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Abstract 

Influence of Interfacial Rheology on Instabilities in Multiphase Flows   

Liquid-liquid interfaces are common in both nature and industry, arising in foams, respiratory 

droplets, thin films, coatings, and inkjet printing. Generally, surfactants are used to stabilize the 

interface against rupture and coalescence. However, interfacial instabilities can still occur even in 

the presence of surfactants. As surfaces deform, surfactants alter the surface flows by causing 

gradients in surface tension and inducing additional surface rheological effects. Quantitatively 

characterizing these effects has been a key research interest in the past decades. Our work examines 

the effects of surface rheology on the interfacial instabilities in two areas. First, we demonstrate 

the stabilizing effect of surface rheology in radial viscous fingering using linear stability analysis. 

We quantify the growth rates of perturbations to show that surface viscosity slows the growth of 

the instability and results in thicker fingers. In addition, we highlight the quantitative changes that 

are predicted to occur when a typical surface viscous surfactant is present. Our second area focuses 

on the effect of soluble surfactants on the instabilities in liquid jets. We use linear stability analysis 

to quantitatively show the stabilizing effects of increasing Marangoni stresses, surfactant 

adsorption and desorption time, and surface viscous stresses of soluble surfactants in jet fluid. In 

addition, we identify the surface viscous-like force contributed by the Marangoni flow with a finite 

adsorption and desorption time interval. Our work suggests that surface rheology should be 

considered as a potential factor in future models and experiments involving complex surfactant-

laden interfaces. 
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1.1. Preamble 

My dissertation contains two of my publications and a summary of some unfinished work I 

explored during my time at Davis. Other work focusing on the fluid rheology of bacteria biofilms 

is not included. Each publication in the dissertation focuses on the effect of surface rheology on 

the surface instability of a specific application. The current section aims to provide a general 

overview of the history of surface rheology and some of the recent developments. Each chapter 

includes more detailed introductions on the specific field. 

1.2. Introduction 

Fluid-fluid interfaces are common in both nature and industry, arising commonly in foams, 

respiratory droplets, thin films, coatings, and flotation. In most cases, stabilizing agents such as 

fatty acids, alcohols, proteins, and particles populate the interface. These surface-active agents or 

‘surfactants’ modify the energetics and the dynamics of complex interfaces, stabilizing interfaces 

against rupture and coalescence. However, interfacial instabilities can still occur even in the 

presence of surfactants. These instabilities are often undesirable and present challenges in 

processes such as oil recovery, groundwater movement, and carbon dioxide sequestration in saline 

aquifers. In this work, we explored the impact of surface rheology on the instabilities of interfaces 

in viscous fingering and jet fluid. We cover some of the fundamentals of surface rheology and 

summarize the progress made so far in each field for the rest of the section. 

Before we mention surface rheology, we will talk briefly about Marangoni flows. Marangoni flow 

is one of the most significant surface transport phenomena and is induced by surfactant surface 

tension gradients [1,2]. Plateau first observed the effect but attributed the surface resistance to a 

‘superficial viscosity.’ Marangoni and Gibbs later recognized the phenomenon and elucidated the 
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effect with the argument of surface tension gradients [1]. The comprehensive mathematical 

analysis of the Marangoni effects was presented years later when Levich justified that Marangoni 

stress caused rising bubbles to behave as rigid spheres [3,4]. In recent decades, however, it 

becomes more evident that stabilizers also confer rheological properties to the interface and alter 

the behavior of surface flow [5–8]. Thus, separating and accounting for the influences of both 

Marangoni stress and surface rheological stresses on surface flows correctly has been an ongoing 

challenge in the studies of interfacial transport phenomena [8,9].  

The theoretical development of surface rheology took a few decades to begin gaining more traction 

and becoming more prevalent. Boussinesq was the first to propose the incorporation of surface 

viscosities in interfacial transport equations theoretically in 1913. He explained the rigid-sphere-

like behaviors of rising bubbles by ascribing the surface flow resistance to surface rheology. 

Boussinesq hypothesized the existence of a thin interfacial layer and set up a two-dimensional (2D) 

analog of three-dimensional (3D) Newtonian fluid with intrinsic surface shear (𝜂𝑠) and dilatational 

(𝜅𝑠) viscosities [1,10]. While the original equations by Boussinesq were limited to the specific 

study, Scriven generalized the framework by treating the interface as an isotropic fluid continuum 

of any shape in 1960 [1,8,11]. The resulting equations describing a Newtonian fluid interface 

undergoing continuous change are usually referred to as the Boussinesq-Scriven model [1,11], 

which is commonly used to describe surface rheology in recent research works.  

Recent experiments have unambiguously identified surface rheological stresses that may arise on 

complex interfaces [2,5–8]. Much like their 3D counterparts, surface viscosities resist the 

deformation of the 2D manifold that makes up the fluid interface. Indeed, surface shear viscosity 

‘immobilizes’ the interface, enhancing film stability during the drainage motion of foams [12,13] 

and thin coatings [14], and retarding the buoyant rise of droplets [15]. However, detecting reliable 
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surface rheological signatures remains difficult in experiments as interfacial flows drive mixed 

surface deformations and a combination of surfactant transport properties, including surface 

convection, bulk diffusion, and adsorption/desorption. For example, insoluble surfactants modify 

the surface flow to behave as incompressible, modifying the resistance to the motion of an 

interfacial probe [2,16,17]. Demarcating a genuine interfacial rheological response is thus 

challenging, giving rise to a wide range of inferred values of surface viscosities [18]. Nevertheless, 

strategies to clearly measure surface viscous stresses via careful experimental designs of flow 

geometries, length scales, and time scales have been successful in recent years. The role of surface 

shear viscosity, for example, has been established using rotational flow geometries that only shear 

the interface and do not give rise to Marangoni effects [6,19]. Micro-rheological techniques have 

also established the existence of surface excess viscosities [20–22], with recent works tying 

together the micro- and macro-viscosity of complex interfaces [23]. Despite the current progress, 

however, properly differentiating between an ‘intrinsic’ and ‘apparent’ surface dilatational 

viscosity remains an open question, as systems that contain Marangoni flows with a finite 

adsorption or desorption time interval might introduce a surface-viscous-like force [2,3,9,16–

18,24,25].   

The coupling between surface and bulk (or subphase) flows presents yet another subtlety in the 

interpretation of systems with a non-trivial surface viscosity. The relative strength of surface 

viscous stresses to bulk viscous stress is typically quantified by the Boussinesq number, 

𝐵𝑞 =
𝜂𝑠

𝜂𝐿
, (1) 

where 𝜂𝑠 is the surface shear viscosity, 𝜂 is the bulk viscosity, and 𝐿 is the characteristic length 

scale of the system. Alternatively, a dilatational surface viscosity, 𝜅𝑠, may be used if the interface 
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resists dilation. Surface shear viscosities are typically measured using interfacial magnetic 

rods [19], micro-buttons [6,26], or with Couette and double-wall Couette rheometers [7,27], 

whereas surface dilatational viscosities are measured with oscillatory bubble/drop-based 

methods [7,28].  

 

One instability that occurs commonly in multiphase fluid systems is viscous fingering: unstable 

finger-like protrusions develop as a less viscous fluid invades a more viscous fluid in confined 

geometry as shown in Fig.1.1 [29]. Viscous fingering is often observed in the petroleum industry, 

which uses Enhanced oil recovery (EOR) techniques to improve volumetric sweeping efficiency. 

Gas EOR methods are commonly used due to their improved microscopic sweep in the pores than 

waterflood methods. However, the oil recovery of gas EOR methods remains low due to 

channeling and viscous fingering [30]. Using foams instead of gas provides a potential solution to 

the problems in gas EOR methods: foams increase the effective viscosity of the displacement fluid 

(foams), block the high-permeable swept zones, and reduce the interfacial tensions due to 

surfactants at the surface, leading to the decrease in capillary forces [31]. When surfactants adsorb 

Figure 1.1. The formation of viscous fingers upon fluid displacement [29]. 



6 

 

at the fluid surface, they confer rheological properties to the surface that affect fluid surface 

deformation.  

Saffman and Taylor were the first to quantify the fingering instability using a Hele-Shaw cell to 

simulate a porous medium [32]. The qualitative features of viscous fingering are now well 

understood. The exact details of the size and rate of growth of viscous fingers depend critically on 

the shape of the invading interface  [33–38], geometry  [39,40] and deformability [41] of the walls, 

and the presence of external fields that impact the flow [42]. However, despite decades of work, 

the role of surface rheological stresses on the Saffman-Taylor instability is yet unknown. Indeed, 

recent studies show asphaltenes and related complexes on oil-water interfaces strongly resist 

interfacial deformation [14,43–47], potentially modifying or even suppressing the instability. 

While more and more literature studies have begun to recognize and characterize the surface excess 

rheological stresses, no study has focused on the surface rheological impact on viscous fingering. 

In addition, the fundamental understanding of surface viscous contributions to fluid surface 

deformation is still lacking. Miscommunication often occurs in experiments associated with 1D 

deformations of foam liquid channels as contributions from both surface shear and dilatational 

viscosities were mistakenly treated as originating from a single surface viscosity [18,48]. Our 

published work provides here a quantitative description of the role of surface viscosity on the 

growth of viscous fingers in a system that mimics the fluid-fluid displacement in porous media. 

Another case of interfacial instability is the instability of jet fluid. While the impact of surfactants 

on jet fluid stability has long been studied [49–51], the understanding of surface rheological effect 

on the dynamics of Newtonian jet fluid is limited [52,53]. The lack of understanding prompts the 

need to further understand the fundamental science behind the role of surface rheology. It has been 

well established that the presence of surfactants plays a role in the process of liquid jet thinning 
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and the formation of the satellite beads [53–61]. A few groups of researchers have identified that 

the presence of insoluble surfactants lowers the thinning rate of liquid jets  [52,56,62,63]. In 

addition, some have proposed analytical solutions for the thinning rate that was affected by the 

surface rheological effects [64,65]. The work on the liquid jets with soluble surfactants remains 

mainly experimental. Soluble surfactants in liquid jets are found to increase the jet-breaking 

lengths in addition to playing a role in the formations and the sizes of the satellite 

beads [53,55,58,66–68]. However, the fundamental science and understanding of soluble 

surfactants in jet fluid stability are still lacking, specifically the adsorption and desorption kinetics 

of the soluble surfactants near the interface. In this work, we investigated the impact of soluble 

surfactants on a Newtonian liquid jet. We isolated and quantitatively showed the effects of the 

Marangoni stresses, the net flux of surfactant adsorption and desorption, and the surface viscous 

stresses via linear stability analysis. In addition, we identified the surface viscous-like force 

contributed by the Marangoni flow with a finite adsorption and desorption time interval. Lastly, 

we showed numerically that we can generalize the results from the linear stability analysis to the 

systems governed by established models such as Langmuir and Frumkin [69,70].  
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2.1. Preface 

In this chapter, I am reprinting an article I published on the influence of surface rheology on 

viscous fingering; DOI: 10.1103/PhysRevFluids.6.074001. It is somewhat surprising that no one 

has investigated the impact of surface rheological effect in Saffman-Taylor instability. In this work, 

we demonstrate, for the first time, the stabilizing effect of surface rheology in radial viscous 

fingering using linear stability analysis. We present the equations governing the dynamics on the 

interface using the Boussinesq-Scriven model [11] in cylindrical coordinates. We analyze the 

effect of surface rheology on the growth of interfacial perturbations in a radial Hele-Shaw cell and 

illustrate that surface viscous stresses have a stabilizing effect: the most unstable wavenumber as 

well as the corresponding growth rate decreases with increasing surface viscosity. Based on these, 

we postulate that surface viscous resistance slows the growth of the instability and results in thicker 

fingers. Finally, we also show that incorporating surface rheology in radial viscous fingering 

potentially better captures past experimental data. Our work suggests that surface rheology should 

be considered as a potential factor in future models and experiments involving complex surfactant-

laden interfaces. 

2.2. Introduction  

Fluid-fluid interfaces are common in both nature and industry, arising commonly in foams, 

respiratory droplets, thin films, coatings, and flotation. In most cases, stabilizing agents such as 

fatty acids, alcohols, proteins, and particles populate the interface. These surface-active agents or 

‘surfactants’ modify the energetics and the dynamics of complex interfaces, stabilizing interfaces 

against rupture and coalescence. However, interfacial instabilities can occur even in the presence 
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of surfactants. These instabilities are often undesirable and present challenges in processes such as 

oil recovery, groundwater movement, and carbon dioxide sequestration in saline aquifers. 

One such instability that occurs commonly in multiphase fluid systems is viscous fingering: 

unstable finger-like protrusions develop as a less viscous fluid invades a more viscous fluid in 

confined geometry. Saffman and Taylor were the first to quantify this instability using a Hele-

Shaw cell to simulate a porous medium [32]. The qualitative features of viscous fingering are now 

well understood. The exact details of the size and rate of growth of viscous fingers depend critically 

on the shape of the invading interface  [33–38], geometry  [39,40] and deformability [41] of the 

walls, and the presence of external fields that impact the flow [42]. However, despite decades of 

work, the role of surface rheological stresses on the Saffman-Taylor instability is yet unknown. 

Indeed, recent studies show asphaltenes and related complexes on oil-water interfaces strongly 

resist interfacial deformation [14,43–47], potentially modifying or even suppressing the instability. 

We present here a quantitative description of the role of surface viscosity on the growth of viscous 

fingers in a system that mimics the fluid-fluid displacement in porous media. 

Recent experiments have unambiguously identified surface rheological stresses that may arise on 

complex interfaces [2,5–8]. Much like their 3D counterparts, surface viscosities resist the 

deformation of the 2D manifold that makes up the fluid interface. Indeed, surface shear viscosity 

‘immobilizes’ the interface, enhancing film stability during the drainage motion of foams [12,13] 

and thin coatings [14], and retarding the buoyant rise of droplets [15]. However, detecting reliable 

surface rheological signatures remains difficult in experiments as interfacial flows drive mixed 

surface deformations and a combination of surfactant transport properties, including surface 

convection, bulk diffusion, and adsorption/desorption. For example, insoluble surfactants modify 

the surface flow to behave as incompressible, modifying the resistance to the motion of an 
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interfacial probe [2,16,17]. Demarcating a genuine interfacial rheological response is thus 

challenging, giving rise to a wide range of inferred values of surface viscosities [18]. Nevertheless, 

strategies to clearly measure surface viscous stresses via careful experimental designs of flow 

geometries, length scales, and time scales have been successful in recent years. The role of surface 

shear viscosity, for example, has been established using rotational flow geometries that only shear 

the interface and do not give rise to Marangoni effects [6,19]. Micro-rheological techniques have 

also established the existence of surface excess viscosities [20–22], with recent works tying 

together the micro- and macro-viscosity of complex interfaces [23]. Despite the current progress, 

however, properly differentiating between an ‘intrinsic’ and ‘apparent’ surface dilatational 

viscosity remains an open question, as systems that contain Marangoni flows with a finite 

adsorption or desorption time interval might introduce a surface-viscous-like force [2,3,9,16–

18,24,25].   

The coupling between surface and bulk (or subphase) flows presents yet another subtlety in the 

interpretation of systems with a non-trivial surface viscosity. The relative strength of surface 

viscous stresses to bulk viscous stress is typically quantified by the Boussinesq number, 

𝐵𝑞 =
𝜂𝑠

𝜂𝐿
, (2.1) 

where 𝜂𝑠 is the surface shear viscosity, 𝜂 is the bulk viscosity, and 𝐿 is the characteristic length 

scale of the system. Alternatively, a dilatational surface viscosity, 𝜅𝑠, may be used if the interface 

resists dilation. Surface shear viscosities are typically measured using interfacial magnetic 

rods [19], micro-buttons [6,26], or with Couette and double-wall Couette rheometers [7,27], 

whereas surface dilatational viscosities are measured with oscillatory bubble/drop-based 

methods [7,28].  
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In this work, we illustrate, for the first time, the role of surface rheology in radial viscous fingering. 

We first present the equations governing the dynamics on the interface using the Boussinesq-

Scriven model [11] in cylindrical coordinates. We then analyze the effect of surface rheology on 

the growth of interfacial perturbations in a radial Hele-Shaw cell and illustrate that surface viscous 

stresses have similar stabilizing effects on the interface as surface tension. We predict the expected 

finger width that might be observed in experiments and demonstrate that stronger surface viscous 

effects result in slower growth of fingers and larger finger width. We end with a comparison to 

past theoretical models and the quantitative changes that are predicted to occur when a typical 

surface viscous surfactant is present. 

2.3. Governing equations 

Thin fluid films confined between parallel walls (Fig. 2.1) are mathematically analogous to flow 

in a porous medium and are commonly used to simulate and analyze fluid-fluid displacement 

problems [32,33]. The fluid velocity in such a Hele-Shaw cell follows Darcy’s law: 

𝒖𝑗 = −𝑀𝑗𝛁𝑝𝑗, 𝑗 = 1,2, (2.2) 

where 𝑀𝑗 is the fluid mobility and 𝑝𝑗 is the pressure. We follow the notations in Fig. 2.1 where 

fluid 1 invades fluid 2. Mobility depends on the gap width between the plates of the Hele-Shaw 

cell, 𝑏, and the bulk viscosity, 𝜂𝑗: 

𝑀𝑗 =
𝑏2

12𝜂𝑗
, 𝑗 = 1,2. (2.3) 

Defining 𝜙𝑗 = 𝑀𝑗𝑝𝑗 as the velocity potential to build on previous works in this geometry  [38,71], 

we express the fluid velocity as  
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𝒖𝑗 = −𝛁𝜙𝑗 = −
𝜕𝜙𝑗

𝜕𝑟
�̂�𝑟 −

1

𝑟

𝜕𝜙𝑗

𝜕𝜃
�̂�𝜃, 𝑗 = 1,2. (2.4) 

Surface rheological stresses enter as boundary conditions to the velocity potentials. In what follows, 

we outline the Boussinesq-Scriven model for a Newtonian interface.   

2.3.1. Boussinesq-Scriven model in cylindrical coordinates 

The mathematical description of a complex interface with its 2D viscosities goes back to 

Boussinesq, who sought to explain the rigid-sphere-like behavior of rising bubbles by ascribing 

the immobilization of the fluid interface to surface rheology. Boussinesq hypothesized the 

existence of a thin interfacial layer and set up a 2D analog of 3D Newtonian fluid with intrinsic 

surface shear (𝜂𝑠) and dilatational (𝜅𝑠) viscosities [1,10]. Scriven generalized the framework by 

treating the interface as an isotropic fluid continuum that comprises a 2D manifold of any 

shape [1,8,11]. The resulting equations describing a Newtonian fluid interface undergoing 

continuous change are usually referred to as the Boussinesq-Scriven model [1,11].  

The model originates from the 2D form of Cauchy’s momentum conservation equation at the 

interface [72], 

Figure 2.1. Geometry of a less viscous fluid (phase 1) radially invading a more viscous fluid 

(phase 2). 𝜂𝑗, with 𝑗 = 1,2, is the fluid viscosity, 𝑏 is the gap width of the Hele-Shaw cell,  𝑅(𝑡) 

is the interfacial radius in the base state, and 𝑎(𝑡, 𝜃) is the perturbed displacement around 𝑅(𝑡). 
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𝜌𝑠

𝐷𝒖

𝐷𝑡
= 𝒏 ∙ ⟦𝝈⟧ + 𝛁𝑠 ∙ 𝝈𝑠, (2.5) 

where 𝜌𝑠 is the surface mass density, ⟦𝝈⟧ = 𝝈2 − 𝝈1 is the hydrodynamic stress jump across the 

interface. 𝒏 is the normal vector pointing towards the outer phase and 𝛁𝑠 = 𝑰𝑠 ∙ 𝛁 = (𝑰 − 𝒏𝒏) ∙ 𝛁 

is the surface gradient operator. 

