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Generation of Dithianyl and Dioxolanyl Radicals Using 
Photoredox Catalysis: Application in the Total Synthesis of the 
Danshenspiroketallactones via Radical Relay Chemistry

Yifan Deng†, Minh D. Nguyen†, Yike Zou‡, K. N. Houk‡, and Amos B. Smith III*,†

†Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, 
Pennsylavania 19104, United States

‡Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles 
E. Young Drive East, Los Angeles, California 90095, United States

Abstract

Visible-light-induced generation of dithianyl and dioxolanyl radicals via selective hydrogen atom 

transfer (HAT) has been achieved. This radical relay tactic enables remote C(sp3)—H 

functionalization to permit rapid access to polyol and spiroketal segments, and in turn has been 

exploited as a key synthetic construct in the total synthesis of the danshenspiroketallactones. The 

conformational stability of the danshenspiroketallactones has also been defined via experiments 

and DFT calculations.

Graphical Abstract

Anion Relay Chemistry (ARC) comprises a one-flask multicomponent union tactic 

employing solvent-controlled Brook rearrangements.1 Central to the ARC tactic are 

dithiane-containing linchpins, in which the dithiane moiety serves as an acyl anion 

equivalent for the construction of carbon—carbon bonds.2 The significance of this synthetic 

tactic comprises the efficient rapid assembly of natural products with diverse architectural 
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features, ranging from polyols, spiroketals, and polyene macrolides to polypropionate 

scaffolds, and as such has been a recent theme in our laboratory.3

The multicomponent ARC union protocol relies on [1,4]-Brook rearrangements4 wherein an 

initially generated alkoxy anion can be triggered to undergo in situ 1,4-silyl group migration 

to afford a new carbanion (Scheme 1a), which in turn can be readily trapped by diverse 

electrophiles. The resulting coupled products provide ample bandwidth for downstream 

functionalization to furnish various 1,3,5-polyol motifs. Brook rearrangements involving 

1,5-negative charge migration, although recently studied by us and others,5 are for the most 

part synthetically not viable, primarily due to the harsh conditions required to initiate the 

silyl group migration.

Recently, radical relay chemistry has been developed to functionalize remote C(sp3)—H 

bonds via 1,5-hydrogen atom transfer (1,5-HAT).6 For example, initially generated 

alkoxyl6a–c or aminyl radicals6d–f are known to undergo in situ 1,5-or 1,6-HAT to furnish 

carbon radicals via a photoredox catalysis cycle. As such, this reactivity migration, although 

a challenge via remote Brook anionic rearrangement, would comprise an important 

extension and complement to the ARC tactic (Scheme 1b). We therefore explored 1,5- and 

1,6-HAT radical relay chemistry to access various 1,4,7-polyol or 1,4,8-polyol fragments via 

visible-light photoredox catalysis.

Spiroketals possessing [5.5]- or [5.6]-oxygen architectures are abundant in a wide array of 

natural products possessing diverse biological activities (Figure 1).7 Examples include: 

cephalosporolide I (1),8 isolated from a marine-derived fungus that inhibits both 3α-

hydroxysteroid dehydrogenase and xanthine-oxidase; berkelic acid (2),9 a fungal metabolite 

that exhibits activity against ovarian cancer; aquilarinoside A (3),10 the principal component 

of Aquilaria sinensis, a highly valuable agarwood; and danshenspiroketallactone (4)11 and 

the epimer (5),12 both isolated from Salvia miltiorrhiza, known as Danshen, which is 

employed in traditional Chinese medicine as a remedy for renal failure, stroke and heart 

disease. Most synthetic strategies to construct the core architecture of such [5.5]- or [5.6]-

spiroketals rely on acid-catalyzed cyclization of 1,4,7- or 1,4,8-polyol precursors (or their 

equivalents). However, compared to 1,3,5-polyols, synthetic methods to access 1,4,7-polyol 

precursors remain limited, usually requiring multiple oxidation states or protecting group 

manipulations.7 An effective catalytic method to rapidly access such precursors, especially 

via direct C(sp3)-H functionalization, would thus be of considerable interest.

