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Abstract

Advances in Pulsed Zero-Field NMR Spectroscopy

by

Tobias Fredrik Sjölander

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Alexander Pines, Chair

Nuclear Magnetic Resonance (NMR) is ubiquitous as a tool for investigating the structure
of both molecules and materials. In most cases the best results are obtained by placing
the sample under study in the largest possible magnetic field, since this maximizes both
the sensitivity and the resolution of the experiment. This fact underlies the momentous
engineering effort that has gone into developing ever larger super-conducting magnets for
use in NMR experiments. However, there are many applications of NMR where the sheer
size, not to mention the cost, of a high-field instrument can not be accommodated. Therefore
there has been a sustained research effort aimed at developing small, mobile, NMR systems
that are not based on super-conducting magnets.

NMR performed in zero-field, using magnetic shielding to screen out the ambient field
of the earth, and detected using vapor-cell magnetometers, is one such approach. In zero-
field NMR the signal originates entirely in the spin-spin coupling part of the Hamiltonian,
and chemically informative spectra are obtained even in the absence of chemical shifts.
The very large absolute field homogeneity obtainable at zero-field ensures that the spectral
resolution is even better than in high-field spectrometers. Perhaps even more interestingly
the different geometry that results from not having a preferred axis imposed on the system
enables experiments that are not possible in the presence of magnetic fields. Examples
include the ability to distinguish enantiomers based on the phase of an NMR signal.

This work extends directly detected zero-field NMR beyond pulse-acquire type experi-
ments. New methods for spin control and excitation, as well as two-dimensional spectroscopy
and various decoupling techniques are introduced and demonstrated experimentally. For
completeness this dissertation also contains a review of zero-field J-spectroscopy, as well as
a detailed guide to the relevant instrumentation. It is my hope that the techniques presented
herein will find use in future NMR experiments performed in the regime of zero and ultralow
field, whether the application is portable chemical analysis, fundamental physics, or anything
in between.
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Chapter 1

Introduction

This chapter contains material previously published under the following titles:

• Transition-Selective Pulses in Zero-Field Nuclear Magnetic Resonance by
Sjolander, Tayler, King, Budker, and Pines [1]

• 13C-Decoupled J-Coupling Spectroscopy Using Two-Dimensional Nuclear Magnetic Res-
onance at Zero-Field by Sjolander, Tayler, Kentner, Budker, and Pines [2]

as well as material being prepared for publication under the title

• Two-Dimensional Single and Multiple-Quantum Correlation Spectroscopy in Zero-Field
Nuclear Magnetic Resonance by Sjolander, Blanchard, Budker, and Pines [3].
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When Rabi first discovered the Nuclear Magnetic Resonance (NMR) phenomenon in 1938
the delighted physics community remarked that this new technique would offer an opportu-
nity to establish once and for all the gyromagnetic ratios of all the nuclides in the periodic
table [4]. However, when people set out to apply NMR methods to the study of various
metallic and molecular compounds they found something curious, the observed magnetic
moment for a given nucleus varied depending on the physical and chemical characteristics of
the material the measurement was performed on [5–7]. It was quickly realized that this effect
was because of electrons in the compound of interest either augmenting or screening out the
external magnetic field used to perform the resonance experiment. The consequences were
remarkable; careful measurements of nuclear magnetic moments could be used to report on
local electronic structure. Of course the electronic structure of a compound is intimately re-
lated to its chemical nature and within a few decades NMR had become one of the workhorses
of analytical and synthetic chemistry.

Modern NMR techniques provide an abundance of information on the chemical and struc-
tural composition of matter. High-field chemical-shifts probe the electronic environment, the
magnitudes of spin-spin coupling constants correlate strongly with both bond distances and
bond angles, and geometric constraints may be obtained from the rates of inter-nuclear
cross-relaxation [8–11]. NMR is employed as a tool in cutting edge biological research, af-
fording structures of both proteins in their native water environment [12] as well as extended
bio-aggregates [13]. Further, NMR is used as a tool in large throughput screening of pharma-
ceuticals, and it is a mainstay of synthetic research laboratories. NMR is also employed as
an imaging technique under the safer sounding name Magnetic Resonance Imaging (MRI).
Both the coherence and energy relaxation times of the nuclear magnetic states of the water
in our bodies depend on its immediate biological environment, and this remarkable fact is
used as a source of image contrast. Beyond chemical analysis and imaging, NMR has been
used as a testbed for coherent control algorithms and quantum simulation [14]. In fact the
first ever demonstration of Shor’s algorithm was performed using a liquid-state NMR system
[15].

A modern conventional NMR spectrometer is based around large, superconducting mag-
net operating at liquid helium temperatures. There are two primary reasons why so much
effort has gone into engineering instruments capable of generating ever larger magnetic fields.
First: performing NMR experiments in a large magnetic field ensures easily separable and
interpretable spectra. This is partly because the energy of nuclear spin transitions de-
pends on the magnitude of the external field. A larger field therefore amplifies differences
in transition frequencies between spins in different chemical environments, thus increasing
the effective spectral resolution. In addition, by magnifying these chemical-shift terms it is
ensured that they are the dominant interaction terms in the Hamiltonian, allowing spectra
to be interpreted based on simple rules derived from first-order perturbation theory. Second:
nuclear spins interact only very weakly with their surroundings. Even at 20 Tesla, which
is close to the largest magnetic field attainable in a modern spectrometer the energy dif-
ference between a proton spin being ‘aligned’ and ‘anti-aligned’ with the magnetic field is
only 850 MHz, or 3.4·10−4 kJ/mol. This corresponds to a net thermal spin-polarization at
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300 K of only 68 ppm, according to the Boltzmann distribution. Further, higher transition
frequencies also improve the efficiency of conventional detection, thereby increasing sensitiv-
ity. These facts taken together mean that large magnetic fields make NMR spectra easier
to interpret both by simplifying the structure of spectra and by improving the attainable
Signal-to-Noise-Ratio (SNR).

However, while large magnetic fields bring important and undeniable benefits to NMR
the bulk and cost of spectrometers based on super-conducting magnets precludes their use in
many situations where NMR spectrometers or MRI systems would otherwise be beneficial.
Examples include monitoring food safety [16] and compliance with environmental regulations
‘on-site’, as well as medical diagnosis outside of hospital environments. Due to the many
potential applications there has been a large push towards developing portable, cheap NMR
and MRI systems [17–19] based on either permanent magnet designs [20] or electromag-
nets, with several companies manufacturing commercial benchtop-sized NMR spectrometers
for ‘in-the-hood’ reaction monitoring [21] as well as teaching applications. However, there
are a number of challenges that must be overcome in order to design a successful portable
spectrometer. Firstly the magnetic-field homogeneity must be good enough to permit spec-
troscopy. Chemical shifts are of the order of ppm, so field homogeneities need to be sub ppb.
This is challenging to accomplish with permanent magnets, and even more so with non-
superconducting electromagnets. In addition, as chemical-shift differences decrease at small
magnetic fields they become comparable to the spin-spin coupling terms, thereby giving rise
to ‘strong-coupling’, or ‘non first-order’ effects, which make spectra significantly harder to
interpret [22]. Smaller chemical shifts also lower spectral resolving power and make it harder
to distinguish chemically distinct sites.

This dissertation concerns recent advances in, and the current state-of-the-art of, liquid-
state zero-field magnetic resonance. Performing NMR experiments in the regime of zero or
near-zero external magnetic field is a convenient way of side-stepping the field homogeneity
challenge associated with low-field portable spectrometers; when the interaction of the spins
with the residual field is on the order of 1 mHz to 1 Hz even a gradient as large as one
part-per-thousand is irrelevant. The result is ultra-narrow linewidths, down to 20 mHz full-
width-half-max has been demonstrated [23]. Even more importantly, by letting the Zeeman
interaction approach zero, one emerges on the other side of the ‘strong-coupling’ regime,
and it once again becomes possible to describe spectra with simple first-order perturbation
theory arguments, but now with spin-spin couplings as the zeroth-order term [22, 24]. As
we shall see it turns out that the instrumentation required for detection of NMR signals
at near DC frequencies presents both challenges and possibilities. Optical magnetometers
based on alkali vapor-cells can easily be made sensitive to magnetic fields in the 0 - 1000 Hz
range. They also operate without cryogenics, which is an important point of developing low-
field NMR instrumentation. The result is an ultra-high resolution spectroscopy that yields
sharp, relatively easy to interpret magnetic resonance spectra, but without the cost and bulk
otherwise associated with high-field NMR. The instrumentation is cheap and miniatureazible
[25–27] and one can therefore envision the technology as a candidate for a chip-scale point-
of-care device.
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In addition to having the potential to provide the same or higher quality spectral in-
formation as a modern high-field spectrometer at a fraction of the size and cost, there are
particular cases and specialized applications for which performing NMR experiments in low
or zero magnetic fields confers advantages over doing so in high fields. For example when the
sample under study is heterogeneous and contains phase or grain boundaries the presence of
magnetic fields tend to result in very broad and featureless spectra on account of inhomo-
geneity in the magnetic susceptibility of the material. The increased skin-depth penetration
associated with low frequencies also enables imaging and through metal containers [28, 29].
Beyond increasing the scope of available samples, the absence of magnetic fields equalizes
the Larmor frequencies of distinct spin-species, thereby allowing the study of physics not
accessible at high fields. Examples include nuclear spin-singlet states formed by different
nuclides [30], and the observation of terms in the nuclear spin-coupling Hamiltonian that
are quenched by large chemical shift differences between nuclei. Such ‘non-secular’ terms
may be interesting for characterization of ordered materials [31], and have been proposed
as a means to detect both chirality [32] and molecular parity non-conservation [33] using
NMR. This also implies a potential use in quantum simulation experiments - in liquids the
nuclear spin Hamiltonian in zero magnetic field is made up of pure exchange interactions,
which is something that has been challenging to realize in other experimental systems. In-
deed, a complete set of one and two qubit gates were recently realized with high fidelity in
a zero-field NMR model [34]. Relaxation is another NMR phenomenon that is strongly field
dependent, and the methods described herein would allow convenient access to relaxation
dispersion curves in the range of 1 to 100 Hz [35, 36].

In this dissertation particular focus will be spent on new methods developed over the
course of this work for manipulating spin states in the zero-field regime. Previous work in
liquid state zero-field NMR has focused on the task of how to acquire and interpret pure
J-coupling spectra, as well as the equally important problem of how to generate and store
spin-polarization in zero-field. With this work we move our attention to the sort of multiple-
pulse and multi-dimensional experiments that have made traditional high-field NMR so
flexible and powerful. The goal is to start building an expanded toolbox of techniques for
use in future zero-field spectroscopy work, whether that is chemical analysis, searching for
novel spin interactions, or quantum simulation.

The material is organized as follows: in Chapter 2 we will start by summarizing some
of the necessary theoretical background and we give a more complete introduction to the
concept of zero-field J-spectroscopy, which is at the heart of this dissertation. The experi-
ments in this work were performed on a home-built spectrometer based on a 87Rb vapor-cell
magnetometer and in Chapter 3 we summarize the physics of vapor-cell magnetometry and
describe in detail the operation and the various configurations of the spectrometer. The
new methods for spin-control in zero-field presented in this thesis required the design of
new magnetic field pulsing hardware and this is also described in this chapter. Chapter 4
concerns a new way of obtaining J-spectra based on low-amplitude resonant excitation fields
that drive transitions directly between the zero-field eigenstates, rather than hereto used
broadband DC excitation. This method affords the possibility to selectively excite only
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those transitions that are of interest as well as the ability to perform spectral editing in
zero-field. Chapter 5 meanwhile, introduces the possibility of manipulating individual spins
based on their chemical identities as part of a zero-field experiment. This is achieved by
switching a static holding field inside the zero-field spectrometer in conjunction with reso-
nant magnetic field pulses. In Chapter 6 we move beyond one-dimensional spectroscopy and
introduce the concept of two-dimensional correlation spectroscopy in zero-field NMR. We
describe how single-quantum correlation spectra may be obtained and interpreted. We also
introduce the concept of multiple-quantum spectroscopy in zero-field and show a number
of proof-of-concept experiments. It is a feature of zero-field NMR that only spin-systems
comprising at least two different kinds of spins may generate observable signals. In Chap-
ter 7 we describe a spin-decoupling technique that for the first time, in spite of this, enables
the acquisition of homonuclear zero-field J-spectra. With the large and growing interest
in quantum information science, more approaches for how to ‘dynamically decouple’ spin-
systems from environmental and other noise are always of interest. In Chapter 8 we present
coherent control methods that enable rank selective decoupling of zero-field heteronuclear
spin-systems. We show how these techniques enable high-resolution zero-field spectroscopy
in poorly shielded, or inadequately shimmed environments. Finally Chapter 9 contains a
summary of the current status of the field, reflections and thoughts about the future, as well
as potential new avenues for research.
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Chapter 2

Theoretical Background

This chapter provides a review of the basics of liquid-state zero-field NMR. It is meant
to serve as a reference for the following chapters.
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2.1 Notes on Notation

Before beginning in earnest I would like to make a few notes regarding the notation used
throughout this work. I have tried to be consistent but mistakes will invariably have been
made, and I apologize in advance for any confusion thus caused.

• We will use italic bold face to denote vector (operators), and italic with subscripts to
denote the components thereof. For example a spin angular momentum operator I has
the components {Ix, Iy, Iz}.

• Quantum numbers for the magnitude of angular momentum are denoted with capital
italics with no subscripts, e.g. the eigenvalues of the operator I2 are denoted I. Quan-
tum numbers for the projection of angular momentum on the chosen quantization axis
are denoted m with a subscript indicating the ‘parent’ operator. For example, the
eigenvalue of Iz is mI .

• We will use Ii to denote the ith spin of a general spin system. In the case of a two-spin
1H-13C system we will generally use I and S to denote the proton and carbon-13 spins
respectively.

• The dot product ‘·’ is defined for vector operators the same way as it is for normal
vectors meaning

I · S = IxSx + IySy + IzSz, (2.1)

where IxSx corresponds to matrix multiplication of the relevant representations of the
two operators.

• We will write energies in angular frequency units, meaning we will let h̄ = 1 throughout.
We will also use the notation |α〉 and |β〉 to denote ‘spin-up’ and ‘spin-down’ states. For
example the action of the z-component of angular momentum on the ket corresponding
to a spin-1/2 parallel to a magnetic field would be written

Iz |α〉 =
1

2
|α〉 (2.2)

• We will use Cjm
j1m1j2m2

to denote the Clebsch-Gordan coefficient 〈jm| |j1m1, j2m2〉

• We will denote a general spherical tensor operator [37] Tlm, where l is the rank, and
we will refer to m as the ‘m-value’. If we wish to refer to the full tensor, without
specifying a component, we will use bold-face.
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2.2 Semi-Classical Description of NMR

This section contains a (very) brief overview of the standard quantum mechanical frame-
work for understanding magnetic resonance experiments. More complete treatments can be
found elsewhere [8, 38].

Many NMR experiments can be conveniently interpreted in terms of entirely classical
equations of motion for the torque experienced by a magnetic moment M in a magnetic
field B

dM (t)

dt
= M (t)×B. (2.3)

In this view the effect of chemical shifts and spin-spin couplings is to modify the magnetic
field experienced by each individual spin.

Sometimes it is often more convenient to think of the magnetic resonance phenomenon
not in terms of precessing vectors, but in terms of transitions between eigenstates of the
system Hamiltonian induced by the (magnetic) dipole moment operator. This is especially
the case when dealing with ‘strong-coupling’, i.e. spin-spin couplings that include terms of
the form I · S.

The Hamiltonian for a system of N spins in a magnetic field along the z-axis is

H = Bz

N∑
i

γiIz,i +HJ , (2.4)

where we have used HJ to denote any potential spin-spin couplings in the system. In
high magnetic fields, where Bzγ is much larger than any spin-spin couplings the energy
of such a system is determined by the total projection of angular momentum on the z-
axis. The physical observable in a high-field NMR experiment is transverse magnetization,
〈Mx〉. Within the rotating wave approximation [39] the corresponding operator becomes
O =

∑N
i γiI+,i, where I+ |β〉 = |α〉. Allowed transitions are those for which 〈i|O |j〉 6= 0,

which corresponds to ‘flipping’ the direction of a single spin with respect to the magnetic
field. The energy of such a transition is given by ∆E = ωij = 〈i|H |i〉− 〈j|H |j〉, and in the
spectrum we would see peaks at the frequencies {ωij}.

The concepts of a ‘spin system’ and a corresponding ‘density operator’ are ubiquitous
in NMR and we will make repeated use of them throughout this work. A spin system is
group of spins that do not interact coherently with other spins in sample. The most common
example would be the spins in a given molecule in a liquid. The combination of rapid motion
and a spherical distribution of molecules ensures that there are no net interactions between
the spins on different molecules. In such cases [40] it is valid to consider the dynamics of only
single molecule and average the result over the entire sample. This is extremely convenient
since it allows us to work with a 2Nsys dimensional Hilbert space where Nsys is the number of
spins in a single molecule, instead of the number of spins in an NMR tube. However, even if
we can write down a state vector for the spins of a given molecule, it is in general not true
that all molecules in the sample will share that same state vector. In fact in almost all NMR
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experiments the spin-states of different molecules are quite uncorrelated. The upshot is that
NMR systems are highly mixed states [41]. The solution is to define a density operator

ρ =
Ntot∑
i=1

ci |Ψi〉 〈Ψi| , (2.5)

where |Ψ〉 is the 2Nsys-dimensional state vector for the spins on a given molecule and the sum
runs over all molecules in the sample. We now have a single 2Nsys × 2Nsys matrix defining the
spin state of an entire macroscopic sample.

There is no time dependence in the transition based picture of NMR presented above.
The ‘spectrum’ is a static property of a given spin system. However, actual experiments are
generally preformed in pulsed Fourier transform mode meaning that the evolving magnetiza-
tion of the system is monitored as a function of time (often while simultaneously performing
additional manipulations or changes to the state of the system) and the resulting time trace
is subject to a Fourier transform, revealing peaks at the frequencies of the oscillations. To
describe such experiments we use the Liouville-Neumann equation of motion for the density
matrix

dρ(t)

dt
= −i[H, ρ(t)], (2.6)

which in the case of a time-independent Hamiltonian can be integrated to give

ρ(t) = e−Htρ(0)eHt. (2.7)

The expectation value of the transverse magnetization as a function of time can be calculated
as

〈O〉 (t) = Tr{O†ρ(t)}. (2.8)

The Fourier transform of the result gives the NMR spectrum.
In order to make this concrete we need to determine what ρ actually is. It can be shown

that the density operator at thermal equilibrium is

ρTH =
e−H/kBT

Z
, (2.9)

where Z = Tr{exp(−H/kBT )} is the partition function for the system. For spins in a
magnetic field of strength B0 H = −B0

∑N
i γiIz,i. Note that we have ignored any spin-spin

couplings when writing H, this is valid at high-fields since γB0 is usually many orders of
magnitude larger than any coupling constants. This is equivalent to saying that at thermal
equilibrium all ‘spin-order’ in the system comes from the Zeeman term. Since γB0/kBT << 1
for all currently attainable field strengths Equation (2.9) is commonly evaluated in a Taylor
series truncated to first order

ρTH =
1

2N
+

h̄Bpol

2NkBT

N∑
i

γiIz,i, (2.10)
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where 1 denotes the identity matrix and N is the number of spins in the spin system.
There are instances where truncating the Taylor series like this is not valid [40], however
no such experiments are treated in this work. As Z occurs only in the denominator and
γB/kBT << 1, we have kept only the zeroth order term in the Taylor expansion for Z.
A spin system of N spin-1/2 particles has 2N energy levels and thus we obtain Z ≈ 2N .
Equation (2.10) is the starting point for most NMR experiments.

We refer to the second term in Eq. (2.10) as the “deviation density matrix”, and the
prefactor is known as the “spin-polarization”. The deviation density matrix is extremely
important since it is the only part of ρ that can actually evolve in time or correspond to
magnetization. Consider the infinite temperature case, where the deviation density matrix
goes to zero. Then we have

ρ(t) =
1

2N
U(t)1U †(t)

=
1

2N
, (2.11)

where U(t) denotes the unitary transformation associated with some arbitrary combination of
pulses and delays, i.e. if the spin-polarization is zero there is no coherent process whatsoever
that can change ρ. It follows that if the deviation density matrix is zero, the expectation
value for the magnetization along some arbitrary direction, Mα, will be zero for all time

〈Mz〉 (t) = Tr{M †
α1}

= 0, (2.12)

since magnetization is a vector operator, and therefore the corresponding matrix representa-
tion must be traceless, see Appendix 2.4. Since NMR relies on detecting magnetization this
means that no NMR can be observed in the infinite spin-temperature limit. Conversely, the
observed NMR signal will be proportional to the spin-polarization. The part of ρ propor-
tional to the identity matrix never contributes to the dynamics (observable or not) of the
spin system and we will often find it convenient to ignore it and work only with the deviation
density matrix. In this work this has been done whenever a given density matrix is traceless.

2.3 J-Spectroscopy

As explained above NMR spectroscopy is the study of nuclear spin transitions, that
is to say transitions between eigenstates of the nuclear spin Hamiltonian. However, there
is no reason in principle why the Zeeman term (i.e. the energy of the spins due to their
orientation with respect to some externally imposed magnetic field) must take a privileged
position. This Dissertation concerns zero-field J-spectroscopy [42–44], which is magnetic
resonance experiments performed in the regime where the dominant term in the Hamiltonian
is the indirect spin-spin coupling (often termed J-coupling), and the Zeeman term is either
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absent (zero-field) [45] or a perturbation (ultralow field) [24]. The absence of an external
quantizing field along which the spins can be either ’up’ or ’down’ does not change the fact
that the J-coupling Hamiltonian for a given spin system has a spectrum of eigenvalues, and
that coherent evolution of superpositions of the corresponding eigenstates may generate a
time dependent magnetization. The Fourier transform of such a time trace is known as a
J-spectrum [46, 47], and it will have peaks at the transition energies of the spin system
in question. The usefulness of J-spectroscopy is predicated on these transitions providing
chemically relevant information, which indeed they do [23, 48].

The following aims to provide a review of J-spectroscopy and present relevant theoretical
and practical considerations.

2.3.1 The Hamiltonian and the Detection Operator

In the liquid state, under complete motional averaging, the Hamiltonian of N J-coupled
spins is the sum of all pairwise isotropic couplings

HJ = 2π
N∑
i>j

JijIi · Ij. (2.13)

The Jij are coupling constants in Hz and Ii is the spin angular momentum operator for the
ith spin. Note that there is no magnetic field term and the energy is given exclusively by
the orientation of the spins with respect to each other and the coupling topology. Let us
consider what we can say about the eigenstates of this Hamiltonian based purely on sym-
metry considerations. All spin operators appear only in scalar products and therefore this
Hamiltonian is guaranteed to be invariant under all global rotations in spin-space. This in
turn implies that HJ commutes with the magnitude of the total spin angular momentum,
F 2 = (

∑N
i Ii)

2, as well as its projection on an arbitrary axis, Fα =
∑N

i Iα,i. Since HJ com-
mutes with the operators defining total (nuclear-spin) angular momentum there is a common
basis that diagonalizes both the angular momentum operators and HJ . The eigenstates of
HJ are therefore angular momentum eigenstates [49] and may be labeled |F,mF , ξ〉, where
ξ denotes any extra quantum numbers needed to completely specify the state. Because the
system is spherically symmetric its energy cannot depend on the orientation of the coordi-
nate system, and so states of given F and ξ must be degenerate for all mF = −F : +1 : +F .
Further, there is no favored choice of quantization axis and mF may denote the projection
on any arbitrary axis. However, as we will see later, the detection scheme used in this work
measures the time-dependent magnetic field along a given direction generated by an ensem-
ble of spins evolving under HJ , and this direction is fixed in the laboratory frame. The most
common choice of coordinate system in zero-field NMR is to take this externally imposed
axis to be collinear with the quantization axis along which mF is defined and call this the
z-axis, and with one exception to be explained in detail later, we will follow that convention
throughout this work.
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It follows from the above discussion that we may define a detection operator as the total
sample magnetization in the z direction

Mz =
N∑
i

γiIz,i, (2.14)

where γi is the gyromagnetic ratio of spin i. It is worthwhile to consider the matrix elements
of this operator in order to gain insight into the structure of a general zero-field J-spectrum.
The transition matrix element for two arbitrary zero-field states with angular momentum F
and F ′ is

Mz,F ′F = 〈F ′,m′F , ξ′|Mz |F,mF , ξ〉 . (2.15)

We can immediately make one observation that is going to become very important as we
start to consider J-spectroscopy in more detail, and that is that only spin systems containing
more than one kind of spin-isotope may give observable J-spectra. To see this consider the
detection operator for a homonuclear system

Mz = γ
N∑
i

Iz,i

= γFz. (2.16)

However, as shown above the zero-field states must be eigenstates of Fz, so the transition
matrix element becomes

Mz,F ′F = γ 〈F ′,m′F , ξ′|Fz |F,mF , ξ〉 = γmF δF ′F δm′FmF δξ′ξ, (2.17)

since by construction F , mF , and ξ specifies a state completely this means that Mz does
not couple different eigenstates. Thus, we have the result that in the absence of a magnetic
field, transitions between different eigenstates in a homonuclear system may not generate
observable magnetization.

Having established that only heteronuclear spin systems yield J-spectra the next question
is what possible changes in F are allowed. From the Wigner-Eckart theorem we know that the
matrix elements of a spherical tensor operator are proportional to the appropriate Clebsch-
Gordan coefficients. Since magnetization is a first rank spherical tensor operator and Mz

has m-value 0, the transition matrix element can be written

Mz,F ′F = C
F ′m′F
10,FmF

〈F ′, ξ′| |Mz| |F, ξ〉 , (2.18)

where the second part of the right hand side is the reduced matrix element [37]. From
the properties of Clebsch-Gordan coefficients we can now immediately see that zero-field
transitions have ∆F = F ′ − F = ±1, 0. We can also see that ∆mF = 0 [49], however the
selection rule on mF is merely a consequence of this particular choice of axis convention. If
we had chosen magnetization along the x-axis as our detection operator we would instead
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have had ∆mF = ±1 [24]. Of course experimentally the results must be the same in both
cases.

Throughout this Dissertation we will repeatedly return to the case of two coupled spins
so it will be worthwhile to consider the eigenstates of such a system in some detail. They
are {|1, 1〉 , |1, 0〉 , |1,−1〉 , |0, 0〉}, where the only necessary quantum numbers are F and mF .
Commonly the three states with F = 1 are referred to as a ‘triplet’ and the state with F = 0
as a ‘singlet’. In this notation the eigenstates are {|T1〉 , |T0〉 , |T−1〉 , |S0〉}. On the high-field
basis these states are

|T1〉 = |αα〉 (2.19)

|T0〉 =
1√
2

(|αβ〉+ |βα〉) (2.20)

|T−1〉 = |ββ〉 (2.21)

|S0〉 =
1√
2

(|αβ〉 − |βα〉) . (2.22)

2.3.2 Polarization in Zero Field

In the presence of a large magnetic field, thermal equilibrium at room temperature cor-
responds to a state of significant spin-polarization, meaning that thermal equilibrium is
an entirely fine starting point for a high-field NMR experiment. In contrast, at zero-field,
thermal equilibrium at 300 K corresponds to a state of essentially infinite spin tempera-
ture. In fact, for a 2-spin J-coupled system in zero-field to reach the same level of thermal
spin-polarization as protons in a standard 300 MHz magnet the system would need to be
cooled to 0.1 mK (assuming J=100 Hz). In contrast at room temperature the polarization
would be 1 in 8·10−12, or 0.000008 ppm. If this is what we had to make do with, zero-field
J-spectroscopy would not be possible. (See Eqs. (2.11) and (2.12).) In fact, there are a
number of ways to prepare a non-equilibrium spin-state in zero-field. The main difference
compared with high-field NMR is that in high-field energy relaxation (T1) will tend to bring
the system back to a polarized state, whereas in zero-field thermalization means decay to a
trivial, infinite temperature state. The initialization into a non-equilibrium state thus needs
to be performed in advance of every experiment, and every transient.

Thermal Polarization The most general way of preparing a non-equilibrium initial state
in zero-field is to let the spin system come to thermal equilibrium in a large magnetic field ac-
cording to Eq. (2.10), followed by transport to zero-field. We refer to this as pre-polarization
and we will continue to use ρTH to denote a state corresponding to a thermal equilibrium-
state at high-field, keeping in mind that while in a zero-field environment during the course
of the experiment, the density matrix will tend to the trivial state given by ρ = 1/Z, after
which the system has to be repolarized in a magnetic field. The pre-polarization step may be
done either in-situ using electromagnetic coils to generate a rapidly switched polarizing field,
as has been done in a number of experiments [46, 47, 50, 51], or outside of the magnetically
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Figure 2.1: Magnetic field profiles for different polarization schemes. Not to scale. (a) Pre-
polarization with a small switched field inside the magnetically shielded region. The field is
switched rapidly ensuring a sudden transition. (b) Pre-polarization in a large field (e.g. in a
permanent magnet) located outside the shielded chamber, followed by adiabatic transport to
zero-field. (c) Same as in (b) but once the sample leaves the permanent magnet it is kept in
a small holding field generated by a solenoid wound around the shuttling path. The holding
field is switched off rapidly once the sample reaches zero field in order to ensure a sudden
transition.

shielded region using a permanent magnet [45, 52, 53]. If done outside, the sample needs to
be mechanically moved, or ‘shuttled’, between the pre-polarizing magnet and the shielded
region during the course of the experiment [54]. The state of the spin system at the start
of the zero-field NMR experiment, termed ρ(0), depends on how quickly the magnetic field
changes from being the dominant interaction to ‘zero’ [44]. The two limiting cases are (i)
sudden transport, in which the field changes instantaneously with respect to the internal
spin variables, and the system therefore retains its original state. In the this case we have

ρ(0) = ρTH

=
1

Z
+

1

Z

N∑
i

γiB0

kBT
Iz,i. (2.23)

Example schematics of a field trajectory that would give this behavior are shown in Fig. 2.1a
and Fig. 2.1c. We also have the case of (ii) adiabatic transport shown in Fig. 2.1b, in
which the system remains in a stationary state of the Hamiltonian at all points on the field
trajectory. In this case calculating ρ(0) is slightly more involved since it involves following
the density matrix through the field switching [30]. Let us do this for the instructive case
of a J-coupled 1H-13C two-spin system. Figure 2.2 shows a numerical simulation of how the
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Figure 2.2: Eigenstates of a J-coupled two-spin system as a function of the field strength.
When the interaction with the field is dominant the system is described by the projection
of the individual spin angular momenta onto the field. When the J coupling dominates the
eigenstates are the strongly coupled singlet and triplet states.

eigenstates change as a function of field-strength. We know that in the adiabatic limit the
density matrix will remain diagonal in the eigenbasis of the Hamiltonian at all points during
the transfer and the populations of the states will not change even as the nature of the states
do. We first evaluate the populations, i.e. the diagonal elements of the density matrix, in
the pre-polarizing field, where (ωI − ωS) >> J . We obtain

pαα =
〈αα| e(ωIIz+ωSSz)/(kBT ) |αα〉

Z

=
1

4
+
ωI + ωS
8kBT

, (2.24)

for the population of the |αα〉 〈αα| state,and similarly

pαβ =
1

4
+
ωI − ωS

8kBT
(2.25)

pβα =
1

4
+
−ωI + ωS

8kBT
(2.26)

pββ =
1

4
+
−ωI − ωS

8kBT
(2.27)



CHAPTER 2. THEORETICAL BACKGROUND 16

for the other three populations and we have used γIB0 = ωI . From the simulation in Fig. 2.2
we know how the high-field states transform into the zero-field ones and we can now write

ρ(0) = pαα |T−1〉 〈T−1|+ pαβ |S0〉 〈S0|+ pβα |T0〉 〈T0|+ pββ |T+1〉 〈T+1| (2.28)

for the initial density matrix of a two-spin system in zero-field following adiabatic transport
from a high-field pre-polarizing region. Following Ref. [30] we note that

I · S = −3

4
|S0〉 〈S0|+

1

4

(
|T−1〉 〈T−1|+ |T0〉 〈T0|+ |T+1〉 〈T+1|

)
(2.29)

IzSz =
1

4

(
|T−1〉 〈T−1| − |T0〉 〈T0|+ |T+1〉 〈T+1| − |S0〉 〈S0|

)
, (2.30)

Iz + Sz = |T+1〉 〈T+1| − |T−1〉 〈T−1| , (2.31)

1 = |T+1〉 〈T+1|+ |T−1〉 〈T−1|+ |T0〉 〈T0|+ |S0〉 〈S0| . (2.32)

Now we can use Eqs. (2.29) to (2.32) and Eqs. (2.24) to (2.27) to rewrite Eq. (2.28) as

ρ(0) =
1

4
+
ωI + ωS
8kBT

(Iz + Sz)− 2(
ωI − ωS

8kBT
)(I · S − IzSz), (2.33)

which is the result of adiabatically transporting a J-coupled 2-spin system from the high-field
regime to zero-field. The deviation part of Eq. (2.33) contains three different operators that
describe different ways in which the spins are polarized. We talk about different types of
spin-order. The first term (Iz +Sz) transforms under rotations as a vector, and we will refer
to it as vector spin-order. The second term (I ·S) is invariant to spin rotations and we term
it scalar spin-order, while the third term contains both rank-2 and rank-0 components. It has
been demonstrated that these three forms of polarization all have different energy-relaxation
rates [30].

If the rate of transport is neither sudden nor adiabatic it is hard to say anything a priori
about the state of the system once it reaches zero-field. It will depend on the exact details
of trajectory of the magnetic field, as well as the coupling constants. Therefore, to enable
predictable and repeatable experiments, it is important that the transport is either sudden,
or adiabatic.

Hyperpolarization Thermal equilibration in a strong magnetic field is not the only way
to obtain ρ(0) 6= 1/Z. Several methods for obtaining non-thermal polarization (or ‘hyper-
polarization’) have been developed for use in high-field and can be adapted for use with a
zero-field spectrometer.

