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Abstract

Extending Temporal-Vector Microarchitectures for Two-Dimensional Computations

by

Colin Schmidt

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Krste Asanović, Chair

Modern computing is shaped by technology trends, like a slowing Moore’s law and lack of
Dennard scaling, as well as application trends, like mass application of machine learning.
Technology has constrained modern computer architectures to focus on energy-efficiency in
order to improve, battery life, total cost of ownership, and even performance. Emerging
deep-learning applications require computation volumes that increase exponentially and yet
change in structure substantially every few years. One solution for both of these problems is
specialized programmable architectures, that can adapt to new applications while specializing
for the commonalities, and thus improving energy-efficiency.

This thesis presents a set of two-dimensional architecture extensions for Hwacha an existing
vector-fetch architecture designed to improve energy-efficiency on two-dimensional compu-
tation while remaining fully programmable. This thesis discusses the constraints modern
CMOS process technologies place on such an architecture, and describes several silicon imple-
mentations of similar architectures. Finally, this thesis presents the physical implementation
of such extensions and their realized energy-efficiency gains on select applications.
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Chapter 1

Introduction

Computing has seen a rapid and fundamental shift in the past decade, away from single
companies dictating the direction of the entire industry, and towards a more meritocratic
space where ideas are easier than ever to prove out and the number of companies producing
custom hardware has rapidly expanded. This is the result of many factors but the largest
factors are likely the end of Dennard scaling in the mid 2000s, and more recently, a potential
slowing of Moore’s law. The cost of producing a new design in cutting edge nodes [61]
and the reduced gains of moving to new nodes has encouraged a proliferation of designs on
technology nodes several steps behind.

In addition to the underlying technology changes, the rise of open source hardware de-
signs, in particular RISC-V, has led to a revitalization of explorative architectures. Designers
now have the ability to build on top of existing hardware and software stacks, leveraging
the work of large communities to make their designs more effective and usable. This time
and cost savings allows for more focus on innovation rather than focus on catching up to the
state of the art.

Lastly, the near-singular focus of modern applications on machine learning has enabled
more specialized designs to proliferate. Deep learning is now being applied to nearly all
applications in computing and requires orders of magnitude more computation than previ-
ous methods. Applications of deep learning are thus required to be highly concerned with
performance, and as a consequence, energy efficiency. Designers then can direct their spe-
cialization at a relatively small problem, deep learning, and still see wide adoption across
applications and also a strong need for their improvements in efficiency.

This chapter describes the recent trends that have lead to this shift, how computer
architects have adapted, and the role programmable data-parallel architectures are playing
in this transformation. This thesis provides a particular method, and example, of building
programmable architectures designed to exploit these industry trends and future directions.
Finally, section 1.3 outlines the contributions of this thesis, and the remaining chapters.



2

1.1 Energy Efficiency, Specialization, and

Programmability

The slowing, and eventual end, of Dennard scaling means that energy efficiency is now
the most important metric for a new design or architecture. In any power limited setting,
mobile handset, desktop computer, server rack, the energy efficiency has become a proxy for
performance. With a fixed power budget increased performance can only occur alongside an
increase in performance per watt. And now all settings have become power limited, even
supercomputers, as the cooling and power distribution problem for individual components
continues to be a difficult problem to solve in the general case.

This change in focus for systems from pure performance to performance per watt has had
a great impact on computer architecture. There must now be a continuing focus on getting
every operation possible out of a given set of transistors. Specialization, where a design
reduces the set of computations it supports, naturally eliminates large sets of operations
that are no longer possible. The elimination of these other operations greatly improves the
efficiency of the design as long as it is handling appropriate computations. A combination of
distinct designs each focused separate types of computation can then compose into a system
with higher overall energy efficiency.

As a consequence the number of specialized designs or hardware block in common prod-
ucts has proliferated dramatically in the last decade [78]. The integration of these diverse
blocks can cause many problems that reduce the efficiency gains from adding additional
blocks. Improving the interconnect between the blocks, or the mechanism by which data is
shared between blocks, can alleviate some of these issues. However, a different approach, in
which blocks are combined or new blocks are proposed that maintain some diversity in com-
putational support via software, can also improve on efficiency of the system. In addition,
these flexible designs also address the fundamental challenge of specialization, by enabling
the applications supported to differ or change in ways that aren’t known at design time.

As the advanced nodes have become more expensive and design cycles become longer the
lack of flexibility has become a larger disadvantage for fixed-function accelerators. Applica-
tions continue to change faster as computers are integrated into ever more aspects of life.
The rapid change in applications becomes critical to system design when the applications
also demand a large amount of computation. In these cases, e.g. machine learning, a fixed
function design’s efficiency is needed but the rigidity would make designs obsolete soon after
they are available. As a result, there has been a focus on programmable accelerators for
those workloads that demand high computing power.
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1.2 General-Purpose Data-Parallel Programmable

Specialization

The primary work of this thesis is related to these programmable accelerators, their devel-
opment, and implementation. The approach is essentially a middle-ground straddling the
extreme demands for efficiency of modern applications, and the rapid development of new
and unique applications which necessitates flexibility. These architectures should not be
fully general or the benefits will be lost, so a common relatively large domain is computation
on multi-dimensional data. This application domain covers not only deep learning, but also
image and video processing, and scientific compute.

Many different implementations of such extensions exist by using various data-parallel
architectural paradigms as their baselines. The work in this thesis utilizes the vector-fetch
paradigm as its baseline rather than the more common paradigms recent commercial designs
have been built with. The decoupled and runtime configurable nature of the vector-fetch ar-
chitecture enables the desired specialization, for two primary reasons. First, the decoupling
ensures that well written software is already built not to expect low latency communication
with the data-parallel portions of the code. Expecting a larger latency enables more flex-
ibility in performing longer running specialized tasks without hindering common software
applications. Second, the runtime configuration of vector-fetch architectures ensures that
programmers are already setting up the machine based on their current application. This
setup code can then be reused or replaced to enable certain specialization features or other
energy-efficiency improvements. Finally, a temporal microarchitecture for the vector-fetch
paradigm can further enable specialization by giving the freedom to process the multiple
dimensions of the data over time without significantly changing the normal control flow of
the design.

1.3 Thesis Outline

The confluence of these factors leads to this thesis’ central hypothesis, that a temporal vector-
fetch microarchitecture would be an excellent candidate for multi-dimensional specialization
on top of an existing programmable data-parallel architecture.

• Chapter 2 provides background on popular data-parallel architectures, comparing fea-
tures and goals of each architecture. This includes representative code samples and a
brief analysis of the architectures’ programming models.

• Chapter 3 describes the history and current state of two-dimensional and some multi-
dimensional architectures. A brief summary of multi-dimensional applications with a
focus on machine learning is also provided.

• Chapter 4 presents the challenges associated with building data-parallel architectures
in modern advanced technology nodes. An analysis of the constraints placed on such
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architectures and techniques to mitigate or address these constraints is presented. The
chapter also includes a description of the Hwacha architecture, microarchitecture, and
the design decisions made during its implementation.

• Chapter 5 accounts several silicon test-chip implementations of the Hwacha architec-
ture. The technologies and methodologies used to realize these implementations are
presented. In addition, a description of physical design challenges for each chip and
their solutions is included. Finally, a summary of results and measurements for each
design is presented.

• Chapter 6 describes a two-dimensional extension to the Hwacha architecture, and how
it would interact with the architecture’s constraints. Also included is the encoding,
operation, and a code sample for each of the new instructions. The chapter concludes
with a brief discussion of possible future extensions and their design considerations.

• Chapter 7 presents the implementation of the two-dimensional extension for both the
microarchitecture and the physical design aspects. A brief discussion of the previous
potential future extension’s implementation is also included. Finally, the chapter con-
cludes with a presentation and analysis of the performance and energy-efficiency of
different operations on the baseline and extended implementation.

• Chapter 8 concludes the work by summarizing the contributions of the thesis and pro-
viding a set of topics suitable for future exploration of two-dimensional programmable
architectures.
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Chapter 2

Data-parallel Architectures

A classical approach to improving performance in computer architecture is to focus on par-
allelism and attempt to do as much work as is reasonable at once. This exploitation of
parallelism is often categorized into instruction-level parallelism (ILP), data-level parallelism
(DLP), thread- or task-level parallelism (TLP) [38].

These types of available parallelism in computer programs has fostered many specific
design paradigms, from ILP sparking very-long instruction-word (VLIW) and out-of-order
execution (OoO) machines, to TLP spawning simultaneous multi-threading and many core
processors, and DLP has proven no different. The primary data parallel design paradigms can
be classified as fixed-width packed single-instruction multiple-data (SIMD), many-threaded
single-instruction multiple-thread (SIMT), and variable-length vector. Nearly all computer
systems manufactured today include some component designed for DLP. Even small deeply
embedded processors often have small SIMD or digital-signal processing (DSP) units [100],
small consumer devices like cell phones or tablets include SIMD units, graphics process-
ing units (GPUs), and lately machine learning accelerators [3], server class processors have
high performance SIMD implementations sometimes with on-chip GPUs [4], and high-
performance compute clusters include even higher performance SIMD or vector units[99].

This chapter identifies characteristics common to each of these DLP paradigms, enabling
a comparison and an understanding of the design-space. Sections 2.1, 2.2, and 2.3 describe
the three primary paradigms from above, some of their implementation trade-offs, their
primary use cases, and how they are intended to change over implementation iterations.
The chapter continues by giving the same treatment to some of the newer and less common
paradigms. Section 2.4 covers another newer paradigm, implementation-time variable-length
vector packed-SIMD, which is exemplified by ARM’s scalable vector extensions (SVE). Sec-
tion 2.5 describes the latest data-parallel architecture the RISC-V vector extension and how
it mixes some of the above paradigms. And finally, section 2.6 describes an additional more
uncommon paradigm, vector-fetch, which is used by Hwacha the baseline architecture for
the extensions described in the remaining chapters.

In order to discuss the differences in these architectural paradigms and how it affects their
programming models a single example code will be compared across each of them. This frag-
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void csaxpy(size_t n, bool c[], float a, float x[], float y[])

{

for (size_t i = 0; i < n; ++i)

if (c[i])

y[i] = a*x[i] + y[i];

}

Figure 2.1: CSAXPY as C code with a single vectorizable loop.

csaxpy_scalar:

stripmine_loop:

lb t0, 0(a1) % Load c[i]

beqz t0, skip % branch around work

lw t1, 0(a3) % Load x[i]

lw t2, 0(a4) % Load y[i]

fma t2, t1, a2, t2 % y[i] += a * x[i]

sw t2, 0(a4) % Store y[i]

skip:

add a1, a1, 1 % update c pointer by 1 byte

add a3, a3, 4 % update x pointer by 4 bytes

add a4, a4, 4 % update y pointer by 4 bytes

subi a0, a0, 1 % update remaining elements

bnez a0, stripmine_loop % continue loop

ret

Figure 2.2: CSAXPY kernel mapped to a scalar architecture.

ment implements a simple linear algebra routine, and common benchmark CSAXPY, that
multiplies a scalar a times a vector x, of length n, and sums that result with another vector
y, this multiplication and summation are conditional on a third vector c. A non-vectorized
implementation of this loop is presented in Figure 2.2, and all following implementations will
follow the same calling convention. The number of elements n is passed in the first argument
register a0, a pointer to the byte-packed condition vector c is passed in a1, the scalar value
a is passed in a2, and the two vectors x and y are passed in a3 and a4 respectively. The
scalar implementation is relatively straightforward, branching around the loads and math
based on the condition, and unconditionally updating all the pointers and loop count.

There exist more optimized implementations of this loop using unrolling and or software
pipelining but they would vary based on the specific implementation. One of the benefits
of many of these data-parallel implementation strategies is that a relatively simple code
can scale it’s performance based on the underlying architecture, and so the codes presented
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below maintain this style of straightforward implementation. In addition, rather than using
the assembly syntax of any particular architecture from the paradigms, and be forced to
introduce new syntax for each code example, the code presented below is in a generic assembly
syntax highlighting only the important distinctions.

2.1 Fixed-Width Packed-SIMD Architectures

This architectural paradigm is one of the earliest data-parallel architectures [24], and one of
the most popular due to Intel’s adoption of it for their data-parallel extensions. The core idea
of this paradigm is to enable the user to reference subdivisions of a larger register, hence
the packed moniker, in computations. This is a popular methodology because it initially
allowed the use of registers that were already available and simply added parallelism to
the handling of the register’s bits. Over time, many implementations have added dedicated
registers for this purpose as they grew in size past the natural word length of general purpose
processors. Functional units such as multipliers scale quadratically with input bit-width
while the number of subdivisions of a register only scales linearly so adding the required
number of functional units to process an entire register’s subdivisions at once can be smaller
than the functional unit that uses all of the registers bits as a single input. These additional
functional units allow for an increase in operations per cycle assuming the computation can
make use of smaller, sub-register, data types. Additional instructions to handle these wider
registers and common DLP operations are often added to make it easier to map high-level
code to the architecture.

Figure 2.3 shows CSAXPY written for a fixed-width packed-SIMD architecture. Because
the architecture has a fixed width of four words for each register, there is a fragment of code,
elided above, at the end of the loop that would handle the remaining one, two, or three
elements. This fixed width also shows up in the specific opcodes used, and in the register
names. In addition, because the architecture does not support interaction between the scalar
registers and the vector registers the user must explicitly replicate the scalar value into a
vector register. Recently fixed-width SIMD architectures adopted full predication [27], and
so are able to avoid some extra processing that has been unavoidable in the past.

In order to understand how a data parallel architecture will evolve over time it is useful to
imagine how a current algorithm or code would need to be changed for new implementations.
For example, what would happen if a new implementation were to be built with more or
less processing power available. In the packed-SIMD approach if an implementation wants
to perform more operations per cycle the instruction-set-architecture (ISA) will need to be
extended to include a new set of opcodes for the wider registers and increased operations.
This slow but constant increase in opcodes as a packed-SIMD architecture evolves creates
several issues. Old binaries that are run on newer machines will not take advantage of the
improved performance, and will need to be recompiled or potentially rewritten. Also because
new opcodes continue being added they will tend to be longer in bit-width, the latest Intel
extension AVX512 required an extra byte of prefix. This prefix EV EX is 4 bytes compared
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csaxpy_simd:

slli a0, a0, 2 % Scale number of elements to number of bytes

add a0, a0, a3 % Calculate end address for loop body

vsplat4 v4w0, a2 % Fill a vector register with replicas of a

stripmine_loop:

vlb4 v4w1, (a1) % Load the condition vector c[i:i+3]

vcmpez4 vp0, v4w1 % Fill a predicate register based on c

!vp0 vlw4 v4w1, (a3) % Load x[i:i+3] under the c predicate

!vp0 vlw4 v4w2, (a4) % Load y[i:i+3] under the c predicate

!vp0 vfma4 v4w1, v4w0, v4w1, v4w2 % y[i:i+3] += a * x[i:i+3] under the c predicate

!vp0 vsw4 v4w1, (a4) % Store y[i:i+3] under the c predicate

addi a1, a1, 4 % Increment c pointer by 4 elements

addi a3, a3, 16 % Increment x pointer by 4 elements

addi a4, a4, 16 % Increment y pointer by 4 elements

bleu a3, a0, stripmine_loop

% handle edge cases

% when (n % 4) != 0 ...

ret

Figure 2.3: CSAXPY kernel mapped to the packed-SIMD assembly programming model.

to the shorter two and three byte V EX prefix used by AVX and AVX2. [45]. These prefixes
encode operand and operation type but do not include the arguments so each instruction
will be significantly longer.

Overall, the packed-SIMD paradigm is popular but has several downsides, some of which
could be avoided if legacy codes could be left unsupported. The remaining paradigms all
have mechanisms to avoid this central problem of directly encoding the width and number
of elements in the architectures opcodes.

2.2 Many-Threaded SIMT Architectures

Another highly prevalent architecture is the many-threaded SIMT architecture implemented
in some GPUs, including Nvidia’s standalone GPUs, ARM’s mobile GPUs, and AMD’s
integrated GPUs. This architecture was initially designed to enable per-pixel operation and
so is focused on independent control of each thread. This design lends itself to an efficient
and easy to scale physical design, given a large set of independent problems. The engines
that handle threads will be replicated many times on a single chip and so the physical design
of these units can be very detailed and well optimized, when compared to a more monolithic
packed-SIMD engine that is only a portion of a general purpose processor. Physical design
and scaling have often lead to SIMT architectures being one of the first designs on new
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csaxpy_simt:

mv t0, tid % Retrieve the current thread id

bgeu t0, a0, skip % Branch around work for fringe elements

add t1, a1, t0 % Setup c pointer

lb t1, (t1) % Load c[tid]

beqz t1, skip % Branch around work for masked elements

slli t0, t0, 2 % Scale elements to bytes

add a3, a3, t0 % Setup x pointer

add a4, a4, t0 % Setup y pointer

lw t1, (a3) % Load x[tid]

lw t2, (a4) % Load y[tid]

fma t0, a2, t1, t2 % y[tid] += a * x[tid]

sw t0, (a4) % Store y[tid]

skip:

stop

Figure 2.4: CSAXPY kernel mapped to the SIMT assembly programming model.

technology nodes and therefore one of the least-expensive options in terms of GFLOPS/W
which is a component of total cost of ownership and therefore cost [73].

Figure 2.4 shows CSAXPY written for a SIMT architecture. The SIMT architecture
relies on independent threads and a scheduler distributing these many threads to identical
resources so the implementation looks similar to the scalar implementation. The largest
differences are the lack of a loop, because the parallelism is implicit, and in the presence
of a branch based on thread id to avoid executing any tail elements. One major drawback
with this model is that the loads and stores are not expressed as vector loads in the code.
Instead the microarchitecture is responsible for coalescing these individual loads and stores
into more efficient operations for the memory system if the performance is to be recovered.
In addition, the address calculations for these loads and stores is done in each thread and
must be materialized into each thread’s register file. This code example does not show
the outer control processor code that would setup and launch this code onto the pool of
SIMT execution units. This portion of code is highly variable per implementation and often
includes privileged code, as the SIMT units are often exposed as devices. As with the edge
case code for the packed-SIMD paradigm, the hiding of this code an optimistic view of the
SIMT paradigm but focuses the comparison on the data-parallel portions of code.

The benefit of this many-threaded model is that with so many threads the microarchi-
tecture is free to use each pipelines resources for any number of other threads if one becomes
stalled on memory or another long latency operation. This does mean that in order to oper-
ate efficiently SIMT architectures often require large amounts of work to be schedule at once,
as no individual thread is designed to be able to execute to completion without stalling.

This paradigm partially addresses the issue of direct bit-width encoding but the indepen-
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csaxpy_tvec:

stripmine_loop:

vsetvl t0, a0 % Set vector length for loop

vlb vv0, (a1) % Load vl elements from c

vcmpez vp0, vv0 % Setup predicate for c[i:i+vl]==0

!vp0 vlw vv0, (a3) % Load y[i:i+vl] under c predicate

!vp0 vlw vv1, (a4) % Load x[i:i+vl] under c predicate

!vp0 vfma vv0, vv0, a2, vv1 % y[i:i+vl] += a * x[i:i+vl] under c predicate

!vp0 vsw vv0, (a4) % Store y[i:i+vl] under c predicate

add a1, a1, t0 % Update c pointer by elements completed

slli t1, t0, 2 % Convert number of elements to bytes for x and y

add a3, a3, t1 % Update y pointer by elements completed

add a4, a4, t1 % Update x pointer by elements completed

sub a0, a0, t0 % Reduce remaining number of elements

bnez a0, stripmine_loop

ret

Figure 2.5: CSAXPY kernel mapped to the traditional vector assembly programming model.

dent nature of the threads still incurs some redundant processing and is unable to represent
the uniform nature of DLP operations. The remaining paradigms are able to resolve both
this representation issue and the direct encoding problem by using a programmatic number
of elements to be processed.

2.3 Traditional Vector Architectures

Another type of data-parallel architectures that have been around for a long time are tradi-
tional long vector machines pioneered by Cray in supercomputers in the 1980s [74]. These
architectures are characterized by run-time variable-length vectors, often taking multiple
cycles for a single operation to complete, hence the long vector distinction. Currently these
architectures are less common but do still show up in supercomputers [99] as at their origin.
Eventually architectures like the IBM VF [16] added programmatic vector-lengths to this
paradigm, which enables different physical implementations of the same ISA can run the
same binary code. This enables a designer to produce many more design points along the
performance spectrum without linearly increasing the amount of software needed for the
designs. Longer vector architectures can also be more tolerant of memory system latency
and have more freedom in their pipeline microarchitecture since the number of instructions
need per application-level operation is greatly reduced.

Figure 2.5 shows the same CSAXPY kernel implemented on a hypothetical traditional
vector architecture. Since this model allows for an explicit, but runtime varied, number of
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elements to be processed at once it avoids several issues from the fixed-width packed-SIMD
and SIMT designs. The initial setting of vector length vl sets the number of elements for the
remainder of the loop. This setting can be an arbitrary value so the need for code to handle
the tail of the vector is eliminated. In addition, because the vector length is explicit there is
no need for extra management code or structures to figure out how many threads to launch
as in the SIMT designs. The explicit parallelization also means that the memory operations
explicitly encode the access patterns without needing something to recover and coalesce the
accesses. Unlike the previous two paradigms there is no extra code needed for this function
to run completely and correctly, which shows another benefit of this paradigm.

One issue with this model is that there are often a few extra instructions inside the loop
to setup vector length, but this is offset by the lack of tail code. In addition, depending
on the constraints of the specific ISA, the programmer may be able to assume a certain
vector length is always available and for short application vectors avoid some of these extra
instructions. Another issue is that modern compiler infrastructure is mostly used to dealing
with fixed-width parallelization, or has special code for SIMT machines and uses the GPU
runtime code to manage the variable amount of parallelism [64] [43]. And lastly without
additional ISA features it can be difficult to fully utilize the register file particularly with
small bit-width data types or mixed-precision computations.

This paradigm is able to avoid the fixed encoding, and redundant computation problems
of the previous two models but still leaves room for improvement with regards to mixed-
precision computations. A solution that solves all of these problems elegantly is not widely
accepted and the final three paradigms discussed each take a different approach to work
towards such a solution.

2.4 Implementation-time variable-length vector

packed-SIMD Architecture

This paradigm introduces variable-length vectors that unlike the traditional vector archi-
tectures do not vary at runtime but vary at implementation time, and is embodied by the
new ARM vector architecture SVE. Each implementation is allowed to have a different total
number of bits in each vector register. The register size variance is quantized to 128 bits
in order to restrict the ISA design and to make software easier to write, and has an upper
limit in the architecture of 2048 bits. In order to provide the flexibility for arbitrary-length
vectors the architecture provides predication and many specialized operations to set and
update these predicate registers.

Figure 2.6 shows the CSAXPY kernel mapped to an implementation-time variable-length
vector packed-SIMD architecture. The code shows the hybrid nature of the paradigm by
needing to refer to subsets of vector registers with the .b and .w suffix, but not explicitly
encoding the number of elements each iteration of the loop will process. The use of predicates
as the means for programmatic vector length requires multiple named predicate registers and
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csaxpy_sve:

mov t0, 0 % Initialize i

whilelt vp0, x0, a0 % Initialize vl predicate for indexes < n

!vp0 splat v2.w, a2 % Splat scalar into vector reg under vl predicate

stripmine_loop:

!vp0 vlb v0.b, (a1) % Load elements from c under vl predicate

!vp0 vcmpez vp1, v0.b % Setup predicate for c[i:i+vl]==0 under vl predicate

!vp1 vlw v0.w, (a3) % Load vl elements from y under c predicate

!vp1 vlw v0.w, (a4) % Load vl elements from x under c predicate

!vp1 vfma v0.w, v0.w, v2.w, v1.w % y[i:i+vl] += a * x[i:i+vl] under c predicate

!vp1 vsw v0.w, (a4) % Store vl elements of y under c predicate

incvb a1 % Update c pointer by elements completed

incvw a3 % Update y pointer by elements completed

incvw a4 % Update x pointer by elements completed

incvw t0 % Update remaining number of elements

whilelt vp0, t0, a0 % Update vector length predicate

bnempty vp0, stripmine_loop % Continue loop if there are more elements

ret

Figure 2.6: CSAXPY kernel mapped to the implementation-time variable-length vector ar-
chitecture.

a set of dedicated predicate generation instructions like whilelt. These predicate instructions
are essentially substitutions for the vsetvl instructions of the traditional vector paradigm.
Because the paradigm does not expose the number of elements explicitly in a scalar register,
special increment instructions are included for different data widths, and branching must be
based on the predicate register.

The primary benefit of this architecture is the ability to retain the sub-register SIMD
programming model while enabling implementations to scale to different performance points.
This scaling also enables more portable software that can maintain performance across im-
plementations.

Unfortunately, there are still a few issues effectively using all the bits in these wide
registers. When mixing different width data types extra instructions will often be needed
to split the wider vector into multiple registers, and then align the narrower vector with
more splits. In the code example above if the result were meant to be accumulated into a
double-precision register the instruction count more than doubles for the inner loop.

