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Abstract

Contextual threat learning is often associated with two processes: elemental and configural 

learning. Few studies have examined configural learning where subjects form a representation of 

the threat-related context as a gestalt whole from the individual features in the environment. The 

goal of the current study was to compare and contrast neural circuitry recruited by variation in 

demands placed on configural threat encoding. Subjects (N=25) completed a configural threat 

learning task, where we manipulated the amount of configural encoding required to learn the 

threat association (low demand: changes to a discrete element of the context; and high demand: 

rearrangement of elements). US expectancy ratings, skin conductance responses (SCR), and 

functional magnetic resonance imaging (fMRI) were collected. Subjects successfully learned the 

configural threat association as measured by US expectancy ratings, SCR, and BOLD activity. 

Hippocampal and amygdala region of interest analyses indicated differential configural threat 

learning and predicted SCR measures of learning. Furthermore, whole brain analyses identified 

four circuits that were impacted by the amount of differential configural encoding required, but 

none correlated with SCR. These results set the stage for a more detailed understanding of how 

configural threat learning is instantiated in the brain—an important mechanism associated with 

PTSD and other fear-related disorders.
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1. INTRODUCTION

Posttraumatic stress disorder (PTSD) and fear-related disorders are associated with deficits 

in correctly interpreting threat and safety cues, in particular in using contextual information 

to modulate defensive and affective responses (Acheson et al., 2012; Glotzbach-Schoon et 

al., 2013; Ledoux and Daw, 2018; Liberzon and Abelson, 2016). Environmental context 

determines whether environmental cues are threat-related (e.g., road-side object on a desert 

road while during a convoy in a combat zone) or safe (e.g., road-side object on the freeway 

on your commute to work) (Urcelay and Miller, 2014). Contexts are comprised of the 

multimodal “background” features (e.g., spatial, temporal, internal, and cognitive) that 

provide relevance to an object (Maren et al., 2013). To better inform diagnostic and 

treatment decisions for PTSD, there is a need to first understand the neural mechanisms 

associated with the different components of contextual threat learning.

Contextual threat learning reflects, in part, two processes: elemental and configural learning 

(Rudy, Huff, & Matus-Amat, 2004; Rudy, 2009). Elemental encoding involves acquiring the 

context representation via independent elements or features within the environment (Rudy et 

al., 2004; Urcelay and Miller, 2014). In contrast, configural threat learning involves forming 

a representation of the threat-related context as a gestalt whole from the individual features 

or elements (e.g., the tone, the shock electrode leads, the furniture in the laboratory, the 

background sounds of the building, any smells; Rudy, 2009). The relationship between 

elemental and configural processes over threat learning governs whether a defensive 

response is triggered by a single element or by the entire context (Maren et al., 2013). 

Context is a broad, multifaceted construct, so it is perhaps unsurprising that investigators 

have used varying methods to investigate human contextual threat (Glenn et al., 2018). The 

broad definition of context has led to methodological challenges for dissociating the neural 

activity between configural and elemental threat learning.

Previous human neuroimaging investigations of contextual threat learning studies have 

primarily measured the neural activity associated with distinguishing between simple 

backgrounds (e.g., different colors, background pictures) to learn when a threatening 

stimulus would be presented depending on the background scene (Lang et al., 2009; Pohlack 

et al., 2012). Studies using such paradigms have found a broad set of neural activation 

associated with differential contextual threat learning, including the amygdala, 

hippocampus, medial prefrontal cortex, anterior cingulate cortex, dorsolateral- and 

ventrolateral prefrontal cortices, and the insula (Alvarez et al., 2008; Andreatta et al., 2015; 

Marschner et al., 2008). Although much has been learned about the neural circuitry 

associated with contextual threat learning using these paradigms, differentiating 

backgrounds can be solved by manipulating a single feature or element. Thus, the role that 

configural encoding plays in threat learning remains poorly understood (Glenn et al., 2018).
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Animal studies indicate that configural threat learning is hippocampal-dependent (Fanselow, 

2000; Monti et al., 2014; Rudy, 2009). The two human neuroimaging studies that have 

examined configural threat learning have supported the important role that the hippocampus 

plays in configural threat encoding (Baeuchl et al., 2015; Stout et al., 2018). Yet, configural 

processing also places demands on other circuits important for spatial relational-processing 

and higher-level cognition (Brodt et al., 2016; Robin et al., 2015) and fear conditioning 

(Glenn et al., 2018). Moreover, distinguishing between high and low configural encoding 

demands within the same task has not been tested and will be critical to separate the basic 

fear learning circuitry from configural threat encoding (Baeuchl et al., 2015; Stout et al., 

2018). To this end, the aim of the current study was to characterize the neural circuitry 

associated with varying demands placed on configural threat learning.