Stresses on the interface originate from surface tension 𝛾  and surface excess rheological 

stresses [2,11]: 

𝝈𝑠 = 𝛾𝑰𝑠 + 𝝉𝑟ℎ𝑒𝑜𝑙, (2.6) 

where 𝑰𝑠 = 𝑰 − 𝒏𝒏 is the surface identity tensor and 𝝉𝑟ℎ𝑒𝑜𝑙 captures the deviatoric relationship 

between stresses and strain rates on the interface. 

Substituting Eq. (2.6) into Eq. (2.5), we obtain 

𝜌𝑠

𝐷𝒖

𝐷𝑡
+ 𝒏 ∙ 𝝈1 − 𝒏 ∙ 𝝈2 = 𝛁𝑠𝛾 − 𝛾(𝛁𝑠 ∙ 𝒏)𝒏 + 𝛁𝑠 ∙ 𝝉𝑟ℎ𝑒𝑜𝑙 , (2.7) 

The constitutive relation for the surface stress tensor 𝝉𝑟ℎ𝑒𝑜𝑙  depends on the details of the 

rheological response of the interface. We will consider the 2D Newtonian approximation proposed 

by Boussinesq and generalized by Scriven, wherein 𝝉𝑟ℎ𝑒𝑜𝑙 takes the form [2,11]  

𝝉𝑟ℎ𝑒𝑜𝑙 = [(𝜅𝑠 − 𝜂𝑠)𝛁𝑠 ∙ 𝒖]𝑰𝑠 + 𝜂𝑠[𝛁𝑠𝒖 ∙ 𝑰𝑠 + 𝑰𝑠 ∙ (𝛁𝑠𝒖)𝑇], (2.8) 

where 𝜂𝑠 is the surface shear viscosity, 𝜅𝑠 is the intrinsic surface dilatational viscosity, and 𝒖 =

𝒖1 = 𝒖2  is the fluid velocity at the interface. Note that the intrinsic surface dilatational 

viscosity, 𝜅𝑠, is a property of surfactant in contrast to the apparent surface dilatational viscosity, 

which might arise due to a finite adsorption or desorption time [2,25]. 𝜂𝑠 and 𝜅𝑠 are exact surface 

analogs of the fluid viscosity and dilatational viscosity that appear in the 3D deviatoric stress tensor, 
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respectively. Unlike 3D fluids, however, interfaces are generally easier to compress and, thus, 

exchange mass and momentum with the bulk phase(s). 

Substituting Eq. (2.8) into Eq. (2.7) and simplifying, we obtain: 

𝜌𝑠

𝐷𝒖

𝐷𝑡
− (𝒏 ∙ 𝝈2 − 𝒏 ∙ 𝝈1)

= 𝛁𝑠𝛾 − 𝛾(𝛁𝑠 ∙ 𝒏)𝒏 + (𝜅𝑠 − 𝜂𝑠)𝛁𝑠(𝛁𝑠 ∙ 𝒖) − (𝜅𝑠 − 𝜂𝑠)(𝛁𝑠 ∙ 𝒖)[𝛁𝑠 ∙ 𝒏]𝒏 

+𝛁𝑠 ∙ {𝜂𝑠[𝛁𝑠𝒖 ∙ 𝑰𝑠 + 𝑰𝑠 ∙ (𝛁𝑠𝒖)𝑇]}, (2.9)   

which is the general Boussinesq-Scriven equation  [11]. The first term on the left-hand side (LHS) 

of Eq. (2.9) captures the fluid and surfactant inertia, which is negligible in overdamped or low-

Reynolds-number flows. The second term on the LHS represents the coupling to the subphase via 

viscous traction from the bulk fluid. The first term on the right-hand side (RHS) of Eq. (2.9) depicts 

the Marangoni stress, which can also be expressed in terms of surface pressure, 𝛁𝑠𝛾 = −𝛁𝑠Π, 

where the surface pressure is Π = 𝛾0 − 𝛾, with 𝛾0 being the surface tension of a clean interface. 

The second term on the RHS represents the curvature pressure in the normal direction. In a static 

system with no surface rheological stresses, Eq. (2.9) simplifies to the Young-Laplace equation. 

Additionally, in systems containing only insoluble surfactants, the surface divergence of 𝒖 is zero 

as interfaces are incompressible [2,16]. 

We wish to connect Eq. (2.9) to the radial geometry of an initially circular bubble invading a Hele-

Shaw cell. Neglecting the inertial term in Eq. (2.9), simplifying the unit normal vector to 𝒏 = �̂�𝒓, 

and expressing the velocity in terms of potential, the normal stress balance becomes (Appendix 

A.2), 
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−(𝑝1 − 𝑝2) − 2𝜂1

𝜕2𝜙1

𝜕𝑟2
+ 2𝜂2

𝜕2𝜙2

𝜕𝑟2
= −𝛾 (

2

𝑏
+ 𝛁𝐬 ∙ 𝒏)

− [(𝜅𝑠 − 𝜂𝑠)(𝛁𝒔 ∙ 𝒏) + 2𝜂𝑠

1

𝑟
] (−

1

𝑟2

𝜕2𝜙1

𝜕𝜃2
−

1

𝑟

𝜕𝜙1

𝜕𝑟
) , (2.10)

 

where 2/𝑏 is the additional correction for the transverse curvature in a Hele-Shaw cell of gap size 

𝑏. Equation (2.10) illustrates a key feature of one-dimensional deformation: azimuthally stretching 

a cylindrical interface is an anisotropic deformation and excites both shear and dilatational 

responses. A surfactant with finite surface shear viscosity alone will therefore resist a purely 

stretching deformation in this geometry. Equation (2.10) serves as a boundary condition to the 

governing equation for 𝜙𝑗 [Section 2.2]. 

We make the common assumption that surface tension is spatially uniform and do not consider the 

effect of Marangoni stress in this study. This assumption is valid when the scale of tangential flow 

𝑢𝜃 driven by the surface tension gradients is much smaller than the normal velocity 𝑢𝑟. In the case 

of soluble surfactants, this assumption is also valid when the rate of adsorption/desorption is much 

faster than the rate of deformation to maintain a near-equilibrium surface coverage. However, 

finite-time adsorption or desorption of soluble surfactants at the interface leads to local variations 

in surface tension, introducing an apparent dilatational viscosity, 𝜅𝑠,𝑎𝑝𝑝, which further complicates 

the system [2,25]. Analytically tracking these contributions would require solving a surfactant 

conservation equation simultaneously with Eq. (2.10). For simplicity, we assume constant surface 

coverage in what follows. In addition, note that this analysis uses the Boussinesq-Scriven model 

with a Newtonian constitutive relation for the interface. Insoluble surfactants undergo phase 

transitions upon compression and can display strongly non-Newtonian behavior [2,26,74]. For 

simplicity and as the first step towards illustrating the effect of interfacial rheology in this viscous 
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fingering, we will assume that surface viscosities remain constant so that the Newtonian model is 

valid.  

2.3.2. Radial viscous fingering 

In a typical radial viscous fingering experiment, a less viscous fluid 1 is injected at a constant 

volumetric flow rate 𝑄𝑏 at the center of a Hele-Shaw cell filled with a more viscous fluid 2, as 

shown in Fig. 2.1. The circular domain of the less viscous fluid 1 destabilizes as it expands and 

forms finger-like protrusions. The mass balance on the fluid in the Hele-Shaw cell is 

𝜋𝑅2𝑏 − 𝜋𝑅0
2𝑏 = 𝑄𝑏𝑡, (2.11) 

where 𝑅 is the radius of the unperturbed interface, 𝑅0 is the initial radius, and 𝑏 is the gap width 

of the Hele-Shaw cell. Here, 𝑄 is the area flow rate (per unit gap width) and is held constant in this 

study. The system is dynamically stable until a critical radius 𝑅𝑐, beyond which instability occurs 

leading to finger formation.  

We are primarily interested in the mechanisms of destabilization at 𝑅𝑐  and will approach this 

problem in terms of a linear stability analysis. In particular, we seek to investigate the early stages 

of the transition from an undisturbed interface to the appearance of sinusoidal disturbances when 

the fluid interface has a non-trivial surface viscosity. To this end, we define the velocity potential 

as 𝜙𝑗 = 𝜙0𝑗 + 𝜙1𝑗 , where 𝜙0𝑗  is the potential in the base state and 𝜙1𝑗  is the potential in the 

perturbed state. The velocity potential satisfies the continuity equation, ∇2𝜙𝑗 = 0. 

2.3.2.1  Base state 

The unperturbed base state corresponds to fluid 1 maintaining a circular shape of radius 𝑅(𝑡) as it 

invades fluid 2. In such a base state, the kinematic condition at the interface 𝑟 = 𝑅(𝑡) is 
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𝜕𝑟

𝜕𝑡
=

𝜕𝜙0𝑗

𝜕𝑟
|

𝑟=𝑅
. (2.12) 

Solving Eq. (2.11) and Eq. (2.12) gives 

𝜕𝜙0𝑗

𝜕𝑟
= −

𝑄

2𝜋𝑟
. (2.13) 

In the base state, the radial curvature in the projected plane is 𝛁 ∙ 𝒏 = 1/𝑅(𝑡). The normal stress 

balance for the base-state flow is then given by Eq. (2.10),  

−(𝑝01 − 𝑝02)|𝑟=𝑅 − 2𝜂1

𝜕2𝜙01

𝜕𝑟2
|

𝑟=𝑅

+ 2𝜂2

𝜕2𝜙02

𝜕𝑟2
|

𝑟=𝑅

= −𝛾 (
2

𝑏
+

1

𝑅(𝑡)
) − (

𝜅𝑠 + 𝜂𝑠

𝑅(𝑡)
) (−

1

𝑟

𝜕𝜙01

𝜕𝑟
)|

𝑟=𝑅

. (2.14)

 

2.3.2.2  Perturbed state 

We introduce perturbations about the base state in the form of an unsteady radial displacement 

around 𝑅(𝑡) with azimuthally varying amplitude: 

𝑎(𝑡, 𝜃) = 𝐴0𝑓(𝑡) exp(𝑖𝑛𝜃) , (2.15) 

where 𝑓(𝑡) depicts the growth rate of a mode of wavenumber 𝑛 and |𝐴0| ≪ 𝑅(𝑡). Here, 𝑛 is an 

integer and roughly represents the number of viscous fingers along the interface in the linear limit. 

The radius of the perturbed interface is the sum of the radius at the base state and the perturbation:  

𝑟 = 𝑅(𝑡) + 𝑎(𝑡, 𝜃). (2.16) 

Retaining only terms to 𝑂(𝑎), the kinematic condition at the interface becomes 

𝜕𝑟

𝜕𝑡
=

𝜕(𝑅 + 𝑎)

𝜕𝑡
=

𝜕𝜙0𝑗

𝜕𝑟
|

𝑟=𝑅
+ 𝑎

𝜕2𝜙0𝑗

𝜕𝑟2
|

𝑟=𝑅

+
𝜕𝜙1𝑗

𝜕𝑟
|

𝑟=𝑅
. (2.17) 
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Solving the Laplace equation for the perturbed potential and satisfying the kinematic condition Eq. 

(2.17) gives [38,71], 

𝜙1𝑗(𝑟, 𝜃, 𝑡) = (−1)𝑗𝐴0𝑓(𝑡) exp(𝑖𝑛𝜃) (
𝑟

𝑅(𝑡)
)

𝑛(−1)𝑗−1

(
𝑄

2𝑛𝜋𝑅(𝑡)
+

𝑅

𝑛

𝑓′(𝑡)

𝑓(𝑡)
) . (2.18) 

As mentioned above, surface tension is assumed to be spatially uniform and 𝑢𝜃 = 0. Thus, the 

only boundary condition is in the normal direction. The normal stress balance for the perturbed 

state can be obtained using Eq. (2.10) by substituting 𝑟 = 𝑅(𝑡) + 𝑎(𝑡, 𝜃) and retaining only terms 

to 𝑂(𝑎): 

[𝑝01 + 2𝜂1

𝜕2𝜙01

𝜕𝑟2
− (𝑝02 + 2𝜂2

𝜕2𝜙02

𝜕𝑟2
)]|

𝑟=𝑅

+ 𝑎
𝜕

𝜕𝑟
[𝑝01 + 2𝜂1

𝜕2𝜙01

𝜕𝑟2
− (𝑝02 + 2𝜂2

𝜕2𝜙02

𝜕𝑟2
)]|

𝑟=𝑅

+ [𝑝11 + 2𝜂1

𝜕2𝜙11

𝜕𝑟2
− (𝑝12 + 2𝜂2

𝜕2𝜙12

𝜕𝑟2
)]|

𝑟=𝑅

= 𝛾 (
2

𝑏
+

1

𝑅(𝑡)
−

𝑎

𝑅(𝑡)2
−

1

𝑅(𝑡)2

𝜕2𝑎

𝜕𝜃2
) 

− [(𝜅𝑠 − 𝜂𝑠) (
1

𝑅
−

𝑎

𝑅(𝑡)2
−

1

𝑅(𝑡)2

𝜕2𝑎

𝜕𝜃2
) + 2𝜂𝑠 (

1

𝑅
(1 −

𝑎

𝑅
))] [

1

𝑅(𝑡)
(1 −

𝑎

𝑅(𝑡)
)] [(

𝜕𝜙01

𝜕𝑟
)|

𝑟=𝑅

+ 𝑎
𝜕

𝜕𝑟
(

𝜕𝜙01

𝜕𝑟
)|

𝑟=𝑅

+ (
𝜕𝜙11

𝜕𝑟
)|

𝑟=𝑅
].                                                                                    (2.19) 

The LHS of Eq. (2.19) is the difference of normal stresses across the fluid interface, whereas the 

RHS is the Laplace pressure and surface viscous stresses. To obtain the dispersion relation between 
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the growth rate and the wavenumber, 𝑛, we subtract contributions from the base state normal stress 

balance [Eq. (2.14)] from Eq. (2.19):  

𝑎
𝜕

𝜕𝑟
[𝑝01 + 2𝜂1

𝜕2𝜙01

𝜕𝑟2
− (𝑝02 + 2𝜂2

𝜕2𝜙02

𝜕𝑟2
)]|

𝑟=𝑅

+ [𝑝11 + 2𝜂1

𝜕2𝜙11

𝜕𝑟2
− (𝑝12 + 2𝜂2

𝜕2𝜙12

𝜕𝑟2
)]|

𝑟=𝑅

+ 𝛾 (
𝑎

𝑅(𝑡)2
+

1

𝑅(𝑡)2

𝜕2𝑎

𝜕𝜃2
)

= −
(𝜅𝑠 + 𝜂𝑠)

𝑅(𝑡)2
[𝑎

𝜕

𝜕𝑟
(

𝜕𝜙01

𝜕𝑟
)|

𝑟=𝑅
+ (

𝜕𝜙11

𝜕𝑟
)|

𝑟=𝑅
] 

− [(𝜅𝑠 + 𝜂𝑠) (− 
2𝑎

𝑅(𝑡)3
) + (𝜅𝑠 − 𝜂𝑠)

𝑛2𝑎

𝑅(𝑡)3
] ∗

[(
𝜕𝜙01

𝜕𝑟
)|

𝑟=𝑅
+ 𝑎

𝜕

𝜕𝑟
(

𝜕𝜙01

𝜕𝑟
)|

𝑟=𝑅
+ (

𝜕𝜙11

𝜕𝑟
)|

𝑟=𝑅
] . (2.20)

 

Substituting 𝑝𝑗 = 𝜙𝑗/𝑀𝑗, 𝜂𝑗 = 𝑏2/(12𝑀𝑗  ), expressing 𝜙𝑗 in terms of the base state and perturbed 

state with Eq. (13) and Eq. (2.18) respectively, and substituting 𝑎(𝑡, 𝜃) = 𝐴0𝑓(𝑡) exp(𝑖𝑛𝜃), Eq. 

(2.20) becomes (Appendix A.3) 

−𝛾
𝑛2 − 1

𝑅(𝑡)2
+ 𝑄{

(𝑛 − 1)𝑀1 − 𝑀2(𝑛 + 1)

2𝑀1𝑀2𝑛𝜋𝑅(𝑡)
−

𝑏2[𝑀1(𝑛 − 1) + 𝑀2(𝑛 + 1)]

12𝑀1𝑀2𝜋𝑅(𝑡)3

−
𝑛2(𝜅𝑠 − 𝜂𝑠) − 2(𝜅𝑠 + 𝜂𝑠)

2𝜋𝑅(𝑡)4
}

= [
(𝑀1 + 𝑀2)𝑅(𝑡)

𝑀1𝑀2𝑛
+

𝑏2[𝑀1(𝑛 + 1) + 𝑀2(𝑛 − 1)]

6𝑀1𝑀2𝑅(𝑡)
+

𝜅𝑠 + 𝜂𝑠

𝑅(𝑡)2
]

𝑓′(𝑡)

𝑓(𝑡)
  . (2.21)

 

In linear stability theory, 𝑓(𝑡) is proportional to exp(𝜎𝑡), where 𝜎 is the growth rate and is equal 

to 𝑓′(𝑡)/𝑓(𝑡). Note that 𝜎(𝑅(𝑡)) is time-dependent through its implicit relation to the changing 

radius 𝑅(𝑡). As 𝑛 is an integer and 𝑛 > 1, the RHS of Eq. (2.21) is positive and can be treated as 

a scaled growth rate of perturbations. The terms on the LHS each represents contributions from 

surface tension, driving pressure, viscous normal stresses, and surface viscous stresses respectively. 
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in the radial direction. The negative signs in front of the terms reveal the stabilizing effects of 

surface tension and viscous normal stresses. While dilatational viscosity (𝜅𝑠) has a stabilizing 

effect, Eq. (2.21) reveals a surprising destabilizing effect of surface shear viscosity (𝜂𝑠) in the 

radial direction. As the intrinsic dilatational viscosity seems to be usually more dominant [75–77], 

we here assume 𝜅𝑠 ≫ 𝜂𝑠. 

We nondimensionalize Eq. (2.21) using characteristic values of 𝑇 = 2𝑏2𝜋/𝑄 for time and the gap 

width, 𝑏, for length to give 

−
𝑛2 − 1

𝜉2
𝑃 −

𝑚(𝑛 + 1) − (𝑛 − 1)

𝑛𝜉
−

𝑚(𝑛 + 1) + (𝑛 − 1)

6𝜉3
−

𝑛2 − 2

12𝜉4

𝜅𝑠

𝜇2𝑏

= [
(1 + 𝑚)𝜉

𝑛
+

𝑚(𝑛 − 1) + (𝑛 + 1)

6𝜉
+

1

12𝜉2

𝜅𝑠

𝜂2𝑏
] 𝛼, (2.22)

 

where 

𝜉 =
𝑅(𝑡)

𝑏
, (2.23) 

𝑚 =
𝑀2

𝑀1
=

𝜂1

𝜂2
, (2.24) 

𝛼 = 𝑇𝜎 =
2𝑏2𝜋

𝑄
𝜎, (2.25) 

𝐶𝑎 =
�̇�𝜂2

𝛾
=

1

12𝑃𝜉
, 𝑃 =

𝜋𝑏𝛾

6𝑄𝜂2
. (2.26) 
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The choice of the dimensionless quantity 𝑃 is motivated by being able to describe the system in 

terms of externally controllable quantities and is adapted from past experiments in viscous 

fingering [38]. A Boussinesq number naturally emerges in Eq. (2.22) and depends on the Hele-

Shaw cell gap width, 𝑏, as  

𝐵𝑞𝑏 =
𝜅𝑠

𝜂2𝑏
. (2.27) 

𝐵𝑞𝑏 captures the relative strength of surface viscous stresses to bulk (outer fluid) viscous stress. 

