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Abstract

This paper presents a theoretical framework for modeling hu-
man visual attention. The framework’s core claim is that three
mechanisms drive attention: selection, which picks out an item
for further processing; engagement, which tags a selected item
as relevant or irrelevant to the current task; and enhancement,
which increases sensitivity to task-relevant items and decreases
sensitivity to task-irrelevant items. Building on these mecha-
nisms, the framework is able to explain human performance on
attentionally demanding tasks like visual search and multiple
object tracking, and it supports a broad range of predictions
about the interactions between such tasks.
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Introduction

Visual attention plays a critical role in human cognition, al-
lowing us to focus mental processing on task-relevant objects
in the world around us. Unfortunately, despite its obvious im-
portance, attention remains an elusive concept—researchers
cannot even agree on whether it is a process, a resource, or
an effect. To address this challenge, we previously argued
for setting aside ‘attention’ as a holistic concept and instead
exploring the specific mechanisms that support attentive pro-
cessing. We illustrated our approach in computational models
of two attentionally demanding tasks: multiple object track-
ing (Lovett, Bridewell, & Bello, 2019b) and visual search
(Lovett, Bridewell, & Bello, 2019a).

Here, we present a framework that generalizes over our
previous models and lays the groundwork for both model-
ing and predicting human performance on a broad range of
tasks. The framework builds on the core claim that three
key mechanisms support visual attention in humans: selec-
tion, enhancement, and engagement. Selection picks out an
item for further processing, as when participants find a target
during visual search, or when a highly salient distractor cap-
tures attention (Wolfe, 2007; Belopolsky & Awh, 2016). En-
hancement increases sensitivity to either a location or a visual
feature, as when a visual cue at a particular location primes
participants to respond more quickly to future stimuli at that
location (Egly, Driver, & Rafal, 1994; Posner, 1980).

Selection and enhancement are closely interconnected: af-
ter an object is selected, its features and location may become
enhanced, such that similar or nearby objects are likely to
be selected in the future. However, this connection is modu-
lated by engagement, the third mechanism, which provides a
means for individuals to exert top-down control over attentive
processing (Lovett et al., 2019a). After an object is selected,
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if the object is task-relevant, then an individual may choose to
engage with it, triggering enhancement of the object’s loca-
tion and task-relevant features to support further processing
of that object. Alternatively, if the object is task-irrelevant,
the individual may disengage from it, triggering suppression
of its location so that a new object can be quickly selected. In
this way, individuals can influence their attentive mechanisms
so that task-relevant objects are more likely to be selected and
processed in the future.

Our framework distinguishes itself from other theories
of attention in that it combines specificity with generality.
Firstly, we forego the poorly defined term attention to fo-
cus on three specific mechanisms, each of which can be cap-
tured concretely in computational models such as those we’ve
developed previously. Secondly, we propose a general role
for those mechanisms across a broad range of attentionally
demanding tasks. Notably, enhancing an object’s location
or features may (1) cause the object to be selected more
frequently and more quickly (Belopolsky & Awh, 2016),
(2) allow the object to be tracked as it moves (Franconeri,
Jonathan, & Scimeca, 2010), (3) aid in segmenting the ob-
ject out from its background (Gheri, Morgan, & Solomon,
2007), and (4) cause the object to receive more weight during
ensemble perception, when summary statistics (for example,
average size) are computed across all objects in the visual
field (De Fockert & Marchant, 2008). By making this strong
claim about enhancement’s generality, we are able to maxi-
mize our framework’s predictive power, as it applies both to
individual tasks and to interactions among the tasks. Further
research will be required to test the framework’s predictions
and revise it if necessary.

In the following section, we provide further background
on our three attentive mechanisms, including describing two
previous computational models that incorporated these mech-
anisms. Afterwards, we present a theoretical framework in
which selection, engagement, and enhancement direct visual
processing. This framework lays the groundwork for future
computational models that can explain human performance
on a range of attentionally demanding tasks. We close by
considering predictions derived from the framework and di-
rections for future work.

Background

Although visual attention may be poorly defined, there are
well-studied mechanisms that play a clear role in supporting



it. Firstly, selection focuses visual processing on a particular
item—often an object—in the visual field, allowing individ-
uals to identify and respond to the object’s location and fea-
tures. This mechanism plays a central role in visual search
tasks where participants must determine if a target is present
(Treisman & Gelade, 1980; Wolfe, 2007), as well as dis-
crimination tasks where participants must determine whether
a target has a particular feature (Belopolsky & Awh, 2016).
Despite its importance, selection is not directly under the
viewer’s control; rather, it often picks out task-irrelevant but
highly salient distractor objects in a scene (Awh, Belopolsky,
& Theeuwes, 2012), giving rise to the term attentional cap-
ture.

