbeats present in it [24]. Both of these approaches were implemented in this paper and 

are explained below:

• Interval-Based Ensemble Averaging: The ECG R-peaks Ri (i is the peak number) 

in 30-second, non-overlapping intervals were detected using a peak detection 

algorithm. Specifically, a constant threshold (γ) of 50% of the maximum 

amplitude of the filtered ECG was computed for each subject and peaks greater 

in amplitude than γ were then located automatically and annotated as R-waves. 

The R-waves found to be closer than 300 ms to each other were discarded as 

false positives and results were manually validated to correct for errors. With Ri 

as fiduciary points, Ri + l ms frames, where l was the frame size, were extracted 

from the accelerometer and ICG sensors. The frame size l was estimated as the 

minimum R-R interval in the 30-second interval.

• Heartbeat-Based Ensemble Averaging: In this approach, ECG R-peaks were 

detected during the walking and recovery phases using the same algorithm and 

approach discussed previously. A window of NR R-peaks was chosen and the 

minimum R-R interval l was calculated from these R-peaks. Again, using these 

peaks as reference points and l, the corresponding portions of ICG and D-V 

signals were segmented into individual frames which were averaged to obtain 

ensemble-averaged traces. The window of NR was slid forward with 25% overlap 

and the process was continued until the whole recording was segmented into 

averaged traces.

The D-V and ICG signals during the 1-minute resting period were also segmented using the 

corresponding ECG R-peaks. However, all the frames in the resting period were averaged to 

obtain one averaged waveform for the baseline reading for each subject. Moreover, if noise 

was present in the ECG signal from any sensor during the walking period, then the 

corresponding data were not used in the ensemble averaging operation.

D. Analysis of Noise Energy during Walking

Walking induced amplitude distortion in the accelerometer signal. Fig. 2(b) shows a 5-

second D-V signal during three different phases of the protocol for the same subject. It can 

be observed that walking at a normal pace induced less amplitude distortion in the measured 
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signal. In order to further investigate this observation, the data during the walking portion of 

each phase of the protocol were separated and mean squared energy was estimated from the 

D-V signal. The mean squared energy was simply estimated as the mean of squared samples 

in the D-V signal for each subject during walking. Let Ek denote the mean squared energy, 

where k represents the subject number. The mean (μE) and standard deviation (σE) were 

calculated for all subjects.

E. De-Noising of Walking Heartbeats using Empirical Mode Decomposition (EMD)

Empirical mode decomposition, an analytical and adaptive method, involves breaking down 

or decomposing a signal into components, and was developed by Huang et. al for the 

analysis of non-stationary signals [21]. The components which are obtained after EMD are 

specific only to the signal from which they are generated. Specifically, EMD decomposes a 

non-stationary signal into a set of amplitude modulated (AM) and frequency modulated 

(FM) tones [22], [25], and these generated components are called intrinsic mode functions 

(imfs). The algorithm for obtaining the imfs from the given signal x is given below [22]:

1. Extract the local maxima and minima in the signal x.

2. Form the upper eu and lower el envelopes of the signal from interpolation of 

maxima and minima, respectively.

3. Estimate the mean of the two envelopes, i.e., em = (eu+ el)/2.

4. Subtract em from x, i.e., h = x − em.

5. Repeat steps 1–4 on h, i.e., x = h.

The above steps (1–5) are called the sifting process and are repeated until h becomes a zero-

mean signal and the number of maxima and minima differ at most by one from the number 

of zero-crossings [25]. The thresholds indicated in [25] for the evaluation of zero-mean 

signals are used for stopping criteria of the sifting process. Once the sifting process is 

completed, the signal h yields the first intrinsic mode function (imf ). Let the first imf be 

denoted by I1. This imf is subtracted from x to obtain the residue r1 and the steps (1–5) are 

repeated on r1 to obtain the second intrinsic mode function. The process of generating imfs 
can be stopped if the residue becomes a monotone from which no further imfs can be 

generated. Thus, the signal can be decomposed into a finite number of components and can 

be reconstructed using the equation .

In this paper, EMD was used to decompose the ensemble-averaged D-V heartbeat during the 

walking phase into imfs as shown in Fig. 3(a). Each ensemble-averaged walking heartbeat 

produced 4 or 5 imfs. However, as shown in Fig. 3(a), only the first imf closely resembled 

the resting state D-V heartbeat and thus was used for further analysis and feature extraction. 

