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Abstract 

JPEG encoding is a powerful image compression algorithm capable of compressing 

image data at the cost of image quality. A variety of architectures implement JPEG encoding, 

each leveraging either serial execution superiority (general-purpose programmable processors), 

massive parallelization abilities (GPUs), or dynamic architecture arrangements (FPGAs). 

However, all these architectures need help to simultaneously handle the serial and parallel 

components of the JPEG encoding algorithm. This thesis proposes 29 JPEG encoder 

implementations on the KiloCore platform (a fine-grain manycore processor array), compares 

each algorithm to one another, and compares the top algorithms to designs on differing 

architectures.  

This work benchmarks throughput, throughput per area, energy per megapixel encoded, 

and energy-delay product across 29 KiloCore JPEG encoder versions. Furthermore, this work 

compares the top KiloCore designs against JPEG implementations on a Xilinx Zynq-7000 FPGA 

(VISENGI), TI C66x Embedded Processor, Intel i9 9900 CPU (libjpeg-turbo), and Intel 

Platinum 8168 with an Nvidia A100 GPU (nvJPEG). 

JPEG encoding implementations on KiloCore require low amounts of energy while still 

reaching competitive throughput. JPEG encoding implementations on KiloCore achieve higher 

throughput than the C66x and Intel i9 9900 JPEG encoders by at least 6.6×. JPEG encoding 

implementations on KiloCore have the lowest area usage and have the highest throughput per 

area by 1.45× to 100×. JPEG encoding implementations on KiloCore have the lowest energy per 

megapixel encoded of tested general-purpose processors, by 1.88× to 100×. Finally, JPEG 

encoding implementations on KiloCore boast a 20× to 261,733× lower energy-delay product 

than its general-purpose industry competition. 



iii 

 

Acknowledgments 

 Thank you to my advisor and mentor, Professor Baas. His mentorship through my 

undergraduate and graduate education inspired me further to apply myself to your digital design 

and VLSI classes. Furthermore, his guidance in my research helped me stay motivated and 

focused. 

 Thank you to Dr. Bohnenstiehl for his work on KiloCore and for guiding me in my 

development using the KiloCore software toolchain.  

 Thank you to the previous graduate students of the VCL labs whose documentation 

helped guide me through my thesis. 

 Thank you, Professor Akella and Professor Al-Assad, for your time and effort in 

reviewing my thesis. 

 Thank you, Derek Li, for assisting with finding performance metrics of competing 

designs. Thank you, VISENGI, for providing performance data of your IP block upon request. 

 Most importantly, I thank my family, friends, and partner for their support throughout my 

academic journey. It would not have been possible without any one of you.  

  



iv 

 

Contents 

Abstract .................................................................................................................................... ii 

Acknowledgments .................................................................................................................. iii 

Introduction ..................................................................................................................................... 1 

1.1 Motivation .................................................................................................................... 1 

1.2 Thesis Organization ...................................................................................................... 2 

Background of JPEG Encoding ...................................................................................................... 3 

2.1 Overview ...................................................................................................................... 3 

2.2 Baseline and Progressive Formats ................................................................................ 5 

2.2.1 Baseline Format ................................................................................................. 5 

2.2.2 Progressive Format ............................................................................................ 5 

2.3 Header Organization ..................................................................................................... 6 

2.4 Lossy and Lossless Formats ......................................................................................... 7 

2.4.1 Lossy Format ..................................................................................................... 7 

2.4.2 Lossless Format ................................................................................................. 8 

2.5 Color Spaces and Subsampling .................................................................................... 8 

2.5.1 RGB to YCbCr Transformation ........................................................................ 8 

2.5.2 Color Subsampling ............................................................................................ 9 

2.6 2D Discrete Cosine Transform ..................................................................................... 9 



v 

 

2.6.1 Series Definition of the DCT-II ......................................................................... 9 

2.6.2 Matrix Transformation Definition of the DCT-II ............................................ 10 

2.6.3 AA&N Algorithm to Compute the DCT-II ..................................................... 10 

2.6.4 Precision Considerations ................................................................................. 11 

2.7 Quantization................................................................................................................ 11 

2.7.1 Overview ......................................................................................................... 11 

2.7.2 Quality and Quality Factor (QF) ..................................................................... 13 

2.8 Zigzag ......................................................................................................................... 13 

2.9 AC Coefficient Run-length Encoding ........................................................................ 13 

2.10 DC Coefficient Difference Encoding ......................................................................... 14 

2.11 Huffman and Arithmetic Encoding ............................................................................ 15 

2.11.1  Huffman Encoding ......................................................................................... 15 

2.11.2  Arithmetic Encoding....................................................................................... 15 

Background of the KiloCore Platform .......................................................................................... 16 

3.1 Overview .................................................................................................................... 16 

3.2 Relevant Architectural Highlights .............................................................................. 17 

3.2.1 Core Information ............................................................................................. 17 

3.2.2 FIFO Information ............................................................................................ 17 

3.3 Programming on KiloCore ......................................................................................... 18 

JPEG Implementation on the KiloCore Platform ......................................................................... 19 



vi 

 

4.1 Overview and Testing ................................................................................................. 19 

4.1.1 Overview ......................................................................................................... 19 

4.1.2 Testing ............................................................................................................. 19 

4.1.3 Relevant Abbreviations ................................................................................... 22 

4.2 JPEG Encoder Version 1 ............................................................................................ 24 

4.3 JPEG Encoder Version 2 ............................................................................................ 26 

4.4 JPEG Encoder Version 3 ............................................................................................ 27 

4.5 JPEG Encoder Version 4 ............................................................................................ 27 

4.6 JPEG Encoder Version 5 ............................................................................................ 28 

4.7 JPEG Encoder Version 6 ............................................................................................ 28 

4.8 JPEG Encoder Version 7 ............................................................................................ 28 

4.9 JPEG Encoder Version 8 ............................................................................................ 29 

4.10 JPEG Encoder Version 9 ............................................................................................ 30 

4.11 JPEG Encoder Version 10 .......................................................................................... 32 

4.12 JPEG Encoder Version 11 .......................................................................................... 32 

4.13 JPEG Encoder Version 12 .......................................................................................... 33 

4.14 JPEG Encoder Version 13 .......................................................................................... 33 

4.15 JPEG Encoder Version 14 .......................................................................................... 34 

4.16 JPEG Encoder Version 15 .......................................................................................... 34 

4.17 JPEG Encoder Version 16 .......................................................................................... 35 



vii 

 

4.18 JPEG Encoder Version 17 .......................................................................................... 36 

4.19 JPEG Encoder Version 18 .......................................................................................... 36 

4.20 JPEG Encoder Version 19 .......................................................................................... 36 

4.21 JPEG Encoder Version 20 .......................................................................................... 37 

4.22 JPEG Encoder Version 21 .......................................................................................... 38 

4.22 JPEG Encoder Version 22 .......................................................................................... 38 

4.24 JPEG Encoder Version 23 .......................................................................................... 39 

4.25 JPEG Encoder Version 24 .......................................................................................... 40 

4.26 JPEG Encoder Version 25 .......................................................................................... 41 

4.27 JPEG Encoder Version 26 .......................................................................................... 41 

4.28 JPEG Encoder Version 27 .......................................................................................... 43 

4.29 JPEG Encoder Version 28 .......................................................................................... 44 

4.30 JPEG Encoder Version 29 .......................................................................................... 44 

Simulation Results of JPEG Implementations .............................................................................. 45 

5.1 Overview .................................................................................................................... 45 

5.2 Throughput Analysis .................................................................................................. 49 

5.3 Power Analysis ........................................................................................................... 51 

5.4 Energy per Megapixel Encoded Analysis .................................................................. 54 

5.5 Throughput per Area Analysis ................................................................................... 56 

5.6 Energy-Delay Product ................................................................................................ 58 



viii 

 

5.7 Energy per Megapixel Encoded vs. Area per Throughput Analysis .......................... 60 

Comparisons to Other Notable JPEG Encoders............................................................................ 73 

6.1 Overview .................................................................................................................... 73 

6.2 Comparison of JPEG Encoder KiloCore Implementations with Competing Designs 73 

6.2.1 Overview ......................................................................................................... 73 

6.2.2 Area Analysis .................................................................................................. 77 

6.2.3 Throughput Analysis ....................................................................................... 77 

6.2.4 Energy per Megapixel Encoded Analysis ....................................................... 78 

6.2.5 Throughput per Area Analysis ........................................................................ 78 

6.2.6 Energy-Delay Product Analysis ...................................................................... 79 

6.2.6 Energy Per Megapixel Encoded vs. Area per Throughput Analysis ............... 80 

6.3 Conclusion .................................................................................................................. 81 

Conclusion and Future Work ........................................................................................................ 83 

7.1 Conclusion .................................................................................................................. 83 

7.2 Future Work ................................................................................................................ 83 

7.2.1 C++ and Assembly Discrepancies ................................................................... 83 

7.2.2 Additional JPEG Encoding Features ............................................................... 85 

7.2.3 Future KiloCore Improvements ....................................................................... 85 

7.2.4 JPEG Decoding................................................................................................ 86 

Bibliography ................................................................................................................................. 88 



ix 

 

List of Figures 

FIGURE 2.1: JPEG ENCODING DIAGRAM [1] ..................................................................................... 5 

FIGURE 2.2: SAMPLE JPEG HEADER WITH TAGS OUTLINED IN A RED BOX ........................................ 7 

FIGURE 2.3: AA&N DCT ALGORITHM [4] ..................................................................................... 11 

FIGURE 2.4: ZIGZAG ORDER [1] ...................................................................................................... 13 

FIGURE 2.5: DIFFERENTIAL DC ENCODING [1] ............................................................................... 14 

FIGURE 3.1: DIE PHOTO OF THE KILOCORE ARRAY AND CORE SPECIFICATION INFORMATION [5]. .. 16 

FIGURE 4.1: TESTING BLOCK DIAGRAM FOR JPEG IMPLEMENTATIONS, USING THE PIL PYTHON 

JPEG LIBRARY AS A GOLDEN REFERENCE ............................................................................... 19 

FIGURE 4.2: JPEG ENCODER DESIGN 1 .......................................................................................... 24 

FIGURE 4.3: JPEG ENCODER DESIGN 2 .......................................................................................... 27 

FIGURE 4.4: JPEG ENCODER DESIGN 3 .......................................................................................... 28 

FIGURE 4.5: JPEG ENCODER DESIGN 4 .......................................................................................... 29 

FIGURE 4.6: JPEG ENCODER DESIGN 5 .......................................................................................... 30 

FIGURE 4.7: JPEG ENCODER DESIGN 6 .......................................................................................... 32 

FIGURE 4.8: JPEG ENCODER DESIGN 7 .......................................................................................... 33 

FIGURE 4.9: JPEG ENCODER DESIGN 8 .......................................................................................... 33 

FIGURE 4.10: JPEG ENCODER DESIGN 6, N PIPELINES PER CHANNEL ............................................ 35 

FIGURE 4.11: JPEG ENCODER DESIGN 6, N PIPELINES PER CHANNEL, M INPUT BUFFERS .............. 37 

FIGURE 4.12: PRE-ORGANIZER BLOCK DIAGRAM ........................................................................... 38 

FIGURE 4.13: JPEG ENCODER DESIGN 9 ........................................................................................ 39 

FIGURE 4.14: JPEG ENCODER DESIGN 9, N PIPELINES PER CHANNEL, M INPUT BUFFERS .............. 40 



x 

 

FIGURE 4.15: JPEG ENCODER DESIGN 10 ...................................................................................... 41 

FIGURE 4.16: JPEG ENCODER DESIGN 10, N PIPELINES PER CHANNEL, M INPUT BUFFERS ............ 43 

FIGURE 4.17: JPEG ENCODER DESIGN 10, N PIPELINES PER CHANNEL, WITHOUT RGB CONVERSION

 ............................................................................................................................................... 44 

FIGURE 5.1: “VGL_6548_0026.PPM” ENCODED USING QUALITY FACTOR 0 [8] ............................... 47 

FIGURE 5.2: “VGL_6434_0018.JPEG” ENCODED USING QUALITY FACTOR 0 [8] .............................. 48 

FIGURE 5.3: “VGL_5674_0098.JPEG” ENCODED USING QUALITY FACTOR 0 [8] .............................. 48 

FIGURE 5.4: THROUGHPUT VERSUS VERSION NUMBER (1.2 GHZ @ 0.9V) ..................................... 49 

FIGURE 5.5: THROUGHPUT VERSUS VERSION NUMBER (1.78 GHZ @ 1.1V) ................................... 50 

FIGURE 5.6: AVERAGE P4OWER VERSUS VERSION NUMBER (1.20 GHZ @ 0.9 V) ........................... 52 

FIGURE 5.7: AVERAGE POWER VERSUS VERSION NUMBER (1.78 GHZ @ 1.1 V) ............................. 53 

FIGURE 5.8: ENERGY PER MEGAPIXEL ENCODED VERSUS VERSION NUMBER (1.20 GHZ @ 0.9 V) . 54 

FIGURE 5.9: ENERGY PER MEGAPIXEL ENCODED VERSUS VERSION NUMBER (1.78 GHZ @ 1.1 V) . 55 

FIGURE 5.10: THROUGHPUT PER AREA VERSUS VERSION NUMBER (1.20 GHZ @ 0.9 V) ................ 56 

FIGURE 5.11: THROUGHPUT PER AREA VERSUS VERSION NUMBER (1.78 GHZ @ 1.1 V) ................ 57 

FIGURE 5.12: ENERGY-DELAY PRODUCT VERSUS VERSION NUMBER (1.20 GHZ @ 0.9 V) ............. 58 

FIGURE 5.13: ENERGY-DELAY PRODUCT VERSUS VERSION NUMBER (1.78 GHZ @ 1.1 V) ............. 59 

FIGURE 5.14: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT (QF = 0) ........ 60 

FIGURE 5.15: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT (QF = 0.1) ..... 60 

FIGURE 5.16: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT (QF = 0.1667) 61 

FIGURE 5.17: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT (QF = 0.5) ..... 61 

FIGURE 5.18: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT (QF = 1) ........ 62 



xi 

 

FIGURE 6.1: ENERGY PER MEGAPIXEL ENCODED VERSUS AREA PER THROUGHPUT ANALYSIS, 

KILOCORE IMPLEMENTATIONS AND COMPETING VENDORS (QF = 0.1, ALL PROCESSES SCALED 

TO 32NM) ................................................................................................................................ 80 



xii 

 

List of Tables 

TABLE 2.1: JPEG’S SAMPLE LUMINANCE QUANTIZATION TABLE  ................................................ 12 

TABLE 2.2: JPEG’S SAMPLE CHROMINANCE QUANTIZATION TABLE  ............................................ 12 

TABLE 4.1: DCT-II ACCURACY COMPARISONS ............................................................................. 20 

TABLE 5.1: DATA FOR 1.2 GHZ @ 0.9V USING QUALITY FACTOR 0 .............................................. 63 

TABLE 5.2: DATA FOR 1.78 GHZ @ 1.1V USING QUALITY FACTOR 0 ............................................ 64 

TABLE 5.3: DATA FOR 1.2 GHZ @ 0.9V USING QUALITY FACTOR 0.1 ........................................... 65 

TABLE 5.4: DATA FOR 1.78 GHZ @ 1.1V USING QUALITY FACTOR 0.1 ......................................... 66 

TABLE 5.5: DATA FOR 1.2 GHZ @ 0.9V USING QUALITY FACTOR 0.1667 ..................................... 67 

TABLE 5.6: DATA FOR 1.78 GHZ @ 1.1V USING QUALITY FACTOR 0.1667 .................................. 68 

TABLE 5.7: DATA FOR 1.2 GHZ @ 0.9V USING QUALITY FACTOR 0.5 ........................................... 69 

TABLE 5.8: DATA FOR 1.78 GHZ @ 1.1V USING QUALITY FACTOR 0.5 ......................................... 70 

TABLE 5.9: DATA FOR 1.2 GHZ @ 0.9V USING QUALITY FACTOR 1 .............................................. 71 

TABLE 5.10: DATA FOR 1.78 GHZ @ 1.1V USING QUALITY FACTOR 1 .......................................... 72 

TABLE 6.1: AREA SCALING FACTORS ............................................................................................ 74 

TABLE 6.2: UNSCALED COMPARISON DATA FOR VARIOUS JPEG ENCODER IMPLEMENTATIONS ... 75 

TABLE 6.3: DELAY FACTOR CALCULATIONS USING EQUATION 6.1................................................ 76 

TABLE 6.4: ENERGY FACTOR CALCULATIONS USING EQUATION 6.2 ............................................. 76 

TABLE 6.5: SCALED COMPARISON DATA FOR VARIOUS JPEG ENCODER IMPLEMENTATIONS ....... 77 

  



1 

 

Chapter 1  

Introduction 

1.1 Motivation 

JPEG Encoding is a unique algorithm that has both serial and parallel components. 

