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Abstract

While the health risks associated with adult cigarette smoking have been well described, effects of 

nicotine exposure during periods of developmental vulnerability are often overlooked. Using 

MEDLINE and PubMed literature searches, books, reports and expert opinion, a transdisciplinary 

group of scientists reviewed human and animal research on the health effects of exposure to 

nicotine during pregnancy and adolescence. A synthesis of this research supports that nicotine 

contributes critically to adverse effects of gestational tobacco exposure, including reduced 

pulmonary function, auditory processing defects, impaired infant cardiorespiratory function, and 

may contribute to cognitive and behavioral deficits in later life. Nicotine exposure during 

adolescence is associated with deficits in working memory, attention, and auditory processing, as 

well as increased impulsivity and anxiety. Finally, recent animal studies suggest that nicotine has a 

priming effect that increases addiction liability for other drugs. The evidence that nicotine 

adversely affects fetal and adolescent development is sufficient to warrant public health measures 

to protect pregnant women, children, and adolescents from nicotine exposure.

Keywords

nicotine; electronic nicotine delivery systems; priority/special populations

1. Background

After decades of declining cigarette sales, cigarette companies expanded their product lines 

to include a range of nicotine-containing products with varying levels of toxicity, including 

smokeless tobacco in the 1990s, and electronic cigarettes and other types of electronic 

nicotine delivery systems (ENDS) in the early 2000s. Some tobacco companies have also 

added nicotine replacement therapy (NRT) pharmaceuticals.(1-3) Electronic cigarettes–

devices which create an aerosol for inhalation by heating a liquid solution that typically 

contains propylene glycol and/or glycerin, flavorings, and nicotine–have experienced rapid 

growth since their introduction into the US market.(4-6) However, their arrival has also 

England et al. Page 2

Neurosci Biobehav Rev. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



engendered debate in the public health community.(7, 8) Those concerned about the risks 

from electronic cigarettes to individual and population level health note that electronic 

cigarettes could perpetuate conventional cigarette use in smokers who use both products 

instead of quitting cigarettes completely, and that adolescent users of these products could 

progress to conventional cigarette use.(4, 9, 10) In contrast, others contend that electronic 

cigarettes have lower toxicity than conventional cigarettes, higher consumer appeal than 

NRT, and that their use may lead to cessation or to a reduction in toxicant exposure, thereby 

reducing the burden of tobacco-related death and disease.(11)

A key assertion advanced by those in favor of wide access to electronic cigarettes is that 

nicotine exposure presents a minimal health risk for most adult tobacco users.(12) This is 

based, in part, on longitudinal studies of adults exposed to nicotine from smokeless tobacco 

or NRT, which found lowered risk for myocardial infarction, stroke, and lung cancer 

compared with risk in cigarette smokers.(13-16) However, this assertion has important 

limitations. Electronic cigarette use is not limited to adults or to conventional cigarette 

smokers.(17) Use has increased dramatically in high school and middle school students 

since 2011, (5) and in 2014, twice as many youth used electronic cigarettes alone as in 

combination with cigarettes.(18) Furthermore, as will be presented here, conclusions about 

the risks of nicotine exposure based on studies in adults cannot be extrapolated to 

adolescents or pregnant women and their fetuses, because these populations have health 

risks unique to their particular stages of development. Nevertheless, discussions of the 

potential adverse health effects of nicotine among pregnant women and adolescents are often 

absent from discussions related to the public health impact of electronic cigarettes.

In May of 2015, scientists from varied disciplines were convened by the National Institutes 

of Health (NIH) and the Centers for Disease Control and Prevention (CDC) to review the 

scientific literature on the health effects of nicotine exposure during periods of 

developmental vulnerability. In this expert review, meeting participants used MEDLINE and 

PubMed literature searches, books, reports, and expert opinion to summarize and synthesize 

relevant epidemiological, clinical, and preclinical research on the health effects of exposure 

to tobacco and nicotine pregnancy and adolescence. Electronic cigarettes were introduced to 

markets relatively recently, and their effects on health outcomes in pregnant women and 

adolescents have not been directly assessed. In addition, there are no published studies of 

developmental outcomes using animal models nicotine exposure from electronic cigarettes. 

Therefore, the authors draw on studies of other forms of tobacco exposure (cigarettes and 

smokeless tobacco) in humans and conventional nicotine exposure in animals. While there is 

evidence from animal models that gestational nicotine exposure also affects several organ 

systems, including renal, hematopoietic, adipose and endocrine,(19-23) we focused on the 

central nervous and pulmonary systems, which are the most established and clearest targets 

of nicotine. In addition, shorter-term studies of exposures to electronic cigarette-derived 

aerosols in adult mouse models demonstrate that electronic cigarettes can produce 

pulmonary and behavioral effects similar to those seen with conventional nicotine exposures.

(24-27)
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The implications of the increasing use of nicotine-containing products, specifically 

electronic cigarettes, for pregnant women and adolescents are discussed, and potential 

strategies for minimizing exposure in these populations are presented.