Fig. 3(b) and (c) also show 30-second ensemble-averaged noisy heartbeats from the same 

subject during different phases of walking and their de-noised version after the application 

of EMD algorithm.

In order to assess the improvement in signal quality before and after the application of EMD, 

dynamic time warping (DTW) was employed to find structural likeness between the walking 
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heartbeats and resting heartbeat for each subject. DTW is a time series alignment method 

used to find similarities between two time series [26]. The warping distance between the first 

400 ms of each ensemble-averaged walking heartbeat and the resting heartbeat was 

calculated. The reason for only using the 400 ms portion was to make sure that an equal 

number of samples are used in the DTW process for all subjects since the heartbeat / frame 

size depended on the R-R interval for each subject and thus varied in each ensemble. Also, 

the objective was to assess structural similarity, hence no adjustment window parameter was 

defined for the estimation of the best warping path. Let this warping distance be denoted by 

dα. The warping distance was also calculated between the walking heartbeat, after the 

application of EMD, and the resting heartbeat and was denoted by dβ. The process was 

repeated for all subjects and for user-specific, 1.34 m/s and brisk pace walking data sets. The 

mean and standard deviation was calculated for dα and dβ for all subjects and for all data 

sets.

F. Aortic Valve Opening Detection and Tracking

The typical method of feature detection from the D-V acceleration data involves detection of 

maxima or minima in the D-V heartbeat [3]. In this study, a feature or point corresponding 

to the opening of the aortic valve (AO) was detected from the heartbeats in the resting state 

for each subject and the same feature was tracked during the walking and recovery phases. 

The maximum or minimum with the highest absolute magnitude in the first 150 ms of the 

heartbeat (as expected for aortic valve opening based on the physiology) was selected as a 

feature and denoted by fa. Note that we shall refer to the selected feature (maximum or 

minimum) as a peak in the rest of the paper. Since we focused on the relative changes in AO 

during walking and recovery for each subject, the AO-marker (maximum or minimum) with 

highest amplitude constitutes the most prominent feature in that half of the heartbeat / 

waveforms and is hence easier to detect without errors. The peak from this first segment was 

defined by two attributes that were used for identifying similar peaks in the motion-artifact 

corrupted signals acquired during walking: (1) its position in the frame denoted by pa, i.e., 

the position of maximum or minimum which ever one was chosen on the basis of absolute 

magnitude, and (2) the sign of the maximum or minimum. A ‘+’ sign was used if the 

selected peak was a maximum while a ‘−’ sign was used if a minimum was selected as the 

peak. The time difference between fa and the ECG R-peak was estimated as the PEP. The 

choice of the most prominent feature (maximum or minimum) does not give the absolute 

PEP values but it facilitates in tracking of relative changes in PEP values during exercise.

In the walking (after the application of the EMD algorithm) and the recovery heartbeats, the 

AO point was detected by tracking the peak selected initially from the resting heartbeat. 

Specifically, we searched for a peak with same sign as fa and around the position pa of fa as 

shown in Fig. 4. The peak which was closest to pa was chosen as the desired AO point, 

denoted by  in the walking and recovery heartbeats. In case two peaks were found closer to 

fa, the preference was given to the peak on the left, i.e., the peak whose position was less 

than pa was chosen as the AO point. The reason for this was that a decrease in contractility 

(or, in other words, an increase in PEP) is very unlikely during exercise, and thus setting the 

earlier peak as the preferred selection is more physiologically sound [27].
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G. Comparison of ICG and SCG Data

In order to compare the ICG and SCG data, the ICG heartbeats from the Biopac were 

partitioned using the interval-based ensemble averaging method to obtain ensemble-

averaged traces. Since the data from the Biopac and the wearable patch sensor were time-

synchronized, the ensemble averaged D-V heartbeats were obtained from the SCG data. In 

order to detect the B-point on the ICG ensemble-averaged heartbeats, the heartbeats were 

twice differentiated with a Savitzky-Golay filter [11]. The position of the global peak in the 

double-differentiated signal was chosen as the B-point and the time difference between this 

peak and the ECG R-peak was estimated as the PEP from the ICG. The PEP values 

estimated from ICG waveforms during walking and recovery for each subject were 

normalized by the resting PEP value and denoted by .

