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Abstract

Many real-life decisions, such as booking a vacation or select-
ing a partner, involve relatively cost-free sampling of options
up to a terminal decision point, beyond which the choice be-
comes costly to reverse. Such problems can be formulated as
optimal stopping problems (OSPs), such as the famous secre-
tary problem. Although human behavior on optimal stopping
problems has been studied extensively, much of the literature
has focused on the behavior of individual decision-makers op-
erating using a binary payoff function. In this study, we use
an OSP with a continuous payoff function to study how indi-
viduals’ decisions differ from the collective decision of groups
of three members working together. An independent thresh-
old model offered the best explanation for the behavior of both
individuals and groups. We found groups performed signif-
icantly better than individuals, with individuals consistently
waiting too long to make a choice relative to the optimal strat-
egy. Groups are also more decisive in following their internal
thresholds, which are also different than a simple average of
member thresholds. Finally, we also found a lack of long-term
learning in OSPs for groups, a trend previously documented in
individuals.
Keywords: Decision Making, Optimal Stopping Problem,
Group Decision Making, Bayesian Modelling, Threshold
Models

Introduction
Consider this scenario - you want to buy a gift online for a
friend’s birthday and you must do it in 10 days to get it deliv-
ered on time. You have a particular gift in mind and your goal
is to buy the item at the cheapest possible price. Assuming
price fluctuations are a somewhat random process, this may
be formulated as minimizing the expected price paid taking
such fluctuations into account. You check the item’s price ev-
ery day and if it is too high you wait for the next day. Once
you buy the item the search stops and the decision is irre-
versible (let’s assume there are no refunds/returns). However,
since the gift must be bought within 10 days, if you still skip
buying on day 9 you are forced to buy at whatever the selling
price is on day 10. Note that the reward is not all or nothing
- even if you end up buying the gift at the second-cheapest
price, you may be satisfied with the outcome. This scenario
is an example of a general class of optimal stopping problems
(OSPs), which have been mathematically studied extensively
beginning with Gilbert and Mosteller’s (1966/2006) work.

It turns out that if certain assumptions are made - for in-
stance that the prices follow a given distribution f (x) and are
independently sampled on each day - a mathematically opti-
mal stopping rule can be found. In the above scenario, the

optimal scenario is threshold based. What this means is that
for days 1 through 10 there are increasing threshold prices
p1, p2, . . . p9, p10 and the optimal strategy is to buy on the
first day i when the asking price is less than pi (Gilbert and
Mosteller, 2006). These thresholds are calculated recursively
- p10 is +∞, as you are forced to buy no matter what price
and the expected price paid in this case equals the mean of
the distribution, µ. p9 equals the expected price paid on skip-
ping on day 9 and so is µ. p8 is set equal to the expected price
paid when one skips on day 8, and so on. In general:

pi =
∫ pi+1

−∞

x f (x)dx + pi+1 ·
∫ +∞

pi+1

f (x)dx, ∀i = 8,7, . . .1

Kinds of Stopping Problems
Rank vs. Full-information: OSPs can broadly be catego-
rized into rank information and full information problems. In
rank information problems, like the famous secretary prob-
lem, only the relative ranks of each option with respect to
all seen options are known. Interviewing the 5th candidate
among 20 total candidates, you only know that he is sec-
ond best so far. In full information problems, the cardinal
value of each option is explicitly given. This is the case in
the scenario presented above where the price of the gift tells
you everything about the option of purchasing on a given
day. Both types of stopping problems can be useful mod-
els for different real-world scenarios. Looking for a mate or
a good nesting spot for a bird may be an irreversible deci-
sion with no clear numerical value tagged to each option. On
the other hand, many problems in the modern world such as
when to buy a stock are full-information scenarios. The form
of the solution for an OSP crucially depends on the informa-
tion provided. Optimal solutions to secretary-type problems
(with binary payoff) involve rejecting the first n% candidates
(n→ 1/e≈ 37%, as total candidates N →∞) whereas optimal
solutions to full-information problems are usually threshold-
based regardless of the payoff function (Ferguson, 1989).

