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ABSTRACT	OF	THE	DISSERTATION	

	
The	consequences	of	transposable	element	and	DNA	methylation	on	plant	genomes	

	
By	
	

Kyria	Anna	Roessler	
	

Doctor	of	Philosophy	in	Biological	Sciences	
	

	University	of	California,	Irvine,	2017	
	

Brandon	S.	Gaut,	Chair	
	
	

	

Plant	genomes	are	not	static;	they	are	constantly	being	transformed	by	nucleotide	

substitutions,	the	propagation	of	mobile	DNA,	and	epigenetic	modifications.	In	the	three	

chapters	of	my	dissertation,	I	show	how	plant	genomes	are	shaped	by	transposable	

elements	(TEs)	and	DNA	methylation.	In	the	first	chapter,	I	test	the	hypothesis	that	DNA	

methylation	is	involved	in	differential	gene	expression	between	plant	tissues.	To	explore	

this	hypothesis,	I	measured	whole	genome	DNA	methylation	and	gene	expression	in	leaf	

and	floral	bud	tissue	from	Brachypodium	distachyon.	I	found	that	differential	CG	

methylation	in	the	promoter	region	explains	~10%	of	the	variation	in	gene	expression	

between	tissues.	The	second	chapter	examines	the	two	modes	that	a	plant	uses	to	silence	

TEs,	and	I	specifically	question	why	both	are	necessary	for	efficient	TE	containment.	I	

address	this	question	by	creating	a	mathematical	model	of	ordinary	differential	equations	

that	represents	the	interactions	between	TE	propagation	and	epigenetic	silencing,	

including	DNA	methylation.	The	model	suggests	that	both	modes	are	crucial	for	efficient	

silencing,	and	it	also	suggests	that	TE	retention	leads	to	more	robust	silencing.	Finally,	the	
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third	chapter	predicts	that,	because	of	their	deleterious	nature,	TEs	will	be	‘purged’	from	a	

lineage	that	has	undergone	inbreeding.	To	test	this,	I	examined	the	properties	of	maize	

genomes	that	were	subjected	to	inbreeding	for	six	generations.		Over	a	total	of	11	inbred	

lines,	I	measured	genome	size	with	cell	flow	cytometry	and	characterized	genome	content	

by	whole	genome	sequencing.	The	results	revealed	evidence	that	genome	size	decline	is	

associated	with	TE	loss	in	a	subset	of	inbreeding	lines	and	provided	an	opportunity	to	

consider	potential	mechanisms	for	TE	removal.		
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INTRODUCTION	

	

	 In	the	classic	paper	from	1950,	“The	origin	and	behavior	of	mutable	loci	in	

maize”,	Barbara	McClintock	challenged	the	preconceived	notions	of	a	static	and	stable	

genome	(McClintock	1950).	She	had	discovered	that	gene-like	DNA	could	be	mobile	and	

change	its	position	within	a	chromosome;	these	new	genomic	components	were	termed	

transposable	elements	(TEs).	TEs	were	discovered	because	they	could	alter	gene	

expression	if	inserted	near	or	in	a	gene.	By	the	1970s	TEs	had	been	found	in	other	

organisms	such	as	viruses	and	bacteria	(Ravindran	2012).	Now,	in	the	age	of	genomics,	we	

know	that	TEs	compose	nearly	65%	of	the	human	genome	(Lander	et.	al	2001)	and	85%	of	

the	maize	genome	(Schnable	et.	al.	2009).		At	first,	because	their	exact	function	was	

unknown,	TEs	were	described	as	repetitive	‘junk’	DNA.	That	view	is,	however,	changing.	As	

high-throughput	sequencing	continues	to	improve	and	as	genomes	are	assembled	more	

accurately,	the	tools	to	study	TEs	have	also	improved.	This	has	allowed	for	better	analysis	

of	TE	accumulation	in	genomes	and	of	their	evolutionary	consequences.	

	 TEs	can	be	classified	into	two	classes	by	the	mechanisms	they	use	for	mobility.		

Class	I	elements	require	an	RNA	intermediate	and	reverse	transcriptase	to	‘copy	and	paste’	

in	the	genome.		Class	II	elements	do	not	employ	reverse	transcriptase,	but	use	transposase	

for	direct	transposition	to	‘cut	and	paste’	into	a	new	part	of	the	genome	(Fedoroff	1989).			