Subjects completed a configural threat learning task (Stout et al., 2018) while undergoing 

functional magnetic resonance imaging (fMRI)(See Figure 1). Specifically, subjects were 

required to learn that one specific configuration was associated with an aversive air-puff to 

the throat (configural CS+; CON+). In other conditions they viewed the same pieces of 

furniture in the same room but the furniture items (or elements) were shuffled into a 

different arrangement (configural CS-; CON-) or were in the same arrangement as CON+ 

but a single piece of furniture was replaced with a new one (configural CS- element 

replaced; CON-ER). Two more conditions were presented which consisted of either a new 

set of furniture arranged in a room (new context CS-; CXT-) or a similar condition where 

one item (or element) from CON+ was added to the three items from CXT- (new context 

CS- element added; CXT-EA) (See Table 1 and Methods section for more details). This 

approach allowed us to compare the neural circuitry associated with varying levels of 

configural encoding demands. We hypothesized that compared to the CON+ condition, low 

configural demands (e.g., based upon a changing background) would recruit lower-level 

sensory circuits more so than configural-based threat learning. We also hypothesized that 

frontoparietal regions would be more prominent when greater demands were placed on 

configural threat learning compared to learning that required less configural processing (i.e., 

elemental learning). We measured skin conductance response to cues as well as self-reported 

US expectancy as operational measures of threat response.

2. RESULTS

2.1 US expectancy

As shown in Figure 2a, subjects learned to differentiate the configural threat condition (CON

+) from the other conditions, however there was a graded expectancy for the US to CS- trial 

types depending on the level of configural demand. The main effects of CS Type was 

significant (p < 1.5 × 10−9). US expectancies were higher for CON+ than all other 

conditions (ps <.001; FDR adjusted). US expectancies were significantly higher for CON-

ER (CON+ room with one element replaced) than CON- (same room as CON+ with 

elements rearranged), CXT-EA (new room with one element from CON+), and CXT- (new 

room and elements) (ps <.008; FDR adjusted).
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2.2 SCR

The main effect of CS Type and Block were significant (Fs>5.38, ps<.002). As shown in 

Figure 2b, SCR for CON+ was significantly greater than the other four conditions (ps<.041; 

FDR adjusted), whereas there were no differences between the other conditions ps>.87).

2.3 fMRI: Hippocampus and amygdala

We computed a CS Type voxel-wise linear mixed-effects model (3dLME; Chen et al., 2013) 

for both the hippocampus and amygdala regions of interest (ROIs). As shown in Figure 3, 

we observed three clusters in the hippocampus that significantly differentiated the five 

conditions. Activity in the left anterior hippocampus (X= −24, Y= −15 , Z= −14, 7 voxels, 

peak F-value= 5.70), was greater for CON+ compared to trials with the same elements 

rearranged (CON-) or in the same configuration with one element replaced (CON-ER)(ps 

<.02; FDR adjusted) but was not different from trials using a totally different room (CXT-) 

or different room with only one element from CON+ (CXT-EA; ps > .39; FDR adjusted; 

Figure 3a). In the left posterior hippocampus however (X= −28, Y= −32, Z= −10, 7 voxels, 

peak F-value= 5.46; Figure 3b), showed no activity difference between CON+ and CON- (p 
=.23; FDR adjusted), but was higher than CON-ER and CXT-EA conditions (ps < .01; FDR 

adjusted) and marginally higher than CXT- (p=.06; FDR adjusted). Activity in the right 

posterior hippocampus (X= 32, Y= −29, Z= −10, 4 voxels, peak F-value= 5.45; Figure 3c) 

was associated with greater activity for CON+ than the other conditions (ps <.03; FDR 

adjusted) except for CXT- (p = .40; FDR adjusted). Finally, we also observed a cluster in the 

left amygdala that displayed significant condition differences (X= −21, Y= −1, Z= −24, 23 

voxels, peak F-value= 8.74; Figure 4). Amygdala activity for CON+ was significantly 

greater than the other conditions (ps < .05; FDR adjusted) except for the CXT- condition (p 
= .10; FDR adjusted).

2.4 fMRI: Whole-brain

The results of the whole-brain analysis revealed a broad set of neural regions that 

differentiated the five CS types (See Figure 5). Among these regions were the dlPFC, 

dorsomedial PFC, bilateral posterior parietal cortex (PPC), periaqueductal grey area (PAG), 

anterior insula (aINS), caudate, and thalamus. See Table 2 for a list of all of clusters 

observed and the PSC for each condition.

To reduce the number of post-hoc comparisons, we performed a k-means cluster analysis to 

identify clusters of regions that have similar patterns in neural activity and may be sensitive 

to particular condition differences. As Figure 6a–b shows, a four-cluster model was 

determined to produce the best distribution of the neural regions (k=4; gap=0.196, 

SE=0.095) versus a 2, 3, or 5 cluster model (gaps <.190, SEs >.099; See Supplementary 

Table 1 and Supplementary Figure 2). The relationship between the k=4 model clusters and 

the individual regions within each cluster are reported in the Supplementary Materials 

(Supplementary Figures 3–6).

Cluster 1 consisted of the post cingulate gyrus, posterior insula (pINS), paracentral gyrus, 

and the supramarginal gyrus (see Supplementary Figure 3). As shown in Figure 6c, neural 

activity from regions in Cluster 1 was significantly higher for CON+ than the other four 
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conditions (ps <.01, FDR adjusted). Neural activity between the safe conditions did not 

differ (ps>.14).

