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ABSTRACT OF THE THESIS

Design optimization approach to estimate the second life lithium-ion batteries life cycle
prediction

by

Kwangwoo Yeum

Master of Science in Mechanical and Aerospace Engineering

University of California San Diego, 2022

Professor Jan Kleissl, Chair

Lithium ion (Li-ion) batteries degrade with cyclic usage and storage duration. Batteries

close to their end-of-life can no longer fulfill their performance requirements, and have an

increased likelihood of catastrophic failures. Different usage conditions, complex manufacturing,

and lack of essential data contribute to the complex degradation of second life batteries and hinder

accurate analysis of battery capacity degradation. Therefore, a quick and precise diagnosis of used

batteries has become an important research area for battery management, specifically in large-

scale power storage systems. This thesis illustrates potential approaches for diagnosing battery

degradation, considering both a physical-based and a data-driven model. The main objective is to

x



boost the degradation prediction with the data-driven model by leveraging artificially generated

data from the physical model.

The approach is divided into two steps with two different battery cell models. A gradient-

free optimization approach is introduced with the most widely used battery model (21700),

which comes with published data of its battery cell structure, to optimize inside-of-the-cell

structure. We estimate the physical battery cell structure to acquire artificial data and compare the

performance of the estimated battery against the original battery. Then the degradation prediction

is investigated with the A123 battery, which has extensive and high quality of battery degradation

data but lacks exact cell physical structural information. We acquire artificial degradation data by

estimating the physical battery cell structure with the optimization approach, and then utilize these

data to boost the original battery life cycle prediction. Linear regression and backpropagation

methods (resilient backpropagation, conjugate backpropagation, and bayesian regularization

backpropagation) are applied along with various test matrices and cross-validation to compare

the life cycle predictions. The life cycle prediction was first conducted with only the actual data.

Then the artificial data was added to the training sets to conduct the life cycle prediction. The

life cycle prediction error with actual data was improved with resilient backpropagation and a

sigmoid activation function by 4 - 6% compared to linear regression. Backpropagation performs

better on test sets containing a large amount of extreme values than the linear regression. Lastly,

the prediction results with artificial data and actual data were compared by using the regression

and resilient backpropagation. Adding artificial data reduced the life cycle prediction error

by 0.3 - 1.3% in the regression method; there was a greater improvement when the life cycle

prediction error with actual data was over 15%. However, with the backpropagation method,

adding artificial data resulted in larger prediction errors.
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Chapter 1

Introduction

1.1 Motivation

The nearly exhausted fossil energy sources, the overall population growth, and the

significant number of electric devices in the world have necessitated the search for alternative

sources of energy and research in recycle energy [12]. Every year new technology amazes

human beings, and we enjoy our developed presents. However, these trends have various side

effects that damage the environment. Due to large amounts of energy consumption, reducing

energy loss has become one of the main issues regarding our planet that people are determined

to resolve. Recently, Lithium-ion batteries (LIB) have drawn the most interest compared to other

battery types due to their long life and high energy density following the growth of global battery

demand [61]. Many researchers make an effort to reuse wasted battery cells in the energy grid, as

well as improve the battery performance to withstand the future global battery demand, shown in

figure 1.1. Figure 1.2 estimates the second life battery capacity to increase as the global electrical

vehicle demand grows.

One major challenge for the second-life LIB research is predicting the battery life cycle

accurately [45]. There are many on going efforts to understand the degradation process and

physical LIB model. However, diverse aging mechanisms, significant manufacturing variability,

varying operating conditions, and lack of actual battery lifetime data remain significant challenges

to improve our understanding of the second life battery degradation [54][14]. Furthermore, aging
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Figure 1.1. Global battery demand by application and percentage breakdown from 2018 to 2030.
Figure from [2].

tests for the new battery can take up to six months to understand degradation performance [10],

which also makes it difficult to forecast the battery degradation. For this reason, we studied a

design optimization method to estimate the unknown physical structure, like a second life battery

cell, and utilize the result for a battery life cycle prediction.

Figure 1.2. Estimation of the second life battery (SLB) capacity increases due to the global
battery demand in electrical vehicle (EV) from 2018 to 2030. Figure from [19].
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1.2 Thesis organization

This thesis studies both a physical-based and a data-driven model for diagnosing battery

degradation. The main objective is to boost the life cycle prediction with the data-driven model by

leveraging artificially generated data from the physical model. A design optimization approach

to estimate inside of the cell structure is introduced with a 21700 (LGM50) battery model with

published data of its battery cell structure. Then the degradation prediction is explored with

the A123 battery, which has extensive and high quality of battery degradation data but lacks

cell structural information. This paper is organized as follows: Chapter 2 covers the basic

overview of the physical and data-driven models in battery degradation research and explains the

battery degradation modes. Chapter 3 illustrates the battery life cycle prediction with various test

matrices and methods with actual data and generated data by an electrochemical battery model.

In Appendix C, we describe a design optimization approach as a tool to understand the unknown

cell structure of the battery used in chapter 3.

3



Chapter 2

Overview of the battery life cycle predic-
tion methodology and the Li-ion physical
battery models

2.1 Battery life cycle prediction methodology

The LIB life cycle has been a crucial subject of battery performance since its introduction

to the commercial vehicle [13]. Figure 2.1 illustrates the comparison of different lifetime model-

ing methodologies. First of all, the data-driven models are often built with fitting mathematical

equations or trained with learning algorithms. These black-box modeling approaches can forecast

the whole life in terms of battery capacity fade. For example, Severson et al. used data-driven

black-box modeling to predict the battery life cycle with 10% error. They extracted the capacity

feature in the early life cycle and performed prognostic using machine learning algorithm [43].

Fortunately, the data-driven models in figure 2.1 require little or no knowledge of the battery

chemistry, but a significant amount of characterization data is necessary to structure the model

response. The model performance is also heavily reliant on the quality and quantity of the

investigated data set.

On the contrary, LIB electrochemical models can identify the loss of lithium inventory

and active materials by analyzing the key degradation mechanisms such as solid-electrolyte

interphase and lithium plating [32]. The Doyle-Fuller-Newman (DFN) model is a popular
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electrochemistry-based lithium-ion battery model which represents solid-state and electrolyte

diffusion dynamics and accurately predicts the current and voltage response [11]. Many model

proposals and parameter studies were introduced following this model, such as the single-particle

model (SPM) and single-particle with electrolyte model. However, we cannot consider all the

side effects of battery usage using the LIB physics-based model and have a lack of applicability

to practical purposes.

Figure 2.1. Methodologies of the battery life time prediction with electrochemical, semi-
empirical, and data-driven models. Each strength and weakness is described in the figure. Figure
from [3].

There has been remarkable progress in estimating the behavior of Li-ion batteries through

data-driven and electrochemical models. The data-driven model offers a flexible statistical

framework that yields applicable predictions but lacks a physical description of degradation

modes which can restrict its reliability and have a disadvantage of a significant time needed

for generating experiment data [17]. Physics-based models provide a mechanical framework
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to capture the influence of degradation physics on electrochemical behavior, but challenges

include difficult-to-identify degradation modes. It has become clear that the electrochemical and

data-driven models provide distinct but complementary qualities to each other [4]. Thus, based

on their properties, the following step would be investigating a proper blend for an enhanced

battery life cycle prediction. It is facilitated as a proper approach for a better battery life cycle

prediction to develop a combined model for LIB life cycle studies.

Figure 2.2. Flow chart of the thesis structure. The main objective is to implement artificial data
from electrochemical models to boost the life cycle prediction.