The	proliferation	of	class	I	and	class	II	elements	can	have	a	number	of	impacts	on	their	host	

genome	and	gene	function.	For	example,	a	TE	can	affect	a	gene	by	directly	inserting	into	the	

coding	region,	disrupting	gene	expression	(Schwarz-Sommer	et.	al.	1987;	White	et.	al	

1994).		A	TE	can	also	insert	into	an	intron	and	affect	splice	sites	or	transcription	factor	
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binding	sites,	potentially	affecting	function	(Bradley	et.	al	1993;	Ortiz	et.	al.	1990).	In	

addition,	because	of	their	repetitive	nature,	TEs	can	be	the	template	for	inter-element	

recombination,	which	may	generate	inversions,	deletions	and	duplications	(Robbins	et.	al.	

1989;	Lister	et.	al	1993;	Flavell	et.	al.	1994).		It	is	apparent	that	TEs	can	have	significant	

mutational	effects	and	thus	pose	a	potential	challenge	to	their	host’s	fitness	(McDonald	

1993).	On	a	larger	scale,	the	proliferation	of	large	numbers	of	TEs	can	greatly	increase	

genome	size	(Gregory	and	Hebert	1999),	and	overly	large	genomes	may	be	deleterious	

(Knight	et	al.,	2005).			

Given	the	potential	for	deleterious	effects,	natural	selection	may	act	to	limit	TE	

proliferation	and	copy	numbers.	For	instance,	newly	inserted	TEs	are	found	at	a	very	low	

frequency	in	populations	(Charlesworth	and	Langley	1991;	Biemont	1992),	suggesting	that	

natural	selection	against	them	does	not	allow	them	to	rise	to	higher	frequency.	This	

selection	could	result	from	two	processes:	either	selection	against	newly	inserted	TEs	

(because	of	the	mutations	it	causes	to	nearby	genes)	or	selection	against	ectopic	

recombination	that	causes	large	chromosomal	rearrangements	(Charlesworth	and	

Langeley	1991).	Either	process	is	expected	to	remove	deleterious	TEs	from	the	population.	

This	removal	of	deleterious	TEs	from	the	population	helps	purge	TEs	from	the	population,	

retaining	population	fitness.		These	processes	are	of	intrinsic	interest	in	plants,	because	

plant	genomes	vary	widely	in	size	and	size	correlates	with	repeat	content	(Michael	2014;	

Tenaillon	et.	al.	2011).	Hence,	the	processes	that	purge	TEs	may	be	variable	among	

populations	and	species.	For	example,	the	difference	in	genome	size	between	A.	thaliana	

and	A.	lyrata	–	two	species	that	diverged	10	million	years	ago	-	can	be	attributed	to	

hundreds	of	thousands	of	small	deletions,	mostly	in	noncoding	DNA	and	TEs	(Hu	et.	al.	
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2011).		Why	is	it	that	one	species	purges	TEs	and	the	other	retains	them?	One	possible	

reason	for	this	divergence	is	a	shift	in	mating	strategies.	Plant	populations	with	higher	

rates	of	selfing	have	been	found	to	have	a	smaller	genome	size	(Price	1976;	Govindaraju	

and	Cullis	1991).	Indeed,	in	the	example	above,	A.	thaliana	has	a	high	rate	of	selfing	while	A.	

lyrata	is	an	outcrosser.	However,	mating	system	is	not	the	only	difference	between	species,	

and	cannot	explain	that	vast	majority	of	TE	content	and	genome	size	variation.	In	addition,	

purging	of	individual	TE	insertions	may	not	be	sufficient	to	keep	the	remaining	TEs	from	

propagating,	so	other	mechanisms	from	the	host	are	needed	to	keep	TEs	under	control.	

	 Although	deleterious	TE	insertions	are	often	removed	by	natural	selection,	the	plant	

also	limits	TE	proliferation	by	modifying	them	epigenetically.	There	are	two	steps	plant	

hosts	take	to	the	epigenetically	silence	TEs.		The	first	step	is	post-transcriptional	

regulation.	In	this	step,	the	plant	host	degrades	mRNAs	from	TEs	into	21-22	nt	small-

interfering	RNAs	(siRNAs),	and	these	21-22nt	siRNAs	trigger	the	‘initiation’	of	the	RNA-

directed	DNA	methylation	(RdDM)	pathway.	The	second	pathway	uses	24	nt	siRNAs	that	

guides	epigenetic	modifications	and	lead	to	pre-transcriptional	silencing	of	TEs	(Bousios	

and	Gaut	2016).	Pre-transcriptional	silencing	in	higher	plants	includes	DNA	methylation	of	

TEs,	which	occurs	in	three	sequence	contexts:	CG,	CHG,	and	CHH,	where	H	=	A,	C	or	T	