To date the by far most successful hyperpolarization technique used in zero-field NMR
is chemical reaction with parahydrogen [55]. Parahydrogen refers to the nuclear singlet
state of hydrogen which has a lifetime of days and can readily be prepared in ∼100% abun-
dance by simply cooling hydrogen to liquid He temperatures in the presence of a suitable
catalyst. Under the right conditions hydrogenation reactions using parahydrogen transfers
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nuclear spin-order to the target molecule, leading to remarkably high polarization. More
recently, reversible versions of this reaction have been developed which are currently sub-
ject to great research interest in the wider NMR community [56]. Parahydrogen has been
used successfully as a polarization source in zero-field NMR both in hydrogenative [57] and
reversible [58] modes. Polarization with para-hydrogen in zero-field generates purely scalar
spin-order [59, 60], see Eq. (2.33). The details of exactly which spin-pairs get polarized dur-
ing the chemical reaction depend on the spin system topology and the relevant J-coupling
constants. Parahydrogen offers significant advantages over polarization in a magnetic field,
most notably greatly increased sensitivity which is key for any future practical application
of J-spectroscopy. It also obviates engineering issues surrounding sample shuttling and de-
creases the instrumentation footprint. However, it is currently limited to certain classes of
molecules and reaction conditions, and often those systems yield slightly more complicated
J-spectra than what is convenient for proof-of-principle demonstrations of new pulse se-
quences. Further, several of the coherent-control techniques developed in this work rely on
the spin system being in a well defined initial state before the experiment and it is challeng-
ing to accurately start and stop the polarizing reaction with the requisite millisecond timing.
For these reasons parahydrogen is not used as a polarization source in this Dissertation, even
though it holds great promise for zero-field NMR in general.

Spin Exchange Optical Pumping is a means of obtaining high spin-polarization on noble
gases by means of transferring polarization from optically pumped alkali vapor, see Sec-
tion 3.2.1. It has been used as a polarization source in low-field (1 µT) NMR of gaseous
xenon [26]. But since the technique is limited to gases it was not an option in this Disserta-
tion.

Dissolution Dynamic-Nuclear-Polarization (DNP) [61], is the gold standard for obtaining
hyper-polarized liquid state NMR spectra. The technique is well established and further
developments are pursued in many labs around the world. However, dissolution-DNP has
not yet been applied to zero-field J-spectroscopy even though its versatility and generality
would make it a near perfect fit. Overhauser-DNP has been successfully applied to ultralow-
field NMR [62]. However, the origin of the spin-order in this case was the ∼50 mHz hyperfine
interaction in the radical, which is smaller than the proton frequency in a 2 T pre-polarizing
permanent magnet (and thus corresponds to lower spin-order).

2.3.3 Signal Excitation and Detection in Zero Field

The observed signal in a zero-field NMR experiment is the expectation value of the
detection operator 〈Mz〉 (t), i.e. the time-dependent magnetization along the z-axis. For a
macroscopic observable to be time-dependent the spin system must be in a state that does
not commute with the nuclear spin Hamiltonian. In making this statement we are ignoring
relaxation effects which would oblige us to consider either non-unitary dynamics, or expand
our view of the ‘system’ to encompass something rather more complex than the nuclear spins
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of a single molecule. The equation of motion for the expectation value is

〈Mz〉 (t) = Ntot × Tr{M †
z e−iHJ tρ(0)eiHJ t}

= Ntot ×
∑
i,j

M(z,ji)ρije
−iωijt, (2.34)

where Ntot is the number of molecules in the sample, and in order to obtain the expression in
Eq. (2.34), we have inserted two resolutions of the identity and evaluated the trace. M(z,ji)

and ρij denote matrix elements of the corresponding operators and ωij is the energy difference
between states |i〉 and |j〉 in angular frequency units. The sum runs over all the eigenkets
of the system. We now see explicitly that, as long as we ignore relaxation, the diagonal
elements of ρ, the populations, are static in time and the signal comes from the off-diagonal
elements of ρ, the coherences. Equation (2.17) gave selection rules for the matrix elements
of Mz; those selection rules define what coherences are observable. In this section we seek
to investigate how to ensure that the corresponding ρij are non-zero, that is to say, how to
excite the corresponding coherences.

Sudden Transport We saw in Section 2.3.2 that the initial state of the spin system, ρ(0),
depends greatly on how the polarization was generated. In the case of a two-spin system
and pre-polarization in a magnetic field followed by sudden transport to zero-field, ρ(0) is
given by Eq. (2.23). On the coupled basis we can rewrite this as

ρ(0) = ρTH (2.35)

=
1

4
+
ωI + ωS
8kBT

(Iz + Sz) +
ωI − ωS

8kBT
(Iz − Sz) (2.36)

=
1

4
+
ωI + ωS
8kBT

(|T+1〉 〈T+1| − |T−1〉 〈T−1|) +
ωI − ωS

8kBT
(|S0〉 〈T0| − |T0〉 〈S0|). (2.37)

We see that in this case ρ(0) already contains coherences between the |S0〉 and |T0〉 states,
ρS0T0 = ρT0S0 = (ωI − ωS)/(8kBT ). These coherences also obey the selection rules of
Eq. (2.17), ∆mF = 0 and ∆F = 0,±1, and if we evaluate the reduced matrix elements
we get M(z,S0T0) = M(z,T0S0) = (γI − γS)/2, and M(z,T1T1) = −M(z,T−1T−1) = (γI + γS)/2.
Finally, we insert these results into Eq. (2.34) and obtain (remember that ωi = Bpolγi)

〈Mz〉 (t) = Ntot
Bpol(γI + γS)(γI − γS)

8kBT
+Ntot

Bpol(γI − γS)2

16kBT

(
ei2πJt + e−i2πJt

)
= Oz +Ntot

Bpol(γI − γS)2

8kBT
cos(2πJt). (2.38)

i.e. the net magnetization of the system oscillates along the z-axis at the coupling frequency.
Oz denotes static magnetization along the z-axis. The Fourier transform of 〈Mz〉 (t) would
in this case yield a J-spectrum consisting of a single peak centered at J . There is also a
stationary component of ρ(t) which simply results in static magnetization along the initial
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Figure 2.3: Simulated excitation curves for a DC pulse on a 1H-13C two-spin system fol-
lowing sudden transport to zero-field. The signal is normalized to the maximum achievable
intensity. (a) An x or a y-pulse changes the relative orientation of the proton and carbon
spin polarizations, leading to a maximum increase in the signal intensity by (5/3). The curve
corresponds to Eq. (2.41). (b) A z-pulse does nothing since the initial state commutes with
a field along z.

direction of polarization. Note that the intensity of the peak at J is proportional to the
square of the difference of the gyromagnetic ratios. One of the two factors (γI − γS) comes
from the detection operator, and is a manifestation of what we pointed out earlier - only
heteronuclear systems yield directly observable J-spectra. The second factor of (γI − γS)
comes from the matrix element ρT0S0 ; we term this the coherence amplitude.

DC Pulses The density matrix in zero-field may be manipulated by rapidly switching on
a static magnetic field using an electromagnetic coil, letting the spins precess around this
field for some time tp before rapidly switching it off. We refer to this as a DC pulse. The
Hamiltonian for such a pulse is given by

Hp =
∑
i

γiB · Ii, (2.39)

where we assume that γi|B| >> J for all J-couplings in the system, and so J-coupling
evolution under the pulse may be ignored. The effect of such a pulse is to rotate each
individual spin in the sample by an angle γi|B|tp = θi around the axis defined by B.

We can use a DC pulse to increase the intensity of the signal given by Eq. (2.38). This is
most easily seen by considering the operator form of ρ(0) in Eq. (2.36). The term (Iz + Sz)
is diagonal in the zero-field basis, which can also been seen by noting that it is proportional
to Fz, and so does not evolve and the signal comes entirely from the (Iz − Sz) term, which
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has a smaller prefactor. However, by applying a static magnetic field perpendicular to the
z-axis the prefactors of the two terms can be exchanged by rotating the polarization of one
of the spins by π rad. relative to the other. During a DC pulse applied in the xy plane ρ(0)
is given by

ρ(0) =
1

4
+
ωI + ωS
8kBT

(cos(θI)Iz + cos(θS)Sz) +
ωI − ωS

8kBT
(cos(θI)Iz − cos(θS)Sz), (2.40)

where we have kept only terms that lie along the z-axis (detector axis), this simplification
will be justified in Section 2.3.6. If we are interested solely in how the detected signal changes
with the duration of the applied pulse we can consider only terms proportional to Iz − Sz
and write the following equation for the coherence amplitude

ρT0S0 =
ωI + ωS
8kBT

(cos(θI)− cos(θS)) +
ωI − ωS

8kBT
(cos(θI) + cos(θS)), (2.41)

we term such an expression an excitation curve. Note that the excitation curve does not
depend on the axis of the pulse (as long as it is perpendicular to the z-axis), and the
observed spectrum will be the same whether an x- or a y-pulse is used. However, if the pulse
is along the z-axis nothing happens since ρ(0) = ρTH and ρTH commutes with a z-field by
construction. Simulations showing excitation curves for a 2-spin 1H-13C system are shown
in Fig. 2.3. The location of the maximum can be understood by noting that for the specific
case of a 1H-13C system we have the property γI/γS ≈ 4, so if we chose θS = π we get
θI = 4π. In this case we have

ρ(0) =
1

4
+
ωI + ωS
8kBT

(Iz − Sz) +
ωI − ωS

8kBT
(Iz + Sz), (2.42)

and the oscillating magnetization becomes

〈Mz〉 (t) = Oz +Ntot
Bpol(γI + γS)(γI − γS)

8kBT
cos(2πJt), (2.43)

which corresponds to an increase in the signal magnitude by a factor of γI+γS
γI−γS

≈ 5/3 over

the result in Eq. (2.38).

Adiabatic Transport The initial state of a two-spin system following adiabatic transport
to zero-field is given by Eq. (2.33). By construction this state commutes with HJ and so
does not evolve. Writing the operators on the coupled basis we obtain

ρ(0) =
1

4
+
ωI + ωS
8kBT

(|T+1〉 〈T+1| − |T−1〉 〈T−1|) +
ωI − ωS

8kBT
(|S0〉 〈S0| − |T0〉 〈T0|). (2.44)

The first term, (Iz + Sz), corresponds to a population imbalance between the |T±1〉 states,
the same as in the sudden case. Under the application of a DC pulse in the transverse plane
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this term will evolve into observable oscillating magnetization as shown above. In this case
it is straightforward to show that the excitation curve is simply

ρT0S0 =
ωI + ωS
8kBT

(cos(θI)− cos(θS)), (2.45)

which is the first part of Eq. (2.42). The second term, which is proportional to singlet-triplet
population imbalance, is not converted to magnetization oscillating along the z-axis by an
x-pulse. On the other hand, while a field along the z-axis does nothing to the Iz + Sz term,
a z-pulse does in fact access scalar order. The singlet-triplet population difference may also
be written as I ·S− IzSz. The part of this term that evolves under a z-pulse is IxSx + IySy.
Rotations about the z-axis may never convert Ix/y or Sx/y into Iz or Sz terms, and thus
a z-pulse cannot turn scalar order into Iz − Sz. However, all we need to detect signal is
a term in the density matrix that transforms as a T λ10 spherical tensor (see Section 2.3.6),
which under J-coupling evolution is allowed by symmetry to generate z-magnetization. For
a two-spin system there are three T λ10 tensors. Two of them, Iz and Sz can obviously not be
generated with a z-pulse, however the third first-rank tensor is

T 3
10 = IxSy − IySx, (2.46)

which can indeed be accessed with a z-rotation. To see this we write the T 3
10 operator on the

coupled basis
(IxSy − IySx) = i |T0〉 〈S0| − i |S0〉 〈T0| . (2.47)

We also note that under a z-rotation the initial density matrix is equal to

ρ(0) = Oz +
ωI − ωS

8kBT

{
[cos(θI)Ix − sin(θI)Iy)] [cos(θS)Sx − sin(θS)Sy]

+ [cos(θI)Iy + sin(θI)Ix] [cos(θS)Sy + sin(θS)Sx]
}
, (2.48)

where we have collected all the terms that commute with the z-pulse into Oz. Next, we
drop the terms proportional to IxSx and IySy since they commute with HJ , and after some
algebra we obtain

ρ(0) = Oz +
ωI − ωS

8kBT
(IxSy − IySx) [sin(θI) cos(θS)− sin(θS) cos(θI)] . (2.49)

Employing the difference angle formula and Eq. (2.47) we obtain the following expression
for the excitation curve for a pulse along the z-axis

ρS0T0 = −ρT0S0 = i
ωI − ωS

8kBT
sin(θI − θS). (2.50)

Maximum signal is thus achieved when the difference in rotation angles for the two spins is
π/2. For a proton-carbon system this corresponds to θC ≈ π/6. Further, the largest signal
that can be achieved when exciting with a pulse along the detector axis is a factor γI+γS

γI−γS
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Figure 2.4: Simulated excitation curves for a DC pulse on a 1H-13C two-spin system following
adiabatic transport to zero-field. The signal is normalized to the maximum achievable in-
tensity. (a) An x or a y-pulse converts vector spin-order into oscillating magnetization. The
curve corresponds to Eq. (2.45) (b) A z-pulse converts singlet-triplet population difference
into oscillating magnetization. The curve corresponds to Eq. (2.50)

weaker than what can be achieved with a transverse pulse, at least in the two-spin case.
However, it has been shown that the life-time of the corresponding spin-order is significantly
longer [30].

Inserting Eq. (2.47) into Eq. (2.34) we obtain

〈Mz〉 (t) = Oz +Ntot
Bpol(γI − γS)2

16kBT

(
ei2πJt − e−i2πJt

)
= Oz +Ntot

Bpol(γI − γS)2

8kBT
sin(2πJt). (2.51)

Note that the magnetization is zero at time zero, and the signal will appear 90◦ out of phase
relative to a signal excited with a transverse pulse. This is consistent with the fact the the
initial state does not contain any Iz or Sz operators.

Figure 2.4 shows numerical simulations of excitation curves for a 2-spin 1H13C system
following adiabatic transport to zero-field.

To summarize the results of the preceding paragraphs: transverse (=x or y) pulses convert
vector spin order Iz + Sz, which corresponds to a population imbalance between states of
different mF into observable magnetization, and pulses along the z-axis access scalar order,
I · S, i.e. population imbalance between states of different F and ξ.
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2.3.4 Experimental Examples

Equation (2.34) describes a general zero-field signal, the Fourier transform of which will
show peaks at the frequencies {ωij}. In general such J-spectra provide chemically distinct
fingerprints of molecules, and their complexity grows both with the number of distinct cou-
plings and the number of spins. As a demonstration, Fig. 2.5 shows J-spectra of four different
molecules acquired over the course of this work. The spectra were acquired following adi-
abatic transport from a pre-polarizing region to zero-field, followed by inversion of the 13C
spin using a DC pulse. All molecules in Fig. 2.5 are 13C-labeled since, as we have seen, only
heteronuclear systems yield J-spectra. All four also feature chemically exchanging protons,
which do not contribute to the coherent spin dynamics, since the exchange rate is signifi-
cantly faster than the timescale for J-coupling evolution. Significant effort has gone into the
interpretation of J-spectra [48, 49], and we will not repeat the analysis in detail here, but
simply present a few useful rules.

Two coupled spins 1/2, can only ever result in a single peak at the coupling frequency
J , as we saw in Eq. (2.38). Such a system is realized experimentally by 13C-formic acid, the
spectrum of which is shown in Fig. 2.5a. A spin-1/2 coupled to a spin-1 gives a single peak
at 3/2J and a spin 1/2 coupled to a spin 3/2 gives a peak at 2J . These rules indicate that
the J-spectrum of a 13C-labeled methylene group should be a single peak at 3/2J , while a
13C-labeled methyl group should give one peak at 1J as well as one at 2J . This is because
the angular momenta of the two equivalent protons in a methyl group may add to give either
an effective spin-0 or a spin 1 particle, and the spin-0 case yields no spectrum. Meanwhile,
three protons may add to give either a spin 1/2 or a spin 3/2 particle. The example of 13C-
methanol is shown in Fig. 2.5b. In Fig. 2.5c we see the slightly more complicated example
of 13C2-acetic acid. Here the methyl pattern is still the dominant feature as it corresponds
to the largest coupling, but now there are two peaks around 1J and three around 2J . There
are also additional peaks close to zero. These peaks are caused by the methyl-group energy
levels being split by the smaller couplings to the second carbon-13. Often in such causes it
is enough to treat the additional couplings with 1st order perturbation theory and simply
project them on the primary coupling [48]. But while perturbative approaches suffice for
small systems with one dominant coupling there are many molecules that do not correspond
to such spin systems. For example consider the spectrum of 1-13C-propionic acid shown in
Fig. 2.5d. There are only six spins, but all three couplings are of approximately the same
magnitude and there is no simple shorthand way of interpreting the spectrum. In this case
computer simulations are necessary to correctly assign all the peaks and obtain chemical
information. Simulations are also necessary to extract quantitative information even from
simpler spectra that can otherwise be treated perturbatively.

The resonances in these spectra are broader than what has been reported for some zero-
field systems [23]. We believe that scalar relaxation of the second kind causes the exchanging
protons to act as a linewidth limiting relaxation sink for these molecules.
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Figure 2.5: Representative zero-field J-spectra of increasing complexity. (a) 13C-formic acid,
a two spin system. (b) 13C-methanol, a four spin system with three equivalent protons. The
large peak at 180 Hz is the third harmonic of the line noise. (c) 13C2-acetic acid, a 5 spin
system with 3 equivalent protons. (d) 1-13C-propionic acid, a 6 spin system, with 2 groups of
3 and 2 equivalent protons. In all four cases the hydroxyl proton exchanges rapidly compared
to the evolution time and does not contribute to the spin-dynamics. However, it does limit
the linewidths via chemical exchange broadening.

2.3.5 Near-Zero Field NMR

So far we have considered ‘true’ zero-field NMR, i.e. the case where the Hamiltonian only
contains spin-spin couplings, and no Zeeman terms at all. This is a good approximation
when the field is low enough that the Larmor frequencies of the spin-species under study
is significantly smaller than the life-time limited spectral linewidths. In this section we will
briefly outline what happens the magnetic field is large enough to have an effect on the
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spectrum, but the Larmor frequencies are still significantly smaller than the J-couplings of
the system. This is termed ‘near-zero’ or ‘ultralow’ field NMR and has been described in
detail in the literature by Ledbetter et al. [24] and Appelt et al. [22].

The Hamiltonian for a J-coupled spin system in the presence of a small magnetic field is

H = HJ −Bz

∑
i

γiIz,i, (2.52)

where Bz is the magnitude of magnetic field and we have chosen our coordinate system so that
the field is applied along the z-axis. Ultralow-field NMR thus constitutes the one exception
to the rule that we take the z-axis to be along the detector axis of the magnetometer. When
there is a residual magnetic field it is significantly more convenient to quantize the spins
along the field, whatever that direction is. To first order in perturbation theory the effect of
B is to change the energies of the states while leaving their nature unchanged.

2-spin case For the simple case of a two spin system within this approximation Eq. (2.52)
becomes

H = HJ −Bz
γH + γC

2
Fz, (2.53)

which corresponds to an energy shift by ∓Bz
γH+γC

2
for the |1,±1〉 states, while to first

order the |1, 0〉 and |0, 0〉 remain unperturbed. If the field is applied perpendicularly to the
detection axis, the detection operator is given by Mx, and within this coordinate system
observable transitions are those for which ∆mF = ±1. This means that the J-spectrum of
a single coupled spin-pair, which in zero-field consists of a single peak at J , splits into a
doublet in a small field applied perpendicularly to the detection axis. The splitting is given
by ∆ν = Bz(γH + γC).

More spins The case of a system where more than two spins are present is more com-
plicated to treat generally. See Refs [24, 42, 43] for detailed matrix element calculations of
larger spin systems.

2.3.6 Signal Direction and Symmetry Considerations

We saw in Section 2.3.3 how a system of two J-coupled spins at zero-field, if initialized
appropriately, will yield an oscillating magnetization along the z-axis. In this section we
answer the question, “what if we had access a complete vector sensor that was capable of
measuring the magnetic field along all 3 axes simultaneously?”. This question can in fact be
answered quite generally by considering the rotational symmetry properties of the relevant
operators. The upshot of this section is that zero-field NMR signals always correspond to
magnetization oscillating along a single axis, meaning that as long as the system can be
reliably initialized along the detection axis ‘quadrature detection’ would add nothing to the
experiment.
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Magnetization is a rank-1 (vector) operator with three Cartesian components, Mx, My,
and Mz. We will denote the full tensor M . The components of M transform under rotations
of the spin system according to Eq. (2.60). The expectation value for the magnetization along
some direction is given by

〈Mz〉 (t) = Tr
{
M †

zρ(t)
}
. (2.54)

In order to evaluate the symmetry constraints on Eq. (2.54) we decompose ρ(t) in terms of
spherical tensors as

ρ(t) =
∑
λ,l,m

cλlm(t)T λlm, (2.55)

where λ is an extra index denoting the fact that in general there will be more than one tensor
of a given l and m and the c are expansion coefficients. Now we can use the fact that the
product of two spherical tensor operators is itself a linear combination of spherical tensors
with weights given by the appropriate Clebsch Gordan coefficients and write the expectation
value in Eq. (2.54) as

〈Mz〉 (t) = Tr

{∑
λ

lmax∑
l=0

l∑
m=−l

lmax+1∑
l′=0

l′∑
m′=−l′

C l′m′

10,lmU
λ
l′m′cλlm(t)

}
, (2.56)

where the Uλ
l′m′ are spherical tensors, and we have used the fact that z is the m = 0 spherical

component of M . Equation (2.56) appears fierce but the vast majority of the terms are zero
by necessity. First we note that only those Uλ

l′m′ for which l′ = m′ = 0 may have non-zero
trace (see Appendix 2.4). Second, the Clebsch-Gordan coefficients with l′ = 0 and m′ = 0
are zero if l 6= 1 or if m 6= 0. With these constraints Eq. (2.56) becomes

〈Mz〉 (t) = Tr

{∑
λ

C00
1,0,10U

λ
00cλ10(t)

}
. (2.57)

We can now see that only the rank-1 components of ρ(t) may correspond to magnetization,
and only those components with m = 0 may correspond to magnetization along the z-axis.

These are useful statements because we also know that HJ as given by Eq. (2.13) is
invariant with respect to spin-rotations, i.e. it is a scalar operator, and thus evolution under
HJ conserves both the rank and the m-value of ρ. To see why this is true, consider the
equation of motion of ρ(t) under J-coupling evolution

ρ(t) = e−iHJ tρ(0)eiHJ t

=

(
∞∑
k

(−iHJt)
k

k!

)(∑
λ,l,m

cλlmT
λ
lm

)(
∞∑
k′

(iHJt)
k′

k′!

)
, (2.58)

where we have used the expansion for ρ(t) introduced in Eq. (2.55) and the definition of
the exponential of an operator. Time evolution is thus equivalent to multiplication by suc-
cessively higher powers of HJ . According to Eq. (2.61) the product of a spherical tensor
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operator, Tlm by a rank-0 operator must result in another spherical tensor operator of rank
l and m-value m. Therefore (HJ)k is a scalar operator for all k, and multiplication of ρ with
(HJ)k can not change either the rank or m-value of any of the components of ρ. Thus, for
all combinations of (lm) in Eq. (2.55) we have the property that∑

λ

|cλlm(t)|2 = Klm, (2.59)

where K is a constant that is independent of time. This means that each set of T λlm for a given
(lm) forms a closed space under time-evolution, only the λ index may vary. From Eq. (2.57)
we know that only T λ10 operators may give rise to magnetization along the z-axis (and they
may never generate either x or y magnetization), but Eq. (2.59) ensures T λ10 components
remain in the T λ10 space for all time. Similarly only the T λ±1 components of ρ may generate x
or y magnetization, and they are also conserved. This means that the different components
of the sample magnetization, M may never turn into each other by evolution under HJ , and
therefore that a zero-field NMR signal must always be linearly polarized. As such it is always
possible to define the z-axis to lie along the axis of oscillation of the magnetization. The trick
with signal excitation is to set up an initial condition that ensures that this axis is collinear
with the detection axis. Also note that Eq. (2.59) does not imply that the components of
M are conserved, it only means that they can not turn into each other.

Finally, we point out that the fact that a zero-field signal may only change its axis of
oscillation in the presence of a rank-1 (or higher) term in the Hamiltonian is exploited in
proposals for detecting chirality [32] and parity non-conservation [33] using zero-field J-
spectroscopy.
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2.4 Appendix I: Properties of Spherical Tensors

The following is summary of useful properties of spherical tensors. For a more complete
reference see e.g. Varshalovich et al. [37].

• Spherical tensors can be defined by their transformation properties under rotations

U(R)TlmU
†(R) =

l∑
m′=−l

Dl
mm′Tlm′ , (2.60)

where Dl is a rank-l Wigner matrix. A Wigner matrix is the representation of the
rotation operator (in either Euler-angle, or axis-angle parametrization), on the angular
momentum basis.

• The Tlm can be both numbers, e.g. the components of a classical vector, and operators,
e.g. the components of the angular momentum operator I. If they are operators they
are represented by N × N matrices (where N is the dimensionality of the relevant
Hilbert space), but they still obey the transformation law in Eq. (2.60).

• The product of two spherical tensors is a linear combination of spherical tensors, with
weights given by the appropriate Clebsch-Gordan coefficient.

XkqYk′q′ =
k+k′∑

l=|k−k′|

l∑
m=−l

C lm
kq,k′q′Tlm (2.61)

• A scalar operator defined on some Hilbert space is unchanged by rotations

U(R)T00U
†(R) = T00, (2.62)

which implies that it commutes with the representations of the angular momentum
operators I as defined on the same space on which we defined T00. This can be seen
by noting that U(R) is constructed by exponentiating the components of I.

• It follows from the above statement that all spherical tensor operators of rank greater
than 0 are traceless.

To see this consider an N ×N dimensional spherical tensor operator Tlm. If Tlm has a
trace then it can be written as

Tlm = Tr {Tlm} ×
1

N
+ T

′
, (2.63)

where 1 is the N × N identity matrix and T
′

is a traceless operator. However, the
identity matrix commutes with all operators, and therefore it commutes with all com-
ponents of I. That means that the first term in Eq. (2.63) is a scalar operator according
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to Eq. (2.62). But a spherical tensor may only have a single rank by definition, there-
fore if the first term is nonzero, T

′
must be either zero or rank-0. It follows that if a

spherical tensor operator has a trace, it must necessarily be a scalar operator. Note
that the converse is not true, the matrix representation of a scalar operator may still
be traceless, c.f. the operator for a two-spin J-coupling I · S, which transforms as a
scalar under rotations, but its matrix representation is traceless.
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Chapter 3

Vapor-Cell Detected NMR:
Background and Experimental
Methods

In the previous chapter we provided a review of the concept of zero-field J-spectroscopy.
Here we will discuss the means by which such spectra are obtained.

We will start with a brief overview of the options available for NMR detection at frequen-
cies below 100 Hz. The experiments in this dissertation were performed using a spectrometer
based on a 87Rb vapor-cell magnetometer, and the bulk of the chapter is dedicated to a re-
view of how such a device works, as well as how to set one up as an NMR spectrometer. We
will also cover calibrations and design choices for our spectrometer. Finally, we will provide a
summary of some of the digital processing methods that we have used to assist data analysis
and interpretation.

This chapter contains material previously published under the following titles:

• Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field by
Tayler, Theis, Sjolander, Blanchard, Kentner, Pustelny, Pines, and Budker [63]

• Nuclear Magnetic Resonance at Millitesla Fields Using a Zero-Field Spectrometer by
Tayler, Sjolander, Pines, and Budker [64]

• Transition Selective Pulses in Zero-Field Nuclear Magnetic Resonance by
Sjolander, Tayler, King, Budker, and Pines [1]

• 13C-Decoupled J-coupling Spectroscopy Using Two-Dimensional Nuclear Magnetic Res-
onance at Zero-Field by Sjolander, Tayler, Kentner, Budker, and Pines [2],

as well as material being prepared for publication under the title

• Rank Selective Decoupling of Heteronuclear Systems in Zero-Field Nuclear Magnetic
Resonance by Sjolander, Tayler, Ajoy, Budker, and Pines [145].
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3.1 Detection of Low-Frequency NMR Signals

3.1.1 Inductive Detection at Low-Field

Nuclear Magnetic Resonance signals are conventionally detected using an inductive pick-
up coil, however this is not suitable for zero-field spectroscopy. To see why consider that the
emf, ε induced in a coil is given by Faraday’s law of induction as the rate of change of the
magnetic field, B.

ε = −dB
dt
. (3.1)

In NMR spectroscopy the observed signal corresponds to the magnetic field generated by the
bulk magnetization of the sample. The signal, S, has an oscillating time dependence which
is given by the evolution of the ensemble density matrix under the nuclear spin Hamiltonian,
as outlined in the previous chapter.

S(t) =
∑
i>j

Aij cos(ωijt), (3.2)

where the {Aij} are the amplitudes and the {ωij} the frequencies of the different signal
components. It follows that the observed ε, regardless of spin polarization level, should
depend on the frequency of the signal of interest.

εNMR =
∑
i>j

ωijAij cos(ωijt). (3.3)

The amplitudes Aij are proportional to the sample magnetization, which in turn are generally
(but not always – c.f. hyperpolarized NMR) proportional to the static magnetic field. This
would imply a scaling of the sensitivity for inductive detection by εNMR ∝ B2

0 , where B0

is the ambient field. However, in general what one cares about in an NMR experiment is
the Signal to Noise Ratio (SNR), commonly defined as the signal divided by the standard
deviation of the noise. The noise includes contributions from thermal fluctuations in the coil
and other unwanted pickup, which in general also decrease at lower frequencies. The actual
scaling of of the SNR with field strength varies depending on noise characteristics (which in
turn is a sensitive function of the exact experimental parameters) but is generally between
B1 and B2 [65–68]. In any case, detecting NMR signals with inductive pickup coils becomes
more challenging the lower the frequencies one wishes to operate at. Savukov et al. [69]
introduced a model for the fundamental sensitivity of an inductive pickup coil as a function
of frequency. They obtain a sensitivity of ∼0.01 fT

√
Hz at 100 MHz, and ∼100 fT

√
Hz at

1 kHz, for a 5 cm diameter surface pickup coil. This represents the size of the magnetic field
that can be measured with an SNR of 1 in 1/2 s of averaging time. (The Nyquist sampling
theorem gives the bandwidth in Hz as (1/2)×(1/sr), where sr is the sampling rate in samples
per second.)

In spite of the punishing scaling of sensitivity with field strength relaxometry can be
performed all the way down to earth’s field [70] (corresponding to a proton Larmor frequency
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of ∼2 kHz) and within the last decade interest in low-cost and portable NMR/MRI in
general, coupled with advances in coil design, has pushed the frequencies where it is possible
to perform spectroscopy with inductive detection down to ∼1 kHz [71, 72]. This has the
potential to be transformative in the field of low-field NMR, but is still one to two orders of
magnitude away from the frequencies in zero-field J-spectroscopy.

J-coupling constants in organic molecules, which are the typical objects of study in J-
spectroscopy, are generally between 1-200 Hz, so in order to perform zero-field J-spectroscopy
we require a a detector that is sensitive at essentially DC frequencies. SNR generally improves
with the square-root of the measurement time. As a consequence, in the case of weak signals
whose amplitude are close to or below the sensitivity level of the sensor, ‘just average more’
quickly turns into something of a fool’s game and it is desirable to use a detector that is as
sensitive as possible. We will briefly summarize different detection schemes that have been
used to observe < 100 Hz NMR signals.

3.1.2 Detection in High-Field

The first detection of NMR signals originating from nuclear spins evolving in the absence
of an external field were done using a high-field spectrometer (superconducting magnet and
all) see Refs [73–76] and others. In these experiments the sample was shuttled mechanically
in and out of the bore of the magnet into a magnetically shielded region, the signal projection
on the z-axis during zero-field evolution was determined indirectly, by monitoring the integral
of the high-field spectrum following a π/2 pulse once the sample had been shuttled back into
high-field. The FID was thus acquired point-by-point. The main goal of these experiments
was to use the fact that in the absence of a preferred direction an NMR powder spectrum
has the same kind of narrow lines usually associated with single-crystal spectra.

Later it was realized that low-field conditions in some cases can be recreated inside a
high-field bore using coherent averaging techniques, thus removing the need for shuttling
[77]. The technique was termed ‘Zero-Field-in-High-Field’ (ZFHF). The catch is that while
one can use coherent averaging [78] to take a truncated Hamiltonian and make it ‘look’
like a zero-field Hamiltonian, those terms which are zero can never be brought back. For
example, one can use the ZFHF technique to turn the heteronuclear J-coupling JIzSz into
its zero-field analogue (with a scaling factor) (J/3)I ·S. On the other hand, one could never
use ZFHF to generate a term proportional to J1 (the rank-1 component of the J-coupling
tensor). Measurements of this coupling tensor have been suggested as a means to detect
both chirality [32] and molecular parity non-conservation using NMR [33]. Consequently the
difference between genuine zero-field evolution, and ‘zero-field like’ evolution in an average
Hamiltonian sense is critically important for some experiments.

In the end, while high-field detection provides an excellent means by which to explore
ultralow-field physics phenomena (and efforts in this vein are currently underway in the Pines’
lab), the use of indirect detection puts limits on the resolution that can be attained, and of
course superconducting magnets are not very amenable to portability and miniaturization.
However, many potential applications of zero-field NMR are not based on either portable
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analysis or fundamental physics. For example studies of chemical reactions inside catalysts
and heterogeneous media in general do not necessarily require direct detection and since
magnetic shielding is cheap it would be straightforward for current research labs to use
zero-field NMR with high-field detection to attack such problems.