We have learned various methodologies of predicting Li-ion battery life span, however,

predicting the performance of a second life battery is not achieved by one of the previously

introduced methods. Due to the limited information on a second-life battery cell structure

using physical models and increased time to complete experiments with data-driven models, we

approach the design optimization to estimate the battery cell structure with published material

data and apply those data to predict battery life cycle. Figure 2.2 shows the flow chart in this

thesis to help the battery life cycle prediction. This chapter discusses a standard electrochemical

model of a single battery cell and the diversity of battery degradation modes. The detailed

battery model and simulation solver information are addressed in Appendix A. The optimization

methodology is described in Appendix B.
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2.2 Physical electrochemical battery model

Battery cell degradation has been typically considered as the nonlinear behavior due to

the nonlinear governing equations with variables of the cell voltage, energy density, and power

output [60]. In addition, factors such as activation polarization, concentration polarization, and

internal resistance contribute to the cell’s potential capacity drop and impact the degradation

[35]. Thus, it is not easy to simplify the degradation problem equations for the LIB. However, a

cell model has to account for all the major internal processes occurring in design structures to

understand the LIB behavior accurately.

2.2.1 Lithium ion battery cell models

A typical LIB is composed of 1) electrodes (anode and cathode), 2) a separator between

the two electrodes, and 3) an electrolyte that fills the remaining space of the battery. The anode

and cathode can store Li-ions. Energy is collected and delivered as Li-ions which travel between

these electrodes through the electrolyte. Figure 2.3 shows the standard battery cell structure.

The detailed cell model in figure 2.4 contains a homogeneous electrode formulation

with a concentrated solution theory [33]. The porous electrodes consist of solid active materials

and liquid electrolytes. The state variables solved in the model are constructed from the ion

concentration in the electrolyte and solid matrix, the current density in the electrolyte, the

interfacial current density at the solid matrix surface, and the potentials in the electrolyte and

solid phases [33]. These state variables, in turn, provide the cell properties that are used to

evaluate the cell energy density and power output. The governing equations with the associated

transport parameters are defined in all three regions of the electrochemical cell: the positive

electrode (cathode), the negative electrode (anode), and the separator. The influence of porosity

is accounted for using Bruggeman’s relation for spherical particles [6].

Many electrochemical models, such as the Doyle-Fuller-Newman (DFN) and the Single

Particle Model (SPM) models, have been developed throughout the years. The DFN model

7



Figure 2.3. Standard Li-ion battery cell structure. Li-ion cell mainly consists of the anode,
separator, cathode, and electrolyte. Figure from [55].

covers the most detailed electrochemical reactions, including the complex electrode diffusion

from Newman [32]. However, many researchers have been using SPM models, which contain a

relatively simplified governing equation, yet are still applicable with lower accuracy. Marquis

et al. has improved the accuracy and range of applicability of the SPM model by including

electrolyte effects [27]. This model, known as the Single Particle Model with electrolyte (SPMe),

allows the user to quantify the error in the reduced model and lets users analyze essential

electrolyte reactions [27][31]. The SPMe model simplifies the solid phase Li concentration in

each electrode, and the electrode concentration is uniformly distributed in time. In our paper,

the SPMe model with Pybamm open source is implemented for the simulation. A detailed

description of this model has been presented in [23].
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Figure 2.4. A structure of a physical battery model and governing equations. The governing
equations consist of diffusion in electrolytes, charge conservation, butler-volmer kinetics, and
diffusion in particles. Figure from [21].

2.2.2 Degradation modes of lithium ion battery

Various mechanisms are related to each other within the process of battery degradation.

Figure 2.5 represents the complexity of the degradation process, which can be driven by the time,

temperature, voltage, current load, mechanical stress, etc. Solid Electrolyte Interphase (SEI)

degradation mechanisms are the most knowledge-demanding during the battery cycle, and are

followed by many kinds of research. Figure 2.6 shows the schematic illustration of the 2D SEI

degradation and the SEI thickness increases during the Li-ion travel [3]. This SEI formation is an

irreversible process that consumes cyclable lithium and is one of the primary causes of lithium

loss in the cell [49]. However, still, the formation and growth mechanism of the entire model of

SEI are yet to be understood entirely due to their complex structure and lack of reliability in the

experiment, which has required an empirical trial-and-error process [52][58].

9



Figure 2.5. Degradation modes in a Li-ion battery. Various factors cause the degradation
mechanism. Figure from [5].

To better understand LIB degradation, the battery physical cell model should include a

physics-based interaction between electrode active material and electrolytes, which influences

the SEI thickness and lithium loss. In the SPMe model we covered in 2.2.1, various assumptions

exist to explain SEI layers, such as neglecting the solid deformation and constant reaction rate

from the electrolyte, and other sources of the capacity fade can be neglected [37]. We use

’First-order solvent decomposition kinetics’ in the SPMe model to generate degradation data,

which assumes the rate of SEI formation is proportional to the concentration of the reacting

electrolyte species in a battery cell [15]. Recently, Sulzer et al. proposed an adaptive inter-cycle

extrapolation algorithm that can simulate the overall life cycle of Li-ion batteries, and shown the

approach to work well in a Single Particle Model with SEI formation and loss of active material.

In his approach, he used SEI kinetic rate constant as one of the key degradation parameters in his

accelerated battery lifetime simulations [46][57]. Thus, we generated artificial data by assuming

these information as key variables. In this thesis, the SEI growth mechanism is considered for

10



the loss of lithium inventory to generate the artificial degradation data [52][34].

Figure 2.6. A schematic illustration of the SEI layer behavior with active materials in a battery
cell. (a) A schematic illustration of the 2D representation in a battery (b) shows the illustration
of SEI layer reaction with active materials on anode in the battery ageing mechanism. Figure
from [3].
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Chapter 3

Battery life cycle prediction and perfor-
mance assessment with artificial data

3.1 Early prediction of a battery life cycle with artificial
data

3.1.1 Background

The latest data-driven approaches have shown great possibilities in forecasting the battery

life cycle using battery performance features. Severson et al. illustrated a fairly accurate life cycle

prediction with the first 100 cycle data of the discharge voltage curve. In their study, the 124

A123 (APR18650M1A) cells were cycled between full charge and full discharge with identical

nominal temperatures and discharge C-rates but varying charge C-rates. Severson et al. selected

six extracted features from early life cycle capacities in A123 battery and used those features for

linear regression to predict a battery life cycle. Additional researches have been performed to

improve the prediction result of this A123 battery life cycle with a machine learning. Fei et al.

showed six different machine learning models by generating a set of 42 features from Severson et

al.’s A123 battery data [16]. However, in these studies, we noticed that data partitions are needed

as an improvement due to an imbalanced sample distribution. To improve this imbalanced data

distribution, we suggested generating the artificial data from a physical model with a design

optimization approach and battery degradation assumptions. We added a cross-validation with

linear regression and compared the proposed feed-forward neural network to understand actual

12



data performance. Then we used the generated artificial data to examine the boost effect of the

prediction. This work aims to understand the proposed approach which can be beneficial for

degradation prediction rather than improving the prognostics algorithm itself.

3.1.2 Data-driven prediction of the battery life cycle and feature
extraction

For this chapter, we used Phosphate/graphite A123 battery degradation data from [43]

for the battery life cycle prediction and compared it with the artificial degradation data. Severson

et al. generated a data set of 124 cells with life cycles ranging from 150 to 2,300 using 72

different fast-charging conditions where the end of battery life is defined as 80% of the nominal

capacity. The commercial Phosphate/graphite cells were cycled under varied fast-charging

conditions and identical discharging conditions. Figure 3.1(b) shows the strong correlation in

Severson et al.’s proposed feature using the early cycled data such as the variance of the capacity

(Q100 −Q10). This correlation stands for the charge-discharge voltage curves containing more

essential information for the degradation prediction than simply providing the capacity of the

cell [43].

Table 3.1. Extracted features of the A123 Li-ion battery from Severson et al. which work as a
guideline to generate artificial data with the electrochemical battery model.

Extracted feature Contents
1 Capacity log variance of difference cycles 10 and 100
2 minimum of log variance of difference cycles 10 and 100
3 Slope of linear fit to capacity fade curve from cycles 2 to 100
4 Intercept of linear fit to capacity fade curve from cycles 2 to 100
5 Discharge capacity at cycle 2
6 Average charge time over first 5 cycles
7 Minimum internal resistance between cycles 2 and 100
8 Internal resistance difference between cycles 2 and 100

The cycle-to-cycle evolution of Q(V), the discharge voltage curve as a function of voltage

for a given cycle, is a vital feature. In figure 3.1(a), the capacity fade accelerates near the end of
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the life while the capacity fade is negligible in the first 100 cycles. The proposed eight essential

features from Severson et al. are shown in table 3.1.