(Lister	et.	al.	2008).	This	modification	is	heritable,	and	it	is	associated	with	additional	

epigenetic	markers	such	as	histone	modifications	and	nucleosome	positioning	

(Bernatavichute	et.	al	2008;	Chodavarapu	et.	al.	2010).	DNA	methylation	acts	to	limit	the	

transcription	and	proliferation	of	TEs	and	is	therefore	a	defense	against	potential	

deleterious	mutations	caused	by	TE	insertions	(Lippman	et.	al.	2004).	This	means	that	once	

methylation	occurs,	the	host	genome	is	largely	in	control	of	TE	proliferation.	Most	TEs	are	
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found	in	this	epigenetically	silenced	state.	So	far	these	mechanisms	have	been	documented	

extensively	in	A.	thaliana	(Slotkin	et.	al.	2007),	but	other	studies	have	shown	both	that	

lower	plants	lack	RdDM	genes	and	that	there	exist	substantial	differences	in	DNA	

methylation	across	plant	species	(Ma	et.	al.	2015;	Takuno	et.	al.	2016).			Differences	in	

epigenetic	silencing	mechanisms	could	lead	to	varying	host	interactions	in	response	to	TE	

propagation	and	thus	lead	to	differing	TE	content	and	potential	genome	size.		

	 Since	methylated	TEs	are	found	throughout	the	genome,	they	have	long	been	seen	

as	a	potential	mechanism	for	controlling	gene	expression.	Studies	of	methylation	mutants	

have	revealed	that	they	have	the	ability	to	regulate	the	expression	of	nearby	genes.	For	

example,	the	gene	FWA’s	expression	is	controlled	by	an	upstream	TE	and	the	gene	is	

upregulated	when	the	element	is	demethylated	(Soppe	et.	al.	2000).	The	advent	of	new	

high-throughput	methods,	such	as	bisulfite	sequencing	(BSseq),	allows	for	characterizing	

the	genome	wide	distribution	of	DNA	methylation.	Using	a	similar	approach,	a	genome	

wide	study	revealed	that	methylated	TEs	inserted	near	genes	are	associated	with	reduced	

gene	expression	(Hollister	et.	al.	2011;	Diez	et.	al.	2014),	generalizing	the	example	of	FWA.	

Furthermore,	these	experiments	suggest	that	there	is	variation	of	methylation	between	

individuals	and	tissues	(Schmitz	et.	al.	2013).	Even	though	DNA	methylation	is	primarily	in	

noncoding	repetitive	DNA,	could	this	variation	near	genes	lead	to	varying	gene	expression	

between	tissues?	A	few	studies	have	investigated	this	question,	using	high-throughput	

sequencing	technologies,	but	their	results	have	mainly	been	mixed	-	either	finding	

differentially	methylated	regions	have	an	association	with	RNA-seq	expression	or	finding	

higher	variation	between	individuals	than	tissues	(Schmitz	et.	al.	2013;	Song	et	al.	2013).	
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More	studies	are	needed	to	unmask	the	true	relationship	between	differential	methylation	

between	tissues	and	its	effects	on	gene	expression.	

	 From	these	examples	about	genome	size	and	TE	silencing,	we	can	see	that	TEs	can	

have	large	effects	on	plant	genomes.	The	goal	of	my	dissertation	is	to	try	to	understand	

some	of	the	genomic	consequences	of	TEs	and	DNA	methylation.	The	first	chapter	explores	

whether	there	are	differences	in	DNA	methylation	between	tissues	and	whether	it	is	

associated	with	differential	gene	expression.	To	answer	this	question,	we	performed	whole	

genome	BSseq	and	RNA-seq	on	leaf	and	floral	tissue	in	Brachypodium	distachyon.	We	found	

that	methylation	could	explain	~10%	of	the	variation	of	differentially	expressed	genes	

between	tissues,	depending	on	the	methylation	context	and	location,	The	second	chapter	

introduces	a	new	mathematical	model	to	explain	the	dynamics	between	TE	propagation	

and	host	silencing	in	plant	genomes.	We	use	the	model	to	explore	the	different	mechanisms	

of	methylation	and	to	consider	the	parameters	that	are	are	ideal	for	TE	invasion.	

Interestingly,	we	find	that	retention	of	silenced	TEs	is	important	for	robust	methylation,	

and	it	could	be	a	possible	reason	for	high	TE	content	and	large	genome	sizes.	In	the	third	

chapter	we	examine	the	transition	period	from	outcrossing	to	selfing	in	the	first	few	

generations	in	maize	(Zea	mays	spp.	mays)	and	its	effects	on	genome	size.	We	predicted	

that	if	there	is	a	decrease	in	genome	size,	it	is	related	to	the	purging	of	TEs	and	other	

repetitive	elements.	We	find	this	to	be	true	in	certain	lines	of	maize,	and	attempt	to	explain	

possible	mechanisms	for	this	TE	loss.	