3.1.3 SQUIDs

DC Superconducting Quantum Interference Devices (SQUIDs) do not suffer from decreas-
ing sensitivity at low frequencies and generally obtain sensitivities around 1 fT

√
Hz [79]. This

makes them excellent candidates for ultra-low field NMR detection. Indeed, SQUIDs have
a long history as detectors in NMR [80] and the first experiment directly detecting NMR
signals at frequencies below 100 Hz was performed with a SQUID in 2002 [50]. A few years
later a SQUID based system was used to obtain the first directly detected NMR spectra
where 2πJ > γB [46, 47]. There has been continued interest in this field since then, see [51,
81, 82] and many others, and this paragraph does not purport to give anywhere close to a
full review of the subject. While SQUIDs allow for frequency-independent detection of NMR
signals with good sensitivity they have one big weakness as a low-field detector – they still
require liquid Helium in order to operate. So while SQUID based NMR systems do bene-
fit from many of the advantages of low-field, such as lower field homogeneity requirements,
increased skin-depth, and the ability to ignore magnetic susceptibility anisotropy, they can
not easily be turned into cheap and portable, sensors or imaging devices.

3.1.4 Diamonds

Magnetic field sensing using Nitrogen Vacancy (NV-) Centers in diamond is a growing
field. The NV- center is an effective atomic spin-1 particle, the magnetic state of which can
be initialized and read out optically. Magnetometers based on NV- centers do not require
cryogens and have been used for a number of groundbreaking NMR experiments, such as
detection of the magnetic field from a single 13C in the diamond lattice [83], and even the
detection of individual protons outside the diamond [84]. This was possible because a single
NV- center can be brought within nanometers of a target sample [85, 86]. NV-magnetometers
are eminently miniatureizible, easy to set-up and handle, and potentially portable. Their
main weakness as NMR detectors come from the fact that ensembles of NV- centers are
simply not that sensitive compared to SQUIDs. They attain sensitivities in the nT

√
Hz [87,

88] range (though the projected shot-noise limit is significantly better [89]) and are therefore
not suitable for applications to bulk NMR (as opposed to single molecule detection, where
their small size can be leveraged).

3.1.5 Atomic Magnetometers

In this dissertation we detect NMR signals using an atomic vapor-cell magnetometer.
Atomic magnetometers are magnetic field sensors that work by monitoring the precession of
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the bulk magnetization of atomic spins of an alkali vapor in response to the magnetic field of
interest. The principle was first demonstrated experimentally by Bell and Bloom [90] in 1957
and in the decades since significant improvements have been made see [91–93] and references
therein. At this point atomic magnetometers operating in the Spin Exchange Relaxation
Free (SERF) regime are the most sensitive DC magnetic field sensors available, eclipsing
even SQUIDs, with sensitivities <1 fT/

√
Hz [94]. These devices can be used for precision

measurement experiments e.g. the ongoing search for a neutron electric dipole moment [95].
An atomic magnetometer was first used to detect coherent NMR at sub-100 Hz frequencies
in 2005 [53]. The experiment measured the Larmor precession of bulk water in a field of
∼5 µT (ν = 20 Hz). While the sensitivity of atomic magnetometers for some configurations
is better than that of SQUIDs, this is primarily the case when optimized for an extremely
small measurement bandwidth. However, in order to measure zero-field NMR spectra we
want a sensor that operates over at least a few hundred Hz. In such a configuration an atomic
magnetometer does not necessarily outperform a SQUID in terms of sensitivity. Instead the
main advantage of vapor-cell magnetometers comes from the fact that they do not require
cryogens, and are in general significantly easier to set up and operate. It took years to
develop the specialized electronics that enable SQUIDs to function as NMR sensors [80],
meanwhile NMR detection with a SERF vapor-cell magnetometer requires a photodiode and
a data acquisition card (e.g. National Instruments 6229, an Arduino can do in a pinch).
They can also be miniaturized, while still being fully capable of bulk NMR detection [25–27,
96].

3.2 Introduction to Vapor-Cell Magnetometry

Since our zero-field spectrometer is based on an alkali vapor-cell magnetometer, we will
briefly outline the principles, operation, and setup of such a device with reference to our
instrument. For a more complete overview of vapor-cell magnetometry see [91, 92] and
references therein.

There are several different configurations of atomic magnetometers, but the one used for
the experiments in this dissertation works as follows: Rubidium vapor contained in a heated
glass cell is spin-polarized using circularly polarized laser light, by means of a process known
as optical pumping. The bulk spin of the polarized rubidium ensemble coherently precesses
around the external magnetic field, B we wish to measure. At the low fields considered in
this work the precession rate is much lower than the optical pumping rate, so the effect of
B is to slightly change the angle, θ, of the net rubidium magnetization away from the axis
of the pump laser. A second laser beam, called the probe, passes through the vapor-cell
at right angles to the pump beam. The probe beam is linearly polarized and as it passes
through the rubidium vapor the plane of polarization rotates by an angle φrot. This effect is
known as magneto-optical rotation and is closely related to Faraday rotation. The degree of
rotation depends on the strength of the magnetic field generated by the Rubidium electrons
along the axis of propagation of the probe. The polarization rotation angle φrot is therefore
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Figure 3.1: Illustration of the physics behind the magnetometer operation. (a) Optical
pumping with circularly polarized light induces a net rubidium spin-polarization along the y-
axis. (b) The presence of a fieldBz along the z-axis causes coherent precession of the rubidium
ensemble. Assuming that the precession frequency is much smaller than the optical pumping
rate the effect of Bz is to rotate the direction of the steady-state rubidium polarization by
an angle θ in the xy-plane. (c) A linearly polarized laser beam passes through the spin-
polarized vapor at right angles to both the pump and Bz, i.e. the x-axis. The plane of
polarization rotates proportionally to the degree of spin-polarization along the x-axis, which
in turn depends of θ. Measurement of the rotation angle therefore provides a measure of Bz.

a measure of θ, and θ in turn depends on the strength and direction of the external magnetic
field B. The steps linking the magnetic field to be sensed and the optical rotation of the
probe beam are shown schematically in Fig. 3.1.

Of course in this dissertation the external fields we are interested in measuring originate
in the coherent evolution of the collective magnetization of nuclear spin ensembles i.e. pulsed
NMR, and we have B ∝ 〈Mz〉 (t). In general the response of the magnetometer is a sensitive
function of the frequency of B.

3.2.1 Optical pumping

The strength of the optical rotation signal does not depend on θ alone, i.e. the direction
of the rubidium magnetization vector, it also depends on the degree on spin-polarization of
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the vapor, i.e. how magnetized the vapor is. Alkali spins in the gas phase may be polarized
to near unity via a process known as optical pumping [97, 98]. During this process a laser is
used to shine polarized light at the vapor, resonant absorption transfers angular momentum
from the light to the atoms, which in turn end up in a spin polarized state. Throughout
this work we use 87Rb as the gas and pump with circularly polarized light. The process is
outlined schematically in figure 3.2.

Figure 3.2: Schematic describing optical pumping on the rubidium D1 transition using
(+)circularly polarized light. The red balls represent units of rubidium spin polarization,
and the arrows represent the direction of the polarization with respect to the quantization
axis. Since angular momentum is conserved only electrons in mj = −1/2 spin-orbit state
may absorb (+) polarized photons, absorption thus selectively depopulates that state and
causes buildup of electron spin polarization in the mj = +1/2 state.

Atomic States For clarity we ignore the the nuclear spin of the rubidium atoms and
consider only the electron spin. In its ground state rubidium has a single valance electron in
an S-orbital. Since an S-orbital does not have any orbital angular momentum the angular
momentum of the electron in the ground state may simply take one of two values when
projected on an arbitrary axis, mj +±1/2. We denote these states 2S1/2(mj = ±1/2). The
lowest energy excited state (that can be accessed with a single photon) is the P-orbital,
which has an orbital angular momentum of 1, giving two possible excited spin-orbit states
with a total angular momentum 1-1/2 = 1/2, and 1+1/2 = 3/2 denoted 2P1/2 and 2P3/2

respectively. Rubidium therefore has two optical resonances. 2S1/2 → 2P1/2, referred to as



CHAPTER 3. VAPOR-CELL DETECTED NMR: BACKGROUND AND
EXPERIMENTAL METHODS 37

D1 at 795 nm, and the slightly higher energy D2 transition at 780 nm, which corresponds
to 2S1/2 → 2P3/2. Spin polarization, by definition, corresponds to an excess of population
in one of the two magnetic (mj) sub-levels of the ground state. This is equivalent to net
magnetization of the rubidium spins and it is this magnetization that is ultimately used
as a sensor in a vapor-cell magnetometer. Optical pumping generates such a population
imbalance by transferring angular momentum from the light via absorption at either D1
or D2. In general it is favorable to pump on the D1 transition since it results in larger
maximally attainable polarization and that is what we do throughout this dissertation.

Light absorption Circularly polarized light carries angular momentum of either +h̄ or
−h̄ along its axis of propagation. Conservation of angular momentum means that, for the
case of (+) light, only atoms in the 2S1/2(mj = −1/2) state may absorb a 795 nm photon
and, and upon doing so they must necessarily end up in the 2P1/2(mj = +1/2) excited state.
Meanwhile, the 2S1/2(mj = +1/2) ground state is optically transparent to (+) light. Thus
optical absorption of (+) light results in selective depopulation of the mj = −1/2 state,
which corresponds to spin-polarization of the rubidium vapor. The angular momentum of
the light is defined with respect to its axis of propagation and so the rubidium electrons are
polarized parallel to the pump laser axis (along the direction of propagation if pumping with
(+) light and opposite the direction of propagation in the case of (−) light.

Polarization Decay Pathways If the vapor contained only rubidium gas, the excited
2P1/2(mj = +1/2) state would eventually decay radiatively by emitting a photon of random
polarization. The branching ratios for the radiative decay are such that most atoms decay
back down to the original mj = −1/2 state. This counteracts the depopulation of the
mj = −1/2 state and decreases the rate at which light absorption causes spin-polarization
≡ the optical pumping rate. To make matters worse, the emitted photon will act as to
depolarize the vapor - it has random polarization and thus it may be absorbed equally by
atoms in the 2S1/2(mj = ±1/2) states. In order to sustain a continuous depopulation of
the target 2S1/2(mj = −1/2) state the optical pumping rate needs to be fast compared to
the rate of depolarization due to radiative decay as well the rate of depolarization due to
absorption by randomly polarized emitted photons, something which requires a lot of laser
power. The consequence of these two effects is that optical pumping of pure rubidium vapor
is quite inefficient. The solution is to add additional molecular gases, usually nitrogen gas,
to the vapor cell. Molecular nitrogen has a wide range of vibrational and rotational energy
levels which allows it to absorb the excess energy in the 2P1/2 state whenever an excited
rubidium atom collides with a nitrogen molecule. Collisions with nitrogen thus allow the
rubidium atom to decay back to the ground state non-radiatively, i.e. without emitting a
depolarizing photon, in a phenomenon known as collisional quenching. Furthermore, the
process is unaffected by the electron spin state and the electron is therefore equally likely
to decay to the 2S1/2(mj = ±1/2) states, as opposed to the case of radiative decay, which
favors the original mj = −1/2 state.



CHAPTER 3. VAPOR-CELL DETECTED NMR: BACKGROUND AND
EXPERIMENTAL METHODS 38

The presence of buffer gas also leads to a process called collisional mixing, the population
of the two 2P1/2(mj = ±1/2) excited states are equalized much faster than the collisional
quenching rate (the rate with which they decay to the ground-state). This is beneficial since it
increases the population difference between the 2S1/2(mj = −1/2) and the 2P1/2(mj = +1/2)
states. An increase in this population difference means an increase in the number of photons
that can be absorbed per unit time, and therefore the rate of transfer of angular momentum
from the light to the alkali vapor. Both excited-state levels have an equal probability of non-
radiatively (due to collisions with nitrogen gas) decaying to the target 2S1/2(mj = +1/2)
state and so collisional mixing increases the optical pumping efficiency by increasing the
population imbalance between the 2S1/2(mj = −1/2) and 2P1/2(mj = +1/2) states, and
therefore the photon absorption rate.

Taking the above facts together we see that adding buffer gas to the cell increases the
optical pumping efficiency.

3.2.2 Spin Relaxation

The attainable polarization of the alkali spins does not depend only on the optical pump-
ing process, it also depends on the spin-polarization life time. Various mechanisms may
cause the electron spin to flip direction and thus cause depolarization. Which mechanism
dominates depends on the properties of the vapor-cell. Wall collisions generally correspond
to the dominant relaxation pathway at low pressures. Much work has been put into devel-
oping specialized cell coatings that cause wall collisions to not be depolarizing [92, 99, 100],
thereby enabling cells to operate at lower pressures.

In cells with large number densities of alkali spins, spin exchange collisions are often the
dominant relaxation pathway. The electronic spins of two colliding alkali atoms may flip
simultaneously while the net electronic spin is conserved. The reason such a collisions are
depolarizing is that the atoms may change hyperfine states during the course of the collision,
and different hyperfine states precess in different directions, i.e. the sign of the effective
gyromagnetic ratio of the net atomic spin may change [92]. The modulation of the sign of
the effective gyromagnetic ratio leads to decoherence of the colliding spins with the overall
ensemble. There is a surprising exception to this rule. If the number density is very large,
and the ambient magnetic field very low, such that the spin-exchange rate is much larger than
the Larmor precession frequency, then the relaxation rate starts to decrease with number
density instead [101, 102]. This is called the Spin-Exchange-Relaxation-Free (SERF) regime.
What happens is that at high spin exchange rates, the rubidium atoms are effectively in a
super position of the hyper-fine states, and precess at a single, average, frequency, at which
point the spin-exchange decoherence pathway disappears. The magnetometer used in this
dissertation operates in this regime.

Spin-destruction collisions do not conserve total electronic spin and may occur both be-
tween two alkali atoms and between alkali atoms and buffer gas atoms. Since the spin angular
momentum is transfered into rotational angular momentum of either the dimer formed dur-
ing the collision or the buffer gas diatomic, spin destruction collisions must necessarily be
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depolarizing. Such collisions are the dominant relaxation pathway in the cells used in this
dissertation.

Additionally, since the probe beam is linearly polarized, absorption of probe beam pho-
tons is depolarizing. This is most easily addressed by detuning the probe beam slightly from
the D1 resonance.

3.2.3 Magneto-Optical Rotation

Once the alkali vapor has been magnetized using optical pumping, monitoring the pre-
cession of the resulting magnetization vector allows for a very sensitive measure of external
magnetic fields. To accomplish this the instantaneous direction of the alkali spins must
be determined. This may done through a phenomenon known as magneto-optical rotation,
which causes the plane of polarization of linearly polarized light to rotate as it passes through
a magnetized medium [93].

Spin-polarization implies circular dichroism Near the D1 resonance, the indices of
refraction n± for the (+) and (−) circularly polarized components of the light depend on
the degree of spin-polarization of the atomic vapor along the propagation path. The physical
origin of this effect is the fact that the index of refraction for light in a medium depends
on its absorption rate in the medium. Formally, an attenuating medium is conveniently
described with a complex refraction index n′ = n+iκ, with the real part describing refraction
(dispersion) and the imaginary part describing the attenuation (absorption) of light in the
medium. Since the real and the imaginary parts (i.e. the dispersion and the absorption) must
always be related by the Kramers-Kronig relations it follows that the absorption rate in the
medium determines the refractive index. Of course this also implies that the refraction index
depends on the wavelength of the light, but in this work we are focused solely on a single
optical resonance, the rubidium D1 line, and the wavelength dependence is not important.

The next point is that the rate of absorption by (+) and (−) light are indeed different
for the case of spin-polarized rubidium vapor and that such a vapor therefore does have
different refractive indices for (+) and (−) light. Remember that spin-polarization by def-
inition implies an imbalance in the populations of the mj = ±1/2 ground states, and that
conservation of angular momentum implies that only the mj = −1/2 state may absorb
(+) light and vice versa. This means that the absorption rate of (+) light must depends
on the ratio of the mj = ± populations. In fact for the D1 line the matrix elements for
the 2S1/2(mj = ±1/2) → 2P1/2(mj = ∓1/2) transitions are identical and the difference
in absorption rate for (+) and (−) light depends entirely on the relative populations of
the 2S1/2(mj = ±1/2) states. Therefore, spin-polarization of the rubidium vapor implies
different refractive indicies for (±) light.

However, since the optical pumping process spin-polarizes the rubidium spins along the
y-axis, the degree of polarization along the x-axis (i.e. the probe propagation path) depends
on θ. This is the link between the optical rotation signal and the magnetic field to be sensed.
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Rotation of the plane of polarization of the probe laser Finally, we follow Seltzer
[92] and show that the plane of polarization of linearly polarized light actually does rotate as
the light propagates through a medium for which n+ 6= n−. Taking the x-axis as the axis of
propagation of the probe beam and the y-axis as direction of the pump beam we can write
the electric field vector of a probe beam initially linearly polarized along the z-axis as an
equal super position of (+) and (−) light

E(t) =
E0

2

[
eiωtẑ + e−iωtẑ

]
.

E(t) =
E0

4

[
eiωt(ẑ − iŷ) + eiωt(ẑ + iŷ) + e−iωt(ẑ − iŷ) + e−iωt(ẑ + iŷ)

]
. (3.4)

Here ω is the frequency of the light. We note that at time t the wave will have propagated
a distance l = ct/n through the vapor. But we also know that n is different for the (+) and
(−) components so we can rewrite the equation for E in terms of l and n as

E(l) =
E0

4

[
eiωn−l/c(ẑ − iŷ) + eiωn+l/c(ẑ + iŷ) + e−iωn−l/c(ẑ − iŷ) + e−iωn+l/c(ẑ + iŷ)

]
. (3.5)

This in turn can be rewritten using an asymmetry parameter for the refraction index. We
define

n̄ =
n+ + n−

2
(3.6)

∆n =
n+ − n−

2
, (3.7)

and now we can write

E(l) =
E0

4
[eiωn̄l/ce−iω∆nl/c(ẑ − iŷ) + eiωn̄l/ceiω∆nl/c(ẑ + iŷ)

+ e−iωn̄l/ceiω∆nl/c(ẑ − iŷ) + e−iωn̄l/ce−iω∆nl/c(ẑ + iŷ)]. (3.8)

Rearranging gives

E(l) =
E0

4
[eiωn̄l/c(eiω∆nl/c + e−iω∆nl/c)ẑ + (eiω∆nl/c − e−iω∆nl/c)iŷ]

+
E0

4
[e−iωn̄l/c(eiω∆nl/c + e−iω∆nl/c)ẑ + (e−iω∆nl/c − eiω∆nl/c)iŷ], (3.9)

at which point recognizing the the trigonometric functions makes it clear that a linearly
polarized beam passing through a medium for which n+ 6= n− sees its plane of polarization
rotate by an angle φrot = ω∆nl/c around the axis of propagation of the beam.

E(l) =
E0

2
eiωn̄l/c[cos(ω∆nl/c)ẑ − sin(ω∆nl/c)ŷ]

+
E0

2
e−iωn̄l/c[cos(ω∆nl/c)ẑ + sin(ω∆nl/c)ŷ]. (3.10)
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Since ∆n is proportional to the population difference between the (mj = ±1) states defined
along the x-axis we have φrot ∝ 〈Sx〉, where Sx is the rubidium spin polarization along the x-
axis. Further, since the rotation angle depends on the path-length we can infer that a bigger
cell will yield a larger optical rotation signal and therefore a more sensitive magnetometer
(assuming the entire cell can be uniformly pumped).

3.2.4 Magnetometer Response

It is possible to write a Bloch equation for the rubidium spin polarization vector S in
the presence of an arbitrary field

dS

dt
= [M ×B +ROP (ŷ/2− S)−RrelS] /q, (3.11)

where M is the rubidium magnetization and q is the so-called nuclear slowing-down factor.
ROP and Rrel are the optical pumping and spin relaxation rates respectively [91]. As shown
above φrot ∝ 〈Sx〉 so we solve Eq. (3.11) for Sx as a function of B

φrot ∝ Sx = S0
(∆B)Bz +BxBy

∆B2 +B2
x +B2

y +B2
z

, (3.12)

where ∆B = γ/(ROP +Rrel) and γ is the gyromagnetic ratio of the effective rubidium spin.
If Bx = By = 0 and |Bz| << |∆B| which are the conditions relevant to the experiments in
this dissertation we obtain

φrot ∝ Bz, (3.13)

which justifies our choice of detection operator in Chapter 2 as the net nuclear magnetization.
If we solve Eq. (3.11) for the case of an oscillating field of frequency ω and amplitude B

instead we obtain [92]

Sx =
1

2
S0γB

[
∆B cos(ωt) + ω sin(ωt)

∆B2 + ω2
+

∆B cos(−ωt) + ω sin(−ωt)
∆B2 + ω2

]
. (3.14)

Which corresponds to a Lorentzian line centered at zero frequency. This is assuming that
the field is applied perpendicularly to the pump and the probe axes. Equation (3.14) implies
that the sensitivity of the magnetometer to NMR signals drops rapidly with frequency and
is limited by the magnetic linewidth of the rubidium ensemble. For this reason cells with too
long transverse relaxation times are not appropriate for zero-field NMR. It also turns out
that in practice we are limited by magnetic field noise, not the fundamental sensitivity of the
magnetometer, in which case the drop off of the response with frequency does not actually
impact the SNR too much across the frequency range we work in in this dissertation.
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3.2.5 Polarimetry

A sensitive magnetometer requires the ability to accurately measure the change in po-
larization of the probe beam before and after it passes through the vapor cell. This may be
done in a number of ways, we give two examples here.

Perhaps the conceptually most straight forward method is known as balanced polarimetry.
In this scheme the laser goes through a linear polarizer right before the cell. After the cell it
passes through a polarizing beam splitting cube set at 45◦ to the initial axis of polarization.
One of the two circularly polarized components of the probe passes through the cube, the
other is reflected at a 90◦ angle. Two photodiodes are used to measure the intensities of
the two beams. If there has been no magneto optical rotation of the probe in the vapor
cell the polarization is exactly at 45◦ to the cube and the intensities (I1 and I2) at the two
photodiodes are equal. However if the plane of polarization of the probe has rotated by an
angle φ the photo-diodes will record different intensities. For small optical rotation angles φ
is proportional to the difference in intensities recorded at the two photodiodes.

φ ∝ (I1 − I2) (3.15)

The magnetometer signal is conveniently measured by feeding the output of the two photo-
diodes into a low-noise differential amplifier.

The second scheme is based on a lock-in amplifier. A linear polarizer before the vapor-
cell is followed by a quarter waveplate, a photoelastic modulator (PEM) and a second linear
polarizer at 90◦ to the first one after the cell. Relative to the axis of polarization set by the
first polarizer the optical axis of the quarter-wave plate should be at 0◦ , and the crystal axis
of the PEM should be set at 45◦ . A PEM is a device that modulates the polarization of
light. In this configuration it will symmetrically modulate the probe beam between the (+)
and (-) polarization assuming there has been no optical rotation in the cell. If the plane of
polarization of the probe has rotated so that it no longer is at 0◦ to the quarter waveplate it
will be elliptically polarized when it impinges on the PEM, and in this case the modulation
will be asymmetric. The output from a single photodiode placed after the second linear
polarizer is fed into a lock-in amplifier which is referenced to the PEM modulation frequency
at 10-100 kHz. For small optical rotation angles the intensity of the light detected at the
photodiode at the modulation frequency of the lock-in is proportional to φ.

φ ∝ I (3.16)

3.2.6 Weaknesses of Atomic Magnetometers as NMR Detectors

Sensitivity The main weakness of atomic magnetometers as NMR detectors is their low
sensitivity. This may sound like a weird statement having just made the point that mag-
netometers are the best DC field sensors known, but the caveat here is ‘DC’. While atomic
magnetometers perform well relative to other ultra-low field sensors they can not get close to
inductive detection with resonant coils at frequencies of 100s of MHz. This matters because
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in routine chemical analysis one often wants to study samples with µM to mM concentration
of solute of interest. To make matters worse, zero-field detection of organic molecules rely
on the presence of 13C, which is only 1% naturally abundant. In practice throughout this
dissertation we have used neat, isotopically enriched liquids, which is obviously not partic-
ularly realistic. In the end, if directly detected zero-field NMR is to stop being a subject
of ‘methods development’ and start being used in applications we need either a DC field
sensor that is better than the current state-of-the-art by 2-3 orders of magnitude (or a way
of increasing the field generated by the spins at the detector by the same amount, through
optimization of sample geometry etc), or a reliable and general hyper-polarization scheme,
some suggestions of which were made in Section 2.3.2.

Dead-Time Another issue is the fact that NMR spectrometers based on atomic mag-
netometers have a large ‘dead-time’. Dead-time is a hardware enforced delay between the
readout pulse and the start of the data acquisition. In high-field NMR the dead-time is often
on the order of 5-10 µs and arises because the same coil is used for pulsing and receiving, and
care most be taken so that the high-power pulse amplifiers do not connect to the sensitive
detection electronics. For a spectrometer based on an atomic magnetometer the origin is
quite different. The magnetic fields generated by the pulse (or the guiding field used for
‘sudden’ sample shuttling) are much larger than any other fields inside the magnetic shields.
This causes the magnetization of the alkali spins to repolarize along the direction of the pulse
field, regardless of whatever small fields are generated by the NMR sample. Consequently
the magnetometer does not function as a magnetic field sensor for some time after a magnetic
field pulse. This time is dependent on the polarization life time of the alkali ensemble, but is
usually ∼ 30 ms in our setup. There are two main consequences of such long dead-times. (i)
It makes stroboscopic sampling impossible. Stroboscopic sampling is a method when only
a few points of an FID is acquired in between the pulses in a long pulse sequence. Splicing
all the measured points together one can obtain an FID corresponding only to the effective
evolution induced by the pulse train. However virtually all pulse sequences require the pulse
spacing to be significantly less than 30 ms, meaning that the magnetometer does not have
time to recover before it is time for the next pulse. As will be explained in detail later, in
this dissertation we solve this problem by using two-dimensional detection. (ii) Additionally,
such long dead-times preclude the observation of systems with coherence times much shorter
than 30 ms, such as most solid state samples, since the signal will have decayed completely
before the magnetometer is ready to begin measurements after the initialization pulse.

However, there is a relatively straightforward (albeit expensive) method for solving the
dead-time problem, which has been successfully implemented on the ZULF spectrometer
in Mainz, Germany. The solution is to use much (much) higher power pump laser than
what is otherwise required. Such high power introduces significant laser noise during the
measurement and is thus not desired under normal circumstances. But using an acusto
optic modulator, the pump power during the measurement can be decreased to a reasonable
number, while it is left as high as possible while the spectrometer is playing out magnetic
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field pulses. The large optical pumping rate associated with high laser powers ensures that
the rubidium spins are repolarized along the pump direction almost immediately (< 1ms)
after the end of a pulse. While this is a very elegant solution, the associated hardware is
quite expensive.

Bandwidth Finally atomic magnetometers have a rather limited bandwidth, meaning
they can only detect magnetic fields oscillating over a limited frequency range. In fact
the most sensitive SERF magnetometers have bandwidths that are < 1 Hz. The width of
the frequency response is determined by the transverse relaxation time of the Rubidium
ensemble. This is influenced by pressure, wall-coatings etc. The magnetometer in this work
is capable of detecting magnetic fields between ∼ 1 and ∼ 500 Hz, see Section 3.3. This
broad response is achieved by using rather high buffer gas pressures (700 Torr N2), and it
does significantly limit sensitivity. In order to study systems with bigger couplings than
we do in this work, such as solid state systems, or certain transition metal compounds
(which can have J-couplings up to thousands of Hz) with zero-field NMR one would need
a detection scheme with significantly larger bandwidth than what can be obtained with an
atomic magnetometer, such as an untuned SQUID or simply indirect detection at high-field.

3.3 General Hardware

Having briefly introduced the underlying physics of atomic magnetometers we now turn
our attention to how to set up such a magnetometer and operate it as a detector in an NMR
experiment. In doing so we will make repeated reference to the particular instrument used
to perform the experiments in this work [63].

Data Acquisition We use a National Instruments 6229 Data Acquisition Card to operate
the spectrometer. The analogue outputs are used to generate pulses, and the digital outputs
are used for triggers for the switches and the shuttling. The optical rotation signal as
measured at the output of the lock-in amplifier is read in at one of the analogue inputs. A
homebuilt LabVIEW program ensures that the timing between excitation pulses and data
acquisition is constant between transients. The flexibility of a commercial data acquisition
card is convenient, but the signal frequencies are low enough that e.g. an Arduino could be
used instead if cost savings are desired.

Magnetic Shielding This dissertation concerns zero-field NMR, and so it is necessary to
create an environment where spin-spin couplings dominate over any residual Zeeman terms
in the Hamiltonian. As an added benefit, operation at or near zero magnetic field enables
the magnetometer to operate in the SERF regime, thus increasing its sensitivity. The earth’s
magnetic field corresponds to a 1H Larmor frequency of ∼2 kHz, which is significantly larger
than most J-couplings, therefore in order to reach the zero-field regime we need to screen
out the ambient field.
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Magnetic shielding is conventionally implemented using layers of mu-metal. Mu-metal
is a primarily nickel based alloy that has a very high relative magnetic permeability of ∼
80 000, which causes magnetic field lines to preferentially follow a path within the metal,
as opposed to cut through it. A spherical or cylindrical geometry of mu-metal therefore
prevents external field lines to reach the volume contained inside the shields

In our spectrometer we use four concentric layers of mu-metal to screen out ambient
magnetic fields to a level of 1-10 nT. Additionally we use one layer of ferrite to screen the
magnetometer from Johnson noise from the mu-metal shields.

Figure 3.3: (a) Photo of the Rubidium cell which fixed with a high temperature cement to
a ceramic pillar around which twisted copper wire is wound. (b) Schematic of the heating
setup.

Heating and Cell Mounting Rubidium is a solid at room temperature, and thus a
87Rb cell needs to be heated in order to provide adequate vapor pressure. We operate our
magnetometer at∼ 180◦ . We note that the vapor pressure of rubidium increases rapidly with
temperature. A phenomenological expression for the number density of gas phase rubidium
atoms is given by Alcock et al. [103]

n =
1

T
1021.866+4.312−4040/T , (3.17)
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where n is in units of cm−3. The rapid increase of n with Tmanifests in markedly lower
magnetometer sensitivity at 160◦ than at 180◦ .

In precision measurement experiments vapor-cells are often heated using hot air flowing
through ovens made from glass or fiberglass. This ensures uniform heating of the cell, and
since no magnetic materials are used minimal noise is introduced [92]. However, since the
experiments in this dissertation rely on shuttling NMR tubes from a pre-polarizing magnet
to a measurement region as close to the cell as possible, we cannot easily encase the cell in
an oven. Instead we use resistive heating. The cell is fixed with a high temperatures cement
to a thermally conductive ceramic pillar (Shapal Hi-M Soft), and around the pillar several
layers of copper wire are wound (to a total resistance of ∼2 Ω). When constant current
runs trough the wire the heat dissipation heats the ceramic pillar, which in turn heats the
vapor-cell. We coat the pillar in a silicone based heat-sink compound before winding the
wire in order to ensure good thermal contact and a type T thermocouple is fixed at the top
of the pillar, which allows us to monitor the temperature of the cell during operation.

There are a number of important points to note here: (i) The most important is that a
flowing current generates a magnetic field, and care must be taken in order not to let the
field reach the cell where it would appear as magnetic noise, thus lowering the magnetometer
sensitivity. This is accomplished by using twisted pair wire, which ensures that the magnetic
field outside the wire cancels to a first approximation. Additionally, we heat the cell using AC
current (40 kHz), this ensures that any residual magnetic fields lie well outside the frequency
response range of the magnetometer and thus do not impact the NMR measurements. (ii)
The copper wire needs to be coated in a high temperature enamel. The standard enamel
coatings fail after days or weeks of operation, at which point the heating wire short-circuits.
If the resistance of the heater circuit gets too low either the power supply will no longer
be capable of supplying the requisite current to heat the cell, or the the wire will just burn
off, whichever happens first the magnetometer will cease to function. (iii) The method of
fixing the cell to the pillar also matters. We note that some high temperature epoxys contain
magnetic material, which is not ideal. Further, several other epoxys which were rated for up
to 250◦ C still failed after a few weeks of operation at 180◦ C. We went through a number of
cycles optimization before settling on a high temperature cement, which has served us well
so far.

We use a LVC2016 AE Techron linear amplifier to generate the current. The amplifier
is connected to a function generator which is in turn connected to the PID control system
of a thermostat controller. There are no particular requirements on the amplifier, beyond
it being able to generate sufficient power at the desired frequency. Throughout most of
this dissertation the PID control loop was left disabled, it was challenging to prevent the
temperature from oscillating rapidly around the set point. Instead we simply change the
output voltage on the function generator manually, until the heater reaches equilibrium at
the desired temperature.
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Figure 3.4: Schematic of possible optical layouts for optical pumping and polarimetry. (a)
Optical pumping optics. (b) and (c) Possibilities for optical layouts for the probe laser.

Optics We pump the cell using circularly polarized light sourced from an Eagle Yard
Distributed Feedback (DFB) diode laser. The optical path is shown in Fig. 3.4a. The half-
wave plate allows for the rotation of the plane of polarization before the linear polarizer,
which gives a method of controlling the laser power that reaches the cell. Typically the
half-wave plate is adjusted so that 15 mW reaches the cell.

We use a polarimetry scheme based on a lock-in detector and a PEM, as described in
Section 3.2.5. The optical path is shown in Fig. 3.4c. Again a half-way plate serves as a
power attenuator. Typically the probe power is adjusted to 10 mW.