Innovations in GPUs, CPUs, and FPGAs have all contributed to higher efficiency in JPEG 

encoding, but each architecture contains disadvantages. KiloCore represents a unique 

architecture that can simultaneously take advantage of the inherent parallelism in JPEG 

encoding's DCT-II and quantization steps while excelling at the serial tasks of encoding and 

bitstream combinations.  

JPEG encoding assists with the compression of images with minimal loss of quality. 

However, with high-fidelity images, current JPEG encoders can take orders of magnitudes longer 

than lower-resolution images. GPU solutions like nvJPEG can address the throughput problem. 

However, they use a wasteful amount of energy and area to accomplish the simple task. Many-

core processor arrays can fill the gap between having a competitive throughput and not using an 

overwhelming amount of energy and area on a given chip. Furthermore, JPEG encoding occurs 

mainly in video and photography editing circumstances, so users who are not videographers or 

photographers likely prefer to use their silicon real estate differently. Hence, fine-grain manycore 

processor's programmability allows the area to adapt to other needs (where an ASIC or hardware 

accelerator would take up space). 

In the grander scheme, video and photo encoding and decoding are growing more popular 

with social media websites and streaming services. Therefore, a chip that can reprogram itself to 
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accelerate a given codec will be precious, and this thesis is one step closer to fine-gran manycore 

processors like KiloCore filling this niche. 

1.2 Thesis Organization 

• The remainder of this thesis is organized as follows: 

• Chapter 2 outlines the JPEG specification and relevant algorithms for color space 

conversion, the DCT-II, quantization, run-length encoding and Huffman encoding. 

• Chapter 3 reviews relevant KiloCore chip architectural information. 

• Chapter 4 introduces the JPEG encoding algorithms implemented. 

• Chapter 5 showcases the JPEG encoding algorithms simulation results, including 

throughput, area, energy per megapixel encoded, throughput per area, and energy-delay 

product. 

• Chapter 6 compares the most competitive KiloCore implementations with general-

purpose processors, GPUs, and FPGAs. 

• Chapter 7 summarizes the thesis and provides starting points for future work. 
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Chapter 2   

Background of JPEG Encoding 

2.1 Overview 

The JPEG encoding algorithm exploits photos' low-frequency nature to compress image 

data without sacrificing too much image quality [1]. Therefore, the first step in the algorithm is 

to convert the color space of the image data (likely RGB) to YCbCr. This transform intends to 

consolidate more information in one channel (the luminance or Y channel) instead of evenly 

spreading across multiple channels as RGB does. Consequently, the Cb and Cr channels can 

compress into much smaller sizes as they aid the visual fidelity of the image much less than the 

Y channel.  

Images are transformed to the frequency domain using the 2D discrete cosine transform 

(DCT-II). For the average realistic photo, it is much more common for high-frequency 

components of an image to be near zero. Like how the color transformation consolidates more 

information into one channel, the DCT-II consolidates the information in an 8-by-8 block to low-

frequency elements. 

The non-integer output of the DCT-II is quantized to allow for the binning of similar 

elements. Finally, to prioritize low-frequency parts of the DCT-II matrix, quantization tables 

provide weight to corresponding regions of the matrix. 

The low-frequency parts of an 8-by-8 block after DCT-II (and quantization) are toward 

the top-left of the matrix, and the highest-frequency details are toward the bottom-right. 
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Reorganizing the order of the matrix to go from low frequency to high frequency is called 

zigzagging.  

Next, the zigzagged AC output is run-length encoded by counting how many zeros have 

come before the next value. Consequently, runs of zeros are consolidated out of the data to save 

space. Furthermore, the size of the non-zero value encountered prevents any extra bits from 

being used to specify a smaller value (i.e., the value three needs only two bits while twenty-one 

needs five bits). Finally, the first element in the block is the DC coefficient, and it is difference-

encoded with the DC coefficient of the previous block in the same channel (the last value is 0 for 

the first block).  

Finally, the zero count and size pairs are Huffman encoded to save space further. 

Huffman encoding allows more frequent pairs to take less space (pairs with low zero counts or 

sizes), while less frequent pairs (pairs with large zero counts or sizes) may take more space. 

Statistically, this tradeoff compresses data further, depending on what Huffman table encodes the 

pairs. 

Finally, the process is repeated across all 8x8 blocks of an image and then paired with a 

header that contains information about the settings of a given JPEG file. The JPEG specification 

defines multiple possible JPEG encoding methods, but this thesis covers baseline, Huffman, 8-bit 

color, lossy, and 4:4:4 JPEG encoding. Alternative modes are outlined below; however, the 

presented implementations do not support them.   
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Figure 2.1: JPEG encoding diagram [1] 

 

2.2 Baseline and Progressive Formats 

2.2.1 Baseline Format 

A baseline formatted JPEG file encodes its 8-by-8 blocks one at a time, starting in the top 

left corner of the image, traveling right, and then wrapping to the next row [1]. When decoding 

the image, each row appears one at a time. When internet bandwidth is limited, or many photos 

must appear quickly at once, loading the image this way can be disadvantageous. In those cases, 

a progressive JPEG format is preferred; however, our architecture implements only a baseline 

format. 

2.2.2 Progressive Format 

Progressive JPEG formats allow the decoder to determine the whole image in low fidelity 

on its first pass and then build image quality as the number of passes increases [1]. This can be 

advantageous for high-resolution images that are decipherable at lower resolutions. In addition, 

websites with multiple high-resolution images needing to load immediately should leverage 

progressive JPEGs; however, the benefit of a progressive format is not so clear when the internet 

speed is too fast for the baseline load time to matter. The additional processing cost of encoding 

and decoding a progressive JPEG can arguably make it the lesser of the two options in the case 

of a high-speed internet connection. 
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2.3 Header Organization 

JPEG reserves unique two-byte tags to denote specific settings for the decoder of the 

given JPEG file [1]. Typically, these are at the top of the binary file, then the encoded data 

follows, and finally, it terminates with an end-of-image tag. There are 623 bytes encoded in a 

standard JPEG header to store the size, quantization tables (2), Huffman tables (2), color 

subsampling mode, color depth, greyscale information, a general description, and more. Most 

encoders can replicate this header before each image, changing only the picture size and the 

quantization tables (which adjust with the quality level of the encoding). Some encoders use a 

Huffman table customized to the specific photo’s data for the highest possible compression. In 

this case, it also needs to be encoded differently on each image produced.  

In Figure 2.2, a sample JPEG header is provided, where each two-byte tag is boxed in 

red. Following each tag is data is typically the size of the data to follow, and the information 

relevant to said tag. For example, 0xFFDB is followed by 0x0043 which denotes that the 

information to follow will be 67 bytes (excluding the original tag, but including the size), and 

then either 0x00 or 0x01 is encoded to denote which quantization table is being stored. The next 

64 bytes includes the 64 values present in the given quantization table. A similar formatting 

applies for most tags, and more information is outlined in the JPEG specification [1].  
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Figure 2.2: Sample JPEG header with tags outlined in a red box 

2.4 Lossy and Lossless Formats 

2.4.1 Lossy Format 

A lossy JPEG is the most common format of a JPEG, as loss allows for the most amount 

of compression [1]. Loss occurs during the DCT-II phase, where the nature of computing the 

DCT-II incurs a rounding error. The quantization stage amplifies this loss because numbers are 
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scaled and rounded, leading to easily compressible data but with lower fidelity. This work 

focuses on the lossy format, the de facto standard for JPEG encoding.  

2.4.2 Lossless Format 

JPEGs also come in the lossless variety to compete with PNG and RAW file formats [1]. 

The JPEG lossless format skips DCT-II and quantization and instead jumps into a predictor to 

further compress the image before Huffman or Arithmetic encoding.  

2.5 Color Spaces and Subsampling  

2.5.1 RGB to YCbCr Transformation 

Transforming RGB to YCbCr is often necessary to create a JPEG image; the JPEG 

standard lists equations for the calculation to better use the YCbCr format [2]. Typically, the 

YCbCr format has both headroom and footroom, meaning the range of Y is from 16 to 235, and 

the range of CbCr is from 16 to 240. This headroom is useful in other digital formats, but for 

JPEG encoders, it lowers the possible color depth of the signal. Therefore, the footroom of all the 

signals is subtracted from the value and then scaled to take up the data's full 8-bit or 12-bit space. 

Equations 2.1, 2.2, and 2.3 show the conversion after headroom and footroom have both been 

removed [2]. Although there is a 12-bit JPEG format, this work covers only 8-bit JPEG 

encoding. Finally, each number is level shifted such that 0 is the mean value; in the 8-bit case, 

this means subtracting 128 from the value and storing it in 2’s complement form.  

 𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (2.1) 

 

 𝐶𝑏 =  −0.1687𝑅 − 0.3313𝐺 + 0.5𝐵 + 128 (2.2) 

 

 𝐶𝑟 =  0.5𝑅 − 0.4187𝐺 + 0.0813𝐵 + 128 (2.3) 
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2.5.2 Color Subsampling 

One channel’s information can be prioritized using color subsampling. Typically, JPEG 

encoders use a 4:2:2 or a 4:4:4 color subsampling mode. 4:4:4 takes no preference as to what 

channel to collect, whereas 4:2:2 skips every other CbCr value as the Y channel has a much more 

substantial impact on the given image’s fidelity. Equations 2.4 and 2.5 show how to compute the 

given column or row (xi or yi) given the max column or row (X or Y), the sampling factor (Hi or 

Vi), and the maximum sampling factor across each color component (Hmax or Vmax) [1]. This work 

explores the 4:4:4 format as it creates the most work for encoding. 

 
𝑥𝑖 = ⌈𝑋 ×

𝐻𝑖
𝐻𝑚𝑎𝑥

⌉ (2.4) 

 
𝑦𝑖 = ⌈𝑌 ×

𝑉𝑖
𝑉𝑚𝑎𝑥

⌉ (2.5) 

2.6 2D Discrete Cosine Transform 

2.6.1 Series Definition of the DCT-II 

The series definition of DCT-II is given in Equation 2.6 [1]. A DCT-II transform and a 

2D DCT-II transform are not the same thing. DCT-II is a specific DCT type corresponding to the 

DFT of 4N real inputs. A 2D DCT-II is when one performs the DCT-II across all the rows or 

columns of a matrix and vice versa. Equations 2.6 through 2.7 show a 2D DCT-II for 8-by-8 

dimensional matrices. 

 

𝑆𝑣𝑢 =
1

4
 𝐶𝑢 𝐶𝑣∑∑𝑠𝑦𝑥 cos

(2𝑥 + 1)𝑢𝜋

16
cos

(2𝑦 + 1)𝑣𝜋

16

7

𝑦=0

7

𝑥=0

 

 

(2.6) 

where 

 

𝐶𝑢,  𝐶𝑣 = {

1

√2
       𝑢, 𝑣 = 0

     1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(2.7) 
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2.6.2 Matrix Transformation Definition of the DCT-II 

Equations 2.8 and 2.9 give the matrix transformation definition of the DCT-II [3]. 

Equation 2.8 defines building the 8-by-8 transformation matrix where p is the column index and 

q is the row index, and Equation 2.9 shows how to apply the transform to an arbitrary 8-by-8 

block 𝛬. The benefit of this equation over 2.6.1’s series representation is the possible parallelism 

to exploit in the matrix multiplication and the no need to take the cosine of any element. This 

work avoids costly cosine calculations. The matrix transformation definition contains 1024 

multiplies and 896 additions, resulting in two 8-by-8 matrix multiplications. When using a GPU, 

using this parallelizable algorithm may be beneficial.  

 

𝑇𝑝𝑞 =

{
 

                   
1

2√2
                  𝑝 = 0, 0 ≤ 𝑞 ≤ 7

1

2
cos

𝜋(2𝑞 + 1)𝑝

16
  1 ≤ 𝑝 ≤ 7, 0 ≤ 𝑞 ≤ 7

 

 

(2.8) 

 𝐴 = 𝑇 × 𝛬 × 𝑇∗ (2.9) 

   

2.6.3 AA&N Algorithm to Compute the DCT-II 

The final algorithm to compute the DCT-II is Arai, Agui, and Nakajima’s (AA&N) 

Algorithm, denoted in Figure 2.3 [4]. It collapses the total operations of calculating a 2D DCT-II 

to only 144 multiplies and 464 additions. Also, 64 of these multiples are with the quantization 

step of the JPEG algorithm meaning the actual computational cost is closer to 80 multiplies. 

Figure 2.3 is the DCT butterfly diagram of the AA&N algorithm. Shaded dots denote addition, 

arrows indicate negation, and boxes with constants represent multiplication by the constant in the 

box. Since the algorithm is computationally much faster than the method discussed in 2.6.2, 

JPEG encoders prefer it.  
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Figure 2.3: AA&N DCT algorithm [4] 

2.6.4 Precision Considerations 

Each method of computing the DCT-II ends up with close to the same result when using 

double floating-point precision; however, in situations where accuracy is limited, they will end 

up with slightly different results. Rounding error does not imply that the previous equations are 

approximations but rather is a result of computing with non-integer values. The JPEG standard 

explicitly mentions this and purposefully does not put a strict precision requirement on the DCT-

II method to allow for further innovations in the calculation.  

2.7 Quantization 

2.7.1 Overview 

Elements of a given 8-by-8 block are scaled-down and quantized. The encoder specifies 

quantization tables, typically scaled down or up depending on the identified quality factor. The 

quantization table gives inherent weights to certain parts of the 8-by-8 blocks over another. 

Usually, these weights are given to the lower frequency values, although that is not a 

requirement. A given JPEG specifies two quantization tables; typically, one is used for the Y 

channel, while the other is for the CbCr channels. The JPEG format requires an accurate 
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rounding method after the element-wise division (Equation 2.11) [1]. Quantization tables are 

embedded in the header of a given JPEG file to allow a future decoder to reverse the process. 

Quantization tables can become intellectual property, and in this work, we use the sample 

quantization tables provided by the JPEG standard and scale them appropriately with a quality 

factor. Tables 2.1 and 2.2 contain the JPEG standard’s quantization tables [1]. 

 
𝑆𝑞𝑣𝑢 = round (

𝑆𝑣𝑢
𝑄𝑣𝑢

) 
(2.10) 

 

16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 

Table 2.1: JPEG standard T.81’s sample luminance quantization table [1] 

 

17 18 24 47 99 99 99 99 

18 21 26 66 99 99 99 99 

24 26 56 99 99 99 99 99 

47 66 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

Table 2.2: JPEG standard T.81’s sample chrominance quantization table [1] 
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2.7.2 Quality and Quality Factor (QF) 

Scaling the quantization table of an encoder can change the quality and compression ratio 

of the resultant image. The scale factor applied to the quantization table is called the quality 

factor (QF), and this work focuses on profiling performance when the quality factor is equal to 

0.1 which typically provides a 10:1 compression ratio in an image. Smaller quantization factors 

create more work for encoding steps following quantization, similarly larger quality factors 

result in less work for encoding steps following quantization.  

2.8 Zigzag  

After quantizing a matrix, the elements are read in a zigzag fashion (Figure 2.4) to 

increase the likelihood of a string of zeros [1]. The operation exploits the fact that there is a 

significant chance of higher frequency elements of a given 8-by-8 being zero, allowing for more 

effective compression.  