	 With	these	three	projects	I	hope	to	further	illuminate	the	interesting	aspects	of	TE	

silencing	in	the	context	of	plant	genome	evolution.		I	have	used	multiple	contemporary	

methods	--	such	as	next-generation	sequencing	and	computational	modeling	--	to	
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understand	some	of	the	interactions	among	genome	size,	methylation,	and	gene	

expression.	These	evolutionary	processes	are	currently	affecting	plants	today,	including	

crucial	crop	species,	and	this	research	can	help	understand	how	these	genomes	are	being	

shaped.		
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Chapter	1:	CG	methylation	covaries	with	differential	gene	expression	

between	leaf	and	floral	bud	of	Brachypodium	distachyon	

	

	 The	term	‘epigenetics’	refers	to	processes	beyond	(epi-)	genetics	and,	more	

concretely,	to	heritable	chromosomal	modifications	that	have	the	potential	to	vary	during	

development	and	stress	(Law	2010;	Dowen	et.	al.	2012).	Epigenetic	modifications	include	

histone	variants	but	also	DNA	methylation.	In	plants,	the	methylation	of	cytosines	occurs	in	

three	sequence	contexts:	CG,	CHG	and	CHH,	where	H	=	A,	C	or	T.	All	three	contexts	are	

usually	methylated	in	repetitive	sequences,	which	serves	to	limit	the	transcription	and	

proliferation	of	transposable	elements	(TEs)	(Lippman	et.	al.	2004).	Genes	are	often	also	

methylated,	but	typically	only	in	the	CG	context	(Cokus	et.	al.	2008;	Lister	et.	al.	2008;	

Greaves	et.	al.	2012).	The	function	of	this	genebody	methylation	(gbM)	is	not	yet	clear,	but	

potential	functions	include	the	exclusion	of	histone	H2A.Z	(Coleman-Derr	and	Zilberman	

2012),	control	of	aberrant	intragenic	expression	(Zilberman	2007),	protection	from	

transposable	element	(TE)	insertion	(Regulski	et.	al.	2013),	and	facilitation	of	intron-exon	

splicing	(Lorincz	et.	al.	2004;	Luco	et.	al.	2010;	Shukia	et.	al.	2011).		

DNA	methylation	has	long	been	hypothesized	to	have	a	direct	effect	on	gene	

regulation	during	development	(Bird	1997;	Richards	1997).	With	the	growing	availability	

of	single	base	resolution	methylation	data,	like	bisulfite	sequencing	(BSseq)	data,	this	

hypothesis	has	been	tested	directly.	In	humans,	for	example,	DNA	methylation	varies	

dramatically	throughout	development,	and	this	variation	is	often	correlated	with	gene	

expression	(Franklin	et.	al.	1996;	Lister	et.	al.	2009;	Hawkins	et.	al.	2010;	Reik	2007).	In	

plants,	the	available	evidence	suggests	that	methylation	levels	vary	for	highly	specialized	
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tissues,	such	as	the	endosperm	and	the	pollen	vegetative	nucleus	(Lauria	et.	al	2004;	Hsieh	

et.	al	2009;	Ibarra	et.	al.	2012;	Zemach	et.	al.	2010),	and	that	this	methylation	variation	

likely	contributes	to	genetic	imprinting	and	trans-generational	silencing	of	TEs	(Slotkin	et.	

al.	2009;	Choi	et.	al.	2002;	Gehring	et.	al.	2009).		

Outside	of	these	few	specialized	tissues,	a	clear	picture	has	not	yet	emerged	as	to	

whether	methylation	commonly	varies	among	plant	tissues	and,	if	so,	whether	methylation	

variation	contributes	to	tissue-specific	gene	expression	(GE).	Some	evidence	suggests	that	

most	plant	tissues	do	not	vary	substantially	in	DNA	methylation.	For	example,	genome-

wide	profiling	in	rice	(Oryza	sativa	L.)	identified	few	DNA	methylation	differences	between	

shoot	and	root,	and	only	a	few	additional	differences	in	CHH	methylation	between	these	

two	tissues	and	the	embryo	(Zemach	et.	al.	2010).	Moreover,	a	survey	of	several	A.	thaliana	

accessions	found	that	tissue-specific	variation	in	methylation	was	much	less	pronounced	

than	genetic	variation,	leading	the	authors	to	conclude	that	“...DNA	methylation	is	less	

dynamic	than	gene	expression	patterns	in	plants	and	only	plays	a	role	during	specific	

stages	of	development	or	cell	type,	such	as	companion	cells”	(Schmitz	et.	al.	2013).		