The PEP from the SCG was estimated as the time difference between the AO point and the 

ECG R-peak. The resting PEP value for each subject was used to normalize the 

corresponding walking and recovery PEP values and were denoted by .

H. Quantitative Determination of Ensemble Size

Based on the ICG and SCG comparison, a method was devised to estimate the minimum 

ensemble size in terms of number of heartbeats required for the SCG data to yield accurate 

estimation of PEP intervals. In resting conditions, ensemble averaging is usually performed 

by using as many beats as are available, such that the extraction of features can be as 

accurate as possible. It is assumed that the cardiovascular state is relatively static, and thus a 

single ensemble average can capture all of the information required for assessing that state. 

However, during exercise, the cardiovascular state is changing dynamically, with heart rate, 

contractility, and stroke volume typically increasing to meet the increased demands of the 

skeletal muscles and skin for blood flow. This presents a major challenge from a feature 

extraction standpoint. On one hand, capturing the transient information associated with these 

changes—such as the time constant with which PEP decreases at a given exercise intensity

—can provide deep information regarding cardiovascular health, and the ability of the 

cardiovascular system to respond to the stress of exercise; thus, not using ensemble 

averaging at all would be ideal as one would obtain beat-by-beat information regarding these 

transients. On the other hand, motion artifacts are more significant during exercise and thus 

the noise and interference in the data is more substantial; thus, using ensemble averages with 

a high number of beats would be ideal as one would provide the maximal reduction of such 

noise and interference in the measured signals. We therefore aimed to provide a data-driven 

methodology for objectively determining the optimal number of beats that should be used in 

ensemble averaging during exercise for the SCG signals.

The optimum ensemble size for each subject was determined using the heartbeat-based 

ensemble averaging approach. Specifically, to determine the minimum ensemble size for 

PEP estimation, ensemble sizes of 64 to 4 heartbeats were traversed with 25% overlap, i.e., 

each ensemble contained 25% of heartbeats from the previous ensemble. The objective of 

using overlapping ensembles or moving average is to increase the number of estimates in the 

analysis. For each ensemble size, PEP was estimated by detecting the AO feature in the 

heartbeat obtained after the application of EMD algorithm. Once all the PEP estimates were 
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obtained for a certain ensemble size during the walking phase, the mean (μ) and standard 

deviation (σ) of PEP estimates was calculated and the data points beyond μ ± σ were 

removed from the estimated set. A third degree polynomial was then fitted to the remaining 

estimates to capture the trend in the estimated PEP values with respect to time, with an order 

low enough to avoid over-fitting. The time values were chosen as the mean of the time index 

for the first and last heartbeat in the ensemble and were denoted by the variable tm.

The distance of each point from the best fit line was estimated and root mean square error 

(RMSE) was calculated for the data points for that specific ensemble size. In order to further 

remove outliers and improve the polynomial fitting, one data point was iteratively removed 

from the estimated PEP estimates and RMSE was derived for the remaining data points. 

Hence, one data point for which the RMSE decreased considerably was excluded from the 

data set and final RMSE error was calculated for the remaining points. The process was 

repeated for different ensemble sizes and RMSE errors were derived for the PEP estimates 

for each subject.

III. Results

A. Energy based Difference among Varying Types of Walking Signals

The mean squared energy in the signal when subjects walked at a normal pace was lowest as 

compared to the energy for walking at higher speeds. The D-V heartbeats during walking at 

the normal user-specific pace had low mean squared energy as compared to the heartbeats 

during walking at 1.34 m/s on the treadmill (user-specific pace: M = 0.009, SD = 0.004, 1.34 

m/s treadmill: M = 0.02, SD = 0.006; t(12) = −4.55, p ≪ 0.01, where M and SD indicate 

mean and standard deviation, respectively). A t-test also showed that there was less energy 

in the D-V signal for normal user-specific pace walking as compared to walking at a brisk 

pace on level ground (user-specific pace: M = 0.009, SD = 0.004, brisk pace: M = 0.016, SD 
= 0.008; t(12) = −2.39, p ≪ 0.05). There was no statistically significant difference in the 

energy of the D-V signal between walking at higher speeds.