As previously discussed, both shear and dilatational contributions appear together in an 

azimuthally stretching deformation. The effect of surface rheology decreases when 𝐵𝑞𝑏 becomes 

Figure 2.2. (a) Dimensionless growth rate 𝛼 as a function of wavenumber 𝑛 at 𝐶𝑎 = 0.1, 𝜉 =

100 . Both the maximum growth rate  𝛼𝑚𝑎𝑥  and the corresponding wavenumber 𝑛𝑚𝑎𝑥 

decrease with increasing Boussinesq number 𝐵𝑞, indicating that surface viscosity stabilizes 

perturbations. (b) Dimensionless growth rate 𝛼  as a function of wavenumber 𝑛  at 𝐵𝑞 =

1, 𝜉 = 100. This reveals the classically known effect of surface tension in suppressing the 

instability upon decreasing the Capillary number 𝐶𝑎. 
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small. In the limits of 𝐵𝑞𝑏 → 0, Eq. (2.22) retrieves the classic result of Kim et al. [38]. Inverting 

Eq. (2.22) for the dimensionless growth rate 𝛼 gives 

𝛼 = −

(6𝑃𝜉 +
𝐵𝑞𝑏

2𝜉
) 𝑛3 + (𝑚 + 1)𝑛2 − [6𝜉(𝑃 + 𝜉) − 𝑚(6𝜉2 + 1) + 1 +

𝐵𝑞𝑏

𝜉
] 𝑛 + 6(𝑚 + 1)𝜉2

𝜉2 (6(𝑚 + 1)𝜉2 + (𝑚 + 1)𝑛2 − (𝑚 − 1)𝑛 +
𝑛
2

𝐵𝑞𝑏

𝜉
)

. (2.28)

 

Alternatively, we can use the instantaneous base state radius, 𝑅(𝑡), as a characteristic length scale, 

upon which the ratio of surface to bulk viscous stresses is characterized by a modified Boussinesq 

number:  

𝐵𝑞 =
𝐵𝑞𝑏

𝜉
=

𝜅𝑠

𝜂2𝑅(𝑡)
. (2.29) 

Figure 2.3. (a) The most unstable wavenumber 𝑛𝑚𝑎𝑥 as a function of Boussinesq number 

𝐵𝑞  at 𝐶𝑎 = 0.1  and 𝜉 = 100 . 𝑛𝑚𝑎𝑥  asymptotes to a constant value as 𝐵𝑞 → 0 

(corresponding to the effect of surface tension alone) and decreases as a power law for 

𝐵𝑞 ≳ 1. The dashed line with a slope of −0.5 is shown as a guide. (b) Maximum growth 

rate 𝛼𝑚𝑎𝑥 follows a similar trend, shown here for a constant 𝐶𝑎 = 0.1. 
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The new length scale 𝑅(𝑡) is appropriate as 𝑅(𝑡)2 characterizes the area over which bulk viscous 

stresses dissipate when the inner fluid expands radially. 

Often, the invading inner fluid is significantly less viscous than the outer fluid, as is the case in oil 

recovery with pressurized air. In this case, 𝑀1 ≫ 𝑀2 (𝜂1 ≪ 𝜂2) and 𝑚 = 𝑀2/𝑀1 ≈ 0. Eq. (2.28) 

then simplifies to 

𝛼 = −
(6𝑃𝜉 +

1
2

𝐵𝑞) 𝑛3 + 𝑛2 − [6𝜉𝑃 + 6𝜉2 + 1 + 𝐵𝑞]𝑛 + 6𝜉2

𝜉2 (6𝜉2 + 𝑛2 + 𝑛 +
𝑛
2 𝐵𝑞)

. (2.30) 

This is the final form of the dispersion relation 𝛼(𝑛). In what follows, we discuss the significance 

of the surface viscous terms in Eq. (2.30) and their effects on controlling the instability. 

2.4. Effect of surface rheology 

Figure 2.2 shows the dispersion relation with either 𝐶𝑎 or 𝐵𝑞 held constant. The key observation 

is that surface viscous stresses act to suppress the instability at constant surface tension. The 

maximum growth rate and the window of unstable wavenumbers decrease as surface viscous 

stresses become dominant relative to bulk viscous stress (Fig. 2.2a). The change is most prominent 

at large wavenumbers, suggesting that surface viscosity disproportionately resists deformations 

associated with thinner fingers. This result is consistent with the kinematic interpretation that 

thinner fingers with a higher local curvature stretch the interface more than wider fingers of the 

same amplitude, and are thus met with a stronger surface viscous resistance to deformation. 

Figure 2.2b illustrates the well-known effect of surface tension on the Saffman-Taylor instability. 

The growth rates and the range of unstable wavenumbers decrease with increasing surface tension 

(or decreasing Capillary number, 𝐶𝑎) at constant 𝐵𝑞. The stabilizing effect of surface tension 
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alone in this geometry, as given by Eq.(2.30) in the limit of 𝐵𝑞 → 0, is consistent with the results 

of Logvinov [78].  

We can quantify the effect of surface rheology on the most unstable finger by analytically tracking 

the maxima of the dispersion relation. To determine the mode 𝑛𝑚𝑎𝑥   that corresponds to the 

maximum growth rate 𝛼𝑚𝑎𝑥, we assume 𝑛 is continuous and set the derivative of Eq. (2.30) to 

zero:  

𝜕𝛼

𝜕𝑛
= 0 = (3𝑃𝜉 +

1

4
𝐵𝑞) 𝑛𝑚𝑎𝑥

4 + (6𝑃𝜉 +
1

2
𝐵𝑞) (1 +

1

2
𝐵𝑞) 𝑛𝑚𝑎𝑥

3

+ [18𝜉2 (3𝑃𝜉 +
1

4
𝐵𝑞) + 3𝜉𝑃 + (3𝜉2 + 1) +

3

4
𝐵𝑞] 𝑛𝑚𝑎𝑥

2

−6𝜉2 [3𝜉2 + 1 + 3𝑃𝜉 +
3

4
𝐵𝑞] . (2.31)

 

We numerically invert Eq. (2.31) to obtain 𝑛𝑚𝑎𝑥(𝐵𝑞), which is plotted in Fig. 2.3. The most 

unstable wavenumber, 𝑛𝑚𝑎𝑥, is mostly constant for 𝐵𝑞 ≲ 1. As the system shifts to the interface-

dominated regime (𝐵𝑞 ≳ 1), 𝑛𝑚𝑎𝑥 decreases as a power-law model shown in Fig. 3a, decaying as 

𝑛𝑚𝑎𝑥 ∝ 1/√𝐵𝑞 for realistic values of 𝑛𝑚𝑎𝑥 . We note that the power-law changes as 𝐵𝑞 → ∞: 

however, this limit is unrealistic as wavenumbers are discrete and required to be greater than 1. 

We can further use the maximum wavenumber in our dispersion relation Eq. (2.30) to obtain the 

maximum linear growth rate 𝛼𝑚𝑎𝑥  of the finger (Fig. 2.3b), which follows the trend of 𝑛𝑚𝑎𝑥 and 

begins to decrease as a power law as 𝐵𝑞 increases within a realistic range.  

We can estimate the most unstable finger width predicted by our linear analysis as follows. The 

fastest-growing wavenumber, 𝑛𝑚𝑎𝑥, corresponding to the maxima of the dispersion relation results 

in a wavelength 𝜆 = 2𝜋𝑅(𝑡)/𝑛𝑚𝑎𝑥. Assuming the interface has the same number of peaks and 

troughs, the most likely observable finger width is then  𝜆/2 = 𝜋𝑅(𝑡)/𝑛𝑚𝑎𝑥. The proportionality 
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between the finger width and 𝑅(𝑡) suggests a strategy to adjust the selection of observable viscous 

fingers at the interface in an experiment. From Fig. 2.2a, we see that the most unstable wavenumber 

decreases with increasing 𝐵𝑞, suggesting again that thinner fingers are less likely when surface 

viscous effects are dominant. In addition, the effect is amplified at larger 𝐵𝑞. Surface viscous 

effects thus add to the various other external factors that can control the formation of viscous 

fingers. For example, recent studies have shown that a gradual variation of the geometry of the 

flow passage and porous media can retard viscous fingering [39,40]. Elastic boundaries also offer 

a novel method to delay the onset of instabilities and suppress viscous fingering [41]. Alternatively, 

opposing the hydraulic flow with secondary electro-osmotic flows induced by an external electric 

field can also effectively control the formations of viscous fingers [42]. Our work shows that 

surface rheology is an additional and yet unexplored factor that controls the size and stability of 

viscous fingers.  
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Importantly, note that the radial injection flow is time-dependent and the growth rate 𝜎(𝑅(𝑡)) 

depends implicitly on time via the normalized radius 𝜉(𝑡) = 𝑅(𝑡)/𝑏. Examining the nonlinear 

long-time behavior will require analyzing the cascade of higher-order modes and tip-splitting [38] 

or integrating perturbations over time to extract the wavenumber that exhibits the maximum total 

growth over time [79–81]. Here, instead, we illustrate the early-time growth at different radii 

should the system be stable until it reaches that radius (e.g., via slower injection rates). Figure 2.4 

illustrates the dimensionless growth rate 𝛼 as a function of wavenumber 𝑛 at 𝐶𝑎 = 0.1 and 𝐵𝑞 =

1 when perturbations grow at different normalized radii 𝜉. The most unstable wavenumber, 𝑛𝑚𝑎𝑥, 

increases linearly with increasing 𝜉 as shown in Fig. 2.4b. The corresponding maximum linear 

growth rate 𝛼𝑚𝑎𝑥 decreases as a power law 𝛼𝑚𝑎𝑥 ∝ 1/𝜉. Consequently, we expect more fingers 

to emerge at a larger radius although finger widths remain independent of 𝑅 (as 𝜆~𝑅(𝑡)/𝑛𝑚𝑎𝑥 and 

Figure 2.4. (a) Dimensionless growth rate 𝛼  as a function of wavenumber 𝑛  at 𝐶𝑎 =

0.1, 𝐵𝑞 = 1, and various values of normalized radius 𝜉. (b-c) The maximum growth rate 𝛼𝑚𝑎𝑥 

decreases and the corresponding wavenumber 𝑛𝑚𝑎𝑥  increases with increasing 𝜉, indicating 

more fingers if perturbed at a larger radius. The dashed lines with slopes of 1 and −1 are 

shown as guides. 
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𝑛𝑚𝑎𝑥 ∝ 𝜉 ∝ 𝑅). Fingers that emerge at a larger radius also grow at a slower pace as compared to 

those perturbed at a smaller radius, consistent with past work on optimal fluid injection rate to 

suppress instability [82]. 

Finally, we compare our predictions for the impact of surface viscosity relative to classic theories 

of viscous fingering. A commonly used normalization of the most unstable wavenumber, 𝐴𝑚𝑎𝑥 =

𝑏𝑛𝑚𝑎𝑥/(𝑅√𝐶𝑎) , is motivated by the value of 𝑛𝑚𝑎𝑥  expected in the classic Saffman-Taylor 

problem: neglecting viscous normal stresses and surface viscous stresses in the radial Hele-Shaw 

geometry gives (Appendix A.3) [37,71] : 

Figure 2.5. The surface rheology model (SRM) developed here predicts lower values of the 

modified wavenumber 𝐴𝑚𝑎𝑥   at larger 𝐶𝑎  when compared with the viscous potential flow 

(VPF) model [38]. 𝐴𝑚𝑎𝑥 departs further from past predictions with increasing 𝐵𝑞, especially at 

large 𝐶𝑎 . The dashed horizontal line represents the expected value of 𝐴𝑚𝑎𝑥  in the classic 

Saffman-Taylor problem which neglects viscous normal stresses and surface viscous stresses. 
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𝑛𝑚𝑎𝑥 =
1

√3
[12𝐶𝑎

𝑅(𝑡)2

𝑏2
+ 1]

1
2

. (2.32) 

Consequently, 𝐴𝑚𝑎𝑥 should be constant – indeed, approximately 2 when 𝑅 ≫ 𝑏 – in the absence 

of viscous normal stresses and surface viscous stresses. Viscous normal stresses lower the most 

unstable wavenumber at large 𝐶𝑎, as shown by the viscous potential flow (VPF) model [38]. To 

incorporate the effect of surface rheology, we rearrange Eq. (2.31) for the Capillary number in 

terms of 𝑛𝑚𝑎𝑥, 𝜉, and 𝐵𝑞 to get 

𝐶𝑎 = −
𝑛𝑚𝑎𝑥

4 + 2 [1 +
1
2 𝐵𝑞] 𝑛𝑚𝑎𝑥

3 + (18𝜉2 + 1)𝑛𝑚𝑎𝑥
2 − 6𝜉2

4(𝑛𝑚𝑎𝑥
2 − 6𝜉2) [(3𝜉2 + 1) +

3
4 𝐵𝑞] + 𝑛𝑚𝑎𝑥

2 𝐵𝑞{(𝑛𝑚𝑎𝑥 + 1)2 + (18𝜉2 − 1) + 𝑛𝑚𝑎𝑥𝐵𝑞}
. (2.33) 

Figure 2.5 shows the results of the theoretical predictions of 𝐴𝑚𝑎𝑥 from the VPF model and our 

surface rheological model (SRM) obtained using Eq. (2.33) with 𝜉=100. SRM retrieves the VPF 

model in the limit of 𝐵𝑞 = 0. As 𝐵𝑞 increases, SRM deviates from VPF and predicts lower values 

of 𝐴𝑚𝑎𝑥 especially when 𝐶𝑎 is large. Even marginal interfacial rheology, with 𝜅𝑠 = 𝑂(1) 𝑚𝑁 ∙

𝑠/𝑚 so that 𝐵𝑞 = 𝑂(1), seems to modify past models significantly, as shown in Fig. 2.5. In fact, 

the surface dilatational viscosity 𝜅𝑠  of many common classes of surfactants that are used in 

industry and engineering can be as high as 𝑂(100) 𝑚𝑁 ∙ 𝑠/𝑚 [28,83]. Thus, we predict that the 

presence of surfactants with non-trivial surface rheology would quantitatively change the rate of 

growth of unstable fingers. 

2.5. Conclusion 

We have examined, for the first time, the role of interfacial rheology in radial viscous fingering. 

The interface becomes more stable with increasing surface viscosity. Perturbations with smaller 
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wavelengths are preferentially suppressed, leading us to expect stabler and wider fingers. The 

wavenumber 𝑛𝑚𝑎𝑥 that corresponds to the maximum growth rate 𝛼𝑚𝑎𝑥 approximates to 𝑛𝑚𝑎𝑥 ∝

1/√𝐵𝑞 for 𝐵𝑞 ≳ 1 within a realistic range. This suppression of the instability is in addition to the 

classically known effect of surface tension and normal viscous stresses. We theoretically predict 

that the surfactants with non-trivial surface rheology decrease the most unstable wavenumber 

when compared to the classic viscous potential flow (VPF) model developed by Kim et al. [38], 

especially in regions of large 𝐶𝑎. We hope this work helps motivate careful and controlled future 

experiments and models involving complex surfactant-laden interfaces. 

We have neglected surface wetting effects and interfacial surface tension gradients for simplicity. 

However, surface wetting effects may improve the theoretical predictions as shown in systems 

without added surfactants [84,85]. First-order surface wetting effects could be incorporated by 

adding an extra term, −2𝛾𝐽𝐶𝑎2/3/𝑏, to the right-hand side of Eq. (2.10) [34,35,37]. 𝐽 can be 

obtained numerically [34], and the resulting relation between 𝐶𝑎, 𝐵𝑞, and 𝑛𝑚𝑎𝑥  could then be 

obtained following the steps in this study. Accounting for tangential flow and changes in surface 

tension might further improve the accuracy of the model. This would require simultaneously 

solving an azimuthal stress balance for the Marangoni stress along with the normal stress balance 

shown in our analysis. Finite-time transport of soluble molecules on and off the interface can also 

lead to a viscous-like dissipation at the interface [2]. Such an apparent dilatational viscosity, 𝜅𝑠,𝑎𝑝𝑝, 

that emerges even in the absence of an intrinsic surface viscosity but instead due to 

adsorption/desorption, can alter the instability in qualitatively similar ways to what we have 

described. We leave these as future problems. 
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3.1. Preface 

The chapter is the reprint of the paper” impact of soluble surfactants on liquid jets”, which is 

currently under review for the Journal of Chemical Physics. In this chapter we aim to focus on the 

rheological impact of soluble surfactants on the surface instabilities in liquid jets. Interfaces are 

common in both nature and industry, arising in foams, respiratory droplets, coatings, and inkjet 

printing. Generally, surfactants are used to stabilize the interface against rupture and coalescence. 

However, interfacial instabilities can still occur even in the presence of surfactants. As surfaces 

deform, surfactants alter the surface flows by causing gradients in surface tension and inducing 

additional surface rheological effects. Quantitatively characterizing these effects has been a key 

research interest in the past decades. This work focuses on the effect of soluble surfactants on the 

instabilities in liquid jets. Recent studies have shown that insoluble surfactants delay thread 

thinning and suppress instabilities in Newtonian jet fluids. However, the understanding of soluble 

surfactants in jet fluid stability is still lacking, specifically the adsorption and desorption kinetics 

of the soluble surfactants near the interface. In this work, we use linear stability analysis to 

quantitatively show the stabilizing effects of increasing Marangoni stresses, surfactant adsorption 

and desorption time, and surface viscous stresses of soluble surfactants in jet fluid. In addition, we 

identify the surface viscous-like force contributed by the Marangoni flow with a finite adsorption 

and desorption time interval. Our work suggests that surface rheology should be considered as a 

potential factor in future models and experiments involving complex surfactant-laden interfaces. 

3.2. Introduction  

Surface active agents or surfactants are widely used in a variety of applications, including coating 

flows [86,87], spreading films [88,89], foams and emulsions [90–92], and inkjet printing [57,93]. 
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The presence of surfactants confers rheological properties to the interface, altering the dynamics 

of surface flows [5–8].  

Surface deformations lead to surfactant concentration gradients in the plane of the fluid interface, 

which give rise to Marangoni stresses directing interfacial flow from regions of low to high surface 

tension. Additionally, surfactant-laden interfaces may display an intrinsic surface rheological 

response that affects surface flows and deformations [5–7]. Like in 3D fluids, a surface shear 

viscosity 𝜂𝑠 characterizes resistance to 2D shear deformations in the plane of the interfaces. This 

is measured using geometries involving shearing alone, such as translating needles [94], magnetic 

rods, [19], and rotating micro-buttons [6,26]. On the other hand, a surface dilatational viscosity 𝜅𝑠 

characterize 2D resistance to uniform dilatation or compression of the surface, and is measured 

using methods involving oscillatory droplets and bubbles [7,28,95]. As both the Marangoni 

stresses and surface rheological stresses play controlling roles in the dynamics of surface 

deformation, separately identifying and measuring these stresses becomes critical in interfacial 

engineering.  

Figure 3.1, Schematic of a Newtonian liquid jet with a monolayer of soluble surfactants. The 

bulk phase has the density 𝜌 and viscosity 𝜂0. The soluble surfactants exchange between the 

bulk phase and the air-liquid interface at an adsorption rate 𝑗𝑎 and a desorption rate 𝑗𝑑. The 

surfactants also give the surface a surface tension 𝛾 which depends on the surface concentration 

𝛤. 
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Separating these surface stresses might is not always straightforward. For instance, reverse 

Marangoni flows set up by insoluble surfactants constrains tangential flow around a translating 

disk or particle to be 2D incompressible [2,96]. This changes the associated 3D bulk flow and 

modifies the total viscous resistance to particle motion. Experiments set up to measure the surface 

rheology of insoluble surfactants, if not carefully controlled to only involve interfacial shear, could 

therefore cause potential misinterpretations of the results [16,17]. On the other hand, surfaces with 

soluble surfactants can restore the surface concentration gradients through the exchange of 

surfactants between the surfaces and the bulk. The rate of the exchange affects the strength of the 

Marangoni flows, which may again lead to partial immobilization of the interface. As a result, 

Marangoni flows with a finite adsorption and desorption time likely leads to an “apparent” surface 

viscosity, which further complicates the task of properly demarcating various 

effects [2,3,9,18,24,25].  