This is evidence that despite approaching a better solution this paradigm still has po-
tential for improvement. The last two architectures discussed move closer to the traditional
vector style but with better support for mixed precision and sub-word parallelism.
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csaxpy_rvv:

stripmine_loop:

vsetvl t0, a0, e8,m1 % Set element to bytes

vlb v1, (a1) % Load vl elements from c

vcmpez v0, v1 % Setup v0 as a mask for c

vsetvl x0, a0, e32,m4 % Set element to words keeping SEW/LMUL constant

!v0 vlw v1, (a3) % Load y[i:i+vl] under c predicate

!v0 vlw v2, (a4) % Load x[i:i+vl] under c predicate

!v0 vfma v1, v1, a2, v2 % y[i:i+vl] += a*x[i:i+vl] under c predicate

!v0 vsw v1, (a4) % Store y[i:i+vl] under c predicate

add a1, a1, t0 % Update c pointer by elements completed

slli t1, t0, 2 % Convert number of elements to bytes for x and y

add a3, a3, t1 % Update y pointer by elements completed

add a4, a4, t1 % Update x pointer by elements completed

sub a0, a0, t0 % Reduce remaining number of elements

bnez a0, stripmine_loop

ret

Figure 2.7: CSAXPY kernel mapped to the RISC-V vector extension programming model.

2.5 RISC-V Vector Architecture

The RISC-V vector extension (RVV) has a new architectural model that is similar to tradi-
tional vectors with some elements of the fixed width packed-SIMD architectural paradigm.
This discussion is based on the 1.0 version of the specification which has changed dramati-
cally from the early versions, over the few years of specification history.

The general programming model is still one of explicit runtime configurable vector length.
However, rather than the location of these elements being opaque to the programmer the
location of the bits are made explicit, as with the previously discussed architectures. This
allows for using the same registers as different bit-width values without clearing the machines
configuration. The vector unit is still configured before operation, but it is lightweight and
does not cause any register state to change. The main components of the configuration are the
current element width (SEW), and the vector length multiplier (LMUL), which determines
the number of physical registers present in a register group. Rather than encoding the width
of elements explicitly in the instruction opcode as in all previous architectures, encoding
space is saved by using the ahead of time configuration (SEW) to specify the element bit-
width for most operations. There are many exceptions to this rule especially with respect to
memory operations, but most arithmetic operations do not explicitly encode the bit-width of
operations. Some arithmetic operations consume or produce elements of a twice as wide or
twice as narrow bit-width relative to the current element width, which along with changing
the current element width allow for relatively efficient mixed precision code.
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Figure 2.7 shows the CSAXPY kernel mapped to the RISC-V vector extension. The
noticeable differences in this sequence are the additional vsetvl instructions needed before
operations on different data widths, and the use of a regular vector register v0 as the pred-
icate. The extra configuration instructions allow for the computation instructions to be
encoded without an explicit data type. The vector length multiplier allows for wider data
types to use more architectural registers while maintaining mixed-precision computation by
matching the ratio of multiplier to element width.

The primary benefit of this architecture over the previous designs is that it enables more
complete use of the vector register file with the vector length multiplier, without using
additional instruction bandwidth. This architecture still allows for programmatic vector
length changes and predication for more complex control flow, maintaining most of the
benefits of the previous architectures. Considering the code change from above where the
accumulator is now double precision, the addition of widening operations means that only a
single instruction needs to be added to the loop.

One downside of this architecture is that the data layout for the vector register file is
exposed which puts some limits on the microarchitecture. This is a clear trade-off to allow
the kinds of sub-register SIMD along with mixed-precision operation in a small amount of
encoding space. In addition, the programmer’s model of execution is more complex than
the original three paradigms due to the mixing of explicit and implicit element widths and
potential non-obvious configuration constraints.

Overall, the RISC-V vector extension design provides a very attractive architecture for
general purpose data-parallel execution. It provides good code efficiency, expressive prim-
itives, and allows for many differently performant implementations. The last data-parallel
architecture to discuss provides similar features but makes some concessions on code size to
provide more room to experiment with new architecture ideas, and is thus the basis for the
work in the later chapters.

2.6 Vector-Fetch Architecture

The vector-fetch architectural paradigm [56] is a non-standard scheme that moves the tradi-
tional vector instructions out of the scalar control thread and into separate blocks, unlike all
of the previous paradigms discussed. The goal of this change is to more effectively decouple
the vector operations from the scalar operations. This decoupling allows the scalar core to
run ahead calculating addresses and loading scalar data and resolving control flow that will
be needed for future iterations of the vector execution loop. One crucial idea that allows the
decoupling to occur is that several of the setup instructions including the vsetvl instruction
exist in the scalar control stream and the vector unit can calculate the available vector length
regardless of the code block that will be sent later.

In the vector-fetch paradigm, the control thread is responsible for setting up the vector
unit by configuring its registers (vsetcfg), moving scalar data and addresses into the vector
register file (vmcs, vmca), setting the vector length (vsetvl), and launching the worker
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csaxpy_hwacha:

vsetcfg t0 % Set up vector register for number and precision

vmcs vs1, a2 % Move the scalar a to vector unit

stripmine_loop:

vsetvl t0, a0 % Set vector length for loop

vmca va2, a1 % Move &x to vector unit

vmca va0, a3 % Move &y to vector unit

vmca va1, a4 % Move &c to vector unit

vf csaxpy_vf % Launch vector-fetch block

add a1, a1, t0 % Update number of elements completed

slli t1, t0, 2 % Convert number of elements to bytes for x and y

add a3, a3, t1 % Update x pointer

add a4, a4, t1 % Update y pointer

sub a0, a0, t0 % Update number of remaining elements

bnez a0, stripmine_loop % Continue if needed

ret

csaxpy_vf:

vpset vp0 % Initalize predicate register

vlb vv2, (va2) % Load c[i:i+1]

vcmpez vp0, vv2 % Setup predicate for c[i:i+vl]==0

!vp0 vlw vv0, (va0) % Load vl elements from y under c predicate

!vp0 vlw vv1, (va1) % Load vl elements from x under c predicate

!vp0 vfma vv0, vv0, vs1, vv1 % y[i:i+vl] += a * x[i:i+vl] under c predicate

!vp0 vsw vv1, (va1) % Store vl elements of y under c predicate

vstop

Figure 2.8: CSAXPY kernel mapped to the vector-fetch programming model.

thread’s code block (vf). The worker thread contains the memory, compute, and predicate
operations. These worker thread instructions are fetched from memory, decoded, and then
executed in an independent unit.

Figure 2.8 shows the same CSAXPY kernel implemented on the vector-fetch architecture.
It contains two sets of instructions: one set for the control thread, and a second set for the
vector worker thread. The control thread instructions are similar to a traditional vector
architecture with the addition of the scalar and address data moves, and the vector-fetch
launch. The worker thread instructions are also very similar but with a vstop instruction at
the end to denote the end of the worker thread. After the stop, the vector unit is idle until
another vector-fetch block is issued and could be clock-gated or potentially power-gated.

This paradigm also supports the same binary to have extended vector lengths on new im-
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plementations, and additionally supports configuring the number and data-widths of vector
registers This vector register configuration allows for efficient use of the register file as well
as straightforward mixed-precision computation. Changing the summation array to double-
precision does not increase the number of instructions in the loop at all, as the configuration
instruction is the only one that changes.

The obvious downsides of this model are the increased code size, and the required moves
for scalar data used in the vector unit. In addition, the separate stream of vector execution
will increase the latency for short vector sequences more commonly used in non data-parallel
code.

However, the vector-fetch architectures separation of the vector unit and loose encod-
ing allow for easy experimentation with new architectural or microarchitectural ideas. In
addition, an open-source implementation of the entire vector-fetch design significantly re-
duces the overhead of establishing a baseline architecture for further experiments. Overall,
the vector-fetch architecture provides an excellent platform to propose and evaluate more
data-parallel extensions.
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Chapter 3

Multi-Dimensional Vector
Applications and Architectures

The definition of DLP does not restrict the parallelism to single dimensional operations and
is often used for dense linear algebra where the dimensionality of data can be very high.
Fortunately, all these high-dimension operations can be decomposed into one dimensional
vector operations or even scalar operations, and so can be computed on even the simplest
of hardware. The downside to this decomposition is an inherent loss of context. When
these computations are broken down into their elements and run individually on a piece of
hardware the pattern that is expressed by the higher-level operations is lost. The hardware
no longer be aware that it is processing rows of a matrix or slices of a tensor. These patterns,
when exploited, can provide efficiency and performance improvements in myriad ways, from
not materializing intermediate results to generating fewer memory requests. This lure of
efficiency and performance has fostered many research projects, products, and architectures
to move the data-level parallelism abstractions above simple one dimensional operations.

This chapter describes the fundamental components of some popular multi-dimensional
applications, how these applications can be mapped to hardware, and what types of hard-
ware has been designed for these applications. Section 3.1 discusses some of the original
array-based SIMD designs that often included a 2D interconnect, but were widely varied
in the programming models and supported operands. Section 3.2 describes the linear alge-
bra routines that eventually standardized what operations data-parallel architectures were
expected to provide and perform well on and are the basis of most multi-dimensional com-
pute. Section 3.3 discusses the core set of operators that have been used to build most of the
prevalent machine learning architectures, and how these relate to the linear algebra routines.

With these applications in mind and the knowledge that they continue to demand more
computing resources year after year, much time has been spent developing custom archi-
tectures or additional functional units in existing architectures that can accelerate these
applications. Section 3.4 concludes the chapter by discussing the different extensions that
have been explored and how they impact the architecture and programming model.
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3.1 Origins of Two-Dimensional Architectures

Single-instruction multiple-data architectures and two-dimensional architectures have a long
shared history. An early branch of designs was taking advantage of the physical world to
lay out physically distributed components in a grid or array. These architectures had their
physical structure built into their programming model with nearest-neighbor connections,
and the applications envisioned for them. This specialization also extended to the processing
elements (PEs) initially with bit-serial implementations being very popular as it allowed
applications to map more efficiently to the array regardless of its bit-width. As with many
designs constructed during the early decades of computing compatibility between different
designs was non-existent, but eventually standard word-length processing elements became
popular, presaging large networked computers as in data-centers and supercomputers. As
with many computing designs increasing levels of device integration leads to more PEs
being packed into each package and the 2D grid was replicated in on chip connections.
These machines paved the way for both the modern fixed function processing arrays, the
more general purpose 2D architecture extensions, and even reconfigurable gate arrays, and
processing in memory.

An early 2D machine, the Illiac-IV, was designed to tackle many of the applications
mentioned at the start of this chapter, linear algebra, scientific computing and signal pro-
cessing [12]. At the time explicit parallelism was rare, but the designers recognized it would
help increase the computing power of the machine such that their large target applications
would be tractable. Having been designed before large scale on-chip integration was possible
the physical structure of the machine matches the logical structure, a homogeneous grid of
processing elements with connections to its neighbors. This introduced several ideas that
eventually became common for SIMD architectures. The Illiac-IV is capable of using predi-
cates based on elements as control flow. The addressing scheme is also based on a local PE
register, making its addressing computations similar to those of SIMT machines. However,
it avoids some of the redundant storage and computation of the SIMT paradigm with a con-
stant broadcast bus that each PE can use directly, which is more similar to the traditional
vector designs. Finally, there is was lot of focus on decoupling the control unit for the PEs
which is similar to the vector-fetch paradigm. All of these one-dimensional data-parallel con-
cepts are augmented by the 2D interconnect between PEs. These direct connections enable
more complex algorithms such as matrix inversion to proceed directly on the PE without
higher level coordination [57]. However the 2D organization is mostly used to speed up long
routing as most algorithms use the memory as the 2D structure holding an array but spread
columns among the PEs in a more linear fashion.

Other early machines experimented with the connectivity of the array and the bit-width
of the PEs, to improve utilization. The Distributed Array Processor (DAP), reduces the
bit-width of each PE to a single bit, and adds several other features to address low utiliza-
tion scenarios [72]. The limits that apply to array processors are still present in today’s
architectures and include: non-uniform memory access for non-local storage; small problem
sizes underutilizing the array; idle time during setup due to I/O, configuration, or loading;
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and edge cases in computation due to reductions or boundary conditions leaving most of the
array idle. The bit-serial approach of the DAP aims to help problem size array matching.
The lower cost of a bit-serial PE enables more memory to be attached to each PE, allowing
for fewer slow non-local accesses, and more problems to fit entirely in the system removing
the need for reconfiguration. An additional neighbor connection, half way across a row and
column, increases the speed of data transfer among the PEs. Because not all data movement
in 2D applications is regular, Amdahl’s Law warns that if these irregular movements take
a very long time they can still dominate array performance. The DAP’s organization is
also programmable enabling different organizations of PEs to be changed during execution.
These optimizations show the architecture striving to increase efficiency by reducing the idle
periods of the array, which will continue to be an issue for future 2D or array processors.

Another bit-serial approach but more in line with modern array processors and the Illiac-
IV is the Massively Parallel Processor (MPP), which makes only a few modifications besides
once again scaling up the peak processing power [13]. MPP returns to 4-way nearest neigh-
bor connectivity, but maintains the programmable topology from the DAP. Of interest for
future 2D machines is a global reduction tree that reduces the underutilization involved in
a reduction computed directly on the array. There is also more attention paid to loading
data into the array and it can mostly proceed in parallel with the processing, an important
aspect of all data-parallel workloads especially those operating on large portions of data like
2D grids.

Another unique approach to a 2D processor that was targeted more directly towards
artificial intelligence tasks was the Connection Machine [39]. The connection machine is again
bit serial at each PE, with 4 nearest neighbor connections, and an or-reduction tree. The most
important change from an architecture perspective is the great increase in dimensionality of
the non-direct connections. The CM-1 prototype connection machine has a 12-dimensional
network between the processing elements. This network takes a variable number of cycles to
traverse but enables much higher overall bandwidth compared to the simple two dimensional
network of the nearest neighbor connections. Managing connectivity between elements in a
data-parallel architecture is a balancing act between the expense of the network which scales
with the machines parallelism and the expressiveness provided by the additional connections.
The connection machine pushed this expressiveness considerably further than previous bit-
serial machines.

Unfortunately, all of these early designs suffer from difficult programming models where
they needed to invent a whole new set of abstractions to provide programmers with some-
thing usable for general software development. The MasPar MP-1 moves towards a more
usable and common set of interfaces while maintaining the massively parallel SIMD architec-
ture [15]. It adopts a RISC-like instruction set for the PEs with standard data types but still
with an instruction broadcast mechanism such that it operates similar to the SIMT paradigm.
The PEs also have registers that are accessible by sub-words, bits, bytes, half words, words,
and double words, in a similar manner to future packed-SIMD architectures. It is explicitly
designed to support high-level languages like C and be more easily programmable, a trend
that continues with future array processors. The MP-1 also adds indexed loads and stores to
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enable mapping more applications efficiently, such as indirection or lookup tables. The archi-
tecture is designed to be scalable as well, such that each set of PEs added also adds memory
and communication bandwidth keeping the machine balanced. Although this doesn’t go as
far as ensuring old binaries can run on scaled up architectures it is still progress towards
the performance portability that DLP architectures strive for. Finally, the MP-1 increases
the neighbor connections to 8-way and more importantly adds an all-to-all network for the
PEs that although slower than the neighbor communication still greatly reduces the average
distance of nodes.

As VLSI integration increases in the mid 1990s these SIMD array processors begin to
divide into two groups, microprocessors where an entire, often 1D, SIMD processor fits onto
a single chip [5], and smaller processors in large networked configurations [83]. We see both
of these trends emerge in the MasPar MP-1 because it has both sub-word SIMD registers
just as in Intel MMX from 1996 [70], and each PE is a RISC-like processor with a three hop
global network between them. Both of these groups of highly parallel architectures begin to
adapt their programming models towards more standard software and targeting from high
level languages, which is aided by the previous decade’s creation and study of the basic linear
algebra subprograms (BLAS) as discussed in the next section.

3.2 Multi-dimensional Applications and Libraries

While these SIMD array processors were being developed, built, and used for a wide variety
of applications, one of these application domains at the base of much multi-dimensional
compute, linear algebra, was being standardized with high-level software APIs. The initial
set of proposed basic linear algebra subprograms (BLAS) included only single dimensional
operations [62], but still provided an API for higher level software to conform to and hardware
to implement efficiently. Over the next decade higher dimensional BLAS routines were
developed until level-3 BLAS in 1990 [28]. Shortly after this, a specific set of BLAS functions
were combined into a benchmark suite LINPACK which is now used to identify the highest
performing computers on the TOP 500 list [29]. This standard set of subprograms is often
provided by vendor specific extremely well tuned software packages such as MKL for Intel
CPUs and CuBLAS for Nvidia GPUs.

Many different application domains have come to rely on these routines and the software
is often built on top of BLAS APIs. A large consumer of the TOP500 compute is scientific
computing focused on aiding scientists by modeling or simulating real world physical systems.
These models can be so large that they will only fit or be computationally tractable on
supercomputers, and are mostly responsible for driving the development of supercomputers.
As mentioned before supercomputers have focused on DLP from the beginning with SIMD,
vectors, and SIMT architectures making up nearly all of the TOP500.

Other smaller applications more appropriate for a workstation also rely on multi-dimensional
compute. Computer-aided design tools, image and video processing and rendering, and engi-
neering simulations all make use of highly parallel often multi-dimensional compute [84] [20].
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Recently artificial intelligence and machine learning have become key applications not only
at the server level of a data center, but also increasingly at the edge on handheld or embed-
ded devices. Using neural networks for machine learning is not new and many of the SIMD
array processors described earlier in this chapter were built with these applications in mind.
Initially these machine learning applications were built purely on BLAS but as interest grew
the diversity of operations in the networks proliferated and most high performance networks
are now implemented using specialized libraries or frameworks. This diversity and its affect
on hardware design is outlined below and leads to some of the software changes presented
later in the chapter.

3.3 Deep Neural Network Operations

Neural networks have a long history but had a resurgence in the last two decades as the
larger labeled datasets became available, along with low-cost high performance GPUs, en-
abling the networks to become deeper, improving accuracy while retaining reasonable train-
ing times [63]. This increase in popularity was also helped and contributed to by a large
expansion of the available software and frameworks for using and developing deep learning
models, which are discussed later in this chapter.

These networks are named as such because they are represented as a computational graph
of different operators, sometimes called layers. A typical deep learning network has many
operators that are based on BLAS or are similar in data access and computational patterns
to BLAS. These operators include convolutions, element-wise functions, and pooling or sub-
sampling operations, and operate on tensors of many sizes and dimensions. In computer
vision applications these intermediate results are often three-dimensional with the image’s 2D
structure being maintained while the third dimension grows to include more features of those
locations. But in other applications of deep neural networks the intermediate results can have
even higher dimensionality. It has been shown generally that deeper networks are able to
perform better on many of these tasks so the complexity of the networks and correspondingly
the number of operations needed to make an inference with them has increased much faster
than Moore’s law [2].

Fortunately, most of these operations are located in relatively few distinct types of opera-
tions and often ones with relatively high arithmetic intensity, so are very amenable to special
purpose hardware and other acceleration techniques. The largest contributor to operation
count in most networks are the convolutional layers which are often framed as the BLAS-3
operation GEMM by replicating the input data and weights into a larger matrices [21]. The
most common hardware strategy for these layers are systolic arrays, which have their own
rich history [60], but have also been implemented in a more programmable fashion [22]. This
does not increase the number of operations needed but does increase data movement and so
there is also research on performing some convolutions directly [30].

Another set of extremely common set of layers in the networks are reductions, such as
sub-sampling and pooling. These require more data movement relative to the number of
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operations but the data needed has often recently been operated on or produced and can be
updated processed before being written back to memory. The acceleration technique here is
simply to fuse this operation into the previous operation as the number of inputs for each
reduction are usually only a handful of elements and less data can be transferred to memory
if the reduction is done first [1]. The last set of common layers are simple element-wise
operations. These are often accelerated with attached vector processing pipelines, sometimes
with special functional units for specific non-linearity operations. In order to reduce the
memory bandwidth requirements on these operations that lack arithmetic intensity they are
often fused to other convolutional layers as with the reductions above [47].

Popular network designs change several times a year, but are most often still predomi-
nantly composed of the above groups of operations. The number of papers written per year
is growing exponentially and shows how fast the field is moving [46]. Because the network
of the moment changes frequently and mostly contain combinations of common operations
a general programming language implementation or compiler are over-engineered for the
problem. Instead most deep learning users and developers work with DSLs or frameworks
that have internal ability to generate code or specialize it for hardware targets specifically
designed for machine learning.

3.4 Modern Two-Dimensional Architecture

Extensions

The early array SIMD processors fell out of fashion, as described in section 3.1, but as we
reached a new level of integration, the potential slowing of Moore’s law scaling, and the
rise in popularity of 2D applications like DNNs, a new wave of research and designs focused
on 2D data parallelism emerged. There are two primary features of interest in classifying
any given design, programmability and coupling. The programmability feature spectrum
scales from a single application code turned into an ASIC similar to high-level synthesis to
a general purpose processor with a fully exposed data path. The coupling spectrum spans
from distinct devices with their own boards, memory and interfaces to functional units built
into another processor’s pipeline.

The simplest of these devices are the decoupled and fixed function accelerator devices.
Some of these devices are truly fixed function, being designed to only solve a single task
and having a fixed structure [11]. But most commonly decoupled devices retain some pro-
grammability because driving them remotely would have significant latency.

Eyeriss is a standalone accelerator with a spatial grid of PEs and a limited amount
of programmability [23]. Its PEs are focused on CNN layer processing and so can only
be configured from off-chip to do computations related to that goal. It does provide a
general interconnect between PEs and so given sufficient time and desire one could imagine
programming it for other data-parallel or data flow style computations, much as the early
SIMD array processors were repurposed.
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The first three versions of the Google TPU also operates as its own device with limited
programmability, it is only capable of a subset of TensorFlow operations and no general
compute, and as with Eyeriss it must be managed by another host computer [51]. The
primary compute density and 2D capabilities in the TPU are located in a large systolic
array designed for matrix-matrix multiplication. Newer versions of the TPU have added
more 1D compute capabilities in the form of a large vector unit which enables many more
layers to map efficiently to it, increasing its programmability [50]. Because of the nature of
Google’s business model there are no details on how it is programmed but it presumably
could be programmed to perform other data parallel workloads.

Simba provides another design point in the standalone SIMD array processor space [79].
Simba’s distinct feature is that it was designed as a chiplet and so one or more chips could
be integrated into a single package with another more general purpose device. The PEs in
Simba are more closely aligned with DNN layers but uses vector engines instead of a systolic
array so could potentially be reprogrammed for other applications more easily.

Other accelerators are designed to be integrated on chip with general purpose processors
like the Convolution Engine(CE) [71]. The CE is designed for a more general purpose
compute including 2D convolutions popular in deep learning but it can perform them in
the direct fashion. It does use an exotic data size of 10-bits throughout, but exposes its
operations via an extended set of instructions and can even be programmed from C code
with intrinsics. Because of this specialization for direct convolutions it is able outperform
standard packed-SIMD and approach the efficiency of a custom implementation for several
image processing benchmarks.

NVIDIA’s tensor core is even more tightly integrated than the CE, as it operates as a
functional unit inside of the GPU cores [68]. It supplies a set of fixed matrix-multiplication
routines that increase efficiency by reducing data movement to and from the register file,
operating on more data in parallel, and avoiding intermediate results. The sizes of the ma-
trices supported by the tensor cores are limited to a few fixed sizes based, and the data types
supported, although initially limited to lower precisions, have been expanded in subsequent
generations. The designs rigidity in terms of sizes and data types causes a lot of non-linearity
in performance and increases the burden on the programmer to carefully optimize there code.

Intel’s vector neural network instructions (VNNI) are very tightly coupled to the general
purpose core and appear as a sub component of the vector portion of the core [59]. Similarly
to the tensor cores VNNI instructions have limited data types supported and as with all
packed-SIMD instructions fixed data sizes. The instructions added are essentially a hardware
implementation of a series of operations already provided by the latest AVX-512 extension.
The efficiency gains again come from the reducing register file accesses, avoiding materializing
intermediate results, and potentially performing more operations at once.

The architecture described in chapters 6 and 7 is designed to more closely line up with
the programmability of the VNNI where operations that could be executed previously are
simply executed more efficently with fewer instructions, while the integration is designed
to be slightly more decoupled to enable some additional optimizations that a fixed latency
functional unit would be unable to perform.



24

Chapter 4

Implementing Vector Architectures in
Silicon

Implementing a vector architecture in silicon can be challenging because different sections of
the design present different challenges for the microarchitecture and physical design. Some
of these sections share similarities with other high-performance architectures like the high
memory bandwidth required for GPUs or the large and high bandwidth register files present
in out-of-order processors. This chapter discusses these features, their constraints on the
design and from the technology, and how the Hwacha architecture chooses to address these
microarchitectural and physical design concerns.

First, section 4.1 will enumerate several modern technology trends that impact the de-
sign and implementation of current SoCs. Then, section 4.2 discusses, each in their own
subsection, the principal components of a vector microarchitecture and their implementa-
tion choices. Next, section 4.3 describes the details of the Hwacha architecture and mi-
croarchitecture. Finally, section 4.4 elaborates the different implementation choices made
in the microarchitecture and how these were informed by the previous trends and design
constraints.

4.1 Modern Technology Constraints on Digital Design

In modern deep sub-micron processes using FinFETs the density and delay of logic gates
is rarely the largest constraint on a design [36]. Many new patterns in chip and system
design have been developed in order to continue to be able to utilize all the dense logic for
useful work. These techniques include silicon interposers with large high bandwidth memory
interfaces integrated in package, such as high-bandwidth memory (HBM) [82], and many
large fixed-function low-interconnect functional units for offloading tasks from programmable
units [78]. These techniques attack three of the primary constraints in modern processes,
off-chip interconnect, on-chip interconnect, and on-chip storage.