(a) (b)

Figure 3.1. A degradation curve and a graph representing linear relations between log-based
life cycle and variance of capacity differences in the early cycles of the A123 battery. (a) shows
the degradation curve of discharge capacity throughout the cycle. (b) represents the linear
relationship between the log-based life cycle and the variance of capacity difference between
10th and 100th cycle. Data from [43].

3.1.3 Artificial data generation and feature extraction

In this chapter, we estimate the unknown physical battery cell structure of an A123 battery

by adopting the design optimization method covered in Appendix C. Unlike the 21700 battery

cell introduced in Appendix C, the published data of the cell structure for the A123 battery is not

available. Likewise, other second life batteries are not equipped with these kind of published data

in general because the battery parameterization is not a simple task as illustrated in Appendix A.

Thus, we started from referencing the published data of the cathode and anode with same material

parameters from Prada et al. and Chen et al [38][8]. Then we implemented the optimization

method described in Appendix C as a tool to estimate the battery cell structure. Additional

adjustment constraining the specific required power (over 1,850W/kg) to keep the nominal

capacity was made. As a result, we acquired the below result (Table 3.2) for the degradation

simulation.
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In chapter 2.2.2, we discussed the complex degradation modes of Li-ion batteries. There

were three main degradation modes as shown in figure 2.5. Among those modes, we mainly

consider the loss of lithium inventory for generating artificial data in this thesis. Table 3.3 shows

the essential parameters of the SPMe model to understand the degrading performance referenced

from [41]. We noticed that the degradation result largely depends on SEI kinetic rate constant in

the simulation and used as a variable like we discussed in 2.2.2.

Table 3.2. The result of the estimated A123 battery cell structure by the optimization approach.
The chemical parameters of battery materials came from Prada et al. and Chen et al. Detailed
parameters can be found in [38][8].

Optimized Parameter Unit Anode Cathode Separator
Material Graphite LiFePo4 polyolefin
Electrode Density kg/m3 1657 2341 397
Electrode thickness µ m 54 24 12
Electrode Porosity 0.25 0.3 0.4
Collector thickness µm 10 19 18
Collector Density kg/m3 8960 2700
Overall length cm 178
Overall width cm 6.49

Figure 3.2 (a), (b) shows both artificial and real data in one figure. The SEI kinetic

rate constants are selected to 1.0 · 10−16, 1.5 · 10−16, 2 · 10−16, 2.5 · 10−16, and 3 · 10−16. We

observed an offset exists due to a not perfect battery structure estimation and degradation related

assumptions, however, we can see the linear relationship remains. Based on this linearity, we

generated the degradation data to improve the imbalanced data set and planned to see the boosting

effect for the life cycle prediction in the following section. We adopted Severson et al.’s charge

and discharge policy for the degradation cycle simulation. The cells were cycled with various

fast-charging policies (Supplementary Table 9 from [43]) but discharged following one identical

policy. The voltage cutoffs (C/50) used in this work were determined by the recommendation of

the A123 manufacturer.
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Table 3.3. SEI variables for the battery degradation simulation. Detailed parameters can be
found in [25][46].

SEI default variables Unit Value
Initial SEI thickness m 2.5 ·10−9

SEI kinetic rate constant m·s−1 1 ·10−16

EC initial concentration in electrolyte mol·m−3 4541.0
Outer SEI solvent diffusivity m2·s−1 2·10−18

SEI open-circuit potential V 0.5

(a) (b)

Figure 3.2. A degradation curve (figure 3.1) with artificial data added. The black line represents
actual data of the A123 battery and blue line is artificial data generated by a physical battery
model. The SEI parameters were selected from table 3.3. The SEI kinetic rate constant for each
artificial data is 1.0 ·10−16, 1.5 ·10−16, 2 ·10−16, 2.5 ·10−16, and 3 ·10−16, respectively.

3.2 Machine learning algorithm for the battery prediction

3.2.1 Linear regression and artificial neural network

Researchers often use linear regression to characterize the relationship between the inputs

and outputs of both natural and social sciences. An artificial neural network (ANN) is also

often used for prediction and classification. ANN is a computational model formed by hidden

units interconnected by weights that can be updated according to the quality parameters, which

evaluate the proximity between the critical response and the one obtained [59]. The networks are

16



arranged in layers; the first layer takes an input and the last layer produces outputs. The middle

layers have no connection with the external world, and that is why they are called hidden layers

[20]. ANN consists of a feed-forward neural network such as backpropagation. Based on the

backpropagation, the recurrent neural networks and convolutional neural networks are widely

used to understand huge black box models. The neuron and a basic model of ANN structure are

shown in figure 3.3.

Figure 3.3. A neuron and a basic model of an artificial neural network structure. Figure from
[18].

3.2.2 Test matrix and life cycle prediction methodology

Test matrix

The life cycle prediction is conducted in this chapter following table 3.4. There are four

different test modes with different partitions of test data. These four test modes with different

percentages of test sets are to see the impact of the training data size on the test result. Test mode

4 used 30% of data for the test set, which has a similar test partition to Severson et al. and Fei

et al. [43][16]. The cross-validation is conducted in each test with five folds, and the results

are averaged by the number of folds as shown in figure 3.4. This cross-validation exclusively

partitions the test, validation, and train data set. The performance matrices are evaluated by

two types of errors—the root mean square error (RMSE) and mean absolute percentage error

(MAPE).
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Table 3.4. A test matrix for the life cycle prediction. Different partitions of test, valid, train data
are constructed. Cross-validation was applied per trial, and each test mode consists of a total of
five trials.

Test Mode Mode 1 Mode 2 Mode 3 Mode 4
Test set 10% 15% 20% 30%
Validation set 10% 15% 20% 20%
Training set 80% 70% 60% 50%
Cross validation fold 5 5 5 5
Trial 5 5 5 5

The equation below demonstrates the calculation of the RMSE:

RMSE =

√
(
1
n
)

n

∑
i=1

(yi − xi)2

The percentage average of all errors was calculated to quantify the results. The vector

containing the absolute difference between the actual and estimated output values is calculated

for the error percentage. The equation of the MAPE is :

MAPE =
100%

n

n

∑
t=1

∣∣∣∣yi − xi

yi

∣∣∣∣

Figure 3.4. Structure of the cross-validation. The error is calculated by the average of all folds.
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Methodology with a linear regression model

Severson et al. presented the regression methods to understand the LIB life cycle

performance [43]. His method contains model fitting and selection and employs the regularization

technique for a secure prediction. This linear regression method was brought to this thesis as a

baseline of the battery life time prediction.

yi = wT xi +β

ŵ = minw(||y−Xw−β ||2)2 +λPα(w)

where,

λPα(w) = 1−α

2 ||w||22 +α||w||1

A linear model of the layout was proposed where yi is the foreseen number of cycles

for battery i, xi is a set of feature vectors for battery i, and wT is a set of model coefficient

vectors, and β is a scalar intercept. The linear model is regularized using the elastic net (net58)

by MATLAB to handle high correlations between the features. A penalty term is combined

to the least-squares optimization equation to avoid overfitting. The training data is used to

determine the hyperparameters α and λ , and choose values of the coefficients, wT . The above

regularization solves the problem for α between 0 and 1, and λ , and penalizes the weight to

make it small in proportion to its size.

Methodology with the artificial neural network

We propose an additional approach using a backpropagation feed-forward neural network.

ANN is an interconnected group of nodes, which is frequently used in engineering applications.

This method is also a widely used and efficient data-driven modeling tool for dynamic nonlinear

systems and identification for its universal estimation capability to capture complex behaviors

[50]. The ANN consists of a number of neurons, training functions, and the activation (transfer)

functions. In figure 3.5 (a), each circular node represents an artificial neuron, and an arrow
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represents a connection from an output of one neuron to an input. The input layer is composed

of electrochemical features extracted from the differential analysis by Severson et al.