Shimming and Small Applied Fields The magnetic shields of the spectrometer used
in this dissertation do not shield screen ambient fields to a level below the life-time limited
linewidths. For that reason it is necessary to apply small fields using electromagnetic coils
to cancel out any residual fields. By analogy to high-field NMR we refer to this process
as ‘shimming’. The shimming is done by means of coils wound around a 10.5 cm diameter
cylindrical nylon structure that surrounds both the cell and the pulsing-coil housing. The
cylindrical geometry (which is enforced by the shape of the inner most ferrite shield layer)
means that the shimming field along the z and the x directions is generated by saddle coils,
while along the y direction a solenoid configuration is used. The shimming coils generate
fields up to 30-300 nT when fed current between 0.1 and 1 mA. In order to keep the requisite
voltages within a convenient range the coils are placed in series with 1 kΩ resistors. We
set the shims using precision DC current sources. Remember from Section 3.2.4 that the
magnetometer detection axis in a true zero-field is normal to the plane defined by the pump
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Figure 3.5: Calibrations of the transverse shim-coils. The black dots are measured splittings
in the J-spectrum of 13C-formic acid (FA), and the blue solid lines are fits to the expression
∆ν = B(γH +γC), giving 199 nT/mA for the y-coil, and 47 nT/mA for the x-coil. Note that
the x-axes are given in mA current relative to the settings that give zero splitting.

and the probe lasers, and we call this direction the z-axis. This means that we can shim the
magnetic field at the rubidium cell by applying a test-signal (see the following section) along
the x-axis using the x-shim, while slowly changing the static field along the y-axis using the
y-shim until zero response is recorded by the magnetometer. After that the test-signal is
applied along y, while the x-shim is changed until the magnetometer response is zero. This
procedure is best performed iteratively until the magnetometer responds to fields only in
the z-direction. However, this procedure ensures zero-field specifically at the location of the
rubidium cell, the presence of any gradients in the magnetic field, or a pump laser induced
light-shift can lead to a non-zero field at the location of the NMR sample, even while the
field at the cell is zero. Since we are concerned with zero-field NMR this is not an acceptable
state of affairs.

In order to zero the fields at the NMR sample we rely on the changes in the zero-field NMR
spectrum in response to fields in different directions, see Section 2.3.5. To recapitulate: In a
small magnetic field perpendicular to the detection operator the J-spectrum of 13C-formic
acid splits into a doublet centered at J , with the splitting given by ∆ν = B(γH + γC). If
additionally, there is a magnetic field component along the detection axis a third peak, at
the unchanged J frequency, will reappear. It follows that we can shim the magnetic field at
the NMR sample by changing the voltages applied to the the shim-coils while continuously
acquiring NMR spectra of formic acid. The protocol is as follows:

• Obtain a good SNR J-spectrum of 13C-formic acid.

• Apply a field in the x or y direction until a clear splitting is observed. Record the
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natural linewidth.

• Change the field in the z direction until the central peak disappears and only a doublet
remains.

• Systematically change the field along x and y, and then extrapolate to zero splitting
according to ∆ν = B(γH + γC).

• Carefully adjust the fields until the linewidth matches the natural linewidth recorded
in step 2.

As a consequence of this procedure we obtain current-to-field calibrations for the two trans-
verse coils as the slope of a plot of the observed splitting vs applied current, see Fig. 3.5.
This is useful since it allows us to calibrate the magnetometer sensitivity — see the following
section. Note that the y-shim generates a substantially larger field per unit current than the
x-shim does, this is a consequence of the fact the y-shim is a solenoid coil, while the x- and
z-shims are saddle coils. Since the z-coil has the same geometry as the x-coil we assume that
its current to field characteristics are the same.

Magnetometer Sensitivity and Frequency Response The shimming coils fill another
very important function beyond canceling out any fields not perfectly screened by the shields.
They also enable us to apply oscillating fields to monitor the magnetometer response at
different frequencies. We refer to this as applying a ‘test-signal’, and we do this by feeding
the output of a function generate to the shim-coils via a variable resistor (1 kΩ to 1 MΩ).

The sensitivity of the magnetometer to fields along a given axis at a given frequency
may be calibrated by monitoring the optical rotation signal in response to an oscillating
field applied via the shimming coils. To calibrate the magnetometer sensitivity along the
detector axis we applied a 4.4 pT magnetic field oscillating at 15 Hz using the z-shim. The
magnetometer response to this field was recorded over 20 seconds and the resulting time-
domain data was subjected to the same data processing as applied to the experimental
data (see Section 3.6), giving the spectrum shown. The Signal-to-Noise-Ratio (SNR) of
the magnetometer response was determined by taking the ratio of the peak height to the
standard deviation of the baseline. Defining sensitivity as the smallest field that can be
observed with an SNR of 1 over a measurement time of 0.5 seconds, and assuming that the
SNR increases with the square root of the measurement time, we obtain 30 fT/

√
Hz as the

sensitivity of our instrument to magnetic fields oscillating at 15 Hz.
We calibrate the amplitude of the magnetometer frequency response over the full band-

width by applying a 4.4 pT test-signal at a frequency ν along the z-direction using the z-shim,
and record the magnetometer signal as a function of ν. We assume that the current-to-field
characteristics of the z-shim are the same as of the x-shim. The magnetometer signal is
subjected to the same data analysis protocol as will be described in Section 3.6 and the am-
plitude response is taken as the height of the peak at ν. In order to obtain the phase response
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Figure 3.6: Magnetometer Response to 4.4 pT field at 15 Hz acquired over 20 s. The signal
has been normalized to standard deviation of the baseline between 12 and 14 Hz, thus giving
the Y-axis in units of SNR.

Figure 3.7: Amplitude and phase of the magnetometer frequency response when the NMR
sample has been calibrated to experience zero-field. The dots are measured values and the
solid lines are drawn to guide the eye.

we recorded output of the function generator that serves as the source of the test-signal si-
multaneously with the magnetometer response, fit both peaks to complex Lorentzians. The
phase response is then simply the difference in phase between the two peaks. The results of
such a calibration are shown in Fig. 3.7. The amplitude response drops by ∼80% over 400
Hz, suggesting a rather limited bandwidth for NMR spectroscopy. However, we find that
the SNR remains basically flat out to ∼500 Hz. This is consistent with the sensitivity being
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Figure 3.8: Amplitude and phase of the magnetometer frequency response when the NMR
sample has been calibrated to experience a 30 nT field along the x, y, and z directions.

limited by magnetic field noise (e.g. Johnson noise from the shields), the response to which
decreases at the same rate as the response to the NMR signal. The phase response varies by
π over 400 Hz, meaning that a signal at 1 Hz and 400 Hz will appear π rad. out of phase.
However since the phase response is close to linear it is straightforward to correct for it by
a simple first-order phase correction.

We note that the shape of the amplitude is consistent with a non-zero field at the rubidium
cell, since maximum amplitude occurs at non-zero frequency. To confirm that this is indeed
the case we obtained calibration data at 30 nT, the results are shown in Fig. 3.8, and
demonstrate that the magnetometer response changes drastically depending on the field.
The fact that zero-field at the NMR sample does not necessarily correspond to zero-field at
the rubidium cell has consequences for some experiments, since a finite field at the rubidium
cell changes the detection axis away from z. The detection axis being off-axis from z led to
the observation of nominally forbidden peaks in Refs [31] and [1].

Polarization and Shuttling In order to obtain spin-polarized NMR sampled in zero-field
we use thermal pre-polarization in a permanent magnet (see Section 2.3.2), and transport
the samples pneumatically to zero-field for each transient. We use a 2 T magnet and keep the
samples in standard 5 mm outer diameter NMR tubes. The tubes are kept in a plexi-glass
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tube that is capped with a connection to the in-house vacuum which is switched on and
off with a digitally controlled valve. The cell is mounted inside a housing structure for the
pulsing coils. A hole in this structure allows the NMR tube to come close to the cell. The
NMR tube is prevented from hitting the fragile glass cell by a small cap that fits in the coil
housing.

Cell Characteristics Our vapor cell is sourced from Twin-Leaf LLC and contains 2-5 mg
of Rubidium metal and 700 Torr nitrogen gas. The cell has interior dimensions of 5x5x8
mm3 (see Fig. 3.3). The optical resonance of the cell was characterized by transmission
spectroscopy, see Fig. 3.9a. Figures 3.9b and 3.9c show how the normalized magnetometer

Figure 3.9: (a) Optical transmission spectrum of the rubidium cell acquired with 10 mW
power. The width of the peak is 0.1 nm at half-max. (b) In (a) and (b) we see fringes
characteristic of a Fabry Perot effect.
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Figure 3.10: Photo of the pulsing coils, and a general schematic of the experiment.

sensitivity (as measured with a test-signal along the z-axis applied at 100 Hz) depends on
the wavelength of the probe and the pump lasers respectively. We see clearly that when the
probe is applied on resonance the sensitivity drops to zero. This is because at these high
vapor densities very few probe photons actually pass through the cell if the probe is perfectly
on resonance with the optical absorption line. Instead we find that the optimal setting for
the probe is 794.88 nm. Meanwhile, as expected the sensitivity is maximal when the pump
beam is applied perfectly on resonance at 794.97 nm, thus maximizing the optical pumping
rate.
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Figure 3.11: Experimental excitation curves for 13C-formic acid following adiabatic transport
to zero-field for DC pulses along x, y, and z, c.f. Fig. 2.4, acquired using the setup in Fig. 3.10.
The black dots are measured amplitudes of the formic acid J-spectrum and the blue solid
lines are fits to the excitation curves derived in Section 2.3.3 (Eqs. (2.45) and (2.50)). The
measured data are normalized to the maximum signal amplitude obtained when pulsing
along the x-axis.

3.4 Magnetic Pulsing Setup

3.4.1 Strong Pulses – Amplifiers

The work in Chapters 5 and 7 required the ability to quickly and accurately generate
large (>0.1 mT) static magnetic field pulses. For this purpose we used three orthogonal
Helmholz pulsing-coils (radius = 2.2 cm) wound around a PEEK (Polyetheretherketone)
structure with holes to allow for laser and shuttling access. The pulsing coils were powered
by AE Techron LVC2016 linear amplifiers. Figure 3.10 shows the pulsing coil and a general
schematic of the experimental setup.

The sensitivity of our spectrometer is around 30 fT/
√

Hz, see Fig. 3.6, and typical ZULF
signal magnitudes for a 150 µL sample range from 0.1-1000 fT depending on sample concen-
tration and the number of distinct frequency components. However, the amplifier current
noise (at zero input) corresponds to a noise floor of ∼nT. This is a large enough field to
impact spin-evolution in the time between pulses, while also making the detection of NMR
signals impossible. Therefore, a symmetric fast-switching MOSFET relay, shown in the bot-
tom panel of Fig. 3.10, was put in series with each coil. The MOSFETs were controlled using
the same DAQ-card used to control the amplifiers. When the amplifiers are not generating
pulses the relay is non-conducting, thereby preventing noise from the amplifiers to reach the
cell. During the pulses the noise was negligible compared to the >0.1 mT pulse field. It is
important that both the switches and the amplifiers are bipolar, since there is no equiva-
lent to high-field phase shifts in zero-field, and positive and negative pulses require current
in physically different directions. Experimental calibrations of the three coils are shown in
Fig. 3.11. The pulses were 50 µs long, giving us a voltage-to-field conversion of 6.169 G/V
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for the z-coil, 5.950 G/V for the x-coil, and 5.372 G/V for the y-coil when using the Techron
amplifiers. (variations may occur both because of slightly different coil characteristics, but
also due to differences in gain between the amplifiers).

The DC pulses generate ∼0.2-2 mT fields at the sample, which is positioned less than
1 mm away from the rubidium cell, meaning the atoms in the vapor-cell also experience a
significant field. The result is that each pulse rotates the rubidium spins away from the
direction of the pump laser, effectively imposing a ∼30 ms dead time after each pulse,
determined by the pump-light-power dependent rubidium-polarization lifetime. This means
that with this experimental setup it is not possible to obtain a 1D decoupled spectrum
by sampling the signal in between pulses at the end of each cycle, termed stroboscopic
observation, as is commonly done in high-field NMR. For the decoupling experiments we
instead relied on two-dimensional detection as described in Chapter 7.

The advantage of using a pulsing setup based on linear amplifiers is that it allows for
shaped pulses. In Chapter 5 we use the amplifiers to generate adiabatic remagnetization
pulses and frequency swept inversion pulses.

3.4.2 Weak Pulses

Figure 3.12: Schematic of the experimental setup. The current amplifier is used to generate
strong DC pulses for broadband manipulations. The DAQ in conjunction with the 1 kΩ
resistor is used to generate the weak selective AC pulses and bias the static field. The sensitive
axis of the magnetometer, denoted ŝ, lies along the axis of the NMR tube, perpendicular to
the plane defined by the pump and probe lasers (not shown).

The work in Chapter 4 required very weak ∼ 10 nT AC magnetic field pulses. This
is approximately equal to the noise floor of the amplifiers we used for the hard DC pulses
and the adiabatic pulses, and therefore they were unsuitable in this case. However, it turns
out the the ±10 V analogue outputs on the National Instruments 6229-DAQ card we use
to control the spectrometer can source up to 5 mA current. From Fig. 3.7 we know that
1 mA current in the x- and z-shims is enough to generate a ∼ 47 nT field at the location
of the NMR sample, and it was therefore possible to use the DAQ card directly as a low-
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Figure 3.13: Diagram for the DC power supply based pulser. The polarity of the switches
is critical. The 100 Ω resistor provides an escape path for the energy in the coil when the
switch closes, thereby preventing ringing and shortening the fall time.

power ‘amplifer’. The strength of the magnetic field generated by this process was calibrated
by measuring the proton Larmor precession frequency in a sample of water, the measured
frequencies ranged from 0.5 to 4 Hz. In order to generate and control the DC magnetic
field pulses we used the same setup as described in the previous section, though this work
required DC pulses only along the detection axis.

3.4.3 Strong Pulses – DC Power Supplies

Using the Techron amplifiers and the MOSFET based switch we were able to obtain
the first 13C decoupled J-spectrum, see Chapter 7. However, we were unable to reproduce
these results on molecules with larger J-couplings. To obtain the heteronuclear decoupling
results presented in Chapter 8 we designed a new pulsing circuit based on DC power supplies
(Agilent 6653A) gated with high voltage switches (Willamette High Voltage), rather than
linear amplifiers. The circuit that allows us to generate bipolar pulses using monopolar
power supplies is shown in Fig. 3.13. We readily achieve a π pulse on carbon in 30 µs,
with a rise time of ∼2 µs. Excitation curve calibrations are shown in Fig. 3.14. The one
issue is the fact that the resistance for individual switch units varies slightly. This means
that the circuit is not perfectly bipolar as written, positive and negative pulses will have
slightly different amplitude. To correct for this we installed a SpinCore PulseBlaster ESR
PRO-II 400 MHz TTL generator to trigger the pulses as opposed to using the NI card
directly. The PulseBlaster card allows us to change the duration of the pulses in steps
of 2.5 ns (as opposed to the NI DAQ card which is limited to 2 µs). This allows us to
balance the flip angles for positive and negative pulses by finely tuning the pulse duration
for the two channels separately. We applied 80 π pulses, alternating positive and negative
directions, and measured the response as a function of the duration of the negative pulse.
The pulse sequence was (xx̄)40, meaning that no NMR signal should be excited if the pulses
are perfectly balanced. We calibrated a single positive π x pulse to be 31.9 µs and stepped
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Figure 3.14: Experimental excitation curves for 13C-formic acid following adiabatic transport
to zero-field for DC pulses along the x, y directions acquired using the pulsing setups based on
DC power supplies. The pulse duration was 30 µs. The black dots are measured amplitudes of
the formic acid J-spectrum and the blue solid lines are fits to the excitation curves derived in
Section 2.3.3. The measured data are normalized to the maximum signal amplitude obtained
when pulsing along the x-axis. The right most panel shows the result of balancing positive
and negative pulses by sweeping the length of the x̄ pulse in a (xx̄)40 sequence.

the negative pulse from 31 to 33 µs in steps of 2.5 ns. The result is shown in the right most
panel in Fig. 3.14. The minimum is clearly offset from 31.9, indicating a pulse imbalance.
Therefore when executing a −π pulse along the x axis we chose the duration to be 31.98 µs
instead of 31.9 µs.

The high voltage switches requires a 5 V trigger to open, but the PulseBlaster card
outputs 3.3 V logic. We boost the pulse blaster signal to ∼4 V (which in practice is enough
to reliably trigger the switch) by routing the signal through 2 successive NOT gates and
using a 5 V power supply to power the integrated circuit component.

3.5 Extraction of J-Coupling Constants From

J-Spectra

While simple rules govern the appearance of J-spectra of small molecules it is still not
easy to determine the actual values of the coupling constants for systems with more than
2 couplings by hand. However, the exact values of J-coupling constants carries chemical
information and therefore it is useful to be able to determine them quantitatively. For
example, one-bond 1H-13C couplings vary from ∼110 Hz to ∼220 Hz depending on the other
substituents on the carbon. Smaller changes, on the order of ∼1 Hz, arise due to solvent
effects, pH, temperature, and more. With quantitative spectral analysis we would be able
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to extract such information from J-spectra, and we could do so with higher accuracy than
in high-field NMR, due the narrower linewidths obtained in zero-field NMR.

In this section we introduce a simple fitting algorithm that can be used to quickly extract
accurate J-coupling constants from the J-spectra of small molecules with known identity.
We first introduced this algorithm in Ref. [2]. It provides an easy way of quickly obtaining
coupling constants with mHz precision using standard curve fitting tools available in e.g.
MATLAB. More sophisticated methods have been published in the literature [104].

Given the standard J-coupling Hamiltonian in Eq. (2.13) we start by introducing a
simple model for a general experimentally measured J-spectrum, denoted Sexpt. We model
the spectrum as a simple sum of absorptive Lorentzian peaks

Smodel({Jij}) = N
∑
n

L(An, νn), (3.18)

where L(An, νn) is an absorptive Lorentzian with amplitude An centered at frequency νn,
and N is a normalization constant. The width parameter should be chosen to best match
the data, we find 0.005 Hz (formic acid) to 0.02 Hz (ethanol) works well.

The νn are calculated by taking all differences larger than 1 Hz between the eigenvalues
of HJ , which in turn are obtained by numerical diagonalization of the Hamiltonian. The
corresponding An are calculated as the matrix elements of the detection operator given by
Eq. (2.14) using the eigenvectors also obtained from the diagonalization. This algorithm thus
requires the coupling topology to be known, even if the values of the coupling constants are
not. Note that since the νn and An are calculated deterministically given a set of coupling
constants, Smodel is a function of the set {Jij} alone.

Since the linewidth of a peak depends on the quantum numbers of the corresponding
states, better accuracy would be obtained if we allowed the width to be a fit parameter as
well. But this would greatly increase the number of parameters that Smodel depends on. For
example in the case of 1-13C -propionic acid there are three distinct coupling constants but
14+ peaks. Therefore as written the model has three free parameters, but it would explode
to 17+ if we let the line-widths width vary.

Given Smodel as the objective function for the fit and the vector of data Sexpt, we use the
non-linear regression algorithm (nlinfit) in MATLAB to obtain least-squares best-fit values
for the {Jij}. 95% confidence intervals for the fit are obtained from the covariance matrix
(also returned from nlinfit) using the nlinparci function. The code for the implementation is
given in the Appendix.

Figure 3.15 shows the result of the algorithm applied to the J-spectrum of 1-13C -propionic
acid. The spectrum, which is discussed in more detail in Chapter 7, has 3 distinct cou-
plings which were optimized in the least-squares sense to 2JCH = -7.084±0.002 Hz, 3JCH =
5.497±0.003 Hz, and 3JHH = 7.563±0.006 Hz.
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Figure 3.15: Fit of J-values for propionic acid. The experimental J-spectrum has been
overlayed with the fit to Smodel. The fit gives the coupling constants with ∼ mHz accuracy.

3.6 Data Processing

NMR data is usually recorded in the time domain, but presented as a function of fre-
quency. Spectra are obtained from time series data by means of a Fourier transform, but in
order to increase the quality of the spectra it is customary in NMR to subject the data to a
series of digital processing steps first. This section outlines the additional digital data pro-
cessing steps taken in order to obtain the J-spectra presented throughout this dissertation.
The DAQ card records voltages proportional to the optical rotation signal φ as a function
of time. Using nomenclature borrowed from high-field NMR we refer to such a time series
as an ‘FID’, even though of course no induction has actually taken place. The steps we take
to convert an FID into a J-spectrum are the following:

• Drop initial corrupted data points.

• Correct DC offset drift.

• Replace the corrupted points.

• Multiply by decaying exponential

• Zero-fill.

• Fast Fourier Transform (FFT).

• Phase correct.
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• Correct for the magnetometer response.

The spectrometer is set up so that the FID starts right when the last pulse ends. However,
the magnetometer dead-time, see Section 3.1.5, means that the first ∼30 ms of data will be
corrupted, so the first step of the processing is to remove the corresponding points in the
FID. We usually remove 45 points, corresponding to 45 ms worth of data at a sampling rate
of 1 kHz, in order ensure that no residual pulse decay shows up in the spectrum.

The next point of action is to correct for DC drift. In practice it turns out that baseline
optical rotation response changes continually during the experiment. In part this is due to the
decay of static magnetization of the NMR sample (remember from Section 2.3.3 that ρ(0) in
general contains non-evolving terms) but this does not account entirely for the observed drift
in the optical response. Additional explanations include temperature changes on account of
the pneumatic shuttling, small magnetic fields generated by pulse induced eddy currents,
or a small degree of magnetization of the inner most ferrite shield. In the end the reasons
are not entirely understood. But from the point of view of NMR detection it also does not
matter very much, we care only about the modulation of the optical rotation signal at the
characteristic frequencies of the nuclear spin system. In order to obtain a nice and clean
baseline after the Fourier transform we correct for the DC drift by fitting the FID to a simple
polynomial and subtracting the fit. We generally use a 20th order polynomial, which seems
to work well empirically, but care should be taken that actual coherent oscillations are not
captured by the fit. Especially when working with samples that give signals purely below
∼5 Hz.

The fact that we removed 45 ms worth of data from the FID does not mean that the
spins were not evolving during that time. Since different components of the spectrum have
different frequencies this means that they will be out of phase relative to the zero time point
if this is not corrected for. In some cases in high-field NMR it is sufficient to correct for the
dead-time with a simple first order phase correction but often one finds that the required
correction introduces an unacceptably large, nonlinear baseline distortion [105]. This is a
known problem in high-field NMR, and there are a number of solutions in the literature.
We use the procedure suggested by Marion and Bax [106], which consists of using ‘linear
prediction’ to estimate what the corrupted points would have been, had they been measured,
and then adding the predicted points back into the FID. Linear prediction is a technique used
in the signal processing community and works as follows: The nth time point is estimated
a linear combination of the k preceding time points, where k is known as the order of the
model

S(tn) =
k∑
i=1

ciS(tn−i). (3.19)

The expansion coefficients {ci} are a set of parameters that define the signal to some order
of approximation. There are known algorithms for determining the {ci} for given time series
data. We use the “arburg” function in MATLAB, take k to be 100, and use only the first
1000 points in the FID. This seems to work well empirically. Note that the ‘directionality’
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of the FID is not important, one can simply reverse the ordering of the points before feeding
them to the fitting function.

Once a clean FID has been obtained following the DC offset correction and the backwards
prediction we proceed with the conventional steps of zero-filling to increase the number of
points defining each peak, and line broadening by multiplication by a decaying exponential.
Line-broadening is particularly important when the acquisition time is not well matched to
the signal life-time. If the acquisition time is too short, line-broadening prevents truncation
artefacts, if it is too long line-broadening improves SNR by effectively down weighting the
points at the end of the FID, which contribute only noise. In practice, for high resolution
spectroscopy, we generally acquire the FID for longer than what is necessary, and then turn
up the line-broadening until the apparent line-width starts to increase. This ensures that
the measured line-width is not artificially broadened by the number of points used to acquire
the FID.

Following FFT, we then apply a first and zeroth order phase correction (very rarely a
second order correction is required) in order to show all the peaks in absorptive mode. We
also scale the amplitude of the spectrum according the magnetometer frequency response
profile (see Sections 3.2.4 and 3.3. We generally only calibrate the amplitude this way, since
the phase is taken care of by the first order phase correction (remember from Section 3.3
that the phase response of our magnetometer is very close to linear over the magnetometer
bandwidth).

Figure 3.16 shows the stepwise results of the processing steps outlined here when applied
to the J-spectrum of 15N-pyridine. The first panel shows the unprocessed FID, and in each
subsequent panel the raw FID has been subjected to one of the data processing steps before
FFT, yielding the displayed spectra. It is clear that the processing as presented significantly
improves clarity and resolution. Note in particular how Fig. 3.16e shows that the phase roll
introduced by removing the initial corrupted data points can not be removed by a simple
first order phase correction without introducing an unacceptable baseline distortion.

3.7 Simulations

Numerical simulations is one of the standard tools used in magnetic resonance research
today. The prevalence of simulations is owed at least partly to the fact that well described
by finite dimensional Hilbert spaces, which makes it easy to ‘digitize’ the various operators.
Simulations have been used throughout this work to inform new experiments, to investigate
new pulse sequences, and to interpret results. All spin systems studied with zero-field NMR
to date have fewer than 12 spins, which makes it possible to write down Hilbert space matrix
representations for the operators and observables, and brute force the time propagation
without any further bells and whistles.



CHAPTER 3. VAPOR-CELL DETECTED NMR: BACKGROUND AND
EXPERIMENTAL METHODS 62

Figure 3.16: Raw FID and J-spectra of 15N-pyridine in different stages of the data pro-
cessing scheme. (a) Unprocessed FID. The spikes around the time origin are due to the
magnetometer saturating in the pulse field. (b) Direct FFT of the raw data yields a very
non-flat baseline. (c) Removing the corrupted points flattens the baseline, but there is now
a large phase roll, and still a big spike at zero. (d) Correcting for the DC drift removes the
spike at zero but the phase roll remains. (e) Trying to correct for the removed points by a
first order phase correction results in a large non-linear phase distortion. (f) Back predict-
ing the corrupted points results in a nice and clean spectrum without any additional phase
correction.
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Chapter 4

Frequency Selective Pulses

In this chapter we start introducing new techniques for manipulating spin states in zero
and ultralow magnetic fields. In particular we use low-amplitude, ultra-low frequency pulses
to drive nuclear spin transitions. In analogy to high-field NMR, a range of sophisticated
experiments becomes available as these pulses allow narrow-band excitation of H-spectra.
As a first demonstration, pulses with excitation bandwidths 0.5-5 Hz are used for population
redistribution, selective excitation, and coherence filtration. These methods are helpful when
interpreting zero -and ultralow-field NMR spectra that contain a large number of transitions.

The material in this chapter has previously been published under the title

• Transition Selective Pulses in Zero-Field Nuclear Magnetic Resonance by
Sjolander, Tayler, King, Budker, and Pines [1].



CHAPTER 4. FREQUENCY SELECTIVE PULSES 64

4.1 Background and Motivation

A strength of the NMR technique is the ability to selectively measure the data of inter-
est by choosing out of hundreds of experimental protocols [107]. Many of these protocols
require exciting only a select portion of the frequency spectrum, using narrow-band pulses.
Basic frequency selectivity is implicitly assumed in the design of all heteronuclear high-field
NMR pulse sequences, as the resonance frequencies of different spin species are widely sep-
arated. Many techniques also rely on selectivity beyond differentiating spin species, to the
extent of addressing individual transitions[107–110]. Selective irradiation is the basis for
many polarization-transfer methods (e.g. INAPT, Insensitive Nuclei Assigned by Polariza-
tion Transfer[111, 112]), spin-spin correlation experiments (e.g. SELCOSY[113]) and solvent
suppression techniques.

Narrow-band pulses have yet to be explored in zero to ultra-low field (ZULF) NMR where
the leading fields are < 1µT. Indeed, prior to this work, ZULF NMR experiments have used
DC magnetic field pulses for excitation and manipulation of the spin system. Pulsed fields
stronger than 100 µT are sufficient to rotate nuclear spins effectively instantaneously with
respect to the time scale of free evolution, so that the result is a rotation about the field
axis through angles θi = γiBt where γi is the gyromagnetic ratio of the ith spin, B is the
field strength, and t is the duration of the pulse. This method of manipulating spins has
limitations. It is necessarily broadband with respect to the ZULF spectrum and the range of
available operations depends on the ratios of the γis of the spins involved. For example, using
DC pulses one can perform a simultaneous θ ≈ 4π rotation on 1H and θ = π on 13C, however
a θ ≈ π rotation on both nuclei, as required by many decoupling and refocusing sequences,
is more challenging; using a single DC pulse it is impossible to simultaneously rotate 1H
and 13C spins through the same angle, other than near-2π/3 multiples (e.g. θH ≈ 8π/3,
θC ≈ 2π/3; γH/γC ≈ 3.97). Composite pulses have been suggested [75] but performing
arbitrary rotations is not a solved problem and generally speaking the control of multiple
spin species is significantly restricted.

In this chapter we demonstrate frequency selective pulses in the ZULF regime with a
typical excitation bandwidth 0.5-5 Hz, and thus we take zero-field J-spectroscopy out of
the regime of broadband-only excitation. As an application we introduce an experiment
that identifies groups of connected transitions between the ZULF energy levels of a spin
system. This is conceptually similar to spin-tickling experiments performed in high-field
NMR, where connected transitions are used to identify the spin topology and energy-level
structure. [114, 115] Simplification of ZULF NMR spectra into such connected groups assists
with assignment and helps resolve ambiguity with interpretation, particularly in the case of
molecules with large numbers of transitions. We demonstrate further selectivity by taking
advantage of the selection rules for circularly polarized pulses [51], thereby allowing us to
address narrow splittings caused by small DC magnetic fields.
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4.2 Theory of Resonant Pulses at Zero-Field

The resonant pulses demonstrated in this work drive spin populations directly between
the zero-field eigenstates and therefore allow greater control over which transitions are ex-
cited. We write the liquid state zero-field Hamiltonian, in angular frequency units, as

HJ = 2π
∑
i,j>i

JijIi · Ij, (4.1)

where the I are the total angular momentum operators for groups of equivalent spins and
the J are scalar spin-spin coupling constants. The eigenstates of HJ are total spin angular
momentum states denoted |F,mF 〉, where F is the total spin angular momentum quantum-
number and mF is the projection on the spin quantization axis (for systems with more than
two spins, additional quantum numbers are necessary)[49]. The observable quantity is the
total magnetization along the sensitive axis, ŝ, of the magnetometer, represented by the
operator

Os =
∑
i

γiIi · ŝ. (4.2)

This operator supports transitions with ∆F = 0,±1. The selection rules formF are ∆mF = 0
if ŝ = ẑ and ∆mF = ±1 if ŝ = x̂, ŷ.

The Hamiltonian for a pulse with frequency ω and amplitude B is written as

HP (t) = cos(ωt)
∑
i

γiB · Ii ≡ cos(ωt)P. (4.3)

Evolution of the spin system under the total Hamiltonian H = HJ + HP is analyzed in an
interaction frame where both HJ and HP are approximately time independent. To this end
we consider the interaction frame Hamiltonian when irradiating close to a peak of frequency
f and define

H̃ = eiω
f
HJ tHe−iω

f
HJ t − ω

f
HJ , (4.4)

where ˜ denotes the interaction frame. A more detailed treatment of this process is given in
Appendix 4.7, where we also treat the case of a small static field perturbing HJ . The result
is that the Hamiltonian above can be block diagonalized to a time-independent Hamiltonian
acting on a two-level system with each 2x2 block given by

H̃ =

(
Ω Pαβ
Pβα −Ω

)
, (4.5)

where Ω is the total frequency offset of the transition from ω and the Pαβ are matrix elements
of P in the eigenbasis of HJ . If the peak at f involves degenerate energy levels, Eq. (4.5)
holds for each block and the observed signal is the sum of the solutions obtained for each
one. Specific conditions for when this is true are given in Appendix 4.7.
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Figure 4.1: Zero-field NMR of [13C]-methanol. a: When excited by a strong DC pulse
the spectrum consists of one peak at JCH = 140.65 Hz and one peak at 2JCH = 281.3 Hz.
The amplifier used for pulsing generates strong 60 Hz overtones seen in the spectra. b/c:
Using weak resonant pulses the transitions can be addressed separately and selectively. The
amplifiers used for DC pulsing are turned off, decreasing the 60 Hz noise. d: Signal amplitude
versus pulse length, showing the coherent driving between the |0, 0〉 and |1, 0〉 states. Red
crosses are experimental data points, the blue line corresponds to sin(Pαβt) and the black
dashes to a full numerical simulation. e: Driving the |1,mF 〉 to |2,mF 〉 transition. The
blue line is now a weighted sum of sin(Pαβt) for each mF as described in the text, giving
two frequencies. The two observed transitions are shown in the energy level diagram on the
right-hand side. I is the quantum number for total proton angular momentum, which is
conserved.

4.3 Resonant Excitation of Methanol in Zero-Field

We demonstrate selective pulses in zero field using [13C]-methanol (13CH3OH) as an ex-
ample. The zero-field energy level diagram for the four non-exchanging spins in the molecule,
namely the 13CH3 group (an AX3 spin system), is displayed in Fig. 4.1. There are two ob-
servable transitions, one where the total angular momentum quantum number, F , changes
from 0 to 1, and another where it goes from 1 to 2. We have taken the spin quantization axis
to be parallel to the detector axis, ŝ = ẑ, implying ∆mF = 0. The two transitions occur
at frequencies JCH and 2JCH respectively, where JCH = 140.65 Hz is the one-bond carbon-
proton coupling constant. Simultaneous excitation of the two transitions can be achieved
using either a DC pulse or non-adiabatic switching to ZULF, affording the spectrum shown
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in Fig. 4.1a. The spectra in Figs. 4.1b/c were recorded after applying selective pulses, at the
JCH (0.167 s, Bz =0.94 mG) or 2JCH (0.182 s, Bz =0.94 mG) transition frequencies. Since
the bandwidth is much less than the peak separation only the resonant transition is excited.
The pulses were applied along the ẑ axis in order to excite observable ∆mF = 0 transitions.