Off-chip interconnect is usually bounded by two limiting factors, the length of the perime-
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ter of a chip which will always scale slower than the number of transistors in the area, and
the signaling technology at the interface. There is work attempting to mitigate each of these
limiting factors. Off-package interconnects, with traditional interfaces and materials with
copper wires on PCBs do not scale in the same way as transistors, and so have become a
bottleneck over time. [98] Some techniques are exploring how to use more central areas of the
chip to interface with the outside like HBM, Advanced Interface Bus (AIB), and the more
general technique of through silicon via (TSV). Most of these techniques also need to ad-
dress the signaling technology and material problem because the medium they communicate
through may be a package or perhaps only a TSV. The differences in requirements of these
different mediums and distances between the compute die and other devices allows for a
redesign of the signaling techniques. Other techniques focus on continuing to improve tradi-
tional off-package electrical communication or switching to novel off-package communication
with optical interconnects.

Moving off-chip interconnect from inter-package to intra-package is a common solution
currently and is frequently used to bring DRAM even closer to the processor, in terms of la-
tency and bandwidth. Other alternative DRAM organizations that can only be integrated in
package, like HBM, provide further performance improvements[52]. These memory in pack-
age techniques have large trade-offs between performance, cost, and power. The cheapest
system designs that require DRAM will continue to have off-package memory as the addi-
tional packaging step will always cost something, and currently cost quite a lot. Systems
that want either higher performance or lower power usage will move memory in package,
because the reduction in wiring length both increase performance and enables less power
consumption in the signaling. Systems that want high performance still have two options.
The absolute highest performance designs will be using HBM memory at large expense but
many other high performance systems will simply integrate high speed conventional DRAM
or potentially the higher bandwidth graphics DDR (GDDR) in package[26]. Finally, the
high performance systems that prioritize power efficiency will likely integrate low power
DDR (LPDDR) as in the recent Apple M1 processor[34]. These integration techniques en-
able better scaling than traditional off-chip interconnect at a higher cost but also open the
ability to integrate more than just memory and an SoC into a single package.

These packaging technologies are also currently being explored to build more complex
systems-in-a-package (SiPs) out of small chips often called chiplets. Chiplets are attractive
because they allow for larger scale integration with benefits, in terms of power and perfor-
mance, approaching that of on-chip integration but without the problems associated with
large die size and integrating different processing technologies. Very large chips become in-
creasingly hard to guarantee high yield since each device represents a possible failure point,
and the variation across the chip increases potentially reducing overall system performance.
These designs often require explicit on-chip redundancy and ability to adapt to the varia-
tion, such as the ability for high core count Intel processors to have cores disabled differently
based on which cores pass testing. Directly integrating DRAM onto a processor die is possi-
ble with embedded DRAM (eDRAM) but eDRAM performs worse than off-chip DRAM, and
still increases the die size again potentially causing yield problems[33]. Memory in package
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has led the way for chiplets because DRAM is incredibly popular and has a standard in-
terface with multiple companies developing compatible and interchangeable products, while
non-memory chiplets are still rather distinct with several companies developing standards
and methodologies in parallel. Intel’s chiplet effort is focused on using the embedded multi-
die interconnect bridge (EMIB) packaging solution with the advanced interface bus (AIB)
as a standard physical layer interface that many chiplets, both logic and memory, could
implement[65][44]. If the complexities of packaging and testing these multi-chip SiP designs
can be addressed and standards can be adopted for more than just memory, chiplets have
the potential to greatly improve the performance of single package systems.

Despite all of the work on multi-chip packages there will still always be a need for fast
electrical signaling whether it is off-package or potentially in-package. Analog designers have
continued to improve traditional differential electrical signaling achieving bitrates of up to
112Gbps on a single wire in the latest technology nodes[87]. Others have experimented with
single ended signaling, including AIB, to improve bandwidth per pin utilization especially
when the data transfer will only be in package[80]. These techniques are focused on bridging
the gap between off-package and on-chip interconnect by adjusting to the unique challenges of
in-package interconnect like shorter lengths and the different substrate’s electrical properties.
Some designers focus on novel signaling architectures that work well across all shorter range
interconnects including long distances on-chip, most in-package connections, and short off-
package connections[89]. In addition, improving conventional off-chip interconnect to have
energy use proportional to the consumed bandwidth is an active area of research and can
help always-on systems or those systems with widely varying workloads like mobile SoCs[10].
Some researchers are even looking to move away from electrical signaling and are testing the
possibilities of moving off-chip signaling to optical fibers.

Optical connections are often used for communicating over long distances at high-bandwidth,
comprising nearly all of the internet’s backbone links. Moving the optical connections inside
of the data center will require advances in switching, laser power, and connection technolo-
gies. There have been recent advances in having optical connections interface directly with
an SoC [85]. Extensions of this work for the SiP future have looked at combining optical
connections and chiplets[91]. Overall it is yet to be seen if optical connections can truly make
the leap to a commercial product, but the improvements in performance could be a large
step forwarded for extremely high performance systems, especially as traditional metal wires
continue to see diminishing gains. Even less common than optical off-chip interconnect are
integrated wireless interconnects that could offer an alternative solution to communicating
with the outside world. Wireless transmitters appear in many systems currently but are al-
most always confined to separate packages. However some work has been done in attempting
to integrate these components in-package[69].

Like off-chip interconnect, on-chip interconnect also scales less aggressively than transis-
tor performance and can become a limiter in overall system design [18]. Due to a myriad of
physical effects traditional on-chip wires will continue to scale more slowly than the transis-
tors that drive them, and so different techniques, materials, and interconnect architectures
are being explored. In addition, to improving the on-chip interconnect its affect can also be
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limited by adopting smaller local regions of interconnect and increasing the number of glob-
ally asynchronous locally synchronous (GALS) regions. Without improving the interconnect
designs will be forced to increase latency or reduce frequency, both of which can significantly
reduce the benefits of on-chip integration.

The most straightforward approach to improving on-chip interconnect given fixed ge-
ometries is to change the composition of the wires adjusting their metallurgy [90]. Intel
plans to use cobalt wires in their 10nm technology to improve interconnect resistance and
longevity [8]. Even more exotic materials, like graphene, might be used in place of tradi-
tional metals for some or all layers of interconnect [93]. Different dielectrics are also being
explored including removing the dielectric altogether resulting in air gaps between the inter-
connect [32].

The above techniques are mostly focused on the local and intermediate interconnect but
with large chips the cross-chip connections might be better suited to SerDes [67]. These
designs begin to overlap with the off-chip interconnect at this point, needing transmission
lines and complex signaling methodologies. If no repeaters are needed the interconnect
across the chip will be similar to the in-package connections. These technologies are limited
to large chips since they are often designed for distances greater than 5mm. However, at
these distances they can offer more efficient higher speed transmission than traditional global
interconnect with repeaters [58]. Once again, as with off-chip interconnect some researchers
are exploring using wireless connections even at these small distances, but this currently
consists mostly of architecture work with few if any implementations.

The third primary constraint on cutting-edge chip design, on-chip storage, has scaling
characteristics most similar to dense logic. Because on-chip storage consists primarily of
minimum-sized transistors, static random-access memory (SRAM) cells have continued to
scale in modern non-planar processes. However, more effort is required to lower SRAM
minimum operating voltage due to the large number of minimum-sized devices required for
operation, and the threshold voltage fluctuation these minimum-sized devices experience [19].
As discussed in subsection 4.2, the primary constraint of on-chip storage then becomes the
wiring or on-chip interconnect required to access and utilize the array. The constraints this
applies on the microarchitecture will be discussed further in the referenced subsection.

Despite the conventional scaling of SRAMs only slightly slowing compared to standard
logic, there is ongoing work to provide alternatives, although no current technologies avoid
the wire limitations. Truly 3D integrated circuit technologies are being used to split SRAM
cells across multiple layers of active devices. These additional layers often add extra function-
ality potentially useful for in-memory computation [42]. Other on-chip memory technologies
are focused on non-volatility like resistive random-access memory (RRAM), spin-transfer
torque magnetic random-access memory (STT-MRAM), and eDRAM. RRAM in the same
technology node can be more dbout 30% more dense than SRAM but trades speed for
non-volatility [53] [49]. STT-MRAM has approximately the same density as RRAM, while
eDRAM has 70% higher density than even RRAM [95] [37]. These technologies are not tar-
geted at replacing traditional on-chip SRAMs and so will not have a large effect on processor
and SoC designs. Fortunately, traditional SRAMs are scaling well and only end up being
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limited by on-chip wiring concerns and generic timing and throughput issues.

4.2 Vector Architecture Design Constraints

Given the current technological trends vector architectures and microarchitectures need care-
ful design to avoid exacerbating the bottlenecks of off-chip interconnect and on-chip inter-
connect. The off-chip interconnect effects are primarily related to the memory system the
vector processor is integrated with and will be discussed in relation to that. On-chip in-
terconnect is more pervasive in its constraints and requires a more wholistic design view to
fully understand its impact.

One of the main benefits of a vector architecture is the ease with which their through-
put can be scaled up or down depending on application needs. This scalability is primarily
driven by the explicitly independent nature of most computation done on the vector ar-
chitecture. Therefore, designs must be very attentive to what communication patterns are
allowed between the data elements. A conceptually efficient way to think about scaling a
vector microarchitecture is by identifying the internal structure that will be replicated to
improve throughput. This structure is normally called a lane, and design decisions often rely
on understanding how they affect the size of an individual lane as well as how they affect
the complexity of each additional lane added. These concerns are unlikely to be separable
but thinking about these two axes during design is a useful way to frame the problem.

Local interconnect can be limited in a vector microarchitecture by the careful design of
the lane and the instructions that are allowed to cross these lane boundaries. Reducing
this communication allows the dense interconnect to be limited in scope to a smaller on-chip
area, but has wholistic affects on the microarchitecture. Specifically the register file, memory
system, and obviously reduction or other cross lane networks are impacted significantly by
the amount of cross-lane communication. Off-chip interconnect requirements can be reduced
in a vector microarchitecture by increasing the size of the vector register file, implementing
expressive memory operations, and increasing on-chip caches. Older vector processors that
span multiple chips or are made of discrete components have very different design decisions
and so won’t be discussed. Instead, this section focuses on fully-integrated vector processors
and how technology trends might affect future implementations.

In order to analyze these effects on a vector architecture implementations it is useful
to go through the microarchitectural components independently. Consequently, this section
breaks a generic vector architecture implementation into three core components, the vector
register file, the interconnect and functional units, and the memory system.

Register Files

The vector register file implementation is a core design decision that affects the rest of the
microarchitecture will process instructions and data. In the past, vector machines with flip-
flop based register files have spent a large portion of their area and the design effort on their
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register files due to the abundance of ports and total storage size [6]. An alternative style
of vector machines built with SRAM-based register files, such as Hwacha, can alleviate this
bottleneck at the cost of scheduling and control logic needed to manage the highly banked
register files which are used to restore the register file throughput. Understanding the trade-
offs between these and other design points requires understanding the available methods for
building a register file.

Unlike scalar architectures, vector machines rely on multiple operations being explicitly
encoded in an instruction and so require larger registers to source and sink these parallel
operations. The register files for vector architectures are often much larger than a scalar
design, and in long-vector architectures can be many times larger, even approaching the size
of a scalar architecture’s level one cache. In order to provide that amount of storage there
are several common design patterns followed by modern vector machines. At the highest
end of performance out-of-order vector designs implement the register file in, potentially
custom, flip-flop arrays to enable high cycle times[41]. In the middle of the performance
continuum are long-vector machines with SRAM-based register files, often banked and with
multiple lanes to increase throughput above their highest frequency counterparts[99]. At
the low end of absolute performance a vector design can share resources with a scalar core,
or operate directly out of memory, but these designs points are uncommon outside of the
deeply embedded space where other less flexible forms of SIMD execution, like VLIW, are
more popular.

The design space for these register files is quite complex since it spans many dimensions:
throughput, latency, capacity, area, and power. Determining the overall energy efficiency
of register files is also complex as there are many different design options for both the bit-
cells and the periphery and the design decisions are also impacted by the architecture’s
design [101]. Non-planar technologies, like FinFETs, will make some of these techniques
difficult as the number of replicated structures forces tight alignment that now must match
the FinFET grid. True multi-ported designs can still be made with both standard cell and
bit-cell-array based designs but requires custom design or a compiler[31]. Figure 4.2 shows
a summary table of the common register file implementation techniques, and shows a rough
estimation of how they scale with capacity, throughput, and number of ports.

The most common choice for on-chip memories of significant size are standard one-cycle
SRAMs with either a single combined read-and-write port or a dedicated-read and dedicated-
write port. The characteristics of these memories are enumerated in the first row of Table 4.2.
These memories are often designed for density as they will be occupying a large portion of
most SoCs and so they have the best capacity scaling of any techniques. Conversely, this
focus on density causes their latency to be much worse, since the bit-lines are not only
driven by minimum-sized transistors but also require sense amplifiers to spend time reading
the small voltage change from each cell before outputting the correct data value. This use
of peripheral circuitry is the primary reason these memories have a high base area cost. The
port cost of these memories is very high because they are fixed blocks that cannot include
more than two ports without explicit duplication of entire memories. Standard bit-cell-array
based memories do not have a combinational read path and so can be somewhat difficult to
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Type of Mem-
ory

Latency Capacity Scaling Base
Area

Port
Cost

Integration
Effort

Custom
Design

Standard
6T/8T
1-cycle
SRAM

Slow Best High High Average No

Custom
bit-cell RAM

Average Good
w/o extra ports

High Average High Yes
Analog

Standard-cell
RAM

Good Average
w/o extra ports

Low Average Low No

Custom
standard-cell
RAM

Best Average Low Low Average Yes
Digital

Table 4.1: Comparison table of scaling for various register file implementation techniques.

integrate since the microarchitecture must be able to provide the read address a cycle before
the data is needed. However, these memories do not require any custom design and so can
be used freely in generic designs that do not assume more than an RTL description and a
reasonable technology library.

The second row of Table 4.2, describes what can be built if a designer is capable of doing
the custom analog design required to construct a bit-cell and periphery circuitry with more
complex properties. Some of these common properties are adding extra read or write ports,
increasing the frequency of accesses, and increasing resilience to errors or low-power states.
This requirement of custom design makes these memories only usable by larger teams with
experience across the chip design spectrum, making integration difficult. If this experience
is available however, custom bit-cell-array based memories can improve on almost all other
aspects recorded in the table. The most notable changes for processor design are the ability
to add physical ports to the same memory or improve the frequency to match that of deeply
pipelined processors. The custom memories still retain the high base area from periphery
circuitry. The standard multi-porting techniques cause the area of the memory to scale
quadratically with the number of ports so the capacity scaling for custom memories can be
good as long as the total number of ports is still reasonable [88].

The final two memory techniques are based on standard-cell storage arrays, such as
flip-flops or latches, and are sometimes known as standard-cell memories (SCMs). These
memories are based on larger single bit storage elements and so do not need nearly as much
periphery circuitry which has consequences on all other aspects of the memories. Not having
to use sense amplifiers to recover the stored values reduces latency of reads significantly. In
addition, flip-flops often come in many drive strengths and threshold voltages which enables
automatic synthesis and place and route tools to match the timing of the memory to that
of the surrounding circuitry. This matching allows the frequency, area, energy trade-off for
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each memory to be explored more completely with little overhead to the designer. The
primary downside to SCMs is their relatively large size and greatly reduced capacity scaling.
Typically only very small flip-flop based memories, with less than 1 kilobit of total state,
are smaller than bit-cell-array based designs [66]. Adding additional ports to an SCM is
possible without custom design, but because they have larger storage arrays the area scaling
with ports is worse than for a bit-cell-array based design due to the increased wire lengths.
If a designer is able to use custom design with an SCM they can produce extremely high
performance designs, but if the designer is willing to put in such efforts they would often
be better served with the custom design of an SRAM to reduce the cost of extra capacity.
However, for many applications the speed of SCMs and ease of integration will out weigh
the higher cost to meet overall performance targets.

The decision on what register file implementation technique to use is not made in a
vaccum, and the constraints of a vector architecture often push the design towards a few
well worn paths. Vector machines that have a relatively small total vector register file
capacity, hereafter described as short vector machines since the resultant maximum vector
length will be short, are often coupled with higher frequency cores such as out-of-order
designs. The out-of-order design benefits from tight integration with the vectors so wants
them to operate at the same speed as other pipelines to avoid any clock crossing latencies.
Low latency is also important in out-of-order designs as it allows instructions to retire earlier
increasing the effective size of the issue window and reduces the cost of misspeculation. In
addition, trying to restart a vector operation without losing the misspeculated work requires
more complex dependency tracking, which would most likely be eliminated by or subsumed
into the ability to issue smaller portions of a vector operation. This causes out-of-order
designs to issue whatever small unit of vector work can be scheduled and completed relatively
quickly, potentially the smallest addressable register file unit. Breaking the vector operations
into smaller pieces of work encourages the register file to be accessible in smaller units
making it more similar to a short-vector register file. The out-of-order hardware will often
be able to hide the latency incurred by splitting a long vector operation into multiple short
vector instructions. In addition, the smaller operations can often expose more parallelism by
allowing distinct portions of dependent vector operations to proceed in parallel, in a scheme
called vector chaining. There will be a benefit to this out-of-order machines having longer
vector registers in the reduction of instruction fetches but this could be partially addressed
by loop buffers or other general high-performance processor microarchitectures. In addition,
it is hard to estimate how the additional dependency tracking hardware will scale with the
longer vector registers and so a more detailed implementation study would be needed to
find the optimal design point. Overall, out-of-order designs should be able to perform well
with short high frequency vector register files, and most commercial implementations tend
to have vector lengths around half a cache-line.

Another point in the design space of vector microarchitectures are those with very large
total vector register file capacity, deemed long-vector machines since they will have much
longer maximum vector lengths. These designs are often focused on aggregate throughput
and energy efficiency than peak throughput and so run at lower frequencies. The reduced fre-
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quency requirement allows bit-cell-array based SRAMs to be used which gives these designs
much better capacity scaling. Given a bit-cell-array based register file design, the long-vector
machines will need to make a trade-off between the control complexity of increased banking
or custom design with more ports per bank to achieve the desired bandwidth. The exact
amount of bandwidth required of the register file is also a microarchitectural decision that
contributes to both peak performance and average performance. Building more ports per
bank can allow higher utilization of functional units during highly parallel instruction se-
quences but common sequences will be unlikely to use all ports, similar to large issue widths
in super-scalar designs. One commercial example of a long-vector design is the SX-aurora
which has a register file of 128KiB[99]. This large register file is spread across 32 lanes and
8 banks such that each bank is 4Kibit which allows for relatively high-speed SRAMs. In
their 16nm FinFET process these SRAMs are likely to be the limiting factor in the core
frequency of 1.6GHz, but they also are unlikely to need custom design as lower threshold
voltage SRAMs are probably able to achieve this frequency. NEC does not reveal their exact
storage technology but assuming each of these banks is a one-read and one-write 8T SRAM,
or are one-read-write, then they have a total of eight reads with a possible consumption of
eleven reads if all of the functional units were active at once. In this case it is unlikely that
the design would need a two read one write custom SRAM given the extra area that would
require and the overprovisioning of register file read bandwidth. Avoiding custom register file
design is a great advantage, for smaller volume designs, of this class of long-vector machines.

Long-vector designs with SRAM-based register files also tend to be temporal designs
where portions of these long vectors execute over time. This is a result of the low port count
on standard SRAM instances and even more so from the ratio of read bandwidth to capacity.
This ratio will be several binary order of magnitudes different between the SCM and SRAM-
based register files. Temporal execution increases the control complexity required to manage
these vector operations but usually less so than having full out of order execution seen in
the short vector SCM-based designs. The regular access patterns of vector operations can
simplify the register file address generation during temporal execution making it even easier
to build long-vector designs with banked standard SRAM designs.

The vector register file design has far reaching impacts on the overall microarchitecture
and the choice of implementation technique limits the achievable design points. Designing
around the slower but denser SRAM based register files allows for long-vector machines with
a focus on energy efficiency and throughput. On the other hand using faster SCM-based
register file designs moves the machine into the short vector design space where there is a
focus on latency and tight coupling with scalar code. The available technologies and their
trade-offs push designs into two families of designs of vector machines, temporal long-vector
designs, and single-beat short vector designs. The impact of these two families on the other
two major components of a vector design is analyzed in the next two subsections.
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Functional Units, Interconnect, and Wiring

Spatially, the central portion of a vector microarchitecture are usually the functional units.
However, despite their central location, the functional units are the portion of the architecture
that has continued to scale well with successive technology nodes and therefore are often the
most flexible in terms of design. The register files, memory units, caches, and off-chip
memory system all are designed around being able to feed these relatively cheap functional
units. And one of the advantages that vector architectures enable is the ability to more
easily replicate these functional units to take advantage of the explicit parallelism. Because
these components are so cheap the designer often focuses more on how they connect to the
rest of the system including the register file and memory interface, especially for functional
units that require touching elements from multiple lanes. However, this decision is not purely
microarchitectural, like the register file, because the number and frequency of operations that
require cross-lane or intra-element communication greatly depends on the vector instruction
set.

Assuming the design is intended as a general-purpose vector architecture some form of
cross-lane or intra-element operations will be almost necessary. Without supplying these
operations the users will be forced to do any element shuffling or reductions on the scalar
portion of the design aggravating the Amdahl’s law problem of data-parallel compute. There
are two facets of cross-lane communication instructions, expressiveness and expensiveness.
The expressiveness facet relates to how many use cases will be covered by each instruction
or how many instructions will need to be used to implement an application or use case. The
expensiveness facet is related to how much area and power these additional instructions will
add to the microarchitecture. Designing a vector architecture requires careful consideration
of these facets, especially if the architecture is going to be scalable and support a varied
number of lanes. On one end of spectrum, cross-lane communication could be limited to
occurring through memory via scatter and gather memory operations. Or if the architecture
supports masking, through a very simple instruction sequence like element shift and mask.
Both of these approaches will require many cycles and potentially many instructions but
will be able to reuse aspects of the data path that are already present. On the other end
of the spectrum, general register-register permute operations require additional datapath
connections or functional units to accomplish at speed, but can accomplish most cross-
lane communication patterns in a single instruction. As with most problems in computer
architecture, the ideal design is some middle ground that enables most data-parallel programs
to execute efficently with few instructions on the vector architecture while not squandering
the efficiency of the design by including rarely used connections and data-paths for cross-lane
communication.

A more detailed analysis of cross-lane operations finds that they can be classified into
explicit and implicit communication. The explicit communication is easiest to identify as it
arises from the instructions specifically designed and added to the architecture for cross-lane
communication, such as register-register permutes and reductions. The implicit commu-
nication is much more nuanced and a design must be analyzed wholistically to determine
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how much implicit cross-lane communication will occur. In particular, implicit cross-lane
communication is often a design decision and different microarchitectures can have different
amounts of implicit cross-lane communication for the same architecture. This trade-off is
related to other microarchitectural organization, such as the width of the replicated lane,
the width of each register file bank, the number of memory access ports, etc.

The design families discussed in the register file section provide a useful basis for discus-
sion of different cross-lane communication strategies as well. Long-vector designs with their
inherent temporal structure are often designed with built-in latency that can allow cross-
lane communication to be multi-cycle. This additional latency is often hidden by its overlap
with other latency in the design while still allowing full throughput. For explicit cross-lane
operations, the long-vector designs have a few other issues in addition to the scheduling of
register file accesses and use of cross-lane routing resources. Because the long-vector family
usually doesn’t have all elements in flight at once, there will need to be some module that
aggregates the elements over multiple cycles. Permutations of elements can be handled with-
out extra storage but other types of aggregation can require extra buffering to perform at all
or perform at a reasonable rate of speed. Because of the potentially very long vector lengths
any extra storage requirement that scales with maximum vector length will be prohibitive
for long-vector architectures. For implicit cross-lane operations, the primary design consid-
eration for long-vector architectures is where the elements will reside in the register file and
which functional units they will use. Explicit cross-lane operations will always need to use
additional resources, but the goal of the design for implicit cross-lane operations should be to
eliminate them as much as possible. Keeping the size of each lanes register file bank matched
to the widest possible operand in the architecture can eliminate implicit cross-lane operations
from mixed precision computations. Figure 4.3 shows an example mapping that supports
this elimination, by carefully placing all matching elements, regardless of a precision, in
the same lane. To avoid wasting register file storage, or reintroducing implicit cross-lane
communication, each lane now needs to hold a number of continuous elements equal to the
maximum number of elements, of minimum precision, that fit in a single addressable entry
of the vector register file bank.

Some long-vector architectures focus more on the cross-lane operations in order to allow
for a more MIMD like design that can vectorize a wider set of codes efficiently. These designs
often have a specific architectural feature that makes the explicit cross-lane operations more
powerful or pervasive than the standard cross-lane operations. In the SCALE vector-thread
architecture, for example a special cross-lane network that is directly accessible as instruction
operands enables a different programming model with independent vector-thread lanes to
still collaborate on cross-lane work [56]. These types of designs tend to move away from the
pure SIMD approach of vector architectures, and while interesting will not be considered
further in this chapter.

On the other hand, short-vector designs will not have much latency or cycle time to
hide cross-lane communication. The finer read granularities of SCMs, typically used in
short-vector designs, can be utilized along with their higher read bandwidth to potentially
reduce the hardware required for efficient cross-lane communication. In addition, the fact
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that an entire vector operation can be accomplished in one pass means that most often all
the data needed for a cross-lane operation will be in-flight at once. Having all the data
in-flight at once enables reordering or permutation as desired without extra steps or special
buffers. For explicit cross-lane operations, small vector machines will similarly categorize
these instructions by the amount of cross-lane communication and implement each category
differently. Enabling the vector register file to be read from at different addresses for different
element positions can enable simple merges to be very fast, while a full crossbar will still be
required for more complex permute patterns [40]. The microarchitecture can also use latency
as a degree of freedom for these operations allowing less aggressive register file and crossbar
implementations. For implicit cross-lane operations, short-vector designs have fewer concerns
because having all data in flight at once means the only issue is the datapath connections
that will need to exist if the implicit operation is to be supported at all.