Toward this end, the reaction sequence based on Chen’s cleavage–translocation–allylation 

sequence was proposed as outlined in Scheme 2. We envisioned that, under visible light, the 

photocatalyst fac-Ir(ppy)3 could be excited and reduced by the Hantzsch ester, known to 

furnish a reduced photocatalyst, which would reduce N-alkoxyphthalimides (6) to yield 

alkoxyl radicals (Scheme 2) via the Hantzsch ester radical cation.6a,13 The resulting alkoxyl 

radical A could then undergo a 1,5-HAT reaction to generate either a dithianyl or dioxolanyl 

radical B, which comprise carbonyl or methylene radical equivalents, that in turn could 

engage with an acceptor (7a) to yield coupled adducts. Although dithianes and ketals are 

extensively employed in various reactions, dithianyl and dioxolanyl radicals generated via 

photoredox catalysis are much less studied.14
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To initiate this study, we selected 2-[3-(1,3-dioxolan-2-yl)propoxy]-isoindoline-1,3-dione 6a 
(Table 1) as a model substrate and 2 equiv of methyl 2-[(phenylsulfonyl)methyl]-acrylate 

(7a) as the radical acceptor. After extensive screening, we found that employing fac-Ir(ppy)3 

as the photoredox catalyst in THF led to coupled product 8a in 45% yield (entry 1), whereas 

other photocatalysts gave only lower yields (entries 2–3). Interestingly, the choice of solvent 

proved crucial to achieve efficiency for the 1,5-HAT process. Less polar ether solvents, such 

as 1,4-dioxane or methyl tert-butyl ether (MTBE), led to higher yields, along with less of the 

quenched byproduct 8aa′ (entries 4–5). Further investigation of the reaction solvent 

revealed that a combination of MTBE and dioxane (9:1) provided the best results, with an 

isolated yield of 8a of 73% (entry 6), employing 2 equiv of the acceptor 7a. Pleasingly, the 

loading of the acceptor (7a) could be decreased to 1.5 equiv and still resulted in a 68% yield 

(entry 7). Control experiments demonstrated the essential role of photoredox catalyst and 

visible light for this reaction (entries 8–9).

With these conditions established, we examined the scope of the reaction with respect to the 

structural diversity of the N-alkoxyphthalimides (Table 2). Dioxolanyl, dioxanyl, dithiolanyl, 

and dithianyl radicals in turn can be successfully generated under the above conditions, 

leading to allylated products 8a–8d in moderate to good yields (61–73%). Importantly, steric 

hindrance at the α- or β-position did not influence the reaction. Instead, the Thorpe—Ingold 

effect appears to increase the efficiency of 1,5-HAT to provide higher yields of 8e (80%) and 

8f (72%). Also noteworthy, the generated dioxolanyl radical was tolerated with a stereogenic 

center at the α-position (6g), without erosion of the enantiomeric excess (97% ee). We were 

also pleased to discover that with 6h the dioxolanyl radical could be generated by exploiting 

1,6-HAT, leading to the C—H allylated product 8h in 59% yield. This result demonstrates 

the potential of this method for the construction of various [5.6]-spiroketal scaffolds. In 

addition to aliphatic substituents, aromatic substituents are also tolerated in this HAT 

reaction. With a phenyl group at the α-position (6i), a small decrease in the yield of 8i was 

obtained. We further tested whether the radical translocation could proceed at an ortho 
benzylic carbon. However, when 6j was treated via our standard protocol with 2 equiv of the 

radical acceptor, only a trace amount of desired product 8j was observed. The major result 

was a pair of diastereomers 8l in a 1:1 ratio (Table 2b). To elucidate the structure, oxidation 

with Dess-Martin periodinane afforded the bisalkylated ketone 8j′ in 56% overall yield, the 

structure of which was assigned by extensive NMR/HRMS analysis. The interesting 

structure of 8j′ revealed that a tandem 1,5-HAT/1,6-HAT sequence had occurred in the 

reaction (Scheme 3). This unique radical relay reaction, different from the radical process 

with aliphatic substrates (6a–6i), is presumably favored by both the conformational 

restraints of intermediate C (Scheme 3) and the resultant more stable benzyl radical D. 

Decreasing the acceptor loading to 1 equiv significantly increased the yield of monoallylated 

products, leading to benzyl C—H functionalized products (8j–8k) in 51–54% yield. This 

result is important because it provides a novel tactic to construct benzannulated spiroketal 

moieties, which will be demonstrated as the key step in the total synthesis of 

danshenspiroketallactone 4 and epi-danshenspiroketallactone 5 (vide infra).