2. Tobacco use and nicotine exposure during pregnancy

2.1 Pregnancy outcomes

Maternal cigarette smoking during pregnancy is causally associated with a number of 

adverse pregnancy outcomes, including ectopic pregnancy, fetal growth restriction, preterm 

birth, placental abruption, and orofacial cleft defects.(15) Despite high awareness that 

smoking increases the risk of pregnancy complications,(28) over 10% of U.S. women smoke 

cigarettes during pregnancy, exposing more than 400,000 fetuses each year.(29) Tobacco 

smoke contains thousands of chemicals, many of which could contribute to adverse 

outcomes.(30) However, studies of pregnant women who are exposed to nicotine without 

products of combustion through the use of smokeless tobacco products can provide insight 

into the potential role of nicotine. These studies have found associations with preterm birth, 

stillbirth, and orofacial cleft defects,(15, 31-35) but no clear association with fetal growth 

restriction.(36-39) In agreement with the latter finding, animal models utilizing nicotine 

alone do not demonstrate any consistent effect on fetal growth at exposures modeling those 

in typical smokers.(40-42) Together, these findings provide evidence that nicotine and other 

tobacco smoke components produce distinctive adverse pregnancy outcomes.

2.2 Fetal brain development

During development, neurotransmitters control and coordinate the cellular and architectural 

assembly of the central nervous system.(43, 44) At the appropriate developmental phase, 

stimulation of neurotransmitter receptors regulates brain assembly by (1) promoting cell 

replication; (2) initiating differentiation; (3) initiating and then terminating axonogenesis and 

synaptogenesis; (4) regulating cell death; and (5) promoting cell migration to specific brain 

regions.

Acetylcholine plays a critical role in brain maturation via activation of nicotinic 

acetylcholine receptors (nAChRs). These receptors are a structurally diverse family of 

ligand-gated ion channels which regulate synaptic plasticity and brain development. 

Nicotine crosses the placenta(45) and specifically binds to nAChRs in the fetal brain.(46, 47) 

Since nAChRs are functional at early stages of brain development, their early activation 

and/or desensitization by nicotine can lead to long-term developmental disruption.(48-50) 

Even first-trimester exposure can induce disruption of brain development at both cellular and 

structural levels.(51) Although the structural features may appear grossly normal by early 

adulthood,(52) a detailed analysis of synaptic architecture shows long-lasting alterations 

(layer thinning, loss of neuropil, glial “scarring”), particularly in the hippocampus and 

somatosensory cortex areas that are critical for attention and cognitive function.(52-54) 

Thus, from a morphological standpoint, nicotine is a subtle neuroteratogen. However, its 

functional consequences exceed the visible evidence of disrupted development.
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In developing rats exposed prenatally to nicotine at plasma levels comparable to those in 

human active smokers, standard biomarkers of cell injury indicate apoptosis, reductions in 

the numbers of neuronal cells, truncation of axonogenesis, and deficient synaptogenesis.

(55-58) Neuronal damage and cell loss involving the activation of genes associated with 

apoptosis intensify in the postnatal period despite the discontinuation of nicotine exposure.

(57, 59, 60) The developmental context is critical for evoking damage, since nicotine-

induced apoptosis in the immature brain is distinct from its effect in the mature brain.(61, 

62) For example, hippocampal progenitor cells show nicotine-induced apoptosis only during 

early differentiation.(63) Furthermore, the delayed-onset changes that occur when nicotine is 

no longer present in the system indicate that nicotine changes the entire trajectory of brain 

development so that adverse effects can emerge later in life, after a period of apparent 

normality. This is particularly important for patterns of synaptic activity that display initial 

deficits in the early postnatal period, but tend to recover by juvenile stages, only to show a 

reemergence of hypoactivity in adolescence,(59, 64-66) at which point there is a persistent 

deficit in nAChR function.(67-70)

To characterize the involvement of nAChRs in regulating brain development during the third 

trimester human fetal period, studies examined the effects of nicotine exposure during the 

functionally-equivalent early postnatal period in rats and found altered thalamocortical 

maturation, resulting in subsequent impairment of cognitive behaviors.(67, 71, 72) The 

hippocampus and cerebellum, which are both late maturing structures, also exhibited unique 

regulation by nAChRs,(73-76) and consequently, postnatal nicotine exposure disrupted 

morphological assembly of these regions.(77, 78) Thus, animal studies indicate that nicotine 

exposure can negatively impact all stages of fetal brain development. Indeed, it is estimated 

that nicotine is responsible for as much as 36%-46% of the overall impact of tobacco smoke 

on the development of brain circuitry in animal models.(79)

It is important to note that the adverse effects of nicotine on brain development occur at 

exposure levels that do not compromise somatic growth.(64) Maternal cigarette smoking is 

strongly associated with intrauterine growth retardation, a well-recognized predictor of poor 

perinatal outcomes.(15) However, because nicotine targets the fetal brain, damage can be 

present, even when birth weight is normal. This reflects the specific actions of nicotine on 

nAChRs that modulate neuronal development, in contrast to non-specific fetal insults, which 

typically spare brain development at the expense of fetal somatic growth.(64, 80, 81)