(a)
(b)

Figure 3.5. Schematics of the feed-forward neural net structure. (a) shows a general structure
for a hidden layer and neural network. Figure from [36]. (b) represents the architecture of
backpropagation.

This thesis implements three different optimizing methods and four different activation

functions using a feed-forward net from MATLAB and the stochastic gradient descent as an

optimizer. We used a three-layer fold structure with five hidden layers each in figure 3.5 (b)

with the limit of 500 epoch. These parameters of the layer structure were empirically selected.

Conjugate gradient backpropagation (CGP), Bayesian regulation backpropagation (BR), and

resilient backpropagation (RPROP) were selected for training function. The transfer functions

(activation fuction) we use are log-sigmoid (logsig), tan-sigmoid (tansig), linear transfer (purelin),

and positive linear (poslin). Figure 3.6 shows the activation function for ANN training.

Bayesian regularization minimizes a linear combination of squared errors and weights. It

modifies the linear combination so that the resulting network has good generalization qualities at

the end of the training [26]. In MATLAB, BR updates the weight and bias values according to

Levenberg-Marquardt optimization [30]. The Marquardt adjustment parameter has defaulted to

0.005. The decrease and increase factors are 0.1 and 10, respectively—the default value of the

minimum performance gradient is 10−7. The RPROP training algorithm eliminates the harmful
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Figure 3.6. The four activation functions (transfer functions). Sigmoid, Tanh, ReLU, and linear
activation functions are used for each backpropagation training function.

effects of the magnitudes of the partial derivatives. Only the sign of the derivative can determine

the direction of the weight update since the magnitude of the derivative does not affect the weight

update. The default value of the learning rate is 0.01. The increment in weight change and

decrement in weight change are 1.2 and 0.5, respectively. The initial weight change is set to

0.07, and the maximum weight change is 50.0. In the conjugate gradient (CGP) algorithms, a

search is performed along with conjugate directions with the second-order gradient. We use

Polak-Ribiére variation of conjugate gradient. For the line search parameter of a conjugate

method in MATLAB, we specified four parameters: the scale factor that determines a sufficient

step reduction (α), the scale factor that determines a sufficiently large step size (β ), a parameter

to avoid small reductions in performance (γ), and an initial step size in the interval location step

(δ ). α , β , γ , and δ are set to 0.001, 0.1, 0.1, and 0.01, respectively. The rest of the undefined

parameters in this section follows the default setting in the MATLAB net function. More detail

information for training function is described in Appendix B.
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3.3 Result and discussion

Battery life cycle prediction with actual data

This section will discuss the result of life cycle prediction with the methods described in

section 4.2. First of all, we validated the result of Severson et al. by using the same test partitions

provided from Severson et al. which were split into 40, 41, and 43 samples for test, validation,

and training set, respectively. Additionally, due to a small size of training samples in Severson et

al.’s partition, we randomly distributed the validation sets and training sets with a ratio of 20:80

from 50:50 to observe the performance improvement. Figure 3.7 shows an intuitive prediction

result between the ANN (BR with Tanh) and the linear regression models. Being close to the

centerline of scattering points corresponds to a better prediction result. Table 3.5 shows the

averaged result of five runs for each linear regression and the backpropagation method.

Figure 3.7. A direct comparison between linear regression and backpropagation. The blue circle
shows the life cycle prediction by ANN, and the red cross represents the life cycle prediction by
linear regression. The test set configuration follows Severson et al.’s specified data sets.

In table 3.5, we can see two test trials with different training and validation set ratios.

Test 1 represents the result of the same partition from Severson et al. We can observe the best

test performance, 9.92%, which is close to the value of the previous author provided (9.98%).
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However, the validation MAPE (21.81%) is more than double of the train MAPE (9.84%). We

can assume that the test sets were too easily compared to overall training as mentioned above,

and the over-fitting issue might exist for the training sets. We run an additional trial (Test 2)

with a different ratio by allocating more data for training. Test 2 result shows the over-fitting

improved, however, the overall test error increased.

Table 3.5. Result of linear regression and ANN with Severson et al.’s specified partitions of train,
test, and validation data. Test 1 has a ratio of 50:50 between valid and train set which equals to
Severson et al.’s test set partitions. Test 2 has a different ratio of 20:80 between valid and train
set. The unit of RMSE and MAPE are cycles and %, respectively.

Configuration TEST VALID TRAIN
ERROR RMSE MAPE RMSE MAPE RMSE MAPE

Test 1 ratio 50 : 50
Regression 210 9.92 181 21.81 88 9.84
ANN (BR) 177 10.48 123 14.45 259 7.56

Test 2 ratio 20 : 80
Regression 257 13.20 216 11.32 99 11.49
ANN (BR) 185 11.27 137 7.79 60 8.67

Furthermore, we performed the backpropagation with the specified data set. As we

can see a small volume of training set in test 1 in table 3.5, the backpropagation with hidden

layers does not perform well compared to linear regression. This result shows that using various

hidden layers with the small training sets might not be appropriate. In test 1, we achieved an

error of 10.48% and could see the prediction overfits to the training set. The validation MAPE

(14.45%) is more than double of the train MAPE (7.56%). In test 1 and 2, the delta, the difference

between the MAPE of training and validation set, was improved from 6.89 to 0.88. Thus, the

overfitting was improved and the backpropagation exhibited an enhanced result in terms of

the error compared to linear regression. In this study, we have three different train functions

(RPROP, BR, and CGP) and four different activation functions (poslin, logsig, purelin, and

tansig) introduced in 3.2.2. From test 1 and 2, the candidates of training functions are RPROP
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and BR based on the stability and error result in figure 3.8. However, in this trial with Severson

et al.’s test configuration in table 3.5, we observed that errors fluctuated only by changing the

different ratio of data sets. For this reason, unlike Severson et al, we conducted further prognosis

with cross-validation following table 3.4.

(a) (b)

Figure 3.8. Heatmap results of MAPE using ANN networks with the specified test set configura-
tions following table 3.5. (a) shows the MAPE for the test set 1, and (b) represents the MAPE
for the test set 2 in table 3.5. The train function and transfer function are shown on each axis.

Table 3.6 shows the result of cross-validation. In comparison with table 3.5, we randomly

distribute the data sets to understand the prediction performance. Two different methods (Linear

regression and backpropagation) were directly compared by the same data partitions in each trial.

In test mode 1, we obtained the best training RMSE, an average of 134 cycles (11.12% MAPE),

and test RMSE, an average of 170 cycles (16.58% MAPE) with the linear regression. For the

back propagation methods we mainly compared the best result RPORP and BR methods. The

training RMSE and test RMSE for RPROP with logsig is an average of 81 cycles (7.44% MAPE)

and 126 cycles (11.66% MAPE), respectively. The training RMSE and test RMSE for BR with

tansig is an average of 60 cycles (5.43% MAPE) and 128 cycles (11.12% MAPE), respectively.

The rest of each test mode’s result is exhibited in table 3.6. Table 3.6 shows that the RPORP and

BR methods result in lower errors than linear regression. Moreover, the lower MAPE standard

deviation was achieved in backpropagation. The MAPE standard deviation for linear regression
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in each test mode is 14.4, 11.3, 10.1, and 9.5. In each test mode, the MAPE standard deviations

for the RPORP and BR were 6.2, 5.2, 5.7, 5.1, and 4.3, 6.2, 5.7, 5.7, respectively.

Figure 3.9 (a) shows the regression test result of the overall trials. Figure 3.9 (b) shows

the direct comparison by the overlaid graph between the regression and RPROP. We can observe

that the linear regression has a weakness in predicting the complex test sets comparing to RPROP.

Table 3.6. Test result of the regression and backpropagation with cross-validation. The test
follows test matrices in table 3.4 in 3.2.2. The provided results are the two best performance
combinations of ANN from figure 3.8, the resilient backpropagation with sigmoid activation
function and Bayesian regularization backpropagation with Tanh activation function. The units
of RMSE and MAPE are cycles and %, respectively.