The excitation of the two transitions versus pulse length (Rabi curves) as shown in
Fig. 4.1d/e was used to determine the length of the pulses that gives maximum signal. The
JCH signal is expected to be described by S(tp) ∝ sin(Pαβt) [116], and thus we expect to
see maximum signal for Pαβt = π/2. The evaluation of Pαβ may be simplified by noting
that the operator can be split into two parts, one proportional to the sum of the spin
operators, and one proportional to the difference. The sum term commutes with HJ , and
therefore does not induce transitions between states of different F . Thus the relevant matrix
elements are Pαβ = [(γaBz − γbBz)/2] 〈F ′,mF | (Ia,z − Ib,z) |F,mF 〉, which can be expanded
in terms of Clebsch-Gordan coefficients (further detail is shown in Appendix 4.8) as Pαβ =

[(γaBz−γbBz)/2]
∑

ma,mb
(ma−mb)C

F ′,mF
Ia,ma,Ib,mb

×CF,mF
Ia,ma,Ib,mb

, where mF is conserved and a and
b refer to the proton and carbon spins. This expression for the matrix element predicts the
1J transition to be driven at 1.5 Hz. However, the 2J Rabi curve contains two components,
using the formula above the frequencies are 1.5 Hz and 1.3 Hz with a relative weighting of 1:2
respectively. The 2J Rabi curve being composed of two different frequencies is understood
by noting that the line consists of several overlapping transitions, originating in the mF = 0
and the mF = ±1 levels and these transitions have different matrix elements. Thus the
pulse length that gives maximum signal does not correspond to a single angle. In general
the number of frequency components in the Rabi curve is equal to Fmax rounded down to
the nearest integer. For example both a F=0 to F=1 and a F=1/2 to F=3/2 transition will
have one Rabi frequency but a F=2 to F=3 transition will have three.

4.4 Resonant Excitation of Formic Acid in Ultralow

Field

We now consider the possibilities of selective excitation in the presence of a small perturb-
ing DC field on the order of mG applied at right angles to ŝ; such small field perturbations
have been shown to be useful in ZULF spectroscopy, by splitting lines into multiplets that
reveal the quantum numbers involved [24]. The experiments are most conveniently analyzed
in a coordinate system where the spin quantization axis is along the direction of the perturb-
ing DC field, so we assign the detection axis to ŝ = x̂. From this view, observable transitions
occur between states where ∆mF = ±1 and the effect of the DC field is to lift degeneracies
between states of different mF , leading to splittings in the spectra. The ∆mF = +1 and
∆mF = −1 transitions, in this case correspond to magnetization rotating either clockwise or
anticlockwise in the laboratory frame. This is in contrast to the high-field-NMR case where
all of the observable transitions correspond to magnetization rotating in the same sense,
equal to the direction of Larmor precession around the static field.
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Figure 4.2: Ultralow-field NMR (B0=0.19 mG) of [13C]-formic acid. a: The spectrum after
excitation with a DC pulse contains two peaks of equal intensity centered about the J-
coupling frequency JCH = 222.15 Hz with splitting 2ν = B0(γC + γH). The corresponding
transitions are |0, 0〉 → |1, 1〉 and |0, 0〉 → |1,−1〉. b: Excitation using a weak near-resonant
(=JCH) rotating field in opposite senses about the axis of the static field. The dashed blue
trace is the expected excitation profile, for the pulse used (|B| = 0.47 mG and 0.25 s),
defined by the signal magnitude. The inset shows the corresponding energy level diagram.
c: Signal magnitude for the J + ν transition plotted versus pulse length. The red crosses
are experimental data, the black dashes to the result of a full numerical simulation, and the
blue line corresponds to the predicted signal magnitude when solving for the evolution under
Eq. (4.5), as shown in Appendix 4.7.

The use of two orthogonal pulsing coils to generate a rotating magnetic field allows us to
select transitions with ∆mF = +1 or ∆mF = −1. Figure 4.2 shows an example using [13C]-
formic acid (H13COOH, an AX spin system, ignoring the exchanging acidic proton). A weak
DC field (0.19 mG) is applied at 90◦ to ŝ and the resulting spectrum contains two observable
transitions centered about the J-coupling frequency, corresponding to |0, 0〉 → |1,−1〉 and
|0, 0〉 → |1,+1〉. A strong DC pulse parallel to ŝ simultaneously excites both transitions as
shown in Fig. 4.2a. Figure 4.2b shows the selective excitation achieved by AC magnetic-field
pulses, rotating in the plane defined by x̂ and ŷ: amplitude 0.47 mG, frequency 222.15 Hz
(giving a resonance offset of ±0.52 Hz), pulse duration 0.25 s. The coupling matrix element
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Pαβ/2π evaluates to 1.06 Hz using a Clebsch-Gordan expansion similar to the one used
above, as shown in Appendix 4.8. Although the excitation bandwidth of this pulse covers
both transitions they may be addressed selectively based on their sense of rotation, effectively
sidestepping the usual limit on frequency selectivity. The signal magnitude vs. pulse duration
for the higher-frequency peak is shown in Fig. 4.2c to be in quantitative agreement with both
the theory and numerical simulation based on the parameters used. The decay of the signal
at long pulse lengths may be attributed to relaxation or inhomogeneity of the field.

Figure 4.3: Spectral editing at zero-field. The zero-field spectrum of [15N,13C2]-acetonitrile
is split into three different frequency regions for convenience. Bottom blue trace: experi-
mental spectrum recorded after applying a DC pulse in the ŝ direction, bottom green trace:
Difference spectrum after selective inversion of the 155 Hz line (AC pulse, 0.47 mG, 1.08
s). Stars denote peaks that are still clearly visible in the difference spectrum meaning they
belong the I = 1/2 manifold. Top Traces: Simulated spectra for the same conditions. The
traces are offset for clarity and the peaks at 120 Hz, 240 Hz and 300 Hz are overtones of the
60 Hz line noise.



CHAPTER 4. FREQUENCY SELECTIVE PULSES 70

4.5 Spectral Editing with Selective Pulses

Selective irradiation may also be used for saturation or population inversion between two
or more pairs of spin eigenstates. A “coherence filter” based on this principle is demonstrated
in Fig. 4.3 to edit the zero-field NMR spectrum of [15N,13C2]-acetonitrile (13CH13

3 C15N).
The spectrum nominally contains a large number of observable transitions (>32 different
frequencies), but this number can be greatly reduced, and thus assignment of the spectrum
made easier, by exciting transitions that share a common energy level. The coherence filter
is no more than a difference experiment requiring an even number of signal acquisitions to be
performed. Every odd numbered acquisition the full spectrum is excited using a broadband
DC pulse parallel to ŝ = ẑ, taking the spin quantization axis parallel to ŝ as in our first
example (Fig. 4.1). On even acquisitions, the broadband pulse is preceded by a selective AC
pulse, applying the field along the same axis as the DC pulse, which inverts the population
difference of a single transition. The difference between the odd and even spectra will contain
only peaks corresponding to coherences belonging to the same spin manifold as the inverted
transition. Other transitions will remain unchanged by the selective inversion and therefore
cancel when the difference spectrum is made. The result of this filtering may be interpreted
in the following way: since magnetically equivalent spins will rotate identically about the axis
of an applied magnetic field, their total angular momentum cannot change during either the
selective inversion pulse or the DC pulse. In the case of [15N,13C2]-acetonitrile a conserved
quantum number is the total proton angular momentum, I, which has two possible values
(I = 1/2 and I = 3/2) leading to two isolated spin manifolds. This is also the case for [13C]-
methanol, shown in Fig. 4.1, but for [15N,13C2]-acetonitrile there is additional structure due
to presence of more than one J-coupling. The zero-field NMR spectrum is partitioned into
three distinct parts. The corresponding signal frequencies are around the one-bond 1H-13C
J-coupling frequency at 136 Hz with I = 1/2, around 2J = 272 Hz with I = 3/2 and close
to 0 Hz arising from the internal splitting of the two manifolds due to the second carbon and
the nitrogen. The selective inversion protocol presented here allows us to filter the observed
NMR signal and display only peaks belonging to either the I = 1/2 or the I = 3/2 manifolds.

Figure 4.3 shows both a simulation of this protocol and the experimental result for the
case when the selective inversion pulse is applied at 155 Hz. It is expected that only peaks
originating in the I = 1/2 manifold to be visible in the difference spectrum. The persistence
of the peaks in the region around 136 Hz is consistent with population redistribution within
the I = 1/2 manifold. There are no observed peaks in the difference spectrum around 272
Hz (I = 3/2). The region around zero Hz is the most interesting, four peaks are observed
in the difference spectrum so these must belong to the proton spin I = 1/2 manifold.

Figure 4.3 demonstrates another use for selective inversion pulses. Note how in the
simulation the peak at ≈126Hz is not visible in the control spectrum, but is clearly apparent
in the difference spectrum. This indicates that before the DC pulse there is no population
difference between the two states involved. The selective inversion pulse swaps the initial
population of one of the two states with a third state so that the population difference
becomes nonzero. This is analogous to the technique of interchanging spin populations for
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signal enhancement in NMR studies of quadrupolar nuclei [117]. In the experimental data,
the peak at ≈ 126 Hz also becomes significantly enhanced. However, the peak is also visible
in the control spectrum, which we attribute to the sensitive axis of the magnetometer being
slightly off-axis from ẑ [31].

4.6 Conclusions

In conclusion we have demonstrated selective excitation and editing of zero-field J-spectra
using weak AC fields. Simple analytical theory based on a two-level system reproduces the
results from full numerical simulations and experiments. As a chemically relevant applica-
tion we have shown a method that discriminates between signals belonging to manifolds of
different total proton angular momentum in the zero-field spectrum of [15N,13C2]-acetonitrile.
Further we have shown how the sense of rotation of pulsed fields may select between positive
and negative changes in angular-momentum projection. These techniques should facilitate
zero-field NMR spectroscopy of larger, more demanding spin systems or mixtures, and open
a way to adapting a suite of established high-field experiments to zero-field.
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4.7 Appendix I: Derivation of Excitation Curves

We derive in this section approximate analytical expressions for the signal amplitude as a
function of pulse area and resonance offset for a general zero-field spin system. We explicitly
treat the case of a linearly polarized excitation field, however a rotating field may be treated
similarly. We write the Hamiltonian as consisting of groups of equivalent spins

Ii =

Ni∑
k=1

Iki , (4.6)

where the Ik are angular momentum operators for the individual spins and Ni is the number
of spins in group i. Sometimes in zero-field NMR it is useful to apply a small perturbing
static field in order to break the degeneracy of the mF sub-levels and split the spectrum
into multiplets depending on the total angular momentum quantum numbers involved in the
transition [24]. In the presence of such a field the static Hamiltonian expressed in angular
frequency units is

H0 = 2π
∑
i,j>i

JijIi · Ij +
∑
i

ωi0Iz,i, (4.7)

where ωi0 is the Larmor frequency of the ith group of spins in the static field and Jij are the
J-coupling constants. The Hamiltonian for a linearly polarized AC pulse of amplitude B is

HP (t) = cos(ωt)
∑
i

γiB · Ii ≡ cos(ωt)P, (4.8)

where ω the the pulse frequency. Defining HJ = 2π
∑

i,j>i JijIi ·Ij the total Hamiltonian for
the system during application of the pulse is

H(t) = HJ +
∑
i

ωi0Iz,i + cos(ωt)P. (4.9)

We want to analyze the evolution in a frame where the Hamiltonian is time independent and
since we are concerned with driving transitions between zero-field states, the natural basis
to work in is the eigenbasis of HJ . To this aim we define the following transformation:

ρ̃ = e−iω
f
HJ tρeiω

f
HJ t, (4.10)

where ρ is the density operator and f is the frequency of the transition being driven in the
absence of any perturbing static field. ρ̃ obeys the Liouville-von Neuman equation of motion

dρ̃

dt
= −i[H̃(t), ρ̃(t)], (4.11)

with H̃(t) given by

H̃(t) = (1− ω

f
)HJ + eiω

f
HJ t(

∑
i

ωi0Iz,i + cos(ωt)P )e−iω
f
HJ t. (4.12)
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We now begin dropping terms that retain time dependence in this frame. First we note
that the part of the static field Hamiltonian proportional to total angular momentum, Fz,
commutes with HJ , we drop the remaining part (This particular approximation is valid for
systems with 2 spins only).

H̃(t) = (1− ω

f
)HJ + ω0Fz + cos(ωt)eiω

f
HJ tP e−iω

f
HJ t, (4.13)

where ω0 is a constant of proportionality that depends on the spin system. Writing the
matrix elements of the operators in the eigenbasis of HJ results in

H̃(t) =
∑
α

((1− ω
f

)HJ,αα+ω0Fz,αα) |α〉 〈α|+ (eiωt + e−iωt)

2

∑
α,β

Pαβeiω
f

(Eα−Eβ)t |α〉 〈β| , (4.14)

where Eα is the energy of state |α〉 in the absence of the static field. States with Eα−Eβ = f ,
will give time independent terms, off-resonant terms retain time dependence and are dropped.

H̃ =
∑
α

((1− ω

f
)HJ,αα + ω0Fz,αα) |α〉 〈α|+ 1

2

∑
α 6=β

Pαβ |α〉 〈β| , (4.15)

where the sum over states is now restricted to the (2F + 1) + (2F ′ + 1) states involved in
a single zero-field multiplet centered at f . Next we define fictitious spin-half operators for
each transition within the multiplet as follows:

σαβz =
1

2
(|α〉 〈α| − |β〉 〈β|),

σαβx =
1

2
(|α〉 〈β|+ |β〉 〈α|),

σαβy =
1

2
i(|α〉 〈β| − |β〉 〈α|),

Eαβ = (|α〉 〈α|+ |β〉 〈β|). (4.16)

Using these operators the Hamiltonian for one two-level system can be written

H̃αβ = Ωσz + Pαβσx + ΞE. (4.17)

Here we have defined Ω = (1 − ω
f
)(HJ,αα − HJ,ββ) + ω0(Fz,αα − Fz,ββ), the total resonance

offset frequency. Ξ = 0.5((1 − ω
f
)(HJ,αα + HJ,ββ) + ω0(Fz,αα + Fz,ββ)) and arises from the

fact that the energy levels do not have to be centered around zero. We note that Eq. (4.15)
corresponds to several two-level subspaces of the form Eq. (4.17) but since none of the
operators involved are shared between subspaces, they must all commute with one another.
Thus we can calculate the signal arising from each subspace separately and sum the results.
This is true for ∆mF = 0 transitions, as well as for ∆mF = ±1 transitions when excited by
a rotating field.
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Figure 4.4: Bloch-sphere representation of Eq. (4.17) showing how ρ̃ rotates around the
Hamiltonian in the interaction frame during the application of the AC pulse. In this repre-
sentation the magnitude of the detected signal is proportional to the projection of the final
state onto the x-y plane.

Given an initial density operator with some population difference between the two con-
nected states |α〉 and |β〉 we write ρ(0) = ρ̃(0) ∝ σz. We see then that the effect of H̃ is

to rotate ρ̃ in this fictitious spin half subspace by an angle (
√

Ω2 + P 2
αβ)t = ξt, about the

axis n = (Pαβ, 0,Ω). We are interested in the signal magnitude, which is proportional to
the coherence amplitude, as a function of pulse time: A(tp) ∝ |〈α| ρ̃(tp) |β〉|. We note that ρ̃
transforms as a vector under this rotation so it is convenient to solve for the time evolution
as follows

ρ̃(tp) = D1(ξtp, θ, 0)ρ̃(0), (4.18)

where D1 is a first rank Wigner matrix [37] in axis-angle parametrization and θ = arctan(
Pαβ
Ω

)
Using the standard transformation properties of spherical tensors this becomes

ρ̃(tp) =
√

2 |α〉 〈β|D1
−1,0(ξtp, θ, 0) + σzD

1
0,0(ξtp, θ, 0) +

√
2 |β〉 〈α|D1

1,0(ξtp, θ, 0). (4.19)

It follows that the signal amplitude as a function of pulse length is given by

A(tp) ∝ |D1
1,0(ξtp, θ, 0)|. (4.20)

The elements of a Wigner matrix in axis-angle form are well known [37], giving the following
expression for the signal amplitude as a function of pulse length and resonance offset

A(tp) ∝ {2 sin2(
ξt

2
) sin2(θ)× (cos2(

ξt

2
) + sin2(

ξt

2
) cos2(θ))}

1
2 . (4.21)

In order to predict the signal magnitude for given pulse parameters, one would need to
calculate the matrix elements of HJ , Fz and P , which depend on the specific spin system
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under study. This expression is plotted in Fig. 2c in the main body of the paper, for Ω/2π
= 0.52 Hz and Pαβ/2π = 1.06 Hz.

When the AC field is being applied perfectly on resonance, Ω = 0, making θ = π
2

and
ξt = Pαβt. In this case Eq. (4.21) reduces to

A(tp) = |sin(Pαβt)|. (4.22)

4.8 Appendix II: Evaluation of Matrix Elements

We show here in detail how to evaluate the coupling matrix elements Pαβ for a system
of two groups, a and b, of spins both in the case of a linear and a rotating excitation field.

For a linear pulse along z we have

Pz = γaBzIa,z + γbBzIb,z. (4.23)

This is conveniently rewritten as

Pz = (
γaBz + γbBz

2
)(Ia,z + Ib,z)− (

γaBz − γbBz

2
)(Ia,z − Ib,z). (4.24)

The first term commutes with HJ and is thus not going to induce transitions between states
of different energy at zero-field. Thus the matrix elements that give time independent terms
in the interaction frame defined by Eq. (4.10) are

Pαβ = 〈F ′,mF |Pz |F,mF 〉 = (
γaBz − γbBz

2
) 〈F ′,mF | (Ia,z − Ib,z) |F,mF 〉 , (4.25)

where mF is conserved. Inserting two resolutions of the identity and rearranging gives

Pαβ = (
γaBz − γbBz

2
)
∑
m′a,m

′
b

ma,mb

〈F ′,mF | |I ′a,m′a, I ′b,m′b〉 〈Ia,ma, Ib,mb| |F,mF 〉×

〈I ′a,m′a, I ′b,m′b| (Ia,z − Ib,z) |Ia,ma, Ib,mb〉 . (4.26)

Identifying the Clebsch-Gordan coefficients and noting that
〈I ′a,m′a, I ′b,m′b| (Ia,z − Ib,z) |Ia,ma, Ib,mb〉 = (ma −mb)δma,m′aδmb,m′b gives, for a linear pulse

Pαβ = (
γaBz − γbBz

2
)
∑
ma,mb

(ma −mb)C
F ′,mF
Ia,ma,Ib,mb

× CF,mF
Ia,ma,Ib,mb

, (4.27)

as given in the main body of the paper. Evaluating this expression for Bz = 0.94 mG, γa =
42.576 MHz/T, γb = 10.705 MHz/T, Ia = 1/2, and Ib = 1/2 results in Pαβ/2π = 1.5 Hz for
a F = 0, F ′ = 1, mF = 0 transition. If Ib = 3/2, as for the 2J peak in methanol, it is also
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possible to get F=1, F ′=2 transitions. In this case Pαβ/2π = 1.5 Hz if mF = 0 and 1.3 Hz
if mF = ±1

In the main body of the paper we also consider the case of an excitation field rotating in
the plane normal to the quantization axis. In this case for a given sense of rotation

HP (t) = |B|[cos(ωt)(γaIa,x + γbIb,x) + sin(ωt)(γaIa,y + γbIb,y)] (4.28)

In the interaction frame defined by Eq. (4.10) we now have

Pαβ = (
γa|B|+ γb|B|

2
) 〈F ′,mF + 1| (Ia,+ − Ib,+) |F,mF 〉 , (4.29)

again only considering terms that have different energy at zero field. I± are the usual raising
and lowering operators and only terms where the higher energy state also has higher mF

give time independent terms for this sense of rotation of the excitation field. This expression
can be expanded in terms of Clebsch-Gordan coefficients the same way as above in order to
give

Pαβ = (
γa|B|+ γb|B|

2
)
∑
m′a,m

′
b

ma,mb

CF ′,mF+1
Ia,ma,Ib,mb

×CF,mF
Ia,ma,Ib,mb

(C+,aδm′a,ma+1δm′b,mb−C+,bδm′a,maδm′b,mb+1),

(4.30)
where we have used Ia,+ |Ia,ma, Ib,mb〉 = C+,a |Ia,ma + 1, Ib,mb〉. Evaluating this expression
for |B| = 0.47 mG, γa = 42.576 MHz/T, γb = 10.705 MHz/T, Ia = 1/2, and Ib = 1/2, F =
0, F ′ = 1, and mF = 0 gives Pαβ/2π = 1.06 Hz.
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Chapter 5

Spin-Species Selective Pulses

In the previous chapter we presented a method for achieving spectral selectivity in zero-
field, in spite of all spins having zero Larmor frequency, by relying on the characteristic
frequencies of the overall system in the strongly-coupled zero-field regime. In this chapter
we introduce a method for obtaining selectivity based on the chemical identity of individual
spins rather the zero-field resonance frequencies.

The material in this chapter has previously been published under the title

• Nuclear Magnetic Resonance at Millitesla Fields Using a Zero-Field Spectrometer by
Tayler, Sjolander, Pines, and Budker [64].
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5.1 Background and Motivation

While performing NMR experiments in the zero-field regime has advantages, there are
features of high-field NMR that are virtually indispensable. Chief among them is the ability
to selectively control individual spins based on their chemical identity. Usually such selec-
tivity is approximated in zero-field by relying on algebraic ratios of the gyromagnetic ratios
of the spins of interest, and as we have seen this method has limitations.

In this chapter we describe a method for achieving true high-field selectivity in the zero-
field experiment. A magnetic field is temporarily imposed on the sample using electromag-
netic coils, allowing one to apply resonant AC pulses that discriminate between different
spin-species based on their resonances frequency in the applied field. We perform experi-
ments on 1H and 13C in formic acid, as well as 1H and 19F in diflouroacetic acid, and demon-
strate spin-species selective pulses which flexibly vary the initial condition in the zero-field
experiment.

A key point here is that while an electromagnet may not produce a homogeneous enough
field to do high-resolution spectroscopy, it does allow us to selectively address and manipulate
spins based on their resonance frequency in the applied field. This is especially so when B1-
compensated adiabatic pulses are used, as they are in this work. Thus by temporarily
switching on and off millitesla fields inside our zero-field spectrometer we can marshal the
machinery of pulsed high-field NMR to manipulate the initial state before performing the
detection in an extremely homogeneous zero-field environment. The ability to perform high-
field pulsed experiments should add significantly to the low footprint instrumentation and
ultra-high resolution of zero-field NMR.

The particular experiments demonstrated here are spin-species selective inversion pulses.
Remember from Section 2.3.3 that it is often necessary to invert one of the spin-species in
zero-field in order to obtain J-spectra, and that for a 1H -13C system this is easily achieved
by exploiting the fact that γH/γC ≈ 4. It is an unfortunate fact however, that most other
spin pairs do not have such convenient ratios, complicating the excitation step. However, by
the employing the field switching technique demonstrated here this problem can be overcome
using high-field chemical-shift selectivity. We show facile selective inversion of the 19F spins
in diflouroacetic acid, even though γH/γF ≈ 1.06.

5.2 Adiabatic-Remagnetization Pulses

We saw in Section 2.3.2 that following pre-polarization in a permanent magnet the density
operator describing the spin system at the beginning of the zero-field experiment depends
on how the magnetic field experienced by the sample varies from the polarization field to
the zero field region. According to Eq. (2.10) we can write the initial density operator in
the pre-polarizing field as ρTH =

∑N
i Iz,i, where for convenience we have ignored both the

constants of proportionality describing the degree of polarization and the identity matrix,
which commutes with all Hamiltonians and so does not contribute to the spin evolution.
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Two limiting cases of switching of the magnetic field are of relevance, sudden and adiabatic
switching. In the sudden approximation the field changes rapidly with respect to all Born-
frequencies of the system and one assumes that the density operator remains stationary
throughout the process. In adiabatic switching the instantaneous rate of change of the field
is small compared to the Born-frequencies of the system at all points of the trajectory. In this
case the system continuously remains in an eigenstate of the changing Hamiltonian as the
system moves from weak-coupling in the high-field regime to strong-coupling in the zero-field
regime [22, 30].

To see the consequences of adiabatic transfer for zero-field spectroscopy consider [13C]-
formic acid as an example. Remember that rapidly exchanging acidic protons do not con-
tribute to coherent spin-dynamics in zero-field and thus formic acid constitutes a two-spin
system. The density operator in the prepolarizing field is ρTH = γHIz + γCSz, where Iz and
Sz are angular momentum operators for the 1H and 13C spins. The Hamiltonian in angular
frequency units is HJ = 2πJI · S, where J is 222.15 Hz. The zero-field spectrum of this
molecule is shown in Fig. 2.5a. Remember from Section 2.3.3 that the high-field equilibrium
density operator ρTH does not commute with HJ , a general result for spin systems containing
more than one spin-species. Consequently, following sudden switching from high to zero field
the initial density operator, ρ(0), contains off-diagonal terms, or coherences, in the zero-field
basis and there is an evolving NMR signal without the need for an excitation pulse. However,
remember that care must be taken when trying to obtain a zero-field spectrum this way -
the signal will oscillate along the direction of the prepolarizing field, see Section 2.3.3, and if
the orientation of the high-field state before the quenching does not match the detection axis
of the magnetometer no signal will be measured, even though the system would generate a
time dependent magnetization.

During adiabatic switching the density operator must by definition commute with the
Hamiltonian throughout the trajectory and therefore it will be in a stationary state of HJ

upon reaching zero-field. We saw in Section 2.3.3 that in this case a magnetic field pulse is
required to produce an NMR signal. The case of a square pulse applied along the z-axis with
a strength B and duration tpulse = 1 ms is illustrated in Fig. 5.1a. The plotted data repre-
sent the integrated amplitude of the zero-field spectrum obtained with the given excitation
conditions. The data all correspond to 10 s acquisitions. As was shown in Section 2.3.3 the
excitation curve for a hard pulse along the z-axis will follow the form sin(γH − γC)Btpulse,
which is what we see in the data.

One could also use the pulse coils to reverse the adiabatic transformation induced by
sample shuttling and bring the spins back to the high-field state (ρTH) even though the spins
physically remain in the zero-field region. This applied field can be switched off rapidly
in order to effect a sudden instead of adiabatic transfer to zero-field. Figure 5.1b shows
the integrated amplitude of the formic acid J-spectrum obtained after applying a smooth-
rising pulse (the amplitude profile is a hyperbolic secant: B(t) = Bsech[15(t/tpulse)], with
tpulse = 100 ms and 0 ≥ t ≤ tpulse) followed by sudden quenching of the applied field to
excite evolution. We term this an adiabatic-remagnetization pulse. As pointed out in the
preceding paragraph it is important that the direction of the spin-polarization before the
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Figure 5.1: Excitation with a hard pulse vs an adiabatic-remagnetization pulse. (a) The
excitation curve for formic acid for a single pulse along the detection axis is a sine wave
when plotted against the pulse-amplitude. (b) For an adiabatic-remagnetization pulse the
measured amplitude of the J-spectrum is independent of pulse power, as long as the pulse
is appreciably stronger than the J-coupling.

quench is collinear with the magnetometer detection axis. With the axis convention used
throughout this work the remagnetization pulse thus has to applied along the z-axis. The
pulse field strength does not have to be comparable to the prepolarization field, it is enough
that the spins are returned to the weak-coupling regime, i.e. |(γH − γC)B| >> |J |. In the
data in Fig. 5.1b we see that in the case of formic acid this condition is reached for field-
strengths ∼50 µT. A significant advantage of the remagnetization pulse is that once the
high-field regime is reached the excitation curve is independent of the amplitude of the pulse
field. This type of pulse therefore does not require the sometimes arduous coil calibrations
described in Section 3.4.

5.3 Adiabatic Inversion Pulses

Pulses based on adiabatic-remagnetization extend naturally to the incorporation of con-
ventional high-field NMR pulse sequences. We demonstrate this using the example of spin-
species selective inversion. Such selectivity is taken for granted in almost all high-field NMR,
where the bandwidth of the pules is narrow in comparison to the Larmor frequencies, thereby
allowing for arbitrary manipulation of a spin-species of choice while leaving the rest unper-
turbed. As shown in Chapter 4 zero-field spin transitions do not correspond to individual
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Figure 5.2: (a) General pulse-sequence schematic for spin-species selective inversion. (b)
Simulations of the evolution of the spin system for the case of the B1 field being (i) off-
resonant, (ii) resonant with the carbon spin, and (iii) resonant with the proton spin.

spins, and this option is not available in zero-field NMR. A schematic of a selective inversion
pulse based on adiabatic-remagnetization is shown in Fig. 5.2a. After shuttling to zero-field
the sample is adiabatically remagnetized along the z-axis in an applied field of strength
B. The field is left on, (so the spin system remains in the weakly-coupled regime), and
a frequency swept adiabatic inversion pulse, denoted B1 is applied along the x-axis. The
amplitude of B1 is typically 10-100 times weaker than B and follows a half-sine profile. The
effect of B1 is to invert only those spins whose resonance frequency in the B field lies within
the sweep range ν − ∆ν/2 to ν + ∆ν/2, where ν is the center frequency. After the B1
pulse the B field is suddenly quenched and the signal is detected in the zero-field regime. In
principle a hard resonant pulse could be used as B1 but an adiabatic inversion pulse has the
major advantage that the exact resonance frequency of the spins does not matter a great
deal. This has two convenient consequences: (i) the stability of the B field is not critical,
and (ii) neither the z-coil nor the x-coil have to be perfectly calibrated.

Simulated trajectories of the expectation values for the spin-polarization operators 〈γHIz〉,
〈γCSz〉, and 〈Mz〉 = 〈(γHIz + γCSz)〉 for a 1H-13C system during the selective inversion pulse
sequence are plotted in Fig. 5.2b. At a B of 1 mT the difference between the 1H and 13C
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Larmor frequencies is ∼ 3 kHz and so we chose a sweep range ∆ν for B1 of 400 Hz to be
spin-species selective. Adiabatic shuttling from the prepolarizing magnet equalizes the po-
larization on 1H and 13C, which implies to a non-evolving state in zero-field. In Fig. 5.2b(i)
the B1 sweep is not resonant with either the 1H spin or the 13C spin. This case is identi-
cal to the adiabatic-remagnetization pulse described earlier, after the field quench the bulk
magnetization starts to oscillate as polarization is exchanged between 1H and 13C under the
action of HJ as described in Chapter 2. In Fig. 5.2b(ii) the B1 pulse inverts the 13C spin
before the quench. The result is larger oscillations in the net magnetization of the system,
and therefore a larger zero-field NMR signal. In Fig. 5.2b(iii) the 1H spin is inverted instead
of the 13C spin - in this case the resulting oscillations are 180◦ out of phase relative to when
the 13C spin is inverted.

We demonstrate this pulse sequence experimentally by acquiring zero-field spectra of 13C-
formic acid as a function of the remagnetization field B for a number of B1 center frequencies
(ν = 2, 4, 8, 16, 32, 64 kHz). The results are shown in Fig. 5.3. Each data point corresponds
to the (signed) integrated amplitude of the J-spectrum of formic acid. When the value of B
is such that the Larmor frequency of neither spin is within the ν ±∆ν window the result is
identical to Fig. 5.1b. As B increases the 1H spin first comes in resonance with the B1 pulse
with the result that the peak changes sign and grows in amplitude. Perfectly on resonance
the amplitude has increased by a factor of (γH + γC)/(γH − γC) ≈ 1.67 consistent with
inversion of the 1H spin. As B increases further the resonance frequency of the 13C spins
starts to enter the inversion window of the pulse. Consequently the signal starts to increase
until it is ∼ 1.67 times larger when ν corresponds to the Larmor frequency of 13C in a field
of strength B. These results are consistent with the simulations in Fig. 5.2, as well as the
theory which states that there should be no perturbation of the spin system outside the pulse
bandwidth, i.e. outside the limits given by (B ±∆B/2)γ = ν ±∆ν/2 for each spin-species.
These field limits are indicated as shaded bands for each value of ν in Fig. 5.3. ∆ν was
400 Hz in all cases. We note that the width of the 13C resonance in this representation is
significantly wider than the 1H resonance. The reason is that since the gyromagnetic ratio of
13C is a factor of four lower than for 1H there is a 4 times larger range of B fields that keeps
the 13C Larmor frequency within the 400 Hz sweep width of the inversion pulse. Finally we
note that there are spurious resonances (marked by asterisks) in the data. They occur at 3x
and 5x the B field corresponding to the 1H resonance, and we assign them to the 1H spin
coming into resonance with odd-integer harmonics of the inversion pulse. Consider the case
of ν = 4 kHz. At this frequency the 1H spin is inverted at B ∼ 0.1 mT. However, if B1 also
has harmonics at 12, and 20 kHz we would expect to see 1H inversion at ∼ 0.3 and ∼ 0.5
mT as well, which is what we see in the data. Note that the spurious resonances correspond
to a decrease in the amplitude of the J-spectrum, consistent with partial inversion of the
1H spin. They are broader than the primary resonance because the effective sweep widths
of the third and fifth harmonics are increased by a factor of x3 and x5 to ∆ν = 1200, and
2000 Hz respectively.

Next we consider the case of diflouroacetic acid. In this case the evolution of ρTH without
further modification corresponds to a very small zero-field signal, since the gyromagnetic
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Figure 5.3: Experimental demonstration of the spin-species selective inversion sequence.
Each panel corresponds to a given B1 frequency and the amplitude of the formic acid J-
spectrum is plotted as a function of the strength of the remagnetization field, B. The peaks
are due to B bringing the spins into resonance with B1, thus modifying ρ(0) in advance of
the readout. The asterisks denote spurious peaks due to harmonics of B1.

ratios of 1H and 19F differ by only a factor of ∼1.06, see Eq. (2.38). The gain in signal
upon selective inversion of one of the spins before detection should therefore be very large,
(γH +γF )/(γH −γF ) ≈ 33. However, performing such an inversion using a simple hard pulse
in zero-field would require a flip-angle of θ = 16π on 19F, which is approximately equal to
17π on 1H. Such a long pulse would be extremely sensitive to mis-calibrations of the pulse
field strength as well as to inhomogeneities in the pulse field. We note that in Fig. 5.1a the
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Figure 5.4: Selective inversion of proton and fluorine in diflouroacetic acid. The gyromagnetic
ratios are so similar that without inverting one of the spins the J-spectrum is not observable,
even if ρ(0) was prepared by sudden transport to zero-field.

amplitude of the oscillations are damped as the total flip-angle increases (at constant pulse
duration) due to dephasing of the spin ensemble during the pulse.