Current technology scaling continues to provide faster and smaller transistors while ap-
proaching limits in wire resistivity putting pressure on the interconnect design even inside of
a processor. Vector designs are carefully designed to avoid losing the explicit data-parallelism
advantage of highly replicable functional units to the potentially large cross-lane intercon-
nects. A large portion of this interconnect occurs between the vector register file read and
the vector register file write, but a portion of this wiring and another large factor affecting
performance of the design is in the memory system. The next section will look at how dif-
ferent memory system implementations interact with current technology trends and the two
families of vector designs being discussed.

Memory System Requirements

The memory system of vector designs is critical to its performance because without the
ability to get data into and out of the register file all the functional unit bandwidth could
be wasted. Fortunately, as mentioned before, the SRAMs that most caches are built out of
are still scaling well and so the limits on their size are primarily based on the interconnect
and wiring needed to move the data to and from them. The on-chip memory system is not
the only concern however, as most applications will not fit entirely on chip especially those
that are highly data-parallel and so the off-chip memory interface is also of prime concern.
This focus on off-chip interfaces and the memory wall is why there has been a trend toward
tighter integration of higher performance DRAM modules. Extremely high performance
data-parallel architectures like GPGPUs have used HBM and DDR in package to narrow the
gap between off-chip bandwidth and on-chip bandwidth. This subsection will discuss how
these on- and off-chip interface design decisions can be made with respect to the two families
of vector designs previously outlined.

The most critical level of memory hierarchy after the vector register file is the cache that
the vector design makes direct requests of. This may not necessarily be the first level cache as
that may only be accessible by the scalar cores. For short-vector designs the high frequency
of their SCM based register files will want to operate with a similarly fast cache and so most
often fetch data directly from an L1 data cache. In addition, the tight integration of short-
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vector designs lends itself to tracking the memory dependencies of the scalar and vector units
in the same location and therefore a unified load-store queue fetching from a L1 cache makes
this process simpler. The shorter vectors also ensure that multiple vector registers are likely
to be able to reside in a smaller L1 cache without generating excessive capacity conflicts.
Finally, because these vectors are short the will span only one or two cache lines making
the translation lookaside buffer (TLB) access and dependency tracking easier to handle in
the short cycle times required by an L1 integration. On the contrary, long-vector designs
will often have vector memory operations that bring in potentially kilobytes of data and so
would easily overrun the L1 forcing a high rate of misses and worse latency than a direct
request to the second level of caching. In addition, the frequency of long-vector designs is
often matched to slower SRAM based register files and so there is even less benefit to making
requests directly out of a high frequency L1 cache.

Another issue that often correlates with the design families are the vector-scalar memory
ordering requirements. Short-vector designs will usually include significant memory disam-
biguation hardware to facilitate their tight integration with the vector unit. This hardware
can often be shared with the scalar-scalar memory ordering hardware that an out-of-order
design will already need to keep its scalar memory operations latency low. Because the
vectors are short they may only represent a handful of scalar-sized memory operations and
so the additional hardware required to also track the vector operations will be relatively
less costly. On the other hand, the synchronization between a long-vector design’s memory
operations and its accompanying scalar processor is assumed to be less frequent. This makes
the extra cycles required for the L1 to fetch these recently used vector data out of the L2
acceptable. If a long-vector design wants to avoid this latency it will need to include a large
amount of memory disambiguation hardware due to the large data regions the long vectors
are capable of addressing. This expense encourages long-vector designers to either be more
conservative in their orderings simplifying the disambiguation, or follow the previous less
frequent synchronization model.

In both design families, however, it is unlikely for an entire working set to fit in the level of
caching that is directly accessed and so the remaining levels of on-chip hierarchy are designed
similarly for both families. For the outer levels of the cache hierarchy the vector unit will have
two primary access patterns, either the data will be a portion of a block that will be reused
by inner caches and the vector register file, or the data is being streamed into the vector
register file and won’t be accessed again before being flushed off chip. The blocking access
method primarily occurs during N3 type algorithms that utilize multiple levels of blocking
to ensure the maximum reuse of data is occurring at each level. This reuse means that well
designed machines can use an appropriately sized register file and first level cache access
bandwidth to ensure these algorithms balance the memory and compute requirements for
low arithmetic intensity kernels or are compute bound for higher intensity kernels. The outer
levels of cache then only need to be designed following traditional average memory access
time minimization techniques to be useful for the blocking access pattern. The stream access
method however requires and consumes as much bandwidth as the memory hierarchy can
supply up to the maximum supported by the inner levels. In order to achieve this high
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bandwidth at reasonable cost the outer levels will need to be highly banked especially as
the outer levels tend to be accessed by multiple processors potentially each with their own
vector unit.

Highly banked memory systems are not unique to vector designs but the pressure that
explicitly data-parallel architectures like vectors put on a memory system is often much more
than what a similarly sized scalar or even super-scalar design is capable of. Short-vector
designs are less resilient to bank conflicts based on the length of vectors, but the tighter
integration with out-of-order scheduling hardware enables them to handle the bank conflicts
better. Long-vector designs on the other hand are most frequently requesting data that spans
multiple cache lines and not infrequently multiple pages. Spanning multiple cache lines allows
the accesses to proceed in parallel in the face of bank conflicts, but excessive conflicts can still
reduce throughput. Because a bank conflict and consequential stall from a vector memory
access blocks an entire cache line worth of data processing the lost performance from vector
bank conflicts is much higher than a single scalar access that only blocks one data processing
operation. This increased cost and desire for high peak throughput in general has led to a
lot of research into avoiding vector cache bank conflicts [77].

Unfortunately, highly banked caches run into several issues mostly related to the physical
design of such systems. Each bank of the cache adds an end point to the crossbar between the
vector memory unit’s access ports and the cache. The size and bi-sectional bandwidth of this
crossbar can quickly become an issue as will be discussed in the next chapter. In addition,
increasing the number of banks while keeping the total area used by the cache constant will
reduce the overall storage provided. This leads to a trade-off in number of banks and cache
capacity or power, that usually restricts inner level caches to be only moderately banked [86].

Finally the off-chip memory system is much more expensive to bank as each additional
off-chip memory channel requires separate signaling hardware and a separate set of off-chip
ports. Despite this high cost many high performance chips will include several memory
channels as many applications will require a working set larger than the capacity of on-
chip caches, or a single off-chip memory. The in-package memory system improvements like
HBM and in-package DRAM provide more bandwidth relative to their on-chip area. Given
a vector design’s ability to consume memory bandwidth they, and other highly parallel
machines, favor these in-package solutions or having numerous traditional off-chip memory
channels. Older vector designs sometimes had direct off-chip access from the vector machine
but modern process technologies make that unwise as the latency gap between on-chip and
off-chip accesses are so large that average memory access time would be much better served
with an on-chip cache.

The memory system, as one half of the roofline model [96], restricts peak performance in
a wide range of applications and enables efficient blocking even with arithmetically intense
applications. It therefore requires careful design, and yet is tightly coupled with technology
constraints and physical design restrictions for both short- and long-vector designs. The
next two sections, discuss how the Hwacha long-vector architecture and design addresses not
only the constraints of the memory system but also the register file and functional units.
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Figure 4.1: A high level diagram of the Hwacha microarchitecture.

4.3 Hwacha Architecture Details

The Hwacha architecture is an explicitly-decoupled vector-fetch architecture, as described
in section 2.6, designed as a custom general-purpose data-parallel extension to the RISC-V
scalar ISA, distinct from the RISC-V vector extension. The explicit decoupling arises from
the separation of vector data-processing instructions from scalar instructions and vector
control instructions. These data-processing instructions, or worker-thread instructions, are
never fetched by the control processor. Instead a pointer to each vector-fetch block is sent to
the vector unit which independently fetches these instructions from memory. This explicit
decoupling enables more overlap of computation, control, and memory operations within the
overall system when running applications with data-parallel sections that can be accelerated
with Hwacha. An additional architectural detail that enables decoupling without many
synchronization or loss-of-decoupling events are the address registers. These registers are
only writable by the control thread which enables the vector memory unit to begin fetching
data based on those addresses without needing to check whether the scalar unit has updated
them or whether they correspond to a different vector fetch block.

The Hwacha microarchitecture is shown at a high level in Figure 4.1. At the far left
is the control processor, which handles the scalar RISC-V instructions and the Hwacha
control-thread instructions. In most implementations, the control processor is an in-order
5-stage pipeline but more recent implementations have used an out-of-order super-scalar
control processor. This processor is always running ahead of the vector unit executing
control instructions that will eventually be received by the accelerator. Sometimes when the
commands are simple, or the vector length is short, the two will be nearly in sync and at
other times several vector fetch blocks will be in flight at the same time. These control-thread



39

instructions are dispatched to the vector command queue (VCMDQ) which is a simple FIFO
queue that is consumed by Hwacha’s scalar unit.

The scalar unit is responsible for handling all vector control instructions and some worker-
thread instructions. There are two classes of control instructions, those that require a re-
sponse to the control-thread, which are mostly configuration instructions, and those that do
not require a response. By design, the control instructions that require a response take only
a single cycle to execute once at the head of the command queue, and so unblock any control
processor code waiting to use the response. The control instructions that don’t require a
response are either moving data to the scalar or address registers (vmca, vmcs) or launch-
ing vector-fetch blocks. The data-movement instructions must be buffered until the current
vector-fetch block finishes after which they can be handled at a rate of one per cycle. The
vector-fetch blocks require the scalar unit to fetch instructions from the vector-instruction
cache, which will translate the address potentially refilling its TLB or refilling the data from
the outer memory system. Once fetched it executes these worker-thread instructions seri-
ally, handling any purely scalar computations on its own in-order pipeline including scalar
memory operations that are handled by a separate scalar memory unit (SMU) that coordi-
nates with the vector memory unit to avoid memory consistency issues. For vector-vector
or vector-scalar worker-thread instructions, the scalar processor decodes and issues these
to the master sequencer along with any scalar data needed. In addition, vector memory
worker-thread instructions are also issued directly to the vector memory unit (VMU).

The master sequencer is responsible for keeping track of the status of all in progress
vector worker-thread instructions, and ensuring they retire in program order. It is also
responsible for determining the static dependencies between instructions. Hwacha vector
instructions must respect program order dependencies for each element of the vector, such
as read-after-write, write-after-read and write-after-write. This allows for different elements
of different vector instructions to be in flight at the same time as long as they are either
independent, or for earlier elements than the dependent instruction. The master sequencer
is only tracking the static architectural register dependencies and delegates the element-
order portion of dependency tracking to the lane sequencers. Instructions are tracked as
a series of micro-operations which, when all executed, complete a whole instruction. This
finer granularity allows for more parallelism in the machine, at the cost of larger instruction-
dependency-tracking hardware.

Each Hwacha lane has its own independent lane sequencer which accepts instruction
issue at the same time as the master sequencer. As the lanes are operating independently,
each lane sequencer must keep track of how many elements it has left to complete for each
instruction. It also tracks microarchitectural dependencies in the execution unit such that
no queue’s are overrun and no other structural hazards occur. This dependency tracking
also involves scheduling the micro-operations that each vector instruction is composed of.
Because the register file is banked, each micro-operation takes multiple cycles to complete
and these overlapping multi-cycle operations require careful scheduling to avoid interference.
Once the lane sequencer determines a valid operation to schedule it will send it to the
expander. The expander is simply a series of shift registers with some logic to populate
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and manage them correctly for different micro-operations. The expander directly drives the
control signals from these shift registers into the vector execution unit (VXU).

The VXU is primarily a datapath module that includes the vector register file, predicate
register file, and functional units. Almost all of the VXU executes in a fire-and-forget manner
where control signals flow through to drive multiplexers and other control circuitry from
outside of the VXU. The multiple cycles of control signals from the expander are pipelined
through each bank of the register file to correctly sequence each operation for each bank.
As mentioned before the vector register file is built out of 1-read 1-write SRAMs and so has
limited read and write bandwidth. On the other hand the predicate register file is built from
flip-flops and so has multiple read-ports and write-ports which are implemented relatively
cheaply because of the small number of bits in the predicate register file.

The last high-level component of the microarchitecture is the vector memory unit (VMU),
which is responsible for tracking the status of memory operations as well as executing them.
The three types of loads and stores supported by the microarchitecture are unit-stride,
constant-stride, and indexed or scatter-gather. The microarchitecture tracks the outstanding
requests with a pair of bit vectors allowing it to overlap the issuance of a second load or
store with the completion of the prior operation. The data going to and coming from the
VXU is sent through queues to enable some buffering for the low read and write bandwidth
of the register file.

The next section will discuss how this microarchitecture and its design decisions relate to
the previous section. Specifically the vector register file, cross-lane connections and functional
units, and the memory subsystem will be analyzed for their benefits to and limits on the
overall machines efficiency and performance.

4.4 Hwacha Microarchitecture Implementation

Choices

In order to fully understand the microarchitecture of Hwacha, for the purposes of analysis,
another layer of abstraction must be peeled back. Figure 4.2 shows a detailed diagram of
the replicable lane of the Hwacha architecture.

In the upper left of the figure are the lane sequencer and expander, both described
in the previous section. The lane sequencer has many detailed data structures attached
to each entry but their details are not necessary to understand the design decisions of the
microarchitecture so are omitted. The sequencer considers all micro-operations for scheduling
but prioritizes the eldest micro-operation if possible. Most of the complexity of scheduling
these multi-cycle operations on the hardware is encapsulated in the lane sequencer and the
feedback it gets from the expander. The expander is directly below the lane sequencer,
and as mentioned previously contains the hardware to expand a scheduled micro-operation
into the requisite multi-cycle steps. These steps are stored in shift-registers arranged by
microarchitectural resource used and the occupancy of these shift-registers is exported to
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the lane sequencer for conflict-free scheduling. The head element of these shift-registers are
sent out to the rest of the lane, including the first bank and the functional units.

The banks are immediately below the expander in the figure. There are four banks in the
normal configuration of the Hwacha microarchitecture, with the first bank being expanded
to show its detail. The left side shows the bank control logic which turns micro-operations
into bank control signals and acts as a pipeline register for the sequential ordering of bank
operations. The bank itself is arranged around the one-read one-write SRAM-based vector
register file bank, and most of the hardware deals with how operands are read out and
written into this structure. The limited read bandwidth of the vector register file forces the
microarchitecture to include operand latches located directly below the VRF. These operand
latches maintain the values read out of the VRF until they are consumed by computation.
The latch output is multiplexed with scalar operands to allow for the seamless vector-scalar
operations supported by the Hwacha architecture. The output of these multiplexors is either
consumed by the per-bank ALUs or sent to the operand crossbar for the shared functional
units. The per-bank ALUs are simple integer-only functional units capable of two input
logical operations, shifts, adds, comparisons, and a few miscellaneous bit manipulations.
Below these is a similar set of register files, latches, and ALUs for the predicates. The
predicate register file is made of flops but still uses operand latches to prepare predicates
for the shared functional units to simplify the control logic for the crossbar. Each bank also
contains a predicate logic unit (PLU) which can compute any arbitrary three-input logic
function. Finally on the right hand side of the banks are a few different queues. All three,
the bank write queue (BWQ), the bank read queue (BRQ), and the bank predicate queue
(BPQ), interact with the vector memory unit and help reduce the stalls from the variable
consumption and production of the outer memory system.

The operations that require the shared functional units, including memory operations, are
sent over the operand crossbar, which routes the data to one of the three vector functional
units (VFU) or the memory functional units. The three functional units have different
processing capabilities as shown in the figure. There are two fused-multiply-add units (FMA),
one floating-point conversion unit (FConv), one floating-point comparison unit (FCmp), one
floating-point divide and square-root unit (FDiv/FSqrt), one integer multiply unit (IMul),
one integer divide unit (IDiv), and one reduction unit (Reduce). These units are split up
amongst the functional units by intuition to enable the highest degree of parallelism on
common workloads. As the largest supported datatype in the architecture is only 64 bits
and the vector register file is 128 bits wide each of the processing units are actually spatially
subdivided into identical smaller units. Furthermore because Hwacha supports reduced and
mixed-precision arithmetic down to 8-bit integer and 16-bit floating point the processing
units are replicated for the smaller bit-width operations to enable full throughput on these
smaller data-types. In addition the predicates are fed into the functional units to inhibit
computations for elements that are disabled due to predication.

In the bottom right of the figure the portions of the VMU that live in the VXU are
shown. These functional units are mostly for record keeping, buffering, and preparing data
for consumption by the vector memory unit. In order to decouple the unpredictable latency of
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Figure 4.3: A detailed diagram of Hwacha’s vector data and predicate register files.

the outer memory system from the predictable and regular latency of the execution pipeline
these units contain buffers and flow control for those buffers to ensure none are overrun
and put minimal back-pressure on the schedule of execution. At peak throughput in a four
bank system the VXU could handle an instruction mix ratio of three two-input arithmetic
operations, or three-input with one scalar input operations, to two load-store operations
at full throughput. The sequencer may not be able to store this many instructions but
a workload with this ratio will approach peak throughput as the sequencer contents vary
between regions of higher or lower arithmetic intensity.

The remainder of this chapter explains how the three core components of vector architec-
tures, from section 4.2, are implemented in the Hwacha microarchitecture, described above,
and how these interactions affect the design and its efficiency.

Register File

As described above, Hwacha’s vector register file is composed of four banks of simultaneous
one-read and one-write SRAMs, with a data layout that depends on the current configuration.
In order to get adequate throughput with this relatively low bandwidth register file it is
critical to carefully arrange the data layout for minimal conflicts. Figure 4.3 shows the
layout of data elements from different register widths in each bank of the register file. In this
figure, vv0 and vv1 are 64-bit data registers, vv2 and vv3 are 32-bit registers, vv4 and vv5
are 16-bit registers the smallest configurable size in Hwacha. The elements for the widest
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supported data type are simply striped across the banks, which allows for consecutive cache
lines to be written directly into each SRAM bank. This also presumably matches a traditional
outer memory system that optimizes for consecutive memory address access. For the smaller
data types the elements included in each bank are chosen such that the same element index
across all vector registers reside in the same register file bank. Not aligning the elements to
the same banks would have meant a large increase in implicit cross-element communication,
as any mixed precision operations would need data from multiple banks. In addition, the
control logic responsible for scheduling this communication would be complicated as it would
have to track multiple banks as the source of operands rather than in the current system
having each bank contain all operands and outputs. The index and offset are calculated
at configuration time allowing the indexing calculations that are preformed for each micro-
operation to be straightforward repeated additions. The end result of this layout is that
most operations are able to simply read the different width operands directly out of each
bank and operate on them with minimal data movement.

The exact width and depth of the register file SRAMs were decided based on common
technology patterns and diminishing returns of long vector lengths respectively. Most tech-
nologies only provide relatively narrow simultaneous one-read one-write so the reasonable
powers of two are 64, 128, or 256. The wider SRAMs will have slower access times and
can limit frequency of the overall design significantly, as the microarchitecture is primarily
designed with the register file as the critical path. In addition, a larger physical SRAM
width increases the minimum vector length required to fill each row of the different banks
due to the packing constraints above. Operations with vector lengths that do not fill all
banks have reduced register file bandwidth and will proceed at a slower effective rate. Even
at smaller physical SRAM widths the above issue can present itself with small data-width
vectors. For example, 16-bit registers require 32 elements in a 128-bit 4-bank register file to
fully utilize the register file bandwidth compared to the 8 elements needed for the largest
data width of 64-bits. On the other hand, smaller physical register widths will also lower the
overall efficiency of the design by causing a relatively higher energy cost per bit read out of
the register file, due to the increasing overhead of periphery circuitry. In addition, another
factor in the SRAM width decision is how to match the bandwidth between the aggregate
register file bandwidth, and the functional unit and the memory system bandwidth. The
implications of these factors will be discussed in their related sections below. Overall a width
of 128-bits balances the physical concerns, with the application mapping concerns, and the
overall energy efficiency of the design but other sizes for different design points are certainly
possible.

The predicate register file, despite being a SCM-based, also has some constraints on
its design. Early microarchitectural implementations of Hwacha included each potential
read port as a dedicated port in the design. This caused several congestion issues and the
read ports are now implemented in a similar multiplexed manner as the vector register file,
although with more total ports. The predicate register file mirrors the 16-bit register layout
in the vector register file with eight single-bit entries per row of the predicate register file.
This enables the same limited communication between elements that the vector register file
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layout allows, as well as the ability to read out the maximum number of predicate elements
needed in one cycle from a single row.

The freedom to make all these layout choices and optimize for technology constraints is
a result of architectural decisions that focus on energy efficiency. The primary architectural
choice is making the vector register file opaque and non-transferable between machine config-
urations. This architectural choice is pervasive and effects many portions of the architecture
and microarchitecture. The register file being opaque means that accessing a register using
a different data-width or type than it was configured with, also known as type punning,
is not guaranteed to have consistent results and thus effectively heavily discouraged. This
allows the different width registers to be packed non-uniformly but optimally for their own
width, avoiding wasted register file space, or slow small data-width operations. The non-
transferable state aspect of the architecture allows the register file to be laid out optimally
for the current set of configured registers without needing to move or save the data from the
previous configuration. However, this freedom is not without trade-offs. Applications that
require type punning, or would reconfigure the register file while still needing to maintain
its contents, won’t map well to the architecture. There will be an associated loss of energy
efficiency on these applications but the design expects them to be rare and the benefits to
other applications that do map well to outweigh those losses.

The vector register file design choices are not made in a vacuum and are affected by
other microarchitectural decisions in the design. The next two subsections discuss both how
technological constraints apply to the functional units and memory subsystem, as well as
how these two design components affect and are affected by the vector register file.

Interconnect and Functional Units

Figure 4.4 shows the internal structure of the operand crossbars and the connections to the
mixed-precision functional units. In the upper left is the expanded interface coming from
the first bank. Each operand latch is exposed to the crossbar to potentially be selected
between at each destination which correspond to each input of the functional units. These
three operand latches may contain data that is packed 64-bit, 32-bit, or 16-bit elements,
but the crossbar operates on data at the same width as the physical vector register file
banks, 128-bits. A more expensive crossbar could be implemented to allow for some or all
cross-element interactions, but, without a detailed study of the potential benefits, the large
number of increased multiplexers at the output of the crossbar would greatly increase the
energy consumed for standard vector operations.

Each output port of the crossbar is consumed by at least two functional units with one
output port being consumed by three functional units. In the upper right of the figure one
of these functional units, integer multiplication (IMul), is expanded to show the subdivision
of the inputs into the smaller subdivided functional units. The output ports of the crossbar
are represented by the multiplexers in the center of the figure and show the sharing of
outputs between different functional units. The design decision of which functional units
to attach to each output is similar to issue slot allotment to functional units in an out-of-
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Figure 4.4: A detailed diagram of Hwacha’s shared functional units.



47

order architecture. Depending on the proportion of instructions expected in common code
certain functional units are more or less likely to be needed at the same time. Carefully
spreading the most common functional units across distinct output ports of the crossbar
results in minimal structural hazards, while minimizing overprovisioning. It is possible to
fully eliminate structural hazards on the crossbar ports by making each functional unit input
a fully independent output of the crossbar, but this greatly increases the size of the crossbar.
The bi-section bandwidth of the crossbar is a good approximation for the size of the crossbar,
and in Figure 4.4 the total bi-section bandwidth is 128 bits/latch×3 latches/bank×4 banks×
6 ports or 9216 bits/cycle. At typical frequencies this will be well over 9Tbps, compared
with an independent port per functional unit which instead requires 128 × 3 × 4 × 14 or
21504 bits/cycle or 21.5Tbps. This additional cost will rarely be used and can never be fully
utilized as the number of inputs, 12, is fewer than the number of outputs, 14. Despite local
interconnect scaling relatively well with technology nodes the cost of the crossbar in power
and area still should be minimized by careful selection of which ports are shared among
functional units. The result path is omitted from this figure as it has a simpler organization
with each functional-unit output being capable of arriving at any bank for a total bisection
bandwidth of 128 × 4 × 6 or 3072 bits/cycle. This crossbar will be much more likely to be
fully utilized and has a much lower bandwidth requirement already so further reducing it at
the cost of performance is not productive.

The final subsection will discuss on how the memory system is impacted by technological
constraints and how it influences the register file and functional unit microarchitecture.

Memory System

Figure 4.5 shows the internal structure of a single lane’s vector memory unit responsible for
making requests for data from the outer memory system. The left-hand side shows the issue
unit, Ibox, which is responsible for managing the control flow through the different parts of
the vector memory unit. The issue unit of the VMU is driven separately from the execution
unit with both being directly connected to the frontend of Hwacha that is responsible for
decoding and issuing instructions. The issue unit can track up to two operations at a time
allowing it to overlap the completion of the one operation with the request phase of another.
The predicate handling and address generation are pipelined to maintain throughput without
long critical paths, and the figure uses numeral suffixes to denote pipeline stage. In addition,
to provide elasticity for these pipelines, each stage is composed with queues that enable
each stage to continue to operate for longer in the face of back-pressure from the outer
memory system. The predicate handling portion, PBox0 and PBox1, of the VMU receives
the predicates from the vector execution unit after being read out of the banks. The first
stage determines which addresses will need to actually be affected, skipping ahead when
possible for large groups of unset predicates. The second stage aligns and expands the
input predicates, that are on an element level, to the byte granularity of the outer memory
interface. The address-generation pipeline has three stages, with the first two being aligned
with the predicate stages. The first address-generation stage is address translation which
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uses a fully associative eight-entry TLB. This is followed by an alignment stage that coalesces
the elements which can fit in a single outer memory request. The last stage of the address
pipeline corresponds with two other units in the figure, the store box and load box, which are
responsible for moving the data between the memory system and the execution lane. These
three units all communicate with the outer memory system almost directly. A small interface
adapter sits between the rest of the VMU and the outer memory system and is responsible
for marshalling the different pieces of data onto the single outgoing memory channel.