Configuration TEST VALID TRAIN
ERROR RMSE MAPE RMSE MAPE RMSE MAPE

Test Mode 1
Regression 170 16.58 200 18.32 134 11.12
ANN(RPROP) 126 11.66 137 11.26 81 7.44
ANN(BR) 128 11.12 130 10.28 60 5.43

Test Mode 2
Regression 149 13.55 196 16.44 133 11.58
ANN(RPROP) 107 8.52 129 9.72 81 7.57
ANN(BR) 110 8.78 120 8.42 65 6.51

Test Mode 3
Regression 155 14.54 146 12.29 142 11.88
ANN(RPROP) 109 9.63 112 9.31 88 8.05
ANN(BR) 114 9.43 105 8.46 80 7.07

Test Mode 4
Regression 171 17.00 166 18.06 143 11.54
ANN(RPROP) 123 10.89 105 9.81 97 8.36
ANN(BR) 155 11.77 100 9.02 80 6.70

In conclusion, with cross-validation, we find the regression might be weak to predict the

unknown and difficult test sets while backpropagation shows a more stable prediction outcome.

Still, linear regression could be powerful with a small volume of training data sets. Also,

an additional regularization such as dropout can be implemented to improve the overfitting.
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(a)

(b)

Figure 3.9. Overall test result from test modes 1 to 4. Results of 100 test sets are shown (five
runs of the five-fold cross-validation for four different test modes). (a) represents the error of
linear regression. (b) shows the overlaid graph comparing the linear regression and the RPORP
with a sigmoid. The blue dashed box is the area where the error is over 30% which can be
considered as a difficult test set. In this box, the linear regression shows a relatively high error
than RPROP meaning that the linear regression has a weakness in difficult test sets than resilient
backpropagation.
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However, we can see that there is a possibility to use backpropagation in the battery life

cycle prediction research with a sufficient amount of training data. In our experiment, the

backpropagation achieved a lower prediction error when assigning more than 50 training sets

out of 124 degradation data sets comparing to linear regression. Moreover, the result could be

comparable with the feed-forward neural network result from Fei et al [16]. Fei et al. conducted

the life cycle prediction using the same A123 data with similar test partitions as the test mode 4

in table 3.6. Fei et al. shared the optimized test result with Adam optimizer. Comparing to his

result, a resilient backpropagation with a logsig activation function decreased the MAPE from

17.1% to 10.89%.
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Battery life cycle prediction with artificial data

Until now, we performed the studies only using actual data. This section discusses the

life cycle prediction with artificial data. In 3.1.3, we generated the discharge capacity graph by

varying specific SEI kinetic constant and discussed the influence of these parameters. Figure

3.10 shows the low life cycle artificial data obtained by modifying the SEI kinetic constant. The

SEI kinetic constants are randomly distributed between 4 ·10−16 to 6 ·10−16 for generating low

life cycle degradation data. The charging policy varies following Severson et al.’s experiment

policy. As we can observe a linear relation trend in the figure 3.10, we can expect an improved

life cycle prediction result by adding this artificial data to training sets.

(a) (b)

Figure 3.10. A degradation curve with artificial data having low life cycles added. Artificial data
with low life cycle was generated from varying SEI variables. The black line represents actual
data, and blue line shows artificial data having low life cycles. We generated the data to improve
the imbalanced data for the machine learning algorithm. (a) and (b) corresponds to the figure 3.1
(a) and (b), respectively.

Figure 3.11 shows the Pearson correlation graph between actual data and the combined

data of actual and artificial data between log-based life cycle and log-based variance of the

difference between the 10th cycle and 100th cycle. In figure 3.11, we can see the Pearson value,

which defined as a reference point to discuss the result in this thesis, dropped from -0.94 to

-0.91. Note that we generated artificial data using the single-cell model simulation, and we have
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not acquired all the Severson et al.’s feature data in table 3.1. The internal resistance, internal

resistance difference, and the average time in table 3.1 are not used for the training.

(a) (b)

Figure 3.11. Pearson correlation graphs for artificial data and actual data. Graphs show the
correlation of the log-based life cycle with log variance of the difference between the 10th cycle
and 100th cycle. (a) represents the result of A123’s actual data. (b) represents the result of
combining data (original and artificial data). The difference of the Pearson values between the
two is 0.03.

We have two experiments with different artificial data generation sets. Each of experiment

has 10% of 124 data sets and 20% of 124 data sets added to training sets. Table 3.7 shows the

directly compared result of the battery life cycle prediction between actual data and artificial data

using linear regression. We used the test matrices covered in table 3.4. Tests with four different

partitions were conducted to check the influence of the training data size on the test result. By

adding artificial data, we observed the averaged error reduction of 0.49 - 1.34% with boost (10%)

and found the averaged error reduction of 0.37 - 1.32% with boost (20%) in table 3.7.

Figure 3.12 compares the averaged five trials of actual data and two generation sets of

artificial data (10% and 20%). Figure 3.12 (a) and (b) shows the result with the linear regression

and resilient backpropagation, respectively. All results of test modes were improved with linear

regression while less precise results were obtained with resilient backpropagation. Figure 3.13
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Table 3.7. Test results of regression with artificial data. Two experiments with two different
ratios of data augmentation were performed. Each of 10% and 20% of the total datasets was
added to the training set to form augmentation of artificial data. The units of RMSE and MAPE
are cycles and %, respectively.

Configuration TEST VALID TRAIN
ERROR RMSE MAPE RMSE MAPE RMSE MAPE

Test Mode 1
Regression 158 17.41 173 22.18 153 13.30
Boost (10%) 162 16.51 164 21.08 141 13.72
Boost (20%) 147 16.78 165 21.32 135 13.00

Test Mode 2
Regression 164 16.81 149 16.22 157 13.49
Boost (10%) 163 16.22 138 15.24 141 13.88
Boost (20%) 152 16.14 140 15.40 135 13.19

Test Mode 3
Regression 164 14.95 192 14.37 151 13.46
Boost (10%) 156 14.46 162 13.46 138 13.55
Boost (20%) 151 14.58 164 13.61 132 12.82

Test Mode 4
Regression 187 17.64 190 18.29 148 13.06
Boost (10%) 173 16.27 173 16.97 135 13.16
Boost (20%) 167 16.32 175 17.21 128 12.36

represents all trial results from figure 3.12. The results were sorted into two classes. One is

when the original error is above 15% , and the other is when the original error is below 15%.

In figure 3.12 (a), we found the error was mainly improved when the error was over 15% in

linear regression with actual data. However, no distinct characteristic was observed when using

resilient backpropagation.

This section analyzed the effect of artificial data using the linear regression and resilient

backpropagation. We observed the improvement in linear regression with artificial data; however,

we found an unstable prediction in resilient backpropagation. We assume that this result comes

from insufficient information from artificially generated data. As discussed in 3.1.3, the internal

resistance, internal resistance difference, and the average time in feature extraction in table 3.1

are not used in degradation prediction in this section. This is because the current simulation
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(a) (b)

Figure 3.12. Averaged error bar plots for each test mode between actual data and artificial
data. See table 3.4 for detailed data partitions for each test mode. (a) represents the result of
linear regression. (b) represents the result of resilient backpropagation. We observed the overall
improvement in regression with artificial data and less precise results with backpropagation.

do not consider the parallel battery charging and discharging policy, which the actual battery

followed. However, we used the same feed-forward network architecture to directly compare

actual data test and artificial data test with reduced features. The averaged backpropagation

prediction error increased by 1 - 2 %, comparing to the result of life cycle prediction with actual

data from table 3.6, which can be interpreted as having a not efficient architecture with reduced

feature. Furthermore, since we only used five out of eight features from table 3.1, we also

noticed a lack of training data to use backpropagation. Linear regression, however, was mainly

impacted by the linear appearance in discharge capacity in figure 3.10 corresponding to Severson

et al.’s algorithm that selects the most-influencing six features out of eight. To sum up, the

efficiency of backpropogation is proportional to the number of the features while the number

of features for linear regression is limited. In the future, we can perform additional studies to

overcome the current limit but first we need to optimize the feed-forward layer architecture for

the backpropagation with artificial data. Second, we can generate artificial data with battery

pack-level simulation (parallel charge and discharge) with high computing power to obtain

internal resistance and average time data.
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(a)