Cluster 2 consisted of the anterior insula (aINS), the right and left caudate, dorsolateral 

prefrontal cortex (dlPFC), dorsomedial PFC (dmPFC), and the periaqueductal grey area 

(PAG) (see Supplementary Figure 4). Neural activity in this cluster was significantly greater 

in all of the Room A conditions (i.e. the high configural demand conditions, CON+, CON-, 

and CON-ER) than Room B conditions (i.e. low configural demand conditions, CXT-, CXT-

ER), ps<.003 (FDR adjusted). Neural activity across the Room A conditions did not differ 

from each other, ps>.37 (Figure 6d).

Cluster 3 consisted of the left and right posterior parietal cortex (see Supplementary Figure 

5). Neural activity in these regions were greater in the CON- and CON-ER conditions than 

in the other three conditions, ps<.05 (FDR adjusted; Figure 6e). CON+ and the different 

context conditions were not significantly different from each other, ps>.27 (FDR adjusted).

As shown in Figure 6f, Cluster 4 consisted of the left and right thalamus and the 

supplemental motor area (SMA) (see Supplementary Figure 6). Neural activity in these 

regions were significantly higher for the CON+ than the other four conditions (ps <.001; 

FDR adjusted). This result is supported by significant differences between the configural 

conditions (CON-ER & CON-) and the different context conditions (CXT-EA & CXT-), ps 
< .02 (FDR adjusted).

Although our goal of the cluster analysis was to facilitate interpretation of the whole-brain 

analysis, we conducted a second k-means analysis that included the three hippocampus 

regions and the amygdala region that were identified via the ROI analysis. Results of this 

analysis are reported in the Supplementary Figure 7.

2.5 SCR & brain correlations

Differential CON+ and CON- SCR correlated with the differential CON+ and CON- neural 

activity in the left posterior hippocampus, r(22)=.50, p=.012 (uncorrected). A similar pattern 

was observed for the CON+ > CON-ER and CON+>CXT-EA difference scores (ps<.041; 

uncorrected) but not for CON+>CXT- (p=0.2; uncorrected). Differential CON+ and CON- 

SCR also correlated with the differential CON+ and CON- neural activity in the right 

posterior hippocampus, r(22)=.41, p=.046 (uncorrected) and the amygdala, r(22)=.44, 

p=.034 (uncorrected). See Supplementary Figure 8 for scatter plots depicting the significant 

relationships. No other neural region or cluster correlated with SCR (ps > .06; uncorrected).

3. DISCUSSION

The goal of the current investigation was to characterize the neural circuitry associated with 

configural threat learning. Subjects completed a configural threat learning task where 

configural processing demands were manipulated via the arrangement of furniture within the 

same background or through discriminating changed elements in the same or different 

background. Results of the current study show that subjects successfully discriminated 

between the threat and safety configurations as measured by US expectancy ratings, SCR, 
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and BOLD activity. Supporting previous investigations, we observed that the hippocampus 

and the amygdala play key roles in configural threat learning and activity in these regions 

predicted SCR to theat. Furthermore, using k-means clustering on the neural regions 

identified in a whole-brain analysis, we identified four circuits that showed differential 

neural activity depending on the configural demands necessary to learn threat from safety. 

Collectively, these results confirmed that configural threat learning requires the coordination 

of several distinct and overlapping neural circuits, with each circuit contributing to a facet of 

configural processing — a key process involved in contextual threat learning.

Our findings support the role of the hippocampus and amygdala in configural threat learning 

(Maren et al., 2013; Rudy, 2009). Hierarchical representations of a context are formed via 

the hippocampus by linking single environmental features into a single contextual 

configuration or representation (Fanselow, 2000; Maddox et al., 2019; Rudy et al., 2004). 

Configural threat representations in the hippocampus send downstream output-signals 

directly to the basolateral nucleus of the amygdala (BLA) to initiate a defensive response 

(Knapska et al., 2012; Maren et al., 2013). Consistent with this, disrupting hippocampal 

activity via lesion and optogenetic manipulations is associated with reduced configural threat 

learning and contextual memory retrieval (Anagnostaras et al., 2001; Corcoran and Maren, 

2001; Kheirbek et al., 2013). Moreover, increased bidirectional theta oscillations between 

the hippocampus and the amygdala are associated with successful emotional pattern 

separation in humans (Zheng et al., 2019). Neuroimaging studies consistently find increased 

hippocampal and amygdala activation to threat-related configurations (Baeuchl et al., 2015; 

Stout et al., 2018) and threatening contexts (Alvarez et al., 2008; Marschner et al., 2008). 

Here we show that activity in the left posterior hippocampus was particularly important for 

configural encoding. We observed significantly greater activity for the conditions that 

required the highest configural encoding demands to differentiate threat from safety (i.e., 

CON+ and CON-). We designed the CON- condition to maximize configural encoding by 

maintaining feature-identical elements across both conditions. To differentiate CON+ from 

CON-, learning of the higher-order spatial-relationship between the elements is necessary 

(Glenn et al., 2017). In sum, the results of our study demonstrate that the posterior 

hippocampus is central to forming configural representations associated with threats.