The biggest impact that the memory interface has on the rest of the design is that its
access width and bandwidth drive the overall machine data consumption and production
balance. The main effect of technology constraints on the VMU is a limit on the practical
size of access width and realizable total bandwidth. The memory access width is matched to
the physical width of the register file which allows for the common case of unit-stride loads
or stores, without predication, to proceed at full rate without any stalls when at the largest
element size. The element width of the load-store unit affects this process due to the element
packing in the register file. The additional buffering on the inputs to the VMU needs to be
deep enough to allow for the repacking into the native memory format. The end result of this
bandwidth balancing is that the vector register file still has more read and write bandwidth
than the memory interface but can overlap with computation to fully utilize the bandwidth
of both subsystems.

Hwacha supports several different access patterns to main memory at varying levels of
performance and efficiency. The most efficient access pattern for the VMU and for nearly
all vector designs is the unit-stride load or store. In this case each vector element is accessed
from consecutive memory addresses. This allows for many optimizations such as fewer trans-
lations, easy address calculations, and effective use of memory access width. These combine
to allow the VMU to achieve full bandwidth utilization with minimal control overhead on
unit-strided accesses. Constant-stride accesses are those with a fixed address gap between
each vector element and this adds additional complexity to translation and effective use of
memory access width. The VMU is still able to use the straightforward repeated addition
strategy used for address generation that was used for unit-stride access, but with a larger
addend although both come from immediates in the instruction bits. The fact that the stride
may not be a power of two unlike the unit-stride accesses complicates determining which
elements require a new address translation, and in general will cause more translations that a
unit stride, increasing the energy spent on these accesses. In addition, depending on element
size and stride, few or no elements will share the same memory-access-width bytes and so
many more requests will be made to the outer memory system. Finally, the scatter-gather
memory operations are the least efficient because even the address generation is without con-
straint. Each address now requires a full virtual address-width addition as well as another
vector data element to be read from the register file per element accessed. Because there is
no way to know where this new address will be, each and every element will now require a
separate translation and a separate request to the outer memory system. The cost of these
less regular access patterns is high enough that most programs will avoid them whenever
possible to achieve peak performance. Therefore, the VMU is designed to only support a sin-
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gle element per cycle and avoid the extra static cost of more address generation, translation,
and memory request hardware that would most often go unused.

Another aspect of the vector memory unit that affects the entire machine is memory
ordering. Hwacha’s memory model is generally relaxed but still requires that loads must
wait for stores to be fully issued, while loads can proceed with other loads in flight. The
VMU does not issue memory requests out of order so the ordering issue with stores could
be solved by a store-forwarding system. The ability to forward store data to loads is much
more expensive in a vector design with potentially hundreds of outstanding store or load
requests. Therefore Hwacha’s VMU uses a more conservative approach and does not allow
loads to begin after a store until the store is complete. Hwacha’s memory system can also
span multiple VMUs in the multi-lane case. This case complicates the process of waiting
for store completion and a separate machine-wide unit is included to track the completion
of each individual VMUs operations and release VMUs that are waiting to begin another
operation.

The overall VMU design allows it to be flexible in its interface with the vector execution
unit and the outer memory system. This flexibility enables the VMU to be optimized
for efficiency of operation without over-constraining the rest of the design. The maximum
bandwidth is achievable only for unit-stride accesses but this restriction still allows many
computations to achieve high performance. Arithmetically intense applications can do even
better and can achieve nearly full utilization of the functional units even with the moderate
bandwidth provided by the VMU. This balance between bandwidth, flexible access patterns,
and efficiency give the VMU the ability to complement the rest of the design and allow the
overall system to operate at high efficiency.

The effect of technology constraints on Hwacha’s register file, functional units, and mem-
ory system restricts the width of each lane and the sizes and interconnectivity of many
microarchitectural components. The general microarchitecture has been designed to provide
an efficient system within these constraints, but specific physical implementations have also
impacted the design of Hwacha over time. The physical design restrictions and implications
of Hwacha’s design decisions are discussed along with several silicon implementations in the
following chapter.
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Chapter 5

Silicon Implementations of Hwacha

This chapter discusses the silicon implementations of the most recent version of Hwacha
as discussed in previous chapters. These implementations contributed to the evolution of
the microarchitecture and physical design techniques for building realizable and energy effi-
cient designs. Each section discusses the design of each chip and the changes made to the
microarchitecture of Hwacha as a result of physical design feedback.

Section 5.1 details the first tapeout to include the complete Hwacha version 4 imple-
mentation, Hurricane-1, built in ST-28. Section 5.2 describes the second chip in this series,
Hurricane-2, which explored the use of small voltage and frequency domains with a multi-
lane Hwacha implementation. Section 5.3 uses a new technology, TSMC 16, and a new tool
flow, Hammer [92], to build a multi-core Hwacha implementation called Eagle. Finally sec-
tion 5.4 describes an even larger instance of Hwacha, EagleX, showing the productivity of
the new tool flow. Table 5 summarizes the key parameters of each of these chips. All chips
presented in this chapter were part of collaborative group projects.

5.1 Hurricane-1

Hurricane-1 is a dual-core 7.98mm2 SoC design in the ST-28 fully depleted silicon-on-
insulator (FD-SOI) process, and was the first complete implementation of Hwacha. It was
taped-out in March of 2016, and received back fully assembled by October of 2016. The fo-
cus on Hurricane-1 was an exploration of fine-grained dynamic-voltage-and-frequency(DVFS)
scaling augmented with on-chip voltage converters. The on-chip DC-DC voltage converters

Chip Area Main
Cores

Hwacha
Lanes

Peak
Frequency

Peak
Energy-Efficiency

Hurricane-1 [97] 7.98mm2 2 2 475MHz 19.6 DP-GFLOPS/W
Hurricane-2 [75] 16.77mm2 1 2 260MHz 36.5 HP-GFLOPS/W
Eagle [76] 24.01mm2 8 8 1.44GHz 209.5 HP-GFLOPS/W
EagleX 56.25mm2 20 20 Unmeasured Unmeasured
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allow for a tight feedback control feedback loop as the voltage regulation requires no off-chip
components which would and significant communication latency. Other attempts to fully
remove the dependency on off-chip components, such as FIVR[17] from Intel, have also been
made to reduce the latency of voltage mode transitions. From a vector architecture perspec-
tive this was also the first chip to include a complete implementation of Hwacha version 4,
and the first multi-Hwacha chip. This implementation thus provided vital feedback on the
microarchitecture of Hwacha.
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Figure 5.1: An overview of the Hurricane-1 SoC and its components [97].

Figure 5.1 shows a block diagram of the entire Hurricane-1 SoC. Each tile is homogeneous
and so only the details of the first tile are shown. Shown on the left side of the figure, each
tile includes a set of DC-DC unit cells to regulate its voltage, as well as an adaptive clock
generator to adjust to the variable voltage from the DC-DC voltage converter. The DC-
DC unit cells have 4 different modes of operation that allow them to provide 0.5V , 0.67V ,
0.9V , or a pass-through voltage. The regulation of this supply allows for significant ripple
to avoid waste during switching events and improve the overall efficiency of the converter.
The adaptive clock generator tracks this rippling voltage with a replica circuit to produce
an optimal clock frequency for each tile, allowing a cycle-to-cycle variation of frequency.
There is also a set of performance counters in the tile to track the operation of the DC-DC
converter and the adaptive clock generator from either of the two tiles. These counters
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enable power management software to introspect on current operation and adjust the power
strategy dynamically. The main component of the tiles are the cores, which include a scalar
Rocket core and a single-lane Hwacha implementation. Hurricane-1’s cores implement the
RV64IMAFDXhwacha RISC-V user-level ISA version 2.0 and the 1.9 version of the privileged
spec with machine, supervisor, and user mode supported. Hurricane-1 is the first fabricated
instance of Hwacha version 4, which added predication, mixed-precision, and a more complete
general-purpose data-parallel ISA, compared with Hwacha version 3. The microarchitecture
in this version increased the number of peak FLOPS available per cycle, and increased the
ability to exploit instruction-level parallelism. Each of these cores has a set of private caches
including a 32KiB scalar instruction cache, a 32KiB scalar data cache, and a 16KiB vector
instruction cache. These three private caches share a single port to the globally shared
256KiB L2 cache, which Hwacha directly connects to, obviating the need for a private vector
data cache. The memory system can be backed by either eight 4 Gbps serial links, or a
slow parallel interface that also doubles as the semi-hosting or tethering interface for the
chip. Because Hurricane-1 lacks many features of a complete computer, the semi-hosting
environment allows it to use a host computer to proxy its access to things like disks, UARTs,
and other real-world devices. In addition, there are temperature sensors, labeled as oC in
the figure, scattered around the SoC to provide another DVFS control input.

Hurricane-1’s principal design goal was to test using small voltage domains with the abil-
ity to rapidly change their voltage and frequency. Dynamic voltage and frequency scaling
allows the system to take advantage of changes in application operating modes. For example
where applications are waiting on devices or where there is not enough parallelism to utilize
all processors. To investigate the potential benefit of smaller domains each core was given its
own voltage and frequency domain with accompanying low-latency on-chip switched capaci-
tor DC-DC converters. This shrinks the size of the domains from previous implementations
from the tile and memory system to just a single tile. These small domains allow for many
more overall power states of the system, allowing it to more precisely adapt to the require-
ments of the application. In addition, the on-chip converters greatly reduce the latency of
voltage changes. Decreasing the latency of a voltage change allows for the power states to
more closely follow the optimal operating point of the current application. By combining
these rapid changes with an adaptive clock generator the overall system can approach the
optimum voltage-frequency point as quickly as possible.

Hurricane-1 was produced with a physical design flow based on a Synopsys reference
methodology hand-modified for the project. The flow uses Synopsys Design Compiler (DC)
and IC Compiler (ICC), with several hierarchical modules for the distinct components like the
tiles, serial links, and the L2 cache. The RTL design of Hurricane-1 is written in Chisel2 [9],
which is a hardware construction language embedded in Scala that was developed at UC
Berkeley in the 2010s. Designs in Chisel are able to leverage the multi-paradigm capabilities
of Scala to produce hardware designs that can be more easily parameterized. Chisel is
not directly consumable by commercial CAD tools currently and so must be processed to
produce Verilog suitable for fabrication. After the Verilog RTL is produced by Chisel a
few more post-processing steps are needed to produce a fully realizable design. The first
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of these post-processing steps is mapping the RTL synchronous memories to vendor and
technology-specific memory macros. In Hurricane-1’s flow this is handled with a python
script that uses the size, shape, and type of memories used in Chisel to map to a fixed set
of available memory macros. The script is able to tile macros in either dimension to allow
for any-sized RTL memory to be mapped with some potential sub-optimality if the RTL
memory has very different dimensions from the available macros. The final processing step
before the Verilog is ready for physical design is to add the IO cells and pad frame to the
design. When Hurricane-1 was designed Chisel was missing some functionality that would
make these macro and top-level integration tasks easier, but the process of post-processing
the design gave compelling use cases for updating Chisel to fix this deficiency.

At this point the Verilog is ready for physical design but there are many constraints
that still need to be manually created for the design to work well through the flow. The
majority of these constraints are in the floorplan and timing constraints for the edge of the
different blocks, which are both hand written for the particular design. With the Verilog and
constraints ready, the flow begins by running synthesis on each of the blocks. The sequence
of steps following that are a hybrid of bottom-up and top-down approaches. After block-
level synthesis, there is a top-level synthesis stage followed by floorplanning. An annotated
diephoto with an overlaid floorplan can be seen in Figure 5.3. After floorplanning the physical
placement information is used to guide physical synthesis on the blocks and then place-and-
route completes the block-level flow. Finally, using the completed blocks, physical-synthesis
is run at the top-level followed by the top-level place-and-route stage. The generated GDS
is then passed to Mentor Calibre for design rule checks (DRC) and layout versus schematic
(LVS) checks. The design, flow, and technology require that many hand fixes were performed
to ensure the final Hurricane-1 design was DRC and LVS clean. No other physical verification
is done, but short sequences of instructions were run on the RTL and gate-level simulations
to verify a minimum level of functionality.

This style of flow had been used for several chips prior without the block-level separation,
but the new design put strain on the flow and several physical design issues occurred during
tapeout. One of the issues with many voltage domains is determining how to partition on-
chip resources for each domain. The power grid in Hurricane-1 was designed globally for
simplicity of implementation but required that top-level metal layer routing resources be
shared between domains. In previous smaller designs this had not caused issues but the
increase in size and number of domains caused significant power delivery issues that were
not addressed during development and led to a reduced voltage-frequency operating range
as seen in Figure 5.4. Another issue that hadn’t been encountered before was the latency of
a block-level change appearing in the final GDS was increased by requiring a new top-level
run even if the changes were isolated to local logic in the block.

In addition to these general flow issues, there were several physical design issues that
occurred due to the new vector architecture of Hwacha and the increased performance re-
quirements from including an L2 cache and a second core. The first issue encountered was
related to the predication support added by the new version of Hwacha. This feature is
implemented as a separate set of registers that rather than being packed into dense SRAM
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Figure 5.2: Example of Hwacha’s predicate register file congestion in Hurricane-1.

are simply implemented as an SCM memory. The number of bits needed in the predicate
register file is much smaller and its access patterns are more diverse so the regularity and
density of SRAM did not suit it well. In addition, the many uses of these predicate registers
to gate off different aspects of the microarchitecture leads to a high degree of connectivity
and interconnect surrounding the predicate register file. Initially this caused a high degree
of congestion around each of the Hwacha register file banks. Figure 5.2 shows the portion of
the tile that contains Hwacha’s register file banks colored based on routing congestion. All
of the red areas are too congested to successfully route and will cause LVS shorts later in
the flow, and each of the four predicate register file banks are entirely consumed by conges-
tion. This physical design feedback was addressed both in the microarchitecture by using
the operand latch structure for the predicate register file as well as the vector register file,
and in the physical design flow by running a special congestion-reduction optimization pass
during place and route.

Another more significant issue was congestion and placement density in the crossbar
between the tiles and the L2 cache. Since this was the first time a chip had included this
L2 cache and the number of connections out of the tiles was doubled this was a significantly
higher throughput crossbar than those previously built. In addition, the power-routing
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Figure 5.3: An annotated diephoto of the Hurricane-1 SoC.

strategy used in this technology and in these designs used more routing tracks than would be
typical for a digital design with fewer or larger voltage domains. Power straps for each voltage
domain were available throughout the entire outer memory system domain which reduced
the number of available routing tracks. The ST28 technology metal stackup available for this
tapeout had only 10 metal layers which is relatively few compared to modern technologies
that often have metal layers often numbering in the mid-teens [14][81]. The allotted area for
the crossbar was also relatively small occupying only 0.3mm2 between the tiles and the outer
memory system. The number of Tilelink channels per tile was three: one shared between
both of the instruction caches, one for Rocket’s data cache, and one for Hwacha’s vector
memory unit. With the initial number of L2 cache banks there were 8 input channels, one
for each bank. This lead to a lot of congestion at the target clock frequency of 800MHz.
Reducing the number of banks to 4 reduced the amount of logic in the crossbar by half and
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Figure 5.4: Hurricane-1 frequency and efficiency at different operating voltages.

it was then able to fit in the allocated space. Unfortunately, at this point in time the L2
cache was unable to be configured to reduce the number of channels without reducing its
bandwidth and capacity. This caused the final design to have reduced memory bandwidth
and diminished the effective peak performance expected from Hwacha, from 93% to 35%.
Future modifications to the L2 cache would allow separation of the number of banks from
the number of input channels as well as from the capacity.

Hurricane-1 was packaged with wire-bonding and then placed on a small daughterboard
which would connect to an FPGA for testing. Figure 5.4 shows the maximum operating
frequency for different voltages at which Hurricane-1 can operate. In the left half of the figure,
each box represent a specific voltage and frequency pair with the green boxes corresponding
to one core being able to boot and run a small program. The right half of the figure shows
the energy efficiency of a double-precision matrix multiplication kernel running out of the
L2 cache over a select set of operating points. The power-grid issues discussed above limit
the frequency over the chip as a whole to below the sign-off frequency of 600 MHz. The
non-monotonic behavior around 175 MHz is attributed to a small supply resonance observed
on-die. In addition, Hwacha’s high power draw exacerbates these issues and results in the
leveling off of frequency in the energy-efficiency graph. Hurricane-1 achieves a peak energy
efficiency of 19.6 GFLOPS/W at 525 mV and 28.3 MHz.

At lower frequencies the chip functions as expected and is capable of running complex
workloads including booting Linux and running applications under operating-system sup-
port, using both the slow parallel interface and a high-speed serial link. Hurricane-1 is also
able to use the second tile as a power-management unit and adapt the first tiles voltage level,
based on microarchitectural counters. Unfortunately, the adaptive clock generation does not
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function as well as on previous test chips and so couldn’t be enabled in tandem with the
on-chip DC-DC converters.

For the first silicon implementation of the new Hwacha design, Hurricane-1 was relatively
successful. The additional integration of analog circuit components focused much of the
physical design effort on building a system that would support those unique blocks rather
than the more standard processor elements. This led to compromise in the design that
reduced the performance of the Hwacha implementation. However, it provided a lot of
valuable physical design feedback to the microarchitecture, and while unable to achieve
extremely high energy efficiency it still provides a useful basis for future implementations to
compare against.

5.2 Hurricane 2

Hurricane-2 is a single-core 16.77mm2 SoC design with a dual-lane Hwacha implementation
in the ST-28 FD-SOI process. It was taped-out in March of 2017, and received back fully
assembled in August of 2018. Hurricane-2 focused on improving on several implementation
challenges encountered in previous Berkeley test chips. These challenges include: providing
a high-speed off-chip memory interface, scaling up the size of a Hwacha instance to multiple
lanes, and adding a separate system or power-management unit (PMU). The high-speed
memory interface will be addressed with two options, a set of high-speed serial links and a
more traditional DDR interface. The other challenges will be addressed simply by including
a multi-lane Hwacha instance and a small core serving as a PMU. In addition to these goals of
improving system realism, Hurricane-2 again uses the on-chip switched capacitor DC-DC con-
verters and adaptive clock generation. To extend the fine-grained voltage-frequency domain
idea even further, the voltage and frequency domains are even smaller than in Hurricane-1.
The applications core is now made of two voltage-frequency domains, one for Hwacha and
one for the scalar control core Rocket. This would allow the system to adapt its energy usage
for applications with varying use of the vector accelerator.

Figure 5.5 shows a block diagram of the entire system. The single application core
consists of a Rocket 5-stage single-issue in-order core that implements the RV64G ISA version
2.1 and version 1.9 of the privileged ISA. Rocket has a 16KiB instruction cache, a 16KiB
data cache, branch predictors, page-table walker, and is capable of computing a single- or
double-precision fused multiply-add (FMA) every cycle. The instance of Hwacha attached
to Rocket in Hurricane-2 has two vector execution lanes. Each lane has four banks SRAM
composing a 16KiB vector register file (VRF), a 128-bit vector memory port to the L2 cache,
four double-precision, eight single-precision, and 16 half-precision FMA units. In total this
means the Hwacha instance is capable of 16 double-precision, 32 single-precision, or 64 half-
precision floating-point operations per cycle. These two lanes do not operate in lock step
but do share the same voltage and frequency. Hwacha is designed to be relatively decoupled
from Rocket using decoupled interfaces to connect to both Rocket and the outer memory
system, so the modifications needed to handle the truly asynchronous domain crossing were
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simple procedural replacements of standard queues with asynchronous queues. The only
other changes to the tile compared to Hurricane-1 are additional microarchitectural counters
tracking the occupancy of various queues in Hwacha, and cache accesses in Rocket.
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Figure 5.5: An overview of the Hurricane-2 SoC and its components.

The lower portion of the figure, the uncore, includes a lot of the changes compared
with Hurricane-1. On the left side, the PMU in Hurricane-2 is a reduced functionality and
scaled-down Rocket core. The PMU only has a 4KiB instruction cache, a 4KiB data scratch
pad, and no floating-point support. Both the application and PMU cores share the same
outer memory system which consists of a globally shared 256KiB 4-bank, 8-way L2 cache.
Hurricane-2 has a unified memory-mapped IO router to communicate with on-chip control
and status registers, as opposed to the ad-hoc implementation in Hurricane-1. This made the
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addition of microarchitectural counters across the system easier as well as making control of
the two off-chip memory interfaces more straightforward. The L2 cache can make its backing
requests through one of three distinct interfaces. The highest performance option would be
to use the DDR4 PHY, which was donated IP from a commercial vendor. The next highest
performance would be a set of eight 5Gbps custom SERDES, with an improved bitrate over
Hurricane-1 and several control bug-fixes. Finally the most reliable but slowest off-chip
interface is a low-speed 4-bit parallel interface, which also operates as the tethered semi-
hosting link. The off-chip interface used by the L2 cache is runtime configurable and only a
single interface is designed to be active at once since they all share the same physical memory
space. The only other off-chip interfaces were a few miscellaneous test inputs and outputs for
the analog components, and a JTAG interface designed to connect to the debug unit on the
main application core. The DC-DC on-chip converters and the adaptive clock generators
are unchanged compared with Hurricane-1, except for the addition of microarchitectural
counters.

One of the experiments intended to be tried with Hurricane-2 was more detailed power
management algorithms based on an increased number of microarchitectural counters. The
L2 cache has counters for the number of hits and misses to help a power management
algorithm determine the memory-boundedness of the current program phase. Hwacha also
includes counters to keep track of the number of entries filled in its internal queues, and
its scheduler. Three different power-management algorithms were implemented and are
discussed and compared in Figure 5.8

Hurricane-2 was built with a very similar physical design flow compared to Hurricane-
1. The largest difference was the conversion from Chisel2 to Chisel3 as the primary RTL
design language. Chisel3 was built to enable transformations to be performed on the RTL
by using a specified intermediate representation, FIRRTL [48]. The three main features
enabled by FIRRTL are an integrated SRAM-macro mapping, clock-domain enumeration,
and separation of test harness from the design. The FIRRTL integrated SRAM-macro
mapping procedure, gave the flexibility to have a cost function for the mappings which require
multiple macros per Chisel memory, as well as enabling the connection of custom foundry
ports to constants or status and control registers. Clock-domain enumeration in FIRRTL
enabled the scripted generation of clock-domain-crossing separation, and extra verification
of a design with many distinct clock domains. Finally, separating the test harness from the
design enabled easier verification as well as smoother integration of design changes into the
physical design flow.

There were several physical design challenges during the implementation of Hurricane-2.
Figure 5.6 shows an annotated die photo of the chip, with an overlaid floorplan. In order
to accommodate the fixed size and shape of the DDR4 PHY many non-standard decisions
were made with respect to the floorplan and physical design of the chip. As seen in the
floorplan the DDR4 PHY nearly doubles the size of the chip and its large height forces
the remaining logic to have a very high aspect ratio, stretching the design vertically. The
reduced length of the available chip perimeter for non-DDR usage meant that the bank of
high-speed serial links needed to be split into two separate banks causing routing issues
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Figure 5.6: An annotated diephoto of the Hurricane-2 SoC.

in the uncore. In addition, Hurricane-2 marks the transition point for Berkeley test chips
moving from wire bonded to flip-chip packaging, and as such Hurricane-2 attempts to reduce
the risk involved with a new packaging technology by enabling either method to be used on
a chip by chip basis. All parts of the chip except the DDR4 PHY are able to function in a
wire-bonded package as seen by the large wirebond pads on the right, top and bottom sides
of the chip. In addition, these pads are also connected to bumps to allow for a flip-chip
packaging methodology to connect all portions of the chip.

As this was the first chip to use bumps the power distribution from the bumps to the
highest metal layers was relatively limited. Inspecting the bumps above the L2 cache in the
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figure, which are all power and ground bumps, you can see that only very thin lines connec-
tions exist between them. As no vias can be placed under the bumps the only connections to
the top-layer metal power grid are on these very thin wires, which means there are very few.
This power distribution issue was compounded by design rules related to a change in bump
density from the DDR4 PHY to the rest of the chip. This design rule prohibited a complete
and regular grid across the entire chip, which leads to sections of the chip that are quite far
from power or ground bumps. In addition, the number of DC-DC unit cells allocated for the
application core was not changed from Hurricane-1, so the same 24 cells now are required
to power approximately twice as much area and compute. This lead to a suspected serious
static voltage droop to the chip causing a much lower measured frequency than the sign off
frequency, as seen in Figure 5.8.

Another physical design issue was implementing the crossbar between the L2 cache and
the application core. This issue was similar to the problem in Hurricane-1 but the aspect
ratio of the chip also impacted the amount of space available for the crossbar. The number
of outputs from the application core is smaller than the aggregate number in Hurricane-1
because we eliminate the instruction cache and data cache port of the second core. However,
the place-and-route tool was unable to realize this crossbar and we were again forced to reduce
the number of banks in the L2 from 8 to 4. The L2 cache still did not support orthogonal
configuration of the bandwidth and number of banks so the taped-out configuration had
half as many L2 cache banks, bandwidth, and size compared to the ideal configuration. This
coupling is especially visible in Figure 5.7 where the four L2 banks are clearly only occupying
the top half of the area in the uncore. In addition, the requirement to update the hand-coded
floorplan slowed the process of adapting RTL changes to the physical design flow. In this
case there are potentially floorplan changes or CAD tool parameters that could have relieved
the congestion issues, especially given that the uncore is relatively sparsely populated. This
general rigidity of the physical design flow in the face of difficult-to-realize designs eventually
lead to the redesign of the flow discussed in Section 5.3.