(b)

Figure 3.13. Sorted bar plots of the percent error for regression and backpropagation using
actual and artificial data. (a) shows the bar plot sorted into two performance levels. One has
over 15% original error. The other is below 15% original error. (a) represents the result of
the regression method. When the original regression had a higher error (over 15%), the boost
decreased the percent error of the regression model; however, the boost had no impact on the
model performance in the lower percent error class. (b) shows the direct comparison of the result
of the resilient backpropagation. Unlike figure 3.13 (a), no distinct feature was observed.
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Chapter 4

Conclusion and future work

The growing demand for electrical devices and increasing need of power infrastructure

are propelling the growth of the energy storage industry. Abundant battery models are available

in the market, however, the unknown and non-linearly degrading behavior of a second life battery

creates a big hurdle to reuse it for a new application. Therefore, this thesis focused on the

overall procedure of a life cycle prediction using two different battery models considering both

the electrochemical and data-driven models. We first selected a 21700 cylindrical battery cell

(LGM50) with published data of its detailed battery cell structure. Then we introduced the design

optimization approach to estimate inside of the battery cell and compared it with its actual data

in Appendix C. By using optimization, we reduced the time of iterations for estimating unknown

battery cell structures and performances. On the basis of the estimated structure of a battery,

we discussed the methods of predicting battery life cycle with data-driven model and generated

artificial data.

In the beginning, we only used actual data to validate the linear regression and three

different backpropagation methods. We noticed the necessity of additional prognostic and

conducted cross-validation with four different test matrices. Resilient backpropagation with

a sigmoid activation function performs well compared to linear regression from the previous

author. According to the experiment, backpropagation generally takes more computing time than

linear regression; however, it could improve battery life cycle prediction. Lastly, we implemented
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the life cycle prediction by adding two different ratios of artificial data. With 10% of artificial

data, the linear regression was improved by 0.49% - 1.34%. With 20% of artificial data, the

error was improved by 0.37% - 1.32%. We observed that the error was mainly enhanced when

the regression with actual data was over 15%. However, we encountered a larger and unstable

prediction error with the backpropagation by adding artificial data.

Currently, two distinct predicting battery degradation approaches are widely used for

lifetime prediction: the data-driven and physical models. Data-driven methods find a correlation

between input and output, not depending on the underlying physical understanding. On the

other hand, physical models, which are constructed from physical principles, require relatively

less experimental data than the data-driven methods. Unfortunately, neither of these strategies

can accurately predict the life cycle of a complex battery alone. Therefore, a hybrid approach

combining the data-driven and the physics-based approach is needed. For the second-life batteries,

it is even harder to get complete information on the inside of the battery’s physical structure, and

it takes significant time to experiment with the data-driven model. Therefore, with more studies,

it is desired to reduce the duration of data-driven experiments for life cycle simulation, and the

advancements in the battery life cycle prediction can bring a more practical design, cost-effective

maintenance, and additional opportunities for second-life battery applications.

4.1 Future work

This thesis addresses a potential approach for the better understanding of the second life

battery degradation and future usage. However, still, there are many limits we can overcome,

and more studies are required. First, the optimization constraints could be more realistically

considered such as cost, power requirement, and manufacturability to better estimate the inside

of the unknown battery cell. For example, the battery cell’s power density should be appro-

priately selected because electronic devices have a specific power requirement that must be

satisfied. Likewise, the material cost would also be a critical factor to design a battery model.
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Therefore, optimizing a specific energy density while maintaining a specific power requirement

and estimated cost requirement would improve the battery cell structure estimation. Moreover,

some design variables, such as a particle size of cathode materials, are not used due to the

computing efficiency according to the analysis of variance from Xue et al. [56]. However, those

design variables have the possibility to contribute the battery degradation. Thus, a more accurate

estimation of the cell can be achieved by adding aforementioned design variables with high

computing power. Second, we simulated the artificial degradation data using a single cell-based

model by assuming SEI kinetic constant in 3.1.3. It is currently not generalized and conducted

how to measure the SEI parameters during the aging cycle even though we understand the SEI

growth is the primary factor for battery degradation. Thus, the life cycle prediction could be

improved by parameterizing the SEI variables and using actual SEI parameters. Lastly, we

observed a limitation for backpropagation due to a lack of artificial data such as the internal

resistance and average charge time due to the simulation limit. With high computing power,

generating parallel charge-discharge simulation would enhance the life cycle prediction using

artificial data.
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Appendix A

Physical battery model parameterization

Parameterization for the battery architecture is not a simple task, and the tear-down

process of a cell have a possibility to damage the cell component. Chen et al. shared the parame-

terization protocols for the LGM50 21700 commercial cell and published battery parameters[8].

He introduced analytical methods to determine information on the geometry, chemistry, and

electrode microstructure. Equations of the SPMe model parameterization are shown in figure A.1.

The Python Battery Mathematical Modeling (PyBaMM) package [44] was used to solve these

SPMe model simulations, and Dualfoil.py [11] from John newman was modified to use in this

thesis. This open source can solve continuum models for batteries using both numerical methods

and asymptotic analysis. A more detailed way to parameterize the battery for an electrochemical

model can be obtained from [8] [1][38].
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Figure A.1. Description of the SPMe model. Figure from [8]
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Appendix B

Optimization methodology

Optimization methods are used in diverse areas of study to find the best result such as

maximizing the volume or minimizing the loss. The advantage of the optimization process

lies in the ability to quickly approach to the solution for the multiple alternative designs. The

optimization has three major fundamentals. The first factor is an objective function, which we

would like to maximize or minimize. The second element is a collection of variables, which

are quantities whose values can be manipulated in order to optimize the objective. The third

element is a set of constraints, which are restrictions on values that variables can take. Before we

solve the optimization problem, we need to define the problem first for efficiency. Generally, the

optimization methods are classified by objective functions, design variables, and constraints, like

in Table B.1 [28].

The design optimization algorithm can be broadly divided into two categories, gradient-

based and gradient-free optimization according to the encountered problem that needs to be

optimized. Gradient-based optimizers are advantageous to finding local minima for high-

dimensional, nonlinear, and convex problems. However, most gradient-based optimizers have

difficulties in solving noisy and discontinuous functions and discrete design variables. On the

other hand, gradient-free methods can resolve the previously mentioned problems despite the

lower efficiency and accuracy than gradient-based methods. In addition to that, these methods

can find multiple local optima while searching for the global optimum.
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Table B.1. Classification of the optimization problems

Classification Objective
function

Design
variables

Equality
constraints

Inequality
constraints

LP linear continuous linear linear
QP quadratic continuous linear linear

NLP nonlinear continuous nonlinear nonlinear
ILP linear integer linear linear

MILP linear mixed linear linear
MINLP nonlinear mixed nonlinear nonlinear

Many of the existing problems are considered as nonlinear problems. In a battery pack

design, the problem presented in this study is classified as MINLP in table B.1 since the number

of the cell in the pack is an integer, which makes us consider the design variable as mixed. A

general nonlinear optimization problem can be written as below where f (x) is the objective

function to be optimized with respect to the bounded variables x, subject to equality constraints

c(x) and inequality constraints ĉ(x). Both gradient-based and gradient-free optimizers can solve

the battery pack optimization problem. Appendix C uses gradient-free optimization to solve the

MINLP problem by searching the global minimum with mixed design variables.