Payoff Function: The other important factor in determin-
ing the optimal solution is how rewards are given once a
choice is made. Rewards may be binary, i.e., only given if one
selects the best alternative, or continuous. For the gift-buying
scenario above, this difference translates into trying to maxi-
mize the probability of buying the gift at the lowest price vs.
minimizing the expected price paid for the gift, which is how
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we framed the problem. Real-life scenarios such as choosing
a job or buying shares in a company rarely give binary returns
- some payoff is obtained even if we don’t end up with the best
job, or time our entry into the market perfectly. Therefore
continuous payoff functions are potentially a more realistic
model for studying OSPs vis-a-vis humans. Nonetheless and
somewhat surprisingly, earlier behavioural research on OSPs
has dealt almost exclusively with binary payoffs (Baumann
et al., 2020).

Previous Work
A number of previous studies on OSPs have dealt with indi-
vidual behaviour - both on rank-information secretary prob-
lems (Seale and Rapoport, 1997; Seale and Rapoport, 2000;
Campbell and Lee, 2006) and full information problems
(Baumann et al., 2018; Guan and Lee, 2018; Lee, 2006).
Compared to the mathematically optimal solutions, individ-
ual performances have been repeatedly found to be worse,
in ways that we characterize more precisely below. This
may be due to individuals following a different heuristic
or form of decision rule. Or perhaps, individuals do use
the same form as the optimal solution but use sub-optimal
cutoffs/thresholds. Moreover the difference is not always
straightforward to interpret. For instance, Seale and Rapoport
(1997,2000) showed through simulations that in the original
secretary problem an alternate heuristic - a successive non-
candidate rule, where the first top ranked interviewee seen af-
ter k successive non-top ranked interviewees is selected - can
be up to 98% efficient as the optimal cut-off rule. However,
some robust results have been found.

• Lack of long-term learning: On both rank and full infor-
mation problems individual performance shows no long-
term learning effects across blocks. This has been observed
in rank information OSPs (Seale and Rapoport, 2000) even
when using monetary feedback (Campbell and Lee, 2006).
A similar effect is seen in full-information problems as
well (Baumann et al., 2020; Lee, 2006).

• Threshold models describe full-information OSP be-
haviour: Individuals seem to use threshold-based strate-
gies for their choices in full-information problems. This
holds for both binary payoffs (Guan et al., 2014, Guan et
al., 2015, Lee, 2006, Lee and Courey, 2021) and contin-
uous (Baumann et al., 2020) payoffs. However a number
of different threshold models have been proposed - some
simpler than others. Recently, Baumann et al. (2020) com-
pared 3 different threshold models for a continuous pay-
off function and found a linear threshold model to best de-
scribe individual behaviour with continuous payoffs. Re-
cently, Lee and Courey (2021) found a fixed-then-linear
threshold described behaviour in a changing environment
(where the distribution of values changes as the sequence
progresses) well.

• Direction of sub-optimality: In OSPs, sub-optimal be-
havior may arise due to stopping too early as well as not

stopping soon enough. A robust trend seen across a variety
of rank and full-information OSPs is that individuals tend
to stop too early in case of binary payoffs (Baumann et al.,
2018, Guan et al., 2014, Guan and Lee, 2018, Seale and
Rapoport, 1997). In case of continuous payoff, Baumann
et al. (2020, SI Appendix) using the same payoff function
and price-minimization task as ours and found individual
price thresholds to be higher (less strict) than optimum ini-
tially with most options left and lower (stricter) than opti-
mum later on when few options remain.

Group Performance in Stopping Problems Real-world
decisions in organizations, governments and even families
are often made not by individuals but groups of individuals.
Many studies in the past have found consistent differences
between individual and group decision making. Group de-
cisions in games have been found to be much closer to game
theoretic rationality than individual ones (Kugler et al., 2012).
Teams, by which we mean groups with no conflict of interest
and a common goal, also behave differently from individuals
when it comes to uncertain and temporal decisions (Kocher et
al., 2020). Given these observations, it is possible that groups
behave differently in OSPs than individuals.