We wish to demonstrate, for the first time, this interplay of surface stresses in the context of the 

stability of a thin viscous jet. While the impact of surfactants on jet fluid stability has long been 

studied [49–51], very few previous works acknowledge the effects of surface rheology [52,53], 

and even these are limited to studying insoluble surfactants. It has been well established that 

insoluble surfactants lowers the thinning rate of liquid jets  [52,56,62,63] and modifies the 

formation of satellite beads [53–61]. Numerical studies also revealed that increasing surface 

viscous stresses would greatly delay thread thinning, deform the primary droplets, and suppress 

the growth of secondary droplets [97,98]. In addition, analytical solutions modeling the thread 

thinning also highlighted the importance of surface viscosities in the thinning process in both the 

limit of dominant surface diffusion, where the thread thins exponentially, and the limit of dominant 

surface convection, where the thread thins following a power-law [64,65]. However, insights on 
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liquid jets with soluble surfactants remains limited, with no analytical efforts to date. 

Experimentally, soluble surfactants in liquid jets are found to increase the jet-breaking 

lengths [66,67] in addition to playing a role in the formations and the sizes of the satellite 

beads [53,58,61,68]. A fundamental quantitative understanding of soluble surfactants in jet fluid 

stability is still lacking, specifically addressing adsorption and desorption kinetics and the role of 

the apparent surface viscosity mentioned above. 

In this work, we investigate the impact of soluble surfactants on a Newtonian liquid jet. We isolate 

and quantitatively show the effects of the Marangoni stresses, the net flux of surfactant adsorption 

and desorption, and the surface viscous stresses via linear stability analysis. In addition, we identify 

the surface viscous-like force contributed by the Marangoni flow with a finite adsorption and 

desorption time. Lastly, we show numerically that we can generalize the results from the linear 

stability analysis to more realistic sorption kinetics governed by Langmuir and Frumkin 

models [69,70].  

3.3. Problem description 

3.3.1. Governing equations 

We model a thin liquid column as a slender axisymmetric jet of Newtonian fluid containing 

surfactants. This jet is initially cylindrical but is allowed to axisymmetrically deform via the 

interplay of surface tension and fluid flow. The radius 𝑅(𝑧, 𝑡) is assumed to vary slowly along the 

length of the jet [Fig. 3.1], allowing us to retain only the leading terms in an expansion in the 

radius [52,99]. In this leading-order description, mass and momentum conservation take the 

form  [52,100,101]: 
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𝜕𝑅

𝜕𝑡
+ 𝑢

𝜕𝑅

𝜕𝑧
+

𝑅

2

𝜕𝑢

𝜕𝑧
= 0, (3.1) 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑧
) = −

𝜕(𝜅𝛾)

𝜕𝑧
+

2

𝑅

𝜕𝛾

𝜕𝑧
+

3𝜂0

𝑅2

𝜕

𝜕𝑧
(𝑅2

𝜕𝑢

𝜕𝑧
) +

9

2𝑅2

𝜕

𝜕𝑧
(𝜂𝑠𝑅

𝜕𝑢

𝜕𝑧
)

+
1

2𝑅2

𝜕

𝜕𝑧
(𝜂𝑑𝑅

𝜕𝑢

𝜕𝑧
) , (3.2)

 

where 𝑢(𝑧, 𝑡) is the axial velocity, 𝜌 is the bulk fluid density, 𝛾 is the surface tension, 𝜅 is the 

interfacial curvature, 𝜂0 is the bulk fluid viscosity, 𝜂𝑠 is the surface shear viscosity, and 𝜂𝑑 is the 

surface dilatational viscosity. The left-hand side of Eq. (3.2) captures fluid inertia, whereas the 

first three terms on the right-hand side (RHS) correspond to familiar pressure and viscous 

contributions in the Navier-Stokes equation. Pressure relates to the dynamic surface tension via 

the Young-Laplace relation, with the interfacial curvature written as 

𝜅 =
1

𝑅(1 + 𝑅𝑧
2)1/2

−
𝑅𝑧𝑧

(1 + 𝑅𝑧
2)3/2

, (3.3) 

where 𝑅𝑧 and 𝑅𝑧𝑧 represents the partial derivatives 𝜕𝑅/𝜕𝑧 and  𝜕2𝑅/𝜕𝑧2, respectively. As the jet 

profile and surfactant concentration evolve, gradients in both curvature 𝜅 and surface tension 𝛾 

contribute to the pressure gradient via the first two terms in the RHS of Eq. (3.2). These terms are 

thus the curvature pressure and the Marangoni stress, respectively. 

The last two terms in Eq. (3.2) arise from surface rheology and, barring a few exceptions, have not 

been accounted for in past studies. They arise from treating the interface between the jet and 

surrounding fluid as a 2D viscous manifold following the Boussinesq-Scriven framework  [1,11,52] 

and then expanding in small radius. Notably, in this slender jet limit, shear and dilatational 

viscosities are indistinguishable from each other: this is also the case in other one-dimensional 
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surface deformations such as in dip coating [87] and in the interfaces of Plateau borders within 

foams  [102]. 

In addition to the mass and momentum conservation equations, we take the leading order of the 

convection-diffusion equation for the surfactant surface concentration, Γ , and obtain the 1-D 

surfactant transport equation as 

𝜕𝛤

𝜕𝑡
+ 𝑢

𝜕𝛤

𝜕𝑧
+

𝛤

2

𝜕𝑢

𝜕𝑧
= 𝐷𝑠  

𝜕2𝛤

𝜕𝑧2
+ 𝑗𝑛, (3.4) 

where 𝐷𝑠  is the surfactant diffusivity, 𝑗𝑛 = 𝑗𝑎 − 𝑗𝑑  accounts for the net exchange of surfactant 

molecules between the bulk and the interface between the kinetic fluxes of adsorption, 𝑗𝑎, and 

desorption, 𝑗𝑑. Here, we assume Frumkin kinetics [15] and express the net flux as 

𝑗𝑛 = 𝑗𝑎 − 𝑗𝑑 = 𝑘𝑎𝐶0(𝛤∞ − 𝛤) − 𝑘𝑑𝛤 𝑒𝑥𝑝 (−
𝛽𝛤

𝑘𝐵𝑇
) , (3.5) 

where 𝑘𝑎  and 𝑘𝑑  are the adsorption and desorption rate constants, 𝐶0  is the bulk surfactant 

concentration, 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the absolute temperature, and Γ∞ is the surface 

concentration at maximum packing [3,70,103]. 𝛽 represents intermolecular interactions, which are 

attractive when 𝛽 > 0 and repulsive when 𝛽 < 0. When 𝛽 = 0, we recover the simpler Langmuir 

model. 

Additionally, we assume that the fluid is surfactant-rich and that there are no diffusion limitations 

to transport within the bulk fluid: in other words, we take 𝐶0 to be a constant. Substituting 𝑗𝑛 in 

Eq. (3.4) gives 

𝜕𝛤

𝜕𝑡
+ 𝑢

𝜕𝛤

𝜕𝑧
+

𝛤

2
 
𝜕𝑢

𝜕𝑧
= 𝐷𝑠  

𝜕2𝛤

𝜕𝑧2
+

𝛤∞ − 𝛤

𝑡𝑎
−

𝛤

𝑡𝑑
𝑒𝑥𝑝 (−

𝛽𝛤

𝑘𝐵𝑇
) , (3.6) 
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where 𝑡𝑎 = 1/𝑘𝑎𝐶0 and 𝑡𝑑 = 1/𝑘𝑑 are characteristic adsorption and desorption times. 

To close the system of equations, we specify the relation between the dynamic surface 𝛾 and the 

local surfactant concentration 𝛤 via the associated Frumkin isotherm [3,70]: 

𝛾 = 𝛾0 + 𝑘𝐵𝑇Γ∞𝑙𝑛 (1 −
Γ

Γ∞
) +

𝛽Γ2

2
, (3.7) 

where 𝛾0 is the surface tension of a ‘clean’ interface (i.e., when 𝛤 = 0).  

3.3.2. Non-dimensionalization  

We non-dimensionalize continuity [Eq. (3.1)], momentum conservation [Eq. (3.2)], and surfactant 

transport [Eq. (3.6)] equations using characteristic values of initial radius 𝑅0  for length, the 

unperturbed surface tension 𝛾0 for forces (per unit length), and the undisturbed initial value 𝛤0 for 

surface concentration. A natural time scale 𝑡𝑅 = √𝜌𝑅0
3/𝛾0 emerges from the balance of inertial 

(∼ 𝜌𝑅0/𝑡𝑅
2)  and capillary (∼ 𝛾0/𝑅0

2)  forces: this is indeed the Rayleigh time scale [104] 

associated with the breakup of an inviscid fluid thread (or, equivalently, a characteristic velocity 

𝑣 = 𝑅0/𝑡𝑅). We can then rewrite Eq (3.1), (3.2), and (3.6) in their dimensionless forms as 

𝜕�̃�

𝜕�̃�
+

�̃�

2

𝜕�̃�

𝜕�̃�
+ �̃�

𝜕�̃�

𝜕�̃�
= 0, (3.8) 

𝜕�̃�

𝜕�̃�
+ �̃�

𝜕�̃�

𝜕�̃�
= −

𝜕(�̃��̃�)

𝜕�̃�
+

2

�̃�

𝜕�̃�

𝜕�̃�
+

3𝑂ℎ

�̃�2

𝜕

𝜕�̃�
(�̃�2

𝜕�̃�

𝜕�̃�
) +

𝑂ℎ

2�̃�2

𝜕

𝜕�̃�
(𝐵𝑞𝑑�̃�

𝜕�̃�

𝜕�̃�
)

+
9𝑂ℎ

2�̃�2

𝜕

𝜕�̃�
(𝐵𝑞𝑠�̃�

𝜕�̃�

𝜕�̃�
) , (3.9)

 

𝜕�̃�

𝜕�̃�
+ �̃�

𝜕�̃�

𝜕�̃�
+

�̃�

2
 
𝜕�̃�

𝜕�̃�
=

1

𝑃𝑒
 
𝜕2�̃�

𝜕�̃�2
+

�̃�∞ − �̃�

𝜏𝑎
−

�̃�

𝜏𝑑
𝑒𝑥𝑝 (−

𝛽�̃�

�̃�0

) , (3.10) 
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where tildes represent dimensionless variables, 𝜏𝑎  and 𝜏𝑑  are the dimensionless characteristic 

adsorption and desorption times,  �̃� represents the dimensionless 𝛽 and is expressed as 

𝛽 =
𝛽Γ0

2

𝛾0
, (3.11) 

and �̃�0 is defined as  

�̃�0 =
𝑘𝐵𝑇Γ0

𝛾0

, (3.12) 

which will be discussed in more details in Sec 3.3.3 below. 

Three dimensionless numbers also emerge in the equations: the Ohnesorge number,  

𝑂ℎ =
𝜂0

√𝜌𝑅0𝛾0 
, (3.13) 

represents the ratio of viscous to inertial forces for a capillary velocity 𝛾0/𝜂0, and is an indicator 

of the relative importance of fluid viscosity in the problem. 𝑂ℎ → 0 in the classic inviscid analysis 

of the Rayliegh-Plateau instability. Alternatively, 𝑂ℎ may be interpreted the ratio of the viscous 

capillary relaxation time (𝜂0𝑅0/𝛾0) to the Rayleigh time 𝑡𝑅.  

The second dimensionless group is the Peclet number 

𝑃𝑒 =
𝑣𝑅0

𝐷𝑠
, (3.14) 

which captures the relative strength of convection to diffusion of surfactant molecules on the fluid 

interface. And finally, the Boussinesq number 

𝐵𝑞𝑠 =
𝜂𝑠

𝜂0𝑅0
, (3.15) 
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represents the relative strength of surface shear viscous stress to bulk viscous stress. The surface 

shear viscosity, 𝜂𝑠, can be replaced by the surface dilatational viscosity, 𝜅𝑠, to characterize the 

surface resistance to dilatation and gives a Boussinesq number associated with dilation 𝐵𝑞𝑑. 

In what follows, we first examine the linear stability of a Newtonian liquid jet with soluble 

surfactants. Our objective is to (a) analyze the relative roles and interplay of surface stresses and 

surfactant transport on and off the interface, and (b) to identify different surfactant processes that 

play identical roles in determining jet stability, and so might be otherwise indistinguishable or 

misinterpreted in an experiment.  

3.3.3. Linear stability analysis  

We introduce perturbations about the base state 𝑅0 via normal modes that are periodic in 𝑧 and 

grow or decay in time:  

�̃�(�̃�, �̃�) = 1 + 휀𝑒𝜎�̃�+𝑖𝑘𝑧 . (3.16) 

Here, 휀 ≪ 1 is the dimensionless amplitude of the perturbation, 𝜎 is the dimensionless growth rate, 

and 𝑘 is the dimensionless wavenumber. Similarly, we can express the perturbed axial velocity 

and surface concentration in their dimensionless forms: 

�̃�(�̃�, �̃�) = 𝛿�̃�𝑒𝜎�̃�+𝑖𝑘𝑧 , (3.17)  

Γ̃(�̃�, �̃�) = 1 + 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 , (3.18) 

where 𝛿�̃� and 𝛿Γ̃ are the corresponding dimensionless perturbed amplitudes, respectively.  

The linearized Frumkin isotherm becomes 
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�̃� = 1 − �̃�0Γ̃ +
𝛽Γ̃2

2
, (3.19) 

where  

�̃�0 =
Γ

𝛾0

𝑑Πideal

𝑑Γ
|

Γ0

=
𝑘𝐵𝑇Γ0

𝛾0

(3.20) 

can be written as the dimensionless Marangoni modulus in the ideal gas limit, Γ0 is the initial 

surface concentration, and Π = γ − γ0 is the surface pressure. 

We can solve for 𝛿�̃� by substituting Eq. (3.16) and Eq. (3.17) into Eq. (3.8) to obtain  

𝛿�̃� =
2𝑖𝜎휀

𝑘
. (3.21) 

Following this, we obtain 𝛿Γ by substituting Eq. (3.17), (3.18) into Eq. (3.10) and subtracting the 

base state (See Appendix B.1): 

𝛿Γ̃ =
𝜎휀

𝜎 + 𝑘2/𝑃𝑒 + 1/𝜏𝑎  + (1 − 𝛽/�̃�0 )exp (−𝛽/�̃�0 )/𝜏𝑑 
, (3.22) 

Finally, we extract the dispersion relation between growth rates and wavenumbers by substituting 

Eq. (3.16) – Eq. (3.19) into Eq. (3.9) to get (See Appendix B.2) 

2𝜎 = (1 − �̃�0 +
𝛽

2
)

𝑘2 − 𝑘4

𝜎
+

(𝛽 − �̃�0)𝑘2

𝜎 +
𝑘2

𝑃𝑒 +
1
𝜏𝑎

+

(1 −
𝛽

�̃�0
) exp (−

𝛽

�̃�0
)

𝜏𝑑

−(6 + 𝐵𝑞𝑑 + 9𝐵𝑞𝑠)𝑂ℎ𝑘2 (3.23)
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Here, we assume 𝐵𝑞𝑠 and 𝐵𝑞𝑑  are constant and do not depend on the surface concentration, Γ 

(although this is straightforward to generalize; see, for example, Ref. [52,64,65,97]). Note that in 

the ideal gas limit, 0 ≤ �̃�0 < 1. Investigating The regime of �̃�0 ≥  1 requires a different approach 

and is beyond the scope of the current work [97,105]. Setting �̃�0 = 0, 𝐵𝑞𝑠 = 0, and 𝐵𝑞𝑑 = 0 

reduces Eq. (3.23) to the dispersion relation describing the evolution of a surfactant-free, viscous 

thread [106]. Bulk fluid viscosity, represented via the Ohnesorge number, always acts to dampen 

the growth of the instability. Further setting 𝑂ℎ = 0  reduces Eq. (3.23) recovers the classic 

inviscid Rayleigh-Taylor instability dispersion. When surfactants are present, stability is governed 

by the interplay of the Marangoni modulus �̃�0, the characteristic timescale for adsorption and 

desorption 𝜏𝑠, the intermolecular interaction parameter 𝛽, the Boussinesq number associated with 

surface dilation 𝐵𝑞𝑑, the Boussinesq number associated with surface shear 𝐵𝑞𝑠, the Ohnesorge 

Figure 3.2, Dispersion relations between the dimensionless growth rate, 𝜎 , and the 

dimensionless wavenumber, 𝑘 , at 𝑃𝑒 = 1000 , 𝐵𝑞𝑠 = 0.  (a) The Marangoni modulus, �̃�0 , 

varies with 𝜏𝑠 = 0.1 , 𝑂ℎ = 0.04 , 𝐵𝑞𝑑 = 1  and 𝛽 = 0 . An increasing �̃�0 , which means a 

stronger Marangoni response, suppresses the growth rate. (b) The characteristic kinetic flux 

time, 𝜏𝑠 , varies with �̃�0 = 0.1 , 𝑂ℎ = 0.04 , 𝐵𝑞𝑑 = 1  and 𝛽 = 0 . An increasing 𝜏𝑠 , which 

indicates longer adsorption/desorption time and a stronger Marangoni response, suppresses the 

instability. (c) Intermolecular repulsions ( 𝛽 < 0 ) facilitate more stabilized systems than 

intermolecular attractions (𝛽 > 0) at with �̃�0 = 0.1, 𝜏𝑠 = 0.1 𝑂ℎ = 0.04, and 𝐵𝑞𝑑 = 1. 
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number 𝑂ℎ, and the Peclet number 𝑃𝑒. In what follows, we show and discuss the significance of 

each parameter on controlling the instability.  

3.4. Results and discussion 

3.4.1. Surface stabilization due to ‘apparent’ surface viscosities 

We can evaluate the impact of changing each controlling variable while holding the other 

parameters constant. As 𝐵𝑞𝑑 and 𝐵𝑞𝑠 have the same mathematical forms, we look at the effect of 

surface viscous stresses by only varying the magnitude of 𝐵𝑞𝑑 and set 𝐵𝑞𝑠 = 0. In the case of 𝛽 =

0, we define a net characteristic timescale for an adsorption-desorption controlled flux as 

1

𝜏𝑠
=

1

𝜏𝑎
 +

1

𝜏𝑑
. (3.24) 

Fig. 3.2 shows the dispersion relations with different values of the dimensionless Marangoni 

modulus �̃�0, the net kinetic flux of adsorption and desorption 𝜏𝑠, and the factor associated with 

intermolecular interaction 𝛽. As �̃�0 increases, we observe a decrease in both the dimensionless 

Figure 3.3, Dispersion relations between the dimensionless growth rate, 𝜎 , and the 

dimensionless wavenumber, 𝑘. Liquid jets with (a) clean interface, (b) insoluble surfactants 

with �̃�0 = 0.01, and (c) soluble surfactants with �̃�0 = 0.01 at different values of 𝑂ℎ, 𝐵𝑞𝑑 , 

𝑀𝑎𝐾 give similar dispersion relations. 
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maximum growth rate, 𝜎𝑚𝑎𝑥 , and the corresponding dimensionless wavenumber, 𝑘𝑚𝑎𝑥 . The 

observation is consistent with the expectation that a larger �̃�0 indicates a larger change in the 

surface pressure in response to a change in the surface concentration, leading to larger Marangoni 

stresses. Stronger Marangoni stresses more strongly resist surface deformations and lead to a 

smaller growth rate. Such an effect of a stronger Marangoni response has been previously explored 

in the case of insoluble surfactants [52,97,105]. Previously unexplored dynamics emerge when the 

surfactant is soluble, as depicted in Fig. 3.2(b). A larger 𝜏𝑠  indicated a longer time scale for 

surfactants to exchange between the interface and the bulk, leading to a slower relaxation of surface 

concentration gradients. As a result, the Marangoni response is relatively stronger and acts to 

suppress the instability like in the insoluble case. Faster adsorption/desorption ‘remobilizes’ the 

interface [25,107], suppressing surface concentration gradients and weakening Marangoni flow, 

leading to a more unstable interface as 𝜏𝑠 decreases. Surface diffusion plays a qualitatively similar 

role, acting to quench surface concentration gradients and weaken the Marangoni effect with 

decreasing 𝑃𝑒. 