  

Figure 2.4: Zigzag order [1] 

2.9 AC Coefficient Run-length Encoding  

In JPEG, runs of consecutive zeros are run-length encoded. The zigzagged block is 

converted to a series of bytes [1]. In a given byte, the top 4 bits specify the length of the run of 
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zeros, and the bottom 4 bits are the size of the nonzero value in bits (3 would be 2 bits in size, for 

example). In the event of a negative number, JPEG encodes value without its sign bits in 1’s 

complement format. There are two special bytes reserved, 0xf0 and 0x00. 0xf0 denotes a string 

of 16 zeros with no value to encode after it; this is a ZRL. No more nonzero values are left in the 

block when 0x00 is encoded. For this reason, 0x00 is the EOB or end-of-block signal, and there 

is never a value coded after it. If the last element of an 8-by-8 block is nonzero, an EOB signal is 

not encoded. The first value in an 8-by-8 block is the DC coefficient, which is not run-length 

encoded. 

2.10 DC Coefficient Difference Encoding 

The first element of an 8-by-8 block is the DC coefficient (Figure 2.5), and it is encoded 

differently than the following AC coefficients [1]. The DC coefficient is difference-encoded with 

the previous block's value in the same channel, as described in Equation 2.12 (where PRED is 

the DC coefficient of the previous block and DCi is the coefficient of the current block) [1]. The 

first DC coefficient is encoded as is, given there is no previous block. DC components between 

blocks should be similar in magnitude, and thus difference encoding should leave a smaller value 

to encode into the JPEG. Difference-encoding breaks the block-level parallelism present in the 

previous steps.  

 

Figure 2.5: Differential DC encoding [1] 

 𝐷𝐼𝐹𝐹 = 𝐷𝐶𝑖 − 𝑃𝑅𝐸𝐷 

 

(2.11) 
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2.11 Huffman and Arithmetic Encoding 

2.11.1  Huffman Encoding 

Huffman encoding shortens the length of the more familiar characters in a string while 

increasing the size of the least common characters [1]. The Huffman codes in JPEG are always 

less than or equal to 16 bits but can be as small as 2 bits. The Huffman tables in JPEG specify a 

value of all possible combinations of run-length encoded bytes, except those where the value size 

is greater than 10, as these values are impossible after DCT-II. There are 2 DC coefficient 

Huffman tables and two AC Coefficient Huffman tables. Of the two tables reserved for each of 

these cases, it is possible to assign a color channel to either one in the header, although it is 

typical to set one table to the Y channel and the other to the CbCr channels. Advanced JPEG 

encoders can compute an optimal Huffman table for each color channel for each JPEG; however, 

this inherently takes multiple passes over the data and thus is not recommended for throughput 

reasons. Instead, this work uses the provided standard Huffman tables in the JPEG specification.  

2.11.2  Arithmetic Encoding 

Arithmetic encoding is an advanced encoding technique supported by the JPEG standard 

[1]. However, not many JPEGs use arithmetic encoding as encoding techniques are patentable 

and thus legally barred in some cases. This work does not support arithmetic encoding to avoid 

legal complications and align itself with competing results. 
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Chapter 3  

Background of the KiloCore Platform 

 

Figure 3.1: Die photo of the KiloCore array and core specification information [5]. 

3.1 Overview 

KiloCore represents the 3rd generation of manycore processor architectures from the UC 

Davis VCL laboratory [5]. It contains 697 energy-efficient cores that are all independently 

programable (MIMD). Each of the cores can communicate with its adjacent neighbors using 

dual-clock FIFOs, and when a core is not in use, it can power down independently. In addition, 
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there are 14 memory modules containing 64 KB of memory each; they can host data or 

instructions information. Finally, the chip comprises packet switch routers, a circuit switch 

network, and independent core clock oscillators.   

3.2 Relevant Architectural Highlights 

3.2.1 Core Information 

Each KiloCore core allows for two inputs through 32 x 16-bit FIFOs [5]. Cores can clock 

to 1.78 GHz using 1.1 V regardless of what instructions are issued, and cores are the most energy 

efficient at 1.20 GHz using 0.9 V [5]. Additionally, the cores can reach 2.29 GHz, but only when 

avoiding “critical paths related to ALU carry and zero flags” [20]. Each core allows 128 40-bit 

instructions and 256 16-bit words [5]. It is only possible to get the total 256 words out of the data 

memory if 128 words of the data are entirely independent of the other 128 words of the data. For 

example, if you would like to add two elements to the data memory, they would need to come 

from two different 128 x 16-bit memory banks. The processor may replicate the same data in 

both memory banks to use fewer cycles during a read, sacrificing space in the data memory.  

3.2.2 FIFO Information 

Each core contains two 32 x 16-bit input FIFOs. However, FIFOs slow their operation 

when nearing 24 words to prevent overflows [5]. Only the first 24 writes to the input FIFOs are 

guaranteed to occur without any stalls. If a core needs to transfer a large amount of data to 

another core, sending 24 words to each input FIFO in alternating order is recommended. 

Consequently, the first input FIFO is more likely to be empty before it is written to again.  
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3.3 Programming on KiloCore 

Programming on KiloCore is done using KiloCore assembly, C++, or (under limited 

circumstances) Python. The simulator for KiloCore will compile C++ to LLVM using Clang and 

then convert Clang’s output to KiloCore assembly [5]. As with all compilers, it is essential to 

write C++ code in a manner that the assembly output code is optimized.  

 Specialized pragma codes such as “pragma unroll” are supported and can drastically 

affect performance. The branch predictor can also be influenced by explicitly labeling a 

conditional as unlikely or likely when programming. Branch flags always force the branch 

predictor to assume the branch is taken, increasing performance. 

 Finally, the KiloCore simulator allows the user to change speed and voltage data on the 

process to generate accurate throughput and power information. The simulator reports the time of 

the first output, the final output, the energy used, branch prediction accuracy, core count, and 

total core utilization. The simulator runs with minimal overhead; however, unoptimized 

applications can take a significant time to simulate. 
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Chapter 4  

JPEG Implementation on the KiloCore Platform 

4.1 Overview and Testing 

4.1.1 Overview 

 This chapter showcases 29 working implementations of JPEG encoders on the KiloCore 

platform. Architectural details are outlined for each implementation, including core layout, code 

changes, and drawbacks. All implementations are for 4:4:4 baseline JPEG encoding using the 

sample quantization tables and scaling them based on a provided quality input. Sample JPEG 

tables are used during Huffman encoding. Although all the Huffman and quantization tables are 

replaceable, there are no hardcoding decisions based on the given qualities of these specific 

sample tables. The sample tables focus on algorithmic improvements rather than compression or 

quality considerations. 

4.1.2 Testing 

  

Figure 4.1: Testing block diagram for JPEG implementations, using the PIL Python JPEG library 

as a golden reference 
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Testing for JPEG encoders is challenging due to the loose precision requirement of the 

JPEG specification. Due to this, two accurate JPEG encoders can have different outputs while 

still being compliant. The DCT transform method and precision result in differing outputs 

between JPEG encoders. The PIL Python JPEG library, built on libjpeg, is used as a reference to 

validate KiloCore implementations.  

First, a sample input file is converted to YCbCr and then passed to KiloCore’s DCT-II 

cores, MATLAB’s build in dct2() function, and PIL’s JPEG Encoder [3,6]. PIL’s JPEG 

Encoder’s output is then decoded to the DCT coefficients and provided as input to a MATLAB 

script that compares it with the KiloCore implementation and the MATLAB built-in function 

implementation. A quantization table of all ones avoids additional errors in the decoding process; 

furthermore, the output from KiloCore’s and MATLAB’s functions is rounded as JPEG 

quantization rounds the numbers; thus, comparisons of the rounded outputs have a more 

significant impact on image fidelity. Finally, there is a comparison to see the magnitude and 

frequency of discrepancies between the reference MATLAB built-in DCT-II. Table 4.1 

summarizes the results of the comparisons, showing that KiloCore’s DCT-II computation is 

closer to the reference MATLAB implementation than PIL for the given input. PIL is compliant; 

however, PIL's method used to compute the DCT-II is prone to more rounding errors. 

 KiloCore DCT-II 

Matrix Transform 

Algorithm 

KiloCore 

DCT-II AA&N 

Algorithm 

PIL’s DCT-II 

AA&N 

Algorithm 

Max Error 1 1 1 

Min Error -1 -1 -1 

Average |Error| 0.0063 0.0177 0.0625 

Table 4.1: DCT-II accuracy comparisons 
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This process repeats for both DCT-II algorithms implemented on KiloCore, the matrix 

multiplication method outlined in 2.6.2, and the AA&N method outlined in 2.6.3. Furthermore, 

the decoded PIL output was passed to the remaining KiloCore JPEG cores to confirm that the 

output from KiloCore perfectly matches the output from PIL. Finally, implementations that did 

not change DCT-II algorithms were compared with previous implementations to ensure both 

outputs matched perfectly. The same justifications of compliance stand for all versions. In fact, 

for most versions (sans version 1 and 2), the output should perfectly match the previous version's 

output.  

KiloCore does not support floating point operations, so fixed point 16-bit operations are 

used for the DCT-II transform. However, fixed-point operations create errors between version 1 

of the JPEG encoder and the MATLAB built-in function, even though they use the same matrix 

transformation method to calculate the DCT-II. Although the AA&N fixed point method is not 

as accurate as the fixed-point matrix transformation method, it is the method of choice for most 

implementations because it is significantly faster and the industry standard for JPEG encoders.  

Finally, images used for testing include all exceptional cases (covered in Section 2.9) 

relevant to JPEG: ZRL (sixteen consecutive zeros), EOB (the last value of the 8x8 pixel matrix is 

zero), and no EOB (the last value of the 8x8 pixel matrix is nonzero), ensuring that any image, 

regardless of data, will successfully encode on every encoder version. Images particularly 

challenging due to color depth were also used, for example, an all-white image. RGB to YCbCr 

conversions that fail to remove headroom or footroom are unable to display colors like true 

white. Every JPEG version completes proper color conversion and can show the full-color range.   



22 

 

4.1.3 Relevant Abbreviations 

The following abbreviations are used in future diagrams, and are clarified for the reader’s 

reference: 

• DCTII_p1: The first part of the calculation of the 2-dimensional discrete cosine 

transform (DCT-II) which calculates 1-dimensional discrete cosine transforms 

(DCT) of the eight horizontal rows of pixels within each 8x8 pixel block (Section 

2.6). 

o DCTII_p1a: Same as DCTII_p1, but with only the top four rows. 

o DCTII_p1b: Same as DCTII_p1, but with only the bottom four rows. 

• DCTII_p2: The second part of the calculation of the 2-dimensional discrete cosine 

transform (DCTII) which calculates 1-dimensional discrete cosine transforms 

(DCT) of the eight vertical rows of pixels within each 8x8 pixel block (Section 

2.6). 

o DCTII_p2a: Same as DCTII_p2, but with only the left four rows. 

o DCTII_p2b: Same as DCTII_p2, but with only the right four rows. 

• Quantize_Y/Quantize_CbCr: The element-wise multiply of a given 8x8 pixel 

block with respective quantization tables and proper rounding (Section 2.7). 

• RLE: Run-length encoding a given 8x8 pixel block (Section 2.9). 

• Huffman_Y/Huffman_CbCr: Huffman encoding (Section 2.11) and difference 

encoding a given 8x8 pixel block (Section 2.10). 

• Organizer/Organizer_i/Organizer_h: Concatenates the variable length bit streams 

into one final output. 

• Header: Outputs the JPEG header before the image data (Section 2.3). 
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• Zigzag: Performs the zigzag operation (Section 2.8) on a given 8x8 pixel block. 

• Compress_Y/Compress_CbCr: Concatenates entropy codes into a single bit 

stream for a given 8x8 pixel block. 

• Encode_Y/Encode_CbCr: Performs run-length encoding (Section 2.9), Huffman 

encoding (Section 2.11), and difference encoding (Section 2.10) on a given 8x8 

pixel block. 

• Quantize_zigzag_Y/Quantize_Zigzag_CbCr: Performs both quantization 

operations (see Quantize_Y/Quantize_CbCr) and zigzags the given 8x8 pixel 

block (see ZZ). 

o Quantize_Zigzag_Y_p1/Quantize_Zigzag_CbCr_p1: same as 

Quantize_Zigzag_Y/Quantize_Zigzag_CbCr, but only operates on the 

even matrix indexes of a given 8x8 pixel block. 

o Quantize_Zigzag_Y_p2/Quantize_Zigzag_CbCr_p2: same as 

Quantize_Zigzag_Y/Quantize_Zigzag_CbCr, but only operates on the odd 

matrix indexes of a given 8x8 pixel block. 

• RGB-2-Y/RGB-2-Cb/RGB-2-Cr: Performs RGB to YCbCr conversion to the 

respective channel (Section 2.5). 

• Sizer: computes the length in bits of run-length encoded codes. 

• Color_Pass: Distributes 8x8 pixel blocks amongst the proper pipelines. 

• Pass: Funnels bit streams from pipelines to the organizer core(s) in the proper 

order 

• Chain: Serves as a buffer 
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• Byte_Stuff/Byte_Stuff_p1/Byte_Stuff_p2: Inserts 0x00 bytes when a 0xff byte is 

naturally encountered in the output stream to remain complaint with the JPEG 

standard. 

 

4.2 JPEG Encoder Version 1 

 

Figure 4.2: JPEG Encoder Design 1 

The first implementation of the JPEG encoder focused on functionality over performance. 

It uses the least number of cores within reason. Quantize_CbCr and Quantize_Y are the 

quantization cores for their respective color channels. They pipeline the quantization process as 

one KiloCore core cannot fit both quantization tables and allow for rounding intermediates.  

The DCT-II cores are divided into two parts as KiloCore cannot store an 8-by-8 matrix 

and the output of both matrix multiplications without running out of space. It can, however, store 

the input 8-by-8 matrix and then output the matrix after one matrix multiplication. Furthermore, 

multiple iterations of the DCT-II cores exist to extract the most precision from the operation. 

Initially, the signed 8-bit input multiplies a fixed point s0.15 value from the matrix multiplication 

and then truncates back down to s15.0 so that KiloCore could pass the data to the following core 

in one cycle. After realizing the possible output range for the DCT-II multiplication could yield 

only 9-bit numbers before the decimal point, the next generation truncated to s9.6 before entering 
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part two. These values were then multiplied by s0.14 values of the transformation matrix (to 

prevent overflow) and turned into s11.4 outputs for quantization. Finally, cores are updated to 

include rounding. Rounding is done by Equation 4.1, where “z” is the value to be rounded, 

“LSB” is the value of the least significant bit after the decimal point, and “truncate” removes all 

bits after the decimal [7]. The special case z = xx…x.100…0 means the value after the decimal 

point has a 1 in the most significant position and zeros everywhere else. This rounding method is 

unbiased. 

 

round(𝑧) = {
truncate (𝑧 +

1

2
𝐿𝑆𝐵 − 1) , 𝑧 < 0 and 𝑧 = xx… x. 100…0

truncate (𝑧 +
1

2
𝐿𝑆𝐵) , otherwise

 

 

(4.1) 

 Quantization occurs in the Quantize_CbCr and Quantize_Y blocks (Figure 4.2). 

Quantize_CbCr comes first to allow the Y channel to pass through it and compute the 

quantization concurrently with the Cb channel. Next, the two cores are separated to store the full 

8-by-8 sample quantization table provided by the JPEG specification and intermediate values 

needed in rounding without overflowing the data memory. Quantization uses the same rounding 

method described in Equation 4.1. 

 The RLE block in Figure 4.2 is the run-length encoding core. It handles both run-length 

encoding and zigzagging. It uses an algorithm that computes the following value to read from the 

input 8-by-8 matrix based on the previous value read. It then generates the run-length codes, 

combines them with the value size to be encoded as described in the JPEG specification, and 

sends both the code and value to be Huffman encoded in the following core. 