An important work for group behavior in OSPs comes from
a study by Lee and Paradowski (2006), who had individuals
and groups work out a full-information OSP with a binary
payoff. In their study the goal was to select the maximum of
5 integers drawn randomly between 0-100 without replace-
ment. Groups were made of 5 members who did not com-
municate face to face but through a computer interface. On
being presented a number members made an initial choice of
whether or not to chose the current number. This was seen
by all other group members. Members then had a chance
to revise their decision, before the final group decision was
determined through a rule. They considered three decision
rules - majority, consensus and leadership. Using a signal
detection theory framework, possible due to binary payoff,
they classified response on each presented number as correct
or incorrect. They found higher d′ values for consensus and
leadership conditions resulting in better performance as com-
pared to individuals. These two conditions also had higher
bias c and so groups did not stop as early as individuals. Re-
cent work by Thomas et al. (2021) provides potential insight
into how groups may be better in OSPs. By aggregating the
inferred individual thresholds, they formed a model crowd
whose simulated behaviour matched the behavioural crowd
and whose accuracy was higher than the participant average.

Research Questions
In the following, we will use the terms ‘teams’ and ‘groups’
interchangeably as there is no conflict of interest among
group members in our experiment. Two primary questions
motivate the current study, in light of the gaps in the literature
documented above:

1. Do small teams working on a full-information OSP with
a continuous payoff function perform better/differently as
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compared to individuals?

We predicted groups would perform better given previous
results by Lee and Paradowski (2007).

2. What sort of threshold model best describes individual and
team behaviour in a continuous payoff OSP?

We used Bayesian model comparisons to test three thresh-
old models - the Linear Threshold Model (LTM), Inde-
pendent Threshold Model (ITM) and a Biased Optimum
Model (BOM) with individual and team behavioural data.
These models are described in a later section.

To answer these questions we used the same scenario and
payoff function as in Baumann et al. (2020), with slight mod-
ifications as described below.

Figure 1: Screenshot of a Scored Trial

Experiment
An IRB approved the protocol for our study. Our experi-
ment is hosted online but was conducted in-person under su-
pervision. 27 individuals grouped into teams of 3 members
each participated in the study. Each participant performed the
same task twice - once alone in the individual phase and once
as part of the 3 member team in the group phase (counterbal-
anced). Participants were university students between ages
18-30. They were all compensated |100 for their participa-
tion in the study, which took around 75 minutes for both the
phases. Importantly, teams were not created randomly and
participants often brought in people they knew well as team
members. As a result, in 6 of the 9 groups the participants
themselves were friends or acquaintances.

Task
The goal of the experimental task was to buy an item at the
least possible price within 10 simulated days. There were 5
real-world products in total (including headphones, t-shirts,
microwave ovens, suitcases and shoes) available for purchase
off e-commerce platforms. Prices for an item were drawn in-
dependently on each day from a normal distribution whose
mean µ was equal to the item’s online selling price. Each of
the 5 products was repeated twice - a high-variance condi-
tion with double the standard deviation σ as the low variance

condition for a total of 10 item blocks. The ratio σ

µ was ap-
proximately 0.05 in the low variance condition and around
0.1 for the high-variance condition for each item. Each item
block had 10 trials - 2 practice trials followed by 8 scored
trials, giving a total of 80 scored trials in total for each indi-
vidual and group. Items were chosen to reflect a large range
of price values (from |300 to |6000).

The individual or group decision maker (DM) always knew
the mean of the distribution which was displayed on-screen.
However they were not told the variance or the type of distri-
bution (Gaussian) the prices were drawn from. They learned
about the distribution through acquaintance during the tri-
als. However, participants were specifically informed of the
independence in prices drawn - something not seen in the
real world where daily online prices are correlated and dis-
play predictable trends approaching holiday sales. On days
1 through 9 DMs had the option to either buy the item at
the displayed price or skip to the next day. If an item was
not bought by day 10, DMs were forced to buy at the quoted
price. Scored trials ended as soon as an item was bought.
However each item block began with 2 practice trials where
DMs had to manually go through prices on all the 10 days.
This was so that every participant and group began the scored
trials after seeing exactly 20 sample prices.

For each practice and scored trial an integer score between
0-100 was assigned to the trial performance based on the fol-
lowing formula (Baumann et al., 2020):

Score = 100×
(

Pmax −Pchoice

Pmax −Pmin

)
(1)

Here Pmax,Pmin denote the highest and the lowest of the
10 prices in a trial, respectively. Pchoice denotes the price the
DM bought (or was forced to buy) at. Thus, if on a trial the
decision maker (DM) managed to buy the item at the cheap-
est price she received 100 points and 0 points if she bought
it at the highest price. Equation 1 defines a continuous pay-
off function for our optimal stopping task. Participants were
shown their trial score along with these three prices after each
trial (see Figure 1). To motivate DMs to perform their best,
participants were told a part of their compensation would de-
pend on their average score across all the scored trials - both
in individual and group phases, equally weighed.