Critically, selection is not purely driven by salience. It is
also influenced by a second mechanism, enhancement, which
increases (or decreases) sensitivity to stimuli. We use the
broad term enhancement to cover both spatial enhancement
(commonly called space-based or object-based attention) and
feature enhancement (commonly called feature-based atten-
tion). For example, after viewing a cue at a particular loca-
tion, participants respond more quickly to stimuli that appear
at that location (Posner, 1980; Eriksen & St. James, 1986).
Furthermore, if the cue appears within the contour of an ob-
ject, participants respond more quickly to stimuli appearing
within that same object’s contour, suggesting that spatial en-
hancement respects the contours of available objects (Egly et
al., 1994). Finally, after viewing a target with a particular fea-
ture (for example, a color), participants respond more quickly
to other stimuli with that feature across the entire visual field
(Theeuwes, 2013).

We view selection and enhancement as interconnected in
a cyclic relationship: selecting an object causes its location
and features to be enhanced, such that nearby or visually
similar objects are more likely to be selected in the future.
However, it is critically important that people be able to ex-
ert some control over this relationship, so that they can in-
crease the chances that task-relevant objects will be selected.
Therefore, we previously proposed that an engagement mech-
anism lies between selection and enhancement (Lovett et al.,
2019a). After an item is selected, participants may choose
to engage with the object if it is task relevant. Engagement
triggers enhancing the object’s location and task-relevant fea-
tures, so that the selection mechanism will maintain focus on
the object. In contrast, participants may choose to disengage
from a task-irrelevant object, which triggers suppressing the
object’s location so that another object can be selected. Crit-
ically, engagement and disengagement do not only influence
processing of the currently selected object—they also affect
processing of future objects that match the selected object’s
location or features.

In the following sections, we describe a computational
model of multiple object tracking that uses selection and en-
hancement, and a model of visual search that uses all three at-
tentive mechanisms. We next consider how one mechanism,
enhancement, may influence visual processing more broadly.
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Modeling Multiple Object Tracking

Multiple object tracking (MOT) is a well-established task
that tests the limits of visual attention in dynamic scenes
(Pylyshyn & Storm, 1988). In the task, participants must
track a set of moving targets while distinguishing them from
identical-looking distractors. Typically, participants can track
4-5 or more moving targets at once, suggesting that attention
can be distributed among these objects, but without a clear
theory of what ‘attention’ is, it is difficult to say what is being
distributed.

In developing a MOT model (Lovett et al., 2019b), we sug-
gested that selection is a serial process that picks out one tar-
get at a time, whereas spatial enhancement is a parallel pro-
cess that can encode the locations of multiple previously se-
lected objects (e.g., all of the targets in the tracking task).
Furthermore, we claimed enhancement is supported by a par-
allel updating mechanism that tracks all target locations as the
targets move by repeatedly matching each target’s enhanced
region to the closest visible object. In this way, multiple tar-
get locations can be tracked in parallel even when the targets
are not selected. However, individual targets can be selected
to identify additional information beyond the target’s loca-
tion, for example using its motion direction to predict where
it will emerge after traveling behind an occluder. Note that if
a participant is performing the MOT task well, distractors are
never selected, and so their locations are never enhanced.

Using our model, we were able to simulate human perfor-
mance in two classic MOT experiments and to explain the
ways targets compete for attention: (1) targets compete for
space because spatially enhancing a target’s location results
in suppressing the surrounding area (Tsotsos, 1995; Desi-
mone & Duncan, 1995), which can interfere with processing
of nearby targets (Franconeri et al., 2010) (Figure 1); (2) tar-
gets compete for time because only one target can be selected
at a time to compute additional information about the target,
such as the direction it is traveling.

Stimulus

Enhanced Regions

Figure 1: Enhanced (red and yellow) and surrounding sup-
pressed (green) regions for four tracked targets. The two
neighboring targets mutually suppress each other.

Modeling Visual Search

In visual search, participants must identify a target object
in a field of distractors. The task is useful for determining
which factors influence selection, making it easier or harder
to pick out the target. In an influential review of the field,



Awh, Belopolsky, and Theeuwes (2012) claimed that three
factors drive this selection: the bottom-up salience of the tar-
get, the top-down goals of the searcher, and the history of
recent selections. This claim was supported by a recent study
that showed all three factors influencing the same search task
(Belopolsky & Awh, 2016). In the study (Figure 2), partic-
ipants had just 100 ms to find a target circle that could be
either blue or orange and to determine the orientation of a
line within it. Participants performed the task more accurately
when all the distractor circles were the same color (bottom-up
salience), they were told which target color to expect before
the trial started (top-down goals), or the target color was a
repeat of the previous trial’s color (selection history).