The effects of isolated nicotine exposure on human fetal brain development have not been 

studied directly. However, maternal cigarette smoking has measurable effects on brain 

structure that are consistent with animal models that evaluated nicotine alone. Imaging 

studies found that fetuses exposed to maternal smoking had decreased transcerebellar and 

lateral ventricle diameter/width (ultrasound) and decreased overall brain volume (MRI) 

compared with unexposed fetuses, as well as smaller frontal lobe and cerebellar volumes in 

infancy.(82-84) Imaging studies of offspring in later life also found differences in the brains 

of exposed offspring, including reduced cerebral cortical gray matter, reduced subcortical 

gray matter volumes in the amygdala, thalamus, and pallidum, and reduced volume in the 

corpus callosum.(85-90) In a study of 6- to 8-year-old children prenatally exposed to 

maternal smoking, the authors found reduced brain volume, smaller cortical gray and white 
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matter volumes, and thinning of the superior frontal, superior parietal, lateral occipital, and 

precentral cortices compared with age- and gender-matched unexposed children.(91) Taken 

together, studies of tobacco exposure in human fetuses are in agreement with those of 

nicotine exposure in animals, and in particular, those which documented disruption of brain 

development independent of effects on fetal growth.(83, 89, 91) The structural alterations 

seen in human studies are paralleled by functional changes in the fetus. Studies using real-

time fetal monitoring(92-95) found greater rates of maladaptive response to the non-stress 

test (a clinical index of fetal well-being)(96), including reduced heart rate variability, 

increased mouth and self-touch movements, and impaired recognition of maternal voice in 

fetuses of smokers compared with those of nonsmokers.(97-99)

2.3 Perinatal mortality and sudden infant death syndrome

Maternal smoking during pregnancy increases the risk of perinatal mortality (which includes 

both stillbirth and neonatal death) by 20-30%,(100) and of sudden infant death syndrome 

(SIDS) 2.4 to 3-fold.(101) Maternal smokeless tobacco use in pregnancy is associated with a 

1.6 to 2.6-fold increase in stillbirth.(31, 33)

Maternal smoking is thought to increase perinatal mortality and SIDS risk in part through its 

effects on fetal and infant stress responses. Human parturition is associated with an extended 

period of hypoxia, and the fetus and newborn possess unique adaptive responses that 

maintain cardiovascular function during this period. These responses center around 

circulatory adjustments that ensure adequate perfusion of the brain and heart, and require 

autonomous secretion of catecholamines from the adrenal medulla (102), as well as a 

myocardium that is adapted to function in a low oxygen environment.(103, 104) Prenatal 

nicotine exposure leads to severe reduction or loss of the adrenomedullary component, along 

with a reduced cardiac response to adrenergic stimulation, resulting in brain injury or death 

during a hypoxic episode that would ordinarily not be harmful.(59, 60, 105) Although 

animal studies provide the primary evidence for this mechanism, the same deficiency in 

adrenomedullary function in response to hypoxia has been identified in the offspring of 

smokers at birth.(106) The loss of cardiovascular adaptation caused by maternal smoking 

affects the fetus during delivery, when hypoxic events can evoke stillbirth or birth asphyxia, 

as well as during infancy, when hypoxic events can result in SIDS.(107)

Additional contributions of maternal smoking to SIDS risk likely entail effects on central 

cardiorespiratory control and arousal. Maturation of sleep architecture and sleep during the 

first year of life includes changes in both respiratory and cardiovascular control.(108) 

Infants, especially those born preterm, are at increased risk for cardiorespiratory 

disturbances, apnea, and hypoxemia during sleep, events for which arousal is an important 

protective response. Failure of this response mechanism could contribute to SIDS risk.

(109-111) Maternal smoking and smokeless tobacco use during pregnancy are associated 

with increased risk of neonatal apnea, while maternal smoking is also associated with a 

decreased arousal response.(109, 112-118) The administration of nicotine to pregnant ewes 

can evoke the same deficit in newborn lambs.(119) In addition, there is evidence that 

prenatal nicotine exposure damages brainstem circuits that are responsible for mounting 
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appropriate respiratory responses to neonatal hypoxia, which could contribute to additional 

SIDS risk.(120, 121)

2.4 Infant stress response

Maternal smoking during pregnancy in humans leads to alterations in behavior and stress 

responsiveness in newborns, in addition to the specific effects on hypoxic stress discussed 

above. Specifically, studies of the immediate neonatal period (postnatal days 1-5) revealed 

increased signs of abstinence/withdrawal, hypertonicity, irritability, and excitability in 

tobacco-exposed neonates, with a clear dose-response relationship to nicotine exposure.

(122-126) Studies later in the neonatal period (10-30 days) found continued or emerging 

behavioral effects on self-regulation, attention, need for external soothing or handling, and 

arousal—all potentially portending longer-term effects on attention and regulation.(127-129) 

Several studies also found alterations in stress responses in exposed infants. For example, 

the stress hormone, cortisol, was increased in the cord blood of newborns of smoking 

mothers,(130-132) and infants aged 1-7 months showed altered cortisol response to stress.