Whole brain analyses revealed that configural threat learning is characterized by a set of 

neural circuits that subserve distinct but overlapping functional roles. We observed three 

circuits that significantly differentiated the configural conditions from elemental-background 

context conditions (Clusters 2–4). Cluster 2 was comprised of neural regions that are 

implicated in anticipatory threat processing (Brinkmann et al., 2017; Craig, 2009; Drabant et 

al., 2011; Grupe et al., 2013; Somerville et al., 2013). This circuit consisted of the caudate, 

dorsolateral prefrontal cortex (dlPFC), dorsomedial prefrontal cortex (dmPFC), anterior 

insula (aINS), and the periaqueductal gray area (PAG). Thus, the observation that these 

regions were significantly recruited for the conditions that placed greater demands on 

configural processing, regardless of threat level, likely indicates the subjects were 

responding to rooms that signal the potential of receiving the US and not specific to 

configural processing per se—circuitry associated with broader fear learning and 

conditioning (Glenn et al., 2018).
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For Cluster 3, we observed that the left and right parietal cortex regions clustered together. 

Neural activity in these regions was higher for the two configural conditions that were not 

associated with the US (CON-ER & CON-) than the CON+ and the two different context 

conditions (CXT- & CXT-EA). The posterior parietal cortex (PPC) is part of the dorsal 

attention network and aids episodic memory (Cabeza et al., 2008). PPC facilitates 

representation of the spatial relationship between objects and the formation of spatial 

memories (Baumann and Mattingley, 2014; Brodt et al., 2016). Lesions to the PPC result in 

the impairment of spatial location memory (Saj et al., 2018) and functional connectivity 

between the PPC and the hippocampus is increased during spatial memory tasks (Robin et 

al., 2015). The results observed in our study suggest that increased PPC activity for the safe 

configural conditions may be due to the attentional demands required for forming 

hierarchical representations of spatially-related items— a requisite for configural encoding 

in the current investigation.

The neural regions that comprised Cluster 4 consisted of the thalamus and the SMA. The 

thalamus is highly connected to subcortical and cortical brain networks including the SMA 

(Fang et al., 2006; O’Muircheartaigh et al., 2015), making it well positioned to influence 

cognitive and affective processing (Schmitt et al., 2017; Arend et al., 2015). Furthermore, 

thalamic activity is associated with responding to changes in processing demands depending 

on contextual information (Rikhye et al., 2018). The SMA supports motor planning and 

predicting the consequences of movement (Makoshi et al., 2011). Furthermore, the SMA is 

integral to executing regulation strategies to resolve emotional conflict (Deng et al., 2014) 

and is associated with emotion regulation and treatment success in individuals diagnosed 

with PTSD (MacNamara et al., 2016). The pattern observed in the current study could 

reflect the coordination of neural resources for the implementation of emotion regulation 

strategies when expecting potential threats.

Cluster 1 consisted of the post cingulate gyrus, posterior insula (pINS), paracentral gyrus, 

and the supramarginal gyrus. Activity in this cluster was significantly greater for the CON+ 

compared to the other four conditions. The pINS is important for interoception of aversive 

stimulation (Khalsa et al., 2009; Segerdahl et al., 2015) and the posterior cingulate gyrus is 

associated with physiological responding (Vogt, 2005). These results suggest that this cluster 

forms a circuit involved in interoceptive awareness and responding to the CON+ - US 

association. It is notable that the magnitude of average PSC for all of the non-CON+ 

conditions were significantly higher for Clusters 2–4 compared to those same conditions in 

Cluster 1, indicating that Clusters 2–4 were more robustly recruited in our paradigm. In a 

second clustering analysis (see Supplementary Figure 7), we observed that the hippocampus 

and amygdala regions were assigned to this cluster, indicating that these regions contribute 

to learning the threat contingency and physiological responding. The remaining regions 

clustered together to form a circuit that differentiated the Room A conditions from the Room 

B conditions, indicating responding to potential or contextual threats.

Our results show that varying levels of configural threat learning have unique and 

overlapping neural circuits (Glenn et al., 2017; Rudy et al., 2004; Stout et al., 2018). We 

show that high and moderate configural threat encoding demands require neural circuits that 

subserves spatial-relational processes (e.g. parietal cortex, thalamus); whereas low 
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configural demands requiring the differentiation between backgrounds recruits neural 

circuits that are commonly observed in anticipating potential threats and threat conditioning 

(e.g. aINS, pINS, caudate, PAG) (Fullana et al., 2016; Grupe & Nitschke, 2013). 

Importantly, we show that both the hippocampus and amygdala play critical roles in 

configural threat learning and both predicted SCR measures of learning. It should be noted 

that the circuits identified through the whole-brain analyses were not significantly associated 

with the SCR measures. One interpretation is that these circuits play a computational or 

support role regarding the different threat predictors (e.g., elements versus configuration, 

context changes) and relay this information to output circuits associated with defensive 

responding and fear expression (i.e., the hippocampus and amygdala).

From a translational perspective, our findings have important implications for trauma-related 

(e.g., PTSD) and fear-related disorders (e.g., Panic Disorder, Specific Phobias, etc.). 