We next explored various radical acceptors including allyl sulfones and Michael acceptors 

(Scheme 4). Here we discovered that allyl sulfones with ethyl ester or cyanide as the 

Deng et al. Page 3

Org Lett. Author manuscript; available in PMC 2020 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



electron-withdrawing group react smoothly with the dioxolanyl and dithianyl radicals to 

furnish C(sp3)—H allylation adducts 9a–9d in good yield (70–78%). Best results were 

obtained when 2 equiv of the acceptors were employed. However, with phenyl as the 

electron-withdrawing group, the radical addition of the dioxolanyl radical to allyl sulfones 

was not successful (9e); only quenched byproduct 8aa′ (Table 1) was observed. Acceptors 

with remote functional groups, such as alkynes and dienes, were also tested; 9f and 9g were 

obtained in 56% and 75% yield respectively, thus providing a scaffold amenable to 

additional synthetic applications. Interestingly, Michael acceptors (7g–7k) readily reacted 

with the dioxolanyl radical to yield alkylated products (9h–9l), although a slightly more 

polar solvent was required (MTBE/dioxane = 1:1). In these reactions, Hantzsch ester served 

as the reductant to reduce the ensuing radicals. For example, aryl acrylates with different 

functional groups on the aromatic ring (7g–7j) were explored; all were well tolerated to 

deliver the desired products 9h–9k in 53–63% yield. The dioxolanyl radical also underwent 

radical addition to 2-methylenemalonate 7k to furnish product 9l in 81% yield.

To demonstrate the utility of this radical relay chemistry, we devised a synthesis of the 

danshenspiroketallactones 4 and 5 (Scheme 5). Both danshenspiroketallactones 4 and 5 
comprise monobenzannulated [5.5]-spiroketals, a rare spirocyclic unit in natural products.15 

The first total synthesis of the danshenspiroketallactones 4 and 5, reported by Brimble and 

co-workers in 2012,16a employed directed metalation and a late-stage oxidative 

spiroketalization.16b In both the original isolation paper12 and the Brimble synthesis, a 

mixture of 4 and 5 was obtained without further separation. Here, we record the total 

synthesis of the danshenspiroketallactones 4 and 5 utilizing [1,5]-radical relay chemistry, 

wherein the generation and functionalization of the dioxolanyl radical plays a key role in the 

construction of the 1,4,7-polyol precursor (8k, Scheme 5). Noteworthy here, the pure format 

of 4 and 5 were obtained with high performance liquid chromatography (HPLC).

Our synthesis began with commercially available 5-methyl-1-naphthoic acid 10 (Scheme 5). 

Palladium(II)-catalyzed ortho C—H activation17 followed by a base workup furnished an 

ortho-hydroxymethyl-naphthoic acid, which in turn was elaborated to 11 by a two-step 

sequence involving oxidation and methylation. The ethylene acetal was then installed in 12, 

followed by reduction and a Mitsunobu reaction with N-hydroxyphthalimide to yield 6k that 

sets the stage for the envisaged [l,5]-radical relay reaction sequence using photoredox 

catalysis.

Pleasingly, alkoxyl radical generation followed by 1,5-HAT under the above conditions 

using photoredox catalysis converted 6k to 8k in a 54% yield, which in turn was subjected to 

hydrogenation using Wilkinson’s catalyst to deliver 13. Upon exposure to LiAlH4 and 

acidification, the ester group in 13 was reduced and the resulting diol underwent cyclization 

to furnish two diastereomers, 14 and 15, in 2:1 d.r. as an inseparable mixture. Formation of 

the minor diastereomer is presumed to result from the weak dependence of [5.5]-spiroketals 

on the anomeric effect.7 Completion of the total synthesis of danshenspiroketallactones 4 
and 5 was then achieved via benzylic oxidation of the mixture of 14 and 15. Notably, by 

employing peroxide 16,18 the α-alkoxy benzyl carbon could be chemoselectively oxidized in 

80% yield, thus providing a mixture of danshenspiroketallactones 4 and 5. Separation of 4 
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and 5 via silica gel chromatography proved not possible, because epi-
danshenspiroketallactone 5 was found to undergo rapid isomerization to 4 on silica gel.12 

Pleasingly, employing HPLC, we were able to separate successfully the mixture and 

obtained pure danshenspiroketallactone 4 and the epimer 5, with 1H and 13C NMR data 

identical in all respects with the published data.11,12,16a Noteworthy, this is the first time that 

pure synthetic danshenspiroketallactones (4 and 5) have been obtained. The total synthesis 

was achieved in 10 steps with an 11% overall yield.