B. EMD based De-Noising

The interval-based ensemble averaging approach was used in this section. The warping 

distance between the resting heartbeats and walking heartbeats, before and after the 

application of EMD, i.e., dα and dβ, were calculated for all subjects. The warping distance 

decreased significantly after the walking heartbeats were de-noised using the EMD 

algorithm for all subjects. Since, warping distance indicates the cost of aligning two time 

series, a lower cost indicates greater similarity. A paired t-test was done on warping distance 

values obtained before (dα) and after the application of EMD based algorithm (dβ). There 

was significant reduction in warping distance for walking at user-specific normal speed 

before (M = 7.74, SD = 5.54) and after the use of EMD based de-noising method (M = 0.84, 

SD = 1.11); t(106) = −12.9, p ≪ 0.001. Similar results were obtained for walking at 1.34 m/s 

on the treadmill (dα : M = 9.42, SD = 8.1 and dβ : M = 1.3, SD = 0.86; t(83) = −9.4, p ≪ 
0.001) and brisk pace walking on level ground (dα : M = 9.5, SD = 9.2 and dβ : M = 1.1, SD 
= 1.4; t(99) = −9.6, p ≪ 0.001). Hence, EMD based de-noising algorithm was able to 

improve SNR for different types of walking tests considered in this study.
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C. ICG vs SCG

The normalized PEP estimates from the ICG and SCG sensors were compared using linear 

regression and correlation analysis. Walking induced motion artifacts in the measured ICG 

signals as well. Hence, in order to compare the results, the noisy ICG heartbeats were 

rejected from the analysis. A simple criteria, based on the amplitude of the B-point 

according to the guidelines provided in [28], was implemented to find noisy ICG heartbeats. 

If the amplitude of the B-point was found to be less than zero for the ensemble-averaged 

ICG heartbeat during walking, then the corresponding ICG heartbeat was not used in the 

correlation analysis. Fig. 5 shows the normalized PEP values from ICG and de-noised SCG 

heartbeats for one subject during the walking and recovery phases. The estimates 

corresponding to noisy ICG heartbeats which were rejected according the criteria explained 

are not shown in the plot. Once all the noisy ICG heartbeats and corresponding SCG 

heartbeats were removed, a linear regression analysis was calculated between  and 

 estimated from the remaining heartbeats. Any further outliers from normalized PEP 

values estimated from these heartbeats were manually removed by rejecting the data points 

that caused a considerable increase in correlation. Specifically, a data point was removed if it 

caused more than 10% increase in correlation.

The correlation results for walking at normal pace are shown in Fig. 6(a). Ten subjects 

participated in this phase of the protocol. However, ICG data from one subject was 

extremely noisy in the walking phase and hence that subject was excluded from the analysis. 

For the remaining 9 subjects, 30-second interval-based ensemble-averaged waveforms were 

analyzed. There were 16 data points for each subject which included the walking and 

recovery periods (total = 16 × 9). However, 42 data points were rejected as noisy ICG 

heartbeats and 3 more were removed as outliers. A correlation of r = 0.86 (p < 0.01) was 

calculated for the remaining data for all subjects in this phase of the protocol as shown in 

Fig. 6(a). Similarly, there were 120 data points for brisk pace walking on level ground for 10 

subjects. A correlation value of r = 0.78 (p < 0.01) was obtained after rejecting 38 noisy ICG 

heartbeats and 5 outliers for this phase of the protocol as shown in Fig. 6(b). There was 

comparatively poor correlation between normalized PEP values from the ICG and SCG data 

for walking at 1.34 m/s on the treadmill and hence not shown here separately. For treadmill 

walking, r = 0.38 (p < 0.05) was obtained after rejecting more than half of the data points as 

either noisy ICG heartbeats or outliers.

A Bland-Altman analysis was also conducted for  and  values for normal 

pace and brisk pace walking on level ground. The results are shown in Fig. 7. The Bland-

Altman analysis indicates that the 95% limits of agreement between normalized PEP values 

from accelerometer and ICG ranged from −8.1% to 12.5% for walking at normal pace. 

Similarly, the 95% limits of agreement for walking at brisk pace on level ground were 

−14.4% to 22.8%.