Group Phase Inputs in the task were made using a mouse
and a keyboard. This is straightforward in the individual
phase where participants did the experiment alone and were
not allowed to interact with anyone. In the group phase the
3 team members were seated together in front of a computer
and followed a protocol. On each of the 10 item blocks, one
member was in-charge of making the inputs. Although ad-
vised to use a majority decision rule, groups were free to use
any process to make the final choice. The only requirement
was that members discuss among themselves before the per-
son in-charge makes the final input. An experimental super-
visor was always present throughout to ensure the protocol
was being followed. All the groups ended up either following
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a consensus approach (where, all members were okay with
going ahead with a response, even if 1-2 members disagreed)
or a majority rule (where the choice getting 2 or more votes
was chosen). Importantly, the person in-charge was rotated
for each item block so that one member was in-charge of 4
items and the other two members for 3 items each.

Modeling Optimal Stopping
As we describe above, the mathematically optimal solution to
our continuous payoff OSP is threshold based. These thresh-
olds increase with the day count. This makes intuitive sense
- when you have 10 days left to buy the item you can afford
to have stricter standards. As the days run out you are willing
to accept paying higher prices for an item to avoid the risk
of being left with nothing. Following Baumann et al. (2020)
we model the decision maker’s (whether individual or group)
choice of either buying or skipping at asking price xi using an
internal threshold Ti on day i as a Bernoulli random variable
with probability of buying pi given by:

pi =
1

1+ eβ(xi−Ti)
(2)

Here, β ≥ 0 is a parameter controlling how decisively the
DM follows their internal threshold. When xi < Ti, the DM
is more likely to buy the item and vice versa. As β → ∞, the
agent begins to always buy when price is lower than thresh-
old and never buy when xi > Ti. β = 0 reflects buying with
probability 0.5 regardless of price.

The models we consider differ in the other parameter in
Equation 2 - the thresholds T1 through T9

1. Since we have
used ten items whose prices come from ten different normal
distributions, we used normalized prices and aggregated re-
sponses from all ten item blocks to calculate posterior distri-
butions for all model parameters.

1. Linear Threshold Model (LTM): Ti’s increase linearly
with day i with common difference δ, giving:

Ti = T1 +δ · i (3)

This model has 3 parameters - β,δ and T1 and does not
include the optimal strategy for prices coming from a nor-
mal distribution. We used uniform priors β ∼ U(0.1,10),
δ ∼ U(0,1/3) and T1 ∼ U(−3,0) for both individual and
group data.

2. Independent Threshold Model (ITM): No assumptions
are made about Ti’s. This is model encompasses the op-
timal solution, any LTM model and has 10 parameters - β

and 9 thresholds T1, . . .T9. Priors used were β∼U(0.1,10),
Ti ∼U(−3,0.5) for i = 1, . . .9, and were the same for indi-
vidual and group data.

3. Bias from Optimum Model (BOM): Ti differs from opti-
mal threshold pi through:

Ti = pi + γ+α · i (4)
1T10 =+∞ as the DM is forced to buy on day 10

This model is taken from Guan et al. (2015) and has 3 pa-
rameters - β,γ and α. γ gives a fixed bias from the op-
timum threshold which may increase or decrease as the
sequence progress, depending on α. Again we used the
same priors for individual and group data - β ∼U(0.1,10),
γ ∼U(−3,3) and α ∼U(−3,3).

Baumann et al. (2020) found the LTM to be almost as
good as the ITM, while BOM gave a poor fit to individual
behavioural data. Since LTM is more parsimonious, they
inferred that individuals behave as if using simpler linear
thresholds. We must add that recently Lee and Courey (2021)
found a fixed-then-linear threshold model accounted well for
experimental data in a non-stationary setting. We have ex-
cluded this from our current analysis, ours being a stationary
OSP focused on differences between individuals and group
behaviour.

Results
Learning Across Trials
In order to detect outliers, we assumed the mean score for
groups and individuals to be coming from separate Student’s-
t distributions and rejected values lying 3 standard deviations
away from the means. This resulted in rejection of a single
individual from a sample size of 27 from further analysis. No
outliers were detected among the 9 groups.