 Huffman encoding happens in Huffman_Y and Huffman_CbCr (Figure 4.2). The Y and 

CbCr channels have their own core for Huffman encoding to fit their respective Huffman tables 

into data memory. Although the name mentions only AC, DC difference-encoding occurs in 
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these blocks. The codes are sent to the following core once the Huffman code is found from the 

look-up table. 

 Organizer (Figure 4.2) is the only core not explicitly discussed or highlighted in the JPEG 

specification. It combines each channel's variable length bit streams into one-bit stream. 

Huffman_Y and Huffman_CbCr cannot do this without knowing the output of each other’s 

cores; therefore, Organizer handles this. The last input into the design is always 0x8000, which is 

an unachievable output for all cores, signaling them to pass that value to the next core without 

processing. This value then ends at Organizer to allow the last byte in the image to be stuffed.  

Finally, the header core takes the size of the image as an input. It outputs the 

corresponding header of the image before passing all outputs from the organizer directly to the 

output. All outputs are one byte wide in this design.  

4.3 JPEG Encoder Version 2 

Version 2 uses JPEG Encoder Design 1 (Figure 4.2) but replaces the DCT-II matrix 

transformation algorithm with the AA&N DCT-II algorithm. Fixed point s1.14 format values 

represent the five constants in the AA&N algorithm, and the output of part one of the 

transformation is s10.2, and the output of part two of the transformation is s13.2. s10.2 is used 

instead of s10.5 to prevent 32-bit operations from happening in part two of the transform to 

balance the pipeline better. The accuracy numbers in part 4.1.2 reflect this choice.  

Minimizing the number of cycles it takes to read in an input, the KiloCore architecture 

uses address generators. Likewise, writing values to the output of the cores also uses address 

generators [5].  
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4.4 JPEG Encoder Version 3 

Version 3 uses JPEG Encoder Design 1 (Figure 4.2) and the previous changes from 

version 2. Version 3 is the first of many cores to push work upstream away from the organizer 

core to prevent the anticipated bottleneck. At this point in development, the goal was to 

parallelize the channels of the JPEG encoder; however, that would prove ineffective with how 

much work the organizer core currently does. It was suspected that the organizer core would 

create a significant bottleneck negating any performance benefits from parallelizing the channels.  

The organizer core no longer calculates the size of the AC Huffman or DC Huffman 

codes but instead it passes that information in the following input from either Huffman_Y or 

Huffman_CbCr. As a result, the naïve size algorithm is O(n), creating a significant delay in the 

organizer core. By moving it upstream, the eventual parallelization of the channels helps 

minimize this delay.  

4.5 JPEG Encoder Version 4 

 

Figure 4.3: JPEG Encoder Design 2 

Version 4 is the first core to use JPEG Encoder Design 2 (Figure 4.3). Version 4 includes 

all the updates of version 3 while also pulling the zigzag task out of the RLE core and placing it 

in its own separate ZZ core. In addition, the zigzag algorithm now reorganizes the input data on-
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the-fly, storing a minimal amount before writing it back to the input. By skipping index 

calculations on the zigzag process and not keeping any unnecessary values in the zigzag core, the 

overall throughput is expected to increase.  

4.6 JPEG Encoder Version 5 

Version 5 uses JPEG Encoder Design 2 (Figure 4.3) and builds upon improvements 

present in Version 4. Although simple, Version 4 updates the rounding algorithm in the DCT-II 

and quantization cores by removing one comparison per round. Previously the two conditions in 

Equation 4.1 were checked separately, but now one logical and comparison and equivalency 

check handles both conditions simultaneously.  

4.7 JPEG Encoder Version 6 

Version 6 uses JPEG Encoder Design 2 (Figure 4.3). In addition to Version 5’s rounding 

fixes, Version 6 increased the word width of the organizer core’s output to 16 bits. Therefore, 

minimizing the number of times the organizer core needs to write to its output and helping 

relieve the future anticipated bottleneck. 

4.8 JPEG Encoder Version 7 

 

Figure 4.4: JPEG Encoder Design 3 
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Version 7 is the first core to parallelize the color channels of the input using JPEG 

Encoder Design 3 (Figure 4.4). As a result, there is no dependency between color channels 

besides the need to concatenate the bit streams in the correct order. This fact allows the three 

independent color channels to be parallelized.  

Pass_0 and Pass_1 are added to the design to aid with passing one block at a time to each 

of the channel’s pipelines. The top track is reserved for Y, the middle channel for Cb, and the 

bottom for Cr.  

The quantization cores have been updated to no longer anticipate a two-stage 

quantization process. Instead of six total cores from scaling up, there are only three for this 

reason. Similarly, the RLE core is updated to output everything to the same output channel. A 

single Huffman_CbCr core combines the CbCr channels before the organizer core as they are 

likely easier to merge due to the chrominance quantization table’s values being larger on average 

than the luminance quantization table’s values, saving a passer core that would be needed if there 

was a second Huffman_CbCr core as every core can have only two inputs.  

4.9 JPEG Encoder Version 8 

 

Figure 4.5: JPEG Encoder Design 4 
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Version 8 was the first version to use JPEG Encoder Design 4 (Figure 4.5), the same as 

Design three but with RGB conversion built in. The RGB conversion cores each read three 

values of RGB, convert them into an s7.0 rounded color value of their respective channel, and 

pass it to the following core. Each of these cores uses fixed-point arithmetic in the conversion 

but still follows Equation 2.1, Equation 2.2, and Equation 2.3.  

The RGB core that handles the Y channel conversion passes one block of output (3 x 64 

words) downward to the Cb channel before processing that same block. The Cb channel does the 

same for the Cr channel, and the Cr channel processes only the block. Each RGB core needs to 

process 192 words to create an 8-by-8 block for its output.  

4.10 JPEG Encoder Version 9 

 

Figure 4.6: JPEG Encoder Design 5 

 Version 9 uses JPEG Encoder Design 5 (Figure 4.6), which replaces RLE with 

Entropy_Y and Entropy_CbCr. In addition, Compress replaces Huffman_Y and Huffman_CbCr. 

The entropy cores handle both run-length and Huffman encoding. These cores are designated by 

color channel to allow the entire Huffman encoding table of a respective channel to fit inside the 

data memory (similar to why Huffman_Y and Huffman_CbCr were separated). The entropy 

encoding cores dump Huffman codes, Huffman code sizes, values, and value sizes to the 

compression cores.  
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 The compression cores compress the output of the entropy cores into variable-length bit 

streams—the bit streams output 16 bits at a time to the organizer core. When a new block arrives 

at the compressor cores, the compressor cores dump the rest of the bit stream along with the 

number of valid bits. Consequently, the organizer core knows when the next block is coming. At 

times it outputs an empty bit stream as its last output and a size of zero; this is required to avoid 

the case where the last bit stream is 16-bits long and therefore indistinguishable as the bitstream 

ending. The compressor cores are separated by channel to handle their individual channels to 

support exceptional Huffman cases (EOB and ZRL are covered in Section 2.9). 

 Finally, the organizer core covers 2 cases: the incoming bitstream has no offset and needs 

to be routed to the output, and the incoming bitstream has and offset and needs to combine the 

current word with the previous 16-bit word before rounding to the output. Future bottlenecks are 

avoided as much as possible; each case uses the fewest operations possible. 

 Case one, the no offset case: 

1. Reads the input value. 

2. Reads the input values size. 

3. Checks if the size is still 16 (not the EOB). 

4. Writes the value to the output. 

Case two, the offset case: 

1. Reads the input value. 

2. Reads the input values size. 

3. Checks if the size is still 16 (not the EOB). 

4. Shifts the previous value over until only its unwritten valid bits are available. 

5. Shifts the current value over to fill the rest of the previously shifted value. 
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6. Performs a bitwise OR to combine the values. 

7. Writes the output value. 

8. Saves the new output value as the old. 

4.11 JPEG Encoder Version 10 

Version 10 uses the same design as Version 9 (Figure 4.6), except the task of deciding the 

size of the Huffman AC code is passed to the compress cores instead of the entropy cores to help 

balance the pipelines to handle high amounts of data better. 

4.12 JPEG Encoder Version 11 

 

Figure 4.7: JPEG Encoder Design 6 

Version 11 uses JPEG Encoder Design 6 (Figure 4.7). It scraps the changes of Version 10 

and elects to combine zigzag and Quantization instead. Theoretically, this helps reduce the 

number of cores without affecting bandwidth, as zigzagging and quantization are relatively small 

pipeline operations. 
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4.13 JPEG Encoder Version 12 

 

Figure 4.8: JPEG Encoder Design 7 

Version 12 uses JPEG Encoder Design 7. It scraps the changes from Version 10 and 11 

and combines zigzagging and entropy encoding into the same core. One of the most expensive 

operations in entropy encoding is getting the value size and code; that operation is now moved to 

its independent core to help balance the pipelines. 

The new sizing algorithm has a time complexity of O(log(n)) but had to do additional 

checks for edge cases, so the total amount of operations was closer to 18--dramatically down 

from the 32 operations that were possible in the worst case using the previously implemented 

O(n) algorithm. 

4.14 JPEG Encoder Version 13 

 

Figure 4.9: JPEG Encoder Design 8 
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Version 13 uses JPEG Encoder Design 8 (Figure 4.9). The main difference of this design 

is that it gives the zigzag operation its own core. Furthermore, Version 13 builds upon Version 

12 by adding a more efficient size calculation algorithm to the sizer core. Luckily, there is a 

built-in leading zero-counting instruction in KiloCore’s ISA. The LSDU instruction takes an 

unsigned input and returns how many leading zeros the number contains; however--due to a 

hardware oversight—it returns 0 when the input is 0 (instead of 16). Consequently, it takes one 

check, one LSDU instruction, and one subtraction to determine the size of a word. With this 

change, the size check algorithm is down from O(log(n)) to O(1).   

Additionally, optimizations are made to the compressor core to help alleviate any 

pipeline imbalance from a particularly noisy image. The compiler can optimize the compressor 

core better since the central helper subroutine is now in-line. 

4.15 JPEG Encoder Version 14 

Version 14 returns to JPEG Encoder Design Version 5 (Figure 4.6), favoring the core 

savings over further balancing and the pipelines.  

4.16 JPEG Encoder Version 15 

Version 15 follows Version 14’s lead by combining quantize and zigzag to form JPEG 

Encoder Design 6 (Figure 4.7). Preliminary performance numbers detailing the pipelines’ most 

prolonged delay come from DCT-II, motivating the additional core savings to combine quantize 

and zigzag yet again. 
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4.17 JPEG Encoder Version 16 

 

Figure 4.10: JPEG Encoder Design 6, N pipelines per channel 

 Version 16 uses JPEG Encoder Design 6, scaled to 2 pipelines per channel (Figure 4.10). 

The design has three inputs, each carrying the same data, to increase the bandwidth of the input 

port. This design marks the first to scale the number of pipelines per channel, and with that came 

algorithmic changes to the QZ and Entropy cores. 
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 Since DC difference encoding depends on the previous block’s value, the Entropy core 

now passes its DC coefficient downward to the following pipeline. This process recurses until 

the last pipeline passes the DC coefficient back to the QZ core and the first pipeline for the 

channel. The DC coefficient cannot pass back up through the Entropy cores as they already have 

two inputs. 

 A Python algorithm automatically generates the Color_Pass cores (Figure 4.10). The 

cores move data from the input and evenly distribute a JPEG processing block’s worth of data (3 

x 64 words, RGB input). Similarly, the Pass cores (Figure 4.10) collect the processed blocks and 

route them to the organizer core to ensure that bitstreams concatenate serially.  

4.18 JPEG Encoder Version 17 

Version 17 uses JPEG Encoder Design 6, scaled to 4 pipelines per channel (Figure 4.10). 

This design reflects no other notable changes. 

4.19 JPEG Encoder Version 18 

Version 18 uses JPEG Encoder Design 6, scaled to 8 pipelines per channel (Figure 4.10). 

This design reflects no other notable changes. 

4.20 JPEG Encoder Version 19 

Version 19 uses JPEG Encoder Design 6, scaled to 16 pipelines per channel (Figure 

4.10). This design reflects no other notable changes. 
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4.21 JPEG Encoder Version 20 

 

Figure 4.11: JPEG Encoder Design 6, N pipelines per channel, M input buffers 

Version 20 uses JPEG Encoder Design 6, 8 pipelines per channel, with four input buffers 

(Figure 4.11).  KiloCore FIFOs hold 32 words before forcing the output of the providing core to 

stall. Stalling FIFOs can become an issue in the Color_Pass cores as they need to distribute 192 

inputs to the RGB converter cores. The RGB converter cores cannot process all 192 inputs fast 

enough not to stall and prevent the other pipelines from working. Since there are 192 inputs, 6 

FIFOs are needed to completely store an entire block for processing without needing to stall. For 

this reason, Version 20 adds four input buffers in front of the RGB converter cores. Combined 

with the input FIFOs of the Color_Pass and RGB convert cores, this totals the needed 6 FIFOs.  

Similarly, Version 20 adds an output buffer to the end of each pipeline to ensure that a 

pipeline would not stall due to the organizer not being able to process data fast enough. The 
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average 8-by-8 block does not produce more than 64 words to its output. Therefore, the input 

buffer of the Pass cores and the added output buffer adequately address the bandwidth limitation.  

4.22 JPEG Encoder Version 21 

Version 21 uses JPEG Encoder Design 6, with 16 pipelines per channel and four input 

buffers (Figure 4.11). This design reflects no other notable changes. 

4.22 JPEG Encoder Version 22 

 

Figure 4.12: Pre-Organizer block diagram 

 Version 22 uses the same design as Version 20, with a new Pre-Organizer stage appended 

at the end (Figure 4.12). The algorithm that handles switching between two bitstreams takes 
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more operations than handling words within the same stream. The new pre-organizer stage 

allows 24 bitstream combinations to have the same operations as two. Each Organizer_i core 

combines three bitstreams of the same block (for each channel), and the Organizer_h blocks 

further consolidate these bitstreams into one.  

 Pass cores now target one block at a time, eliminating the need for buffer cores in the pre-

organizer stage.  

4.24 JPEG Encoder Version 23 

   

Figure 4.13: JPEG Encoder Design 9  

 Version 23 revisits the basic JPEG pipeline design for rebalancing (Figure 4.13). The 

DCT-II now uses four pipeline stages to complete the operations to minimize the bottleneck on 

lower-quality images. DCTII_p1 handles column-wise DCT-II operations, whereas DCTII_p2 

handles row-wise DCT-II operations. DCT_p1a handles the first four columns, and DCT_p1b 

handles the last four. Similarly, DCT_p2a handles the first four rows, and DCT_p2b handles the 

last four rows. The cores that handle the first half of each block are farther in the pipeline to 

allow simultaneous processing with the last half of each block.  
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4.25 JPEG Encoder Version 24 

 

Figure 4.14: JPEG Encoder Design 9, N pipelines per channel, M input buffers 

Version 24 uses JPEG Encoder Design 9 but scales up to 8 pipelines per channel with one 

input buffer (Figure 4.14). Although FIFOs can carry up to 32 words in KiloCore, they start to 

slow down after 24 to prevent overfilling. Color_Pass cores have been updated to write to their 

sequential core across both input buffers 24 words at a time to avoid this. When the core returns 

to the original input buffer to write, the data will be sufficiently removed to write another 24 

words. Not only does this prevent stalling—the design never violates the reserve space in the 

FIFO—but we also effectively get 48 words per input buffer core.  

RGB conversion is also updated to serve across both its input FIFOs. Consequently, in 

addition to performing the conversion operation, the core also serves as an additional buffer 

before the DCT cores. These three cores now allow for 144 words of buffer space. This design 

relies on the RGB converter being fast enough to process 48 words without stalling the previous 
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input buffers (as 192 words need to be processed to unblock the processing for the next pipeline 

in the chain.  

4.26 JPEG Encoder Version 25 

Version 25 uses the same JPEG Encoder Design 9, scaled to 8 pipelines per channel, with 

one input buffer. In addition, it innovates Version 24 by improving the DCT algorithm to use its 

two input FIFOs to help ensure an entire block can be stored in the FIFOs, avoiding any stalls.  