Intermolecular interactions between adsorbed surfactants also result in macroscopic effects that 

seem indistinguishable without more careful analysis. Jets are stabilized as intermolecular 

interactions change from attraction ( 𝛽 > 0 ) to repulsion (𝛽 < 0 ). This can be qualitatively 

explained by two potential mechanisms. This can be qualitatively explained by two potential 

mechanisms. First, as the intermolecular interactions are repulsive or 𝛽 < 0, it decreases the 

surface tension and stabilize the surface [Eq. (3.19)]. Second, the repulsive intermolecular 

interactions could slow down the recovery of the surface concentration gradient by hindering the 

adsorption of the surfactants in the bulk, resulting in a longer duration of the Marangoni flow. On 

the contrary, when 𝛽 > 0 and the surfactants attract each other, the surface tension would increase 
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and lead to surface destabilization. In addition, the attractive intermolecular interactions would 

facilitate the recovery of the surface concentration gradient as the surfactants in the bulk adsorbs 

to the surface. Indeed, as summarized by Kralchevsky et al. and Manikantan et al. [2,70], surface 

pressure with a positive 𝛽  experiences a smaller change in response to a change in surface 

concentration, leading to weaker Marangoni stresses. We have also analyzed the effect of surface 

diffusion and observed a relatively small decrease in the growth rates as we increased 𝑃𝑒 (See 

Appendix B3). The results suggest that the change in 𝑃𝑒, at least in the linear stability analysis, 

does not play a significant role.  

A key finding of our analysis is that finite-time adsorption/desorption has an effect that is 

qualitatively similar and quantitatively indistinguishable from a surface viscosity. Such an 

‘apparent surface rheology’ has been reported in systems such as dip coating, translation of bubble, 

oscillation of drops, and foams [2,3,9,18,24,25]. To see this effect, we consider our dispersion 

relation Eq. (3.23) in the limit of negligible surface diffusion and fast adsorption in Langmuir 

kinetics ( 𝛽 = 0 ), where 𝑃𝑒 → ∞  and 𝜏𝑠 ≤ 0.1 , we can simplify the terms in Eq. (3.23) as 

𝑘2/𝑃𝑒 → 0 and 𝜎 ≪ 1/𝜏𝑠. Then, the simplified dispersion equation becomes 

2𝜎 = (1 − �̃�0)
−𝑘4 + 𝑘2

𝜎
− (6 + 𝐵𝑞𝑑 + 9𝐵𝑞𝑠 + 𝑀𝑎𝐾)𝑂ℎ𝑘2, (3.25) 

where 

𝑀𝑎𝐾 =
𝐸0𝑡𝑠

𝜂0𝑅0
 (3.26) 

is a modified Marangoni number that represents the relaxation of surface concentration gradients 

due to Marangoni convection versus due to adsorption/desorption [2,9]. 𝐸0  is the dimensional 
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Marangoni modulus and 𝑡𝑠  is the dimensional characteristic time of the net adsorption and 

desorption kinetic fluxes.  

A larger 𝑀𝑎𝐾 implies that the interface has stronger resistance to deformation and behaves as 2-

D incompressible. As highlighted in Eq. (3.25), 𝑀𝑎𝐾 is a viscous-like term and behaves as an 

“apparent” surface viscosity as it has the same mathematical form as 𝐵𝑞𝑠 and 𝐵𝑞𝑑. As a result, it 

is likely to mischaracterize the surface viscous contributions during experiments where soluble 

surfactants are present in the system [6,16–18]. Fig.3.3 highlights this effect: liquid jets with clean 

interfaces, insoluble surfactants, or soluble surfactants may display indistinguishable growth 

spectra due to bulk viscous dissipation, surface viscous dissipation, or Marangoni-induced 

apparent surface dissipation. At least in the initial stages of growth of perturbations, therefore, 

surfactant-free viscous jets evolve in. a manner indistinguishable from jets dominated by 

contributions from either intrinsic or apparent surface viscosities. Conversely, Eq. (3.25) highlights 

the complex interplay and indistinguishability of surface transport processes of completely 

different origin: it may therefore be difficult or even impossible to tease out individual effects 

Figure 3.4, The most dominant wavenumber, 𝑘𝑚𝑎𝑥, of the liquid jets with (a) a clean interface, 

(b) insoluble surfactants with �̃�0 = 0.01, and (c) soluble surfactants with �̃�0 = 0.01 at different 

values of 𝑂ℎ, 𝐵𝑞𝑑, and 𝑀𝑎𝐾.  
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without complementary experiments where one physical effect is separated without triggering the 

other.   

We can track the fastest-growing wavenumber, 𝑘𝑚𝑎𝑥, corresponding to the maximum growth rate, 

𝜎𝑚𝑎𝑥, and estimate the perturbation wavelength 𝜆 = 2𝜋𝑅(𝑡)/𝑘𝑚𝑎𝑥. We show the change in 𝑘𝑚𝑎𝑥 

in different systems with various 𝑂ℎ, 𝐵𝑞𝑑 , and 𝑀𝑎𝐾  in Fig.3.4. As the liquid jets with clean 

interfaces are perturbed, the most dominant wavenumber decreases as 𝑂ℎ increases. In the systems 

with insoluble and soluble surfactants, 𝑘𝑚𝑎𝑥 stays approximately constant and then decreases as 

the values of 𝐵𝑞𝑑 and 𝑀𝑎𝐾 increase. The results suggest that mainly the initial fluid properties in 

𝑂ℎ such as 𝜌, 𝜂0, 𝑅0, and 𝛾0 define the perturbation wavelength of the liquid jet. As the jet thins, 

the changes in 𝐵𝑞𝑑 and 𝑀𝑎𝐾 do not significantly affect the wavelength of the perturbed jet. In the 

next section, we show that the stabilizing effect of �̃�0, 𝜏𝑠 , and 𝐵𝑞𝑑  demonstrated in the linear 

stability analysis can be generalized to the systems using Langmuir and Frumkin isotherms via 

numerical simulation. 

3.4.2. Numerical simulations  
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We solve Eq. (3.13) - (3.15) using an explicit finite difference method with five hundred grid 

points. The initial dimensionless timestep is set to 10−5 and is changed to 10−7 after �̃� = 15. We 

perturb the dimensionless radius as  �̃�(𝑧, 𝑡) = 1 + 0.01 cos(𝑘�̃�) , where the dimensionless 

wavenumber 𝑘 = 0.8. Other parameters used in the numerical simulations are as follows: 𝑂ℎ =

0.04, 𝐵𝑞𝑠 = 0, and 𝑃𝑒 = 1000. We use both the Langmuir model and the Frumkin model to 

describe the isotherms and adsorption/desorption kinetics in the simulations at Γ̃∞ = 10.  

Figure 3.5, Newtonian liquid jets with (a)-(d) clean interface, (e)-(h) insoluble surfactants at 

�̃�0 = 0.1, and (i)-(l) soluble surfactants at �̃�0 = 0.1 and 𝜏𝑠 = 0.01 at different times with 𝑂ℎ =

0.04, 𝐵𝑞𝑠 = 0, 𝑃𝑒 = 1000 using the Langmuir (𝛽 = 0) isotherm and kinetics. Systems with 

surfactants show increased stability. 
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3.4.2.1 Newtonian jets with clean interface, insoluble surfactants, 

and soluble surfactants 

We first show the simulation results of the Newtonian liquid jets with clean interface, insoluble 

surfactants, and soluble surfactants using the Langmuir model in Fig. 3.5. Fig. 3.5 (a)-(d) illustrate 

the development of a Newtonian liquid jet with a clean interface before breaking. As we add 

insoluble surfactants to the system and apply surface viscous stresses as shown in Fig. 3.5 (e)-(h), 

we can observe a more stabilized system comparing to the results of a clean interface at �̃� = 15. 

The stabilizing effect of the surface rheological stresses is consistent with what we have observed 

in linear stability analysis [Sec. 3.4.1]. In addition, we observe the continuous thinning of the liquid 

jet without any formations of the satellite beads throughout the simulation at 𝑘 = 0.8. Thus, 

Figure 3.6, Newtonian liquid jets with 𝑂ℎ = 0.04, 𝐵𝑞𝑠 = 0, 𝐵𝑞𝑑 = 0, 𝑃𝑒 = 1000 with a 

clean interface and at various �̃�0, 𝜏𝑠, and  𝛽 in time for Langmuir isotherm (left) and Frumkin 

isotherm. Increasing �̃�0or 𝜏𝑠 or decreasing  𝛽 stabilizes the jet as indicated by the minimum 

radius �̃�𝑚𝑖𝑛.  
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increasing the surface viscous stresses serves as a potential solution to avoid the undesirable 

formations of satellite droplets in certain applications such as inkjet printing [108,109]. In the case 

of soluble surfactants shown in Fig.3.5 (i)-(l), we again observe the stabilizing effect of the 

viscous-like surface stresses due to the Marangoni flows with a finite adsorption and desorption 

time interval at �̃� = 15, highlighting its similarity to the intrinsic surface viscous stresses. 

3.4.2.2 Effects of various parameters in jet fluid stability 

We vary the dimensionless Marangoni modulus, �̃�0, the dimensionless characteristic net kinetic 

timescale, 𝜏𝑠, and the dimensionless intermolecular interaction factor, 𝛽, to analyze the effect of 

each parameter in the numerical models using the Langmuir and Frumkin isotherms and 

kinetics [69,70]. While the linear stability results apply only to the early time when the instabilities 

are small, we show the entire results in �̃� to highlight the differences and use the radius at the 

midpoint of the liquid jet �̃�𝑚𝑖𝑑 to demonstrate the development of the instabilities in Fig. 3.6. We 

vary the values of  �̃�0 and 𝜏𝑠 in the Langmuir model and only vary 𝛽 in the Frumkin model to 

demonstrate the effect of each parameter. Note that the Langmuir model can be retrieved from the 

Frumkin model by setting 𝛽 = 0.  

As we increase the values of �̃�0 and 𝜏𝑠 as shown in Fig.3.6 (a), we observe a slower development 

of the jet thinning, indicating their stabilizing effects. The results are consistent with the results of 

linear stability analysis [Sec. 3.4.1], which show that both higher �̃�0  and 𝜏𝑠  values indicate 

relatively stronger Marangoni responses and lead to the suppression of instabilities. As we 

decrease the value of 𝛽  in Fig.3.6 (b), which indicates stronger repulsive intermolecular 

interactions, we observe a slower development of jet thinning that is consistent with the linear 

stability results. While the results shown here correspond to the dimensionless wavenumber  𝑘 =
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0.8, we observe similar results at 𝑘 = 0.2. We also hold the bulk concentration constant as we are 

only interested in the linear regime. Accurately simulating and analyzing the jet thinning dynamics 

in the long term requires another mass conservation equation on the bulk concentration, which 

becomes more significant as the liquid jet develops into a thread.  

3.5. Conclusion 

We have examined the role of soluble surfactants in Newtonian liquid jets. The interface becomes 

more stable as the Marangoni modulus, the characteristic net adsorption and desorption time, and 

the surface viscosities increase. We have identified that the Marangoni flow with a finite 

adsorption and desorption time produces a surface viscous-like force, which acts as an “apparent” 

surface viscosity as the associated Marangoni number has the same mathematical form as the 

Boussinesq number. The similarity between the intrinsic surface viscosities and “apparent” surface 

viscosities draws attention to the significance of clearly differentiating the surface viscous 

contributions in systems with soluble surfactants.  We have also drawn similar conclusions from 

numerical simulations using Langmuir and Frumkin models. We have observed that surface 

viscous stresses have the potential to prevent the formation of satellite beads. In addition, the 

repulsive intermolecular interactions between surfactants can be an alternative factor to suppress 

the instabilities in liquid jets.  

While we have focused on the role of soluble surfactants in a simple system with Newtonian fluid, 

we can reach similar conclusions with the systems using viscoelastic liquid jets. Following the 

Oldroyd-B model [101,110] and performing linear stability analysis, we can add the following 

term to the RHS of Eq. (3.23)  to capture the stresses associated with viscoelasticity  
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−
6(1 − B)𝑂ℎ

𝜎𝐷𝑒 + 1
𝑘2, (3.27) 

where 𝐵 is the ratio of the viscosity from the solvent contribution to the total viscosity and 𝐷𝑒 =

𝜏𝑟/𝑡𝑅 is the Deborah number which is the ratio of relaxation time 𝜏𝑟, to the Rayleigh timescale 𝑡𝑅. 

The added stresses do not affect the stabilizing effect of �̃�0, 𝜏𝑠, and 𝐵𝑞𝑑. As the satellite beads 

form more easily with viscoelastic liquid jets, we again observe the suppressions of the formation 

of satellite beads when 𝐵𝑞𝑑  becomes large enough (See Appendix B.4). 
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4.1. Preamble 

The chapter contains an ensemble of unpublished theoretical analysis and experimental data 

obtained during my doctoral research. Some of the theoretical analysis will help future graduate 

students in the group to understand the topic better. In addition, the experimental results and some 

of the challenges documented here provide some references and ideas for future experimental 

designs of similar projects. 

4.2. Bubble oscillation 

Only a handful of studies have evaluated the individual role of surface shear viscosity (𝜂𝑠) and 

surface dilatational viscosity ( 𝜅𝑠 ) respectively in surface deformation. Stoodt and Slattery 

conducted experiments using a capillary rise technique and found that 𝜅𝑠  was two orders of 

magnitude greater than 𝜂𝑠 upon displacement of residual oil [77]. Buzza et al. predicted a similar 

dominance of the intrinsic surface dilatational viscosity in a theoretical analysis on incompressible 

foams [76].  In this study, we aim to provide the theoretical work that illustrates both surface shear 

viscosity (𝜂𝑠) and surface dilatational viscosity (𝜅𝑠)  contribute to 1D deformation. In addition, we 

will investigate the role of each surface viscosity during the oscillation of a 2D single bubble and 

present this technique as potentially an alternative way to obtain the value of surface dilatational 

viscosity (𝜅𝑠) when the value of surface shear viscosity (𝜂𝑠) is known. We hypothesize that while 

both 𝜂𝑠 and 𝜅𝑠 contribute to the 1D oscillatory deformation, the magnitude of 𝜅𝑠 could be much 

larger than 𝜂𝑠 in certain surface concentrations, leading to the neglection of 𝜂𝑠.  

4.2.1. Theory 
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The Boussinesq-Scriven model in cylindrical coordinates reveals both surface shear and surface 

dilatational viscosities contribute to 1D deformations. We use this work to provide the 

experimental data to verify and confirm the hypothesis that the role of surface dilatational viscosity 

is much larger than the corresponding surface shear viscosity in the deformation of a 2D single 

bubble. We perturb the bubble radius, velocity, pressure, and surface concentration as follows,  

𝑅(𝑡) = 𝑅0 + 𝛿𝑅𝑒𝑖𝜔𝑡, (4.1) 

𝑢𝑟(𝑟, 𝑡) = 𝛿𝑢𝑟𝑒𝑖𝜔𝑡, (4.2) 

𝑃(𝑟, 𝑡) = 𝑃0 + 𝛿𝑃𝑒𝑖𝜔𝑡, (4.3) 

Γ(𝑡) = Γ0 + 𝛿Γ𝑒𝑖𝜔𝑡, (4.4) 

where 𝑅0, 𝑃0, and Γ0 are the initial radius, pressure, and surface concentration, respectively, 𝛿𝑅, 

𝛿𝑢𝑟, 𝛿𝑃, and 𝛿Γ are the corresponding perturbed amplitude, and 𝜔 is the oscillatory frequency. 

To find the expressions of 𝛿𝑢𝑟 & 𝛿𝑃, we solve the continuity and stokes equations listed below: 

∇ ∙ 𝑢 = 0, (4.5) 

𝜌
𝜕𝑢

𝜕𝑡
= −∇P + μ∇2𝑢, (4.6) 

where 𝜌 is the fluid density. Solving these equations using the perturbed variables to obtain 

𝛿𝑢𝑟(𝑟) =
𝑖𝜔𝑅0

𝑟
𝛿𝑅, (4.7) 

𝛿𝑃(𝑟) = 𝜌𝜔2𝑅0 ln (
𝑟

𝐿
) 𝛿𝑅, (4.8) 

where 𝐿 is the length where the perturbation decays to 0, i.e., 𝛿𝑃(𝐿) = 0. 
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We can solve for the expression of 𝛿Γ via the surfactant transport equation at the surface: 

𝜕Γ

𝜕𝑡
+ ∇𝑠 ∙ (Γ𝑢𝑠) + Γ(∇𝑠 ∙ 𝑛)(𝑢 ∙ 𝑛) = 𝐷𝑠∇𝑠

2Γ + 𝑗𝑛, (4.9) 

where 𝒖𝒔 is the surface flow velocity, 𝒏 is the normal vector, 𝐷𝑠 is the surfactant diffusivity, and 

𝑗𝑛 accounts for the surfactant flux between the surface and the bulk. Simplifying the surfactant 

transport equation above to the current geometry where there is no surface flow or flow gradient 

due to uniform dilation, we obtain 

𝜕Γ

𝜕𝑡
+ Γ (

1

𝑅
) (𝑢𝑟) = 𝑗𝑛. (4.10) 

When surfactants are insoluble, we set 𝑗𝑛 = 0. Solving Eq. (4.10) using the perturbed 𝑢𝑟(𝑟, 𝑡) 

and Γ(𝑡) to obtain the expression of 𝛿Γ for insoluble surfactants as 

𝛿Γinsol = −
𝛿𝑅Γ0

𝑅0
. (4.11) 

To obtain the values of the surface viscosities, we need the normal stress balance from the 

Boussinesq-Scriven model in cylindrical coordinates, which is written as 

(𝑝1 − 𝑝2) − 2𝜂1

𝜕𝑢𝑟

𝜕𝑟
|𝑟=𝑅 + 2𝜂2

𝜕𝑢𝑟

𝜕𝑟
|𝑟=𝑅 = 𝛾 (

2

𝑏
+

1

𝑟
) |𝑟=𝑅 + (

𝜅𝑠 + 𝜂𝑠

𝑟2
) 𝑢𝑟|𝑟=𝑅 , (4.12) 

where the surface tension is expressed as  

𝛾 = 𝛾(Γ0) +
𝜕𝛾

𝜕Γ
|Γ0

𝛿Γ𝑒𝑖𝜔𝑡 = 𝛾0 −
𝐸0

Γ0
𝛿Γ𝑒𝑖𝜔𝑡. (4.13) 

Applying oscillatory perturbations to Eq. (4.12) to obtain the dynamic stress balance with 

insoluble surfactants at the interface: 
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𝛿𝑃1(𝑅) − 𝛿𝑃2(𝑅)

𝛿𝑅

𝑅0

𝛾0 𝑅0⁄
= −1 + 𝑅0 (

2

𝑏
+

1

𝑅0
)

𝐸0

𝛾0
− 2𝑖

(𝜂1 − 𝜂2)𝜔𝑅0

𝛾0
+ 𝑖

𝜔(𝜅𝑠 + 𝜂𝑠)

𝛾0
, (4.14) 

where 𝛿𝑃1 is the induced amplitude of the pressure, 𝛿𝑅 is the amplitude of the measured radius 

response, 𝑅0  is the initial radius of the interface at equilibrium, 𝛾0  is the equilibrium surface 

tension, 𝑏 is the gap width of the Hele-Shaw cell, 𝐸0 = Γ
𝜕Π

𝜕Γ
|

Γ0

is the Marangoni modulus with Γ 

being the surface concentration and Π being the surface pressure, 𝜔 is the oscillation frequency, 

𝜂1 and 𝜂2 are the inner and outer fluid viscosity respectively, 𝜂𝑠 is the surface shear viscosity, and 

𝜅𝑠 is the surface dilatational viscosity. We can obtain the left-hand-side of Eq. (4.14) by measuring 

the experimental oscillatory pressure change and the response of the interfacial radius. 𝛿𝑃2(𝑅) can 

be obtained by solving Eq. (4.8) and is written as 

𝛿𝑃2(𝑅0) = 𝜌𝜔2𝑅0ln (
𝑅0

𝐿
) 𝛿𝑅. (4.15) 

We can then synchronize the two measurements to match the data which represents the out-of-

phase response to the theoretical values shown on the right-hand-side of Eq. (4.14) to determine 

𝜅𝑠 + 𝜂𝑠.  