In developing a visual search model (Lovett et al., 2019b),
we suggested that the select-engage-enhance sequence could
explain the influences of both top-down goals and selection
history. The explanation for selection history is straightfor-
ward: when participants select a target, its color becomes
enhanced, such that a target with the same color may be se-
lected more easily in the future—notably, if a distractor is
selected by mistake, participants quickly disengage from it,
so the distractor’s color does not become enhanced. To ex-
plain top-down goals, we proposed that when participants are
told to expect a particular color, they recall a previous target
that possessed the same color from memory. This recalled ob-
ject representation can be selected just as new objects in the
world are selected, and its color can be enhanced. By combin-
ing this account of selection and enhancement with a simple
salience model, we were able to simulate human performance
on the Belopolsky (2016) search task.

Salient
.(00)

Time @ @
O 0 )

BLUE —

Nonsalient

Figure 2: Visual search example adapted from Belopolsky
and Awh (2016).

Generalizing to Other Tasks

The previous examples show how the select-engage-enhance
sequence can influence object tracking and visual search.
However, neuroscience research has found that both spatial
and feature enhancement increase neural sensitivity in the
early visual cortex (Somers, Dale, Seiffert, & Tootell, 1999;
Roelfsema, Lamme, & Spekreijse, 1998; Saenz, Buracas, &
Boynton, 2002; Zhang & Luck, 2009), suggesting that these
mechanisms may play a far broader role across all of vision.
Here, we consider two tasks that may be affected: figure-
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ground segmentation and ensemble perception.

Figure-ground segmentation involves picking out figures
representing possible objects from the background. This pro-
cess can be immensely complex in cluttered environments,
where the background itself may be full of overlapping ob-
jects. In such cases, it would be valuable if enhancement not
only aided in selecting a task-relevant object from among the
available figures but also aided in segmenting those figures
from the ground. For example, enhancing red could aid in
picking out a red pepper from a bag of fruit, whereas enhanc-
ing a particular motion direction could aid in segmenting out
a person walking through a crowd in which other people are
walking in different directions. To take an example from psy-
chological research, consider the crowding phenomenon, in
which perception of a target object’s features is hampered by
the presence of nearby objects. This effect becomes less pro-
nounced when the nearby objects are less similar to the tar-
get (Gheri et al., 2007; Kooi, Levi, Tripathy, & Toet, 1994).
For example, in Figure 3, it is easier to perceive the cen-
tral object’s orientation when its color is different from the
surrounding objects. This similarity effect could be driven
by enhancement—by enhancing the color white, participants
might more precisely segment out the target object from the
non-white surrounding objects, and thus be able to judge the
target object’s orientation more effectively.

Figure 3: Crowding stimuli from Gheri et al. (2007). The task
is to judge the central figure’s orientation.

Ensemble perception involves viewing a set of objects and
estimating some summary statistic, for example, the average
size, color, or orientation of the objects (Ariely, 2001; Chong
& Treisman, 2003). This process appears to be influenced by
attention (Li & Yeh, 2017), with recently attended objects re-
ceiving more weight in the summary computation (De Fock-
ert & Marchant, 2008). Generalizing from this finding, we
propose that when summary statistics are computed, objects
receive more weight if their locations or features are enhanced
due to a person’s recent selection history.

Modeling Framework

Figure 4 depicts our proposed modeling framework, which
builds on the previous computational models and explores
the roles of selection, engagement, and enhancement in vi-
sual processing. We view this as an implementation-agnostic
framework that could be instantiated in different computa-
tional architectures. In our own research, we are implement-
ing the framework in ARCADIA, an architecture designed for
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Figure 4: Framework for modeling visual attention. Arrows indicate the flow of information.

modeling the interactions among attention, perception, cogni-
tion, and action (Bridewell & Bello, 2016).

In the following sections, we describe the framework using
the visual search example (Figure 2) as a running example.

Feature Processing

Feature processing computes feature information—including
color, brightness, edge orientation, and motion direction—at
every point in the visual field. There are three types of infor-
mation: feature values (e.g., how blue a point is, how bright
it is, or how quickly it is moving in a rightward direction),
local contrast (e.g., how much more blue than its surround-
ings a point is), and feature enhancement, which is based on
similarity to the currently enhanced feature values (Treue &
Trujillo, 1999). For example, in Figure 2, enhancing blue
will strongly affect points along the blue circle, weakly af-
fect points along the purple circle, not affect points with no
bluish hue. All of this processing is computed across the im-
age at multiple scales, consistent with a classic computational
approach to visual salience (Itti, Koch, & Niebur, 1998).