4.27 JPEG Encoder Version 26 

 

Figure 4.15: JPEG Encoder Design 10 

Version 26 uses JPEG Encoder Design 10 (Figure 4.15). Almost every core in this design 

uses a new on-the-fly philosophy. Storing any data in a core takes additional unneeded 

processing, so every algorithm instead (where possible) processes all data without storing 

anything. Notable exceptions are the zigzag process where storing needs to take place.  

All 4 DCT cores previously held 32 words before starting computation. During the 

column-wise DCT-II, this was particularly taxing due to the amount of uncoalesced reads and 

writes required in column-wise operations. Programming all data to be processed as it comes in 

leads to better compiler optimizations as it removes the loops used to store and save data. The 

DCT-II cores unroll all loops. 

After initial performance numbers boomed from removing all loops in DCT-II cores, the 

quantization and zigzag cores unroll all loops with #pragma unroll. However, the quantize core 
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was still delayed, so it now shares its work with the previously named zigzag core. Now 

Quantize_Zigzag_p1 and Quantize_Zigzag_p2 accomplish a pipelined quantization and 

zigzagging of the block.  

Entropy and Compression were both updated to remove all unneeded operations further. 

Consequently, the Entropy core partially unrolls the run-length encoding loop present in the 

Entropy core. A corner case exists where the Entropy core needs to check if it has counted more 

than 16 zeros in a row, as that would require inserting a 0xf0 byte. Still, that check only comes 

after passing through the 16 unrolled iterations and being sent to a nearly identical loop 

containing a said check. Consequently, blocks that do not have a run of 16 zeros can accelerate 

their performance by skipping 64 operations and blocks that can save at least 16 operations (and 

likely more).  

Compression was initially written to append the entropy codes on the end of a 32-bit 

word until there were 16 valid bits to write to the output. Then, the 32-bit word would be shifted 

to find what bits to write and cleared of those bits. 32-bit operations are particularly taxing on 

KiloCore, a 16-bit data path architecture. Therefore, something as simple as a 32-bit shift can 

take multiple operations. Instead of using a 32-bit word to track the currently unwritten bits, a 

16-bit value is now used. In an overflow, the bottom 16 bits are written to the output while the 

extra bits replace the “unwritten bits” value. Functions are also made inline to further increase 

compiler optimizations. 

This pipeline is balanced to handle better the typical quality setting of the JPEG encoder, 

rather than the previous balance that served unrealistically high qualities. Finally, nearly all cores 

(besides the RGB converter core, as it has to light of a workload) have a similar delay with this 

design.  
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4.28 JPEG Encoder Version 27 

 

Figure 4.16: JPEG Encoder Design 10, N pipelines per channel, M input buffers 

Version 27 scales Version 26 to 8 pipelines per channel, with two input buffers (Figure 4.16). 

Additionally, Version 27 adds input buffers to ensure an entire block can be stored without 

depending on the RGB converter’s delay. With Color_Pass, two input buffers, and the RGB 

converter, there are now eighter 24-word FIFOs being used to store the entire 196-word block. 
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4.29 JPEG Encoder Version 28 

 

Figure 4.17: JPEG Encoder Design 10, N pipelines per channel, without RGB conversion 

Version 28 removes RGB conversion and the necessary input buffers from Version 27 

(Figure 4.17). Version 28 gives an alternative design to cases where input data is already in 

YCbCr format. Furthermore, it was impossible to simulate the complete performance 

characteristics of Version 27 due to a lack of input bandwidth (to be discussed in Chapter 5). 

4.30 JPEG Encoder Version 29 

Version 29 scales Version 28 to 16 pipelines per channel (Figure 4.17). This design 

reflects no other notable changes. 
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Chapter 5  

Simulation Results of JPEG Implementations 

5.1 Overview 

 Chapter 5 compares throughput, throughput per area, power, energy per megapixel 

encoded, and energy-delay product among the 29 implementations introduced in Chapter 4. 

These metrics show the benefits and disadvantages of different implementations. 

 All metrics vary between different quality factors and images due to the nature of JPEG 

encoding. For this reason, five different quality levels were tested to profile every version. 

Quality factor of zero is a worst-case scenario where the quantization table is wholly composed 

of ones. Furthermore, a quality factor of zero is not a realistic scenario as other encoding 

standards handle higher quality encoding better, whereas JPEG encoding trades image fidelity 

for compression. The higher the compression, the less load there is on the entropy, compression, 

and organizer cores, allowing higher throughput. Quality factor 0.1 gives a reasonable high-

fidelity image benchmark of the design. While still demonstrating the performance penalty that 

comes with higher levels of quality, quality factor 0.1 better showcases JPEG encoders' 

strengths. Quality factors 0.1667, 0.5, and 1 represent a range of qualities to demonstrate how 

metrics change over different quality factors and how the relationship is not linear. Quality factor 

changes are not linearly proportional to compression changes; therefore, quality factor changes 

are not linearly proportional to the profiled metrics. Most designs industry designs are 

benchmarked at quality factor 0.1, and JPEG encoders are most used between quality factor 0.1 

and 0.5. 
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 Three test images were chosen (all 1240 x 960 pixels), and the metrics are averages 

between the three test images. libjpeg-turbo’s testing also includes these test images and a 

quality factor of 0.1. These images (Figures 5.1 to 5.3) are more accessible to outside design 

comparisons and have below-average encoding times [8]. While the encoding times are below 

average, they are not corner cases; their results are relatively close to average picture results. 

Generally, images with higher frequency 8-by-8 pixel blocks have longer encoding times. 

 Throughput was calculated using Equation 5.1: 

 
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =

(# 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠) ∗ 220

𝐷𝑒𝑙𝑎𝑦
 (5.1) 

   

Average throughput was computed using Equation 5.2, where N is 3 for the three images: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
1

𝑁
∑𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑛

𝑁

𝑛=0

 

 

(5.2) 

Average power was calculated using Equation 5.3, where N is 3 for the three images: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 =  
1

𝑁
∑𝑃𝑜𝑤𝑒𝑟𝑛

𝑁

𝑛=0

 (5.3) 

   

 Energy per megapixel encoded was calculated using Equation 5.4: 

 
𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑀𝑒𝑔𝑎𝑝𝑖𝑥𝑒𝑙 𝐸𝑛𝑐𝑜𝑑𝑒𝑑 =  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
 

 

(5.4) 

 Throughput per area was calculated using Equation 5.5, where 0.05545 is the number of 

square millimeters per core on the KiloCore chip fabricated at 32nm [5]: 

 
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑝𝑒𝑟 𝐴𝑟𝑒𝑎 =  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

# 𝑜𝑓 𝐶𝑜𝑟𝑒𝑠 ∗ 0.05545 
mm2

core

 

 

(5.5) 

 Energy-delay product was calculated using Equation 5.6: 

 
𝐸𝑛𝑒𝑟𝑔𝑦-𝑑𝑒𝑙𝑎𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 =

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑀𝑒𝑔𝑎𝑝𝑖𝑥𝑒𝑙

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
 (5.6) 
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Figure 5.1: “vgl_6548_0026.ppm” encoded using quality factor 0 [8] 
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Figure 5.2: “vgl_6434_0018.jpeg” encoded using quality factor 0 [8] 

 

Figure 5.3: “vgl_5674_0098.jpeg” encoded using quality factor 0 [8] 
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5.2 Throughput Analysis  

 The following section discusses how throughput changes throughout the implementations 

and quality levels. As described in section 5.1, three images determine the average throughput of 

the design. However, these images have above-average complexity to encode; therefore, other 

more straightforward images yield higher than average throughput. Throughput values were 

taken directly from the KiloCore simulator’s output. 

 

Figure 5.4: Throughput versus version number (1.2 GHz @ 0.9V) 
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Figure 5.5: Throughput versus version number (1.78 GHz @ 1.1V) 

Figure 5.4 and Figure 5.5 graph the throughput of the various implementations with 

different quality factors. As expected, the general trend shows upward throughput JPEG 

implementations innovate the encoding process. A notable exception is Version 26, as it was a 

single pipeline implementation that laid the groundwork for Versions 27, 28, and 29. Version 27 

is faster than Version 28 due to the increased input bandwidth, not the exclusion of the 

RGB2YCbCr core. The workload of the RGB2YCbCr core is not the bottleneck of Version 27.  

Increasing the clock speed has a proportional increase in throughput, showing the design 

scales with clock speed. This trend should hold indefinitely, so long as the clock speed increases 

are level across all cores. If not, increases to the bottleneck cores (DCT for low qualities, 

compress/entropy/organizer for higher qualities) result in the most significant speedups.  

Higher quality factor values result in higher levels of throughput, and vice versa. This is 

due to the greater amount of non-zero data to encode, and more work for the entropy, 
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compression, and organizer cores when encoding with lower quality factor values. The best-case 

result for throughput was 286 MP/s for the quality factor set to 0, while 1.332 GP/s for the 

quality factor set to 1. Quality factor zero is an extreme case, so it is not representative of the 

average encoder experience, whereas quality factor 0.1 is a far more realistic test case. By 

slightly increasing the quality factor, throughput is increased to 549 MP/s, showing a non-linear 

relationship between the quality factor and throughput.  

Version 1 sees no difference between quality factors as the bottleneck is the DCT-II 

operation. DCT-II’s workload does not depend on quality factor.  

5.3 Power Analysis 

The following section discusses how power changes throughout the implementations and 

quality levels. As described in section 5.1, three images determine the average power of the 

design. Power values were taken directly from the KiloCore simulator’s output. 
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Figure 5.6: Average power versus version number (1.20 GHz @ 0.9 V) 
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Figure 5.7: Average power versus version number (1.78 GHz @ 1.1 V) 

 The general trend between versions within the same quality factor is the same in Figures 

5.6 and 5.7. An interesting side effect of increased throughput (and thus decreased delay) is 

increased power consumption as the quality factor increases. Therefore, the compression factor is 

getting larger, and so is the power. 

 Implementation 29 (1.78 GHz @ 1.1V) has the highest power of the group (9.26W when 

the quality factor is 1), likely due to it having the most throughput and high core usage. On the 

other hand, Version 1 (1.2 GHz @ .9V) has the lowest power usage at .2093 W (when the quality 

factor is 1). Lower power usage is not necessarily positive, as version one runs significantly 

longer than Version 29. In the next section, we explore energy per megapixel encoded to better 

understand the most energy-efficient design.  
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5.4 Energy per Megapixel Encoded Analysis 

The following section discusses how energy per megapixel encoded changes throughout 

the implementations and quality levels. As described in section 5.1, three images determine the 

average energy per megapixel encoded of the design. 

 

Figure 5.8: Energy per megapixel encoded versus version number (1.20 GHz @ 0.9 V) 
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Figure 5.9: Energy per megapixel encoded versus version number (1.78 GHz @ 1.1 V) 
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whereas the runtime of Version 1 is 4.2x longer than Version 2. Relatively constant power over a 

longer period of time equates to more energy per megapixel encoded. Version 2 goes from 512 

to 40 multiplies and 448 to 232 additions, explaining the runtime and efficiency difference.  

5.5 Throughput per Area Analysis 

The following section discusses how throughput per area changes throughout 

implementation and quality levels. As described in section 5.1, three images determine the 

average throughput per area of the design. 

 

Figure 5.10: Throughput per area versus version number (1.20 GHz @ 0.9 V) 
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Figure 5.11: Throughput per area versus version number (1.78 GHz @ 1.1 V) 
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pipeline version later scaled up in Version 26 through 29. Version 26 achieves 61.61 

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Th
ro

u
gh

p
u

t/
A

re
a 

 (
M

P
/(

s*
m

m
^2

))

Version Number

Throughput Per Area vs. Version Number (1.78 GHz @ 1.1 V)

QF = 0 QF = 0.1 QF = 0.1667 QF = 0.5 QF = 1



58 

 

MP/(s*mm2) using quality factor 1, whereas the least area-efficient design, Version 1 (1.20 GHz 

@ 0.9V), only achieves 2.45 MP/(s*mm2) with the same quality factor. 

Version 1 sees no difference between quality factors as the bottleneck is the DCT-II 

operation. DCT-II’s workload does not depend on quality factor.  

5.6 Energy-Delay Product 

The following section discusses how energy-delay product changes throughout 

implementation and quality levels. As described in section 5.1, three images determine the 

average throughput per area of the design. 

 

Figure 5.12: Energy-delay product versus version number (1.20 GHz @ 0.9 V) 
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Figure 5.13: Energy-delay product versus version number (1.78 GHz @ 1.1 V) 

Energy delay product across all versions and quality factors is plotted logarithmically in 

Figures 5.12 and 5.13. Energy delay product trends downward throughout the version-to-version 

innovations but is lowest at Version 29 (1.2 GHz @ 0.9 V) at 0.0050 mJ*s/(MP2) for quality 

factor 1. The energy-delay product is worse for Version 1 (1.78 GHz @ 1.1V), coming in a 

146.2549 uJ*s/(MP2) using the same quality factor.  

Energy delay product varies slightly between 1.2 GHz and 1.78 GHz implementations of 

the same version, but typically 1.2 GHz comes out slightly lower. In Version 29 specifically, the 

1.2 GHz version (using quality factor 1) comes in .2 mJ*s/(MP2) lower.  
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5.7 Energy per Megapixel Encoded vs. Area per Throughput Analysis 

 

Figure 5.14: Energy per megapixel encoded versus area per throughput (QF = 0) 

 

Figure 5.15: Energy per megapixel encoded versus area per throughput (QF = 0.1) 
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Figure 5.16: Energy per megapixel encoded versus area per throughput (QF = 0.1667) 

 

Figure 5.17: Energy per megapixel encoded versus area per throughput (QF = 0.5) 
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Figure 5.18: Energy per megapixel encoded versus area per throughput (QF = 1) 

Energy per Megapixel Encoded vs. Area per Throughput (Figures 5.14 through 5.18) 

show the tradeoff between low energy and high throughput per area across the 29 versions of 

JPEG encoders. It is more desirable for a version (denoted by a labelled data point) to be closer 

to the origin as this denotes a low energy high throughput per area design. Versions 26 and 28 

consistently fall closer to the origin, while Version 1 is too far to be plotted on all charts.  