Not surprisingly, treatment of the synthetic sample of either 4 or the mixture of 4 and 5 (1:1) 

with TFA in CH2Cl2 led to a mixture of 4 and 5 in a ratio of 1:0.4. To evaluate the 

thermodynamic stability of 4 and 5, DFT calculations were conducted.19 The optimized 

structures are shown in Figure 2. Isomer 4 is 0.8 kcal/mol more stable than 5, in agreement 

with the observed experimental ratio. Analysis of the optimized structures (Figure 2; 4 and 

ent-5) reveals that the methyl substituent (C17) achieves an equatorial conformation in both 

diastereomers. In the case of 4, this can be achieved in such a way that the conformation of 

the tetrahydrofuran ring has mostly staggered arrangements about the CC bonds (see 

Newman projection below 4), whereas 5 has eclipsing interactions that destabilize this 

conformation.20

In summary, we have designed and validated a new visible-light-induced protocol to 

generate dithianyl and dioxolanyl radicals via 1,5- or 1,6-HAT. The resulting radicals engage 

in conjugate additions to achieve formal allylation and alkylation. This radical relay reaction 

provides an efficient method to construct various 1,4,7-polyols or spiroketals and, in turn, 

was utilized as the key synthetic tactic in the total synthesis of danshenspiroketallactones 4 
and 5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Natural products containing [5.5]- or [5.6]-spiroketal skeleton.
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Figure 2. 
Conformational structures of 4 and 5 (ent-5 is Shown). Newman projections along the C13–

C16 bond are shown.
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Scheme 1. 
Anion Relay Chemistry and Proposed Radical Relay Chemistry
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Scheme 2. 
Proposed Reaction Sequence
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Scheme 3. 
Possible Mechanism for the Generation of 8j′
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Scheme 4. 
Substrate Scope for the Radical Acceptors
aReaction conditions: 6a or 6d (0.2 mmol), 7 (0.4 mmol), Ir(ppy)3 (1 mol %), Hantzsch ester 

(0.3 mmol), MTBE/dioxane = 9:1, rt, blue LED, 5 h. Yields of isolated products are given. 
bMTBE/dioxane = 1:1.
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Scheme 5. 
Total Synthesis of the Danshenspiroketallactones
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Table 1.

Optimization of Reaction Conditions

entry photocatalyst solvent yield
a
 (%) of 8a

1 fac-Ir(ppy)3 THF 45

2 Ru(bpy)3(PF6)2 THF 38

3 Ir(ppy)2(dtbbpy)PF6 THF 34

4 fac-Ir(ppy)3 dioxane 61

5 fac-Ir(ppy)3 MTBE 65

6 fac-Ir(ppy)3 MTBE/dioxane = 9:1 76 (73)

7
b fac-Ir(ppy)3 MTBE/dioxane = 9:1 68

8 – MTBE/dioxane = 9:1 trace

9
c fac-Ir(ppy)3 MTBE/dioxane = 9:1 trace

a
Reaction conditions: 6a (0.1 mmol), 7a (0.2 mmol), photocatalyst (1 mol %), Hantzsch ester (0.15 mmol), 1 mL solvent, rt, blue LED, 5 h. The 

yield of 8a was determined by 1H NMR analysis. Isolated products are obtained by flash chromatography with yields given in parentheses.

b
7a (0.15 mmol).

c
No light.
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Table 2.

Substrates Scope for the N-Alkoxyphthalimides

aReaction conditions: 6 (0.2 mmol), 7a (0.4 mmol), Ir(ppy)3 (1 mol %), Hantzsch ester (0.3 mmol), 2 mL of MTBE/dioxane = 9:1, rt, blue LED, 5 

h. Yields of isolated products are given. b2 mL of THF. c6j or 6k (0.2 mmol), 7a (0.2 mmol), Hantzsch ester (0.24 mmol), 2 mL of dioxane.
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