We can also express Eq. (4.14) in dimensionless terms as shown below 

𝛿�̃�1 − 𝛿�̃�2(𝑅) = [−1 + 𝑅0 (
2

𝑏
+

1

𝑅0
) 𝑀𝑎 ∗ 𝐶𝑎 + 𝑖(−2 + 𝐵𝑞𝜅)𝐶𝑎] 𝛿�̃�, (4.16) 

where the capillary number is written as 

𝐶𝑎 =
(𝜂1 − 𝜂2)𝜔𝑅0

𝛾0
 , (4.17) 

the Marangoni number is 
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𝑀𝑎 =
𝐸0

(𝜂1 − 𝜂2)𝑅0𝜔
, (4.18) 

and the Boussinesq number is 

𝐵𝑞𝜅 =
(𝜅𝑠 + 𝜂𝑠)

(𝜂1 − 𝜂2)𝑅0
. (4.19) 

We compare the values of 𝜅𝑠 + 𝜂𝑠 obtained from the experimental data with the independently 

measured values of 𝜅𝑠 and 𝜂𝑠 from the literature to determine the contributions of each viscosity. 

We also explore a range of different surface concentrations to confirm the hypothesis that while 

both viscosities contribute to 1D deformations, 𝜅𝑠 can have a much larger contribution compared 

to the corresponding 𝜂𝑠 at certain surface concentrations.  

4.2.2. Experimental setup 
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The schematic diagram of the oscillatory motor is similar to the design by Alvarez et al. [111] as 

shown in Fig. 4.1. We connect the oscillatory pump to a Hele-Shaw cell via a tube and use a 

pressure transducer to measure the induced pressure. A camera will be placed above the Hele-

Shaw cell to capture the interfacial movements. We will individually timestamp the measurement 

of pressure and radius for synchronization in post-processing to determine the out-of-phase 

contributions. Fig. 4.2 shows the experimental setup of the oscillatory motor we used in the 

experiment. We connected a 5 ml syringe at the end of the oscillatory motor so that the plunger 

would move with the motor rod. The syringe barrel will be fixed during the experiment so that the 

oscillatory motion of the plunger would provide the oscillatory pressure of the inner phase. The 

air was delivered through a rubber tube connected with the syringe via a Luer Lock syringe tip. 

We used a control switch to determine the angular speed of the wheel and, thus, the oscillatory 

speed.  

Figure 4.1. Schematic of the Hele-Shaw cell connected to an oscillatory motor [111]: (A) DC 

motor, (B) rotating wheel attached to motor axel, (C) ball joint rod, (D) universal joint, (E) 

pillow block, (F) syringe holder, and (G) syringe. The bubble oscillates from an initial radius 

𝑅0 with a variation of 𝛿𝑅.  
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We used Dipalmitoyl phosphatidylcholine (DPPC, 500mg Powder, Avanti Polar Lipids, Inc, CAS 

63-89-8), an insoluble surfactant common in lung alveoli, and Arachidyle alcohol (AA, 5g, Powder, 

Sigma-Aldrich, CAS 629-96-9), another insoluble surfactant common in cosmetics, for the 

experiment. We chose DPPC as it has been relatively well studied with both values of 𝜂𝑠 and 𝜅𝑠 

available in the literature [28,112]. We chose AA as it can form a Newtonian monolayer when the 

surface pressure Π is above 15 𝑚𝑁/𝑚 [74]. While the value of 𝜂𝑠 of AA is available in literature, 

𝜅𝑆 is not. 

Figure 4.2. Experimental setup of the oscillatory motor connected with a 5 𝑚𝑙  syringe. a) 

shows the syringe connected with the rubber tube via a Luer Lock tip to provide oscillatory 

pressure for the inner phase. b) shows the oscillatory motor connected with the power supply 

and the control switch. c) shows the control switch used to determine the oscillatory speed of 

the motor.  
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We used two acrylic sheets that were 50 𝑐𝑚 tall, 50 𝑐𝑚 wide, and 0.5 inch thick to construct the 

Hele-Shaw cell as shown in Fig. 4.3. We used laser to cut a hole with a radius of 4 cm at the center 

of the top sheet. A rubber stopper connecting the inlet tube and the Phidget pressure sensor would 

be pushed in the center opening as we start the experiment. Four washers with measured thickness 

were used to set the gap between the Hele-Shaw cells. We used air as the inner phase and liquid 

glycerol as the outer phase. We deposited the bulk glycerol solution between the Hele-Shaw cells 

with the gap width being 0.93 𝑚𝑚 After the glycerol solution was deposited, we slowly pumped 

the air in to form a small circle with the initial radius being 5 𝑐𝑚. The surfactants dissolved in the 

hexane solutions were then deposited via a 10 𝜇𝑚 syringe onto the inner surface of the glycerol 

Figure 4.3. Experimental setup of the Hele-Shaw cell with the black circular rubber stopper, 

the Phidget pressure sensor, and the 10 µ𝑚 syringe used in the experiments. We used the 

syringe to deposit the surfactant solution on the inner interface through the circular opening at 

the top of the Hele-Shaw cell. After hexane was evaporated, the stopper was pushed into the 

circular opening to seal the inner phase.   
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solution. We let the hexane evaporate for at least 30 𝑚𝑖𝑛 before connecting the inner opening with 

the tube and the pressure sensor. The initial surfactant surface concentration was initially set to be 

two Angstrom/molecule. As we conducted more experiments, more surfactant surface 

concentrations were explored. The experiments were carried out at room temperature around 20 

deg C and a relative humidity of 20% to 50% depending on the day. The initial bubble radius was 

set to be 5 𝑐𝑚 and 12 𝑐𝑚 for different experiments. Multiple Hele-Shaw cell gap widths were also 

Figure 4.4. Phidget program interface. The pressure sensor function can be accessed by double 

clicking the “Hub Port-Voltage Ratio Mode” under the port in use (Port 1 in this figure) in the 

Phidget Control Panel. After the window “Voltage Ratio Input” appears, one can select “1115-

Pressure Sensor” option in the drop-down menu under Data section. Clicking the graph icon to 

the right of “Sensor Value” can open a real-time graph of the measured pressure as shown at 

the bottom left. 
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explored at 0.93 𝑚𝑚 and 2.1 mm. The frequencies of the oscillation were investigated at 0.02 𝐻𝑧 

and 0.04 𝐻𝑧. 

To measure the pressure of the inner phase, we used Phidget pressure sensor. The pressure sensor 

shown in Fig 4.3 was connected to the computer via a USB cable. The Phidget software, which is 

free to download on their official website, would automatically detect the sensor upon opening as 

shown in Fig. 4.4. As the sensor was plugged into Port 1 of the hub, the control panel would 

provide a list of options under Port 1. Double clicking the “Hub Port-Voltage Ratio Mode” under 

Port 1 in the Phidget Control Panel would open the “Voltage Ratio Input” window. We could then 

select the “1115-Pressure Sensor” option in the drop-down menu under Data section on the right 

side of the window. Clicking the graph icon to the right of “Sensor Value” can open a real-time 

graph of the measured pressure as shown at the bottom left. Saving all the measured pressure data 

to a CSV file was also an option.  

4.2.3. Challenges and discussions 

We processed the film from the experiments and processed the video using image-capturing 

software such as ImageGrab. We compared the timestamp of when the bubble oscillated and the 

time when the oscillatory motor rotated. Based on the theoretical analysis, the oscillation of the 

bubble should experience a slight delay than the oscillation of the pump due to the presence of 

surfactants at the bubble interface. One of the key challenges we faced was that the order of the 

time delay is around 0.1 second, which is close to the video capturing frame and is small enough 

to be within the human error in terms of the image selection when determining when the bubble 

finished one cycle of oscillation. The second challenge is the lack of an automated process to 

consistently process the video and select the image marking the point of the bubble completing an 
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oscillatory cycle. All image selections relied on human judgment, which may introduce error and 

inconsistency.  

The preliminary experimental data we obtained were not able to produce reasonable results when 

estimating the surface viscosities of the surfactants. The subpar results were likely due to the 

challenges pointed out above. In terms of future planning, we believe a better camera with a high 

frame rate is necessary. In addition, using more advanced video processing software which has the 

capability to track surfaces would provide both efficiency and consistency to the data analysis. 

Addressing these two needs would provide accurate and meaningful data to estimate the surfactant 

surface viscosities. 

4.3. Extensional work on viscous fingering  

4.3.1. Experiments 
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We aimed to conduct experiments to investigate the effect of surfactants on viscous fingering in 

both the short term and the long term. The experimental set up was similar to the schematic shown 

in Fig. 4.1 except the oscillatory pump was switched to a syringe pump instead to support the 

viscous fingering experiments. The set up of the Hele-Shaw cell is shown in Fig. 4.3. Similar to 

the oscillatory experiment mentioned in the previous section, we used air as the inner phase and 

liquid glycerol as the outer phase. We deposited the bulk glycerol solution between the Hele-Shaw 

cells with the gap width being 0.93 𝑚𝑚. We slowly pump the air in to form a small circle with the 

initial radius being 5 𝑐𝑚 after the glycerol solution was deposited. The surfactants dissolved in 

hexane solutions were then deposited via a syringe onto the inner surface of the glycerol solution. 

We let the hexane evaporate for at least 30 𝑚𝑖𝑛 before connecting the inner opening with the tube 

Figure 4.5. Experimental setup of the syringe pump holding a 500 ml syringe. We set the 

syringe pump to 74.1ml/min to produce an actual air flow rate of 0.39 𝑚𝑙/𝑠. The air then flows 

through the rubber tube to provide pressure as the inner phase.  



66 

 

and the Phidget pressure sensor. The initial surfactant surface concentration was again set to be 

two Angstrom/molecule, initially. As we conducted more experiments, more surfactant surface 

concentrations were explored. We used Dipalmitoyl phosphatidylcholine (DPPC), an insoluble 

surfactant common in lung alveoli, and Arachidyle alcohol (AA), another insoluble surfactant 

common in cosmetics, for the experiments. The syringe pump was NE-1000 from The New Era 

Pump Systems, Inc. We installed a 500 ml syringe and set the syringe pump to 74.1ml/min to 

produce an actual air flow rate of 0.39 𝑚𝑙/𝑠 as shown in Fig. 4.5. In what follows, we show the 

experimental results and discuss what we have learned from the experimental observations. We 

hypothesized that with the addition of surfactants at the interface, the formation of the viscous 

fingers would be delayed and the number of fingers formed would be reduced. 

4.3.1.1 Experiments using DPPC. 

We explored various flow rates, gap widths, and surfactant concentrations in order to obtain 

consistent results. However, the results fluctuated depending on the day of the experiment. Certain 

experiments showed results that were consistent with our hypothesis while others did not. We 

document some of the results we obtained in this chapter. 
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Figure 4.6 shows the three repeats of viscous fingering experiments using DPPC with a flowrate 

of 0.35𝑚𝑙/𝑠 , gap width of 0.93 𝑚𝑚 , an initial surface concentration of 2 angstrom/molecule 

taken at 𝑡 = 30𝑠. The initial radius was set to be 5 𝑐𝑚. The top row represents the experiments 

with clean interfaces and the bottom row shows the experiments with surfactants. While 

experiments 1 and 2 show some degree of suppression of finger formation when surfactants were 

added, the results of experiment 3 were not as obvious. 

Figure 4.6. Results of three repeats of viscous fingering experiments using DPPC with a 

flowrate of 0.35𝑚𝑙/𝑠 , gap width of 0.93 𝑚𝑚 , an initial surface concentration of 2 

angstrom/molecule at 𝑡 = 30𝑠. The initial radius was set to be 5 𝑐𝑚. The top row represents 

the experiments with clean interfaces and the bottom row shows the experiments with 

surfactants.  
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Figure 4.7 shows the results of three repeats of viscous fingering experiments using DPPC at 

0.39𝑚𝑙/𝑠 with a surface concentration of 2 angstrom/molecule taken at 𝑡 = 30𝑠. The initial 

radius was set to be 4 𝑐𝑚. The top row represents the experiments with clean interfaces and the 

bottom row shows the experiments with surfactants. We again observed some suppression of the 

viscous finger formation in trail 32. However, trials 33 and 34 produced similar results between 

the experiment with the clean interface and the one with DPPC deposited.  

Figure 4.7. Results of three repeats of viscous fingering experiments using DPPC with a 

flowrate of 0.39𝑚𝑙/𝑠 , gap width of 0.93 𝑚𝑚 , an initial surface concentration of 2 

angstrom/molecule at 𝑡 = 30𝑠. The initial radius was set to be 4 𝑐𝑚. The top row represents 

the experiments with clean interfaces and the bottom row shows the experiments with 

surfactants.  
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We also explored a thinner gap width and obtain the results to investigate whether the gap width 

would make a difference in the consistency of the results. Fig 4.8 shows the results of three 

repeats of viscous fingering experiments using DPPC at 0.39𝑚𝑙/𝑠 with a surface concentration 

of one angstrom/molecule taken at 𝑡 = 30𝑠. The initial radius was set to be 4 𝑐𝑚. The top row 

represents the experiments with clean interfaces and the bottom row shows the experiments with 

surfactants. For all these three experiments, we did not observe any obvious suppression of 

viscous finger formations after DPPC was deposited.  

Figure 4.8. of three repeats of viscous fingering experiments using DPPC with a flowrate of 

0.39ml/s, gap width of 0.59 mm, an initial surface concentration of one angstrom/molecule 

at t = 30s. The initial radius was set to be 4 cm. The top row represents the experiments 

with clean interfaces and the bottom row shows the experiments with surfactants.  
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4.3.1.2 Experiments using AA. 

We decided to switch to a faster flow rate for experiments using AA. Fig 4.9 shows the results of 

three repeats of viscous fingering experiments using AA at 1 𝑚𝑙/𝑠 with a surface concentration of 

one angstrom/molecule taken at 𝑡 = 5𝑠 . The initial radius was set to be 5 𝑐𝑚 . The top row 

represents the experiments with clean interfaces and the bottom row shows the experiments with 

surfactants. One can argue that for trial AA_4, we observed some suppression of viscous finger 

Figure 4.9. Results of three repeats of viscous fingering experiments using AA with a flowrate 

of 1 ml/s, gap width of 0.59 mm, an initial surface concentration of one angstrom/molecule 

taken at t = 5s. The initial radius was set to be 5 cm. The top row represents the experiments 

with clean interfaces and the bottom row shows the experiments with surfactants.  
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formation and the formation of wider fingers. However, we did not observe too much difference 

for trials AA_3 and AA_5. 

Figure 4.10 shows the results of another set of three repeats of viscous fingering experiments using 

AA at 1 𝑚𝑙/𝑠 with a surface concentration of one angstrom/molecule taken at 𝑡 = 5𝑠. We again 

observed some inconsistency among the three repeats. While trail AA_6 showed some promising 

results that were consistent with the hypothesis of surfactants slowed the viscous finger formation, 

trials AA_7 and AA_8 did not produce different results when the surfactants were added. We also 

did a number of other repeated experiments that were at various flow rates, surface concentrations, 

Figure 4.10. Results of three repeats of viscous fingering experiments using AA with a flowrate 

of 1 ml/s, gap width of 0.59 mm, an initial surface concentration of one angstrom/molecule 

taken at t = 5s. The initial radius was set to be 5 cm. The top row represents the experiments 

with clean interfaces and the bottom row shows the experiments with surfactants.  
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and gap widths, but the main issue was inconsistency similar to the experimental results 

documented in this section. 

 

We also explored other large molecules as they would exhibit stronger surface rheology effects. 

We used 1-palmitoyl-2-(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine by Avanti or 

16:0-23:2 Diyne PE (DPE) for short to increase the effect of surface viscosity in hope to obtain 

more appreciable results. However, the results remained inconsistent. Fig. 4.11 shows one set of 

results of viscous fingering produced using DPE compared to the experiment with a clean interface. 

The results were again not as obvious after we added the surfactants.  

Figure 4.11. Results of three repeats of viscous fingering experiments using DPE with a 

flowrate of 1 ml/s , gap width of 0.59 mm , an initial surface concentration of one 

angstrom/molecule at t = 5s. The initial radius was set to be 5 cm. The top row represents the 

experiments with clean interfaces and the bottom row shows the experiments with surfactants.  
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Overall, the main issue was consistency. While we were able to observe the suppression of viscous 

finger formations after we added surfactants for some experiments, we were not able to generate 

consistent results. Approximately half of the total number of experiments we ran failed to show an 

appreciable difference between the experiments with clean interfaces and the ones with surfactants 

deposited. One big issue we noticed was the glycerol sticking to the top and bottom of the inner 

surfaces of the Hele-Shaw cell, which meant the newly generated interfaces may be depleted of 

surfactants as the glycerol interface with surfactants would be stuck to the surface. While we did 

use a glycerol and water mixture to tackle this problem, the results were still inconsistent. Another 

factor that might affect the experiments would be the evaporation of the hexane solvent. In both 

experiments with the clean interface and with surfactants, we deposited hexane solution to the 

interface and then waited for the solvent to evaporate. It was critical not to conduct viscous 

fingering experiments while there was hexane residue left. Hexane residue at the inner surface 

acted almost as a lubricant that helped glycerol to slide more easily, leading to faster and more 

viscous finger formations. The last factor that may affect the viscous fingering experiments was 

the relative humidity of the room. As water was soluble in glycerol, the glycerol viscosity maybe 

decreased slightly while we were depositing glycerol on the Hele-Shaw cell and waiting for the 

hexane to evaporate. While designing for the experiments, one limiting factor that controlled the 

gap width of the Hele-Shaw cell was the width of the cannula attached to the tip of the syringe. 

Although we were able to reduce the gap width to 0.59 𝑚𝑚, any gap width that is smaller would 

be difficult as the cannula would not fit in between the Hele-Shaw gap to deposit the surfactants 

to the inner surface. 

As a result, all future designs should take the factors mentioned above into consideration. The 

current experiments were carried out on a relatively large scale. Future students may design and 
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prepare experiments that are on a smaller scale to achieve better control. A different Hele-Shaw 

cell material could also be explored. We used acrylic instead of glass as it is easier for 

customization via drilling or laser cutting. However, there might be an alternative option that 

provides the same flexibility as acrylic while providing a smoother surface that prevents the bulk 

fluid from sticking.   

4.3.2. COMSOL simulations 

 

We explored using COMSOL to simulate viscous fingering with surfactants present at the interface. 

We ran a 2-D simulation with the height and width of the Hele-Shaw cell being 1𝑚. The gap width 

of the Hele-Shaw cell was set to be 0.93 𝑚𝑚. We used air as the inner phase and glycerol as the 

Figure 4.12. COMSOL interface using the phase Field method to design viscous fingering 

simulation.  
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outer phase. The initial radius of the inner phase was set to be 1 𝑐𝑚. The inlet flow rate was the 

inner boundary condition and was 1𝑒 − 6 𝑚𝑠/𝑠.  