Impairment in contextual threat learning is an important phenotype associated with PTSD 

(Joshi et al., 2019; Liberzon and Abelson, 2016; Maddox et al., 2019). We have previously 

hypothesized that hippocampal-based configural learning processes may be most disrupted 

in PTSD populations, allowing for the dominance of amygdala-driven elemental strategies 

(Acheson et al. 2012). A failure to utilize configural processing may result in defensive 

responding to single elements in inappropriate contexts (e.g., fear response to a similar smell 

or sound as experienced during the trauma in a completely different environment). Yet, few 

human neuroimaging studies have investigated configural threat learning in PTSD 

populations. Therefore, more work is needed to examine which aspect of contextual threat 

learning is impaired in PTSD (Steiger et al., 2015).

There are limitations that need to be addressed. First, there were an unequal number of trials 

of Room A (CON+, CON-, CON-ER; 28 total trials) and Room B (CXT- and CXT-EA; 16 

total trials). This may have unintendedly produced a novelty effect for the Room B 

conditions, for which the amygdala and hippocampus play a critical role (Pedersen et al., 

2017b, 2017a). Second, we did not counter-balance the assignment of the CON+ to the two 

different rooms. Thus, generalizability of our findings needs to be tested in future studies. 

Third, we did not directly compare neural activity associated with configural threat encoding 

with neural activity associated with threat learning using a single cue (e.g., elemental 

learning). However, to solve CON+ versus CON-, configural encoding is necessary and 

using an elemental approach would lead to a failure to differentiate these conditions. 

Therefore, the comparison between these two conditions would be an accurate test of 

configural learning. In addition, our results broadly replicate our prior work showing that 

hippocampal activity and posterior parietal BOLD activity is particularly relevant for 

configural threat learning and less so for elementally-based threat learning (Stout et al., 

2018). An important challenge for future work will be to test configural threat memory 

recall performance at later time-points (e.g., 24 hours later). This extension would be helpful 

for identifying the neural circuitry associated with how threat-related memory encoding 

strategies influence subsequent defensive responses, particularly whether presentation of a 

single element or the full configuration is required to elicit a response—an important 

implication for PTSD (Acheson et al., 2012; Liberzon and Abelson, 2016).

Stout et al. Page 8

Brain Res. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In conclusion, the current study provides new evidence for the circuits that underlie 

configural threat learning. We show that the hippocampus and amygdala are strong 

candidates for driving configural threat encoding. Beyond these two canonical regions, we 

show that there are multiple circuits operating depending on the extent to which configural 

processing demands are required. Circuits associated with fear expression and sensory 

responding (e.g., PAG, insula, PFC, caudate, and the thalamus) are important if a threat 

context can be learned via low configural demands. When there is an additional requirement 

to encode a configuration of several elements to determine the threat-level, PPC recruitment 

is enhanced. Identifying the neural mechanisms associated with configural threat learning is 

important for delineating how contextual threats are learned. Importantly, these results may 

provide key insights into the etiology and maintenance of neuropsychiatric disorders 

associated with a dysfunction in managing contextual encoding processes related to threat 

learning and expression.

4. EXPERIMENTAL PROCEDURE

4.1 Participants

A total of 25 subjects (mean age=30.08, SD=11.30, range= 18–55; 14 female) from the San 

Diego area completed the contextual threat learning task while undergoing fMRI. The 

majority of subjects were right-handed (n=24) as measured by a single self-reported 

question. Based on our experience using a similar task, we have achieved large effect sizes 

using a similar sample size (Stout et al., 2018). Informed consent was obtained from all 

subjects prior to participating and were monetarily compensated. Ethical considerations and 

study procedures were approved by the institutional review board of the University of 

California San Diego.

4.2 Configural threat acquisition task

The configural threat acquisition task was adapted from the paradigm detailed in Stout et al. 

(2018). During this task (see Figure 1 and Table 1), subjects viewed computer-generated 

pictures of four furniture items in one of two room (7.5 seconds). In this task, a specific 

arrangement of furniture items in a room was paired with an unconditioned stimulus 

(configural CS+; CON+). The unconditioned stimulus (250 psi air puff) was delivered via a 

plastic tube positioned 2.5 cm from the center of the throat. Along with the CON+, subjects 

completed four other conditions that required varying configural encoding demands. 1) 

Subjects completed a condition that contained the same four pieces of furniture in the same 

room as CON+, but the furniture items were shuffled into a different arrangement and was 

not paired with the air-puff (configural CS-; CON-). To differentiate the CON+ from the 

CON-, subjects would be required to encode a hierarchical representation of the spatial 

relationships between each piece of furniture (a high configural demand). 2) Subjects 

completed another condition that was identical to the CON+ configuration except that one 

piece of furniture was replaced with a new piece and the US was not delivered (configural 

CS- element replaced; CON-ER). To differentiate the CON+ from CON-ER trials, a 

moderate level of configural encoding would be required. Two conditions with low levels of 

configural encoding demands were included. These consisted of 1) a new room with four 

new pieces of furniture (new context CS-; CXT-) that would require low to no configural 
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encoding demands to differentiate it from CON+, and 2) a similar condition as CXT- but one 

piece of furniture from CON+ was added (new context CS- element added; CXT-EA), which 

would require low levels of configural demands to differentiate it from the CON+ condition.

An inter-trial interval (ITI) of 7.5 to 10.5 seconds separated the trials. The US co-terminated 

with CON+ on 100% (12/12) of trials, but never with the other four conditions (8 trials each) 

or during the ITI. To prevent front- or back-loading CON+ trials in a pure randomized trial 

design (Lonsdorf et al., 2017), trials were sequenced in one of two fixed orders, where each 

order had the trials presented in a pseudo-random order such that the CON+ did not appear 

on more than two consecutive orders. There was a total of 44 trials.