Versions at 1.78 GHz balance energy per megapixel encoded and area per throughput 

better (closer to the origin) at higher quality factors, while versions at 1.2 GHz have a better 

balance at lower quality factors but tend to not surpass 1.78 GHz versions.  
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Version 
Number 

Quality = 0 

Area 

(mm^2) 

1.2 GHz @ 0.9V 

Average 

Throughput 

(MP/s) 

Average 

Power (W) 

Energy per 

Megapixel 

Enc. (mJ/MP) 

Throughput per 

Area 

(MP/(s*mm^2)) 

Energy-Delay 

Product 

(mJ*s/(MP^2)) 

1 0.4991 1.2210 0.2126 174.0958 2.4466 142.5849 

2 0.4991 4.5644 0.2156 47.2447 9.1462 10.3507 

3 0.4991 5.3416 0.2205 41.2739 10.7036 7.7268 

4 0.5545 5.4715 0.2133 38.9787 9.8674 7.1240 

5 0.5545 5.5802 0.2132 38.2053 10.0634 6.8466 

6 0.5545 5.9318 0.2141 36.0976 10.6975 6.0855 

7 1.1090 10.8123 0.2542 23.5080 9.7496 2.1742 

8 1.1645 10.2504 0.2542 24.7954 8.8028 2.4190 

9 1.3863 14.7857 0.2863 19.3625 10.6660 1.3095 

10 1.3863 13.4430 0.2762 20.5463 9.6974 1.5284 

11 1.2199 14.6638 0.2881 19.6471 12.0205 1.3398 

12 1.3863 15.0060 0.2949 19.6502 10.8249 1.3095 

13 1.5526 16.4349 0.2901 17.6497 10.5854 1.0739 

14 1.3863 16.4039 0.2880 17.5548 11.8333 1.0702 

15 1.2199 16.3470 0.2901 17.7435 13.4003 1.0854 

16 2.8834 30.1579 0.4030 13.3622 10.4591 0.4431 

17 5.8777 42.6734 0.5302 12.4253 7.2602 0.2912 

18 11.8663 47.2878 0.6178 13.0636 3.9851 0.2763 

19 23.8435 49.2760 0.7130 14.4692 2.0666 0.2936 

20 14.5834 84.0618 0.9458 11.2508 5.7642 0.1338 

21 37.2070 102.4844 1.3429 13.1031 2.7544 0.1279 

22 22.1246 119.0326 1.3392 11.2510 5.3801 0.0945 

23 1.5526 22.6370 0.3398 15.0108 14.5801 0.6631 

24 16.9677 106.0952 1.1880 11.1976 6.2528 0.1055 

25 16.9677 108.0474 1.1971 11.0796 6.3678 0.1025 

26 1.7190 46.8120 0.4007 8.5604 27.2329 0.1829 

27 19.6293 159.8874 1.2993 8.1262 8.1453 0.0508 

28 15.6369 181.4568 1.2024 6.6262 11.6044 0.0365 

29 30.2757 193.0376 1.4377 7.4479 6.3760 0.0386 

Table 5.1: Data for 1.2 GHz @ 0.9V using quality factor 0 
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Version 
Number 

Quality = 0 

Area 

(mm^2) 

1.78 GHz @ 1.1V 

Average 

Throughput 

(MP/s) 

Average 

Power (W) 

Energy per 

Megapixel 

Enc. (mJ/MP) 

Throughput per 

Area 

(MP/(s*mm^2)) 

Energy-Delay 

Product 

(mJ*s/(MP^2)) 

1 0.4991 1.8111 0.4872 268.9743 3.6292 148.5106 

2 0.4991 6.7705 0.4942 72.9921 13.5668 10.7809 

3 0.4991 7.9234 0.5053 63.7673 15.8770 8.0480 

4 0.5545 8.1160 0.4888 60.2212 14.6367 7.4200 

5 0.5545 8.2773 0.4886 59.0264 14.9274 7.1311 

6 0.5545 8.7988 0.4907 55.7701 15.8679 6.3384 

7 1.1090 16.0382 0.5825 36.3194 14.4619 2.2646 

8 1.1645 15.2048 0.5825 38.3083 13.0575 2.5195 

9 1.3863 21.9321 0.6561 29.9147 15.8212 1.3640 

10 1.3863 19.9404 0.6330 31.7436 14.3844 1.5919 

11 1.2199 21.7513 0.6602 30.3544 17.8304 1.3955 

12 1.3863 22.2589 0.6758 30.3591 16.0569 1.3639 

13 1.5526 24.3785 0.6648 27.2684 15.7017 1.1185 

14 1.3863 24.3325 0.6599 27.1218 17.5527 1.1146 

15 1.2199 24.2480 0.6647 27.4134 19.8771 1.1305 

16 2.8834 44.7342 0.9235 20.6443 15.5144 0.4615 

17 5.8777 63.2988 1.2151 19.1968 10.7693 0.3033 

18 11.8663 70.1436 1.4157 20.1830 5.9112 0.2877 

19 23.8435 73.0928 1.6340 22.3546 3.0655 0.3058 

20 14.5834 124.6916 2.1674 17.3822 8.5503 0.1394 

21 37.2070 152.0185 3.0775 20.2440 4.0858 0.1332 

22 22.1246 176.5651 3.0691 17.3825 7.9805 0.0984 

23 1.5526 33.5782 0.7787 23.1913 21.6271 0.6907 

24 16.9677 157.3745 2.7226 17.3000 9.2749 0.1099 

25 16.9677 160.2703 2.7435 17.1177 9.4456 0.1068 

26 1.7190 69.4378 0.9184 13.2256 40.3955 0.1905 

27 19.6293 237.1663 2.9776 12.5548 12.0823 0.0529 

28 15.6369 269.1609 2.7555 10.2374 17.2132 0.0380 

29 30.2757 286.3391 3.2949 11.5068 9.4577 0.0402 

Table 5.2: Data for 1.78 GHz @ 1.1V using quality factor 0 
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Version 
Number 

Quality = 0.1 

Area 

(mm^2) 

1.2 GHz @ 0.9V 

Average 

Throughput 

(MP/s) 

Average 

Power (W) 

Energy per 

Megapixel 

Enc. (mJ/MP) 

Throughput per 

Area 

(MP/(s*mm^2)) 

Energy-Delay 

Product 

(mJ*s/(MP^2)) 

1 0.4991 1.2210 0.2109 172.7282 2.4466 141.4648 

2 0.4991 5.6092 0.2185 38.9454 11.2398 6.9431 

3 0.4991 5.9730 0.2200 36.8392 11.9687 6.1677 

4 0.5545 6.0626 0.2114 34.8742 10.9334 5.7524 

5 0.5545 6.2264 0.2114 33.9562 11.2289 5.4536 

6 0.5545 6.3516 0.2112 33.2437 11.4547 5.2339 

7 1.1090 14.7420 0.2661 18.0509 13.2931 1.2245 

8 1.1645 14.2785 0.2694 18.8658 12.2620 1.3213 

9 1.3863 16.5482 0.2834 17.1258 11.9374 1.0349 

10 1.3863 15.6990 0.2786 17.7455 11.3248 1.1304 

11 1.2199 16.4022 0.2861 17.4408 13.4455 1.0633 

12 1.3863 16.9454 0.2928 17.2790 12.2239 1.0197 

13 1.5526 17.9213 0.2874 16.0382 11.5428 0.8949 

14 1.3863 17.9110 0.2859 15.9640 12.9205 0.8913 

15 1.2199 17.8930 0.2887 16.1356 14.6676 0.9018 

16 2.8834 35.4394 0.4155 11.7233 12.2908 0.3308 

17 5.8777 59.1340 0.6140 10.3832 10.0607 0.1756 

18 11.8663 69.2270 0.7510 10.8487 5.8339 0.1567 

19 23.8435 72.2233 0.8662 11.9939 3.0291 0.1661 

20 14.5834 141.1890 1.2862 9.1100 9.6815 0.0645 

21 37.2070 223.5339 2.2524 10.0763 6.0079 0.0451 

22 22.1246 147.2507 1.4376 9.7629 6.6555 0.0663 

23 1.5526 27.5962 0.3572 12.9450 17.7742 0.4691 

24 16.9677 201.9905 1.7876 8.8498 11.9044 0.0438 

25 16.9677 208.7887 1.8187 8.7109 12.3051 0.0417 

26 1.7190 56.3868 0.4216 7.4769 32.8030 0.1326 

27 19.6293 278.7267 1.8765 6.7325 14.1995 0.0242 

28 15.6369 323.8956 1.6693 5.1537 20.7135 0.0159 

29 30.2757 370.2318 2.1121 5.7048 12.2287 0.0154 

Table 5.3: Data for 1.2 GHz @ 0.9V using quality factor 0.1 
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Version 
Number 

Quality = 0.1 

Area 

(mm^2) 

1.78 GHz @ 1.1V 

Average 

Throughput 

(MP/s) 

Average 

Power (W) 

Energy per 

Megapixel 

Enc. (mJ/MP) 

Throughput per 

Area 

(MP/(s*mm^2)) 

Energy-Delay 

Product 

(mJ*s/(MP^2)) 

1 0.4991 1.8111 0.4833 266.8613 3.6292 147.3439 

2 0.4991 8.3203 0.5006 60.1698 16.6723 7.2317 

3 0.4991 8.8599 0.5043 56.9158 17.7535 6.4240 

4 0.5545 8.9928 0.4845 53.8798 16.2179 5.9914 

5 0.5545 9.2359 0.4845 52.4616 16.6562 5.6802 

6 0.5545 9.4216 0.4839 51.3608 16.9911 5.4514 

7 1.1090 21.8673 0.6098 27.8882 19.7181 1.2753 

8 1.1645 21.1798 0.6173 29.1472 18.1886 1.3762 

9 1.3863 24.5464 0.6495 26.4590 17.7071 1.0779 

10 1.3863 23.2868 0.6384 27.4164 16.7984 1.1773 

11 1.2199 24.3299 0.6556 26.9456 19.9442 1.1075 

12 1.3863 25.1357 0.6710 26.6958 18.1322 1.0621 

13 1.5526 26.5832 0.6587 24.7787 17.1218 0.9321 

14 1.3863 26.5680 0.6553 24.6641 19.1654 0.9283 

15 1.2199 26.5413 0.6617 24.9292 21.7570 0.9393 

16 2.8834 52.5684 0.9521 18.1122 18.2314 0.3445 

17 5.8777 87.7154 1.4071 16.0418 14.9234 0.1829 

18 11.8663 102.6868 1.7211 16.7611 8.6536 0.1632 

19 23.8435 107.1312 1.9852 18.5303 4.4931 0.1730 

20 14.5834 209.4304 2.9477 14.0747 14.3609 0.0672 

21 37.2070 331.5752 5.1618 15.5676 8.9116 0.0470 

22 22.1246 218.4219 3.2946 15.0835 9.8724 0.0691 

23 1.5526 40.9344 0.8187 19.9998 26.3651 0.4886 

24 16.9677 299.6193 4.0966 13.6728 17.6582 0.0456 

25 16.9677 309.7033 4.1680 13.4581 18.2525 0.0435 

26 1.7190 83.6404 0.9662 11.5516 48.6578 0.1381 

27 19.6293 413.4447 4.3005 10.4016 21.0626 0.0252 

28 15.6369 480.4451 3.8255 7.9623 30.7251 0.0166 

29 30.2757 549.1771 4.8404 8.8138 18.1392 0.0160 

Table 5.4: Data for 1.78 GHz @ 1.1V using quality factor 0.1 
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Version 
Number 

Quality = 0.1667 

Area 

(mm^2) 

1.2 GHz @ 0.9V 

Average 

Throughput 

(MP/s) 

Average 

Power (W) 

Energy per 

Megapixel 

Enc. (mJ/MP) 

Throughput per 

Area 

(MP/(s*mm^2)) 

Energy-Delay 

Product 

(mJ*s/(MP^2)) 

1 0.4991 1.2210 0.2105 172.3698 2.4466 141.1712 

2 0.4991 5.8712 0.2189 37.2764 11.7648 6.3490 

3 0.4991 6.0632 0.2193 36.1675 12.1496 5.9650 

4 0.5545 6.1529 0.2104 34.1969 11.0963 5.5578 

5 0.5545 6.3370 0.2104 33.2063 11.4283 5.2401 

6 0.5545 6.3709 0.2098 32.9298 11.4894 5.1688 

7 1.1090 16.0332 0.2701 16.8480 14.4573 1.0508 

8 1.1645 15.5404 0.2739 17.6243 13.3457 1.1341 

9 1.3863 16.9076 0.2816 16.6549 12.1966 0.9851 

10 1.3863 16.2835 0.2786 17.1086 11.7464 1.0507 

11 1.2199 16.7843 0.2845 16.9480 13.7588 1.0098 

12 1.3863 17.3873 0.2913 16.7535 12.5427 0.9635 

13 1.5526 18.1923 0.2859 15.7131 11.7173 0.8637 

14 1.3863 18.1845 0.2845 15.6463 13.1178 0.8604 

15 1.2199 18.1708 0.2874 15.8180 14.8954 0.8705 

16 2.8834 37.2292 0.4215 11.3207 12.9116 0.3041 

17 5.8777 67.3941 0.6608 9.8051 11.4661 0.1455 

18 11.8663 79.3939 0.8152 10.2679 6.6907 0.1293 

19 23.8435 79.3847 0.9054 11.4055 3.3294 0.1437 

20 14.5834 148.2313 1.3103 8.8392 10.1644 0.0596 

21 37.2070 253.8204 2.4525 9.6622 6.8219 0.0381 

22 22.1246 150.8911 1.4206 9.4148 6.8201 0.0624 

23 1.5526 29.0750 0.3622 12.4590 18.7267 0.4285 

24 16.9677 222.0329 1.8938 8.5292 13.0856 0.0384 

25 16.9677 231.1969 1.9364 8.3754 13.6257 0.0362 

26 1.7190 59.2018 0.4278 7.2267 34.4407 0.1221 

27 19.6293 320.4217 2.0794 6.4895 16.3236 0.0203 

28 15.6369 381.7691 1.8506 4.8474 24.4146 0.0127 

29 30.2757 461.9862 2.4489 5.3008 15.2593 0.0115 

Table 5.5: Data for 1.2 GHz @ 0.9V using quality factor 0.1667 
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Version 
Number 

Quality = 0.1667 

Area 

(mm^2) 

1.78 GHz @ 1.1V 

Average 

Throughput 

(MP/s) 

Average 

Power (W) 

Energy per 

Megapixel 

Enc. (mJ/MP) 

Throughput per 

Area 

(MP/(s*mm^2)) 

Energy-Delay 

Product 

(mJ*s/(MP^2)) 

1 0.4991 1.8111 0.4823 266.3077 3.6292 147.0381 

2 0.4991 8.7090 0.5016 57.5913 17.4511 6.6129 

3 0.4991 8.9938 0.5026 55.8781 18.0219 6.2129 

4 0.5545 9.1268 0.4822 52.8335 16.4595 5.7888 

5 0.5545 9.3999 0.4822 51.3031 16.9520 5.4578 

6 0.5545 9.4502 0.4808 50.8758 17.0427 5.3836 

7 1.1090 23.7825 0.6191 26.0298 21.4450 1.0945 

8 1.1645 23.0516 0.6277 27.2292 19.7962 1.1812 

9 1.3863 25.0796 0.6453 25.7315 18.0917 1.0260 

10 1.3863 24.1539 0.6384 26.4324 17.4239 1.0943 

11 1.2199 24.8968 0.6519 26.1844 20.4089 1.0517 

12 1.3863 25.7912 0.6676 25.8839 18.6050 1.0036 

13 1.5526 26.9852 0.6551 24.2765 17.3807 0.8996 

14 1.3863 26.9737 0.6520 24.1733 19.4580 0.8962 

15 1.2199 26.9534 0.6587 24.4384 22.0948 0.9067 

16 2.8834 55.2233 0.9659 17.4902 19.1521 0.3167 

17 5.8777 99.9679 1.5144 15.1487 17.0080 0.1515 

18 11.8663 117.7677 1.8682 15.8636 9.9245 0.1347 

19 23.8435 117.7540 2.0750 17.6212 4.9386 0.1496 

20 14.5834 219.8764 3.0027 13.6564 15.0772 0.0621 

21 37.2070 376.5002 5.6204 14.9279 10.1191 0.0396 

22 22.1246 223.8217 3.2556 14.5456 10.1164 0.0650 

23 1.5526 43.1280 0.8302 19.2488 27.7779 0.4463 

24 16.9677 329.3487 4.3400 13.1775 19.4103 0.0400 

25 16.9677 342.9421 4.4376 12.9398 20.2115 0.0377 

26 1.7190 87.8160 0.9805 11.1652 51.0870 0.1271 

27 19.6293 475.2922 4.7654 10.0262 24.2134 0.0211 

28 15.6369 566.2908 4.2410 7.4891 36.2150 0.0132 

29 30.2757 685.2795 5.6122 8.1896 22.6346 0.0120 

Table 5.6: Data for 1.78 GHz @ 1.1V Using quality factor 0.1667 
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Version 
Number 

Quality = 0.5 

Area 

(mm^2) 

1.2 GHz @ 0.9V 

Average 

Throughput 

(MP/s) 

Average 

Power (W) 

Energy per 

Megapixel 

Enc. (mJ/MP) 

Throughput per 

Area 

(MP/(s*mm^2)) 

Energy-Delay 

Product 

(mJ*s/(MP^2)) 