(133-135) There is extensive scientific literature on the long-term neurobehavioral deficits 

associated with early life exposure to prolonged stress and/or excessive glucocorticoid 

hormones (reviewed by Maccari et al, 2003).(136) Similarly, animal studies found evidence 

that prenatal nicotine exposure disrupts stress hormone regulation in offspring.(137-139) For 

example, in one study, adult male rats with gestational exposure to nicotine showed 

abnormal neuroendocrine responses to stress.(137)

2.5 Auditory processing

A number of studies have examined maternal smoking and infant auditory processing.

(140-143) Healthy newborn infants of non-smoking mothers discriminated among a greater 

number of syllables whereas healthy newborns of smokers began the discrimination process 

at least 150 msec later and differentiated fewer stimuli.(144) Effects on auditory processing 

may persist beyond infancy; an increased risk of low-frequency hearing loss has been 

documented in adolescent offspring of women who smoked during pregnancy.(145) Animal 

research supports that nicotine adversely affects auditory processing.(71, 146) Exposure of 

rats to nicotine in the second postnatal week, corresponding to the third trimester of human 

fetal brain development,(147) disrupted the development of glutamate synapses in the 

auditory cortex, which has been associated with long-term deficits in auditory processing 

and learning.(67, 71)

2.6 Outcomes in childhood and adolescence

Numerous studies have addressed the long-term consequences of maternal smoking during 

pregnancy on offspring behavior. The most consistent associations are with externalizing and 

disruptive behaviors, such as conduct disorder (antisocial personality disorder in adults) and 

oppositional defiant disorder, from infancy through adulthood, as well as the precursors of 

these behaviors.(148, 149) However, a major limitation of traditional approaches to studies 

of prenatal tobacco exposure and behavioral outcomes has been the inability to fully control 

for potential confounding factors, particularly family environment and genetic factors.(150) 

More recently, high quality, prospective studies using multimethod exposure measurement 

and propensity score modeling have delineated a coherent pattern of disruptive behavior 
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associated with prenatal tobacco exposure, beginning in early childhood.(151, 152) For 

example, adoption studies provide support for an independent effect of maternal smoking 

during pregnancy on externalizing behaviors.(151) A recent sibling study that included 

detailed exposure data and careful control for family-level effects found modest, but 

statistically significant associations between tobacco exposure and conduct disorder 

symptoms and oppositional defiant disorder symptoms.(153) Both associations were similar 

in magnitude to contributions from genetics and family environment described in prior work. 

These studies add evidence supporting a role for prenatal tobacco exposure in increased risk 

for externalizing behaviors.

Associations have also been described between maternal smoking during pregnancy and 

offspring internalizing behaviors (anxiety and depression), attention deficit hyperactivity 

disorder (ADHD), and impairments in learning and memory, but are less consistent than for 

externalizing behaviors.(150, 154-176) These inconsistencies illustrate the difficulty in 

determining cause-and-effect relationships for different outcomes in diverse human 

populations with multiple confounders and risk factors for neurobehavioral deficits, 

especially when the associated behavior may not emerge for years after the injurious 

exposure.

Animal models have been used to assess the role of prenatal nicotine exposure on 

developmental and long-term behavioral outcomes. Reflex behaviors characterize the 

development of sensory and motor systems in the brain, and rodent studies suggest that 

prenatal nicotine exposure delays maturation of reflexes, including negative geotaxis and 

surface righting (measures of limb coordination and locomotor development), as well as 

causing long-lasting alterations in filtering auditory information. (146, 177-179) However, 

these findings are not entirely consistent; some studies found normal reflex development in 

exposed animals (reviewed by Sobrian and Holson 2011).(180) Activity levels have also 

been studied using rodent models, again with inconsistent results, perhaps reflecting 

differences in the developmental exposure period and the method of nicotine administration, 

or, in some cases, lack of sufficient statistical power in the experimental design.(180)

In contrast, there is greater consistency among animal studies examining the effects of 

prenatal nicotine exposure on cognitive development, suggestive of global impairments in 

learning and memory.(181-190) These effects appear to be dose dependent and sensitive to 

factors such as sex and timing of exposure. Research suggests that these deficits reflect 

effects on nAChR modulation of long-term potentiation in the hippocampus.(187) Adverse 

outcomes on affective behavior have also been identified, including learned helplessness, 

fear trace conditioning, and anhedonia.(191, 192) Combined gestational/neonatal exposure 

is associated with increased anxiety levels, poor adaptation in a new environment, and 

decreased novelty-seeking.(181, 193, 194)

2.7 Pulmonary outcomes

Maternal smoking during pregnancy has adverse effects outside the central nervous system, 

most notably on lung development, causing lifelong decreases in pulmonary function.