4.3 US expectancy analysis

US expectancy awareness was measured during each trial using the button box to report 

whether or not they expected the air puff. Subjects responded, with their dominant hand, 

with a “1” if they expected the air puff, “2” if they were unsure, and “3” if they did not 

expect the air puff. The scale remained on the screen for the entire 7.5 second duration of 

each event. If no response was made, a no response was recorded. However, all subjects 

made a response during the interval. Expectancy responses were then re-coded to 1, 0, −1 for 

analyses. We then computed a Cue Type repeated-measures analysis of variance on the 

expectancy ratings. Results for Cue Type X Block analysis is reported in Supplementary 

Figure 1. Corrections for multiple post-hoc comparisons were conducted using the false 

discovery rate (FDR q< .05) and the adjusted p-values are reported (Benjamini and 

Hochberg, 1995).

4.4 SCR measurement and analysis

SCR was measured using a Biopac MP150 unit running Acqknowledge 4.3.1 software 

(Biopac Systems Inc., Goleta, CA) connected to an EDA100C-MRI amplifier with a 5 μS/V 

gain and a 10.0-Hz low-pass filter. Skin conductance signals were acquired using two Ag/

AgCl 11mm electrodes (EL509) filled with isotonic recording electrode gel (GEL101) and 

placed on the thenar and hypothenar eminence of the non-dominant hand so that they could 

use their dominant hand for task responding. Prior to electrode placement, the skin was 

lightly abraded. Next, verification of SCR responding was conducted by having subjects 

hold their breath for 10 seconds or make a fist in the opposite hand where the electrodes 

were placed. All subjects were observed to have a SCR during this procedure. During the 

experiment skin conductance Response (SCR) was continuously recorded to the nearest 

microsiemens (μS) during each trial and ITI, with raw SCR data transformed through mean 

value smoothing. Due to equipment malfunction, SCR for one subject was not recorded, 

leaving a total of 24 subjects with usable SCR. All subjects had a SCR response as defined 

as average minimum > 0.1 μS (0.01 per Boucsein et al., 2012; Pineles et al., 2016) (average 

minimum peak=4.41, SD=1.26, largest minimum response=2.58). Similar to our prior work 

(Stout et al., 2018) and by others (Orr et al., 2000), a peak response within a post-stimulus 

onset window was used to estimate SCR magnitude. The benefit of this approach is that it 

makes no assumptions about when the peak occurs within the time window and therefore 

limits underestimating an SCR if the first response peak is used (Pineles et al., 2009). Peak 

responses were calculated as the difference between the mean SCR within the 2-second 

Stout et al. Page 10

Brain Res. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



period prior to stimulus onset subtracted from the maximum (peak) SCR within a 1–6 

second onset latency post-stimulus onset window. SCR magnitudes were standardized using 

a with-in subjects Z-score (SCRtrial n – SCRmean /SCRSD ), where the SCRmean and SCRSD 

were estimated across all trials and conditions. Trials with outliers (± 3 standard deviations 

from the mean) were transformed via within-subject winsorizing (Wilcox and Keselman, 

2003). We observed three subjects showing a mean fear response below zero for the CON+ 

(after subtracting baseline). These subjects could be classified as “non-responders.” 

However, we include these subjects in our SCR analyses to reduce creating a performance-

based exclusion bias and because these subjects may represent an important end of the fear 

learning spectrum (Lonsdorf et al., 2017; Lonsdorf and Merz, 2017). Post-hoc pairwise 

comparisons were FDR α-adjusted (q<.05) when necessary. For individual trial-level data, 

please see the Supplementary Materials.

4.5 MRI acquisition and preprocessing

MRI data were acquired using a 3T GE CXK4 scanner, which was equipped with 8-channel 

headcoil. High resolution T1-weighted anatomical images were acquired using a spoiled 

gradient recalled echo sequence (FOV=25cm; matrix=256 × 256; 176 sagittal slices; 1mm 

thickness; TR=8ms; TE=4ms; flip angle=12°). Functional data were acquired using a T2*-

weighted echo planar image (EPI) sequence (matrix=64 × 64; 30 axial slices; in-plane 

resolution=3.75 × 3.75 × 4; gap=1.0mm; TR=1.5s; TE=30; flip-angle=80°). Prior to 

scanning, we included additional padding around the subject’s head to reduce movement-

related artifacts.

Preprocessing was similar to steps detailed in Stout et al. (2018). Imaging analysis was 

conducted using FSL (Jenkinson et al., 2012) and AFNI (Cox, 1996). Identification of 

excessive motion artifact was conducted using independent component analysis (ICA) with 

FSL Melodic which robustly identifies noise corresponding to movement (Beckmann and 

Smith, 2004). Motion artifact-related activity was then removed (Kelly et al., 2010). The 

motion-reduced images were then entered into standard preprocessing using AFNI. The first 

2 volumes of each EPI scan were removed, and the remaining volumes were despiked, slice 

time corrected, volume registered for residual motion-related artifact where volumes were 

censored using a motion derivative cutoff of 0.3 (mean motion= 0.056 after ICA, after 

censoring an average of 98.91 volumes were retained), and spatially normalized into MNI 

standard space. Datasets were visually inspected for quality assurance. EPI data were 

spatially smoothed (6-mm FWHM) and converted to percent signal change.