1 0.4991 1.2210 0.2097 171.7324 2.4466 140.6493 

2 0.4991 6.1680 0.2180 35.3493 12.3596 5.7310 

3 0.4991 6.1692 0.2172 35.2113 12.3620 5.7075 

4 0.5545 6.1821 0.2073 33.5300 11.1490 5.4237 

5 0.5545 6.3785 0.2073 32.4962 11.5032 5.0946 

6 0.5545 6.3785 0.2067 32.4055 11.5032 5.0804 

7 1.1090 18.3853 0.2762 15.0204 16.5782 0.8170 

8 1.1645 17.7709 0.2803 15.7716 15.2612 0.8875 

9 1.3863 17.8381 0.2798 15.6877 12.8679 0.8794 

10 1.3863 17.5946 0.2793 15.8729 12.6922 0.9021 

11 1.2199 17.7155 0.2830 15.9748 14.5221 0.9017 

12 1.3863 18.2398 0.2883 15.8062 13.1577 0.8666 

13 1.5526 18.4103 0.2811 15.2685 11.8577 0.8293 

14 1.3863 18.4103 0.2801 15.2162 13.2807 0.8265 

15 1.2199 18.4091 0.2832 15.3856 15.0907 0.8358 

16 2.8834 38.2378 0.4171 10.9068 13.2613 0.2852 

17 5.8777 75.0399 0.6908 9.2053 12.7669 0.1227 

18 11.8663 87.4887 0.8453 9.6617 7.3729 0.1104 

19 23.8435 85.3746 0.9223 10.8027 3.5806 0.1265 

20 14.5834 152.8550 1.2903 8.4414 10.4815 0.0552 

21 37.2070 294.2089 2.6646 9.0567 7.9074 0.0308 

22 22.1246 152.8756 1.3746 8.9916 6.9098 0.0588 

23 1.5526 32.4776 0.3747 11.5378 20.9182 0.3553 

24 16.9677 254.1803 2.0455 8.0476 14.9802 0.0317 

25 16.9677 269.1876 2.1209 7.8788 15.8647 0.0293 

26 1.7190 66.3594 0.4460 6.7207 38.6046 0.1013 

27 19.6293 373.9308 2.2927 6.1313 19.0496 0.0164 

28 15.6369 502.3248 2.2089 4.3973 32.1243 0.0088 

29 30.2757 724.4761 3.4215 4.7227 23.9293 0.0065 

Table 5.7: Data for 1.2 GHz @ 0.9V using quality factor 0.5 
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Version 
Number 

Quality = 0.5 

Area 

(mm^2) 

1.78 GHz @ 1.1V 

Average 

Throughput 

(MP/s) 

Average 

Power (W) 

Energy per 

Megapixel 

Enc. (mJ/MP) 

Throughput per 

Area 

(MP/(s*mm^2)) 

Energy-Delay 

Product 

(mJ*s/(MP^2)) 

1 0.4991 1.8111 0.4805 265.3229 3.6292 146.4945 

2 0.4991 9.1493 0.4997 54.6139 18.3333 5.9692 

3 0.4991 9.1510 0.4978 54.4006 18.3369 5.9447 

4 0.5545 9.1701 0.4750 51.8032 16.5377 5.6491 

5 0.5545 9.4615 0.4750 50.2059 17.0631 5.3063 

6 0.5545 9.4615 0.4737 50.0659 17.0631 5.2915 

7 1.1090 27.2715 0.6329 23.2062 24.5911 0.8509 

8 1.1645 26.3602 0.6423 24.3668 22.6375 0.9244 

9 1.3863 26.4599 0.6413 24.2372 19.0874 0.9160 

10 1.3863 26.0986 0.6400 24.5233 18.8268 0.9396 

11 1.2199 26.2779 0.6486 24.6808 21.5411 0.9392 

12 1.3863 27.0558 0.6607 24.4202 19.5172 0.9026 

13 1.5526 27.3086 0.6442 23.5896 17.5890 0.8638 

14 1.3863 27.3086 0.6420 23.5088 19.6997 0.8609 

15 1.2199 27.3069 0.6491 23.7705 22.3845 0.8705 

16 2.8834 56.7194 0.9558 16.8507 19.6710 0.2971 

17 5.8777 111.3092 1.5830 14.2220 18.9375 0.1278 

18 11.8663 129.7750 1.9372 14.9272 10.9364 0.1150 

19 23.8435 126.6389 2.1136 16.6899 5.3113 0.1318 

20 14.5834 226.7349 2.9570 13.0417 15.5475 0.0575 

21 37.2070 436.4098 6.1064 13.9924 11.7293 0.0321 

22 22.1246 226.7654 3.1502 13.8918 10.2495 0.0613 

23 1.5526 48.1751 0.8588 17.8257 31.0287 0.3700 

24 16.9677 377.0341 4.6878 12.4333 22.2207 0.0330 

25 16.9677 399.2950 4.8604 12.1725 23.5327 0.0305 

26 1.7190 98.4331 1.0221 10.3834 57.2635 0.1055 

27 19.6293 554.6641 5.2542 9.4727 28.2569 0.0171 

28 15.6369 745.1151 5.0621 6.7937 47.6511 0.0091 

29 30.2757 1,074.6395 7.8412 7.2965 35.4951 0.0068 

Table 5.8: Data for 1.78 GHz @ 1.1V using quality factor 0.5 
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Version 
Number 

Quality = 1 

Area 

(mm^2) 

1.2 GHz @ 0.9V 

Average 

Throughput 

(MP/s) 

Average 

Power (W) 

Energy per 

Megapixel  

Enc. (mJ/MP) 

Throughput per 

Area 

(MP/(s*mm^2)) 

Energy-Delay 

Product 

(mJ*s/(MP^2)) 

1 0.4991 1.2210 0.2093 171.4515 2.4466 140.4192 

2 0.4991 6.1820 0.2166 35.0325 12.3876 5.6668 

3 0.4991 6.1820 0.2158 34.9120 12.3876 5.6473 

4 0.5545 6.1821 0.2057 33.2752 11.1490 5.3825 

5 0.5545 6.3785 0.2056 32.2401 11.5032 5.0545 

6 0.5545 6.3785 0.2052 32.1680 11.5032 5.0432 

7 1.1090 19.0574 0.2760 14.4838 17.1843 0.7600 

8 1.1645 18.3550 0.2799 15.2475 15.7628 0.8307 

9 1.3863 18.3480 0.2793 15.2226 13.2357 0.8297 

10 1.3863 18.2955 0.2797 15.2870 13.1978 0.8356 

11 1.2199 18.2732 0.2828 15.4776 14.9793 0.8470 

12 1.3863 18.4090 0.2850 15.4815 13.2797 0.8410 

13 1.5526 18.4092 0.2780 15.1032 11.8570 0.8204 

14 1.3863 18.4091 0.2773 15.0610 13.2798 0.8181 

15 1.2199 18.4091 0.2806 15.2411 15.0907 0.8279 

16 2.8834 38.2382 0.4115 10.7622 13.2615 0.2815 

17 5.8777 75.0399 0.6793 9.0528 12.7669 0.1206 

18 11.8663 87.4843 0.8310 9.4983 7.3725 0.1086 

19 23.8435 85.3703 0.9055 10.6066 3.5804 0.1242 

20 14.5834 152.8550 1.2620 8.2565 10.4815 0.0540 

21 37.2070 304.2217 2.6906 8.8443 8.1765 0.0291 

22 22.1246 152.8756 1.3500 8.8305 6.9098 0.0578 

23 1.5526 34.6272 0.3834 11.0735 22.3027 0.3198 

24 16.9677 273.9292 2.1363 7.7989 16.1442 0.0285 

25 16.9677 294.3106 2.2449 7.6275 17.3453 0.0259 

26 1.7190 71.3936 0.4600 6.4429 41.5333 0.0902 

27 19.6293 381.3416 2.3005 6.0327 19.4272 0.0158 

28 15.6369 557.2255 2.3632 4.2411 35.6353 0.0076 

29 30.2757 898.1440 4.0407 4.4989 29.6655 0.0050 

Table 5.9: Data for 1.2 GHz @ 0.9V using quality factor 1 
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Version 
Number 

Quality = 1 

Area 

(mm^2) 

1.78 GHz @ 1.1V 

Average 

Throughput 

(MP/s) 

Average 

Power (W) 

Energy per 

Megapixel 

Enc. (mJ/MP) 

Throughput per 

Area 

(MP/(s*mm^2)) 

Energy-Delay 

Product 

(mJ*s/(MP^2)) 

1 0.4991 1.8111 0.4798 264.8889 3.6292 146.2549 

2 0.4991 9.1700 0.4963 54.1245 18.3750 5.9023 

3 0.4991 9.1700 0.4946 53.9383 18.3750 5.8820 

4 0.5545 9.1701 0.4714 51.4095 16.5377 5.6062 

5 0.5545 9.4615 0.4713 49.8103 17.0631 5.2645 

6 0.5545 9.4615 0.4702 49.6989 17.0631 5.2527 

7 1.1090 28.2684 0.6326 22.3772 25.4900 0.7916 

8 1.1645 27.2265 0.6414 23.5571 23.3814 0.8652 

9 1.3863 27.2162 0.6401 23.5186 19.6330 0.8641 

10 1.3863 27.1383 0.6410 23.6181 19.5768 0.8703 

11 1.2199 27.1053 0.6482 23.9126 22.2193 0.8822 

12 1.3863 27.3067 0.6531 23.9186 19.6983 0.8759 

13 1.5526 27.3070 0.6372 23.3342 17.5879 0.8545 

14 1.3863 27.3069 0.6354 23.2689 19.6984 0.8521 

15 1.2199 27.3069 0.6430 23.5471 22.3845 0.8623 

16 2.8834 56.7200 0.9431 16.6274 19.6712 0.2931 

17 5.8777 111.3092 1.5568 13.9864 18.9375 0.1257 

18 11.8663 129.7683 1.9043 14.6747 10.9359 0.1131 

19 23.8435 126.6326 2.0751 16.3870 5.3110 0.1294 

20 14.5834 226.7349 2.8923 12.7561 15.5475 0.0563 

21 37.2070 451.2622 6.1662 13.6642 12.1284 0.0303 

22 22.1246 226.7654 3.0938 13.6430 10.2495 0.0602 

23 1.5526 51.3637 0.8787 17.1083 33.0824 0.3331 

24 16.9677 406.3283 4.8959 12.0491 23.9472 0.0297 

25 16.9677 436.5607 5.1446 11.7843 25.7289 0.0270 

26 1.7190 105.9006 1.0541 9.9541 61.6077 0.0940 

27 19.6293 565.6567 5.2722 9.3205 28.8170 0.0165 

28 15.6369 826.5511 5.4159 6.5524 52.8590 0.0079 

29 30.2757 1,332.2469 9.2601 6.9507 44.0038 0.0052 

Table 5.10: Data for 1.78 GHz @ 1.1V using quality factor 1 
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Chapter 6  

Comparisons to Other Notable JPEG Encoders 

6.1 Overview 

 Performance metrics reported in Chapter 5, throughput per area, energy, and energy-

delay product, are compared to competitive industry designs in this chapter. These metrics 

represent low-power and high-throughput implementations.  

6.2 Comparison of JPEG Encoder KiloCore Implementations with 

Competing Designs 

6.2.1 Overview 

To represent all platforms on a level playing field, all designs have been scaled to 32nm. 

If data is ambiguous for a given design, the narrowest range deducible is provided to keep the 

design in the comparisons. In addition, predictive polynomial models can scale CMOS device 

performance accurately between voltages and technology. The following two equations (6.1 and 

6.2) are required to scale both delay (used in throughput) and energy [9]: 

 𝐷𝑒𝑙𝑎𝑦𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑎𝑑3𝑉
3 + 𝑎𝑑2𝑉

2 + 𝑎𝑑1𝑉 + 𝑎𝑑0 (6.1) 

 

 𝐸𝑛𝑒𝑟𝑔𝑦𝐹𝑎𝑐𝑡𝑜𝑟 =  𝑎𝑒2𝑉
2 + 𝑎𝑒1𝑉 + 𝑎𝑒0 (6.2) 

 

 Equations 6.1 and 6.2 are used with the following equations to scale Delay and Energy 

[9]: 

 
𝐷𝑒𝑙𝑎𝑦𝑥 =

𝐷𝑒𝑙𝑎𝑦𝐹𝑎𝑐𝑡𝑜𝑟𝑥
𝐷𝑒𝑙𝑎𝑦𝐹𝑎𝑐𝑡𝑜𝑟𝑦

∗ 𝐷𝑒𝑙𝑎𝑦𝑦 

 

(6.3) 
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𝐸𝑛𝑒𝑟𝑔𝑦𝑥 =

𝐸𝑛𝑒𝑟𝑔𝑦𝐹𝑎𝑐𝑡𝑜𝑟𝑥
𝐸𝑛𝑒𝑟𝑔𝑦𝐹𝑎𝑐𝑡𝑜𝑟𝑦

∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝑦 

 

(6.4) 

 

 The following table (6.1) and equation (6.5) are provided for area scaling calculations 

[9]: 

Technology 
Node 

Scale Factor 

32 nm 1 

45 nm 0.46 

20 nm 2.2 

14 nm 2.7 

7 nm 7.8 

Table 6.1: Area scaling factors 

 𝐴𝑟𝑒𝑎𝑥 = 𝐴𝑟𝑒𝑎𝐹𝑎𝑐𝑡𝑜𝑟𝑦 ∗ 𝐴𝑟𝑒𝑎𝑦 

 

(6.5) 

 After reviewing the results of Chapter 5, Versions 26 and 29 of the JPEG encoders stood 

out as stronger contenders than the rest of the implementations. Version 26 lacks high throughput 

but has great throughput per area, and Version 29 has the most competitive throughput and 

energy metrics. Alongside KiloCore implementations are four competing designs. First, Texas 

Instruments provides a low-power JPEG encoder implemented on the C66x digital signal 

processor [10,11]. Second, VISENGI offers an FPGA JPEG implementation profiled on the 

Xilinx Zynq 7020 FPGA [12,13]. Third, libjpeg-turbo (v2.1.5.1) is considered the standard 

implementation on x86-based platforms and is profiled on an Intel i9 9900 [8,14]. The Intel i9 

9900 was not chosen for any particular reason. Finally, Nvidia’s nvJPEG library is profiled on 

the A100 architecture with an Intel Xeon Platinum 8168 [15,16,7,18]. The A100 GPU and Intel 

Xeon Platinum were chosen as Nvidia uses them in their promotional material for nvJPEG. The 

GPU computes DCT-II, quantization, and run-length and Huffman encoding, while the CPU 

handles difference encoding and concatenating the bit streams. The following table includes all 

found metrics and ranges: 



75 

 

Vendor Architecture 
Technology 

Node (nm) 

Area 

(mm^2) 

Clock 

Frequency 

(GHz) 

Throughput 

(MP/s) 

Energy per 

Megapixel 

Enc.  