Object Processing

Object processing identifies regions of interest corresponding
to possible objects in the visual scene and encodes a proto-
object representation (Rensink, 2000) to describe each re-
gion. These proto-objects serve as candidates for selection—
if a proto-object is selected, then a full-fledged object repre-
sentation will be constructed to describe the corresponding
object. In the current example, the six colored circles would
each have an associated proto-object, making each circle a
candidate for selection.

Proto-objects are identified through figure-ground segmen-
tation, which picks out maximally large, continuous regions
of constant color in the image (Palmer & Rock, 1994). No-
tably, this process can operate on any of the information pro-
duced by feature processing, for example segmenting out fig-
ures that are brighter, redder, or faster than their immediate
surroundings. Furthermore, after an object has been selected
and its features have been enhanced, segmentation can oper-
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ate directly over the feature enhancement map, segmenting
out figures that closely match the enhanced feature profile.
For examine, consider again the case of a red pepper in a bowl
of fruit. Normally, it would be difficult to segment out the red
pepper due to the large number of overlapping objects. But
in a feature enhancement map where the color red was en-
hanced, there would be only two regions—the enhanced red
region, and everything else—making segmentation easy.

Although such steps are unnecessary in the current exam-
ple, they would be helpful in a more natural search scenario,
for example enhancing the color red to segment out a red pep-
per from the other fruit in a bowl, where the large number of
overlapping objects would otherwise make it difficult to seg-
ment figure from ground.

After proto-objects are identified, a pooling process com-
putes average feature information over all the points lying
within each proto-object’s contour. A similar pooling pro-
cess computes the total spatial and featural enhancement for
each proto-object. These pooling processes provide access to
an object’s average feature values—for example its average
hue and brightness—as well as its overall degree of enhance-
ment. In the current example, the proto-object for the blue
circle would represent its color and indicate that it is has re-
ceived strong feature enhancement.

Finally, each proto-object’s visual salience—the degree to
which it stands out from other items in the scene—is com-
puted via three steps: 1) local contrast within a proto-object
is pooled, indicating for example how blue a proto-object is
compared to its surroundings (Nothdurft, 1993); 2) global
contrast is computed by comparing pooled contrast values
across all proto-objects, indicating for example how blue a
proto-object is compared to all other proto-objects (Madison,
Lleras, & Buetti, 2018); 3) salience is computed by integrat-
ing across all features within a dimension, indicating for ex-
ample whether a single proto-object is the only one whose
color stands out (Itti et al., 1998). If we consider the two
rightmost images in Figure 2, in each case the blue circle is
the bluest object in the scene. However, in the bottom ex-
ample the blue circle is nonsalient because other objects are



unique along other color dimensions, for example, one circle
is the reddest and another is the greenest. In contrast, in the
top example the blue circle is salient because no other circle’s
color stands out.

Global Processing

Operating in parallel with object processing, global process-
ing models ensemble perception by computing average fea-
ture and spatial information across the entire visual scene.
This step uses a feature pooling process similar to the one
in object processing, but points are weighted by their degree
of spatial and feature enhancement.

Although the visual search task does not require ensem-
ble perception, an alternate task that did would be biased by
the pattern of enhancement. For example, an estimate of the
average location of all circles would be biased towards the
enhanced, blue circle’s location.

Selection

Selection picks out one of the proto-objects to make it avail-
able for further processing. To facilitate this process, proto-
objects are scored based on the sum of their salience and
their (spatial and feature) enhancement. To prevent proto-
objects from being selected the moment they appear, each
proto-object’s score accumulates over time until it exceeds a
threshold, with the accumulation rate depending on the over-
all score. For example, the salient blue circle has a higher
overall score than the nonsalient blue circle (it benefits from
both salience and feature enhancement); therefore, its score
accumulates at a greater rate, and it will be selected more
quickly after onset.

After a proto-object is selected, a corresponding object rep-
resentation is encoded in visual short-term memory (VSTM),
which stores records of recently selected objects. VSTM
makes object representations available for further reasoning,
for example confirming that the selected circle is blue and
identifying the orientation of the line inside it.