The five condition trials (CON+, CON-, CON-ER, CXT-, CXT-ER) were modeled 

separately using a 7.5 second boxcar function and convolved with the hemodynamic 

response. Drift (linear and quadratic), motion (L/R, A/P, S/I, roll, pitch, yaw, and 

derivatives), censored time-points, and US onset were included as regressors of no interest.

4.6 Hippocampus and amygdala region of interest (ROI) analyses

The hippocampus and amygdala are important regions implicated in configural threat 

learning (Acheson et al., 2012; Glenn et al., 2018). To this end, we computed a Cue-Type 

repeated-measures linear mixed-effects model (3dLME; Chen et al., 2013) for both the 
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hippocampus and the amygdala. Using similar procedures to our prior work (Stout et al., 

2018), we defined the left and right hippocampus and amygdala ROIs using from the 

Harvard-Oxford probabilistic atlas. These analyses were thresholded (p<.005) and small 

volume corrected (SVC; α < .05) using AFNI’s ClustSim (10,000 simulations) within the 

volume of the hippocampus ROIs (cluster-size >4 voxels) and amygdala (cluster-size > 3 

voxels) with the spatial auto-correlation function (-acf) to account for the non-Gaussian 

noise distribution (Cox et al., 2017). To examine condition differences, we extracted mean 

BOLD percent signal change (PSC) from observed hippocampal and amygdala clusters and 

entered them into SPSS (Version 25). Corrections for multiple comparisons were conducted 

using False Discovery Rate (FDR, q< .05) (Benjamini and Hochberg, 1995).

4.7 Whole brain analyses

To characterize configural threat learning beyond the hippocampus and amygdala, we 

computed an identical 3dLME at the whole-brain. Results were voxel-level thresholded 

(p<.001) and cluster corrected (α<.05; cluster-size > 20 voxels) for multiple comparisons 

using AFNI’s 3dClustSim with -acf (10,000 simulations). We extracted mean PSC from 

each significant region for each of the five conditions and submitted them to further analyses 

to test condition differences (see section 4.8 below).

4.8 Clustering analyses

Rather than selecting one or two regions from the whole-brain analysis to further explore the 

condition differences and rather than examining the condition differences for each region 

identified (n regions=15), we used a clustering approach. The goals of this analysis were to: 

1) combine regions identified in the whole-brain analysis that displayed a similar pattern in 

differentiating conditions, and 2) reduce the number of post-hoc analyses to the number of 

clusters identified instead of the entire set of regions. Specifically, we computed a k-means 

clustering analysis using the group level mean PSC extracted from each region for each 

condition identified in the LME. K-means clustering is an unsupervised clustering algorithm 

that separates data into k clusters by selecting k initial cluster centers and then assigns each 

data point to their closest centroid. Then through an iterative process, assigns and updates 

each cluster’s center until the within-cluster sum of squares is minimized (Kaufamn and 

Rousseeuw, 2008). In sum, the benefits of this analysis are (1) the identification of circuits 

that show similar patterns of activity in regard to differentiating conditions and (2) utilizing 

as much data as possible instead of restricting interpretation to an arbitrary selected region. 

Although we focused this k-means to identify broader circuits beyond the hippocampus and 

amygdala, we computed a second k-means analysis including the three hippocampal and the 

one amygdala region (see Supplementary Figure 7).

The k-means clustering analysis was performed in R using the ‘cluster ‘ and ‘factoextra’ 
packages. The input data set consisted of group-level PSC and was organized such that rows 

were regions identified from the whole-brain LME (n=15 regions) and columns were 

condition (n=5 conditions). Prior to analysis, the data were scaled to have a mean of zero 

and a standard-deviation of 1. We then performed k-means with Euclidean distance to 

cluster the pattern of neural regions. To determine the optimal number of clusters, we used 

the gap statistic. The gap statistic compares the total within-cluster sum of squares variation 
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for different values of k with their expected values from a null reference dataset created via 

Monte Carlo simulation (500 simulations) (Tibshirani et al., 2002). Higher gap scores denote 

greater difference from the null hypothesis (i.e., no observed clustering). The optimal 

cluster-size chosen is the smallest k with the highest gap statistic such that its value is not 

more than 1 standard error away from the first local maximum.

After we identified the clusters, we averaged the mean PSC from each region together within 

the respective cluster to form a single value representing that cluster. Cluster PSC was 

computed for each condition separately, allowing us to test pair-wise condition differences 

within the cluster. Corrections for multiple comparisons were conducted using FDR 

(q< .05).

4.9 SCR-brain relationships

To examine the relationship between configural threat learning and neural activity, we 

correlated BOLD response from the hippocampus, amygdala, and whole-brain network 

clusters with SCR. We first calculated four difference scores that corresponded to the 

difference between CON+ and the other four conditions: 1) CON+ > CON-ER, 2) CON

+>CON-, 3) CON+>CXT-EA, and 4) CON+ > CXT-. These difference scores were 

computed for both SCR and neural regions. SCR difference scores were then separately 

correlated with neural region difference scores (Pearson 2-tailed). High scores indicate 

successful configural threat learning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Configural threat task. (a) Trial sequence and timing for the configural threat learning task. 