Minimize f (x), f : Rn → R

sub ject to

xmin ≤ x ≤ xmax

c j(x) = 0, where j = 1, · · ·,m

ck(x)≤ 0, where k = 1, · · ·, m̂

Machine learning algorithms can also be considered as optimization algorithm in terms

of finding the minimum loss. We use the backpropagation (BP) algorithm for the battery life

cycle prediction in chapter 3. BP is a widely used algorithm for training feedforward neural

networks. In accommodating a neural network, it calculates the gradient of the loss function

concerning the network’s weights for a single input-output example efficiently. This efficiency

makes it feasible to use gradient methods for training multilayer networks updating weights. The
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backpropagation algorithm works by computing the gradient of the loss function for each weight

by the chain rule, computing the gradient one layer at a time, and iterating backward from the

last layer to avoid redundant calculations of intermediate terms in the chain rule [22].

Backpropagation is the algorithm to train a neural network to produce outputs close to

those given by the training set. It consists of the following contents. Many supporting algorithms

exist, such as resilient backpropagation and bayesian regulation, since it is easy to fall into the

trap of abstracting away the standard learning process.

Back propagation process:

1. Calculating the outputs based on inputs and a set of weights (forward pass)

2. Comparing these outputs to the target values via a loss function

3. Calculating gradients to reduce the loss (backward pass)

4. Changing the weights according to the gradients

The below equation is the matrix form of the standard backpropagation algorithm from

Rumelhart, Hinton, and Williams. A more detailed explanation can be attained from [42]. k is

the number of output units in the last layer. E(w) is the loss function.

∇WkE(W ) = δkhk−1

where h0 = x

δk = [∂g(ak)
∂ak

]M

if k is an output layer : M = y−d

otherwise : M =Wk+1δk+1

x is a set of training input vectors. d is a set of desired target vectors. y is a set of all

predictions. ak = Wkhk is a set of all weighted sum. hk = g(ak) is a set of all hidden outputs. Wk

is a set of weights at layer k.
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In chapter 3, we introduce three different backpropagation methods for the neural network:

Resilient backpropagation (RPROP), Conjugate gradient backpropagation with Polak-Ribiere

(CGP) updates, and Bayesian Regulation backpropagation (BR). The RPROP training algorithm

eliminates these harmful effects of the magnitudes of the partial derivatives. Only the sign of

the derivative is used to determine the direction of the weight update; thus, the magnitude of

the derivative does not affect the weight update [39]. CGP is one of the conjugate gradient

methods, which is a mathematical way to optimize linear and nonlinear systems [39]. It is an

efficient way to deal with the symmetric and sparse linear system. This neural network is a

mathematical process that converts a nonlinear regression into a statistical problem in the manner

of a regression [7]. BR minimizes a linear combination of weights and squared errors. It modifies

the linear combination so that the resulting network has good generalization qualities at the end

of the training process.
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Appendix C

Battery cell design optimization approach
to generate artificial data in the second life
battery

C.1 Single cell design optimization

In a real market, diverse batteries exist for their purposes. One company makes a battery

considering the energy capacity most while another focuses on a lower cost. It might be possible

to know which kind of chemical materials are used for a battery cell. However, it is hard to

acquire all the cell’s physical structural information, such as the thickness of anode, cathode,

and porosity. Likewise, diverse aging mechanisms, manufacturing variability, and lack of actual

battery performance information remain significant challenges to improve the battery degradation

prediction in the second life battery. This appendix shows the estimating process for second-life

batteries using design optimization as a tool in the electrochemical physical model. We used

the most widely used and well-known 21700 battery cell to estimate the inside structure and

compare with the original structure to examine the method. We will maximize the specific energy

density as our objective and constrain the battery design to examine the optimization approach.

To estimate the battery physical structure, this objective can be adjusted and the constraints can

be added.
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C.1.1 Governing equation and objective

The main objective of Appendix C is to maximize the specific energy density while

constraining the battery volume to optimize the battery cell structure. We will examine the

optimization techniques in Appendix C and will reduce iteration process to estimate the battery

cell structure. As we discussed in chapter 2, there are many design variables in one single cell

physical model. Kim et al. and Xue et al. conducted the analysis of variance (ANOVA) to select

a high influencing design variable for a computing efficiency [56][24]. We adopted important

design variables for optimizing a specific energy density, which is covered in table C.2.

Figure C.1. An illustration of a single battery cell structure for the SPMe model. Figure from
[1].

Find : x1,x2,x3,x4,x5

Especi f ic =
1

Mcell

∫ tend

0
Vcell · icelldt ≈ I

n

∑
k=0

Vk+1 +Vk

2
(tk+1 − tk)

Pspeci f ic =
1

Mcell

∫ tend

0
Vcell · icelldt · 1

tend
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Table C.1. Essential parameters for LGM50 battery cell structure. LGM50 uses graphene for
the anode material, ceramic polyolefin for the separator, and LiNi for the cathode. Detailed and
overall parameters are in [8]

Battery cell parameter Unit Anode Cathode Separator
Material Graphite LiNix-y polyolefin
Electrode density kg/m3 1657 2341 397
Electrode thickness µm 85.2 75.6 12
Electrode porosity 0.25 0.33 0.47
Collector thickness µm 12 16 0.4
Collector density kg/m3 8960 2760
Particle size (radius) µm 5.86 5.22
Overall length cm 158
Overall width cm 6.5

Mcell = Mcathode +Mseparator +Manode

Figure C.1 shows a simple schematic of the SPMe model for the optimization governing

equation example. Design variables included an anode thickness (x1), cathode thickness (x2),

anode porosity (x3), cathode porosity (x4), and separator thickness (x5). These design variables

were chosen as the most significant factors affecting the specific energy capacity. Kim et al.

came to this conclusion using the ANOVA [24]. The cell’s energy density is calculated with

the help of trapezoidal approximation to the integral over-discharge time. Table C.2 shows the

design and constrained variables, and table C.1 represents LGM50 battery cell parameters.

Table C.2. Selected design variables for simplifying the battery optimization [56]. Cell thickness
is the constrained design variable from the cylindrical 21700 battery cell design.

Design variables Unit Lower limit Upper limit
Anode thickness µm 60 140
Cathode thickness µm 60 140
Anode porosity - 0.2 0.6
Cathode porosity - 0.2 0.6
Separator thickness µm 10 30
Cell thickness(dascs) µm 205
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Using the process denoted above, we calculated the specific energy density using input

current and the terminal voltage obtained from the SPMe model. The trapezoidal approximation

used for calculation. An example of simulation data is plotted in figure C.2. For the cycling

experiment in this section, the following steps are implemented: 1) Discharge a battery at C/10

for about 10 hours or until reaching 3.3V, 2) Rest for 1 hour, 3) Charge a battery at C/10 until

4.1V, and rest for 1 hour. The cell performance is obtained through galvanostatic discharge until

reaching a cutoff voltage of 3.0V. After generating the data, we used these data to calculate

the governing equation covered in C.1.1 and iterated the following particle swarm optimization

method covered in C.1.3.

(a) Input current (b) Open Circuit Voltage (c) Terminal Power

Figure C.2. The result of the battery cell cycle simulation following the discharge-charge cycle
step. Two cycles of simulation are presented. The terminal voltage and terminal power calculated
from SPMe battery model along with the input current cycles.

C.1.2 Design variables and constraints limits

In this section, the realistic design limits are considered. Currently, there are four

typical types of lithium-ion manufacturing processes, including single-sheet stacking, Z-stacking,

cylindrical winding, and prismatic winding process as shown in figure C.3.

For single-sheet stacked cells (Fig C.3a), the stacks of sheet separators and sheet elec-

trodes are alternately stacked one on top of the other. The four edges of the stacked cell without

confinement increase the chances of cell shorting caused by Li deposition on the sides. The Z-
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Figure C.3. Schematics of four typical types of Li metal battery manufacturing processes.
(a) Single sheet stacking, (b) Z-stacking, (c) Cylindrical winding, and (d) Prismatic winding.
Currently, the cylindrical winding is widely used in the EV industry. Figure from [53].

stacking (Fig C.3b) generates less stress and enhances a uniform stress distribution in the stacked

cell. As the Z-stacking process continuously feeds the separator in a z-style folding pattern while

adding sheet electrodes in a discrete location, only the top and bottom of stacked cells are open,

and separators wrap the other two sides. The jelly roll from the cylindrical winding (Fig C.3c)

and prismatic winding (Fig C.3d) usually have internal stress resulting from winding tension,

which may induce cell deformation during the repeated cycling [53]. However, the cylindrical

cell is one of the most widely used packaging styles for primary and secondary batteries. The

advantages are ease of manufacture and good mechanical stability. Also, the jellyroll gives heat

energy advantages such as a thermally balanced battery performance. Therefore, we chose the

cylindrical design for the optimization.