In	contrast	to	these	studies,	there	is	some	emerging	evidence	that	differential	

methylation	may	play	a	role	in	tissue	specific	GE.	For	example,	researchers	have	detected	

~2000	differentially	methylated	regions	(DMRs)	among	four	soybean	tissues,	and	a	subset	

of	these	DMRs	correlate	with	tissue-specific	GE	of	~60	genes	(Song	et.	al.	2013).	Similarly,	

analysis	of	tissue-specific	DNA	methylation	patterns	in	Sorghum	bicolor	(Zhang	et.	al.	

2011),	Populus	tichocarpa	(Vining	et.	al.	2012)	and	maize	(Zea	mays	ssp.	mays)	(Clandaele	

et.	al.	2014)	hint	that	epigenetic	variation	among	vegetative	tissues	correlates	with	

tissuespecific	expression.	However,	not	all	of	these	studies	have	measured	methylation	at	
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single-base	resolution,	which	greatly	limits	the	ability	to	draw	firm	conclusions;	the	

number	of	contrasts	of	methylation	between	plant	tissues	is	growing,	but	such	studies	

remain	rare.		

Methodological	differences	among	studies	have	also	made	conclusions	difficult.	For	

example,	few	methylation	studies	have	employed	biological	replication,	and	thus	it	is	

usually	unclear	whether	methylation	variation	between	tissues	exceeds	the	statistical	

variation	expected	from	within	a	single	sampled	tissue.	Even	when	the	data	are	at	single-

base	resolution,	studies	have	used	different	summaries	of	the	data	as	the	basis	for	

inferences,	and	this	has	caused	confusion.	Some	studies	have	focused	on	summarizing	

methylation	for	genomic	features	like	genes	and	TEs	(Feng	et.	al.	2010;	Zemach	et.	al.	

2010).	Other	studies	have	focused	on	DMRs	as	a	summary	of	the	data.	DMRs	were	initially	

defined	as	stretches	of	DNA	sequence	for	which	methylation	differences	between	samples	

were	higher	than	expected	at	random	(Lister	et.	al.	2009).	While	the	initial	definition	of	

DMRs	is	straightforward	and	meaningful,	more	recent	studies	have	used	empirical	means,	

such	as	sliding	windows,	to	identify	DMRs,	and	these	empirical	definitions	vary	from	study	

to	study	(Song	et.	al.	2013;	Schmitz	et.	al.	2013).	As	a	result,	the	interpretation	and	meaning	

of	DMRs	varies	among	studies,	compromising	the	value	of	inferences.		

This	study	is	focused	ultimately	on	the	question	of	whether	DNA	methylation	and	

GE	covary	between	tissues.	To	that	end,	we	have	measured	both	DNA	methylation	and	gene	

expression	between	two	tissues	(leaves	and	floral	buds)	of	Brachypodium	distachyon	

(brachypodium),	a	grass	species	that	has	served	as	a	model	for	genomic	studies	(Vogel	et.	

al.	2010).	While	our	ultimate	goal	is	to	assess	methylation	and	GE,	our	proximal	goals	

include	an	empirical	assessment	of	the	effects	of	replication	both	on	inferring	methylation	
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differentiation	between	tissues	and	on	the	impact	of	summary	methods	(i.e.,	DMRs	vs.	

single-base	metrics)	on	inferences.	Overall,	we	find	the	two	tissue	samples	to	be	

significantly	different	in	DNA	methylation	patterns,	but	we	also	find	that	the	false	positive	

rate	without	replication	is	high	(>50%).	In	all	respects,	DMRs	are	less	useful	than	single-

base	or	regional	measures	in	our	empirical	analyses.	Altogether,	we	find	that	CG	

methylation	and	GE	covary	between	tissues,	explaining	up	to	9%	of	variation	in	gene	

expression.	

RESULTS	AND	DISCUSSION	

DNA	Methylation	within	and	between	tissue	samples:	To	assess	methylation	

variation,	we	utilized	BSseq	data	from	a	previous	study	(Takuno	and	Gaut	2013)	that	

generated	reads	from	three	biological	replicates	of	two	tissues:	leaf	and	immature	flower	

buds.	We	denoted	the	leaf	replicates	as	L1,	L2	and	L3	and	the	floral	bud	replicates	as	F1,	F2	

and	F3.	The	data	had	conversion	error	rates	of	<1.3%	for	each	replicate	(Takuno	and	Gaut	

2013;	S1.1	Table).	Following	the	previous	study,	we	mapped	BSseq	reads	to	the	B.	

distachyon	genome	and	tallied	only	uniquely	mapping	reads.	Each	replicate	yielded	~15X	of	

mapped	coverage,	such	that	each	tissue	had	~45X	coverage	per	base,	on	average	(Takuno	

and	Gaut	2013).	