Configurations and contexts were presented for 7.5 s, followed by a 7.5–10.5s ITI. The US 

co-terminated with the CON+ on 100% of trials. No other conditions co-terminated with a 

US. (b) Examples for the five conditions. CON+, CON-ER, and CON- were configural 

learning trials and had the same background but with different arrangements of the same 

furniture. CXT-EA and CXT- were configural learning conditions with different furniture in 

a different room (see Method section and Table 1 section for more details).
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Figure 2. 
SCR and US expectancy ratings. (a) Bar plots depicting the significant main effect of CS 

Type for US expectancy ratings. (b) Bar plot depicts the significant CS Type main effect for 

SCR. SCR is plotted as the standardized (within-subject Z-score) in μS. Error bars depict 

standard error of the mean (S.E.M.). *= q<.05 (FDR corrected).
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Figure 3. 
Results for the hippocampus region of interest analysis (ROI). Significant effects were 

identified in three regions within the hippocampus (panels a-c). The left and right 

hippocampus ROIs were created from the Harvard-Oxford probabilistic atlas. These 

analyses were thresholded (p<.005) and small volume corrected (SVC; α < .05). Error bars 

depict standard error of the mean (S.E.M.). *= q<.05 (FDR corrected).
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Figure 4. 
Results for the amygdala region of interest analysis (ROI). Significant effects were observed 

in the left amygdala. The amygdala ROI was created using a bilateral mask using the 

Harvard-Oxford probabilistic atlas. These analyses were thresholded (p<.005) and small 

volume corrected (SVC; α < .05). Error bars depict standard error of the mean (S.E.M.). *= 

q<.05 (FDR corrected).
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Figure 5. 
Results for the whole-brain CS Type linear mixed effects analysis. Significant effects were 

identified in several regions. Results were voxel-level thresholded (p<.001) and cluster 

corrected for multiple comparisons (α<.05; cluster-size > 20 voxels).
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Figure 6. 
k-means clustering analysis results. (a) Visual depiction of the k=4 clustering results. Data 

points are plotted as a function of the first two principal components that explain the 

majority of the variance. (b) Heat map depicting the visualization of the Euclidean distance 

of each region. Cold colors (blue) depict low distance. (c-f) Bar plots of Clusters 1 through 4 

which comprise the average of the regions within each cluster. Error bars depict S.E.M.
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Table 1.

Description of task conditions targeting configural encoding

Condition Configural Demand US Delivered Room Manipulation

CON+ Y A
Elements in specific arrangement with US delivered

CON-ER ++ N A Same elements and arrangement as CON+ but one item replaced

CON- +++ N A Same elements but rearranged

CXT-EA + N B New elements, but one element added from CON+

CXT- - N B All new elements

Note. Configural demand column reflects the hypothesized amount of configural encoding demands required to differentiate the condition from the 
CON+ condition. -None. +Minimal. ++Moderate. +++High.
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Table 2.

Whole-brain linear mixed effect results

Region X Y Z Voxels F-Value CON+ PSC CON-ER 
PSC CON-PSC CXT-ER 

PSC CXT-PSC

 PAG 3 −32 −10 285 27.59 .274 .183 .163 .067 .086

 R thalamus 10 −12 4 147 15.36 .370 .226 .241 .117 .153

 L thalamus −7 −25 0 125 11.36 .393 .226 .279 .156 .190

 R caudate 9 10 5 65 9.99 .278 .279 .213 .078 .124

 L caudate −11 0 11 44 7.80 .242 .264 .225 .063 .132

 R SMA 10 −8 67 176 13.02 .352 .191 .216 .122 .148

 R paracentral gyrus 24 −29 62 92 9.25 .101 −.057 −.023 −.003 .028

 R dmPFC 7 34 46 153 11.41 .241 .306 .301 .091 .143

 R dlPFC 42 10 32 318 15.41 .257 .324 .302 .096 .149

 R posterior insula 42 −32 18 260 12.00 .137 −.037 −.049 .003 .014

 R supramarginal 
gyrus

56 −26 23 236 9.74 .220 .003 .004 .009 .047

 L anterior insula −32 24 4 60 13.80 .282 .290 .227 .071 .131

 L posterior cingulate −14 −22 39 35 9.41 .176 −.001 .009 −.021 .053

 R PPC 42 −50 49 34 9.47 .218 .294 .393 .157 .185

 L PPC −46 −57 60 22 8.03 .213 .325 .414 .179 .209

Note. Abbreviations: R=Right; L=Left; dlPFC=dorsolateral prefrontal cortex; SMA=supplementary motor area; dmPFC = dorsomedial prefrontal 
cortex; PPC=posterior parietal cortex; PAG=periaqueductal gray area. PSC=percent signal change. F-value reflects peak F-Value within the cluster. 

Voxel-size=3.5mm3. Cluster-thresholded, p<.001; whole-brain cluster-corrected α <.05 (k>20 voxels). PSC for each condition reflects the group-
level mean.
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