(195-199) At birth, and prior to any significant postnatal exposure to tobacco smoke, infants 

born to smokers show decreased pulmonary function tests, with decreased respiratory flows 
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and respiratory compliance, and altered tidal breathing patterns. (198-200) These changes 

lead to increased risk in childhood of wheezing, hospitalization for respiratory infections, 

and asthma.(201-203) Studies of the effects of nicotine on lung development have been 

performed in mice, rats, sheep and monkeys with strikingly similar results between animals 

and humans.(204) In humans, the clearest, most consistently measured effect of maternal 

smoking during pregnancy on offspring respiratory health is decreased forced expiratory 

flow.(195-198) In both monkeys and mice, exposure to prenatal nicotine alone, at levels 

similar to that of smokers, causes similar decreases in forced expiratory flow.(205-207) A 

primary mediator of this effect appears to be the α7 nAChR, as the effect of nicotine was 

lost in α7 nAChR knockout mice.(205)

Studies on non-human primates point to the potential mechanisms of nicotine’s actions on 

lung development. Treatment of pregnant rhesus monkeys with nicotine causes marked 

increases of levels of α7 nAChR in fibroblasts surrounding airways and blood vessels in the 

fetal monkey lung, and increases in collagen in a similar distribution.(208-210) Similar 

effects are seen in mice.(205) The increased collagen and decreased elastin caused by 

prenatal nicotine exposure likely underlies the decreases in lung compliance seen in the 

offspring of smokers. Prenatal nicotine exposure leads to thickening of walls surrounding 

airways and pulmonary vessels in animal models,(209, 210) a finding that has also been 

reported in the human offspring of smokers,(211, 212) along with similar increases in 

connective tissue and α7 expression.(212) In addition, consistent with the long term effects 

on offspring pulmonary function and increased risk of asthma associated with maternal 

smoking during pregnancy in humans, smoking during pregnancy causes long-lasting 

changes in DNA methylation if offspring(213) that are observed in fetal lung,(214) cord 

blood,(214) and which continue to be present in the blood of school-age children.(215) In 

rodent models, prenatal nicotine exposure causes similar DNA methylation changes, 

including changes in Runx1 methylation, which has been associated with increased risk of 

asthma,(216-219) Research by Rehan and colleagues supports that DNA methylation 

changes caused by in utero nicotine exposure may persist for multiple generations.(217, 

218) Rodent models also suggest that prenatal tobacco exposure can cause decreased histone 

deacetylate activity in offspring lung, accompanied by changes in expression of the 

glucocorticoid receptor splice variant 1.7.(220) While the immediate human clinical impact 

of these findings are unclear, they suggest that epigenomic modifications in important 

inflammatory and pulmonary maturation pathways (i.e., glucocorticoid receptors), may 

result from in utero nicotine exposure. Whether this ultimately translates into increased risk 

of asthma and pulmonary atopic disease among offspring remains unknown.

3. Tobacco use and nicotine exposure during adolescence

3.1 Tobacco use during adolescence

Tobacco use among adolescents in the United States is changing rapidly. While the 

prevalence of cigarette smoking has steadily declined over the past decade(18, 221-223), the 

use of alternative tobacco products, including electronic cigarettes, has increased.(224) 

Conventional cigarettes were the most commonly used tobacco products by U.S. youth in 

2013 (225), and many youth who used electronic cigarettes—more than a quarter million—
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had never smoked combustible cigarettes (226). A subsequent survey in 2014 and 2015 

found that past-month e-cigarette use has surpassed conventional cigarette use among 

middle and high school students.(227, 228) Several longitudinal studies have found that 

electronic cigarette use at baseline is associated with increased risk of future use of 

combustible tobacco products.(9, 10, 229, 230)

3.2 Brain development in adolescence

Concerns about nicotine toxicity do not end after birth or infancy. Brain development 

continues well into the third decade of life, and the adolescent and young adult brains differ 

from those of the fully mature adult, both physiologically and neurochemically. For 

example, adolescent synapses are more numerous and more “plastic,” or moldable by 

experience.(231-233) Hence, adolescents have superior learning and memory skills 

compared to adults, with synaptic formation and learning highly strengthened by stimulation 

from environmental experience.(234) This feature of adolescent brain development can have 

detrimental consequences when inappropriate stimulation is evoked by exposure to 

neuroactive chemicals. For example, addictive stimuli or drugs can activate and strengthen 

reward circuits to create an addicted state.(235) Adolescents and young adults are thus more 

vulnerable to addiction than adults.(223) In support of this, epidemiologic studies document 

that individuals who begin smoking as teens are more likely to become life-long smokers 

than those who start smoking in their 20’s or later.(236-238) Furthermore, adolescents 

experience symptoms of dependence at lower levels of nicotine exposure than adults.

(239-241) Consequently, it is harder to reverse addiction originating in this stage compared 

with later in life.(242) Animal studies confirm the heightened response of adolescents to 

nicotine exposure.(243) Adolescent rodents self-administer nicotine more than adults and 

adolescent exposure leads to increased self-administration of nicotine (244) and other drugs 

in adulthood.(245)

The special vulnerability of the adolescent brain extends to areas involved in higher 

cognitive function, such as the prefrontal cortex where circuit formation continues into the 

20s. During this extended maturational period, substantial neural remodeling occurs in a 

variety of pathways, including those governed by dopamine or acetylcholine. Dopamine is 

critical to reward function, and acetylcholine plays a central role in cognitive maturation, 

including executive function mediated by the prefrontal cortex.(246)