The success of our adiabatic inversion sequence when applied to diflouroacetic acid is
demonstrated in Fig. 5.4. The molecule is well described as an SI2 spin system and its
J-spectrum consists of a single peak at 3/2 times the J-coupling frequency = 79.1 Hz, see
Section 2.3.4. Each data point is the integrated (signed) signal amplitude of the peak as a
function of remagnetization field B at ν = 64 kHz and ∆ν = 800 Hz. Due to the similarity
of the gyromagnetic ratios of 1H and 19F the signal after a plain adiabatic-remagnetization
pulse is so low as not to be visible, but when the B field brings the 1H and 19F spins into
resonance with the adiabatic inversion pulse we see corresponding large negative and positive
amplitude peaks in the J-spectrum. However, even on resonance, the SNR of the diflouro
acetic acid spectrum is significantly lower than what was obtained for formic acid. Remember
from Section 2.3.3 that the matrix element of the detection operator also depends on the
difference in gyromagnetic ratios between the nuclei, and this fact can not be changed by
any sort of clever manipulations of the initial state. There is thus a reduction by a factor of
(γH − γC)/(γH − γF ) ≈ 13 in signal intensity between Fig. 5.3 and Fig. 5.4.
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5.4 Conclusions

To summarize: the work presented in this chapter demonstrates high-field NMR pulse se-
quences executed on a zero-field spectrometer, thereby increasing capability for spin-control
at zero-field, including selectivity based on spin-species. This complements the ability to se-
lectively address individual zero-field resonances demonstrated in the preceding chapter. At
present the electromagnetic coils inside our zero-field spectrometer supply DC magnetic fields
up to several millitesla, providing a means to study spin phenomena around the “crossover
zone” between the strongly and weakly coupled regimes of spin-dynamics [22], including
relaxation dispersion and also parahydrogen induced hyperpolarization, which is strongly
influenced by field-dependent level anticrossings and is currently the subject of intense re-
search interest. In the future we expect many opportunities for multidimensional experiments
that correlate spin phenomena between the two regimes and make use of the large catalog
of existing high-field pulsed NMR methods. With the use of stronger fields (in the region
greater than 0.1 T) chemical-shift selectivity may also be exploited.
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Chapter 6

Zero-Field Correlation Spectroscopy

In this chapter we present Total Correlation J-Spectroscopy and Multiple Quantum Cor-
relation J-Spectroscopy detected in zero magnetic field using a 87Rb vapor-cell magnetometer
and perform two experimental demonstrations. At zero-field the spectrum of ethanol appears
solely as a mixture of 13C isotopomers, and correlation spectroscopy is useful in separating
the two composite spectra. We also identify and observe the zero-field equivalent of a dou-
ble quantum transition in acetic acid, and show that such transitions are of use in spectral
assignment. Two-Dimensional spectroscopy further improves the high resolution attained
in zero-field NMR since selection rules on the coherence transfer pathways allows for the
separation of otherwise overlapping resonances into distinct cross-peaks.

The work is this chapter is currently being prepared for publication under the title

• Single and Multiple Quantum Correlation Spectroscopy in Zero-Field Nuclear Magnetic
Resonance by Sjolander, Blanchard, Budker, and Pines [3].
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6.1 Background and Motivation

While zero-field J-spectroscopy provides a route to accurate chemical finger-printing on
account of the high achievable resolution, there are limits to what can be obtained from
simple 1D spectra. As we have seen it is a feature of J-spectroscopy that only heteronuclear
spin systems yield directly observable spectra [2]. This means that several common 1H
containing solvents give no signal background, obviating the need for deuterated solvents.
However, it also means that, since 13C is only 1% naturally abundant, the observed spectra of
1H-13C systems at natural abundance are superpositions of contributions from the different
possible isotopomers. Further complicating matters is the fact that the one-bond J-couplings
of many organic molecules are order∼100 Hz, which means that the peaks are spread out over
only a few 100s of Hz in frequency space. While some molecules give J-spectra with peaks
as narrow as 20 mHz [23], many other molecules do not. Additionally, spectral complexity
increases rapidly with spin system size. Taken together, these factors often lead to partially
resolved or overlapping peaks, which complicates assignment.

Meanwhile, the development of two-dimensional spectroscopy [118, 119] is a major reason
behind the analytical power of NMR. At a minimum 2D experiments increase signal disper-
sion, thereby allowing the resolution of more crowded spectra. Additionally, many pulse
sequences exist that enable the mapping of coupling networks, the simplification of spectral
assignment, and structure elucidation [8].

Multiple-quantum (MQ) spectroscopy [120–122], which in high-field concerns transitions
for which |∆m| > 1, where m is the quantum number for the projection of the spin angular
momentum on the field axis, has also found extensive use in NMR spectroscopy. In liquid-
state analytical chemistry, multiple quantum coherence filters married to two-dimensional
detection techniques provide one of the standard ways to map coupling networks [8]. MQ-
spectroscopy also provides a means of simplifying the spectra of partially ordered systems, the
smaller number of MQ peaks enables otherwise intractable spectra to be readily interpreted
[123, 124]. In the solid state, MQ coherences may be used to monitor the growth of correlated
spin clusters with applications to the investigation of the structure of amorphous solids [125,
126], and more recently in studies of many-body physics [127, 128].

In this chapter we introduce just such two-dimensional correlation and MQ experiments
in the context of liquid-state zero-field J-spectroscopy. Correlation spectroscopy is an attrac-
tive way to approach the problem of natural abundance J-spectra containing contributions
from different isotopomers, since coherence transfer between distinct molecules in liquids
is under normal circumstances not possible. We report two proof of principle experiments
on ethanol and acetic acid, and show that the different 13C isotopomers in ethanol may be
separated from each other by observing the cross-peak pattern. The cross-peak pattern also
simplifies spectral assignment and enables the distinction between otherwise overlapping res-
onances. We also show that [13C2]-acetic acid supports the zero-field equivalent of a multiple
quantum transition, demonstrating for the first time the concept of Zero-Field-Multiple-
Quantum (ZF-MQ) NMR. Just as in high-field NMR the number of ZF-MQ transitions
is significantly reduced compared to the number of single quantum transitions, potentially
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leading to simpler, easier to interpret spectra. The selection rules governing the correlation
pattern between single and multiple quantum coherences can be used to further simplify
assignment. Finally we note that the ability to perform 2D-experiments with only one indi-
rect dimension is a significant advantage offered by directly detected zero-field experiments
employing DC field sensors as done here, as opposed to using indirect detection in high-field
[129], which requires two indirect dimensions.

6.2 Theory

6.2.1 Zero-Field Energy-Level Manifolds

Commonly, the most interesting features of two-dimensional spectroscopy are cross-peaks
due to coherence-transfer from one transition to another. Therefore, selection rules that
constrain the allowed pathways are important for the interpretation of 2D spectra. Here we
show the origin of one such important constraint in zero-field J-spectroscopy.

As we have seen, in an isotropic liquid-state system at zero magnetic field, the nuclear
spin eigenstates are also eigenstates of the total spin angular momentum operator F 2 and
may conveniently be labeled with the quantum numbers F and mF [49]. This is most easily
justified by noting that the nuclear spin Hamiltonian given by Eq. (2.13) is invariant with
respect to rotations of the spin system and therefore must commute with F 2 [49]. However,
for systems comprising more than two spins-1/2 nuclei additional quantum numbers are
necessary to fully define the zero-field eigenstates. It is particularly useful to consider the
angular momentum of sets of magnetically equivalent spins [38]. ‘Equivalent’ here denotes
a set of indistinguishable spins that also share the exact same couplings to all other spins
in the spin system, meaning that they possess permutation symmetry. If a set of spins
with total angular momentum K is magnetically equivalent then there is no combination of
pulses or evolution intervals that can break the permutation symmetry and K2 commutes
with all realizable effective Hamiltonians. Therefore, the presence of equivalent spins leads
to selection rules in the zero-field spectra - the quantum numbers associated with the total
angular momentum of sets of equivalent spins must be conserved throughout any pulse-
sequence.

This selection rule reflects the existence of separate spin-manifolds in zero-field. We define
such manifolds to be sets of energy-levels which share the same combination of equivalent-
spin quantum numbers. It follows from the above discussion that there can be no transitions
of any kind between states belonging to different manifolds. As an example consider the
zero-field energy level structure of 13C2-acetic acid, which can be considered an SASBI3 spin
system with the methyl (CH3) protons being to a very good approximation equivalent. The
Hamiltonian for this spin system is H = 2π(1JCHSA ·K + 2JCHSB ·K + 1JCCSA · SB),
where K and SA/B are angular momentum operators for the proton group and carbons
respectively. The three protons make up the only set of equivalent spins in the molecule and
K may take two values, 1/2 and 3/2. The allowed transitions may thus be assigned to two
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Figure 6.1: The energy levels of acetic acid may be grouped in two manifolds of different
proton angular momentum. Transitions and coherence transfer may only occur within each
manifold. Magnetic dipole allowed transitions have ∆F = ±1, 0 and have been marked with
solid lines. The dash/dot line marks a ∆F = ±2 transition and the color coding and lines
styles match Fig. 6.5

separate manifolds, as shown in the energy-level diagram in Fig. 6.1. In actuality there are
two manifolds for which K = 1/2, but they are degenerate, and we are ignoring this point for
clarity. There are no transitions between states of different K and the two K manifolds form
entirely isolated spin systems. The principle extends readily to systems with more than one
set of equivalent spins. For example the Hamiltonian for the spin system of 1-13C-ethanol in
zero-field is HJ = 2π (2JCHK · S + 3JCHL · S + 3JHHK · L), where S and K are defined
as above and L is the operator for the angular momentum of the protons in the methylene
(CH2) group. The energy level diagram for this molecule, as well as the 2-13C-isotopomer
is shown in Fig. 6.2. In both cases there are four spin-manifolds, corresponding to the four
distinct combinations of K and L.

Since a spin-state labeled with a certain combination of conserved quantum numbers may
not evolve or transform into a spin-state labeled with a different combination, it follows that
in 2D zero-field spectroscopy we will never see cross-peaks between transitions belonging to
different spin-manifolds.

This phenomenon is of course not unique to zero-field NMR, spin states belonging to
different irreducible representations of a given permutation group may never mix or evolve
into each other no matter the magnitude of the external field. For example, in high-field
NMR a 13CH2 group (where the protons are magnetically equivalent) gives only two peaks
at the proton frequency, since transitions between the proton singlet and triplet states are
forbidden on account of conservation of the angular momentum of the protons.
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Figure 6.2: The energy level diagrams of the two (singly labeled) 13C isotopomers of ethanol
support four distinct manifolds corresponding to different combinations of total proton an-
gular momentum. For clarity only one transition per manifold is plotted and the quantum
number S = 1

2
for the 13C spin has been omitted. Solid lines correspond to the 1-13C iso-

topomer and the dotted lines to the 2-13C isotopomer. The color coding and line styles
match Fig. 6.5

6.2.2 Zero-Field Total Correlation Spectroscopy

A general schematic of a 2D NMR experiment is shown in Fig. 6.3. First the desired
coherences are prepared in an excitation step, this is followed by free evolution during which
those coherences are allowed to acquire phase, and finally a reconversion step before the
readout. Here the excitation and reconversion sequences are generated by a series of strong
DC magnetic field pulses around different axes in the laboratory frame. The pulses are much
stronger than any J-couplings, γB >> J , for these systems and to a good approximation
each spin is independently rotated by an angle θi = γiBt around the pulse axis, where γi is
the gyromagnetic ratio of the ith spin, B is the amplitude of the pulse, and t its duration.
In this work we use proton/carbon systems and all pulses have been calibrated to effect a π
rotation of the 13C spins, which means that proton spins are rotated by π× (γ1H/γ13C) ≈ 4π.

We take the z-axis to be the detection axis and assume that the initial state in all
experiments is given by magnetization along the z-axis generated by adiabatic transport
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Figure 6.3: General scheme for 2D NMR spectroscopy. An excitation sequence prepares the
desired coherences, this is followed by a period of free evolution and finally a reconversion
sequence and detection.

from a pre-polarizing field, giving the initial deviation density matrix ρ(0) ∝
∑

i Iz,i. This
state commutes with HJ and so does not evolve. We saw in Section 2.3.3 that evolution may
be initiated by changing the relative orientation of the proton and carbon spins, for example
by a π pulse on carbon in the x/y plane.

In Chapter 4 we introduced a zero-field ‘spin-tickling’ method whereby assignment of
resonances was simplified by monitoring the response of the spectrum to low-amplitude
irradiation of selected transitions. Here we present a two-dimensional variant, where the
complete spectral connectivity is established in one experiment. In this experiment t1 evolu-
tion is initiated with a π pulse on carbon along the x-axis followed by a second π pulse and t2
evolution (detection). The Fourier transform with respect to t1 and t2 gives a J/J correlation
spectrum. The sequence is summarized schematically in Fig. 6.4a. The experiment relies on
similar physics to high-field Total Correlation Spectroscopy (TOCSY) [130], but does not
require a mixing time. This follows from the fact that the unmodified zero-field free evolution
Hamiltonian already is strongly coupled for all spin pairs (both homo- and heteronuclear)
and thus allows complete coherence transfer throughout the molecule by default. Of course
the same fact also means that F1 and F2 do not correspond to individual spin transitions
but rather zero-field J-spectra. We refer to this type of experiment as ZF-TOCSY.

Previously directly detected 2D experiments have either been performed with different
effective Hamiltonians during the two evolution intervals [2], or in the presence of a magnetic
field such that the Larmor frequencies and J-coupling frequencies are approximately equal
[81]. Both cases lead to significantly different cross-peak patterns than what is seen here.

6.2.3 Zero-Field Multiple Quantum Correlation Spectroscopy

In high-field NMR spins are quantized along the external magnetic field and states may
be labeled with their projection, m, along that field. Directly observable single quantum
coherences have ∆m = ±1, and indirectly observable multiple quantum coherences are those
for which |∆m| > 1. Conversely in zero-field the eigenstates are eigenstates of total angular
momentum, labeled F . The observable in both high and zero-field NMR experiments is total
magnetization along some direction, conventionally taken to be the x-axis in high-field and
the z-axis in zero-field. Since the sample magnetization is represented by a vector operator it
follows from the Wigner-Eckart theorem [37] that it supports transitions with ∆F = 0,±1.
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Figure 6.4: Schematics showing the pulse sequences used in this work. (a) The zf-TOCSY
sequence. (b) ZF-MQ sequence.

This suggests that the indirect observation of transitions for with |∆F | > 1 may serve as
a zero-field analogue to high-field MQ experiments. Figure 6.3 outlines the general scheme
by which such spectra may be obtained. An excitation sequence prepares the system in a
state that contains coherences for which |∆F | > 1. This is followed by free evolution for
a time t1 during which the system builds up phase, and finally a reconversion sequence to
convert the multiple quantum coherences into observable ∆F = 0,±1 coherences. There are
many potential excitation and reconversion Hamiltonians that could be used to implement
this scheme.

The simplest example is Uexc = Px − Utm − Px, and Ure = Px, modeled on the original
high-field MQ excitation sequence. Here Uexc/re denotes the unitary operator for the exci-
tation/reconversion sequence, Px is the propagator for a π pulse along x on 13C and Utm
the propagator for free evolution under HJ for a time tm. The first pulse initiates evolution
under the J-coupling Hamiltonian which subsequently generates many-spin terms. The sec-
ond pulse converts some of those terms into zero-field MQ-coherences. After t1 evolution
the reconversion is done with a single read-out pulse. With the exception of the first pulse
and the waiting interval this pulse sequence is identical to the ZF-TOCSY sequence and can
therefore be expected to produce a similar looking spectrum. The difference being that the t1
period contains both observable and n > 1 coherences and we expect the resulting spectrum
to look like a ZF-TOCSY spectrum, but with additional cross-peaks in F1 corresponding
due to coherences evolving at n > 1 transition frequencies in t1.

Here we show that ZF-MQ experiments may assist with spectral assignment since the
possible values of n that can occur during t1 depend on the spin topology in a simple way:
Given a spin system containing k sets of equivalent spins we can write an expression for the
highest order of quantum coherence supported by each energy level manifold. Each manifold
is labeled by k quantum numbers and nmax is given by

nmax = 2×Min{
k−1∑
i=1

fi, fk}, (6.1)
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where fi are the total angular momentum quantum numbers for each set of equivalent spins
and the sum runs over the k − 1 smallest fi in a given manifold. fk is the largest quantum
number in the manifold. Equation (6.1) can be justified as follows: Each F value in a given
spin-manifold is the result of successively coupling all angular momenta fi in that manifold.
We have nmax = Fmax − Fmin, where Fmax =

∑k
i=1 fi, and Fmin = |fk −

∑k−1
i=1 fi|. Depending

on which of fk or
∑k−1

i=1 fi is bigger we obtain the two cases for Eq. (6.1). As an example
consider the energy level diagram of 13C2-acetic acid given in Fig. 6.1. The (1/2, 1/2, 1/2)
manifold supports only n = 0, 1 transitions consistent with the fact that the largest quantum
number, fk, in the manifold is 1/2, whereas the (1/2, 1/2, 3/2) manifold supports a n = 2
transition, since the sum of the two smallest quantum numbers in the manifold is 1. The ZF-
MQ experiment thus provides direct information regarding the possible quantum numbers
associated with a given resonance.

6.3 Methods

We performed experimental demonstrations of the ZF-TOCSY and ZF-MQ experiments
using 13C labeled isotopomers of acetic acid and ethanol. In the case of ethanol we simu-
lated a natural abundance spectrum by preparing a sample consisting of a mixture of the
two singly labeled 13C isotopomers. The acetic acid sample was doubly 13C labeled in order
to ensure the presence of a K-conserving double quantum transition. The experiments were
performed using a 87Rb vapor-cell magnetometer operating in the Spin-Exchange-Relaxation-
Free (SERF) regime[94], configured for use as an NMR spectrometer as described in Chap-
ter 3. SERF magnetometers are DC magnetic field sensors, which allows us to directly
monitor the low-frequency spin evolution in zero-field. All experiments were done using ∼80
µL samples in 5 mm outer diameter standard NMR tubes. The acetic acid sample contained
only 13C2-acetic acid while the ethanol sample was made from ∼40 µL 1-13C-ethanol and
∼40 µL 2-13C-ethanol. The samples were prepolarized in a 2 T permanent magnet and
shuttled pneumatically to a magnetically shielded region for experiment and detection. For
the 2D experiments the samples had to be re-polarized between every point in the indirect
dimension.

6.4 Results and Discussion

6.4.1 One-Dimensional Spectra

As a point of reference we first obtained 1D J-spectra of these molecules, the results are
presented in Fig. 6.5. The spectra are the result of summing 2k and 3k transients respectively
for the acetic acid and ethanol data. In both cases each transient corresponds to 20 s of data
acquisition. The J-coupling constants were obtained from the spectra by a numerical fitting
procedure, where the data is matched to the spectra predicted by numerical diagonalization
of the spin Hamiltonians given above. The results are given in Table 6.1. Numerical analysis
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Figure 6.5: One dimensional zero-field J-spectra of ethanol and 13C2-acetic acid. The stick
spectra correspond to the transition energies predicted by numerical diagonalization of the
spin Hamiltonian. The transitions have been labeled and color-coded according to their
energy-level manifold. For the ethanol spectrum solid lines correspond to the 1-13C iso-
topomer and dotted lines to the 2-13C isotopomer. In the acetic acid spectrum the location
of a K-conserving zero-field double quantum transition is shown for reference.

also gives the eigenvalues of K2 and L2 for each transition. Simulated spectra based on the
best-fit J values, together with the K andL assignments are also shown in Fig. 6.5.

In the case of ethanol we find that the measured 3-bond 1H-1Hcoupling constant is dif-
ferent between the two 13C-isotopomers within the statistical accuracy of the fit. Since both
isotopomers were present in the same NMR tube at the same time during the experiment
most potential sources of systematic error may be discarded and we assign the measured
difference in the 1H-1Hcouplings to a secondary isotope shift to the J-coupling constant
[104, 131, 132]. Such effects have been of interest since they allow for a check on quantum
chemical calculations and our understanding of bonding.

We also note that the measured linewidths are significantly larger for ethanol than for
acetic acid, and both spectra are in turn significantly broader than what has previously been
recorded for J-spectra of systems without labile protons [23]. We note that in strongly cou-
pled systems chemical exchange will lead to decreased coherence times via scalar relaxation
of the second kind []. Polarization is exchanged throughout the molecule under coherent
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J (Hz) 1-13C-EtOH 2-13C-EtOH 13C2-AcOH

1JCH 140.852(1) 125.2572(9) 129.5041(3)
1JCC — — 56.7928(8)
2JCH -4.700(3) -2.317(3) -6.7335(3)
3JHH 7.049(3) 7.032(2) —

Table 6.1: Measured J-coupling constants for the two single labeled 13C isotopomers of
ethanol (EtOH) and the doubly 13C labeled isotopomer of acetic acid (AcOH). The number
in parenthesis denotes the 95% confidence interval of the fit.

J-coupling evolution but coherence with the labile proton is constantly lost due to exchange,
decreasing the overall signal lifetime. We assign the broad (relative to non-exchanging sys-
tems) J-spectra in Fig. 6.5 to this effect, and the difference in linewidths between ethanol
and acetic acid to different kinetics for the hydrogen exchange reaction.

The 1D J-spectra may be interpreted a follows: In 13C2-acetic acid the dominant coupling
is between a single spin 1/2 carbon coupled to a group of three equivalent protons with
angular momentum K. An AX3 spin system has two transition frequencies depending on
the value of K, at J and 2J , for K = 1/2, and 3/2 respectively. Couplings to the second
carbon result in the spectrum being made up of groups of transitions centered at those
two frequencies plus additional peaks close to zero [48]. In the experimental data we see
two peaks in the 120-150 Hz range, three peaks between 225 Hz and 280 Hz, and 3 peaks
between 20 and 40 Hz, while the best-fit value for 1JCH was 129.504 Hz. Careful inspection
of the spectrum also reveals extremely weak signals at 6.75, 13.5, 129.5 and 259 Hz. These
peaks can be assigned to residual 1-13C and 2-13C acetic acid in the sample. Both isotopomers
would yield peaks at 1J and 2J on account of being AX3 spin systems, and the corresponding
coupling constants according to Table 6.1 are -6.7335, and 129.5041 Hz respectively, which
is consistent with the positions of the weak signals. Finally, the stick-spectrum also shows
the expected position of the K-conserving ∆F = ±2 transition, however since this transition
does not correspond to oscillating magnetization it is not observed in the directly detected
1D data.

For both isotopomers of ethanol the spectrum is to first order [48] determined by a strong
1JCH coupling, which sets up an initial splitting pattern, which is further split by the weaker
2JCH and 3JHH couplings. An AX2 spin system in zero-field gives a single peak at 3/2J while
an AX3 system gives one peak at J and one peak at 2J . We can therefore immediately
identify the cluster of peaks at 210 Hz with the 1-13C isotopomer and the peaks around 125
Hz and 250 Hz with the 2-13C isotopomer. This corresponds to a one-bond 13C-1HJ-coupling
constant of ∼140 Hz when the 13C label is on the methylene group, and ∼125 Hz when the
13C is on the methyl group. This is consistent with the results obtained by numerical fitting
of the spectra. While this back of the envelope interpretation gives approximate values
for the 1-bond coupling constants, we note that without the aid of numerical simulations
it would for example be difficult to say with any certainty where spectrum of the 1-13C
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Figure 6.6: Zero-Field Total Correlation Spectra acquired using the protocol in Fig. 6.4a.
The 1D spectra on the axes correspond to the data in Fig. 6.5.

isotopomer ends and that of the 2-13C isotopomer begins. Without computer assistance it
would also not be possible to distinguish the K = 1/2 peaks from the K = 3/2 peaks in
the 3/2 J multiplet associated with the 1-13C isotopomer. However, not all spin systems are
small enough that their Hamiltonians are readily diagonalizable, and in chemical analysis
the exact coupling topology is not always known in advance.

6.4.2 ZF-TOCSY of Ethanol and Acetic Acid

Figures 6.6a and 6.6b show the ZF-TOCSY spectra of the ethanol mixture and the
acetic acid sample acquired using the protocol in Fig. 6.4a. Both positive and negative
frequencies are displayed in F1, whereas only the positive part of the F2 axis is shown.
This is a consequence of the fact that the recorded signal is purely real, meaning that its
Fourier Transform is conjugate symmetric. The spectra are displayed in magnitude mode,
so to display all the spectral information it is therefore only necessary to plot two of the four
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Figure 6.7: Detailed structure of the high-frequency multiplet in the ZF-TOCSY spectrum
of 1-13C ethanol. All peaks in this multiplet have L=1. The dashed and dotted lines are
drawn to guide the eye to particular cross-peaks (which are marked by boxes) which confirm
that the high intensity peak at 211 Hz actually consists of two overlapping resonances which
belong to different K-manifolds.

quadrants of the Fourier transformed data. Overtones of the line noise lead to vertical streaks
in the data at multiples of 60 Hz and a climate control fan causes building vibrations at ∼
10.7 Hz. We do not know the origin of the feature at ∼8.7 Hz. The 1D spectra in Fig. 6.5
have been plotted on the axes for reference. As expected there is no coherence transfer,
and therefore no cross-peaks, between either the two isotopomers or peaks corresponding
to the same isotopomer but different combinations of K and L. This allows us to confirm
the numerical assignment of the peaks made in Fig. 6.5. For example the peak at ∼ 238
Hz in the ethanol spectrum in Fig. 6.6a clearly correlates to the 2J multiplet at around 250
Hz and therefore belongs to the 213C isotopomer. Similarly the peak at ∼125 Hz does not
give cross peaks with any of the three other peaks in the 1J multiplet, and it therefore must
belong to a separate spin-manifold, consistent with the numerical assignment of the 125 Hz
peak to L = 0 and the three surrounding peaks to L = 1. With the same reasoning the
ZF-TOCSY spectrum of acetic acid in Fig. 6.6b can be used to distinguish between the three
lower frequency peaks of the acetic acid J-spectrum, and confirm the numerical assignment
of the peak at 31 Hz to the same spin-manifold as the peaks at 119 and 149 Hz.
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As an example of transitions close in frequency and corresponding to the same pair of
coupled spins behaving as if they are ‘uncoupled’ on account of belonging to different spin-
manifolds, consider the high frequency multiplet of the 1-13C isotopomer (at around 3/2 J
in both F1 and F2) shown in more detail in Fig. 6.7. Fitting of the 1D data reveals that the
high intensity peak at ∼211 Hz actually consists of two overlapping resonances with different
K quantum numbers. This is confirmed by the cross-peak pattern, as Fig. 6.7 shows that
the 211 Hz peak correlates to both K = 1/2 and K = 3/2 resonances in F1. In this case 2D
spectroscopy allows us to distinguish overlapping resonances by correlating them to distinct,
well separated, peaks.

6.4.3 ZF-MQ Spectroscopy of Acetic Acid

As mentioned above, inspection of the energy-level diagram of acetic acid shown in
Fig. 6.1 reveals a K conserving, and therefore potentially observable, ∆F = ±2 transi-
tion at ∼245 Hz. The results of a ZF-MQ experiment designed to observe this transition in
spite of it not corresponding to oscillating magnetization is shown in Fig. 6.8a. The data was
acquired using the pulse sequence in Fig. 6.4b and the 1D data from Fig. 6.5, including the
expected position of the MQ transition, has been plotted on both axes for convenience. The
cross-peak pattern is mostly the same as in the zf-TOCSY spectrum in Fig. 6.6b, however
there is one additional cross-peak in F1 at 245 Hz corresponding to oscillations during t1 at
the frequency of the ∆F = ±2 transition.

According to Eq. (6.1) only the K = 3/2 manifold supports a n = 2 transition. The MQ
transition shows up only as a cross-peak to the transitions at 19 Hz, 38 Hz, 225 Hz, 265 Hz,
and 283 Hz, thus confirming the numerical assignment made in Fig. 6.5b of those peaks to
the K = 3/2 manifold. This is perhaps seen more clearly in Fig. 6.8b which shows slices
through the indirect dimension taken at the positions of the peaks in 1D spectrum. The
MQ-resonance (the expected position is indicated with a pale band) clearly shows up in the
indirectly detected data, but only in those spectra that are read out at the frequencies of
the K = 3/2 transitions.

We note that it is possible to start a zero-field NMR experiment with scalar order [30,
58], which already contains two-spin terms at time zero. Therefore, this could be turned
into a two-pulse experiment if π/6 pulses along z are used instead - since such pulses access
scalar spin-order instead of vector spin-order [30].

6.4.4 Suggested Coherence Filter

It would be desirable to selectively excite or at least detect only those coherences for
which ∆F = n, where n is a chosen coherence order. This would assist with assigning
quantum-numbers, as the largest available ∆F value depends on spin-manifold, and it would
also simplify the resulting spectra, since the number of transitions decrease rapidly with n.
Existing schemes for selective excitation [123, 124] and filtration [133] based on ∆m rely on
the fact that coherence operators in high-field have well defined symmetry with respect to
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Figure 6.8: ZF-MQ spectra of 13C2 acetic acid. (a) 2D ZF-MQ spectrum. F1 corresponds to
the indirectly detected dimension, and the 1D spectrum in Fig. 6.5b has been plotted on both
axes for reference. (b) Cuts through the 2D-spectrum in panel a. The x-axis corresponds to
F1, and each spectrum is the projection of the data around a ± 0.5 Hz slice at the designated
frequencies in the directly detected dimension (F2). The red bands indicate ± 245 Hz, the
expected frequency of the double-quantum transition. Note that for convenience the spectra
are simply evenly spaced in the vertical dimension. The top panel shows the directly detected
1D J-spectrum.

rotations about the z-axis - a high-field nth order coherence is invariant with respect to a
rotation of 2π/n about the z-axis. Meanwhile, at zero-field, transitions in general involve
changes in the total angular momentum of the state, not the projection on some axis. The
total angular momentum of a spin-state is indicated by the tensor rank of the state. But
while operator rank is conserved under free evolution at zero-field, since HJ is scalar, the
rank of a transition operator does not report on its zero-field coherence order in a unique way.
Indeed, a zero-field nth order transition operator, |F,mF 〉 〈F − n,mF | may be decomposed
into many spherical tensors [37] with ranks |F + n− F | : +1|F + F − n|. The lowest rank
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a given transition operator may contain is thus equal to ∆F and the highest is 2F − ∆F .
In order to obtain simplified spectra one could imagine a using phase-cycling scheme similar
to Spherical Tensor Analysis (STA)[134] to filter out components of rank lower than n and
higher than 2F − n, which would increase the relative intensity of n-quantum transitions.
However, dipole allowed transitions with ∆F = 0,±1 may also contain components with
ranks equal to or higher than n, so such a filtering process would therefore not suppress
allowed transitions entirely.

The same fact that prevents selective filtering of ZF-MQ coherences also prevents selective
excitation [123, 124]. Assuming that one can implement an ideal average Hamiltonian of
rank n, the propagator to second order in time would still contain all ranks from 0 to 2n, so
beyond the short time limit such a Hamiltonian would still excite the entire spectrum.

Indeed, from the point of view of spectral simplification it might be more fruitful to
use an isotropic filtration phase-cycle as described by Pileio and Levitt [135], which retains
only those signal components that are rank-0 during t1 evolution. If applied to a zero-field
experiment the resulting spectrum would consist only of those transitions for which ∆F = 0,
since only such coherence operators may contain rotationally invariant rank-0 components.
There are only two such transitions in the case of 13C2-acetic acid (at ∼118 Hz, and ∼264
Hz), so such a phase-cycle would provide an alternative route to spectral simplification.
However, in order to implement either isotropic filtering or STA one needs to be able to
effect global rotations of the entire spin system with arbitrary angles, and for a zero-field
system this remains an unsolved problem. Additionally, the application of a multi-step phase
cycle to an indirectly detected spectrum would be a practical challenge.

The result of attempted rank-selective excitation is demonstrated in Fig. 6.9a which is a
ZF-MQ spectrum of 13C2 acetic acid, but acquired using the effective excitation Hamiltonian

H̄1
DQ = (1JCH/2)(K+SA,+ +K−SA,−) + (3JCH/2)(K+SB,+ +K−SB,−), (6.2)

which is implemented using a series of DC pulses (xyȳx̄)n, where x and y denote π pulses
on carbon and the overbars denote reversals of the direction of the pulse. See Appendix 7.6
for a description of how to calculate the effect of this pulse sequence. Such a ‘double-
quantum’ Hamiltonian would excite only even orders of coherence in a high-field system.
The spectrum in Fig. 6.9a is the same kind of data as in Fig. 6.8b, but all the individual
spectra have been added together. While the n = 2 transition is successfully excited, it is
clear that no selectivity has been gained over excitation with two-pulses and a delay as in
Fig. 6.8, consistent with the argument made above.

In contrast, to demonstrate the theoretical benefits of isotropic coherence filtration Fig-
ures 6.9b-d show simulated ZF-MQ spectra resulting from the application of an isotropic-filter
phase-cycle, which averages to zero components of the coherence operators that during t1
have ranks up to 2 (b), 3 (c), and 4 (d) [135]. The largest rank supported by any coherence
operator in this spin system is 4, and consequently there is no reason to average higher rank
terms. The peak at ∼149 Hz corresponds to an F = 1/2 → F = 3/2 transition and the
corresponding coherence operator may only contain ranks 1 and 2. This peak disappears
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Figure 6.9: (a) Experimental ZF-MQ spectrum acquired using a rank-2 excitation Hamil-
tonian. (b) Simulated spectra showing the effect of a tetrahedral isotropic-filtering phase
cycle. (c) Simulated octahedral phase cycle. (d) Simulated icosahedral phase cycle.

completely when operators up to rank-2 are filtered out using a 12 step cycle. The n = 2
coherence may only contain ranks 2 and 3, and disappears when operators up to rank-3 are
averaged out using a 24 step cycle, and when operators up to rank-4 are filtered out with a 60
step cycle only the two peaks remain which correspond to ∆F = 0 transitions. While we are
not yet able to selectively filter transitions based on n for n > 0, it seems isotropic filtering
would allow spectral simplification by retaining only those transitions for which n = 0. Note
that the filtering has to be performed on the indirectly detected dimension, since only rank-1
components of the coherence operators correspond to observable magnetization.