The first method we tried was the phase field method in the CFD module of COMSOL as shown 

in Fig. 4.12. The method used a phase factor, 𝜖𝑝𝑓 (SI: 𝑚), to control the “interface” thickness. The 

“interface” consisted of a concentration gradient of the two phases. The smaller the phase factor, 

the shaper the concentration gradient would be across the “interface.” We used the default value 

of  𝜖𝑝𝑓 , which was half of the maximum mesh element size in the region through which the 

interface passes. There was also a mobility tuning parameter, 𝜒 (SI: 𝑚 ∗ 𝑠/𝑘𝑔), associated with 

the phase field method. The tuning parameter determines the time scale of the Cahn-Hilliard 

diffusion and governs the diffusion-related time scale for the interface. We used the default value 

of 1 𝑚 · 𝑠/𝑘𝑔 as it was recommended as a good starting point for most models. 
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Figure 4.13. shows the viscous fingering simulation results at simulated time 𝑡 = 10𝑠 obtained 

using the settings described above. We obtained good results showing distinct fingering 

phenomena of air invading glycerol. The simulated “interface” was represented by a concentration 

gradient and was shown in the simulated result. As there was no specified interface, it was difficult 

to define the surfactant surface concentration using an isotherm. In addition, the Marangoni flows 

due to the surface concentration gradient would not be captured as there was not a defined interface 

in this method.   

Figure 4.13. Viscous fingering simulation using COMSOL phase field method at simulation 

time 𝑡 = 10𝑠. The inner phase is air (red) and the outer phase is glycerol (blue).The gap width 

of the Hele-Shaw cell was 0.93 𝑚𝑚. The initial radius of the inner phase was set to be 1 𝑐𝑚. 

The inlet flow rate was the inner boundary condition and was 1𝑒 − 6 𝑚𝑠/𝑠.  
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Alternatively, we tried to implement an extremely thin layer between the inlet and the bulk layer 

in the simulation to model the surfactant as shown in Fig. 4.14 as most of the packages 

characterizing two-phase flows did not have a distinct interface. We approximated the surfactant 

monolayer as an extremely thin third phase (grey in Fig. 4.14) between the inner and the outer 

phases (green in Fig. 4.14 ). Using the similar setup as described above, we used a ternary phase 

field to simulate the viscous fingering dynamics. The challenge with the ternary method was that 

the program was not stable enough to show meaningful results. We suspected the thin layer 

introduced too much instability to the simulation as the interface deformed and stretched due to 

the inlet.  

Figure 4.14. COMSOL interface using three phases to design viscous fingering simulation.  
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Overall, there are two methods using COMSOL that were explored to simulate viscous fingering 

phenomena with surfactants at the interface. Each method had its own challenges. As most of the 

multiphase simulations do not have a specified interface but a thin band with a sharp concentration 

gradient across the phases, it is generally more challenging to capture the exact surface transport 

dynamics and the impact of surfactants. If using a two-phase model, it is recommended to use a 

program that provides more flexibility in terms of customization. It is possible to include the 

governing equations to capture the changes in the surfactant surface concentrations and surface 

flow. However, COMSOL does not offer that flexibility. Other software such as Open Foam might 

be a better option. The second method is to simulate the surfactant layer using an extremely thin 

third phase. The challenge of this method is the stability of the third phase. The surfactant phase 

needs to be elastic or stretchable along the surface deformation. We were not able to use COMSOL 

to run simulations that were stable enough to produce meaningful results. 
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A.1 Useful equations in cylindrical coordinates 

When 𝒏 = �̂�𝒓 only, i.e. 𝑛𝑟 = 1, 𝑛𝜃 = 0, 

𝛁 = �̂�𝒓

𝜕

𝜕𝑟
() + �̂�𝜽

1

𝑟

𝜕

𝜕𝜃
() 

𝛁𝒔 = �̂�𝜽

1

𝑟

𝜕

𝜕𝜃
()  

𝛁 ∙ 𝒏 =
1

𝑟
 

𝛁𝒏 =
1

𝑟
�̂�𝜽�̂�𝜽 

𝛁𝒔 ∙ 𝒏 =
1

𝑟
 

𝛁𝒔𝒏 =
1

𝑟
�̂�𝜽�̂�𝜽 

𝛁 ∙ 𝒖𝒋 = −
𝜕2𝜙𝑗

𝜕𝑟2
−

1

𝑟

𝜕𝜙𝑗

𝜕𝑟
−

1

𝑟2

𝜕2𝜙𝑗

𝜕𝜃2
 

𝛁𝒖𝒋 = −�̂�𝒓�̂�𝒓

𝜕2𝜙𝒋

𝜕𝑟2
− �̂�𝒓�̂�𝜽 (

1

𝑟

𝜕2𝜙𝑗

𝜕𝑟𝜕𝜃
−

1

𝑟2

𝜕𝜙𝑗

𝜕𝜃
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1

𝑟

𝜕2𝜙𝑗

𝜕𝑟𝜕𝜃
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1

𝑟2

𝜕𝜙𝑗

𝜕𝜃
) − �̂�𝜽�̂�𝜽(

1

𝑟

𝜕𝜙𝑗

𝜕𝑟

+
1

𝑟2

𝜕2𝜙𝑗

𝜕𝜃2
) 

𝛁𝐬 ∙ 𝒖𝒋 = −
1

𝑟

𝜕𝜙𝑗

𝜕𝑟
−

1

𝑟2

𝜕2𝜙𝑗

𝜕𝜃2
 

𝛁𝐬𝒖𝟏 = �̂�𝜽�̂�𝒓 [
1

𝑟2

𝜕𝜙𝑗

𝜕𝜃
−

1

𝑟
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𝜕𝑟𝜕𝜃
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A.2 Derivation of equation (2.10) from equation (2.9) 

From the main body of the paper, equation (2.9) is shown below, 

𝜌𝑠

𝐷𝒖

𝐷𝑡
− (𝒏 ∙ 𝝈𝟐 − 𝒏 ∙ 𝝈𝟏)

= 𝛁𝒔𝛾 − 𝛾(𝛁𝒔 ∙ 𝒏)𝒏 + (𝜅𝑠 − 𝜂𝑠)𝛁𝒔(𝛁𝒔 ∙ 𝒖) − (𝜅𝑠 − 𝜂𝑠)(𝛁𝒔 ∙ 𝒖)[𝛁𝒔 ∙ 𝒏]𝒏 

+𝛁𝒔 ∙ {𝜂𝑠[𝛁𝒔𝒖 ∙ 𝑰𝒔 + 𝑰𝒔 ∙ (𝛁𝒔𝒖)𝑻]}. (2.9) 

In order to obtain the normal stress balance, we will neglect the inertia terms and dot a unit 

normal vector 𝒏 to the right of equation (2.9),  

The left-hand side (LHS) of equation (2.9) becomes 

𝒏 ∙ 𝝈𝟏 ∙ 𝒏 − 𝒏 ∙ 𝝈𝟐 ∙ 𝒏 = −(𝑝1 − 𝑝2) + 𝒏 ∙ 𝝉𝟏 ∙ 𝒏 − 𝒏 ∙ 𝝉𝟐 ∙ 𝒏. 

As 𝝉𝒋 = 𝜼𝒋 (𝛁𝒖𝒋 + (𝛁𝒖𝒋)
𝑻

) for 𝑗 = 1,2 and 𝒏 = 𝑛𝑟�̂�𝒓 + 𝑛𝜃�̂�𝜽 + 𝑛𝑧�̂�𝒛, we can express the 

velocity in terms of potential and obtain the LHS of equation (2.9) 

−(𝑝1 − 𝑝2) − 2𝜂1 [𝑛𝑟
2

𝜕2𝜙1

𝜕𝑟2
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𝑟
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−

1
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) + 𝑛𝜃

2 (
1

𝑟

𝜕𝜙1

𝜕𝑟
+

1

𝑟2

𝜕2𝜙1

𝜕𝜃2
)]

+ 2𝜂2 [𝑛𝑟
2

𝜕2𝜙2

𝜕𝑟2
+ 2𝑛𝑟𝑛𝜃 (

1

𝑟

𝜕2𝜙2

𝜕𝑟𝜕𝜃
−

1

𝑟2

𝜕𝜙2

𝜕𝜃
) + 𝑛𝜃

2 (
1

𝑟

𝜕𝜙2

𝜕𝑟
+

1

𝑟2

𝜕2𝜙2

𝜕𝜃2
)]. 

Simplify the unit normal vector to be 𝒏 = �̂�𝒓, i.e. 𝑛𝑟 = 1, 𝑛𝜃 = 0, we obtain 

−(𝑝1 − 𝑝2) − 2𝜂1

𝜕2𝜙1

𝜕𝑟2
+ 2𝜂2

𝜕2𝜙2

𝜕𝑟2
. 

The right-hand side (RHS) of equation (9) becomes 

𝛁𝒔𝛾 ∙ 𝒏 − 𝛾(𝛁𝒔 ∙ 𝒏) + (𝜅𝑠 − 𝜂𝑠)𝛁𝒔(𝛁𝒔 ∙ 𝒖) ∙ 𝒏 − (𝜅𝑠 − 𝜂𝑠)(𝛁𝒔 ∙ 𝒖)[𝛁𝒔 ∙ 𝒏] 
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+𝛁𝒔 ∙ {𝜂𝑠[𝛁𝒔𝒖 ∙ 𝑰𝒔 + 𝑰𝒔 ∙ (𝛁𝒔𝒖)𝑻]} ∙ 𝒏. 

As 𝒏 = �̂�𝒓, we can simplify each term of the RHS to be 

𝛁𝒔𝛾 ∙ 𝒏 =
1

𝑟

𝜕𝛾

𝜕𝜃
�̂�𝜽 ∙ �̂�𝒓 = 0; 

−𝛾(𝛁𝒔 ∙ 𝒏) = −𝛾 (
1

𝑟
) = −𝛾(𝛁 ∙ 𝒏); 

(𝜅𝑠 − 𝜂𝑠)𝛁𝒔(𝛁𝒔 ∙ 𝒖) ∙ 𝒏 = (𝜅𝑠 − 𝜂𝑠) (−
1

𝑟3

𝜕3𝜙1

𝜕𝜃3
−

1
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−(𝜅𝑠 − 𝜂𝑠)(𝛁𝒔 ∙ 𝒖)[𝛁𝒔 ∙ 𝒏] = −(𝜅𝑠 − 𝜂𝑠) (−
1

𝑟2
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𝜕𝜃2
−

1

𝑟

𝜕𝜙1

𝜕𝑟
) (𝛁 ∙ 𝒏); 

𝛁𝒔 ∙ {𝜂𝑠[𝛁𝒔𝒖 ∙ 𝑰𝒔 + 𝑰𝒔 ∙ (𝛁𝒔𝒖)𝑻]} ∙ 𝒏 

= −2𝜂𝑠

1

𝑟
(−

1

𝑟2

𝜕2𝜙1

𝜕𝜃2
−

1

𝑟
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𝑟2
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−
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). 

As a result, the RHS of equation (2.9) becomes 

−𝛾(𝛁𝐬 ∙ 𝒏) − [(𝜅𝑠 − 𝜂𝑠)(𝛁𝒔 ∙ 𝒏) + 2𝜂𝑠

1

𝑟
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1

𝑟2
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−

1

𝑟
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). 

With the addition of the transversal curvature, we can combine the terms and obtain: 

−(𝑝1 − 𝑝2) − 2𝜂1

𝜕2𝜙1

𝜕𝑟2
+ 2𝜂2
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𝑏
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) , (2.10)
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A.3 Derivation of equation (2.21) from equation (2.20) 

Equation (2.20) is shown below, we will derive each term separately. 

𝑎
𝜕

𝜕𝑟
[𝑝01 + 2𝜂1

𝜕2𝜙01

𝜕𝑟2
− (𝑝02 + 2𝜂2

𝜕2𝜙02

𝜕𝑟2
)]|

𝑟=𝑅

+ [𝑝11 + 2𝜂1

𝜕2𝜙11

𝜕𝑟2
− (𝑝12 + 2𝜂2

𝜕2𝜙12

𝜕𝑟2
)]|

𝑟=𝑅

+ 𝛾 (
𝑎

𝑅(𝑡)2
+

1

𝑅(𝑡)2

𝜕2𝑎

𝜕𝜃2
)

= −
(𝜅𝑠 + 𝜂𝑠)

𝑅(𝑡)2
[𝑎

𝜕

𝜕𝑟
(

𝜕𝜙01

𝜕𝑟
)|
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] . (2.20)

 

 

1st term on the LHS of equation (2.20): 

𝑎
𝜕

𝜕𝑟
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𝜕2𝜙01
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− 2𝜂2

𝜕2𝜙02

𝜕𝑟2
]|

𝑟=𝑅

 

= 𝑎 {
𝜕

𝜕𝑟
[
𝜙01

𝑀1
−

𝜙02

𝑀2
]|

𝑟=𝑅

+
𝜕

𝜕𝑟
[2𝜂1

𝜕2𝜙01

𝜕𝑟2
− 2𝜂2

𝜕2𝜙02

𝜕𝑟2
]|

𝑟=𝑅

} 

= 𝑎 {[
1

𝑀1

𝜕𝜙01

𝜕𝑟
−

1

𝑀2

𝜕𝜙02

𝜕𝑟
]|

𝑟=𝑅

+
𝜕

𝜕𝑟
[

𝑄

𝜋𝑅(𝑡)2
(𝜂1 − 𝜂2)]} 

= 𝑎 {[
1

𝑀1
(−

𝑄

2𝜋𝑅(𝑡)
) −

1

𝑀2
(−

𝑄

2𝜋𝑅(𝑡)
)] −

2𝑄

𝜋𝑅3(𝑡)
(𝜂1 − 𝜂2)} 
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= 𝑎 {−
𝑄

2𝜋𝑅(𝑡)
(

1

𝑀1
−

1

𝑀2
)  −

2𝑄

𝜋𝑅(𝑡)3
(𝜂1 − 𝜂2)} 

= −
𝑄

2𝜋𝑅(𝑡)
𝑎 {(

1

𝑀1
−

1

𝑀2
) +

4

𝑅(𝑡)2
(𝜂1 − 𝜂2)} 

= −
𝑄

2𝜋𝑅(𝑡)
{(

𝑀2 − 𝑀1

𝑀1𝑀2
) +

4

𝑅2(𝑡)
(

𝑏2

12𝑀1
−

𝑏2

12𝑀2
)} 𝑎 

= −
𝑄

2𝜋𝑅(𝑡)
{(

𝑀2 − 𝑀1

𝑀1𝑀2
) + (

4𝑏2(𝑀2 − 𝑀1)

12𝑀1𝑀2𝑅(𝑡)2
)} 𝑎 

2nd and 3rd terms on the LHS of equation (2.20): 

[𝑝11 + 2𝜂1

𝜕2𝜙11

𝜕𝑟2
− (𝑝12 + 2𝜂2

𝜕2𝜙12

𝜕𝑟2
)]|

𝑟=𝑅

+ 𝛾 (
𝑎

𝑅(𝑡)2
+

1

𝑅(𝑡)2

𝜕2𝑎

𝜕𝜃2
) 

= [
𝜙11

𝑀1
−

𝜙12

𝑀2
+ [2𝜂1

𝜕2𝜙11

𝜕𝑟2
− 2𝜂2

𝜕2𝜙12

𝜕𝑟2
]]|

𝑟=𝑅

+ 𝛾 (
𝑎

𝑅(𝑡)2
−

𝑛2𝑎

𝑅(𝑡)2
) 

= − (
𝑄

2𝑛𝜋𝑅(𝑡)
+

𝑅

𝑛

𝑓′(𝑡)

𝑓(𝑡)
) (

1

𝑀1
+

1

𝑀2
) 𝑎 

+2 (
𝑄

2𝑛𝜋𝑅(𝑡)
+

𝑅

𝑛

𝑓′(𝑡)

𝑓(𝑡)
)

𝑛

𝑅(𝑡)2
[−𝜂1(𝑛 − 1) − 𝜂2(𝑛 + 1)]𝑎 + 𝛾 (

1

𝑅(𝑡)2
−

𝑛2

𝑅(𝑡)2
) 𝑎 

= {−𝛾
𝑛2 − 1

𝑅(𝑡)2
+ (

𝑄

2𝑛𝜋𝑅(𝑡)
) [− (

1

𝑀1
+

1

𝑀2
) −

2𝑛

𝑅(𝑡)2
[𝜂1(𝑛 − 1) + 𝜂2(𝑛 + 1)]]

+ (
𝑅

𝑛
)

𝑓′(𝑡)

𝑓(𝑡)
[− (

1

𝑀1
+

1

𝑀2
) −

2𝑛

𝑅(𝑡)2
[𝜂1(𝑛 − 1) + 𝜂2(𝑛 + 1)]]} 𝑎 
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= {−𝛾
𝑛2 − 1

𝑅(𝑡)2
− 𝑄 [

𝑀1 + 𝑀2

2𝑀1𝑀2𝑛𝜋𝑅(𝑡)
+

𝜂1(𝑛 − 1) + 𝜂2(𝑛 + 1)

𝜋𝑅(𝑡)3
]

− (
(𝑀1 + 𝑀2)𝑅(𝑡)

𝑀1𝑀2𝑛
+

2𝜂1(𝑛 − 1) + 2𝜂2(𝑛 + 1)

𝑅(𝑡)
)

𝑓′(𝑡)

𝑓(𝑡)
} 𝑎 

= {−𝛾
𝑛2 − 1

𝑅(𝑡)2
− 𝑄 [

𝑀1 + 𝑀2

2𝑀1𝑀2𝑛𝜋𝑅(𝑡)
+

𝑏2[𝑀2(𝑛 − 1) + 𝑀1(𝑛 + 1)]

12𝑀1𝑀2𝜋𝑅(𝑡)3
]

− (
(𝑀1 + 𝑀2)𝑅(𝑡)

𝑀1𝑀2𝑛
+

𝑏2[𝑀2(𝑛 − 1) + 𝑀1(𝑛 + 1)]

6𝑀1𝑀2𝑅(𝑡)
)

𝑓′(𝑡)

𝑓(𝑡)
} 𝑎 

1st term on the RHS of equation (2.20): 

− (
𝜅𝑠 + 𝜂𝑠

𝑅(𝑡)2
) [𝑎

𝜕

𝜕𝑟
(

𝜕𝜙01

𝜕𝑟
)|

𝑟=𝑅
+ (

𝜕𝜙11

𝜕𝑟
)|

𝑟=𝑅
] 

= − (
𝜅𝑠 + 𝜂𝑠

𝑅(𝑡)2
) [

𝑄𝑎

2𝜋𝑅(𝑡)2
− 𝑎

𝑛

𝑅(𝑡)
(

𝑄

2𝑛𝜋𝑅(𝑡)
+

𝑅

𝑛

𝑓′(𝑡)

𝑓(𝑡)
)] 

= − (
𝜅𝑠 + 𝜂𝑠

𝑅(𝑡)2
) [

𝑄

2𝜋𝑅(𝑡)2
−

𝑛

𝑅(𝑡)
(

𝑄

2𝑛𝜋𝑅(𝑡)
+

𝑅

𝑛

𝑓′(𝑡)

𝑓(𝑡)
)] 𝑎 

= − (
𝜅𝑠 + 𝜂𝑠

𝑅(𝑡)2
) [

𝑄

2𝜋𝑅(𝑡)2
− (

𝑄

2𝜋𝑅(𝑡)2
+

𝑓′(𝑡)

𝑓(𝑡)
)] 𝑎 

= (
𝜅𝑠 + 𝜂𝑠

𝑅(𝑡)2
)

𝑓′(𝑡)

𝑓(𝑡)
𝑎. 