D. Minimum Ensemble Size Analysis

The results for the minimum ensemble size methodology for one representative subject 

during the 6-minute walking phase are illustrated in Fig. 8. The minimum number of 
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heartbeats Ne in an ensemble during walking were estimated for each subject by fitting a 

third order polynomial on the PEP values with respect to time. The value of Ne was 

decreased from 64 to 4 and the error was estimated at each value. However, Fig. 8 only 

shows the PEP estimates for 4 different values of Ne. As the number of heartbeats were 

decreased from 64 to 32 in Fig. 8(b), the estimated values follow a similar trend as in Fig. 

8(a) without any considerable increase in error. Similar result is obtained as the number of 

heartbeats is decreased further in the Fig. 8(c) and (d).

The results for all subjects are summarized in Table. I. We chose an RMSE threshold of 3 ms 

for PEP estimates for the 6-minute and 5-minute walking tests, i.e., the lowest number of 

heartbeats were chosen for each subject as long as these provided an RMSE of less than 3 

ms from the line of best fit (3rd degree polynomial). The table shows that, if an RMSE of 3 

ms can be tolerated in PEP estimation, then on average 11 heartbeats are required while the 

person is walking at normal pace. As the speed increases, the number of heartbeats for 

accurate estimation of both the PEP also increase. However, walking on level ground 

requires slightly less heartbeats as compared to treadmill walking.

IV. Discussion

The results suggest that the SCG signals processed using our de-noising and feature 

extraction techniques can provide accurate estimation of PEP during walking. Recent 

research has shown that the D-V heartbeats can be used to extract features for calculating 

STIs during resting scenarios [16], [29]. However, the major hurdle in using SCG for 

continuous monitoring has always been the exclusion of data during motion periods. The 

data during these movement periods can not only provide additional insight into 

cardiovascular health but also indicate how different stressors related to exercise affect 

cardiac function. In fact, to the best of our knowledge, recent efforts in this area have 

focused only on heart rate estimation during the movement periods. Though heart rate 

provides useful information about the electrical aspects of cardiovascular health, there is a 

strong need to also continuously estimate further parameters related to cardiac function. This 

paper outlines a data driven signal decomposition method for non-stationary signals that can 

be used to reduce the motion artifacts in SCG measurements taken during walking.

The methods described in this paper achieve a sufficiently fine time resolution for the PEP 

estimates from the acceleration signals to facilitate the analysis of changes in cardiovascular 

function associated with walking. During stationary periods, the acquired signals have a high 

SNR and accurate estimates can be obtained on a beat-by-beat basis. As the signal SNR 

decreases during walking or non-stationary periods, the need to perform ensemble averaging 

becomes unavoidable. The methods described in this work can readily be leveraged to obtain 

a minimum number of heartbeats that must be captured before an accurate and precise 

estimate, within some acceptable error thresholds, can be made for the PEP.

The perturbations such as walking or light exercises cause small changes to cardiovascular 

function of both healthy people and patients with CVDs. These brief changes can yield great 

insight into cardiovascular health. The common practice in existing research to overcome 

noise present in the signal involves ensemble-averaging heartbeat frames. The averaging 
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operation, either performed on some specific number of frames or on frames present in some 

time interval, results in improved SNR, but fails to capture transients in the small changes in 

cardiovascular parameters from the measured signals. One of the results presented in this 

paper shows that the number of heartbeats required in averaging operation to increase SNR 

is directly proportional to the speed of walking. Walking at higher speeds requires a greater 

number of heartbeats. Hence, it can be concluded that some measure of intensity of the 

activity (speed of walking in this instance) can be incorporated into algorithms for better 

estimation of parameters. Thus future work should build on the ideas presented in this paper 

and focus on ‘smart ensemble-averaging’ of heartbeats which is adaptive in nature and 

captures necessary changes in the cardiovascular physiology while maintaining a good SNR 

in the signal under analysis.

A limitation of this work is the homogeneous nature of the data set which includes only 

healthy and young subjects. Also, the results presented in the paper do not show a 

considerable difference between walking on treadmill and on level ground at comparable 

speed. However, the type of surface, such a soft compressible surface, might affect the 

measured signals and consequently the performance of the methods. Hence, future work will 

include subjects with cardiovascular disorders along with the analysis of effect of type of 

walking surface on the performance of de-noising and minimum ensemble size algorithms. 