Due to the change in packaging strategy and the integration of large complex third-party
IP, Hurricane-2 took a very long time to begin and eventually complete testing. Unlike on
Hurricane-1, the custom high-speed SERDES were unable to be used as backing memory.
Bit-error rates could be collected using the builtin pseudorandom binary sequence (PRBS)
generators for some of the lanes. Unfortunately, after measuring these bit errors across all
chips and all lanes, no single pair of transmitters and receivers worked. Since there is no
ability to configure the system to use one link for sending data and one link for receiving
data this means that the links are unable to be used as backing memory. The root cause
of the poor error rates and low yield appears to be a physical design marginality issue since
several of the links are able to work well but as a whole many of them fail frequently.

With the high-speed serial links unable to be used as backing memory the DDR PHY
became the only chance for a high-performance memory system. Unfortunately, despite a
lot of effort debugging the DDR it was unable to be used as backing memory.

With no functional high-bandwidth off-chip interfaces the remaining testing of efficiency
and DVFS algorithms were all done with workloads that fit in the on-chip caches. The
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Figure 5.7: A detailed GDS plot of the Hurricane-2 SoC.

right subfigure of Figure 5.8 shows Hurricane-2’s operating frequency at various voltages.
As noted above the maximum frequency is well below signoff of 600 MHz due to the poor
power connections. The poor power network also limits the minimum operating voltage,
which is 200 mV above Hurricane-1’s, reducing the system’s peak energy efficiency. The
most energy-efficient operating point is at 780 mV and 115 MHz, where Hwacha achieves
22.3 double-precision GFLOPS/W and 36.5 half-precision GFLOPS/W. Hwacha is able to
perform four times as many half-precision operations as double-precision operations per cycle
but the energy-efficiency is limited by the size of the on-chip cache. In order to keep the
higher number of operations in flight, Hwacha requires a longer vector length which for matrix
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Figure 5.8: A shmoo plot showing valid Hurricane-2 voltage-frequency operating point.

multiplication increases the working-set size by more than the reduction in bytes needed per
operation. This causes a bottleneck for the half-precision operations which reduces the
utilization of the functional units and therefore the energy-efficiency.

Figure 5.9 shows a comparison between four different adaptive voltage scaling (AVS)
algorithms applied to three synthetic benchmarks executed and measured on Hurricane-2.
The baseline algorithm (none) runs the application core at maximum voltage and frequency
for the entire duration. The simple algorithm replicates the voltage-frequency management
of [54] by increasing voltage and frequency during periods of high activity as seen by increases
in the DC-DC toggle rate. The last two algorithms are driven by the microarchitectural
performance counters that were added to the system. They monitor the miss rates of the
L1 data caches (AVS L1) and L2 cache (AVS L2) respectively, and decrease voltage and
frequency when the core is in a memory-bound program phase.

The benchmarks run on the application core and repeatedly alternate between computing
a median filter and performing a generic matrix multiply (GEMM) of 24-, 64-, or 128-element
square double-precision matrices. This alternation approximates a simple image processing
application with simple preprocessing followed by machine-learning inference that will be
accelerated with a data-parallel processing unit. The 24-element dataset fits in L1 cache, so
no cache misses occur, obviating the adaptive algorithms. The 64-element dataset fits in L2
cache, but not the L1 cache. The adaptive algorithms are able to identify the memory-bound



65

1.00 1.00 1.00

1.19
1.07

0.89

1.05
0.93

0.77

0.99

0.85
0.77

0

0.2

0.4

0.6

0.8

1

1.2

1.4

DGEMM 24 DGEMM 64 DGEMM 128

N
or

m
al

iz
ed

 E
ne

rg
y/

Ta
sk

None

Simple

AVS L1

AVS L2

Figure 5.9: A comparison of DVFS algorithms on synthetic GEMM benchmarks on
Hurricane-2.

regions, but the L1 monitor has false positives for phases that miss in the L1 but hit in the
L2, and so reduces operating voltage prematurely in the 64-element case wasting energy.
Finally, in the 128-element benchmark, all L1 misses become L2 misses, so both adaptive
algorithms successfully slow down the core during memory-bound phases, saving energy in
the core. These measurements demonstrate that fine-grained power management based on
monitoring microarchitectural counters, when they are available, outperforms management
solutions based on monitoring power consumption due to its faster, deterministic, and direct
response. Specifically, the example in Figure 5.9 demonstrates that the addition and fine-
grained monitoring of just two key microarchitectural performance counters can provide up to
14% additional energy savings compared to traditional DVFS algorithms. This experiment
is benefited by the long latency and low bandwidth of the only usable off-chip memory
interface on Hurricane-2. A higher-performance memory system would shrink the amount
of time it would be worthwhile to operate the core in a low-power state. On the other hand,
applications that have idle portions or need to read from a slower off-chip device, like a disk
or sensor, could have even longer portions of time that would benefit from low-power states.

Overall, Hurricane-2 showed the necessity of a physical design flow that can adapt to
changes in the RTL without causing serious quality-of-results issues. Because Hwacha is
highly reliant on cache size or bandwidth in proportion to its functional-unit bandwidth,
the entire system must be optimized as a whole to ensure high-performance and thus high
energy-efficiency. In addition, having RTL designs that can adapt to different system level
requirements in a orthogonal fashion can make both of the above issues more tractable to
solve. Future designs attempt to address both of these by upgrading the physical design flow
and updating the RTL designs to both use generators.
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5.3 Eagle

Eagle is an 8-core 24.01mm2 SoC with a single Hwacha lane per core implemented in a TSMC
16nm FinFET process. It was taped-out in June of 2018, and received back fully assembled
by December of 2019. Eagle was the first chip physically designed using the Hammer[92]
agile physical design generator. The Eagle SoC was designed to be more realistic and more
similar to mobile processors like those currently in cell phones and other edge devices. Such
devices often include, large on-chip caches, many cores, accelerators, high-speed off-chip
interfaces, and many connections to off-chip peripherals. This goal drove the size of the
design up architecturally and physically, with the final design being over 125 million gates
and 24.9mm2. The Hwacha instance was reverted to a single-lane implementation relying
on the additional cores to increase the system’s aggregate throughput. With so many vector
units on chip a single L2 cache could no longer support all of them without massive physical
design issues around the crossbar, which had previously caused issues even with two vector
units. Anticipating this issue Eagle was designed with clusters of tiles that shared an L2
and a larger L3 which backed each of the cluster L2s. Eagle also includes a set of 28 Gbps
serial links for off-chip communication, which were designed in BAG[25], rather than hand
crafted as the links on Hurricane-1 and -2. There are 5 instances of an experimental PLL
on Eagle, designed to clock each cluster and the uncluster separately. Finally, the uncluster
contains a set of peripherals common to test chips and SoCs, including a JTAG debugger,
UART, SPI, I2C, programmable GPIOs, an interrupt controller, a scratchpad, and a small
system-management core.

Figure 5.10 contains a detailed block diagram of the entire SoC. The chip is broadly split
into two halves, the top half of the figure represents the clusters and their contents, and
the bottom half of the figure contains everything else, labeled uncluster. The upper right
of the figure shows the internals of a single cluster, which is replicated four times on Eagle.
Each cluster is a separate voltage and frequency domain designed to be driven by off-chip
supplies, unlike the on-chip DC-DC converters of the Hurricane series. The clusters have two
identical tiles, which each have a scalar Rocket core, a single-lane Hwacha instance, and L1
caches. These two tiles communicate via synchronous rational crossings with a fixed ratio
of two tile cycles per L2 cache cycle. The divider for this clock is included in the cluster
such that only a single clock, supplied by the PLL and clock multiplexer structure shown
in gray next to the cluster, needs to be input to the block. The L2 cache is shared by both
tiles and is inclusive of their L1 caches. It has four banks, and a total capacity of 256KiB,
with each of these banks being capable of making independent requests to the next level
of the memory system, the L3 cache. The communication between the L2 cache and the
L3 employs asynchronous queues with level shifters as there is no guarantee that either the
voltage of the frequency between the cluster and the uncluster will match.

To the left of the cluster in the figure is an expanded version of a single tile. Each tile
contains a Rocket in-order, 5-stage processor, labeled scalar core, implementing the RV64GC
ISA capable of up to two floating-point operations per cycle. Rocket has a separate 16KiB
L1 instruction cache and a 16KiB L1 data cache. The Rocket custom coprocessor interface
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Figure 5.10: An overview of the Eagle SoC and its components.

(RoCC) connects to the Hwacha accelerator. This Hwacha instance has an 8KiB L1 vector
instruction cache. Hwacha’s instruction cache, and both of Rocket’s caches share one Tilelink
interface to the L2 cache, while Hwacha’s vector memory unit has a dedicated port. All of
the tiles interfaces to the L2 occur through rational clock crossings that operate at a fixed
ratio of two tile cycles to one L2 cycle.

The rest of the figure constitutes the uncluster, and everything except the gray analog
blocks operate in a single clock and voltage domain. The system-management core, on the
far left, is a ninth Rocket core which is configured to be much smaller, only supporting
RV64IMAC with 4KiB instruction and data caches. Its primary purpose is to interact
with the other input-output devices via their memory-mapped register interfaces. This
includes setting up the PLLs, SerDes, and the off-chip interfaces. The largest occupant of
the uncluster by size is the inclusive 4MiB 4-bank L3 cache. The L3 can make requests
for off-chip memory via a Tilelink switch that enables either the eight SerDes or the low
bandwidth digital interface to be used. In addition there are two smaller memories in the
uncluster: a small boot ROM that contains the zero-stage bootloader that is executed on
reset, and a 64KiB scratchpad RAM that can be used for a first-stage bootloader.

The final components of the uncluster are the off-chip interfaces that support the mobile-
like SoC design. The SPI interface can be used to load programs or bootloaders from a
microSD card. The UART interface is used as the standard way to interface with the chip
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via a console. The I2C interface was designed to control off-chip peripherals, specifically a
set of programmable DC-DC converters on-board that can drive each cluster’s voltage. Eagle
also contains a set of general-purpose IOs (GPIOs) that could be used for any purpose, but
were mostly intended to potentially aid in demos of the system interacting with the real
world. All of these peripherals together with the analog devices on chip, and multiple cores
make Eagle a reasonable analog to common mobile or edge SoCs.

In addition to mimicking mobile SoCs, Eagle was also designed to advance the concept
of agile hardware design with generators. Generators are a design principle used to architect
complex highly configurable systems. In a generator-based system, the designer builds a
tool that generates an instance of the system rather than the designer directly building
the instance. This tool in this case is a program that when executed with a given set of
parameters produces the instance that corresponds to those parameters. Hurricane-1 and -2
were roughly built in the generator style, but only had generators for some components of
the RTL. In contrast, Eagle has nearly all of the RTL built with generators. In addition,
Eagle takes the important step of building the physical design flow with a generator as well.
As noted above, the lack of responsiveness of the physical design flow to changes in the
design had been a pain point in the previous test chips.

Using a generator-based design methodology has many benefits for building hardware.
The highly parameterized nature of the design allows the same tool to be used for many
different designs and adapt to the current instance. Because the generator is adaptable,
it can also be used in many different situations. The reuse of the generator means that
development time spent improving the generator will be useful many more times in the
future. This allows the generator to be finely tuned for performance and stability over the
many design it is used for, without fearing that this effort will be lost as soon as the next
design begins. In addition to these benefits, the parameterization of the design forces the
developer to think about more design points and corner cases increasing the robustness of
the design. Being able to customize the parameters of a generator to a specific use case can
also improve overall system efficiency by building a more specialized design point. Finally,
reusing the generator decreases the amount of time spent in future design iterations saving
time and effort.

Figure 5.11 shows the entire Eagle chip generator decomposed into its individual gener-
ators which are arranged by types. The RTL generators are in the upper left, with the RTL
transformations directly below them. The physical design collateral to the right feeds into
the physical design generator along with the output of the RTL generators and the analog
generators, in the upper right of the figure. Finally the figure also includes the non-generator
portions of the physical design flow in the bottom right.

Eagle’s RTL generator is composed of many distinct generators stitched together to form
the entire system. The primary generator is Rocket-Chip, which includes the scalar Rocket
core, Tilelink interconnect network, interrupt infrastructure, and generic SoC topology [7].
Eagle also obviously includes the Hwacha generator, to complete the core design. The cache
hierarchy is created with the SiFive composable cache, the only closed source component
of the chip, which is arranged by the custom chip RTL into the on-chip topology with
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pairs of cores connected to an L2 and an L3 that backs all L2s. The clocking structure
and utilities and the slow digital backup interface are taken from the TestChipIP generator.
The RTL components of the high-speed serial links come from the high-bandwidth interface
(HBWIF) generator. The remaining off-chip peripherals, UART, I2C, SPI, GPIO, come
from the SiFive blocks generator. The custom chip RTL generator includes connecting
these component generators with Tilelink interconnect, exposing memory-mapped register
to control the system, and connecting the top-level inputs and outputs to the individual
blocks.

As in Hurricane-2, Eagle uses Chisel3 which does not directly produce Verilog but instead
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generates FIRRTL. Eagle uses a few additional FIRRTL transformations when compared to
Hurricane-2. The first set of transformations are used to manipulate the design from a logical
hierarchy, as it was written, to the physical hierarchy, as it will be implemented. This trans-
formation is actually a series of separate transformations, including grouping components
into new modules, inlining module contents into the containing module, and deduplicating
repeated instances to a single module definition. When performed in specific sequences these
transformations can affect arbitrary re-orderings of the hierarchy to match a desired physical
hierarchy. In addition, Eagle upgraded the memory-mapping infrastructure to directly sup-
port foundry memory compilers. This allows the user to dynamically generate any possible
memories based on the optimal requested memory to available memory mapping. Both of
these transformations make it easier for the RTL generators to interface with the physical
design flow.

In addition to the digital generators and transformation, Eagle also includes analog gener-
ators built with the Berkeley Analog Generator (BAG) [25]. The analog generators construct
an analog circuit of primitives in a schematic template. The designer then writes a program-
matic layout generator which utilizes BAG APIs to provide technology portability. This
parameterized design is then tuned to meet the specific design requirements and specifica-
tions. Additional changes may then be made to the layout generator to solve DRC or LVS
issues, or update the architecture to improve device performance. The generator produces
some of the collateral for integration, including GDS and LEF files. Currently BAG does not
support library generation or behavioral model generation and for Eagle these were crafted
by hand outside of the generator context.

Finally the physical design generator represents the newest, unproven, methodological
change in Eagle’s implementation flow. Eagle was built with a new physical design method-
ology and tool, Hammer [92]. Highly Agile Masks Made Effortlessly from RTL (Hammer),
is a physical design generator designed to enable extensible and retargetable VLSI flows. In
addition to this new methodology, Eagle also switched from Synopsys tools to Cadence tools
while also moving technologies from ST28 to TSMC16, and building the largest SoC from
Berkeley to date. These challenges coupled with intense time pressure caused rapid changes
and development in Hammer throughout the tapeout process.

Hammer’s core design principle is separating the three primary concerns of physical design
from each other: project, tool, and technology. Hammer has APIs for each type of physical
design tool and for technologies. Developers then implement these APIs in plug-ins for these
tools or technologies. This layer of abstraction enables different tools or technologies to
be used by the same project interchangeably. The project-level physical design concerns
are isolated by supplying a set of parameters and values for design collateral in addition
to programmatic use of the tool APIs. Hammer uses this collateral and the API calls to
generate a set of scripts and other collateral to directly run the tools. In addition, to directly
running the tools Hammer can generate build system collateral such as Makefiles to allow the
user to interact with the tools without Hammer after the initial invocation. Customization of
the physical design flow can happen via changes to the parameters for any changes already
supported at the API level in Hammer, or by the insertion, modification, or deletion of
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portions of the flow. Each step of the flow can analyze the inputs, parameters, and other
collateral to make intelligent decisions about what to include or not include in the resultant
tool invocations. These changes to the steps themselves can be programmatic allowing for
complete control over the generation of the physical design flow. Eagle’s physical design
generator still required many project-specific flow changes due to the immature nature of
Hammer.
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In addition to using Hammer for the first time the size of Eagle meant that it needed to
be designed hierarchically. Hierarchical physical design has several common variants, abut-
ment, top-down, and bottom-up. These variants can be combined with different levels of the
hierarchy using different strategies, for example abutment at the top-level with each subhier-
archy using top-down. Top-down hierarchical design is the default hierarchical design flow
implemented in Cadence Innovus, and starts with a planning synthesis run that determines
the interfaces and approximates timing on the interfaces of the lower-level modules. After
the planning synthesis run, the internal modules are placed and routed to create hardened
blocks which then are used to place and route the top-level design. Bottom-up hierarchical
design skips the planning synthesis run and simply places and routes the lower level mod-
ules using only the designer’s foreknowledge to approximate interface timing. Both of these
variants require a full top-level run to integrate the sub-modules which can be a runtime
bottle neck in large chips, for example in Eagle this took about half of the total tool runtime.
Hierarchical design by abutment combines blocks at the same level of hierarchy by simply
placing them next to each other, eliminating the need for a final top-level integration run.
Each module must agree on exactly where all of its IOs live and the timing for the cross
module connections must be budgeted accurately on each side of the interface. Bottom-up
methodology is easier to get up and running and is what was used for Eagle and what was
eventually supported by Hammer, although there are plans to include the other variants of
hierarchical design as options. The bottom-up methodology in Eagle did make it difficult to
close timing precisely and be certain of the worst-case paths.

Given all of these changes there were surprisingly few physical design issues on Eagle. The
large square chip size enables many different top-level floorplans, and figure 5.12 shows the
chosen floorplan. In order to have the serial links off-chip connections be high performance
and easily routed they need to connect to bumps at the edge of the chip, forcing the macros
to be placed directly next to the sides of the chip. The desire to package them by directly
flipping it onto the board with no intervening package or other structures required a relatively
large gap between bumps on the chip. This combined with the fixed length of the chip edge
restricted the number of serial link macros that could fit on a side to four. This in turn,
meant that two sides would be required for the eight serial links used to match the bandwidth
of a DDR memory interface. In order to save on analog designer effort, the serial links were
put on opposite sides to enable a mirrored version to be functional, because a 90 degree
rotation would not be possible in a FinFET technology. Ideally a generator like BAG would
make rotations easier but that is not currently the case. This forces the application cores
and memory system to reside in the middle of the chip between the pair of serial link banks.

Two primary issues arise with this top-level floorplan. The first issue with the top-level
floorplan is the very narrow aspect ratio for each tile. Because each cluster has its own
power domain a set of bumps will need to be dedicated to each cluster’s power rail. Given
the packaging strategy the best way to connect out from the chip to the board was to use sets
of eight bumps in a four by two pattern. These groups could be either vertical or horizontal
but this pattern constrained the clusters to be about 4 bumps wide. With two tiles per
cluster, this limits the width of each tile to 2 bumps wide, and the height is then set to have
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a reasonable target utilization of around 70%. After all the constraints are taken care of,
each tile is five times as tall as it is wide. To succeed with this aspect ratio the tile needed
careful floorplanning, detailed in Figure 5.13. This included macro placement and soft guides
for the Hwacha vector register file and execution unit. The standard clock tree synthesis
algorithm also failed to achieve reasonable clock skew on this design with this aspect ratio.
Instead a tool-assisted H-tree with custom trunk locations based on the aspect ratio was
used which significantly reduced the skew and allowed the design to achieve a greater than
1 GHz sign-off frequency at the slow-slow corner.

The second issue with the top-level floorplan is that the crossbar between the L2 and L3
caches is once again confined to a small area. The area is bound on the bottom by the L3
cache which is adjacent to the bottom side of the chip, and on the top by the clusters which
are adjacent to the top of the chip. There is some wasted space above the clusters due to
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Figure 5.14: An example of the congestion experienced in the initial eight-bank L3 Eagle
design. The red and white are regions of over-congestion that will result in shorts and other
LVS failures.

the bump requirements mentioned above. Each set of four by two bumps on the interior
of the chip are allocated to power or ground and so moving the clusters up to the top of
the chip would either put some portions of them far away from power and ground or would
need to reassign off-chip signaling bumps to power and ground. Even with these limitations
the initial design included eight L3 cache banks with each one having a dedicated serial
link. This doesn’t provide full bandwidth for the incoming requests from each cluster but
can support half of that required bandwidth or full bandwidth to two of the clusters. This
initial design resulted in excessive congestion in the crossbar as seen in Figure 5.14. After a
few attempts at a purely physical-design-based solution the number of L3 cache banks was
reduced by half, enabling only a single cluster to operate at full bandwidth out of the L3
at a time. In addition, the portion of serial link bandwidth used becomes even lower falling
from nearly a third to about an eighth. Unfortunately, this reduction in crossbar bandwidth



75

was not enough and the L2-to-L3 crossbar still proved physically unrealisable, and was thus
clocked slower than anticipated, dropping from 500MHz to 250MHz. The ability to explore
different top-level floorplans quickly would have been a useful technique to find alternative
solutions to this congestion issue but currently Hammer floorplans are still manually written.

The Eagle SoC took a particularly long to get fully assembled and ready for testing due
to inexperience and difficulty with the packaging strategy. In order to directly attach the
die to a board both the board and the chip needed to be changed to meet the constraints.
The board needed advanced processing techniques that brought the minimum pitch down
to allow a reasonable number of bumps on each side of the chip to directly be routed out.
The chip then met this constraint by reducing the density of its bumps. In addition to
these pitch changes, the internal bumps needed to be ganged together to allow them to
connect to the board-level vias. Initially, discussions with the board producer and the die-
attachment company lead to an attachment process with solder-mask being applied around
the die-attachment process. The set of boards produced in this fashion had a roughly 25%
failure rate for each bump that was individually testable. Across a set of 78 bumps that
needed to be connected this ensured that all boards produced this way had at least one
failure. As a result a second run of boards was needed without the solder mask and with
some modification to the die-attach process. These second set of boards almost all worked
well enough to begin bring-up and testing.

Several components of the bring-up platform changed between Hurricane-2 and Eagle.
In order for the high-speed serial links to operate at full bit-rate the FPGA needed to be
upgraded. As a result of this FPGA upgrade, there was no longer a hardened CPU on the
FPGA board that was able to manage the hosting for the tethered mode of Eagle. In order to
replace this hardened CPU, a soft CPU on the FPGA was implemented. This soft CPU core
also needs to interface with other FPGA board components and memory system. Because
these components and other aspects of the FPGA hosting platform can change depending on
the chip or functionality being tested, the decision was made to use the same generator-based
design used for the SoC. A diagram of this platform is shown in Figure 5.15. Porting this
new bring-up platform to the new FPGA took a fair amount of development for Eagle but
would be shared between most future test chips.

With the bring-up platform determined and the chips packaged, Eagle was finally able
to be tested. Some initial testing showed that the chip was mostly functional aside from
what seemed like a straightforward bug in the memory system. This bug turned out to be
more problematic as some address bits seem to be scrambled while requests move across
the L2-to-L3 crossbar. A couple of address bits essentially become unusable perforating the
address space. After this was discovered a significant amount of time was spent constructing
linker scripts and binary rewriting tools to enable relatively simple C programs to be run
bare-metal on the chip. With this setup, a small set of benchmarks, mostly focused on
general matrix multiplication, was used as to collect experimental results from the chip.

Initially a sweep of valid operating points was done to find the lower and upper bound
of voltage-frequency pairs. Figure 5.16 shows this sweep in the black line on the top set
of axes. The resulting silicon achieved 862.5MHz at the setup corner voltage, 1.06GHz at
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Figure 5.15: A block diagram of Eagle’s bring-up platform. The FPGA is at the bottom
surrounded by red and uses its fixed peripherals to aid in chip bring-up. A few small on-board
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nominal voltage, and 1.245GHz at the hold corner voltage, which was very close to the signoff
frequency of slightly more than 1 GHz.

Next the custom-constructed GEMMs of the three supported Hwacha precisions were run
on both cores of one cluster. This allows the collection of current, voltage, and frequency
of the specific clock and voltage domain, which then can be used to calculate power. The
program records how many floating-point operations it is doing per second on the UART
and this data is collected along side the electrical data to obtain the plot in the bottom half
of Figure 5.16 As mentioned above in this design, the Hwacha data bandwidth is limited to
50% of theoretical peak due to the L2 cache frequency division. A wider Hwacha data L2
port would correct this, approximately doubling the energy efficiency over these results for
long vectors. At the most efficient operating point, 339 MHz at 0.55 V, the chip runs double-
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Figure 5.16: A single Eagle cluster’s energy efficiency while running double-, single-, and
half-precision general matrix multiplcation.

precision matrix multiplication (DGEMM) at 56.5 GFLOPS/W, single-precision (SGEMM)
at 92.3 GFLOPS/W, and half-precision (HGEMM) at 209.5 GFLOPS/W, which correspond
to 34.4%, 34.5%, and 33.0% of theoretical peak Hwacha performance, respectively. At the
time it was published, Eagle was the highest reported energy-efficiency for a RISC-V chip
with programmable precision for the precisions reported.

The Eagle test chip showed the benefits of having a generator based physical design
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approach. It also showed that the Hwacha vector design is capable of achieving best-in-class
performance, when given appropriate physical design effort. In addition, the updated RTL
generators that provided more configurability to the uncluster and caches enabled the design
to scale more easily through out the tape out process. The scaling of the design required
understanding and practice with hierarchical design techniques, which were then captured in
the Hammer implementation. Finally, the use of a new set of tools and a new technology, also
captured in Hammer, expanded the size complexity of designs that could be implemented
with a small team.