Group vs. Individual Performance
On scored trials, average groups scores (n = 9, M = 87.82,
SD= 1.23) are greater than average individual scores (n= 26,
M = 85.62, SD = 3.10). A Bayesian independent sample
T-test provided some evidence for the alternate hypothesis
that group scores are greater than individual scores (BF+0 =
2.923, using default Cauchy prior with scale = 0.707 for ef-
fect size δ in JASP).

We also found that the variance in group scores is lower
compared to individuals scores, supported by Levene’s test
for unequal variances (F(1,33) = 4.79, p= 0.036). This sug-
gests that groups’ decisions are more similar to each other
than individuals’. Interestingly and relatedly, Shupp and
Williams (2008) compared risk-aversion behaviour of indi-
viduals with three-person groups and found variance in CERs
(Certainty Equivalent Ratios) to be less for groups, especially
in high-risk lotteries (with low chance of winning). They also
found groups to be more risk-averse in high-risk lotteries and
more risk-seeking in low-risk lotteries as compared to indi-
viduals.

Figure 2 shows both individual and group performance
across 4 quarters. Since there are 80 scored trials in total,
each quarter is the average of 20 scored trials. Visually it
seems as though both individual and group performances im-
prove initially from quarter 1 to quarter 2 but then saturate.
We used JASP to perform a Bayesian Repeated measures
ANOVA using quarter scores and found very strong evidence
for an effect of quarter on individual scores (BF10 = 38.676)
and moderate evidence for the same in groups (BF10 = 7.717).
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Figure 2: Performance across quarters Figure 3: Aggregated individual and group thresholds

Bayesian post-hoc tests confirmed that for individuals only
quarter 1 scores were different from quarters 2 through 4
(corrected posterior odds ≥ 5.855 for all 3 comparisons).
Comparing other quarters pairwise provided strong evidence
for the null that they did not differ (corr. posterior odds
≤ 0.097). For groups too, all pairwise comparisons for quar-
ter 2 through 4 performances provided moderate evidence for
the null (corrected posterior odds ≤ 0.154). Post hoc com-
parisons only found anecdotal evidence for lower quarter 1
scores once corrected for multiple comparisons (corr. poste-
rior odds ≥ 1.252, uncorrected BF10 ≥ 3.021), hinting that
a larger sample size for groups is warranted in the future.
These results confirm and extend to groups previous results
which showed that individual performance quickly saturates
and shows no long-term learning towards the optimal value.

Model Comparisons
We used the PyMC3 package to generate posterior distribu-
tions using the NUTS sampler (Salvatier et al., 2016). The
Arviz package was used to compare models based on their
expected log pointwise predictive density (ELPD); estimated
using Pareto smoothed importance sampling based leave-one-
out cross-validation (LOO) (Vehtari et al., 2017).

Table 1: Model Comparison for Individual Data

Model ELPD Diff. SE Diff. Weight BFIT M
ITM - - 0.971 1
LTM 12.76 6.32 2.87e-2 33.8
BOM 56.07 11.45 6.64e-10 > 1000

Table 2: Model Comparison for Group Data

Model ELPD Diff. SE Diff. Weight BFIT M
ITM - - 0.798 1
BOM 4.60 5.02 0.197 4.05
LTM 19.12 7.28 0.001 > 100

Tables 1 and 2 list the three models in decreasing order of
posterior weights for individuals and groups, respectively. It
lists the ELPD difference of a model from the best model,
which is the ITM in both cases, along with the standard er-
ror of this value. The final column lists the Bayes Factor of
the ITM with respect to other models. Clearly individual be-
haviour is best described by presuming no relationships on
the internal thresholds used. For groups, the ITM moderately
outperforms the BOM model (BFIT M = 4.05). In contrast to
Baumann et al. (2020), who preferred the LTM in all three ex-
periments, we found the LTM to be very poor in accounting
for individual data. However, their interpretation was based
on the fact that LTM posterior-predictive p-values was not
too worse off from that of ITM. Since LTM has fewer param-
eters, they preferred it over ITM. We compared the models
directly and found the ITM to be superior based on the pos-
terior model weights and associated Bayes factors, where the
ITM was automatically penalized for extra parameters.