Future work should also focus on the design of an improved SNR metric to assess the 

quality of the measured SCG signals during exercise and consequently assess the 

performance of any de-noising algorithm. Nevertheless, this paper delineates novel methods 

for SCG signal recovery during motion which can form a foundation for these future studies 

and be readily extended to other measurement modalities.

V. Conclusion

In this paper, we investigated various signal processing methods and techniques for 

providing precise estimation of PEP from a body-worn accelerometer during walking. Using 

EMD, we demonstrated a significant improvement in the signal quality of wearable SCG 

signals during walking, allowing accurate detection of signal features in the context of 

activity. This approach can allow, for the first time, the assessment of SCG-based 

hemodynamic changes in patients with CVD performing 6-minute walk tests. The results 

derived in this work can lead to the design of “smart” algorithms for using the SCG 

methodology for in-depth and thorough cardiac monitoring away from clinics and also 

during different phases of daily activity.
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Fig. 1. 
Wearable device used for the collection of ECG and SCG signals. (a) The backside of the 

device showing three slots for attachment of adhesive electrodes. (b) The inside of the device 

houses a slot for a micro-SD card and a battery. The data can be read via the micro-USB 

port. (c) The placement of the wearable device on the sternum with adhesive electrodes.
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Fig. 2. 
(a) Block diagram of the setup. Data, which comprised of walking at normal speed (the 

speed at which each subject usually walked), walking at 1.34 m/s on the treadmill and 

walking at a brisk pace on level ground, were collected from 17 healthy subjects. The data 

from both wearable patch and Biopac sensors were bandpass filtered (BPF) and segmented 

into individual heartbeats which were averaged to reduce noise. (b) 5-second waveforms 

from accelerometer during different types of walking for a representative subject.
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Fig. 3. 
(a) De-noising of the D-V heartbeat during walking using EMD algorithm. Four to five imfs 
(Im, where m = 1, 2, ...,) were generated after the application of EMD. The first imf (I1) was 

chosen as the de-noised D-V heartbeat for feature extraction. (b) Noisy heartbeats for 

walking at different speeds. (c) The first imf obtained after application of EMD to the noisy 

heartbeats in (b). The basic shape and characteristics of the SCG waveform are reconstructed 

accurately.
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Fig. 4. 
Detecting and tracking AO point in the D-V heartbeats. The AO point, denoted by fa and 

specified by sign (+ or −) and position pa, was detected as the maximum or minimum with 

highest absolute amplitude in the resting heartbeat. During walking, the first imf was 

selected as the clean heartbeat. The AO point in the selected imf was chosen as the peak 

closest to fa and with similar sign. fa was used as a reference for correct detection of AO-

marker in the de-noised heartbeat.
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Fig. 5. 
Normalized PEP values estimated from 30-second ensemble averaged heartbeats of the ICG 

and the de-noised SCG after the application of the EMD based algorithm for one subject. 

There are two data points missing in the plot (at 2:00 and 4:30 mark) due to noisy ICG 

heartbeats rejected from the analysis. The corresponding SCG estimates are also excluded.

Javaid et al. Page 23

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
(a) Correlation analysis for normalized PEP values from ICG and SCG for walking at 

normal pace on level ground. (b) Correlation analysis for brisk pace walking on level 

ground.

Javaid et al. Page 24

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 

Bland-Altman analysis for  and  values for normal pace and brisk pace 

walking on level ground. The solid line indicates the mean while the dashed line indicates 

mean ± 1.96×standard deviation.
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Fig. 8. 
Determination of minimum ensemble size using the polynomial fitting approach for one 

subject. (a) 64 heartbeats. (b) 32 heartbeats. (c) 16 heartbeats. (d) 4 heartbeats. The data 

points in blue are outliers. In order to have the same y-axis scale for each plot, the outliers 

for some plots are not shown in the above figures but are explained as follows: 2 data points 

were detected as outliers in (a), 1 data point as outlier in (b), 2 data points as outliers in (c) 

but are not shown, and, 5 data points as outliers in (d) are not shown.
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TABLE I

Minimum number of heartbeats Ne in an ensemble for PEP

Ne Normal pace 1.34 m/s Brisk pace

μ 10.7 16 15.2

σ 7.5 19 17.8
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