To	our	knowledge,	no	plant	DNA	methylation	papers	have	assessed	whether	tissue-

specific	variation	exceeds	that	expected	from	proper	biological	replication.	To	assess	this	

question,	we	first	tested	for	a	signal	of	differentiation	between	two	BSseq	datasets	at	single	

nucleotide	sites,	which	we	call	Differentially	Methylated	Sites	(DMSs).	To	identify	DMSs,	we	

required	a	minimum	coverage	of	3	reads	for	each	site	in	each	tissue	and	then	applied	

Fisher’s	Exact	Test	(FET)	(Lister	et.	al.	2009;	see	Methods).	There	were	many	DMSs	
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between	two	biological	replicates	from	the	same	tissue.	For	example,	there	were	218,631	

DMSs	between	L1	and	L2	and	an	average	of	~250,000DMSs	between	two	leaf	replicates	

(Fig	1A).	However,	DMSs	were	more	abundant	between	replicates	from	different	tissues,	

with	an	average	of	~324,000	differential	sites	(Figure	1.1A).	The	average	number	of	DMSs	

was	significantly	higher	for	between-tissue	vs.	intra-tissue	comparisons	(permutation,	

p<0.01),	indicating	that	the	tissue	samples	were	significantly	differentiated.	

	

We	also	inferred	DMSs	by	combining	the	three	replicates	within	each	tissue	and	

then	comparing	the	combined	leaf	data	(L1+L2+L3)	to	the	combined	floral	data	

(F1+F2+F3).	Using	the	combined	replicates	from	each	tissue,	FET	analyses	identified	

500,245	DMSs.	Following	a	previous	study	(Ziller	et.	al.	2014),	we	assumed	these	500,245	

DMSs	to	be	our	best	estimate	of	“true”	DMSs	between	tissues	and	found	that	this	true	set	

rarely	overlapped	in	location	with	DMSs	that	were	identified	between	replicates	within	a	

tissue;	typically	<5%	of	within-tissue	DMSs	overlapped	with	the	true	set	(Figure	1.1A).	In	

contrast,	the	overlap	was	more	significant,	at	15.6%	on	average,	between	the	true	set	and	

DMSs	identified	between	replicates	from	different	tissues	(Figure	1.1A).	These	percentages	

define	genetic	distances	between	two	BSseq	replicates	that	can	then	be	used	for	clustering	

analyses.	A	neighbor-joining	analysis	clearly	separated	replicates	from	different	tissues	

(Figure	1.1B),	further	supporting	the	contention	that	the	two	tissue	samples	differ	in	DNA	

methylation	beyond	that	expected	from	sampling.	

The	15.6%	average	amount	of	overlap	between	the	‘true’	set	of	DMSs	and	the	DMSs	

based	on	single	replicates	likely	reflects,	in	part,	lower	statistical	power	for	the	single	

replicates.	It	is	interesting	to	note,	however,	that	comparisons	between	single-replicates	
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also	yield	high	false-positive	rates	(FPRs),	which	cannot	be	an	artifact	of	higher	statistical	

power	with	combined	data.	For	example,	the	comparison	of	L3	and	F3	replicates	yielded	

368,643	DMSs	(Figure	1.1A).	Of	these,	92,989	(or	18.6%)	overlapped	with	the	set	of	true	

DMSs;	hence,	81.4%	of	the	DMSs	identified	between	these	two	replicates	were	not	

supported	by	the	larger,	combined	data	set.	In	other	words,	had	we	relied	on	a	single	

replicate	from	each	tissue	for	this	study,	>80%	of	our	inferences	would	have	been	incorrect	

relative	to	more	extensive	data.	In	theory,	the	high	FPR	can	be	reduced	either	by	increasing	

the	stringency	of	the	FET	or	by	adjusting	the	FET	for	multiple-tests,	but	these	adjustments	

do	not	help	in	this	case.	For	example,	when	we	focused	on	the	L3	vs.	F3	comparison	and	

applied	a	false	discovery	rate	(FDR)	correction	at	q	<	0.05,	we	found	10,435	DMSs	

compared	to	368,643	without	FDR	adjustment	(Figure	1.1A).	However,	none	of	these	DMSs	

overlapped	with	the	true	set,	yielding	an	FPR	of	100%.	