5.4 EagleX

EagleX is a 56.25mm2 22-core SoC with 20 uniform application cores each with a single-lane
Hwacha instance implemented in a TSMC 16nm FinFET process. It was taped out in June
of 2019, and receieved back fully packaged and assembled by July 2020. EagleX more than
doubles the size of the Eagle design and focuses on improving physical design generator
support, including additional accelerators, and improving overall system performance. It
includes nearly all of the features of Eagle, large on-chip caches, many cores, high-speed
off-chip interfaces, and connections to off-chip peripherals. Thus it maintains its realism
while pushing the limits of the size and complexity that Hammer is capable of handling.
In addition, several other chips were also being taped-out at the same time with just a few
additional graduate students working on those other designs. In order to succeed, Hammer
would have to be upgraded to enable the reuse that its design purports to allow. The
application cores were maintained at the same specifications as Eagle, while the L3 was
increased in size to utilize the additional die area and provide more bandwidth and capacity
for each cluster. EagleX still includes a set of eight 28 Gbps serial links and the standard
off-chip interfaces from Eagle: JTAG, UART, SPI, I2C, and GPIOs. However, rather than
having only a single accelerator EagleX also integrates a systolic array matrix-multiplication
accelerator, Gemmini [35].

Figure 5.17 contains a detailed block diagram of all the components on EagleX. The upper
left of the figure shows the details of a tile and cluster which are identical in parameters to
those of Eagle. The clusters are no longer on their own voltage domain, there is instead a
single voltage domain for all of the clusters. They still retain their individual clock domains
with the L2 running at half the frequency of the tiles and communicating with a rational
synchronous crossing to the tiles and an asynchronous crossing to the uncluster. Each cluster
clock multiplexor is capable of selecting from any of the available clock sources on chip.

To the right of the cluster detail is an expanded view of the systolic array accelerator,
Gemmini, and its associated core. Like Hwacha it uses the RoCC interface to communicate
with Rocket as a scalar control processor. It also directly communicates with the outer level
cache, which in the case of the systolic array core is the L3 cache. Gemmini is also built
as a generator, so has many parameters and possible instances. This Gemmini instance has
a 256KiB scratchpad for double buffering inputs and outputs, an accumulator for element-
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Figure 5.17: EagleX blockdiagram.

wise computation, and a 16-by-16 grid of 8-bit integer multiply-adds that are connected
in a systolic manner for the core computation. This is a very early version of Gemmini
that is only optimized for GEMM computations but newer versions add many features and
optimizations to make it suitable for general deep neural networks. Gemmini is included to
allow for an energy-efficiency comparison between the Hwacha general-purpose data-parallel
accelerator and an optimized fixed-function accelerator.

Below all of the clusters and cores is the Tilelink-2 system bus, which connects the
application cores with the rest of the system. Everything below and including the system
bus is consider part of the uncluster. On the left-hand side of the figure is the memory
subsystem. The system bus connects requests to off-chip memory first to the eight bank
8MiB L3 cache, and then through the memory bus and to the Tilelink-2 switcher. This
switcher operates as it did in Eagle by allowing a memory mapped register to control whether
the backside transaction of the L3 are handled by the high-speed serial links or by the low-
speed low-bandwidth backup digital interface. The slow link has a divider to allow it to run
arbitrarily slower than the rest of the uncluster but in practice can usually run at around
100MHz or 400Mbps, with a lower actual data-rate due to the simple serialization scheme.
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Immediately to the right of the memory system are all of the peripherals, both on- and
off-chip. The red shaded portions under the peripheral bus contain the off-chip peripherals
and some status control registers (SCRs). These peripheral bus clients have slightly higher
bandwidth and lower latency than the device in purple that are attached to the control
bus. The control bus has devices that are less frequently accessed during normal operation
of the chip. Finally, the last bus in the uncluster is the front bus which has the opposite
relation with the system bus than the other buses, in that the front bus drives the system
bus. The only device attached to the front bus is the test chip tether used as a backup
bring-up interface. Additionally the uncluster contains one more core which acts as a system
management core (SMC). This core has no floating-point support and minimum-sized caches,
with only a single Tilelink port to the system bus.

Figure 5.18: The change over time of various portions of the Eagle/EagleX Hammer code
base.

The physical design of EagleX also used the Hammer physical design generator and Ca-
dence tools. However, EagleX was taped out alongside several other test chips necessitating
code sharing between the projects to make them feasible with the given resources. Each
additional test chip added only two or three graduate students to work on their individual
chips. Hammer was always designed to enable this type of reuse but it was unnecessary
during the Eagle tapeout as there was only one project using Hammer.
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Figure 5.18 shows the evolution of the physical design code used in Eagle and EagleX.
The three primary concerns of physical design that Hammer separates from each other are
the tool, technology and design concerns. In this graph the lines of code associated with
each of these concerns as well as general library code are separated out and counted. The
blue area at the bottom is the general library code which includes API definitions and other
code to connect different parts of the system. The orange area represents the code in the
tool plugins used in Eagle and EagleX, namely the Cadence and Mentor tool plugins. The
green area represents the code in the TSMC16 FinFet technology plugin. And finally the
red area represents the project-specific code written in the Eagle and EagleX physical design
generator itself. This code is the only code that can not be reused by other designs. Not all
of the code in the other areas will be reused by other projects, but projects that share tools
or technologies will share those sections.

The graph shows the evolution of these line counts from the inception of the Eagle project
in early 2018 through the first tape out of Eagle, the left vertical black bar, and all the way
until the tape out of EagleX, the far right vertical black bar. As mentioned above, the initial
development of Eagle was heavily focused on getting a finished design taped out and so used
the project-specific modifications heavily. This usage model was intentionally built into the
Hammer framework to allow for new users to easily adapt their current methodology to
a Hammer-based generator without a lot of work adding features they need in a reusable
manner. However, after the Eagle tape out the desire to have new projects leverage its
physical design generator pushed much of the project-specific code in the reusable portions
of Hammer. You can see this change over the year between Eagle and EagleX where the
portion of code in the generator that is project-specific shrinks from more than half to less
than a quarter. This shift to a general-purpose implementation does result in more overall
code as the new implementation needs to account for varying use cases. The migration from
project-specific implementation to reusable library code is one of the primary benefits of
Hammer’s physical design generator methodology.

The increase in size of EagleX and the desire to avoid the packaging issues of EagleX
causes the top-level floorplan to deviate significantly creating many physical design changes.
Figure 5.19 shows a micrograph of the EagleX test chip with an overlaid floorplan. The
bottom half of the figure is similar to Eagle, with the serial links, L3 cache and peripherals
plus off-chip IO placed tightly against the edges of the die. The top half deviates considerably
however. Rather than have each cluster on its own independent voltage domain, all clusters
share a single voltage. This relaxes the constraints on the power and ground bumps under
the cluster. In addition, because of the increased perimeter of the chip less of it is used for
digital I/Os and so the bumps on the north side of the chip are simply power and ground
for the cluster, removing the need for the gap at the top that was included in Eagle. These
changes made the physical design of EagleX somewhat easier by reducing some of the difficult
to implement constraints from Eagle, but it was not without its own problems.

The first physical design issue, a seemingly perennial one with Hwacha test chips, was the
L2 to L3 crossbar. On the Eagle test chip the issues with this crossbar reduced the uncluster
frequency and L3 bandwidth and with more than twice as many cores in EagleX the new
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Figure 5.19: An annotated diephoto of EagleX SoC.

crossbar had an even higher required bandwidth. Several experiments were undertaken to
attempt to reduce the impact of this crossbar on overall system performance. Early in the
design phase, a ring interconnect was discussed and eventually implemented. Unfortunately,
the physical design burden implementation of the ring interconnect was not completed due
to time constraints and instead effort was focused on implementing the existing crossbar
more effectively.

Several physical design solutions were explored to improve the clock rate and bandwidth
of the crossbar. The first solution was to have this large module be a separate place and
routed block which became more practical once Hammer fully supported arbitrary hierar-
chy module composition. Unfortunately, the additional pin location and timing constraints
made this approach very difficult. If Hammer were to support a better pin-timing interface
this process could have been made easier and potentially tractable but at the time of imple-



83

mentation it would have required a lot of manual effort for an experiment that might not
succeed. The next technique was to update the floorplan with low utilization regions in and
around the crossbar area. This would force the tool to keep most logic out of that region
saving the area and routing resources for the buffers that would be needed to implement the
crossbar. This technique did help and was used in the final implementation of EagleX. A
more exotic idea that was discussed was to give the tool a lower-level placement of portions
of the crossbar. This has helped with other regular structures like register files in the past
but with a generated crossbar would require a lot more effort and wasn’t possible in the
given time. The last and simplest solution of increasing the area allocated for the crossbar
was also used and combined with the other techniques allowed for the crossbar to hit its
target bandwidth.

The integration of a new accelerator, Gemmini, had a few physical design issues that
are common with large data-parallel accelerators. The first issue was developing a good
floorplan for Gemmini. This is a common problem, but Gemmini, like other data-parallel
accelerators, includes lots of memories for storing temporary results, making the problem
more difficult. These additional memories make the floorplanning task more complex and
time consuming, and a good solution required several iterations. Floorplanning in Hammer
is currently handled manually despite the clear need for a better interface and automation,
hopefully this can be addressed in future development. In addition to floorplanning, data-
parallel accelerators like Gemmini often include a higher density of logic that can cause
significant power draw. In EagleX this required changes to the power-strap layout for the
Gemmini tile. Hammer performed static IR drop analysis and determined that there would
have been significant droop with the power-strap settings used throughout the rest of the
chip. Therefore, the percentage of routing resources devoted to power straps in Gemmini
was increased. This change is less harmful to signal routing due to the systolic-array nature
of Gemmini that focuses on local interconnect rather than global interconnect, which would
be more negatively affected by the decrease in routing resources. In Hammer the change in
power straps is affected using an API, and so only a single line of the configuration code for
the physical design generator needed to be changed.

To avoid the packaging issues encountered with Eagle, EagleX was packaged in a ded-
icated ceramic package. The package, along with the reduced number of voltage domains,
enabled the daughter board for EagleX to be much cheaper and partially offset the cost of
the package. The board for EagleX was similar to Eagle, but removed the DC-DC voltage
converters, and added SMAs to directly connect to two of the clock inputs, rather than
having all three connected over the FMC connector. The FMC interface for EagleX was
designed to be backwards-compatible with the Eagle FPGA motherboard setup and so ei-
ther chip can be connected to the FPGA without reconfiguring the FPGA. The older Eagle
FPGA image will not enable all features such as the ability to drive clocks zero and one, but
otherwise will be functional. Having this FMC compatibility isn’t too onerous and so has
been adopted on most test chips developed after Eagle.

Fully populated boards were received in August of 2020. The boards were checked for
any shorts immediately, but bring-up did not begin until September. Using the same Eagle
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FPGA motherboard image, EagleX’s JTAG connection was used to verify the accessibility
of all cores on the first attempt. A week of work was necessary to update the FPGA side
Tilelink deserialization, which then enabled simple bare-metal programs to be run, including
Hwacha programs. Finally, after a few days of debugging Linux boot and adjusting the
device tree (DTS) processing in the Berkeley boot loader (BBL), SMP linux was booted on
all 20 uniform application cores on EagleX.

EagleX has not undergone extensive testing yet and so there is no detailed plot of its
voltage and frequency operating points but preliminary testing indicates that it is capable
of a similar operating range to Eagle.

EagleX showed the value of physical design generators being able to reuse code across
projects. This allows physical design solutions to be shared across repeated uses of the
same design generator continually improving quality of results. By incorporating two dis-
tinct data-parallel accelerators into one system EagleX showed the similarity between these
accelerators in their physical design needs. There are still improvements to be made from
the physical design side specifically for data parallel accelerators like Hwacha which require
careful floorplanning. A more automated floorplanning process or one that is easier to it-
erate with would make the design of efficient versions of these accelerators easier. Having
discussed the current design and implementation of the Hwacha vector fetch architecture,
the remaining chapters will explore the design, implementation and results from a set of
extensions to this architecture.
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Chapter 6

Design of a Two-dimensional
Extension to Hwacha

Given the extensive use of machine learning, and specifically deep learning, focusing on opti-
mizing this use case can provide consistent benefits across many applications. As discussed
in Chapter 3, deep learning makes extensive use of dense multi-dimensional computation.
Higher-dimensional operations can be implemented with lower-dimensional ones and so a fo-
cus on two-dimensional extensions can still provide significant improvements on deep-learning
workloads. This chapter describes a set of features that can be added to the baseline Hwacha
architecture to improve energy-efficiency of two-dimensional dense linear algebra workloads.

The specific extension discussed in the rest of this chapter is focused on using multi-
ple vector registers as sub-matrices. This approach towards the two-dimensional compute
problem leverages as much of the existing microarchitecture as possible. The details of the
microarchitectural changes will be expanded on in the next chapter. There are several indi-
vidual features that are incrementally added to create the entire extension, with each having
a devoted section below.

Section 6.1 describes the first extension, a computational extension for matrix-vector
multiplication. Next, section 6.2 explains another extension for matrix memory operations.
Finally section 6.3, describes some of the additional operations and extensions that could be
added to further improve the energy efficiency on deep learning workloads.

6.1 Vector-Transpose Matrix Multiply

The first group of instructions added and the strongest catalyst to start this extension was a
linear algebra operation that works as a step of a GEMM’s inner loop, called vector-transpose
matrix multiply (VTMM). This instruction takes three inputs and produces one output and
implements the linear algebra operation, Z = AT ∗B +C. A is a single vector register with
length encoded in a parameter called depth in the VTMM instruction. B and C are each
a sequence of depth vector registers each with length vl, the standard machine-wide vector
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length.
Figure 6.1 shows the encoding for this instruction. Starting from the least-significant

bits, the lower twelve bits are an opcode denoting this as the VTMM instruction, here
labeled VFVMMADD for vector floating-point vector-matrix multiply-add. The next fields
in the instruction are the register identifiers, first the 4-bit predicate register followed by
the four 8-bit vector register identifiers, with the 32nd bit amongst the registers specifying
whether or not to negate the predicate. After this there are two fields present in every
floating-point instruction, the rounding mode, rm, and input and output precisions, fmt.
The next field is the new depth field representing the inner dimension of the vector-matrix
multiplication. Finally, the upper four bits, in the Hwacha worker-thread encodings, are
dedicated as determining which of the register operands are scalars and which are vectors.
In this case, all four of these bits are variable and can be set to either scalar or vector.

63 62 61 60 59 57 56 53 52 50 49 48 41 40 33 32 31 24 23 16 15 12 11 0

s/v s/v s/v s/v depth fmt rm — rs3 rs2 n rs1 rd p opcode
1 1 1 1 3 4 3 1 8 8 1 8 8 4 12
d s1 s2 s3 depth fmt rm 1 src3 src2 n src1 dest predVFVMMADD

Figure 6.1: The encoding of the VTMM worker-thread instruction.

The VTMM instruction essentially operates as a replacement for a group of FMAs com-
monly found in the inner loop of a GEMM kernel. The traditional mapping of this kernel
to Hwacha uses multiple scalar values of a and rows of B and C stored in separate vector
registers, as seen in Figure 6.2. The new mapping is able to replace large groups of these
repetitive ordered FMAs, up to eight at the maximum depth of eight, with a single VTMM
instruction. In this example depth is only four so each of the replacement instruction re-
places the four of the FMA instructions. The first register, the destination or vv0, as well
as the third and fourth operands are treated as the matrix operands and are a sequence of
depth, four in this case, vl-long vectors, while the second operator is the vector that will
be transposed before the multiplication. Because of this transposition, only the first depth
elements of vv8 through vv11 will be accessed during execution.

This instruction does not reorganize the vector register file and simply treats sets of
registers as a larger unit. This means that normal memory operations are able to move
the data into vector register vv0 through vv3 to represent the sub-matrix destination in the
example above. This also keeps the programming model relatively simple for the user who
only needs to track the depth of these instructions and ensure all of the registers that will
be touched have been loaded before issuing the VTMM instruction.

As these VTMM instructions now read from many more vector registers the new inner
loop of the GEMM kernel will now be dominated by the memory operations required to
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vfmadd vv0, vs8, vv4, vv0

vfmadd vv1, vs8, vv5, vv1

vfmadd vv2, vs8, vv6, vv2

vfmadd vv3, vs8, vv7, vv3

vfmadd vv0, vs9, vv4, vv0

vfmadd vv1, vs9, vv5, vv1

vfmadd vv2, vs9, vv6, vv2

vfmadd vv3, vs9, vv7, vv3

vfmadd vv0, vs10, vv4, vv0

vfmadd vv1, vs10, vv5, vv1

vfmadd vv2, vs10, vv6, vv2

vfmadd vv3, vs10, vv7, vv3

vfmadd vv0, vs11, vv4, vv0

vfmadd vv1, vs11, vv5, vv1

vfmadd vv2, vs11, vv6, vv2

vfmadd vv3, vs11, vv7, vv3

vfvmmadd vv0, vv8, vv4, vv0, 4

vfvmmadd vv0, vv9, vv4, vv0, 4

vfvmmadd vv0, vv10, vv4, vv0, 4

vfvmmadd vv0, vv11, vv4, vv0, 4

Figure 6.2: An example of the denser instruction stream made possible by the VTMM
instruction.

populate these registers. This leads to the next set of instructions added for moving these
sub-matrices into sequences of vector registers.

6.2 Sub-matrix Memory Operations

The next set of instructions improves the ability of the architecture to express loads and
stores with regular address patterns that often occur when working with matrices. The
first group of instructions are loads and stores that move a sequence of unit-stride vectors
from memory into consecutive vector registers. These instructions also provide a stride, in
bytes, between each vector register that enables the instruction to encode a sub-matrix for
row-major matrices. There are no alignment constraints on the architectural vector register
numbers other than being consecutive.

63 62 61 60 59 57 56 55 48 47 45 44 43 42 41 40 33 32 31 24 23 16 15 12 11 0

s/v s/v s/v d? — sg? — seglen s/u size st? as2 n as1 vd p opcode
1 1 1 1 3 1 8 3 1 2 1 8 1 8 8 4 12
1 0 0 0 0 1 0 seglen s/u size 1 stride n base dest pred VLSMx

Figure 6.3: The encoding of the sub-matrix load worker-thread instruction.



88

vld vv0, va0

vld vv1, va1

vld vv2, va2

vld vv3, va3

vld vv4, va4

vld vv5, va5

vld vv6, va6

vld vv7, va7

vlsmd vv0, va0, va1, 8

Figure 6.4: An example of the denser instruction stream made possible by the VLSM in-
struction.

Figure 6.3 shows the encoding for this instruction. Again, starting from the least sig-
nificant bits, the lower twelve bits are an opcode marking this as a vector load sub-matrix,
VLSM, operation. The register specifiers are similar to the VTMM instruction but with
only two inputs. However, there are some subtle register differences for loads and stores.
The destination or source for the data is still a normal vector register, but the first and
second inputs, the base and stride in this case, are in address registers. This enables the
VMU to begin generating addresses without waiting for the VXU or scalar unit to provide
these inputs. Next there is a dedicated bit, the 41st, for all memory operations to determine
whether the second input is used as a stride. The next two fields are also shared across
memory operations, and represent the size of the memory access, and whether the data will
be sign-extended into the register or not. The number of registers in the sequence follows
this in the seglen field, up to a maximum of eight. The sg? determines whether the memory
operation uses the segment field and in this case is hard-coded to true. The d? determines
whether the memory operation acts on vectors of length depth or the standard vl, in this
case of VLSM, this is hard-coded to false. Finally, the upper 3 bits dictate the scalar or
vector nature of the three operands and are hard-coded for a vector destination, and two
scalar inputs.

Figure 6.4 shows the reduction in instruction count enabled by the sub-matrix memory
operations. In this example a single vlsmd instruction with eight segments replaces a series
of eight unit-strided loads. The d at the end of each of the assembly mnemonics encodes the
size field for how wide the memory access will be in this case a double-word access of 64 bits.
At the end of either sequence the values in vv0 through vv7 will be identical assuming the
difference between the address registers on the left side is uniform and is written to va1 on
the right side. This compression not only saves instruction cache footprint and instruction
issue bandwidth but can reduce the amount of microarchitectural resources needed to track
this long series of instructions. The details of the microarchitectural effects will be discussed
more in the next chapter.

These instructions help construct the sub-matrices needed for B and C in the VTMM
instructions. However, the shorter A vector still has to load an entire vl-length vector when
if it is only used for the VTMM instructions a shorter vector would be enough. To reduce
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this waste of memory bandwidth, another set of memory operations is added that limits the
vector length of the loads and stores. These instructions have the same semantics as the
corresponding loads and stores with the exception that they only operate with an effective
vector length of depth.

63 62 61 60 59 57 56 55 48 47 45 44 43 42 41 40 33 32 31 24 23 16 15 12 11 0

s/v s/v s/v d? depth sg? — — s/u size st? — n as1 vd p opcode
1 1 1 1 3 1 8 3 1 2 1 8 1 8 8 4 12
1 0 0 1 depth 0 0 0 s/u size 0 0 n base dest pred VLDx

Figure 6.5: The encoding of the depth-only load worker-thread instruction.

Figure 6.5 shows the encoding for these depth-only loads. The bottom 32 bits of the
depth-only loads match that of the sub-matrix load, describing the destination or source,
the predicate and the base address register. However, the next two fields describing the
stride are omitted and set to zero. The size and sign-extension field are still present, but
the segment fields are filled with zeros. The depth field is used to determine the temporary
vector length of these short loads and stores, which means the d? field above it is hard-coded
to true. Finally, the upper three bits again indicate that this instruction has one vector
input and one scalar input.

Unlike with the previous new instructions, there is no direct comparison with previous
instructions because a temporary vector length change is not possible in the worker-thread
at all. However, in a typical kernel, vector lengths in Hwacha are often 32 or more elements
and so enabling these short vector loads can reduce bandwidth requirements significantly.
Not only does this allow the execution to proceed to useful work faster, but it also saves
energy and reduces cache pollution.

Finally, another group of instructions combines both of the previous features into depth-
only sub-matrix loads and stores. This allows the user to control both dimensions of the
sub-matrix independently of the current vector length within the limits of the encoding.

63 62 61 60 59 57 56 55 48 47 45 44 43 42 41 40 33 32 31 24 23 16 15 12 11 0

s/v s/v s/v d? depth sg? — seglen s/u size st? as2 n as1 vd p opcode
1 1 1 1 3 1 8 3 1 2 1 8 1 8 8 4 12
1 0 0 1 depth 1 0 seglen s/u size 1 stride n base dest pred VLDSMx

Figure 6.6: The encoding of the depth-only sub-matrix load worker-thread instruction.
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Figure 6.6 shows the encoding for the depth-only sub-matrix memory operations. The
encoding is very similar to the other operations but uses both the segment and depth fields
so it also has those indicator fields hard-coded to true. These operations allow the loading of
multiple vectors to be used as the transposed vector in the VTMM instructions, once again
saving memory and instruction bandwidth.

This entire set of load and store operations combine to enable the easy manipulation
of sub-matrices without moving extra data from the memory system or requiring many
memory instructions to reach peak bandwidth. The use of the depth field as a separate
vector length restricts the minimum vector length of the architecture to be at least as long
as the depth parameter, which is 8. In many implementations this will not be a problem
but does potentially incur a large area requirement on smaller implementations. In the
case where this minimum would be violated, for example when all 256 vector registers are
enabled, the machine can either label this configuration illegal or have depth instructions
that have a longer depth than the current vector length be illegal. A more complete solution
that behaves similar to setting the vector length with vsetvl would be difficult to implement,
but would allow for the configuration to gracefully adapt to different configurations. If this
solution were implemented however it could also potentially enable the configuration of some
registers as depth registers and reuse their physical storage to lengthen the general vector
length.

6.3 Future Extensions for Deep Learning

The above instructions represent a useful proof of concept for extending a general-purpose
vector architecture with domain-specific instructions in the dense linear algebra domain.
However, there are many other reasonable extensions that could further improve the perfor-
mance of the sub-domain of deep learning. A few of those ideas are presented below building
on top of the previous two-dimensional extensions.

Convolution

Once the architecture can represent shorter vectors it is natural to look at other uses of short
vectors in combination with long vectors. One frequent case of this is a one-dimensional
convolution where the kernel size of the convolution is often a small odd number. This
limit would allow the same depth parameter that has a maximum of eight to still be used
for these convolutions. A one-dimensional convolution operation could easily fit in to the
standard arithmetic operation encoding which does not use the location assigned for the
depth parameters above. The operation then performs the natural convolution operator
with the long vector being convolved with the shorter vector which has a kernel size equal
to depth.

Another concern with these operations is whether and how to pad the convolution. Pro-
ducing a shorter vector of, most likely, a third vector length seems impractical while always
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producing a padded result allows the user to post-process the output if they want to remove
the padding. Given the large amount of encoding space available in the Hwacha ISA a
simple solution would be to add a third input that is the value to be padded. This allows
both floating-point and integer convolutions to use sensible padding values without needing
special cases, and in addition allows the freedom of having the padding value be dynami-
cally calculated. The alternative that saves encoding space would be to have a few options
available at the opcode level. For example, there could be convolution operations with zero
padding or one padding in both integer and floating-point flavors.

In addition to using the depth-based arithmetic operations, convolutions can also benefit
from the sub-matrix memory operations. The sub-matrix loads can be used to load several
kernels at once, or even a sub-matrix to be convolved with. Because the loads leave the
group of vector registers as if they had been loaded with normal instructions, the user can
easily reduce the number of memory instructions in a loop with multiple convolutions of
different kernels. Using the sub-matrix memory operations also leads towards potentially
implementing two-dimensional convolution operations. These operations would be difficult
to encode with the third input operand for the padding if they supported rectangular kernels.
If the design only supports square kernels as is common in deep learning then the natural en-
coding would fit with a single depth parameter. The implementation of a multi-dimensional
convolution would be more significantly more complicated than the one-dimensional case,
but that will be discussed in the next chapter.