Engagement

Engagement can be handled through task-specific rules,
which associate particular object properties with an engage
or disengage action. These rules trigger when an object is en-
coded in VSTM. For example, a rule might indicate that when
a blue or orange circle is selected, the system should engage
with that circle, whereas if any other circle is selected, the
system should disengage from it. An addition rule might in-
dicate that the system should disengage from the gray fixation
circle in the middle of the display, to avoid being distracted
by it.

Engage actions can specify which particular feature dimen-
sions are task relevant. In the current example, the color and
orientation dimensions are relevant, because color is used to
evaluate whether a correct circle has been selected, and ori-
entation is used to judge the orientation of the line within the
circle.
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Enhancement

Finally, enhancement responds to engage/disengage actions
by either enhancing or suppressing an object’s location and
enhancing the object’s task relevant features. This mech-
anism operates over all recently selected objects stored in
VSTM, but the strength of the enhancement decays over time
unless an object is reselected. In the current example, after
the blue circle is selected and engaged with, its location and
color will be enhanced, resulting in two effects: 1) the blue
circle will continue to be selected while it remains visible; 2)
other blue circles will be selected more frequently and more
speedily in the immediate future.

Enhancement interfaces with a parallel updating mecha-
nism that tracks the locations of all VSTM objects as they
move, even when they are not currently selected. However,
this mechanism has no effect on the current example task be-
cause all objects are stationary.

Predictions

Because the framework posits a general role for the three
attentional mechanisms, it supports novel predictions about
how different attentionally demanding tasks should interact.
These predictions would not be possible with a theory that fo-
cused on attention’s role in a specific task, such as multiple-
object tracking or visual search. Here, we consider two such
predictions related to inhibitory tagging, a phenomenon in
which, after performing a visual search task, participants re-
spond more slowly to stimuli that appear at the locations of
former search items (Klein, 1988; Thomas & Lleras, 2009).
According to our framework, this phenomenon occurs be-
cause visual search involves selecting and quickly disengag-
ing from search items (or groups of items) until a target is
discovered. This disengagement process causes the search
items’ locations to be suppressed, to prevent reselecting a
previously searched location. Because this suppression may
linger after the task concludes, participants will be slower to
select objects that appear at former search locations.

For our first prediction, we claim that if visual search were
replaced with a task that encourages engaging with stimu-
lus locations, then the inhibitory tagging effect would be re-
versed, creating a facilitory tagging effect. For example, sup-
pose identical stimuli were used, but the first task was to mon-
itor all objects and respond if any one of them changes. Un-
like visual search, this task would require engaging with the
stimuli, resulting in their locations being enhanced. As a re-
sult, participants should respond more quickly to stimuli that
appear at the locations of formerly monitored items.

For our second prediction, we claim that inhibitory and fa-
cilitory tagging should not only influence how quickly a stim-
ulus is selected but should also influence how strongly stim-
uli are weighted during ensemble perception. After a visual
search task, if participants are instructed to determine an aver-
age feature value over a stimulus array, then stimuli at former
search locations should receive less weight. But after a mon-
itoring task, stimuli at formerly monitored locations should



receive more weight. Hence, the task a person is perform-
ing should have far-reaching effects, influencing attention and
perception on both that task and future tasks.

Future Work

Despite its explanatory and predictive power, the proposed
framework is far from complete. Two important directions
for future work are modeling perceptual actions and exploring
cross-modal interactions.

First, perceptual actions allow an individual to exert control
over perception and attention, directing processing towards
task-relevant objects. The present framework includes two
such actions—engage and disengage—but there are many
others, including mental actions like scanning along a path
(Ullman, 1984) and physical actions like eye and head move-
ments. By integrating more of these actions into our frame-
work, we can capture the active, strategic nature of perception
(Tsotsos & Kruijne, 2014).

Second, vision is not the only modality that informs visual
attention. Information from other modalities should be able
to influence vision, as when you hear an approaching car and
look in its direction. To explore this interaction, we are cur-
rently developing a cross-modal interface in which, after an
object captures attention in the auditory modality, eye move-
ments and spatial enhancement direct visual processing to the
object’s corresponding visual location.

Conclusion

Visual attention, as a holistic concept, is difficult to define,
presenting a challenge to researchers who want to study it,
model it, or write papers about it. Here, we have presented an
alternative approach, in which we identify a set of attentive
mechanisms and explore how they interact during attention-
ally demanding visual tasks, including multiple object track-
ing, visual search, feature discrimination in crowded environ-
ments, and ensemble perception. This approach gives rise to a
computational framework that can explain a broad set of psy-
chological results while producing testable predictions about
visual tasks and the interactions between them. We hope this
framework will aid other researchers in developing theories
and models of attention, both in vision and across cognition.
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