A	potential	advantage	of	studying	DMRs,	as	opposed	to	DMSs,	is	that	they	

summarize	signals	over	contiguous	sites,	and	it	is	thus	possible	that	they	reduce	the	FPR.	

As	we	have	noted,	the	definition	of	a	DMR	varies	widely	among	studies;	here	we	focused	on	

the	original	definition	to	define	DMRs	as	a	region	of	non-random	differentiation	between	

samples	(Lister	et.	al.	2009).	To	determine	expectations	under	‘randomness’,	we	

permutated	cytosine	methylation	states	throughout	the	genome	(see	Materials	&	Methods);	

permutations	indicated	that	≥	5	DMSs	in	a	row	were	1.3%	of	those	expected	at	random	

(Figure	S1.1).	Accordingly,	we	defined	a	DMR	as	≥	5	DMSs	in	a	row	that	had	a	consistent	

direction	of	methylation	bias	(i.e.,	hypomethylated	in	one	or	the	other	tissue).	These	DMRs	

contain	2,672	DMSs,	which	is	a	small	percentage	(0.5%)	of	the	total	set	of	500,245	DMSs	
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(Table	1.1),	indicating	that	DMSs	are	rarely	clustered	across	the	genome	more	than	

expected	at	random.	

With	this	definition,	we	again	observed	more	DMRs	between	tissues	(187,	on	

average)	than	within	tissues	(59,	on	average)(Figure	1.1C),	and	this	difference	was	again	

statistically	significant	(permutation,	p<0.01).	By	combining	data	(L1+L2+L3	vs.	

F1+F2+F3),	we	inferred	a	‘true’	set	of	448	DMRs	with	an	average	size	of	38.4	bp,	a	

minimum	length	of	5.00	bp	and	a	maximum	length	of	522	bp.	For	DMRs,	1.0%	of	within-

tissue	DMRs	overlapped	on	average	with	the	true	set,	whereas	6.9%	of	between-tissue	

DMRs	overlapped	with	the	true	set	on	average.	These	distances	again	separated	the	tissues	

in	clustering	analyses	(Figure	1.1D),	verifying	significant	tissue	differentiation.	However,	

the	between-tissue	FPR	based	on	single	BSseq	replicates	was	consistently	higher	for	DMRs	

than	for	DMSs,	with	a	minimum	FPR	of	89.2%.	In	other	words,	~80%	or	more	of	our	DMR	

inferences	were	incorrect	for	contrasts	between	single	replicates	relative	to	the	more	

extensive	dataset.	

This	raises	the	question	as	to	why	the	FPR	is	so	high	and	whether	our	observations	

are	unique.	To	answer	the	latter	question,	to	our	knowledge	only	one	other	study	of	plants	

has	used	biological	replication	for	BSseq	data	to	compare	methylation	between	Arabidopsis	

thaliana	and	A.	lyrata	(Seymour	et.	al.	2014).	[At	least	one	other	paper	replicated	their	

control	but	not	experimental	samples	(Stroud	et.	al.	2013)].	In	the	Arabidopsis	paper,	the	

authors	used	replication	to	help	filter	the	number	sites	for	testing,	thus	reducing	the	

multiple	test	problem	and	increasing	statistical	power.	They	did	not,	however,	explicitly	

report	on	the	level	of	within	vs.	between	tissue	differences.	To	address	the	former	question,	

the	FPR	may	be	high	for	technical,	statistical	and/or	biological	reasons.	Technically,	BSseq	
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data	are	subject	to	conversion	error,	but	conversion	errors	are	unlikely	to	explain	our	

observations	because	coverage	is	high	and	conversion	error	is	low.	Statistically,	it	is	easy	to	

envision	that	the	FET	may	signal	numerous	false-positives,	but	the	FPR	remains	high	for	

DMSs	when	the	FET	is	FDR	corrected	(Becker	et.	al.	2011),	as	noted	above.	Finally,	

biological	variation	among	replicates	may	contribute	to	the	FPR,	both	because	tissue	

samples	are	likely	to	include	mixtures	of	different	cell	types	that	vary	in	proportion	among	

replicates	(Ji	et.	al.	2015)	and	also	because	it	is	likely	that	there	is	heterogeneity	in	

methylation	levels	even	among	cells	of	a	single	type	(Smallwood	et.	al.	2014).	We	thus	

suspect,	but	cannot	prove,	that	the	largest	contribution	to	variation	among	replicates	is	

biological	in	origin.	