Functional magnetic resonance imaging (fMRI) has been used in numerous studies of adult 

smokers to examine the neural circuitry involved in nicotine craving and addiction,(247-255) 

but in fewer studies of adolescent smokers.(256-261) Peters et al. examined neural responses 

to anticipation of financial reward in adolescent smokers (age 14 years)(262) and found that 

they had smaller neural responses in the ventral striatum and midbrain compared to matched 

non-smoking controls. Moreover, the reduced response showed a clear-cut relationship with 

the frequency of smoking. These findings suggest that adolescent smokers display a hypo-

responsivity to the anticipation of non-drug reward (i.e., financial reward) relative to non-

smokers, and this hypo-responsivity becomes more severe with increased smoking. There is 

also evidence that adolescents who smoke ≤5 cigarettes per day display attenuated responses 

to other non-drug rewards, including pleasurable food images, relative to non-smokers, in 
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areas including the insula and inferior frontal region.(256) The implication of both these 

studies is that the use of extremely rewarding drugs, such as nicotine, may decrease the 

perception of the pleasure obtained from non-drug rewards. Furthermore, the fact that this 

was demonstrated in young- and light-smoking teens indicates that such changes in the brain 

occur in early phases of smoking.

3.3 Cognitive outcomes

Nicotine withdrawal produces transient cognitive impairment and negative affective states, 

while smoking relapse alleviates these symptoms (reviewed by Hall et al., 2015).(263) In 

addition, adult smokers show more rapid cognitive decline with age than nonsmokers,

(264-268) although it is unclear whether the underlying mechanisms involve nicotine, 

products of combustion, or both.(15) The few studies that have been done in adolescents and 

young adults also suggest that cigarette smoking has adverse effects on cognition.(269-271) 

For example, one study found that current smokers aged 17-21 who smoked throughout their 

adolescence performed significantly worse than their nonsmoking counterparts on a variety 

of neurocognitive tasks, even after adjustment for educational attainment and family income.

(271) In a separate study of adolescent daily smokers and nonsmokers who were similar in 

age, sex, and education, smokers showed impairments in accuracy of working memory 

performance, irrespective of recency of smoking.(269) Earlier age at onset of smoking was 

associated with more severe performance decrements, and smokers experienced depressed 

mood and further disruption of working memory and verbal memory during abstinence. 

Furthermore, male smokers initiated smoking at an earlier age than females and were more 

impaired during tests of selective and divided attention than female smokers and 

nonsmokers. Abstinent adolescent smokers have also been found to exhibit reductions in the 

efficiency of their working memory neurocircuitry.(270) In a study of adolescent smokers 

and non-smokers who were similar with respect to age, education, IQ, parental education, 

and symptoms of inattention, prenatal and adolescent exposure to tobacco smoke were both 

associated with increased fractional anisotropy in anterior cortical white matter.(258) 

Disruption of auditory corticofugal fibers may interfere with the ability of these fibers to 

modulate ascending auditory signals, leading to greater noise and reduced efficiency of 

neurocircuitry that supports auditory processing. In a study of young adult non-abstinent 

smokers and non-smokers age 18-29 years who were matched for age, education, income, 

and sex, smokers showed significant cognitive impairments in sustained attention, spatial 

working memory, and executive planning.(272) In a study of young adults age 18-35 years, 

the authors found prefrontal attentional network activity was reduced in smokers compared 

with non-smokers using fMRI, and the degree of diminished attentional network activity was 

correlated with the number of years participants had smoked.(273) Finally, cognitive deficits 

have also been associated with childhood and adolescent exposure to secondhand cigarette 

smoke.(274, 275)

The association between adolescent cigarette smoking and long-lasting deficits in cognition 

is especially troubling because several mental health disorders that include changes in 

cognition are also associated with higher rates of tobacco use.(276-283) For example, an 

elevated prevalence of cigarette smoking has been noted among individuals with 

schizophrenia, ADHD, depression, anxiety disorders, bipolar disorder, and others.(284, 285) 
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There is evidence to support a bidirectional relationship—attributes that predispose 

individuals to these conditions could also predispose them to tobacco use and nicotine use—

and addiction could result in or exacerbate symptoms accompanying these disorders.(263, 

286) Similar phenomena could occur in individuals with subclinical affective or cognitive 

disorders.(263)

Existing human studies of cognitive outcomes are mainly cross-sectional in nature, making 

it difficult to determine whether tobacco use results from premorbid cognitive problems or 

causes these problems. However, studies of laboratory rodents provide strong evidence that 

isolated nicotine exposure during adolescence produces long-lasting deficits in learning and 

cognitive processes.(182, 287-290) For example, adolescent nicotine exposure was 

associated with adult deficits in contextual fear conditioning, but not cued fear conditioning, 

in both rats and mice,(288) suggesting altered function in brain regions involved in 

contextual processing, such as the hippocampus. In support of altered hippocampal function, 

adolescent nicotine exposure was associated with reduced hippocampal CA1 dendritic 

length and apical dendritic branch complexity. (291) The effects on learning were not seen in 

adults similarly exposed to nicotine.(182) In addition, adult rats exposed to nicotine during 

adolescence had deficits in attention and displayed increased impulsivity.(292) These 

cognitive deficits may be related to long-lasting changes in cellular processes involved in 

synaptic plasticity, as adolescent nicotine exposure altered adult medial prefrontal cortical 

long-term potentiation of synaptic activity.(289)