A 21700 battery has a cylindrical cell-based structure, and it refers to a cell casing with a

diameter of 21mm and a width of 70mm (Fig C.4b). In our battery optimization problem, we

must ensure that the layers of electrodes and separators fit within the casing. The configuration

of layers is shown in figure C.4c. Once these layers are stacked, they are wound around a cell
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core with a diameter (Dcore) of 4mm, which is depicted in figure C.4a. When the electrodes

are wrapped around the cell core, they have the shape of an Archimedean spiral with a length

that equals to the cathode length. We chose to have at least 0.5mm of clearance from the inner

edge of the casing to ensure that the electrodes and separators would fit within the casing. This

means the maximum diameter (Dmax) is 20mm (Fig C.4a). With this dimensional requirement,

we can calculate the maximum usable volume [53]. Once the maximum usable volume (Vusable)

is calculated, the overall thickness dascs (anode, cathode, separator one, separator two) can be

calculated by dividing Vusable by the effective area of the electrodes, Areaelectrode (Fig C.4c).

(a) (b) (c)

Figure C.4. The 21700 (LGM50) cylindrical cell design. a) shows a cross-sectional view
of battery contents. b) represents the width (h) and diameter (D) of the battery casing. c)
corresponds to the overall thickness dacsc which is the sum of the thicknesses of the electrodes
and separators [51]. The two separators are included in one thickness due to cylindrical winding.

To avoid high manufacturing costs, we set the lower limit of the electrodes to 60µm. The

upper limit of the electrodes, porosity of the electrodes, and the thickness of the separator were

chosen based on previously reported data of actual battery dimensions.

Volumeusable = πw
(D2

max −D2
core)

4

dascs ≤
Volumeusable

Areaelectrode

47



C.1.3 Particle swarm optimization

In this paper, the battery pack design problem is a nonlinear mixed-integer problem with

nonlinear constraints. The optimizer must handle a discontinuous constrained design space and

efficiently manage nonlinear problems. Particle Swarm Optimization (PSO) algorithms in figure

C.5 are simple yet robust; they are easy to implement for these kinds of problems due to their

computing efficiency. PSO algorithms can also perform well without a large population, and

each particle retains knowledge of reasonable solutions. For these reasons, we decided to use

the PSO algorithm for this optimization problem [40]. PSO is a gradient-free and population-

Figure C.5. Particle swarm optimization (PSO) equations and visual representation for the
particle swarm. PSO consists of inertia, cognitive, and social section to search optimized
variables. Figure from [40].

based algorithm that is based on the concept of applying swarm intelligence. Design points are

interpreted as particles with cognitive and social characteristics that search for the best solution.

The cognitive (c1) and social (c2) parameters in the PSO algorithm also provide the opportunity

to tune global and local search behavior. Unlike genetic algorithms, each particle is directly

updated and influenced by its local best-known position. Each particle is also affected to move
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towards the best-known position in the search space. The initial swarm is randomly selected,

and the swarm particle position (P) is updated by the velocity (V). In a constrained optimization

problem, the PSO algorithm will penalize particles for avoiding the infeasible space [48].

C.2 Result and discussion

C.2.1 Optimization result

Figure C.2 shows the input current, open-circuit voltage, and terminal power. We can

calculate the power and specific energy density from this data. Figure C.6 shows the particle

convergence, which used the specific energy density as the objective. By trial and error, we

selected values of 0.7 for inertia (ω), 0.5 for c1, and 0.5 for c2 for the PSO algorithm. This ω ,

c1, and c2 correspond to formulas shown in C.1.3 optimization methods.

(a) electrode thickness (b) porosity

Figure C.6. The result of the particle swarm optimization. (a) describes negative and positive
electrode thickness, and (b) shows negative and positive porosity. Black mark shows the initial
swarm particle position. Green mark represents points where the swarm converges into.

The commercially manufactured LGM50 battery has a thickness of 85.2µm for an anode

and 75.6µm for a cathode. Our results show that the optimal thickness of the anode and cathode

are 130µm and 60µm, respectively; the sum of the electrode thicknesses has increased. This

aligns with the findings of Mei et al., which indicate that thicker electrodes provide higher energy

density [29]. The results in this paper indicate that the optimal ratio between the thickness of the
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anode and cathode is 2:1.

(a) (b)

Figure C.7. The result of the optimized electrode thickness and porosity. (a) shows the thickness
of the positive (p) and negative (n) electrode changes during optimization. (b) indicates the
electrode positive and negative porosity changes. Separator thickness moves to the lower limit
while n electrode moves to the upper limit.

Figure C.8. The result of the maximized specific energy density compared with the original
parameters.

In figure C.7, the separator thickness decreased to 10µm. As the thickness of the separator

increases, both of the distances (the cathode to end of the separator, the anode to end of the

separator) increase which negatively affects the specific energy density [24]. We also found that

the optimized porosity of the cathode and anode are 0.25 and 0.35, respectively, and these values

are close to the lower boundary. Theoretically, a decrease in the porosity increases the amount of

active material within an electrode, which results in energy increase [24].

We used 30 swarm particles per iteration and chose the best swarm particle for the plot in

figure C.7. Figure C.8 shows that the energy density was increased by 28% (from 137 to 176)
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while satisfying the volume constraints. The optimization converged after 25 iterations with

a tolerance of 10−14. The optimal solution satisfies the overall cell thickness constraint. This

result only considers the specific capacity, not considering the power requirement for the battery

cell and the estimated cost.

C.2.2 Artificial data generation with the optimized simulation result

In this section, with the optimized battery structure in C.1.4, we generated the artificial

data with five experimental cycles (Fig. C.9) and the Urban Dynamometer Driving Schedule

(UDDS) federal driving cycle (Fig. C.10). Figure C.9 shows the changes in the open-circuit

voltage (OCV) with respect to current cycles. Figure C.10 represents results from the UDDS

drive cycle input. Battery experiments and simulation protocols are essential to understand

battery cell behavior in large-scale systems such as energy grids and general electrical battery

research. This is because the different discharge cycles might impact the battery performance

and be highly contributable to the battery research community.

Figure C.9. Results of the five cycles of simulation with optimized battery cell parameters. The
optimized data show an overall increase in capacity while exhibiting a more extensive reduction
in high voltage levels. The black dash line represents the original LGM50 battery performance,
and the blue line shows the optimized battery performance.

During the five experimental cycles, there is a significant voltage drop for the LGM50

battery after six hours. The optimized battery can maintain a relatively high voltage longer than

the LGM50, which indicates that the optimized battery has a higher capacity. This result aligns
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Figure C.10. Result of the federal drive simulation with optimized battery cell parameters. The
black dash line represents the original LGM50 battery performance, and the blue line shows the
optimized battery performance. The optimized result shows a delayed response compared to
the initial since the optimized cell reduces the voltage, taking more time to hit the target power
requirement.

with our previous optimization results. However, the OCV for the optimized battery is lower

than that of the LGM50. The OCV is directly related to a terminal power, inferring that the

optimized battery has a lower terminal power. This analysis is supported by the Ragone plot,

which shows the trade-off relation between power and capacity [9]. A ragone plot is being used

to compare the performance of various devices for energy storage [47]. In Appendix C, we used

the most widely used cylindrical battery cell (LGM50) to optimize the specific energy density

from published data and compare it with original result. As we discussed, the second life battery

is not easy to gather its structural cell information. By constraining realistic conditions such as

the power requirement, cost, and manufacturability of second life batteries, we can expect to

estimate the battery cell structure close to the original battery.
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