Pooling

Another common operation in deep learning workloads is the pooling or sub-sampling be-
tween layers. Pooling or sub-sampling reduces the size of the tensor input and combines
results from multiple inputs. This operations is similar to convolution with fixed parameters
for the kernel size and weights.

The fixed parameters reduce encoding cost and allow the design to encode many different
versions of the operation. The depth parameter would be used to determine the size of the
field to search in the input. With a single input, and a single output, much of the encoding
space can be used to represent the different functions, such as max-pool, averaging, or
median.

Both pooling and convolutions involve reductions which are currently lacking in the
Hwacha ISA. However, like the VTMM instructions this reduction has a fixed local pattern
rather than the global reductions traditionally described by that word. This should make the
cost to implement these instructions smaller than a true global reduction, but these details
will be discussed in the next chapter.

Precision

Finally, extending the architecture to support smaller bit-width arithmetic types would be a
large benefit for deep-learning applications which often run inference or retraining and quan-
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tization and small precisions. The options for reduced-precision data types was previously a
very small and straightforward design space consisting of half-precision IEEE floating point
and small integers. However, the recent proliferation of deep-learning accelerators has lead
to many newly proposed data types. Both NVIDIA and Google have produced chips that use
new floating-point formats(TF32 [55] and BFloat16 [94] respectively) designed to improve
performance on deep-learning tasks. In addition, many designs in academia and industry
continue to explore sub-byte integer precision operations, and even binary neural networks.

Including these new formats as additional available data types has several issues in the
Hwacha architecture many of which would extend to any user-programmable vector architec-
ture. First, and most obviously, having more data types available will, in a non-polymorphic
instruction set, require additional encoding space scaling with the number of operations and
the number of data types. The architecture will also have to consider how these specialized
types will be transferred into and out of the vector unit especially if they are not an integer
number of bytes or if the scalar processor cannot natively handle them. And there is also a
implementation complexity and area cost to support multiple data types, although in more
specialized use cases the number of larger data types supported can be reduced to focus on
particular applications.

Having described the architectural implications of these extensions focused on dense
linear algebra the next chapter will discuss the implementation complexities. In addition, the
implementation of the deep-learning extensions will be discussed at a high-level to understand
the challenges associated with their complete implementation.
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Chapter 7

RTL and Physical Implementation of
Two-Dimensional Extension to
Hwacha

There are many ways to implement a given architectural specification for a group of instruc-
tions or extensions. This chapter will cover one implementation style used to add the dense
linear algebra extensions from the previous chapter to the most recent Hwacha microarchi-
tecture. Since these extensions do not rearrange the register file for two-dimensional data,
the general implementation strategy is to treat the operations as repeated one-dimensional
operations.

Section 7.1 describes the general control structures added to the microarchitecture to han-
dle these repeated sub-operations. Next, section 7.2 explains some additional details that are
used to implement the VTMM instructions. Then, section 7.3 describes the straightforward
application of sub-operations to the vector memory unit to implement the sub-matrix and
depth-only memory operations. Section 7.4 then describes how some of these new microarchi-
tectural features could be used to implement the future deep learning extensions described in
the previous chapter. Finally, section 7.5 discusses the results of taking this implementation
through the physical design process and obtaining area, energy, and performance data.

7.1 Two-Dimensional Control Structures

There are two unifying aspects of these new instructions. First, most of the new instructions
share the use of multiple registers as a single input or output from an instruction. And second,
they often include a secondary vector length, depth, encoded directly in the instruction.

To keep track of these additional operand registers and the second dimension, instructions
that have this property will be tagged during decode as they are entered into the sequencers.
The new types of register dependencies come in three varieties, either depth registers of length
vl, vseg registers of length depth, or vseg registers of length vl. These additional register
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operands impose additional constraints on the microarchitectural dependency tracking which
is split between the main sequencer and the lane sequencer. The main sequencer tracks the
read-after-write, write-after-read, and write-after-write dependencies between architectural
vector registers, while the lane sequencer tracks the vector length and structural dependencies
between instructions. For the two-dimensional instructions, the main sequencer tracks the
additional registers during the setup of the architectural register dependencies. This is done
with additional comparators for each of the instructions currently in the sequencer, which
can be smaller than the full register specifier bit-width due to the restricted nature of the
depth and vseg parameters.

These comparators initialize a set of registers that hold a bit for each pair of instructions
and each type of dependency, and register source and destination. For example, there is a
register signifying whether the instruction in sequencer-slot five’s second register input has
a read-after-write dependency on the instruction in sequencer-slot two’s destination register.
These comparisons are only made for instructions active in the main sequencer at the time
of issue and do not need to be updated as more instructions are issued because issue occurs
in program order. In addition, to save hardware resources the individual registers of the
sub-matrix inputs and outputs are not tracked by themselves, rather they are only being
tracked at the instruction granularity.

The granularity of the interlocks based on these dependencies were slowly expanded dur-
ing the implementation. Initially, only one two-dimensional instruction could be active at a
time and it needed to wait to begin execution until it was the eldest instruction. This was
then upgraded to relax the eldest instruction restriction by ensuring all registers were avail-
able. And finally the above scheme fully tracking each sub-matrix instruction’s inputs and
outputs enables several of these instructions to be active at once without data dependency
issues.

The changes to the lane sequencer are more pervasive because the second dimension
progression tracking scheme, called nano-operations, affect the design at multiple stages not
just at issue time. Hwacha’s baseline dependency tracking allows for different portions of a
vector instruction, corresponding to the spatial datapath width for that instruction, called
slices to proceed in parallel. These slices still use the main sequencer’s architectural register
data-dependency tracking to ensure that each element of a vector register is processed in
program order. The lane sequencer is responsible for tracking dynamic dependencies and so
also takes control of tracking the new nano-operation progress for sub-matrix instructions.
This is a counter that advances as each vector length completes for the sub-matrix operations.
Importantly, this does not use the machine-wide vector length as some of the sub-matrix
instructions use a local vector length based on depth. In addition the registers that will
be operated on with these sub-matrix instructions depend on the nano-operation count to
determine which vector register will be used. Finally, there are additional datapath elements,
described in Section 7.2, that have their structural hazards tracked by the lane sequencer.

With these changes the dense linear algebra extensions can efficiently execute while over-
lapping execution as much as possible and using many fewer microarchitectural resources.
The next section will discuss the microarchitecture and datapath used for the local reductions
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during VTMM instruction execution.

7.2 Latch and Reuse for VTMM

In addition to dependency tracking, the microarchitecture needs to enable several new dat-
apath elements for the two-dimension extension. There are two primary datapath enhance-
ments that enable most of the extensions operations. The first of these is a reuse datapath
that causes the result of an operation to be fed back in as an input for the next match-
ing element from the subsequent sub-operation. This allows for a local reduction between
matching element numbers with different sub-operation indexes, as the sequence of outputs
is continually given as an input until the entire set of sub-operations is completed. During
the VTMM instruction the reuse operand is set as the third input which is the sub-matrix
that will be added to the multiplication result. This means that as the first and second
inputs change during sub-operations each vector, or row, of the sub-matrix will be summed
together into the same element number output.

This local reduction is the key to efficiently implementing the sub-matrix operations on
the existing microarchitecture. Because each strip of the vector is processed as a single
pass through the register file banks, consecutive strips based on different sub-operations,
when issued consecutively, can avoid re-reading the reused output from the SRAM banks.
In addition, when the microarchitecture detects this chaining of sub-operations it can also
eliminate all but the final write to SRAM. This reduction of SRAM reads and writes by the
reuse operand and destination operand, respectively, can eliminate up to 7

8
ths of the reads

and write on these operands when depth is set to its maximum value of eight.
The second datapath enhancement, another operand modification called latch, has the

ability to keep an operand constant across elements of a sub-matrix operation while changing
with the sub-operation index. Essentially, this enables the transposition of a vector register
into a single column. This change in operand behavior is limited to depth-length vector
register inputs, and has two primary consequences in the microarchitecture. First, these
operands will be held in special per-bank registers to avoid reading their constant values
out of the SRAM banks. This change is purely an energy-efficiency optimization and not
required for correctness. The second change, necessary for correctness, is that the values of
these latch registers are replicated across the entire physical datapath width while being fed
into the operand crossbar. This replication is important because as a single slice of a single
sub-operation index is processed each register bank will produce many elements of the non-
latched operands. According to the specification of latch operands each of these elements
should receive the same value of the latch operand, and so we must replicate the data not
just temporally to the different elements in banks but also spatially across the entire set of
elements read from a single row of the physical register file. This replication is somewhat
complicated by the configurable precision of vector registers and needs to correctly replicate
the latched operand based on how many of its element type will fit into each row of the
SRAM based register file.
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In the VTMM instruction latching enables the first input to act as the transposed vector,
and is another key to implement the sub-matrix operations. One of the reasons the limit of
the depth parameter is set to eight is that it ensures the widest data type will fit exactly depth-
times into a single row of the register file banks. With this constraint we can ensure that a
single additional bank operand latch is sufficient to hold an entire latch operand. Because a
single operand latch, tracked separately by the lane sequencer, holds the same values for the
entire execution of the sub-matrix operation, the latch operand will reduce its SRAM read
accesses to just 1

depth∗vl/ElementsPerSlice
reads. Both of these operand specializations combine

to greatly reduce the number of SRAM activations for the VTMM operations.
In order to demonstrate that these changes are not purely specialized, the operand mod-

ifications are generalized in the microarchitecture. Each of these modifications can be set up
at decode time for each instruction allowing one of its operands be a latched operand and one
to be a reused operand. Each instruction can set its latch and reuse values independently but
only for one operand each. This would allow other local reductions like partial dot products
or other more exotic functions that make use of these same underlying datapath and control
changes.

7.3 Sub-matrix load micro operations

In addition to arithmetic operations the two-dimensional extension also adds sub-matrix
and short-vector loads and stores. These new operations require very few additions to the
microarchitecture, due to the fact that the VMU is already decoupled from the VXU. The
VMU is already designed to track independent vector lengths because it could be processing
a separate vector-fetch block which could have a different vector length. This enables the
changes for short-vector loads to simply reuse this mechanism at issue time.

For the sub-matrix loads, an additional state machine is added in the issue unit of the
VMU that reissues the different segments of sub-matrix memory operations. In addition
to reissuing each segment, the state machine also must update the base address supplied
to rest of the VMU, which requires an additional virtual-address-sized adder. This adder
becomes the primary additional cost of the sub-matrix memory operations but does not need
to include a multiplier as the segments and their stride are calculated and issued in-order,
so repeated addition is sufficient. In addition to the state machine interacting with many
of the units in the VMU, the VXU also needs to be aware of the state machine to keep the
dependency tracking in sync across segments.

One of the primary benefits of these operations in the microarchitecture is the reduction
of sequencer slots needed to represent a large amount of data movement. Each vector
memory instruction uses three sequencer slots to represent its address checking, predicate
checking, and actual memory operation. With the normal sequencer size of eight slots
only two memory instructions can proceed in parallel. This is particularly limiting once
the VTMM instructions are in place and can consume more than eight full length vector
registers at once. The sub-matrix loads and stores thus allow much more overlap between
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the compute and memory portions of dense linear algebra kernels, than with the VTMM
instructions alone.

7.4 Future Extensions for Machine Learning

As discussed in the previous chapter the dense linear algebra instructions can lead to further
extensions for deep learning. The overlap between these domains is significant and this
results in meaningful overlap in the microarchitectural implementation as well.

One of the simpler extensions of the microarchitectural changes made for VTMM is to
enable other nearly repeated calculations. Using the short-vector latch support for the filter
of a convolution allows for a one-dimensional convolution to be simply implemented as a new
decode table entry with using the fused-multiply-add unit in the standard single-dimension
way but with the first operand being labeled as a latch operand. Because this is a reuse
of existing datapath and control the incremental cost of a convolution instruction is very
minor, only slightly expanding the decoding cost of instructions.

A pooling instruction is another local reduction, similar to VTMM. Depending on the
parameters of the pooling kernel and amount of sub-sampling this local reduction may be
able to reuse some of the datapath of the VTMM instructions along the depth direction.
However, because part of the local reduction is occurring along the vector-length dimension,
if the elements that need combining here are within the same slice then new datapath
elements and potentially buffering registers will be needed to complete the operation. This
additional datapath could be nearly as expensive as the initial VTMM hardware making the
benefits less clear than the convolution operations. It would be worthwhile to see if pooling
causes a significant bottleneck, and whether using VTMM’s depth-wise local reductions as a
portion of the pooling kernel can achieve a significant speedup without additional hardware
for the vector-length reduction.

Finally, the data-width reductions discussed last chapter would have a significant impact
on the peak energy efficiency of the design as small bit-width operations consume quadrat-
ically less energy. In addition, there could be compounding improvements if the physical
register width is maintained and the maximum bit-width operations supported is reduced.
In this case if the microarchitecture only supports 32-bit wide operations then the size of
depth could be expanded to a maximum of 16 improving the reduction of SRAM accesses
from the sub-matrix operations. This configurability isn’t built into the current Hwacha mi-
croarchitecture but would be a very interesting direction to explore as nearly all deep learning
work is done on single-precision numbers or narrower bit-width data-types. These extensions
could have a significant further improvement on Hwacha’s energy efficiency while executing
machine learning workloads, but require more detailed design and analysis to determine the
exact benefits.
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7.5 Physical Implementation Results

Despite the analysis of the microarchitecture showing a large reduction in SRAM accesses it
is important to fully evaluate the design through a VLSI flow to determine the overall system
improvement. As with the latest silicon implementations of Hwacha, Hammer will be used
to map the extended and standard microarchitecture to the same process using the Cadence
tool plugins. This experiment was done on two technologies, TSMC 16nm FinFET and Intel
22nm. Only the 22nm results are reported, but the 16nm experiment showed similar results,
building confidence in the implementation’s ability to provide benefits across technologies.

Previously Hammer had been designed to make the tapeout process easier and more
reusable and so the Hammer flow needed for energy-efficiency results did not exist. A
few additional features were needed in order to make the collection of results easier. First
Hammer, needed to support dynamic power analysis based on a specific application. This
support was added by implementing a plugin for the Cadence power-analysis tool Voltus,
enabling both static power analysis and dynamic power analysis based on compressed activity
factors and full waveforms.

These last two dynamic power analysis inputs also required additional Hammer devel-
opment. The waveform generation facility was already implemented at a basic level while
the activity factor generation had to be implemented from scratch. Both of these inputs
require simulation of the design running a given application. As a result the Synopsys VCS
simulator plugin was extended to include both of these functions, as API options for the
user when running a simulation. In addition, in order to restrict the waveform and activity
generation to interesting parts of longer running applications, support for adding starting
and stopping triggers for waveforms and activity factors was added as an option to Hammer
simulations. With these features, and the support for multiple simulations to be run at once,
a series of dynamic power reports could be generated automatically for a set of applications
and hardware designs.

The final portion of results analysis that was missing from Hammer was the ability to
parse these reports and produce summaries or more readable results. This functionality
was added as an independent set of scripts, which consumes the power analysis reports,
the simulation results, and a place and route report to determine power usage, cycles to
completion, and clock frequency, respectively. With these figures it is possible to determine
the total energy consumed by the design and the number of operations completed. When
reported as a ratio this figure is energy-efficiency on a per application basis for the given
hardware configuration. This energy efficiency figure is the metric that the sub-matrix
operations are trying to improve by reducing the SRAM activations, so graphing this quantity
for the same benchmarks with and without the sub-matrix extension will determine the utility
of the extension.

Before reporting this goal metric, the next two subsections will describe some two of the
core components of energy efficiency, power and performance.
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Power

The sub-matrix extension does not focus on significant performance improvements and so is
unlikely to increase the power consumption the way a traditional processor extension might,
by dramatically increasing the amount of work that can be done per unit time. Instead, the
increase in power from the sub-matrix extension is encapsulated in the additional control
logic and datapath elements that are needed for its operation. This means that the increase
in power will be strongly correlated with the area of these new components, as the control
logic will always be operating and the datapath elements will continue to draw static power
even when not in use.

Most of the increase in area and gates from the addition of the sub-matrix extension
occurs in two areas, additional buffering and latching needed to hold temporary results, and
the control logic needed to track the usage of these buffers and new dependencies added with
new access patterns. It is difficult to count these areas of increase separately but the overall
gate count of the Hwacha instance increased by around 10% with the sub-matrix extension.
This is a considerable increase considering the handful of bank-wide registers that were added
and the control logic changes. A more detailed analysis and additional microarchitecture
would probably be able to reduce this area increase, and therefore improve the benefits of
the sub-matrix extension.

Performance

The sub-matrix extension is able to improve performance on most of the benchmarks where
it is applicable. There are two regions of operation where the sub-matrix extension can
improve performance, depending on the size of the application’s dataset. The first region
occurs at small vector lengths where the baseline microarchitecture is unable to saturate the
memory bandwidth or functional unit’s throughput. The second region is entered once the
size of the computation enables peak performance on the baseline microarchitecture. This
second region has a loose boundary with 90% of peak performance occurring around a vector
length of 128 for double-precision operations, 80% at 64, and 68% at 32, but only 33% at 16
elements.

The primary benefit to performance comes from the ability of the sub-matrix instructions
to effectively extend the vector length for narrow matricies, which only affects the first region.
This effective increase in vector length enables the sub-matrix operations to fully utilize the
memory bandwidth and functional unit throughput despite the small dimensions of the
dataset. Figure 7.1 shows a sweep across different matrix sizes and different precisions,
showing the difference in performance between the baseline implementation and the sub-
matrix extensions. Each pair of bars represents the time to completion for a particular
precision and matrix-dimension GEMM, normalized to the baselines time to completion
for that benchmark. The benchmarks most clearly in the first performance region are the
small-matrix-size half-precision GEMMs which show around a 40% reduction in runtime.
The baseline implementation on these benchmarks are well under 50% utilization and so the
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Figure 7.1: A comparison of the performance for various precision and matrix size GEMMs.

sub-matrix operation extends the vector length and is able to keep the microarchitecture
busy, greatly improving performance. The second region can be seen in the double- and
single-precision 128-by-128 and 64-by-64 matrix-dimension benchmarks which have less than
a 10% runtime reduction, and in the case of the 128-by-128 double-precision version less
than a 1% reduction. In this region the baseline architecture is already able to keep the
microarchitecture almost fully utilized, so the extra vector length from sub-matrix operations
has diminishing returns.

There is also a small increase in the microarchitecture’s ability to keep the long-latency
functional units occupied, irrespective of the vector length. This occurs at the end of a
sequence of sub-operations which would normally coincide with the end of a normal single-
dimension instruction, which sometimes leads to bubbles in the baseline implementation.
This leads to the innermost loop of a GEMM having a few percentage points increase in
utilization of the functional units, even when the machine is otherwise fully utilized.

Another important factor in performance for these kernels is overlapping the memory
operations and arithmetic operations. With the limited amount of in-flight instructions
enabled by 8-entry sequencers, and the desire to maintain in-order issue and completion, the



101

long occupancy of two-dimensional operations can make code-scheduling difficult. A single
sub-matrix load can be responsible for several thousands of memory requests occupying the
sequencer for potentially more than ten thousand cycles. The impact of this occupancy is
somewhat ameliorated by the microarchitecture’s ability to track the dependencies of the
individual rows loaded by the sub-matrix load. However careful code scheduling is still
necessary to achieve good performance on workloads with many sub-matrix operations. For
example reducing the amount of time a kernel spends purely loading data can require a
separate instruction sequence for the first iteration, which uses lower depth loads to enable
compute instructions to enter the sequencer earlier. In addition, traditional double buffering
improves performance more than expected by allowing these long occupancy sub-matrix
memory operations to nearly completely overlap with the compute.

The comparison to the baseline above compares hand-tuned versions of each benchmark
against each other. It shows the benefits of sub-matrix operations in reducing the runtime
of dense linear-algebra computation. However, this analysis excludes a key benefit of the
extension which is the energy-use reduction based on the reduced SRAM activations.

Figure 7.2: A comparison of the energy efficiency for various precision and matrix size
GEMMs.
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Energy

In order to determine the reduction in energy-use the power consumed by each implementa-
tion during the benchmarks needs to be measured. Fortunately, Hammer can use the stan-
dard power analysis tool, Voltus, to perform this measurement for each benchmark on both
implementations. The energy-use of the sub-matrix extension is reduced for two reasons.
The first reason is the reduction in SRAM accesses, and the second reason is a reduction
in run-time that will reduce the time component of energy. Both of these reductions are
counteracted by the increase in static power of the additional gates and storage elements
needed to implement the sub-matrix extension.

This again brings into focus the two regions of performance, long-vector regions and
short-vector regions. Figure 7.2 again shows a comparison of the energy-use between the
baseline configuration and the sub-matrix extension normalized for each benchmark. In the
short-vector region on the far left there are improvements between 40% and nearly 50%.
Comparing these data points to the performance figures, there is a very slight additional
benefit in energy-use from the SRAM access reduction. However in the long vector region
on the far right, the difference is much more impactful. The 128-by-128 DGEMM has less
than a 1% performance improvement but has more than a 15% energy reduction.

Figure 7.3: A comparison of the energy efficiency for various shapes of half-precision GEMMs.

Because the natural dimension of GEMMs mapped to Hwacha is along the rows, when this
dimension is reduced, the vector length is reduced and utilization of the functional units and
memory bandwidth quickly decreases. The sub-matrix extension should be able counteract
this and to see this effect in more detail a comparison of different shapes of matricies is
performed. Figure 7.3 shows three different HGEMMs with the same number of operations
in each and the same inner dimension but with distinct outer dimensions. The first bar on
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the left is the square-matrix version which is the same as the previous figure showing a little
over 40% energy-use reduction. The middle benchmark has a short and squat B matrix with
32 columns and 16 rows, while the right benchmark has a B matrix with only 8 columns
and 16 rows. The size of matrix A is adjusted to ensure the same number of operations
occur in each GEMM. Comparing these two cases shows that the benefit of the sub-matrix
extension is improved as the vector-length of the machine is reduced independent of the total
amount of operations done. This matches the intuition that the relative improvement of the
additional sub-matrix vector-length will be more profound at short vector-lengths.

The performance benefit on short vector benchmarks and energy improvement on long
vector benchmarks make the sub-matrix extension useful for all dense linear algebra work-
loads. In addition, machine learning and thus linear algebra workloads occupy a significant
portion of computing resources in modern applications. Therefore it would be beneficial to
include this sub-matrix extension in all future versions of the Hwacha architecture.
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Chapter 8

Conclusion

The intersection of specialization and programmability are critical to maintaining the desired
efficiency improvements and flexibility modern applications demand in a post-Dennard scal-
ing and post-Moore’s law world. Extending existing architectures that already have many
features that are desired in a fully specialized design enables a middle-ground of efficiency
that can improve on the baseline architecture without the large investment of an entirely
separate design. Continuing to explore this methodology, adapting it to new application
spaces, or new baseline architectures could lead to further improvements in efficiency or per-
formance. This thesis has shown that one such extension of a specific existing architecture
can produce concrete and significant benefits to system efficiency.

8.1 Thesis Summary of Contributions

The primary contributions of this thesis are:

• A detailed review of data-parallel architectural paradigms, including code examples and
discussion of design trade-offs in the programmability-efficiency space (Chapter 2).

• A survey of past and present multi-dimensional architectures, exploring the evolution
from the natural parallelism of early computer systems into the explicit parallelism of
multi-media extensions and the modern deep-learning accelerators (Chapter 3.

• An exploration of modern technology constraints and their affect on data-parallel ar-
chitecture development and implementation (Chapter 4).

• A thorough discussion of four test chips implementing various instances of temporal
vector-fetch architectures highlighting the challenges associated with building many
chips and describing a novel physical design methodology used for two of these chips.
Also presented are the best-in-class results, at the time of publishing, for a pro-
grammable data-parallel extension to RISC-V (Chapter 5).
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• An extension to the Hwacha vector-fetch architecture specialized for two-dimensional
workloads (Chapter 6). An analysis of the implementation complexities and architec-
tural constraints the extension imposes (Chapter 7). And finally, a discussion of the
results of mapping this implementation to two modern technologies, showing significant
improvements in the overall system’s energy efficiency (Section 7.5).

8.2 Future Work

There are many future directions for the work discussed in this thesis. Some of this future
work is alluded to in chapters 6 and 7. A consolidation of that work and other future research
ideas is presented here:

• Further extensions in the two-dimensional application space specifically targeted to-
wards deep learning could offer further energy-efficiency benefits. These ideas are
discussed in sections 6.3 and 7.4.

• The novel physical design methodology used for two of the test chips could still be
improved significantly. Performing more controlled experiments between this method-
ology and more traditional ones would help give the idea more than anecdotal support.
In addition, leveraging design knowledge from the RTL without re-encoding it as lower
level physical design constraints could further elevate the methodology.

• Exploring other popular computational domains could be productive in producing
energy-efficiency improvements for those domains. Also it could produce another pos-
itive example of the principle of this thesis that extensions to temporal vector-fetch
architectures can be performant and efficient.

• If multiple domains can be supported independently on one baseline design then explor-
ing the composition of such extensions would be extremely interesting. Determining
whether the specialization’s when combined are more than the sum of their parts or
whether conflicts reduce overall system efficiency would be a valuable line of study.

• Finally, extensions to other baseline architectures could be explored to determine
whether temporal vector-fetch architectures are unique in their appropriateness for
these kinds of extensions or whether other general data-parallel architectures could
support the same types of extensions.
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