Animal studies also provide evidence for long-lasting changes in mental health-related 

behaviors after adolescent nicotine exposure.(293-295) For example, adolescent nicotine 

exposure increased anxiety in adult rats,(296) decreased the sensitivity to natural rewards, 

and fostered depression-like behaviors.(295) Further, changes in anxiety related to 

adolescent nicotine exposure were associated with increased corticotropin-releasing factor, a 

neuropeptide involved in stress response initiation, in the hypothalamus and frontal cortex 

and frontal cortex and increased neuropeptide Y, a neuropeptide that may play a protective 

role in responses to stress, in the hypothalamus and hippocampus.(297) Together, these 

findings raise serious concerns about the long-term impact of adolescent nicotine exposure 

on mental health through adverse effects on cognition, anxiety, impulsivity, depression, and 

drug reward and reinforcement.

3.4 Trajectory of tobacco and other substances use

There is evidence that nicotine exposure in adolescence affects the use of other substances. 

In the U.S. population, the use of tobacco often precedes the use of other drugs including 

marijuana, which in turn generally precedes the use of cocaine and other illicit substances 

for those who go on to use other drugs.(298-300) Although this pattern may reflect that 

tobacco is legal and easier to access than illicit substances, evidence from translational 

research in rodents supports a causal mechanism for the observed sequence of progression 

from tobacco to other drugs. Nicotine pretreatment in mice and rats enhances the subsequent 

response to cocaine, but the effect is unidirectional, as the reverse order (cocaine followed 

by nicotine) does not result in enhancement of the response to nicotine.(301-303) At the 

molecular level, nicotine exerts a priming effect by enhancing the ability of cocaine to 
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induce FosB, a key mediator of addiction.(304, 305) It does so by inhibiting histone 

deacetylation. The consequent enhancement of gene expression leads to an increase in the 

response to cocaine in reward-based areas. These results provide a biological basis and a 

molecular mechanism for nicotine as a gateway drug.

4. Synthesis and conclusions

Historically, many clinicians and scientists have considered exposure to nicotine alone to be 

low risk, especially for established smokers. However, for pregnant women and adolescents, 

a large body of scientific evidence challenges this concept. As detailed in this review, 

existing human and animal research provides sufficient evidence for researchers and public 

health officials to draw a number of conclusions regarding the adverse effects of nicotine on 

human development. These conclusions could serve as a foundation for public health policy, 

planning, and practice regarding electronic cigarettes and other non-combustible tobacco 

products.

Animal models of prenatal nicotine exposure have successfully recapitulated the 

neurodevelopmental and behavioral phenotypes associated with maternal cigarette smoking 

during pregnancy,(55-57, 64, 306) and these studies show that nicotine itself is a critical 

contributor to the harmful neurodevelopmental effects of tobacco smoke exposure.(307-310) 

Similarly, the combined results from animal and human studies of prenatal cigarette and 

nicotine exposure provide consistent evidence that fetal nicotine exposure adversely affects 

lung development in utero, in infancy, and in childhood.(204) It is likely that the use of 

nicotine-containing products by pregnant women, including electronic cigarettes, will have 

effects on pulmonary development that are similar to those observed in the offspring of 

cigarette smokers. While there is evidence of variability in nicotine delivery across devices 

and users,(311, 312) evidence suggests that some electronic cigarette products may deliver 

as much nicotine as conventional cigarettes.(313, 314) Because lung development in utero 
and in childhood contributes to life-long trajectories of lung function, the effects of prenatal 

exposure to nicotine could have negative effects on respiratory health in middle-aged and 

older adults, including increased risk of asthma and chronic obstructive pulmonary disease 

(COPD).(315-317) In addition, human and animal studies of prenatal tobacco and nicotine 

effects on cardiorespiratory function provide strong evidence that fetal nicotine exposure 

compromises the fetal and neonatal response to hypoxic stress, which could contribute to the 

pathophysiology underlying SIDS.

The integration of human and animal studies of behavioral and cognitive outcomes 

associated with nicotine exposure is complex, but also demonstrates areas of close 

alignment. Maternal cigarette smoking in humans and nicotine exposure in animals have 

been consistently associated with auditory processing deficits, which could affect language 

development and speech comprehension. Rigorous studies of prenatal tobacco exposure in 

humans using innovative approaches to address potential confounding from genetic and 

environmental factors have found associations with externalizing behavioral outcomes in 

offspring. Furthermore, animal studies of gestational nicotine exposure provide support for 

the underlying biological mechanisms that could explain deficits observed in humans, 
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notably nicotine’s actions on nAChRs. nAChRs play unique roles in development, and 

exposure to nicotine, even at very low levels, disrupts those developmental processes.

Human and animal studies of adolescent exposure to cigarette smoking and nicotine also 

have areas of convergence. It is well established from human and animal research that 

adolescents are highly vulnerable to addiction to nicotine.(223) More recent animal studies 

demonstrate a “priming” effect of nicotine that increases vulnerability to addiction to other 

drugs. Studies of human adolescent smokers also find deficits in working memory, attention, 

and auditory processing, and adolescent nicotine exposure in rodents is associated with 

deficits in learning and in attention, as well as in increased impulsivity and anxiety. 