We note in passing that, just as in high-field, the rank of a coherence operator reports
on the minimum number of correlated spins in the corresponding state. In high field this
has been used to investigate spin cluster size and perform many-body physics experiments.
The number of phase-cycle steps required to suppress a zero-field transition (plotted vs
preparation time) could similarly be used to monitor information transport in spin clusters
connected with a Heisenberg-like isotropic Hamiltonian, which is something that has proven
challenging to realize experimentally in other systems.

6.5 Conclusions

We have shown that direct detection using DC field sensors facilitates 2D zero-field NMR
correlation spectroscopy, and how such techniques simplify assignment of crowded J-spectra.
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The complete coherence transfer enabled by the isotropic zero-field Hamiltonian ensures that
cross peaks in the ZF-TOCSY spectrum are seen between all peaks belonging to the same
spin-manifold. Consequently, ZF-TOCSY may be used not only to distinguish between
different molecules, or different 13C isotopomers of the same molecule, but also to facilitate
zero-field spectral assignment of a given isotopomer by providing an easy way to determine if
two transitions are labeled with the same quantum numbers. Additionally, 2D-spectroscopy
always increases the maximum attainable spectral resolution by introducing a second spread-
ing parameter in the spectrum. In particular, the ability to resolve otherwise overlapping
peaks significantly increases the power of zero-field NMR for chemical fingerprinting, beyond
what can be obtained with the narrow linewidths associated with high homogeneity zero-field
environments.

We have also introduced the concept of multiple-quantum transitions in zero-field NMR
(ZF-MQ) and shown that such transitions may only belong to particular spin-manifolds.
Therefore, by observing which peaks correlate to a multiple-quantum transition, one can
assign quantum numbers to those peaks. Finally, we have suggested a possible means to filter
zero-field coherences based on ∆F , but this remains an outstanding experimental challenge.
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Chapter 7

Homonuclear J-Coupling
Spectroscopy Via 13C-Decoupling

We present in this chapter a two-dimensional method for obtaining 13C-decoupled, 1H-
coupled, Nuclear Magnetic Resonance (NMR) spectra in zero magnetic field using coherent
spin-decoupling. The result is a spectrum determined only by the proton-proton J-coupling
network. Detection of NMR signals in zero magnetic field requires at least two different
nuclear spin species but the pure proton J-spectrum is independent of isotopomer. Thus,
the ability to acquire such spectra may simplify spectra and thereby improve the analytical
capabilities of zero-field NMR. The protocol does not rely on a difference in Larmor frequency
between the coupled nuclei, allowing for the direct determination of J-coupling constants
between chemically equivalent spins. We obtain the 13C-decoupled zero-field spectrum of
[1−13C]-propionic acid and identify conserved quantum numbers governing the appearance
of cross peaks in the two-dimensional spectrum.

The material in this chapter has previously been published under the title

• 13C-Decoupled J-coupling Spectroscopy Using Two-Dimensional Nuclear Magnetic Res-
onance at Zero-Field by Sjolander, Tayler, Kentner, Budker, and Pines [2].



CHAPTER 7. HOMONUCLEAR J-COUPLING SPECTROSCOPY VIA
13C-DECOUPLING 104

7.1 Background and Motivation

As we saw in Section 2.3 one of the key requirements for obtaining J-spectra is the
existence of couplings between more than one spin species in the molecule of interest, for
example 13C and 1H. If a coupled spin system comprises only one type of nucleus (e.g. all
1H spins) the Hamiltonian commutes with the operator for the total magnetization of the
system, which therefore must be time-independent. Consequently, homonuclear J-spectra
at zero-field have until now been unavailable.

In this chapter, we introduce an indirect two-dimensional approach for obtaining 13C-
decoupled 1H-coupled J-spectra in ZULF NMR. The presence of a secondary spin species
in the molecule, e.g. 13C, is still required, but it is made ”invisible” by averaging out
its couplings to the other nuclei while the pure proton J-spectrum is encoded. This is
termed homonuclear J-spectroscopy. Such spectra are of interest in ZULF NMR, since the J-
spectrum corresponding to isotopomers of the same molecule are entirely different [48]. While
a 13C, or some other heteronucleus, is necessary in order to detect J-spectra, the proton J-
spectrum is independent of the location of the label. Homonuclear J-spectroscopy therefore
offers significant practical advantages for the study of molecules that are not isotopically
enriched and thus are made up of mixtures of isotopomers. Decoupling of heteronuclear
interactions also simplifies crowded ZULF-NMR spectra, and allows accurate determination
of homonuclear J-couplings in the presence of heteronuclear couplings even if they are of
similar magnitude. With 2D detection we retain information on the location of the 13C label.
We also note that in zero-field all spins have zero Larmor frequency, thus our method allows
direct determination of J-coupling constants between chemically equivalent protons, which
is a problem that has attracted interest over the past years [136, 137]. Indeed our protocol
should work for strongly coupled systems in high-field as well, though without the advantage
in resolution offered by ZULF.

7.2 Pulses and Decoupling

While the methods for spin-control control introduced in Chapters 4 and 5 allow for added
selectivity and flexibility DC pulses remain the fastest way to manipulate spins at zero field.
In this dissertation we achieve 30 µs pulse times for a π rotation on carbon-13 using DC
pulses, while both the resonant pulses in Chapter 4 and the adiabatic remagnetization pulses
in Chapter 5 have durations of 0.1 to 1 s. This matters when trying to implement coherent
averaging protocols like the ones introduced here. As shown in Chapter 8 the success of
average Hamiltonian theory in describing the evolution over a cyclic pulse sequence depends
on the internal timescale of the Hamiltonian relative to the cycle time. The cycle time in
turn depends on how fast the pulses can rotate the spins. Since DC pulses enable faster
spin manipulations, they will also result in more efficient spin-decoupling, as well as the
successful decoupling of larger interactions, assuming a suitable pulse sequence can be built
from completely non-selective broad-band pulses.
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Remember that during a DC pulse the spin system is primarily governed by the Hamil-
tonian

Hp =
∑
i

γiB · Ii, (7.1)

where B is the pulse field, γi is the gyromagnetic ratio of spin i, and the sum runs over
all the spins in the sample. The J-coupling terms have been ignored, as for the pulse
fields used in this work we have |γiB| >> |J |. A DC pulse rotates all spins in the sample
proportionally to their gyromagnetic ratios. For a 1H/13C system limited isotope selectivity
can be achieved by exploiting the particular gyromagnetic ratios involved, γH/γC ≈ 3.98,
meaning a π pulse on 13C is close to an identity operation on 1H. Selective inversion of
13C spins is a common method for preparing evolving spin states in ZULF NMR [44]. In
this work we also use sequences built from such quasi-selective 13C π rotations to perform
coherent spin-decoupling.

The pulse sequence (τ/2 − x − τ − y − τ − x − τ − y − τ/2)n ≡XY4, where x and y
denote π pulses along the corresponding axes and τ is the pulse spacing, averages to zero
terms in the Hamiltonian linear in the spin-operator for spins properly rotated by the pulses
[138]. The J-coupling Hamiltonian, HIS = 2πJI ·S, where I and S are angular momentum
operators, is linear in each coupled spin. Thus, to first order in average Hamiltonian theory
[78] application of XY4 averages 1H/13C J-couplings to zero, giving H̄1

IS = 0 [139–141]. This
assumes the pulse angles are chosen to be π pulses on 13C.

However, the fact that the gyromagnetic ratios of 1H and 13C are not integer multiples
of one another introduces a systematic flip angle error to each pulse. To deal with this, as
well as other issues of experimental implementation, we use a modified version of XY4, to
be presented in a forthcoming publication

(xyx̄ȳ x̄ȳxy x̄yxȳ xȳx̄y ȳxyx̄ yx̄ȳx ȳx̄yx yxȳx̄)n. (7.2)

The overbar indicates reversal of the direction of the pulse and all pulses have the same
duration and spacing. The four-pulse sub-cycles in (7.2) are separated for clarity.

7.3 Pulse Sequence for Homonuclear J-Spectroscopy

Our pulse sequence for detection of homonuclear J-spectra in zero-field consists of two
preparatory steps: a single DC pulse to initialize zero-field evolution and a mixing period
during which the system is allowed to evolve freely in order to build up the desired coherences.
The preparation steps are followed by a period of spin-decoupling for a variable time (t1)
and finally free evolution during which time the signal is detected (t2). Data are collected
as a function of t1 and t2 and subjected to a 2D Fast Fourier Transform. Current ZULF
hardware necessitates the use of 2D-detection due to the large (∼30 ms) dead time after
each pulse (See Section 3.1.5). The protocol is summarized in Fig. 7.1.

We will now outline the spin dynamics during each stage of the pulse sequence in turn,
from the point of view of a general carbon/proton spin system. The liquid-state zero-field
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Figure 7.1: Schematic representation of the acquisition protocol presented in the text with
the Hamiltonian governing the spin system evolution at each stage identified.

spin Hamiltonian may be written in terms of heteronuclear and homonuclear parts as

HJ = 2π
∑
i,n

JinIi ·Sn + 2π
∑
i>j

JijIi ·Ij

+ 2π
∑
n>m

JnmSn ·Sm,

= HIS +HII +HSS,

(7.3)

where the Ii and Sn are angular momentum operators for the proton and carbon spins
respectively. The Jin are heteronuclear coupling constants, while the Jij and Jnm describe the
homonuclear couplings. The goal of homonuclear J-spectroscopy is to observe the spectrum
corresponding only to the average Hamiltonian H̄1

J = HII +HSS, which can be implemented
by means of (7.2). For the important case of a hydrocarbon with a single 13C label, HSS is
zero and the homonuclear part is reflective only of the proton-proton J-coupling network,
HII . The goal of the preparatory steps in the sequence in Fig. 7.1 is to generate a density
operator which is non-stationary not just with respect to HJ , but also the spin decoupled
Hamiltonian H̄1

J .
The experiment must start with a spin-polarized state. In general there may be two

kinds of spin order present at the start of a liquid state ZULF experiment, scalar order and
vector order [30, 49]. Magnetic field pulses along the detector axis converts scalar order
into observable coherences, pulses transverse to the detector axis convert vector order into
coherences [30]. We consider the vector order along the z-axis originating in a pre-polarizing
permanent magnet and initiate zero-field evolution by inverting the carbon spin polarization
via a transverse DC magnetic-field pulse, calibrated to effect a π rotation on 13C and a
∼4π rotation on 1H. After the pulse the part of the density operator containing observable
coherences is

ρ′(0) ∝ (
∑
i

Ii,z −
∑
n

Sn,z). (7.4)

We note that vector spin order may not be converted into a spin state that evolves under
H̄1
J by means of a magnetic field pulse since the negligibly small chemical shifts make the

protons equivalent during the application of the pulse,[
e−iHptρ′(0)eiHpt, H̄1

J

]
= 0. (7.5)
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However, if the protons are magnetically inequivalent, meaning their couplings to the 13C
nucleus are different, then evolution under HIS generates the desired coherences. In effect
the 13C nucleus is used to perform a selective pulse [142], affecting the two groups of protons
differently.

ρ′′(0) = e−iHJ tmρ′(0)eiHJ tm , (7.6)[
ρ′′(0), H̄1

J

]
6= 0. (7.7)

Following the mixing period, tm, spin decoupling is turned on and the system is allowed to
build up phase for a time t1 while evolving purely under H̄1

J

ρ′′(t1) = e−iH̄1
J t1ρ′′(0)eiH̄1

J t1 . (7.8)

The signal is acquired by measuring the total z-magnetization Mz as a function of free
evolution time, t2

S(t1, t2) = Tr
{
M †

z e−iHJ t2ρ′′(t1)eiHJ t2
}
, (7.9)

and the 2D Fourier transform of the data gives the spectrum corresponding to H̄1
J , termed

the homonuclear J-spectrum, along the indirect dimension F1.

7.4 Homonuclear J-Spectroscopy

To demonstrate the technique we used a home-built ZULF NMR spectrometer based on
a 87Rb vapor-cell magnetometer (see Chapter 3) and a sample of [1−13C]-propionic acid.
Ignoring the hydroxyl proton, which exchanges rapidly on the J-coupling timescale, the
atoms in this molecule comprise a spin system of two magnetically inequivalent groups of
protons coupled to a single carbon-13, see Fig. 7.2. The J-coupling Hamiltonian may be
written as

HJ/2π = 2JCHK · S + 3JCHL · S + 3JHHK ·L, (7.10)

where K and L are the total angular momentum operators for the two proton groups and
S corresponds to the carbon spin. The sequence (7.2) generates the average Hamiltonian
H̄1
J = 2π 3JHHK ·L (See Appendix 7.6).

The data are conveniently analyzed in terms of the quantum numbers K and L, corre-
sponding to the eigenvalues of the operators K2 and L2 respectively. These quantum num-
bers are conserved throughout the entire acquisition protocol, since both operators commute
with all of HJ , Hp, and H̄1

J . This follows from K and L both being the angular momenta
of magnetically equivalent groups of protons.

The non-decoupled zero-field J-spectrum of [1−13C]-propionic acid is presented in Fig. 7.3
with the corresponding energy level diagram shown in Fig. 7.2a. The transitions predicted by
exact diagonalization of HJ were fit in the least-squares sense to the measured spectrum, giv-
ing the following 99.9% confidence levels for the J-coupling constants: 2JCH = -7.084±0.002
Hz, 3JCH = 5.497±0.003 Hz, and 3JHH = 7.563±0.006 Hz, see Section 3.5
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Figure 7.2: (a) Energy level diagram for propionic acid. (b) Effective energy level diagram
during the decoupling. In both cases the states have been labeled with the quantum number
for total angular momentum of the spin system, F . Allowed transitions have ∆F = ±1, 0
and are marked with arrows. In addition the angular momentum of groups of equivalent
spins is conserved, so the transitions are also grouped according to their K and L values.
The color coding is used in later figures. Additional degeneracies have been suppressed for
clarity.

We recorded the 13C-decoupled, 1H-coupled J-spectrum of propionic acid following the
protocol outlined in Fig. 7.1. The numerically optimized mixing time was 350 ms. After the
preparation steps the carbon spin was decoupled from the rest of spin system using (7.2)
for a time t1 ranging from 0 to 1.8 s, in steps of 17.6 ms. Each pulse had a duration of 200
us and the delay between pulses was 2.0 ms. After the decoupling period the signal was
detected under free evolution for 10 s.

The Fourier-transformed 2D dataset is shown in Fig. 7.4 with the spectrum corresponding
to the proton-proton J-couplings along the carbon decoupled dimension, F1, and the full
J-spectrum along F2. A 1D 13C-decoupled spectrum was reconstructed by projecting all
data points in the shaded red region onto F1. The result is plotted in black in Fig. 7.4
and reveals the first example of a purely homonuclear J-spectrum. Following the work in
Ref. [48] the characteristic frequencies of H̄1

J = 2π 3JHHK ·L can be readily evaluated. We
have K = {0, 1}(two protons) and L = {1/2, 3/2}(three protons) and the spectrum should
consist of one peak at 3/2 3JHH and one peak at 5/2 3JHH. Fitting the transitions predicted by
H̄1
j to the reconstructed 1D 13C-decoupled spectrum gives 3JHH = 7.61±0.07 Hz, consistent

with the value obtained from the full 1D J-spectrum at this level of confidence. Small shifts
may result from incomplete decoupling. The individual peak positions were determined to
be 11.4±0.7 Hz and 19.0±0.6 Hz. The 13C-decoupled spectrum consists of two distinct lines,
described by a single parameter, as opposed to 14+ lines described by three parameters for
the 13C-coupled spectrum in Fig. 7.3. The decoupling thus significantly simplifies fitting and
interpretation. In the context of chemical analysis, assuming spins other than 13C and 1H
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Figure 7.3: Zero-field NMR J-spectrum for [1−13C]-propionic acid. The superposed stick
spectrum corresponds to diagonalization of HJ , using numerically optimized values for the
coupling constants. Each transition has been assigned K and L quantum numbers and color
coded according to the scheme in the energy level diagram in Fig. 7.2. The spectrum is the
sum of 2500 transients and the magnitude of each transient was ∼30 fT.

can be ruled out, the 13C-decoupled spectrum unambiguously corresponds to an ethyl group.
In addition, the exact value of the coupling constant is a sensitive reporter on both the intra-
and inter- molecular chemical environment [143, 144].

The location of the cross peaks may be explained by comparing the quantum numbers for
each transition during the decoupling with those in a free molecule. Inspecting the energy
level diagrams in Fig. 7.2 we see that only eigenstates with K = 1 may give cross peaks in
the 2D spectrum as there are no transitions with K = 0 in the energy level diagram for H̄1

J .
We also note that peaks with L = 1/2 may only give cross peaks at 3/2 3JHH, while peaks
with L = 3/2 may give cross peaks at both 3/2 3JHH and 5/2 3JHH.

There are strong peaks at 5.47 Hz and 10.94 Hz in the 1D propionic-acid spectrum
assigned to K = 0. Consistent with the argument made above, these peaks give no discernible
cross peaks in the 2D spectrum. The rest of the spectrum also conforms to the expected
behavior. For example the peak at 5.76 Hz is assigned to K = 1, L = 3/2, and may
therefore give cross peaks at both 3/2 3JHH, and 5/2 3JHH in the decoupled dimension. These
peaks are partially overlapping in the 1D spectrum, but the 5.76 Hz peak gives strong cross
peaks, thereby simplifying assignment. Similarly the two peaks at 13.05 Hz and 13.75 Hz are
partially overlapping in the 1D spectrum but are clearly distinct in the correlation spectrum,
as the cross peaks occur on different sides of 0 in F1.

We also note the presence of vertical streaks, also known as F1 noise, in the data at 8.65
Hz and 10.9 Hz. The appearance of these features means their phase is uncorrelated with
the evolution period t1, implying they do not correspond to spin dynamics. We note that
a climate control fan causes low-amplitude building vibrations at 10.9 Hz, which are picked
up by our detector. This feature becomes negligible when enough scans are taken, as in Fig.
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Figure 7.4: Experimental 2D detected zero-field NMR spectrum of [1−13C]-propionic acid,
recorded using the pulse sequence in Fig. 7.1. F2 corresponds to the full zero-field J-spectrum
and F1 to the 1H-only J-spectrum. In F1 there are two peaks at 3/2 3JHH=11.4±0.7 Hz and
5/2 3JHH=19.0±0.6 Hz. The stick spectra are the results of numerical diagonalization of HJ

(F2) and H̄1
J (F1)

7.3, but this is not feasible in a 2D-detected experiment. We do not know the cause of the
feature at 8.65 Hz.

7.5 Conclusions

In conclusion, this chapter describes the first demonstration of heteronuclear spin-decoupling
in ZULF NMR and we obtained the first isotopically pure J-spectrum by introducing the
concept of homonuclear J-spectroscopy in zero-field. The two-dimensional scheme used for
detection helps with spectral assignment and circumvents the dead time imposed by current
ZULF detection hardware.
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The proton-only J-spectrum of [1−13C]-propionic acid is significantly simpler to interpret
than the full J-spectrum, while still providing the same chemical information.This demon-
strates the promise of our approach for the analysis of more complicated molecules. Moving
forward, we expect 13C-decoupling to become an important part of ZULF NMR, as it pro-
vides chemically distinct spectra no matter which part of the molecule is 13C labeled. This
opens the door for unambiguous ZULF NMR of molecules at natural isotopic abundance,
provided the requisite sensitivity could be attained.
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7.6 Appendix I: Calculation of H̄1
J

In the limit of delta function pulses the first order average Hamiltonian [78] during the
application of a cyclic pulse sequence can be calculated as

H̄1 =
n∑
i=1

ti
tc
H̃i, (7.11)

where ti is the ith pulse spacing, tc is the cycle time, and H̃i is the Hamiltonian in the so
called toggling frame

H̃i = P †1P
†
2 ...P

†
i HPi...P2P1. (7.12)

Pi is the propagator for the ith pulse. In this work we wish to average to zero couplings
involving the S spin, this is accomplished by means of a pulse sequence based on the following
sub cycle

Px − τ − Py − τ − Px − τ − Py − τ, (7.13)

where τ is the pulse spacing. Px/y are propagators for DC pulses that perform a π rotation
on 13C. They are defined as Px/y = e−i(πSx/y+4πKx/y+4πLx/y). Using this definition the toggling
frame Hamiltonians in Eq. (7.12) can be evaluated for the case of HJ

H1/2π = 2JCH(KxSx −KySy −KzSz) + 3JCH(LxSx − LySy − LzSz)
+ 3JHH(KxLx +KyLy +KzLz)

H2/2π = 2JCH(−KxSx −KySy +KzSz) + 3JCH(−LxSx − LySy + LzSz)

+ 3JHH(KxLx +KyLy +KzLz)

H3/2π = 2JCH(−KxSx +KySy −KzSz) + 3JCH(−LxSx + LySy − LzSz)
+ 3JHH(KxLx +KyLy +KzLz)

H4/2π = 2JCH(KxSx +KySy +KzSz) + 3JCH(LxSx + LySy + LzSz)

+ 3JHH(KxLx +KyLy +KzLz).

Given tc = 4τ , Eq. (7.11) evaluates to H̄1
J = 2π 3JHHK ·L.

The same procedure can be used to show that the pulse sequence

Px − τ − Py − τ − P †y − τ − P †x − τ, (7.14)

which is used in Chapter 6, turns JI · S into (J/2)(I+S+ + I−S−).
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Chapter 8

Rank Selective Decoupling

Here we expand the decoupling capabilities introduced in the previous chapter. We
demonstrate a method enabling the acquisition of zero-field J-spectra even in the presence
of magnetic fields. 1H and 13C spins may simultaneously be decoupled from an external
magnetic field while persevering their mutual J-coupling by using pulse sequences that target
the interaction rank rather than individual spin species. We also demonstrate an improved
version of the spin-decoupling experiment introduced in Chapter 7 and use improved pulsing
hardware to obtain homonuclear J-spectra of molecules with 10x larger J-couplings than
achieved in Chapter 7.

The material in this chapter is being prepared for publication under the title

• Rank Selective Decoupling of Heteronuclear Systems in Zero-Field Nuclear Magnetic
Resonance by Sjolander, Tayler, Ajoy, Budker, and Pines [145].
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8.1 Background and Motivation

Selective decoupling of spin interactions has been one of the premier tools of Nuclear
Magnetic Resonance (NMR) spectroscopy for decades. For example almost all high-field
heteronuclear spectra are taken with broadband proton decoupling, magic angle spinning to
decouple magnetic dipole-dipole interactions forms the basis of most solid state techniques,
while Carr-Purcell trains are relied on to deal with field inhomogeneities. Additionally, over
the past decade dynamical decoupling has attracted interest in the quantum information
community, where decoupling of system-environment interactions is used to extend coherence
times.

In this chapter we demonstrate coherent control of NMR systems in the zero to ultra-low
field regime, where interactions with external fields are weaker than the spin-spin couplings.
Under such conditions simplifications often used in high-field NMR no longer apply: in-
teractions are not truncated with respect to the applied field axis (the so called secular
approximation does not hold), meaning all components of the interaction tensors must be
considered. In addition, as the field approaches zero, the spectral width becomes small
with respect to the bandwidth of fast control pulses - resulting in the loss of spin-species
selectivity.

To take full advantage of the resolution afforded by zero-field J-spectroscopy one re-
quires residual magnetic fields smaller than the lifetime limited resonance linewidths. This
is generally achieved using several layers of mu-metal shielding plus a ferrite layer as well as
additional shimming of the residual field. This puts limitations on the size (the inner most
shield need to be a certain distance removed from the cell in order to to limit Johnson noise,
as well as from the coils, to prevent the shield from becoming permanently magnetized), and
cost (mu-metal is expensive) of the instrumentation. Recently ultralow and intermediate
field (2πJ ≈ γB) NMR has been performed using unshielded magnetometers for detection
[146]. The ability to decouple the residual fields using electromagnetic coils while retaining
isotropic heteronuclear J-couplings would enable such instrumentation to be used for high
resolution zero-field J-spectroscopy, thereby further reducing the instrumentation foot-print
of zero-field NMR. In this chapter we present such a method for decoupling a heteronuclear
nonsecular NMR system from residual fields, while simultaneously detecting true zero-field
J-spectra. The inability to independently manipulate protons and carbons using pulses at
zero-field puts stringent conditions on the allowed flip-angles.

We already demonstrated coherent decoupling of spin-spin interaction in Chapter 7. How-
ever technical limitations (in particular fairly long pulse-times) ensured that the technique
could only be applied to molecules with J-couplings smaller than 10 Hz. In this chapter we
demonstrate how improved pulsing hardware (described in Section 3.4.3) enables homonu-
clear J-spectroscopy of molecules with 130 Hz J-couplings. We will also briefly discuss some
features of the pulse sequence which makes it useful specifically for J-coupling.
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8.2 Methods and Theory

Average Hamiltonian Theory The work in this paper is based on Average Hamiltonian
Theory (AHT) [78]. In AHT the effect of a pulse sequences is analyzed by calculating an
effective, or ‘average’ Hamiltonian, denoted H̄, which describes evolution of the system across
a full sequence of n pulses with the property P1P2...Pn = I, where Pi is the propagator for
the ith pulse. Such a sequence is termed a ‘cycle’ and it is repeated for as long as evolution
under H̄ is desired. To calculate the average Hamiltonian associated with a given pulse
sequence the Hamiltonian is written in the so-called toggling frame

H̃i = P †1P
†
2 ...P

†
i HPi...P2P1, (8.1)

where the dagger denotes the complex conjugate transpose. Using the Magnus expansion,
in the limit of delta function pulses, the time independent first order average Hamiltonian is
then simply the time average of the toggling frame Hamiltonians across the cycle period.

H̄1 =
n∑
i=1

ti
tc
H̃i, (8.2)

where tc =
∑

i ti is the total cycle time and ti is the time between pulse Pi and Pi+1. The
nth order correction to this expression depends on tc to the nth power, making it essential
that tc is short compared to the time scale of the interaction being averaged. In practice ti
is limited by the duration of the pulses, tp, which in turn depends on the hardware used,
since for delta function pulses we require ti >> tp. Since this implies that we need tp to be
as short as possible it precludes using the relatively slow selective pulse methods introduced
in Chapters 4 and 5. Instead we will be working with DC pulses, see Section 2.3.3. The
Hamiltonian during such a pulse is well approximated by

HP = Bα

N∑
i

γiIα,i, (8.3)

where α is the direction of the pulse and we have assumed that γBp >> J for all J in the
spin-system. If the ith pulse is along the α axis we denote this

Pi = e−2πiHPitp = e−2πiBα
∑N
i γiIα,itp . (8.4)

Isotropic Scaling In this section we aim to introduce the unacquainted reader to the
theory of isotropic scaling as developed by Llor et al. [140] in Refs [140, 141]. The theory
allows simplified design of pulse sequences that generate average Hamiltonians which simply
multiply the original Hamiltonian with a constant, without introducing any mixing between
x, y, and z terms. This is very useful when designing pulse sequences for zero-field NMR
since the spherical symmetry means that there is no truncation with respect to an external
axis and all components of the interaction tensors must be considered.
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In the following analysis an arbitrary pulse sequence is defined by the axis and angle of
the set of rotation superoperators R̂i(ni, ωi) acting on H throughout the sequence. In Hilbert
space the action of R̂i is calculated as R̂i(ni, ωi)H = P †1P

†
2 ...P

†
i HPi...P2P1. We denote the

set {(ni, ωi)} a configuration trajectory. Such a trajectory may be visualized by considering
a sphere of radius π. Each point (ni, ωi) on the trajectory corresponds to a point somewhere
in this sphere. We will term the space of points in this sphere configuration space. The polar
angles of a given point are given by the vector ni and the distance from the origin is given
by the rotation angle ωi. For example the poles of the sphere correspond to R̂i(z,±pi). This
representation provides a useful way of analyzing the effect of pulse sequences in terms of
the rotational symmetry properties of different terms in the Hamiltonian, as we shall see.

Since we are dealing with the action of the pulses correspond to rotations in spin space it is
convenient to decompose the Hamiltonian in terms of irreducible tensors where the rotational
dependence of different interactions is made explicit in the rank of the corresponding tensor.

H =
2∑
l=0

l∑
m=−l

(−1)mAl−mTlm, (8.5)

Equation (8.5) is a sum over tensor scalar products corresponding to the different ranks
of spin interactions considered, and Al,m and Tl,m are irreducible tensors representing the
spatial and spin dependencies of the Hamiltonian respectively. We note that in the zero-field
regime, there is no truncation of ‘nonsecular’ (m 6= 0) terms in these interaction tensors and
they must all be considered equally. The goal of the coherent averaging schemes presented
here is to establish sufficient (but not necessary) conditions for which the first order average
Hamiltonian H̄1 is a scaled version of H, without mixing terms of different l or m. Thus we
want the following to hold:

H̄1 =
2∑
l=0

l∑
m=−l

(−1)mAl−mklTlm

=
2∑
l=0

klH
l, (8.6)

where we have made clear that the scaling factor, kl may depend on rank but nothing
else. Then sequences can be designed for which kl < 0 for some interaction of interest
(time reversal sequences), allowing spin echoes or kl = 0 (dynamical decoupling sequences).
Further, since the scaling is rank selective one may for example scale to zero first rank
tensors, in order to observe the spectrum of only the zeroth or second rank interactions.
Scalar interactions (such as zero-field J-couplings) correspond to rank-0 Hamiltonians, and
are thus always invariant under an isotropic pulse sequence.

We now want to establish general conditions on the {R̂i(ni, ωi)} for which Eq. (8.6) is
guaranteed to hold. The rotation of a spherical tensor operator Tlm by R̂(n, ω) is given by
the appropriate rank-l Wigner matrix, Dl(ni, ωi). Using Equations (8.2) and (8.5) we can
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write

H̄1 =
n∑
i=0

2∑
l=0

l∑
m=−l

ti
tc

(−1)mAl−mD
l(ni, ωi)Tlm, (8.7)

where Dl(ni, ωi) is the representation of the rotation operator on the total angular momen-
tum basis and we have made explicit the fact that rotations do not mix irreducible tensors
of different rank. The result of multiplying Tlm by Dl is given by Eq. (2.60) so Eq. (8.7)
becomes

H̄1 =
n∑
i=0

2∑
l=0

l∑
m=−l

l∑
m′=−l

ti
tc

(−1)mAl−mD
l
m′m(ni, ωi)Tlm′ . (8.8)

We see that in general a sequence of spin rotations will mix the x y and z components of the
spin operators. In order to satisfy Eq. (8.6) for all possible spatial coefficients Alm we then
need the following relation to hold for the matrix elements of Dl(ni, ωi)

n∑
i=0

ti
tc
Dl
mm′(ni, ωi) = klδmm′ , (8.9)

which must hold independently for all ranks of interest. It turns out that solutions to
this equation can be found by considering the symmetry of the points on the configuration
trajectory {(ni, ωi)}. To see this we expand the matrix elements of Dl in terms of functions
with known symmetry properties, the spherical harmonics Yλµ [37]

Dl
mm′(ni, ωi) =

2l∑
λ=0

λ∑
µ=−λ

(−i)λ2λ+ 1

2l + 1
χlλ(ωi)C

lm
lm′λµ

√
4π

2λ+ 1
Yλµ(ni), (8.10)

where the Yλµ(ni) are evaluated at the polar angles of the rotation axis vectors, λ is the rank,
and µ is the m-value. Note that the maximum value of λ is twice the rank of Dl. Inserting
this expansion into Eq. (8.9), using the selection rules for the Clebsh-Gordan coefficients,
and canceling constants gives the following conditions for an isotropic pulse sequence

n∑
i=0

χlλ(ωi)Yλµ(ni) = 0, (8.11)

kl =
n∑
i=0

ti
tc
χl(ωi), (8.12)

where χl(ωi) is the trace of the rank-l Wigner matrix, and the χlλ(ωi) are so-called generalized
characters [37].

Equation (8.11) implies that if the configuration rotation angle is constant (i.e. all points
on the trajectory have the same distance from the origin) then the pulse sequence is guar-
anteed to isotropically scale the Hamiltonian if spherical harmonics up to twice the rank
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of the interaction considered vanish when averaged over the distribution. Symmetries of
distributions over which spherical harmonics of a given rank sum to zero are well known.
For example a tetrahedral distribution of points ensures that the rank-1 and rank-2 spherical
harmonics average to zero, while an icosahedral distribution averages up to rank-4 spheri-
cal harmonics to zero. Thus we can talk about tetrahedral sequences (isotropic for rank-1
Hamiltonians), and icosahedral sequences (isotropic up to rank-2 Hamiltonians) etc.

Equation (8.12) shows that the degree of the scaling induced by a given isotropic sequence
is determined by the average of the traces of the rotation superoperators that take H into
the toggling frame. In other words the scaling is determined by the average distance from
the origin of the trajectory {(ni, ωi)}.

8.3 Pulse Sequence for Rank-1 Decoupled

J-Spectroscopy

In this Section we will derive a pulse sequence for decoupling a 1H-13C system from
external magnetic fields, while maintaining an isotropic, zero-field like, J-coupling between
the spins. Any isotropic sequence, i.e. a sequence that conforms to Eq. (8.11), will leave the
J-coupling unchanged. This is easily seen because HJ is a scalar operator and commutes with
all rotations. The Zeeman Hamiltonian is linear in each spin species meaning it corresponds
to a rank-1 interaction and we therefore seek a pulse sequence that generates a configuration
trajectory that has at least tetrahedral symmetry. Further, since we wish to remove the
effect of the field on the spin evolution, i.e. we seek a decoupling sequence, k1 should be 0.
The character of a rank-1 Wigner matrix is χ1(ω) = 1 + 2 cos(ω) which evaluates to zero
for ω = 2π/3. This means that the sequence should have an average ωi (distance from the
origin in configuration space) of 2π/3 according to Eq. (8.12).