Direction of Suboptimality
Figure 3 plots the optimal thresholds and the normalized 2

mean group and individual posterior thresholds aggregated
over all ten item blocks per day, using the ITM. This makes
the source of improved group performance very clear. Indi-
vidual thresholds are consistently lower than optimal, show-
ing that in our task individual standards were ‘too strict’ re-
gardless of the number of options remaining. This is in stark
contrast to previous findings in full-information problems
with binary payoff (Baumann et al., 2018, Guan et al., 2014,
Guan and Lee, 2018) and continuous payoff (Baumann et al.,
2020) where DMs stopped too early. Groups, in contrast,
were more comfortable buying at higher prices and appro-
priately changed expectations as options dwindled. From the
especially low individual thresholds on later days, it seems in-
dividuals keep choosing a higher-risk gamble for a good price

2Normalized thresholds are simply the Z-scores of the actual
thresholds, calculated after combining the normalized prices from
all ten item blocks
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Figure 4: Group and member β Figure 5: Group and member thresholds for Day 7

and do not appropriately lower their expectations. This pat-
tern of behavior is consistent with the findings of Shupp and
Williams (2008) showing greater risk-seeking in individuals
as compared to interacting 3-member teams.

Individual to Group Behaviour
Fitting data generated by each individual and group to the
ITM, we found decisiveness β and thresholds Tis for each
DM. Figures 4 and 5 give bar plots of β and T7 for 8 groups
3 along with their three members. The plots indicate that
groups are much more decisive than their members are in-
dividually as well as have higher (less negative) thresholds.
Using JASP, we performed Bayesian paired T-tests confirm-
ing this - BF+0 = 5.570 for Ha that groups have greater β than
the average of members and BF+0 > 3500 for Ha that group
thresholds (pooled across 9 days) are greater (less-negative)
than the average of members. These findings suggest that
something more than a simple aggregation of independent
member decisions is going on here.

Conclusion
We found significant differences between group and individ-
ual behaviour on a full-information OSP with continuous pay-
offs. Interacting 3-member teams perform significantly better
and are less variable than individuals in knowing when to ter-
minate search and make a selection. Our findings confirm
previous observations of quick saturation of individual per-
formance at sub-optimal levels in OSPs, extending this result
to groups as well.

Interestingly, the nature of individual sub-optimality ob-
served here is inverted from the pattern seen previously for
full-information OSPs with binary payoffs Baumann et al.,
2020. Our results also differ in some aspects from those doc-
umented in an earlier study with continuous payoffs Baumann
et al. (2020), who found a change in the nature of suboptimal-
ity in individuals across their experiment trial days. Their par-

3We a-priori excluded the group having an outlier participant
from the analysis in this section.

ticipants stopping too early initially and then too late, failing
to reduce standards fast enough as options diminished. This
was the case across all their experiments, including one (Ex-
periment 3 in Baumann et al. (2020)) that used exactly the
same protocol as our experiment for individual subjects. In
contrast to their findings, our individual participants stopped
too late rather than too early throughout the course of the trial
instead of only doing so towards the end. Reassuringly, con-
sistent with Baumann et al. (2020), we too found that the dif-
ference from optimum for individuals worsened over time, as
they failed to decrease standards fast enough. Groups also
stopped too late, but this bias was much less pronounced,
especially with more options remaining. We also find that
both group and individual behaviour are best described by the
ITM, presuming no relationship among the internal thresh-
olds, in contrast to Baumann et al. (2020). These differences
cannot be reconciled based on existing evidence, and must be
investigated in future work.

Our analysis also found that group behaviour was more
complex just an aggregation of the members’ individual de-
cisions (Thomas et al., 2021). In the ITM model, this is re-
flected in how group thresholds were different than the av-
erage member threshold. Interestingly, groups were more
decisive than individuals as well in following their internal
thresholds than individual members. Future work can exam-
ine how well models of individual threshold adjustment can
accommodate these results (Srivastava et al., 2016).

An important limitation of our current study is that it does
not engage very much with the fact that groups take much
longer to decide on their choices than individuals. This is by
design as members were instructed to discuss before making a
choice. Future work could control for this by forcing individ-
uals to wait for a comparable time before making their choice,
and/or monitor the process of evidence integration within the
groups so that the mechanisms through which preferences
and differences in individual members amalgamate into the
final decision can be better understood.
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