Prospective studies of child and adolescent drug exposure, such as the recently launched 

Adolescent Brain Cognitive Development Study,(318) could yield additional data from 

subjects exposed to non-combustible tobacco products, such as smokeless tobacco and 

electronic cigarettes, helping to quantify the effects of nicotine exposure on cognitive, 

behavioral, and mental health outcomes. Finally, nicotine withdrawal in adolescent tobacco 

users can cause impairments in cognition and has adverse effects on mood and attention.

(269-271)

The evidence presented in this review has often been overlooked in discussions about the 

relative harms and risks of electronic cigarettes, perhaps in part because of the paucity of 

studies of isolated nicotine exposure in humans. Randomized trials of nicotine exposure in 

humans that could determine effects of nicotine on development are unethical, so researchers 

rely on observational studies of human smokers. Human smokers, however, are exposed not 

only to nicotine, but to hundreds of other toxic components generated by combustion, such 

as carbon monoxide, acetaldehyde, and polycyclic aromatic hydrocarbons. In addition, there 

are numerous methodological challenges inherent in studies of smokers, including residual 

confounding from socioeconomic, environmental, genetic and other factors. Although 

considerable progress has been made in overcoming these limitations, controlled animal 

experiments remain a critically important supplement to human studies in establishing the 

consequences of nicotine exposure. In fact, rodent models historically have served as the 

“gold standard” for evaluating developmental neurotoxicants,(64, 319) and regulatory 

decisions on product safety are routinely made using animal data. Of particular relevance to 

nicotine is the example of chlorpyrifos, an acetylcholinesterase inhibitor and widely-used 

organophosphate insecticide that leads to inappropriate overstimulation of cholinergic 

receptors similar to that caused by nicotine.(57)1

Despite the strength of data in support of adverse effects of nicotine exposure during 

pregnancy and adolescence, important research gaps remain that, if addressed, could better 

characterize these effects. An improved understanding of how the timing of nicotine 

exposure during pregnancy affects fetal development could lead to more effective strategies 

to limit nicotine’s effects, such as intensified efforts to promote cessation by a specific 

gestational age or prior to conception. Research could also expand our understanding of the 

1In 2002, chlorpyrifos was banned from residential use by the US Environmental Protection Agency based almost entirely on 
neurodevelopmental deficits demonstrated in rodent studies that were explicitly modeled after those conducted for nicotine.(57, 64, 
320)
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relative contributions of nicotine and products of combustion to effects on brain 

development and cognitive outcomes in adolescence. Indeed, several recent studies indicate 

that other tobacco smoke components amplify the adverse effects of nicotine, and that even 

the low levels of nicotine exposure associated with secondhand smoke are injurious to fetal 

brain development and cognitive function.(79, 321, 322)

Recently, important steps were taken that will help protect vulnerable populations from 

exposure to nicotine. The Child Nicotine Poisoning Prevention Act, which requires child-

resistant containers for liquid nicotine e-cigarette cartridges, was signed into law in February 

2016.(323) In May 2016, the U.S. Food and Drug Administration finalized a rule extending 

its authority to all tobacco products, including electronic cigarettes. Federal law will require 

health warnings on electronic cigarette packages and advertisements that read “WARNING: 

This product contains nicotine. Nicotine is an addictive chemical." The law prohibits the sale 

of electronic cigarettes to individuals under the age of 18 years, the sale of electronic 

cigarettes in vending machines, and the distribution of free samples.(324) In the future, 

additional potentially effective strategies could include strong prohibitions on electronic 

cigarette marketing to reduce youth uptake, health warnings specific to pregnant women and 

adolescents, and protection from exposure to secondhand electronic cigarette aerosol. 

Measures could also include consideration of the impact of pricing on youth initiation and 

use; product addiction potential and youth appeal, including youth-oriented flavorings; 

accessibility of products through placement in retail venues; and social networking potential. 

In addition, policies related to the age of legal sale of electronic cigarettes and other 

nicotine-containing products could benefit if informed by our knowledge of the 

developmental stages during which humans are most vulnerable to the adverse effects of 

nicotine. Because the brain does not reach full maturity until the mid-20s,(325) restricting 

sales of electronic cigarettes and all tobacco products to individuals aged at least 21 years 

and older could have positive health benefits for adolescents and young adults. Finally, it is 

important for clinicians to deliver a clear message that nicotine adversely affects health by 

providing unequivocal advice to pregnant women and adolescents to avoid the use of all 

tobacco products, as well as exposure to both secondhand smoke and secondhand aerosol. If 

these measures are accompanied by intensification of established comprehensive tobacco 

control programs as recommended by CDC,(326) they would be expected to have an even 

greater impact.
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Highlights

• Electronic cigarettes are often promoted as a safer alternative to combusted 

cigarettes.

• Human and animal research supports that nicotine contributes to the adverse 

effects of gestational tobacco exposure on fetal development.

• Nicotine exposure during adolescence is associated with cognitive deficits.

• Measures to protect pregnant women and adolescents from nicotine exposure 

are warranted.
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