The theory of isotropic scaling as developed in the preceding Section presumes that each
pulse Pi corresponds to a rotation of the total Hamiltonian. However, for a heteronuclear
system at zero field this is in general not true, different spins rotate at different rates pro-
portionally to their gyromagnetic ratios. But, as has been noted several times throughout
this dissertation, for protons and carbon-13 (So far the most commonly used spin pair in
zero-field NMR) γH/γC ≈ 4. This means that a 2π/3 rotation on carbon corresponds to a
8π/3 = 2π/3 rotation on hydrogen. Thus any pulse sequence that both satisfies Eq. (8.11)
and is made up of only 2π/3 pulses (on carbon) will be isotropic for any 13C-1H spin-system.
This suggests a straightforward way of constructing a pulse sequence that removes the effect
of residual magnetic fields on both carbons and protons while leaving the isotropic J-coupling
between them intact;

We first note that R̂(x, 2π
3

)×R̂(x, 2π
3

) = R̂(x,−2π
3

) and R̂(x, 2π
3

)×R̂(x, 2π
3

)×R̂(x, 2π
3

) = 1.
Three successive 2π/3 rotations around the x-axis therefore generates a configuration trajec-
tory of

{
(x, 2π

3
), (−x, 2π

3
), (0, 0)

}
, which traces out a line in configuration space. Two more

lines at right angles to the first one makes an octahedron (which has higher than tetrahedral
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Figure 8.1: Illustration of the 13C-1H rank-1 decoupling sequence presented in the text. The
sphere represents the space of possible rotations. The red dots are the rotations R̂i(ni, ωi)
bringing the Hamiltonian into the toggling frame defined by Eq. (8.1) after each pulse in
sequence A. The blue line is drawn to guide the eye to the tetrahedral symmetry of the
sequence.

symmetry)
{

(x, 2π
3

), (−x, 2π
3

), (0, 0), (y, 2π
3

), (−y, 2π
3

), (0, 0), (z, 2π
3

), (−z, 2π
3

), (0, 0)
}

. Such a
configuration trajectory could be generated by 3 successive 2π/3 rotations about the x-axis,
followed by three around y and finally z. However, in order to effect decoupling we want the
average rotation angle (i.e. the distance from the origin) of the trajectory to be 2π/3. Con-
veniently, the vertices of the octahedron are already located at ω = 2π/3 by construction,
meaning all we need to do is to drop the terms corresponding to the (0,0) configurations
from the average in Eq. (8.2). This is easily done by not allowing any free evolution between
the pulses that take the trajectory from one line to the next, letting ti → 0 between those
pulses. A possible pulse sequence that would generate such a trajectory, assuming delta
function pulses, is

x− (τ/2− x− τ − xy − τ − y − τ − yz − τ − z − τ − zx− τ/2)n − x̄.

We will call this pulse sequence A, the trajectory is shown graphically in Fig. 8.1. Since A
generates a configuration trajectory that conforms to the conditions set out in Eqs. (8.11)
and (8.12) the corresponding first order average Hamiltonian will have k1 = 0 and k0 = 1.
i.e. terms linear in the spin operators are averaged to zero, while scalar couplings remain
unchanged. Second rank bilinear terms, such as those arising from the magnetic dipole-
dipole interaction are not guaranteed to be scaled in any sensible way by this sequence, since
an octahedral distribution of points does not average a fourth rank spherical harmonic to
zero, c.f. Eq. (8.11).

8.3.1 Error Correction

The preceding arguments presume idealized, infinitely short pulses, which is not borne out
in practice. The first point to note is that γH/γC ≈ 3.97 which means that even a perfectly
calibrated 2π/3 pulse on 13C will result in a ∼ 7.94π/3 pulse on 1H, and of course, real pulses
are not going to be perfectly calibrated. Second, real pulses necessarily have finite duration
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which lead to higher order corrections to the average Hamiltonian. In addition, finite pulse
lengths change the k0 scaling factor even in first order, as we shall see. These effects all have
to be taken into account in order to design an effective sequence.

Flip Angle Errors To deal with amplitude errors and the slight mismatch in gyromagnetic
ratios we slightly modify the trajectory by replacing the α pulses by 2ᾱ giving

x− (τ/2− 2x̄− τ − xy − τ − 2ȳ − τ − yz − τ − 2z̄ − τ − zx− τ/2)n − x̄,

where the over-bar denotes a reversal of the direction of the pulse. In first order this modifi-
cation eliminates both amplitude errors and errors due to the gyromagnetic ratio mismatch.
This can be seen by noting that in the limit of τ → 0 each 2ᾱ pulse is sandwiched by an α
pulse which perfectly cancels the pulse evolution, assuming complete phase-control. The oc-
tahedral symmetry of the trajectory is retained and the distance from the origin is still 2π/3.
Second order corrections to the average Hamiltonian arising from finite τ can be corrected
for as usual using an anti-palindromic expansion [39].

Non-zero Pulse Widths The 13C and 1H spin-vectors are not collinear during the pulses,
even if the outcome of the rotation is the same for both spin-species. This means that non-
zero pulse lengths may change the effective couplings between protons and carbons. Here
we evaluate this effect.

The toggling frame Hamiltonian during the ith pulse of a cycle is given by

H̃Pi(t) = P †1P
†
2 ...e

2πiHPitHe−2πiHPit...P2P1, (8.13)

and the contribution to the average Hamiltonian from evolution during the pulse is to first
order [147, 148]

H̄1
Pi =

1

tp

∫ tp

0

H̃Pi(t) dt . (8.14)

Let the 13C rotation angle be θ such that BγCt = θ. Then the proton rotation angle is
θH ≈ 4θ. We can now calculate the effect of a pulse along the x-axis on the J-coupling as

H̄1
P =

∫ 2π/3

0

e2π(4θKx+θSx)K · Se−2π(4θKx+θSx) dθ (8.15)

= KxSx +

∫ 2π/3

0

[
(cos(4θ)Ky + sin(4θ)Kz)(cos(θ)Sy + sin(θ)Sz)

+ (cos(4θ)Kz − sin(4θ)Ky)(cos(θ)Sz − sin(θ)Sy)
]
dθ (8.16)

= KxSx, (8.17)

So for a 2π/3 pulse on a 1H-13C system the components of the J-coupling that are not parallel
to the pulse average to zero, while the component parallel to the pulse remain unchanged.
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The integral goes to zero for a 4π/3 pulse as well. It follows that if the duration of the pulses
is non-zero, with length tp, the evolution under each pulse along the α direction will give
a contribution to H̄1 of (tp/tc)KαSα, where tc is the total cycle time including the pulses.
Since the sequence A’ contains three pulses in each direction we obtain the following modified
expression for the heteronuclear rank 0 scaling factor as a function of the pulse spacing τ
and pulse duration

k0 =
6τ + 3tp
6τ + 9tp

. (8.18)

Equation (8.18) assumes that the pulse amplitude, not the duration, is doubled in order to
obtain 4π/3 pulses. For the homonuclear couplings the situation is different, in this case the
spin vectors do remain collinear during the pulse rotations and consequently the effective
couplings remain unchanged. The result is that as the ratio tp/tc changes from 0 in the
limit of delta function pulses to 1/9 in the limit of a windowless sequence, the scaling factor
for heteronuclear couplings goes from k0 = 1 to k0 = 1/3, while homonuclear couplings are
unchanged. This scaling could potentially be useful if employed deliberately but the main
take-away is that short, delta function like, pulses are preferable in most cases, especially for
systems with both homo- and heteronuclear couplings.

8.4 J-Decoupling

In Chapter 7 we introduced a method for obtaining homonuclear J-spectra by decoupling
proton-carbon J-couplings using a modified version of the XY4 pulse sequence [138]. A
pulse sequence that averages HJ to zero can not be a true isotropic scaling sequence since
HJ is a scalar operator and therefore rotationally invariant. But a heteronuclear J-coupling
interaction I · S is linear if considered with respect to only one of the spin-species. Since π
pulses on carbon leave proton spins approximately unchanged a pulse sequence built on such
pulses decouples heteronuclear J-couplings if it averages rank-1 interactions to zero. The
fact that XY4 averages first-rank interactions to zero when considered with respect to only
the spins that rotate during the pulses can be understood within the framework of isotropic
scaling [140, 141].

The pulse sequence we used in Chapter 7 is reproduced here for convenience

(xyx̄ȳ x̄ȳxy x̄yxȳ xȳx̄y ȳxyx̄ yx̄ȳx ȳx̄yx yxȳx̄)n, (8.19)

where the pulses were calibrated to effect a π rotation of the 13C spins and there is equal
spacing between each π pulse (the fact that some pulses have spaces between them is simply
to ensure clarity of presentation). We have also made explicit the antipalindromic expansion.
The pulse sequence can be stopped and free evolution resumed after each 4-pulse block. In
other words the full super cycle has 8 sampling points. This Section contains initial analysis
as to why this particular phase cycle scheme works well for decoupling 1H-13C J-couplings.
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Figure 8.2: Plots of the heteronuclear decoupling fidelity obtained by different pulse se-
quences as function of pulse error and the number of applied pulses. (a) XY4, (b) XY8, (c)
XY16, (d) Sequence (8.19).

8.4.1 Error Correction

Flip-angle Errors A perfectly calibrated π pulse on 13C corresponds to a ∼3.97π pulse
on 1H, which complicates the simple analysis above, which assumes that the proton remains
stationary as the carbon spin rotates. We use numerical simulations to demonstrate the
robustness of Sequence (8.19) to slight miscalibrations of the pulse amplitudes. We ignore
relaxation and define the fidelity [149] of a pulse sequence as

F =
|Tr{UidealU

†
actual}|√

Tr{UidealU
†
ideal}Tr{UactualU

†
actual}

, (8.20)

where Uideal = e−iH̄desntc is the propagator for desired average Hamiltonian, and Uactual is
the actual propagator for all the (miscalibrated) pulses and free evolution intervals. We
use 1-13C-propionic acid as our model system. The Hamiltonian is given by Eq. (7.10) and
H̄des = 3JHHK ·L. If F = 1 the evolution induced by the pulse sequence exactly corresponds
to evolution under only the homonuclear coupling term.

Various compensated versions of the (xyxy ≡XY4) exist. Here we evaluate the perfor-
mance of our decoupling sequence against two common ones, XY8/16 [150]. These sequences
are particularly relevant as comparisons because at zero-field it is challenging to correctly
calibrate pulses with arbitrary phases as required for many more advanced compensation
schemes. A pulse that is not along either the x,y, or z-axes require current in two or three
coils simultaneously, and since the coils are not exactly identical this is challenging to do
accurately. In the simulation the 13C flip angle is varied from 0.97π to 1.03π to simulate a
miscalibration of the pulse amplitudes. To match the experiment in Chapter 7 each pulse
is assumed to be 200 µs long and the interpulse spacing is 2 ms. The actual propagator is
compared to the target propagator every 4 pulses, meaning the evolution through a total of
800 pulses is simulated. The results in Fig. 8.2 show clearly how Sequence (8.19) outperforms
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the conventional XY4/8/16 sequences when it comes to heteronuclear J-decoupling in terms
of robustness to flip angle errors. In fact for XY4/8 the mismatch induced by the ratio
of gyromagnetic ratios not being exactly four is enough to immediately bring the fidelity
below 0.9. In all cases optimal performance is actually seen for a 13C flip angle of ∼1.008π
as opposed to π. This can be understood by noting that this is the rotation angle which
maximizes the phase difference between the 13C and 1H spins after each pulse.

Non-zero Pulse Widths We can also consider the effect of evolution during the pulses
with non-zero width analytically. We evaluate Eq. (8.16) for the case of positive and negative
13C π pulses along the x- and y-axes and obtain

H̄x =
2

3
(−IzSy + IySz) + IxSx, (8.21)

H̄x̄ =
2

3
(+IzSy − IySz) + IxSx, (8.22)

H̄y =
2

3
(−IxSz + IzSx) + IySy, (8.23)

H̄ȳ =
2

3
(+IxSz − IzSx) + IySy. (8.24)

Next we use these results together with Eq. (8.13) and calculate the first order average
Hamiltonian for each 4-pulse subcycle in Sequence (8.19)

H̄xyx̄ȳ =
4

3
(IzSy − IzSx), (8.25)

H̄x̄ȳxy =
4

3
(−IzSy + IzSx), (8.26)

H̄x̄yxȳ =
4

3
(−IzSy − IzSx), (8.27)

H̄xȳx̄y =
4

3
(IzSy + IzSx). (8.28)

(8.29)

The contribution to the average Hamiltonian from finite pulse lengths is thus zero to first
order across the full super-cycle in Sequence (8.19).

8.5 Results and Discussion

8.5.1 Rank-1 Decoupling Results

To demonstrate effectiveness of the rank-1 decoupling pulse-sequence derived above we
used 1-13C-acetic acid as a model system. In zero-field the Hamiltonian for this molecule is
given by

HJ = 2πJS ·K, (8.30)
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Figure 8.3: Zero and ultralow field spectra of [13C]-acetic acid.

where K is the sum of the proton angular momentum, as in Chapters 6 and 7. The cor-
responding J-spectrum is shown in Fig. 8.3a and consists of one peak at J and one at 2J .
To simulate operation in a shield-less environment [146] we applied an 80 nT magnetic field
perpendicular to the detection axis (which is denoted z) using the y-shim. The effect of such
a field on a zero-field AX3 spin-system is treated in detail in [24]. The Hamiltonian is given
by

H = 2πJS ·K −By(γCSy + γHKy) (8.31)

The near zero-field spectrum obtained by evolution under H is a doublet at J and a sextet at
2J (plus additional peaks close to zero). In the experimental data in Fig. 8.3b we clearly see
a doublet with a splitting of ∼4 Hz at J , consistent with an 80 nT field, but we resolve only
four peaks at 2J . There is also a small residual peak at J , this arises due to the detection
axis being slightly tilted relative to the ideal case [31].

We obtained the zero-field J-spectrum of 1-13C-acetic acid in the presence of a 80 nT
magnetic field using the heteronuclear isotropic rank-1 decoupling sequence A’. To deal with
the issue of magnetometer dead-time as described in Section 3.2.6 we used 2D-detection
[2]. The sample is allowed to evolved under the effective Hamiltonian, H̄ imposed by the
pulse sequence for a time t1, after which the signal, S is monitored during a period of free
evolution as a function of time, t2. S(t1, t2) is subject to a 2D fast Fourier transform, giving
the spectrum of the average Hamiltonian induced by the pulse sequence, H̄, along the y-axis
(F1) and the spectrum of the unmodified Hamiltonian, H, along the x-axis (F2). For the
case of the pulse sequence A’ we have H̄1 = k0HJ . Evolution was initiated using a DC
pulse calibrated to effect a π pulse on the 13C spin, see Section 2.3.3, after which the pulse
sequence A’ was repeated between 0 and 150 times, sampling the signal every other cycle.
The pulse duration was 200 µs and the time between pulses was 2 ms.
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Figure 8.4: Rank-1 decoupled J-spectrum of 13C-acetic acid in a magnetic field acquired
using pulse sequence A’. The left-hand side panel is experimental data and the right-hand
side is a numerical simulation.

The 2D Fourier transform of the resulting data is shown is Fig. 8.4a. Along F2 we see
the full near zero-field spectrum corresponding to H, though we resolve only three of the
peaks at 2J . Along F1 however, peaks occur at only two positions, corresponding to the
zero-field spectrum of HJ . There are no cross-peaks between peaks belonging to the 1J and
2J multiplet, since the correspond to different values of total proton angular momentum, see
Chapter 6. The red traces are 1D decoupled spectra constructed by taking slices along F2.
The peaks occur at 6.4 Hz and 12.8 Hz, which corresponds to slightly lower frequencies than
what would be expected based on the unscaled J-coupling constant (6.8 Hz). According to
Eq. (8.18) k0 is 0.913, which should give a scaled J-coupling constant of 6.2 Hz, which is
lower than experimentally observed value of 6.4 Hz.

The results of Fig. 8.4 demonstrates the success of the pulse sequence A’ in decou-
pling protons and carbons separately from external fields, while preserving the heteronuclear
isotropic couplings that are the core of J-spectroscopy. However, one of the attractive fea-
tures of J-spectroscopy are the narrow linewidths, but the J-spectrum obtained at 80 nT
using rank-1 decoupling is significantly broader than the intrinsic linewidth of 1-13C-acetic
acid. Simulations shown in the right hand panel in Fig. 8.4 do not reproduce the broadening,
and we therefore assign it to imperfections in the pulse-shape, and an imbalance between the
amplitudes of the positive and negative pulses due to asymmetry in the linear amplifiers.
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Figure 8.5: Top panel: Full J-spectrum of 13C2-acetic acid. Bottom panel: Homonuclear
J-spectrum of 13C2-acetic acid consisting of a single peak at the carbon-carbon coupling
frequency.

8.5.2 J-Decoupling Results

To demonstrate the effectiveness of the new pulsing hardware we obtained the homonu-
clear J-spectrum of 13C2-acetic acid using the same protocol presented in Chapter 7. How-
ever, since the pulses were shorter and more accurate, we obtained good results even though
the largest frequency in this spin-system was 10x larger than for 1-13C-propionic acid, which
is the sample we used in Chapter 7. We used 30 µs pulses and the inter pulse spacing was
300 µs, giving a cycle time of 1.32 ms. 1/tc is thus 760 Hz, while the largest frequency in
the system is 280 Hz (see Fig. 6.5). The cycle time is thus faster, but not that much faster,
than the interaction we are trying to average, and we can expect errors due to higher order
corrections to H̄.

The Hamiltonian for this spin-system is

H = 2π (1JCHSA ·K + 2JCHSB ·K + 1JCCSA · SB), (8.32)

where K and SA/B are angular momentum operators for the proton group and carbons
respectively. During application of the heteronuclear decoupling sequence the evolution is
described by the average Hamiltonian H̄1 = 2π 1JCCSA · SB. That is, the only frequency in
the decoupled spectrum is the carbon-carbon coupling frequency.

The corresponding homonuclear J-spectrum is presented in Fig. 8.5. As expected the
decoupled spectrum has a single peak corresponding to 1JCC = 56 Hz, thus demonstrating
successful decoupling. However, the peak is significantly broader than in the fully coupled
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Figure 8.6: Left hand panel: Homonuclear 1H-decoupled J-spectrum of 13C2-acetic acid
acquired using the pulse sequence in Fig. 7.1. The stick spectra on the axes are the transition
frequencies predicted based on numerical diagonalization of the Hamiltonian. Right hand
panel: A full numerical simulation of the experiment.

spectrum, indicating that the averaging is not complete. We can obtain some insight into
the origin of the broadening by comparing the full 2D spectrum (c.f. Chapter 7) with a
numerical simulation. The data is presented in Fig. 8.6a. All peaks are clearly resolved in
F2, while in F1 peaks occur only at a single frequency, consistent with the 1D decoupled
spectrum.

As in the case of the rank-1 decoupling sequence the simulation assumes perfectly square,
perfectly calibrated pulses of the exact length that was entered into the spectrometer at the
time of the experiment. The spacing between the pulses is also assumed to be exact. The
initial condition of the spin-system was assumed to be magnetization along the z-axis. In
spite of these assumptions the simulation in Fig. 8.6b reproduces the experimental data very
well. Since even the various imperfections are reproduced by the simulation, this indicates
that we are not limited by pulse amplitude calibrations, pulse shapes, or mismatches between
positive and negative pulses (since all these things are perfect in the simulation) but rather
that the decoupling efficiency is set by higher order corrections to the average Hamiltonian
due to the cycle time being too long.
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8.6 Conclusions

In this chapter we have demonstrated zero-field J-spectroscopy in the presence of an 80
nT magnetic field. We used coherent averaging to isolate the coupled spins from the external
field while retaining the isotropic J-couplings between carbons and protons. This technique
will enable high-resolution zero-field J-spectroscopy without bulky mu-metal shielding. The
resonance frequency of protons in the earth’s field is ∼2 kHz, which is comparable to the
interactions involved in solid state line narrowing sequences. Therefore there is no reason in
principle why this technique should not extend all the way to earth’s field, at which point
J-spectra could be obtained without even electromagnetic coils to screen the ambient field.

We have also shown that an improved pulsing setup expands the scope of homonuclear
J-coupling spectroscopy to molecules with J-couplings larger than 100 Hz. This will enable
more facile acquisition of chemically informative spectra of isotopomer mixtures. The ability
to selectively turn on and off heteronuclear couplings in zero-field experiments may also have
other applications, for example as a ‘polarization valve’ in parahydrogen experiments, or in
quantum simulation experiments.
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Chapter 9

Conclusions and Outlook

In this dissertation we have outlined how to build and set up a state-of-the-art zero-field
NMR spectrometer and use it to acquire J-spectra of simple molecules in the liquid state.
Further, we have introduced a number of new possibilities for spin control and excitation
beyond broad band, one dimensional pulse-acquire spectroscopy. We have also shown in
detail how to acquire and interpret two-dimensional J-spectra. We have introduced the
concept of multiple-quantum zero-field NMR and shown how it can be used to simplify
assignment of crowded J-spectra. Finally we have shown how coherent control may be used
to obtain both homonuclear J-spectra and zero-field J-spectra in the presence of magnetic
fields. These methods have been presented with an eye towards applications in chemical
analysis, however it must be stressed that the techniques themselves are agnostic about the
particularities of their deployment.

In the end there are many outstanding challenges if zero-field NMR is to become a
mainstay of portable chemical analysis. Chief among them is the same specter that haunts
all low-field NMR — the sensitivity issue. The spectra in this work were acquired using pure
100% isotopically enriched liquids, and the averaging times were still orders of magnitude
longer than in a ‘normal’ high-field experiment. However, if this problem can be overcome,
and that is admittedly a big if, zero-field NMR holds promise as a spectroscopic modality
that circumvents the trade off between spectral resolving power and magnetic field strength
(and therefore instrument bulk and size).

How then might one go about attaining such a sensitivity boost? The most straightfor-
ward, yet elusive, answer is hyperpolarization. When it works, it works really well, but no
one has yet developed a technique that is both cheap and general. The second point is better
sensors. The magnetometer used in this work has a sensitivity of ∼30 fT/

√
Hz , however it is

possible to construct vapor cell magnetometers with sensitivities down to 1 fT/
√

Hz without
sacrificing bandwidth. This would mean a factor of 900 in averaging time. There are also
different sensors available. NV- centers can be brought to within nanometers of a tar-
get molecule and on the single molecule level spin-polarization becomes irrelevant, which
is obviously quite an advantage. Finally, we point out that while in a standard high-field
experiment the sensor surrounds the sample, in zero-field NMR the detector sees what is
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essentially a dipolar field emanating from the sample tube. It is not obvious that the current
geometry, where the detector is placed right below the sample, is optimal. It would be inter-
esting to study the effect on sensitivity by placing the sample in different positions around
the cell.

Another possibility would be to return to indirect high-frequency inductive detection,
which offers particular synergies with the various decoupling techniques presented here. Since
we have to rely on 2D detection of coherently averaged spectra in zero-field anyway, one
dimension is already ‘wasted’. Replacing it with a much more sensitive high-field detection
period would leave the information content of the decoupled spectrum unchanged but speed
up the experiment significantly. This could be done to improve the spectral resolving power
or flexibility of portable permanent magnet systems, which are still more sensitive NMR
detectors than rubidium magnetometers in practice, but lack the resolution available at
zero-field. One could also imagine using a super-conducting magnet for detection, in which
case the goal would obviously not be portability, but one could still obtain complementary
spectral information. For example in situations where the high-field spectrum exhibits strong
roofing effects it might be convenient to go to a first order picture by simply turning off the
field (if increasing it further is not feasible). Other cases where zero-field evolution (with
or without zero-field detection) could prove complementary to high-field spectroscopy is the
study of heterogeneous materials. In addition to the absence of magnetic anisotropy effects
the fact that the dipolar Hamiltonian is not truncated at zero-field should enable one to
obtain all the elements of the order tensor, and thus define in more detail e.g. pore shapes.
Finally, it has been suggested that J-coupling tensors in zero-field may report on the chirality
of the molecule.

Faced with all these possibilities for how to develop zero-field NMR as a tool for (portable
or not) chemical analysis we should remember that Rabi never intended for Nuclear Magnetic
Resonance to be a chemical analysis tool in the first place. Perhaps the future of zero-field
NMR does not lie in that direction at all. There are already papers in the literature us-
ing zero-field NMR for quantum simulation, as well as proposals for how the Hamiltonian
symmetry of a zero-field NMR experiment enables the study of parity non-conserving funda-
mental interactions. When it comes to a technique that has not received very much attention
it is always quite possible that an entirely different application is going to be ‘the thing’. In
any case, for as long as people will perform magnetic resonance experiments in the regime of
zero magnetic field, there will be a need for spin control methods that work in that regime.
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F Journal of Magnetic Resonance 2017, 277, 79–85.

(37) Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K., Quantum Theory of Angular
Momentum; Worlds Scientific Publishing Co. Pte. Ltd.: Singapore, 1988.

(38) Levitt, M. H., Spin Dynamics: Basics of Nuclear Magnetic Resonance; John Wiley
& Sons: 2001.

(39) Levitt, M. H. eMagRes 2007, DOI: 10.1002/9780470034590.emrstm0551.

(40) Richter, W.; Warren, W. S. Concepts in Magnetic Resonance 2000, 12, 396–409.
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Appendix A

A Zero-Field NMR Spectrometer

This Appendix concerns the practical operation of the zero-field NMR spectrometer, and
its current (as of writing) state. It also contains a detailed overview of the software used to
operate the spectrometer.

An important point to note is that the axis convention used in this Appendix differ from
those in the rest of this dissertation. This is a consequence of the fact that in the vapor-cell
community it is customary to refer to the axis of atomic spin-polarization (i.e. the pump
axis) as the z-axis.

The spectrometer has been reviewed previously under the title

• Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field by
Tayler, Theis, Sjolander, Blanchard, Kentner, Pustelny, Pines, and Budker [63].
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A.1 Hardware

The following photos (A.1-A.4) show an overview of the spectrometer as it looks in
the lab. All optical paths are enclosed in boxes for safety reasons. The box in Fig. A.1a
contains the laser used for optical pumping of the rubidium cell, and the box in Fig. A.1b
contains the polarimeter used to record the optical rotation signal. The polarimeter employs
a Photo-Elastic-Modulator (PEM) in conjunction with a lock-in amplifier and schematics
of the optical paths are shown in Fig. 3.4a/c. There are two BNC cables connecting the

Figure A.1: Optics boxes and shields (a) Box containing optics for the pump laser. (b) Box
containing optics for the polarimeter setup used to measure the optical rotation signal. (c)
The outer mu-metal shield layer used to screen out ambient magnetic fields and ensure a
zero-field environment.

polarimeter box. One of them is the output of the photodiode and is connected to an
amplification circuit shown in Fig. A.2b. The other BNC cable is the output of the PEM
controller (Fig. A.3b), and connects to the PEM. The output of the amplification box goes
to the lock-in amplifier shown in Fig. A.3c, which is referenced to the second output of the
PEM controller. For a description of how the polarimeter works see Section 3.2.5.

Figure A.2a shows the data acquisition card that is used to operate the spectrometer.
The analogue input 17 is connected to the output of the lock-in amplifier and carries the
magnetometer response in real time. The digital output cable connects to the valve con-
trolling the pneumatic shuttling, and the four analogue outputs are not used in the current
configuration, but they can be connected to amplifiers for use with non-square pulses, see
Chapter 5, or connected directly to the shim-coils to generate low-amplitude pulses, see
Chapter 4. Figure A.2c shows the connectors for the shim-coils used to apply low-amplitude
fields inside the magnetometer. Normally they connect to the DC current sources shown in
Fig. A.3a, in which case they are used for shimming the residual field. We have found that
shimming with linear fields only is enough to reach relaxation limited spectral resolution.
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Figure A.2: Data acquisition and electronics boxes. (a) NI-DAQ card used to operate the
spectrometer, read in data, and send out pulses. (b) Signal amplification box - to amplify
the photo-current from the photodiodes in the polarimeter. (c) Access point to the shimming
coils.

Note that the axes x, y, and z refer to the probe path, the shuttling path, and the pump path
respectively. This is distinct from the convention used in the main body of this Dissertation
and is a legacy feature of this particular instrument.

Figure A.3: Shimming and polarimeter electronics. (a) DC current sources used for shimming
the field inside the mu-metal shields. (b) Controller for the PEM used in the polarimeter
setup see Section 3.2.5. (c) Lock-in amplifier used in the polarimeter setup.

Figure A.4 shows the TTL amplification circuits used increase the high state of the Pulse-
Blaser ESR pro board to ∼4 V, which is required to trigger the switches in the pulsing circuit.
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The circuit is described in more detail in Section 3.4.3. The Pulse-Blaster card is mounted
in a PCI slot in the computer, and BNC cables take the signals to the amplification circuit.
There are 6 switches (positive and negative pulses along 3 axes), so there are 6 BNC cables
going from the computer to the amplification boxes.

Figure A.4: Pulse-Blaster signal amplifiers.

A.2 Software

This section describes the operation and functionalities of the LabVIEW program used
to operate the spectrometer. The program was custom written in order to enable the various
pulsed experiments described herein and is available as part of this dissertation. We will
only outline the front panel here, which is all that is required to perform experiments. If
further customization is desired the program is commented.

1D Experiment The most important input settings are shown in Fig. A.5. Green buttons
start data acquisition. The large green button starts a basic 1D experiment. The inputs are
separated into preparation (labeled “Pulse”) and acquisition (labeled “Acquisition”).

To start an experiment one most first chose a folder to save the data to and a filename.
The FID will be saved in .txt format with 2 columns. One for time, the second for voltage
data. Second a pulse sequence must be entered. This is done in the large matrix labeled
“Pulse sequence”. Each row corresponds to one event, the duration of which (in units of
milliseconds) is given by “Time”. X, Y, and Z corresponds to the probe axis, the detection
axis, and the pump axis respectively. In the current configuration (using DC power supplies
for pulsing) these entries can take three values, +1,0,-1, where a positive 1 opens the +switch
for the designated duration, 0 indicates the switch is closed, and - opens the - switch for the
designated duration. The pulse amplitude is set by changing the voltages under ’amplifier
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Figure A.5: Start panel

voltage’ (this can also be done manually on the power supplies). All pulse sequences should
be plotted using the “Plot Pulse Sequence” button before running the experiment. The result
will show up in the “Digital Waveform Graph” window. Note that under no circumstances
may both the + and - switch along the same axis be open simultaneously. This will lead to
the amplifiers shorting. Always leave a small delay between pulses.

The basic cycle of an experiment goes as follows: The sample is kept in the permanent
magnetic for a time given by “Polarization time”. After that a trigger causes the sample
to start falling. After a time given by “Shuttling time” the spectrometer starts playing out
the chosen pulse sequence (most commonly a simple excitation pulse). Note that “Shut-
tling time” simply specifies the delay between the shuttling trigger and the start of the
pulse sequence, in order to control the physical shuttling time one needs to manually adjust
the vacuum connection to the tube. After the pulse sequence the DAQ card will start to
record the magnetometer signal. The sampling rate is conveniently kept at 1000 Hz (500
Hz bandwidth), and the acquisition time should be tailored to the relaxation time of the
particular sample and the desired Fourier resolution. After the acquisition the sample will
automatically be shuttled back up into the magnet. The process will be repeated ‘Number
of transients” times and the resulting FIDs are automatically added together.

Multiple Pulse Experiments To execute a multiple experiment with more than 5 or
6 pulses it is recommended to use the “loop” functionality. A loop is indicated by writing
“loop” in the fifth column of the “Pulse Sequence” matrix. The effect of this will be to play
out the pulse sequence indicated in the “Loops” matrix to the left (see Fig. A.6) at this time
point. If no phase cycling is desired simply enter the events as normal in the matrix. If
phase cycling is desired (e.g. an (xyx̄ȳx̄ȳxy)n sequence) this is entered by incrementing the
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Figure A.6: Multiple pulse inputs.

button “Phase Cycle Dim” in both the time column and the pulse sequence matrix. The
same notation is done if more than one “loop” entry is desired in the original pulse sequence.

For long sequences this input step can be ardous. The button “Load Pure Proton Se-
quence” automatically fills in the matrices with inputs corresponding to the heternoculear
J-decoupling sequence (Eq. (7.2)) presented in Chapter 7, using the provided inputs as pa-
rameters. The pulse sequence has 8 steps corresponding with an anti-palindromic expansion
[39]. If further cases of hard-coded pulse sequences are desired the can be added as extra
‘cases’ in the code that the button points to.

The number of times to repeat a loop is given by the “Repeat Loop xN times” button in
Fig. A.5. Each row refers to a seperate loop (use the first row if only one loop is in effect).
The “Phase cycle x Times” entry refers to the number of separate phase cycling steps in the
pulse sequence. Enter 8 for the hard-coded pure proton sequence. Remember to plot the
sequence and make sure that everything looks the desired way.

Once the pulse sequence has been entered the remaining inputs for a 2D experiment are
shown in Fig. A.7 under the heading “Coherent Averaging Parameters”. A 2D experiment
consists of a pulse sequence (which can be something as simple as a wait time) being repeated
between l and k times, acquiring a maximum of k data points. “Loops to increment” denotes
which of the loops is being incremented during the 2D experiment.

Finally to start the experiment press the small green button “Start Coherent Averaging
Scan”.

Pulse Calibrations The pulses generated by the DC power supplies have a fixed ampli-
tude. This amplitude is set by the voltage controls “Set ±X/Y amplifier voltage”, which
should not be changed during an experiment. The flip-angle for a given pulse is instead
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Figure A.7: Further settings panel.

tuned by changing the duration of the pulse. Nutation curves are obtained by choosing a
voltage (the default values are fine) and changing the duration of the pulse. The relevant
inputs are shown in Fig. A.7 under “Flip Angle Calibration Settings”.

Figure A.8: Output screens.

Outputs Figure A.8 shows the output spectrum produced by an experiment. The top
central panel shows the Fourier transform (either phased or in magnitude) of the most
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recently acquired spectrum. The bottom panel affords the possibility of loading a spectrum
of choice (chose the desired .txt file generated by this program during an acquisition). There
is also the opportunity to request zero-filling and dropping initial corrupted data points
(see Section 3.6) during the loading process but more sophisticated data analysis should be
performed elsewhere.

Figure A.9: Spectrum analyzer.

Figure A.9 shows the built-in spectrum analyzer functionality of the program. Press the
green start button to monitor the power spectrum of the magnetometer in real time, and the
stop button to stop. This program can not be run simultaneously with the data acquisition
part. It is primarily used to optimize the magnetometer (by measuring the response at the
test-signal frequency in response to various tweaking operations).
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