(uJ/MP) 

TI Embedded C 40 6.48 1.25 66.66 20,252 

VISENGI FPGA 28 16.261 0.200 533 375 

libjpeg-

turbo1.5 
CPU 14 175.780 5.00 152.790 98,170 

Nvidia GPU+CPU 7 + 14 
826 -

5120 
1.41 5438 

73,600 – 

111,300 

KiloCore 

v29 0.9V 
CPU 32 30.276 1.20 370.232 5,705 

KiloCore 

v29 1.1V 
CPU 32 30.276 1.78 549.177 8,814 

KiloCore 

v26 0.9V 
CPU 32 1.719 1.20 56.387 7,477 

KiloCore 

v26 1.1V 
CPU 32 1.719 1.78 83.640 11,552 

Table 6.2: Unscaled comparison data for various JPEG encoder implementations 

 TI’s implementation assumes one DSP core is used and operating at average power 

consumption [10]. Nvidia’s implementation has a scale for area and energy per pixel, as it is 

unclear how much the CPU assists during the JPEG encoding process. The lower bound 

demonstrates just the GPU, whereas the upper bound demonstrates the GPU with 80% of the 

CPU. VISENGI does not have public performance information, but after reaching out, they 

agreed to provide the information listed in Table 6.2; they warn that power and energy 

information can vary between which FPGA is chosen for their IP core. There is no public data 

for the size of a register slice or a LUT slice for the Xilinx FPGA, so an unweighted average was 

taken of the memory, registers slices, and LUT slices used to make a crude approximation of 

area utilized (5.63%). Since only one of eight cores is used in the libjpeg-turbo implementation, 

area and energy metrics have been scaled down by 8x. All performance data represents 4:4:4 

subsampling and a 10:1 image compression factor (quality factor 0.1). Unfortunately, Nvidia did 

not post what compression factor or quality they used to achieve the represented numbers. They 

could have used a lower quality to drive a higher throughput. 
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Delay and energy factors were calculated for each unique technology node using 

Equations 6.1 and 6.2 and are tabulated below: 

Technology 
Node 

Delay Coefficients Delay 
Factor ad3 ad2 ad1 ad0 

32 nm HP 
@ 0.9V 

-1047 2982 -2797 873.5 8.357 

45 nm HP 
@ 1.0V 

-501.6 1567 -1619 566.1 12.5 

20 nm HP 
@ 1.0V 

0 34.63 -66.37 41.15 9.41 

14 nm HP 
@ 1.0V 

-40.66 109.2 -100.6 35.92 3.86 

7 nm HP @ 
1.0V 

-28.58 76.6 -70.26 24.69 2.45 

Table 6.3: Delay factor calculations using Equation 6.1 

Technology 
Node 

Energy Coefficients Energy 
Factor ae2 ae1 ae0 

32 nm HP 
@ 0.9V 

0.8367 -0.4341 0.1701 0.457 

45 nm HP 
@ 1.0V 

1.018 -0.3107 0.1539 0.861 

20 nm HP 
@ 1.0V 

0.373 -0.1582 0.04104 0.256 

14 nm HP 
@ 1.0V 

0.2363 -0.09675 0.02239 0.162 

 7 nm HP @ 
1.0V 

0.1776 -0.09097 0.02447 0.111 

Table 6.4: Energy factor calculations using Equation 6.2 

 Table 6.2 represents scaled performance metrics to 32 nm HP, using Tables 6.1,6.3, and 

6.4 along with Equations 6.3 through 6.5. 
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Vendor 
Scaled Area 

(mm^2) 

Clock 

Frequency 

(GHz) 

Quality 
Factor 

Throughput 

(MP/s) 

Energy per 

Megapixel 

Enc. 

(uJ/MP) 

Throughput 

per Area 

(MP / 
(s*mm^2)) 

Energy-Delay 

Product (uJ*s 
/ (MP^2)) 

TI 2.98 - 6.48 
1.25 - 

1.870 
~0.1 

66.66 - 

99.71 

10,749 – 

38,155 

10.287 – 

33.460 
304 – 383 

VISENGI 
16.261 - 

35.774 

0.200 - 

0.225 
~0.1 533-600 375 - 670 

16.772 - 

32.778 
0.704 – 1.117 

libjpeg-

turbo1.5 
474.61 2.30 0.1 70.57 277,036 0.149 3,926 

Nvidia 
6442.8 - 

18036.6 
0.41 N/A 1594.25 

302,842 – 

409,265 

0.088 - 

0.247 
190 - 257 

KiloCore 

v29 0.9V 
30.276 1.20 0.1 370.23 5,705 12.228 15 

KiloCore 

v29 1.1V 
30.276 1.78 0.1 549.18 8,814 18.139 16 

KiloCore 

v26 0.9V 
1.719 1.20 0.1 56.39 7,477 32.804 133 

KiloCore 

v26 1.1V 
1.719 1.78 0.1 83.64 11,552 48.656 138 

Table 6.5: Scaled comparison data for various JPEG encoder implementations 

6.2.2 Area Analysis 

KiloCore Version 26 has the lowest area by at least 1.73 times (Table 6.5). KiloCore can 

run multiple programs simultaneously; thus, a lower-area version of the JPEG encoding 

algorithm can prove helpful in specific applications. Besides TI’s DSP and VISENGI’s FPGA 

design, most designs are multiple magnitudes larger than both KiloCore versions showcased.  

 KiloCore implementations have higher yields due to smaller area; therefore, KiloCore 

designs are more cost-effective solutions. Due to KiloCore’s smaller silicon footprint, SOC 

designers will find it easier to add KiloCore as an integrated IP component on their SOC. 

6.2.3 Throughput Analysis 

Table 6.5 shows Nvidia has the greatest throughput of every implementation, with 1.594 

GP/s. However, Nvidia did not provide compression ratio information, and a lower quality ratio 

was likely used to highlight the speed of using the A100 (as higher qualities would stress the 

CPU since it handles the end of the Huffman encoding algorithm). If that is the case, it should be 

compared to Version 29 (1.78 GHz @ 1.1V) using quality factor 1. In this case, Version 29 has 
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1.332 GP/s throughput, much closer to Nvidia’s implementation. VISENGI has the same 

throughput as Version 29 (1.78 GHz @ 1.1V). Still, due to scaling information being unavailable 

for the 20nm technology node, it is impossible to know what design has a higher throughput.  

 KiloCore Version 29’s throughput makes it a more competitive option in situations that 

demand large amounts of photos to be processed at once, such as data centers. Computers used 

for video or photo editing will also benefit from KiloCore Version 29’s throughput as encoding 

times will be reduced over standard general-purpose CPUs like the compared i9 9900.  

6.2.4 Energy per Megapixel Encoded Analysis 

VISENGI’s implementation has the lowest energy per megapixel encoded; at most, it is 

670 (uJ)/MP. Although KiloCore (1.2 GHz @ 0.9V) is at least 8.5x less energy efficient than 

VISENGI’s implementation, it handily beats the DSP, x86, and GPU implementations by 1.88x 

(at least), 48x, and 53x (at least) respectively.  

FPGA’s have lower power consumption than general-purpose processors; therefore, it 

VISENGI’s performance metrics really serve as a best-case scenario for power consumption as it 

would be rare for a general-purpose processor to match the power consumption of application 

specific hardware. KiloCore JPEG encoders’ low energy consumption relative to the other 

general-purpose processors makes it a more compelling option in data center environments 

where the system would be running consistently. In these data centers, saving money on power 

usage is essential. 

6.2.5 Throughput per Area Analysis 

KiloCore Version 26 (1.78 GHz @ 1.1V) has the highest throughput per area of all the 

designs profiled. It beats the runner-up (VISENGI’s FPGA implementation) by at least 1.45x and 

the other designs by at least 100x.  
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KiloCore Version 26 and KiloCore Version 29 throughput per area makes a compelling 

case for SOC designs to include KiloCore as a digital signal processor on their designs. SOC’s 

have limited area to incorporate a variety of processors, but a design that achieves higher 

throughput per area is a more compelling candidate to include over a design that costs too much 

area to justify its improved throughput. 

6.2.6 Energy-Delay Product Analysis 

VISENGI boasts an impressive energy delay products at approximately 1 (uJ*s)/(MP2), 

and KiloCore Version 29 (1.78 GHz @ 0.9V) lags by a factor of 15x. KiloCore Version 29 (1.78 

GHz @ 0.9V) does beat Nvidia’s design by 12.66x and Intel’s design by 261.73x.    

Energy-delay product highlights the design that can simultaneously save the most energy 

while having the highest throughput. KiloCore Version 29’s performance in this category is a 

testimony to its ability to achieve the lowest energy per megapixel encoded of all general-

purpose designs and the second highest throughput. Nvidia’s solution does have higher 

throughput but uses significantly more energy per megapixel encoded than KiloCore Version 29 

to achieve this. Data centers looking to balance the price of operating a data center solution and 

throughput of said solution will find KiloCore is a stronger competitor than Nvidia’s solution.   
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6.2.6 Energy Per Megapixel Encoded vs. Area per Throughput Analysis 

 

Figure 6.1: Energy per megapixel encoded versus area per throughput analysis, KiloCore 

implementations and competing vendors (QF = 0.1, all processes scaled to 32nm) 

 Figure 6.1 shows which designs balance low power usage, high throughput, and low area 

usage. The data was graphed on a logarithmic scale to allow all vendors to fit on the same graph, 

and it is more desirable for a design to be closer to the origin. Nvidia’s implementation has a line 

to emphasize that the compression ratio of their metrics is unknown. KiloCore implementations 

have higher Energy per megapixel encoded than VISENGI’s implementation (as discussed in 

6.2.4) and KiloCore Version 26 beats every vendor in Area per Throughput, while Version 29 

lags behind VISENGI’s implementation (as discussed in 6.2.5).  

 Figure 6.1 shows the KiloCore designs are orders of magnitudes ahead of most industry 

general-purpose competition, only challenged by an FPGA implementation (VISENGI). 

Comparing general-purpose algorithms with application specific hardware is generally not done 
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as application specific hardware has inherent advantages in energy consumption; however, 

KiloCore implementations sit between general-purpose and application specific designs in 

energy consumption, making a compelling argument for their usage. It is more economical to 

invest in general-purpose hardware over application specific hardware on an SOC, but this 

usually comes at the cost of energy or performance. KiloCore JPEG implementations do reflect 

this energy cost, but significantly less than other industry competitors making it the most 

compelling option amount general-purpose hardware. 

6.3 Conclusion 

KiloCore designs were able to beat out all competition in area and throughput per area. 

KiloCore designs lagged behind VISENGI’s FPGA implementation in energy per megapixel 

encoded and energy-delay product. KiloCore features inefficient FF memories in its design that 

could be the reason the FPGA implementation was much more energy efficient. Also, the FPGA 

implementation is written in a hardware description language, whereas KiloCore’s JPEG 

encoders were written in C++. Hardware description languages require more specificity that 

could contribute to more efficiency in their design. Finally, KiloCore’s 2.29 GHz feature was 

never implemented and used in the KiloCore JPEG encoders due to the simulation lacking 

support. With this simulation improvement (and likely a few code changes), the gap between the 

two designs may have been much closer.  

Furthermore, KiloCore designs fail to surpass Nvidia’s nvJPEG implementation in 

throughput, only reaching .34x the scaled performance. However, Nvidia is the only vendor that 

did not publish their compression ratio, and it could be that Nvidia’s nvJPEG numbers are for a 

larger compression ratio (larger quality factor), in which case KiloCore designs may be much 

closer to nvJPEG’s throughput. KiloCore JPEG encoders’ ability to boast competitive 
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performance numbers while beating every general-purpose implementation in energy usage 

makes it a desirable alternative to other implementations. 
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Chapter 7  

Conclusion and Future Work 

7.1 Conclusion 

This thesis demonstrates the flexibility of the KiloCore platform by providing 29 working 

implementations of JPEG encoders. Of these implementations, there is the flexibility to allow for 

different input data types, core counts, and energy efficiencies. 

Chapter 1 explains why the JPEG encoding algorithm suits the KiloCore platform. 

Chapter 2 discusses the JPEG encoding algorithm step-by-step, summarizing the JPEG standard. 

Chapter 3 gives background on the KiloCore platform, and the relevant architectural features 

used in JPEG encoding. Chapter 4 introduces 29 Versions of JPEG Encoders on the KiloCore 

platform. Chapter 5 details the simulation results of all 29 Versions, comparing each one to the 

other. Finally, Chapter 6 compares the most competitive versions with competitive industry 

JPEG encoders to determine how KiloCore implementations fair against various architectures. 

7.2 Future Work 

7.2.1 C++ and Assembly Discrepancies 

Currently, C++ code written for KiloCore is passed through a Clang frontend and a 

custom KiloCore compiler backend to generate KiloCore assembly. Due to this, multiple 

architectural features are not adequately taken advantage of in the demonstrated 

implementations. For example, sophisticated looping with no overhead, address generation, and 

proper memory management is a hit or miss as the compiler mainly verifies preliminary work. 
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Furthermore, future designers should write the most competitive KiloCore algorithms in 

assembly to get even more performance out of the designs. 

Unfortunately, the compiler also struggles to minimize the number of instructions per 

core. KiloCore is limited to 128 instructions per core, and the compiler rarely compiles C++ to 

abide by this rule, even with the C++ code being perfectly capable of it. For example, the 

quantization cores are similar; they multiply element by element with 64 incoming elements with 

a set quantization table in data memory. However, Quantization_Y does an additional check on 

only the first value to see if there is an end-of-image flag before looping 63 times to handle the 

rest of the values, whereas Quantization_CbCr directly loops 64 times. This additional check, 

which is no more than four lines, leads to Quantization_Y having 36 instructions and 

Quantization_CbCr having 107 instructions. It may make sense if Quantization_Y has more 

instructions as it does an additional check, but the compiler having almost 3x as many 

instructions for the simpler code is far from optimal. Furthermore, Quantization_CbCr does not 

leverage the RPT() instruction that allows for zero overhead looping and instead unrolls the loop 

partially. 

In Version 26 and after, there was an explicit effort to unroll and inline every function 

possible to increase performance, leading to an increase of about 2x. Consequently, inlining 

functions affects the instruction count, increasing it by nearly 4x in some cases. While this means 

that many of the compiled assembly functions cannot be realized in KiloCore, this was a tradeoff 

necessary to understand better what the KiloCore platform could do without writing the 

assembly directly. However, writing assembly and properly managing instruction count and 

memory is the next step for this project. 
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7.2.2 Additional JPEG Encoding Features 

Various JPEG encoding features have yet to be implemented on KiloCore, including 

color subsampling, progressive JPEGs, RGB-only JPEGs, 12-bit color depth JPEGs, and 

arithmetic encoding. Additionally, KiloCore could implement on-the-fly quality changes. 

Currently, quantization tables load in compile time, but KiloCore could recalculate them after 

detecting the already present end-of-image tag. Combined with an additional signal specifying a 

quality value, this could make for a very efficient encoding design on various quality levels.   

7.2.3 Future KiloCore Improvements 

Although KiloCore has a clever 256 x 16-bit memory algorithm, it is sometimes very 

limiting. It makes it challenging to code Huffman encoding, where a Huffman table is around 

160 words. Consequently, it is difficult to fit all the words in the same memory, leading to the 

need to break up the Huffman table into 16 chunks. If the 256-word memory were truly 

contiguous, the Huffman encoding would be far more straightforward. Furthermore, the 

quantization cores could be one core, as there would be plenty of room to fit both quantization 

tables (64 words each) and intermediates needed in calculations without the compiler throwing 

an error. Fitting both quantization tables would be possible if a future designer writes an 

assembly version of the encoders.   

Longer FIFOs would help clear up input buffer cores, explicitly reducing the reserve 

space in the FIFOs to allow 32 words to be written without further delay as the FIFO becomes 

full. Juggling 24 words to each input FIFO and back creates additional instructions and input 

buffer cores. Although the original work that introduced KiloCore argues that 32 entries are 

enough (with eight being in the reserve space), it is relatively myopic to believe that there would 

not be algorithms that would struggle with the limited space. Especially, JPEG can use FIFOs 
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that can accommodate 64 words, allowing no input buffers and an entire block to fit in the FIFO 

without stalling the other pipelines (without buffers). Admittedly, the flexibility of KiloCore in 

allowing buffers to be programmed and added is arguably a sound solution, but not entirely 

ideal. 

The C++ compiler needs additional work to realize its full potential. Not only does it fail 

to take advantage of crucial KiloCore features, but it also fails to relay critical error and warning 

information and instead opts for vague error messages. Although out of the scope of JPEG 

encoding, it would be advantageous to all future KiloCore development if the C++ compiler was 

built from the ground up in a low-level language, possibly skipping Clang entirely. The C++ 

compiler also lacks algorithmically, containing O(n2) algorithms that create painfully long 

loading times.  

KiloCore has limited bit streaming functionality, making combining variable bit streams 

especially slow. Adding instructions that allow for managing variable length bitstreams would 

help with most popular encoding algorithms, as variable length encoding is a powerful data 

compression tool.  

There is no simulation support for the 2.29 GHz operation mode on KiloCore. This speed 

is only possible when replaced with two-cycle instructions (like multiplies and a specific 

branching condition). The entropy, compressor, and organizer cores would likely benefit from 

this functionality as they do not have any multiplies. In addition, improvements in the serial-

operation cores would help bring the low-quality factor values closer to the high-quality ones. 

7.2.4 JPEG Decoding 

JPEG decoding is the next logical step after JPEG encoding on KiloCore. Most of the 

JPEG decoding algorithm is a relatively simple change from JPEG encoding (DCT, quantization, 
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and run-length encoding); however, reading from a bit stream bit-by-bit and Huffman decoding 

is a non-trivial task. Furthermore, decoding has additional features that mimic the encoding 

features discussed in section 7.2.2. 
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