 

2nd term on the RHS of equation (2.20): 

= − (−(𝜅𝑠 + 𝜂𝑠) 
2𝑎

𝑅(𝑡)3
+ (𝜅𝑠 − 𝜂𝑠)

𝑛2𝑎

𝑅(𝑡)3
) [(

𝜕𝜙01

𝜕𝑟
) |𝑟=𝑅 + 𝑎

𝜕

𝜕𝑟
(

𝜕𝜙01

𝜕𝑟
) |𝑟=𝑅 + (

𝜕𝜙11

𝜕𝑟
) |𝑟=𝑅] 
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= − (−(𝜅𝑠 + 𝜂𝑠) 
2𝑎

𝑅(𝑡)3
+ (𝜅𝑠 − 𝜂𝑠)

𝑛2𝑎

𝑅(𝑡)3
) [−

𝑄

2𝜋𝑅
+ 𝑎

𝑄

2𝜋𝑅2
− 𝑎

𝑛

𝑅(𝑡)
(

𝑄

2𝑛𝜋𝑅(𝑡)
+

𝑅

𝑛

𝑓′(𝑡)

𝑓(𝑡)
)] 

neglecting higher order terms, 

=
𝑄

2𝜋𝑅
(−(𝜅𝑠 + 𝜂𝑠) 

2𝑎

𝑅(𝑡)3
+ (𝜅𝑠 − 𝜂𝑠)

𝑛2𝑎

𝑅(𝑡)3
) 

=
𝑄

2𝜋𝑅(𝑡)4
[𝑛2(𝜅𝑠 − 𝜂𝑠) − 2(𝜅𝑠 + 𝜂𝑠)]𝑎 

 

Combine all terms, we obtain 

−
𝑄

2𝜋𝑅(𝑡)
{(

𝑀2 − 𝑀1

𝑀1𝑀2
) + (

4𝑏2(𝑀2 − 𝑀1)

12𝑀1𝑀2𝑅(𝑡)2
)} 𝑎

+ {−𝛾
𝑛2 − 1

𝑅(𝑡)2
− 𝑄 [

𝑀1 + 𝑀2

2𝑀1𝑀2𝑛𝜋𝑅(𝑡)
+

𝑏2[𝑀2(𝑛 − 1) + 𝑀1(𝑛 + 1)]

12𝑀1𝑀2𝜋𝑅(𝑡)3
]

− (
(𝑀1 + 𝑀2)𝑅(𝑡)

𝑀1𝑀2𝑛
+

𝑏2[𝑀2(𝑛 − 1) + 𝑀1(𝑛 + 1)]

6𝑀1𝑀2𝑅(𝑡)
)

𝑓′(𝑡)

𝑓(𝑡)
} 𝑎

= (
𝜅𝑠 + 𝜂𝑠

𝑅(𝑡)2
)

𝑓′(𝑡)

𝑓(𝑡)
𝑎 + 𝑄

𝑛2(𝜅𝑠 − 𝜂𝑠) − 2(𝜅𝑠 + 𝜂𝑠)

2𝜋𝑅(𝑡)4
𝑎 

Rearrange to obtain equation (2.21): 

−𝛾
𝑛2 − 1

𝑅(𝑡)2
+ 𝑄{

(𝑛 − 1)𝑀1 − 𝑀2(𝑛 + 1)

2𝑀1𝑀2𝑛𝜋𝑅(𝑡)
−

𝑏2[𝑀1(𝑛 − 1) + 𝑀2(𝑛 + 1)]

12𝑀1𝑀2𝜋𝑅(𝑡)3

−
𝑛2(𝜅𝑠 − 𝜂𝑠) − 2(𝜅𝑠 + 𝜂𝑠)

2𝜋𝑅(𝑡)4
} =

[
(𝑀1 + 𝑀2)𝑅(𝑡)

𝑀1𝑀2𝑛
+

𝑏2[𝑀1(𝑛 + 1) + 𝑀2(𝑛 − 1)]

6𝑀1𝑀2𝑅(𝑡)
+

𝜅𝑠 + 𝜂𝑠

𝑅(𝑡)2
]

𝑓′(𝑡)

𝑓(𝑡)
. (2.21)

 

A.4 Derivation of equation (2.32) from equation (2.21) 
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Equation (2.21) is shown below 

−𝛾
𝑛2 − 1

𝑅(𝑡)2
+ 𝑄{

(𝑛 − 1)𝑀1 − 𝑀2(𝑛 + 1)

2𝑀1𝑀2𝑛𝜋𝑅(𝑡)
−

𝑏2[𝑀1(𝑛 − 1) + 𝑀2(𝑛 + 1)]

12𝑀1𝑀2𝜋𝑅(𝑡)3

−
(𝑛2(𝜅𝑠 − 𝜂𝑠) − 2(𝜅𝑠 + 𝜂𝑠))

2𝜋𝑅(𝑡)4
} =

[
(𝑀1 + 𝑀2)𝑅(𝑡)

𝑀1𝑀2𝑛
+

𝑏2[𝑀1(𝑛 + 1) + 𝑀2(𝑛 − 1)]

6𝑀1𝑀2𝑅(𝑡)
+

𝜅𝑠 + 𝜂𝑠

𝑅(𝑡)2
]

𝑓′(𝑡)

𝑓(𝑡)
. (2.21)

 

Removing the terms associated with viscous normal stresses and surface viscous stresses, we 

obtain 

−𝛾
𝑛2 − 1

𝑅(𝑡)2
+ 𝑄 {

(𝑛 − 1)𝑀1 − 𝑀2(𝑛 + 1)

2𝑀1𝑀2𝑛𝜋𝑅(𝑡)
} = [

(𝑀1 + 𝑀2)𝑅(𝑡)

𝑀1𝑀2𝑛
] 𝜎, 

where 𝜎 is the growth rate and is equal to 𝑓′(𝑡)/𝑓(𝑡). 

As 𝑀1 ≫ 𝑀2 and 𝑀2 = 𝑏2/(12 𝜂2), we simplify the equation above and obtain 

−𝛾𝑀2

𝑛3 − 𝑛

𝑅(𝑡)3
+

𝑄(𝑛 − 1)

2𝜋𝑅(𝑡)2
= 𝜎. 

Setting the derivative of the growth rate to zero: 

𝜕𝜎

𝜕𝑛
= 0 = −𝛾𝑀2

3𝑛𝑚𝑎𝑥
2 − 1

𝑅(𝑡)3
+

𝑄

2𝜋𝑅(𝑡)2
. 

Rearranging to find 𝑛𝑚𝑎𝑥 

𝑛𝑚𝑎𝑥
2 =

1

3

𝑄𝑅(𝑡)

2𝜋𝑀2𝛾
+ 1. 

As 

𝐶𝑎 =
�̇�𝜂2

𝛾
=

6𝑄𝜂2

12𝜋𝛾𝑅
, 
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we can express 𝑛𝑚𝑎𝑥 in terms of 𝐶𝑎: 

𝑛𝑚𝑎𝑥 =
1

√3
[12𝐶𝑎

𝑅(𝑡)2

𝑏2
+ 1]

1
2

. (2.32) 
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B.1 Derivation of Eq. (3.22), the expression of 𝜹𝚪 

Eq. (3.10), Eq. (3.17), and Eq (3.18) are shown as follows, 

𝜕Γ̃

𝜕�̃�
+ �̃�

𝜕Γ̃

𝜕�̃�
+

Γ̃

2
 
𝜕�̃�

𝜕�̃�
=

1

𝑃𝑒
 
𝜕2Γ̃

𝜕�̃�2
+

Γ̃∞ − Γ̃

𝜏𝑎
−

Γ̃

𝜏𝑑
exp(−�̃�Γ̃/�̃�0) , (3.10) 

�̃�(�̃�, �̃�) = 𝛿�̃�𝑒𝜎�̃�+𝑖𝑘𝑧 , (3.17)  

Γ̃(�̃�, �̃�) = 1 + 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 , (3.18)

Note that we have already solved the expression of 𝛿�̃� to be 

𝛿�̃� =
2𝑖𝜎휀

𝑘
 

The base state of Eq. (3.12) is 

0 =
1

𝜏𝑎
(Γ̃∞ − 1) −

1

𝜏𝑑
exp(−𝛽Γ̃/�̃�0) 

Substituting Eq. (3.17) and Eq. (3.18) into Eq. (3.10) to obtain the perturbed state  

𝛿Γ̃𝜎𝑒𝜎�̃�+𝑖𝑘𝑧 + �̃�𝛿Γ̃𝑖𝑘𝑒𝜎�̃�+𝑖𝑘𝑧 +
1

2
(1 + 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧)𝛿�̃�𝑖𝑘𝑒𝜎�̃�+𝑖𝑘𝑧

= −
1

𝑃𝑒
𝛿Γ̃𝑘2𝑒𝜎�̃�+𝑖𝑘𝑧 +

1

𝜏𝑎
(Γ̃∞ − 1 − 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧)

−
1 + 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧

𝜏𝑑
exp(−𝛽/�̃�0) exp(−𝛽/�̃�0𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧) 

Taking only the leading order terms to obtain 
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𝜎𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 +
1

2
�̃�0𝑖𝑘𝑒𝜎�̃�+𝑖𝑘𝑧

= −
1

𝑃𝑒
𝑘2 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 +

Γ̃∞ − 1

𝜏𝑎
−

𝛿Γ̃

𝜏𝑎
𝑒𝜎�̃�+𝑖𝑘𝑧

−
1 + 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧

𝜏𝑑
exp(−𝛽/�̃�0) exp(−𝛽/�̃�0𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧) 

Assume 𝛽�̃�0𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 ≈ 0, then 

exp(−�̃�/�̃�0𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧) = 1 − 𝛽/�̃�0𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 

Thus, the equation becomes 

𝜎𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 +
1

2
�̃�0𝑖𝑘𝑒𝜎�̃�+𝑖𝑘𝑧

= −
1

𝑃𝑒
𝑘2 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 +

Γ̃∞ − 1

𝜏𝑎
−

𝛿Γ̃

𝜏𝑎
𝑒𝜎�̃�+𝑖𝑘𝑧 −

exp(−𝛽/�̃�0)

𝜏𝑑

−
exp(−𝛽/�̃�0)

𝜏𝑑
𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 +

1

𝜏𝑑
exp(−�̃�/�̃�0) 𝛽/�̃�0𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧

+
𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧

𝜏𝑑
exp(−𝛽/�̃�0) 𝛽/�̃�0𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 

Taking the leading order and subtracting the base state to obtain 

𝜎𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 +
1

2
�̃�0𝑖𝑘𝑒𝜎�̃�+𝑖𝑘𝑧

= −
1

𝑃𝑒
𝑘2 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 −

𝛿Γ̃

𝜏𝑎
𝑒𝜎�̃�+𝑖𝑘𝑧 +

(𝛽/�̃�0 − 1)exp(−𝛽/�̃�0)

𝜏𝑑
𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 

Canceling𝑒𝜎�̃�+𝑖𝑘𝑧 , substituting 𝛿�̃�, and reorganizing to obtain Eq. (3.22) 
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𝛿Γ̃ =
𝜎휀

𝜎 +
𝑘2

𝑃𝑒 +
1
𝜏𝑎

+
(1 − 𝛽/�̃�0) exp(−𝛽/�̃�0)

𝜏𝑑

 

 

B.2 Derivation of Eq. (3.23), the dispersion relation between 𝝈 and 𝒌 

Eq. (3.9), Eq. (3.16) - (3.22) are shown as follows 

𝜕�̃�

𝜕�̃�
+ �̃�

𝜕�̃�

𝜕�̃�
= −

𝜕(�̃��̃�)

𝜕�̃�
+

2

�̃�

𝜕�̃�

𝜕�̃�
+

3𝑂ℎ

�̃�2

𝜕

𝜕�̃�
(�̃�2

𝜕�̃�

𝜕�̃�
)

+
𝑂ℎ

2�̃�2

𝜕

𝜕�̃�
(𝐵𝑞𝑑�̃�

𝜕�̃�

𝜕�̃�
) +

9𝑂ℎ

2�̃�2

𝜕

𝜕�̃�
(𝐵𝑞𝑠�̃�

𝜕�̃�

𝜕�̃�
) , (3.9)

 

�̃�(�̃�, �̃�) = 1 + 휀𝑒𝜎�̃�+𝑖𝑘𝑧 , (3.14) 

�̃�(�̃�, �̃�) = 𝛿�̃�𝑒𝜎�̃�+𝑖𝑘𝑧 , (3.15)  

Γ̃(�̃�, �̃�) = 1 + 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 , (3.16) 

�̃� = 1 − �̃�0Γ̃ + 𝛽Γ̃2/2 (3.17) 

𝛿�̃� =
2𝑖𝜎휀

𝑘
, (3.19) 

𝛿Γ̃ =
𝜎휀

𝜎 + 𝑘2/𝑃𝑒 + 1/𝜏𝑎  + (1 − 𝛽/�̃�0 )exp (−𝛽/�̃�0 )/𝜏𝑑 
, (3.20) 

We can solve for the perturbed �̃� by substituting the perturbed �̃�(�̃�, �̃�) and keep the leading order 

terms to obtain 

�̃� = 1 − 휀𝑒𝜎�̃�+𝑖𝑘𝑧 + 휀𝑘2𝑒𝜎�̃�+𝑖𝑘𝑧 

Assuming 𝐵𝑞𝑠 and 𝐵𝑞𝑑 are constant and simplify Eq. (3.9) to obtain 
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𝜕�̃�

𝜕�̃�
+ �̃�

𝜕�̃�

𝜕�̃�
= −�̃�

𝜕�̃�

𝜕�̃�
− �̃�

𝜕�̃�

𝜕�̃�
+

2

�̃�

𝜕�̃�

𝜕�̃�
+ 3𝑂ℎ

�̃�2

�̃�2

𝜕2�̃�

𝜕�̃�2
+ 3𝑂ℎ

1

�̃�2

𝜕�̃�

𝜕𝑧

𝜕�̃�2

𝜕�̃�

+ (𝐵𝑞𝑑 + 9𝐵𝑞𝑠)
𝑂ℎ�̃�

2�̃�2

𝜕2�̃�

𝜕�̃�2
+ (𝐵𝑞𝑑 + 9𝐵𝑞𝑠)

𝑂ℎ

2�̃�2

𝜕�̃�

𝜕�̃�

𝜕�̃�

𝜕�̃�
 

Taking only the leading order terms to obtain 

𝜕�̃�

𝜕�̃�
= −�̃�

𝜕�̃�

𝜕�̃�
− �̃�

𝜕�̃�

𝜕�̃�
+

2

�̃�

𝜕�̃�

𝜕�̃�
+ 3𝑂ℎ

�̃�2

�̃�2

𝜕2�̃�

𝜕�̃�2
+ (𝐵𝑞𝑑 + 9𝐵𝑞𝑠)

𝑂ℎ�̃�

2�̃�2

𝜕2�̃�

𝜕�̃�2
 

Substitute in Eq. (3.16) - Eq. (3.21) to obtain 

𝛿�̃�𝜎𝑒𝜎�̃�+𝑖𝑘𝑧 = −(1 − 휀𝑒𝜎�̃�+𝑖𝑘𝑧 + 휀𝑘2𝑒𝜎�̃�+𝑖𝑘𝑧)(�̃� − �̃�0)𝑖𝑘𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧

− (1 − �̃�0(1 + 𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧) +
𝛽

2
(1 + 2𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧)) (−𝑘 + 𝑘3)휀𝑖𝑒𝜎�̃�+𝑖𝑘𝑧

−
2

�̃�
(𝛽 − �̃�0)𝑖𝑘𝛿Γ̃𝑒𝜎�̃�+𝑖𝑘𝑧 − 3𝑂ℎ𝛿�̃�𝑘2𝑒𝜎�̃�+𝑖𝑘𝑧 − (𝐵𝑞𝑑 + 9𝐵𝑞𝑠)

𝑂ℎ

2�̃�
𝛿�̃�𝑘2𝑒𝜎�̃�+𝑖𝑘𝑧 

Note that all the 1/�̃� terms can be simplified by taking the leading order terms as follows 

1

�̃�
=

1

1 + 휀𝑒𝜎�̃�+𝑖𝑘𝑧
=

1 − 휀𝑒𝜎�̃�+𝑖𝑘𝑧

12 − (휀𝑒𝜎�̃�+𝑖𝑘𝑧)
2 = 1 − 휀𝑒𝜎�̃�+𝑖𝑘𝑧 

Simplify to only the leading order terms and divide 𝑒𝜎𝑡+𝑖𝑘𝑧 to obtain 

𝜎 𝛿�̃� = −(𝛽 − �̃�0)𝑖𝑘𝛿Γ̃ − (1 − �̃�0 +
𝛽

2
) (−𝑘 + 𝑘3)휀𝑖 + 2(𝛽 − �̃�0)𝑖𝑘𝛿Γ̃

− (6 + 𝐵𝑞𝑑 + 9𝐵𝑞𝑠)
𝑂ℎ

2
 𝛿�̃�𝑘2 

Substitute 𝛿�̃� and 𝛿Γ̃ to obtain 
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𝜎
2𝑖𝜎휀

𝑘
= (𝛽 − �̃�0)𝑖𝑘

𝜎휀

𝜎 +
𝑘2

𝑃𝑒 +
1
𝜏𝑎

+
(1 − 𝛽/�̃�0) exp(−𝛽/�̃�0)

𝜏𝑑

+ (1 − �̃�0 +
𝛽

2
) (𝑘 − 𝑘3)휀𝑖

− (6 + 𝐵𝑞𝑑 + 9𝐵𝑞𝑠)
𝑂ℎ

2

2𝑖𝜎휀

𝑘
𝑘2 

Multiplies both sides by 𝑘/𝜎𝑖휀 and reorganize to obtain Eq. (3.23) 

2𝜎 = (1 − �̃�0 +
𝛽

2
)

𝑘2 − 𝑘4

𝜎
+

(𝛽 − �̃�0)𝑘2

𝜎 +
𝑘2

𝑃𝑒 +
1
𝜏𝑎

+

(1 −
𝛽
�̃�0

) exp (−
𝛽
�̃�0

)

𝜏𝑑

−(6 + 𝐵𝑞𝑑 + 9𝐵𝑞𝑠)𝑂ℎ𝑘2 (3.23)

 

 

B.3 linear analysis on the impact of 𝑷𝒆 

 

B.4 Elastic liquid jet with insoluble surfactants 

Figure 8. Stability of jets with �̃�0 = 0.01, 

𝜏𝑠 = 1, 𝑂ℎ = 0.04,  𝐵𝑞𝑑 = 1, 𝐵𝑞𝑠 = 0, 

at different values of 𝑃𝑒. As 𝑃𝑒 increases, 

the system becomes more stable.  
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B.5 Additional jet fluid instability simulations  

B. 1 Viscoelastic jets with �̃�0 = 0.01, 𝜏𝑠 = 0.05, 𝑂ℎ = 0.04, 𝐷𝑒 = 0.8, 𝐵𝑞𝑠 = 0, 𝑃𝑒 = 1000 at 

(a) 𝐵𝑞𝑑 = 0,, (𝑏)𝐵𝑞𝑠 = 20. As 𝐵𝑞𝑠 increases, the system becomes more stable and does not form 

satellite beads throughout the process. 
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B. 2 The development of Newtonian jets using the Langmuir model at𝑘 = 0.8, 𝐸0 = 0.01, 𝜏𝑠 =

0.01 and a). 𝐵𝑞𝑑 = 0, b) 𝐵𝑞𝑑 = 10, and c) 𝐵𝑞𝑑 = 20. 
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B. 3 The development of Newtonian jets using the Frumkin model at 𝑘 = 0.8, 𝛽 = −0.1, 𝐸0 =

0.01, 𝜏𝑠 = 0.01 and a). 𝐵𝑞𝑑 = 0, b) 𝐵𝑞𝑑 = 10, and c) 𝐵𝑞𝑑 = 20. 
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B. 4 The development of Newtonian jets using the Frumkin model at 𝑘 = 0.8, 𝐵𝑞𝑑 = 0, 𝐸0 =

0.01, 𝜏𝑠 = 0.01 and a) 𝛽 = 1, b)  𝛽 = 0.5, c) 𝛽 = −0.5, and d)  𝛽 = −1. 
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B. 5 The development of Newtonian jets using the Langmuir model at 𝑘 = 0.8, 𝐵𝑞𝑑 = 0, 𝜏𝑠 =

0.01 and a) 𝐸0 = 0, b) 𝐸0 = 0.01, and c) 𝐸0 = 0.1. 
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B. 6 The development of Newtonian jets using the Langmuir model at 𝑘 = 0.2, 𝐵𝑞𝑑 = 20, 𝐸0 =

0.01, 𝜏𝑠 = 0.01. 
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