Our	FPR	calculations	deserve	two	further	comments.	First,	the	FPR	calculations	rely	

on	the	assumption	that	the	set	of	‘true’	DMSs	and	DMRs	are	defined	by	our	analysis	of	

combined	data.	This	assumption	cannot	hold	fully	because	there	must	be	false-positives	in	

the	combined	data,	but	the	FPR	rate	of	the	combined	data	are	difficult	to	assess.	Second,	we	

note	that	as	levels	of	methylation	differentiation	become	more	pronounced,	the	

signal:noise	ratio	will	also	increase.	Thus,	our	data	reflect	the	importance	of	replication	for	

contrasts	between	tissues	in	the	same	species;	however,	it	may	not	be	as	useful	to	replicate	

data	that	are	designed	to	summarize	broad-scale	differences	in	methylation	patterns	

between	distantly	related	species	(Feng	et.	al.	2010;	Zemach	et.	al.	2010).	

Differences	in	methylation	patterns	between	tissues:	Given	that	we	found	

tissue-specific	differentiation	between	leaves	and	floral	buds,	we	sought	to	categorize	the	

pattern	of	methylation	differences,	both	in	terms	of	cytosine	contexts	and	genomic	
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locations.	For	these	results,	we	based	all	analyses	on	combined	leaf	(L1+L2+L3)	and	floral	

(F1+F2+F3)	data,	following	(Ziller	et.	al.	2014).	

Our	first	finding	was	that	the	two	tissue	samples	were	more	similar	than	different	in	

their	methylation	patterns.	To	reach	this	conclusion,	we	identified	sites	with	conserved	

methylation	between	the	two	tissues–i.e.,	Conserved	Methylated	Sites	(CMSs).	To	be	a	CMS,	

a	site	required	the	support	of	a	binomial	test	(Lister	et.	al.	2008)	at	a	p-value	of	0.05	in	both	

tissue	samples.	Overall,	we	found	that	18,780,682	cytosines	were	methylated	in	both	

tissues	(Figure	1.2A;	Table	1.1),	representing	18.7%	of	the	100,229,480	genomic	cytosines	

in	the	proper	context	for	methylation	(i.e.,	CG,	CHG	or	CHH).	Among	CMSs,	most	(62.7%)	

were	in	the	CG	context,	with	an	appreciable	minority	in	the	CHG	context	(29.8%)	and	

relatively	few	in	the	CHH	context	(7.5%).	Overall,	the	set	of	CMSs	and	DMSs	were	mutually	

exclusive,	and	there	were	37-fold	more	CMSs	(Figure	1.2A;	Table	1.1).	Other	studies	have	

also	found	more	similarities	than	differences	among	plant	tissue	samples	(Zemach	et.	al.	

2010;	Zhang	et.	al.	2011).	

Our	second	finding	was	that	most	variation	between	tissues	occurred	at	CHG	sites.	

Cytosines	were	most	commonly	methylated	in	the	CG	context,	but	56.5%	(282,440	sites)	of	

DMS	sites	occurred	in	the	CHG	context	(Table	1.1;	Figure	1.2A).	To	investigate	further,	we	

estimated	the	DMS	‘rate’	by	comparing	the	observed	number	of	DMSs	to	the	available	

number	of	cytosines	in	a	particular	context.	For	example,	there	were	19,722,162	cytosines	

in	the	CHG	context	throughout	the	genome	and	a	total	of	282,440	DMSs,	yielding	a	rate	of	

1.43%	(Table	1.1).	In	contrast,	CG	and	CHH	methylation	had	lower	rates,	at	0.55%	and	

0.17%,	respectively	(Table	1.1).	CHH	methylation	may	not	be	as	differentiated	in	part	

because	the	overall	proportion	of	methylated	CHH	sites	was	much	lower	than	CG	or	CHG	
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sites.	Interestingly,	the	direction	of	DMSs	was	biased,	because	57%	were	methylated	in	

floral	buds	but	not	leaf,	representing	a	deviation	from	the	expectation	of	equality	(binomial,	

p<10−15).	

Our	observation	that	variability	between	tissues	was	highest	at	CHG	sites	is	similar	

to	comparisons	among	rice	tissues	(Zemach	et.	al.	2010)	and	among	somaclonal	variants	of	

oil	palm	(Ong-Abdullah	et.	al.	2015).	Similarly,	in	Arabidopsis	species	tissue-specific	

differences	were	attributable	to	CHH	and	CHG	methylation	changes	within	DMRs	(Seymour	

et.	al.	2014).	However,	CG	methylation	varies	more	than	CHH	or	CHG	methylation	among	

tomato	developmental	stages	(Zhong	et.	al.	2013)	and	also	between	generations	

of	A.	thaliana	mutation	accumulation	lines	(Becker	et.	al.	2011).	Thus,	the	principle	context	

of	DNA	methylation	variability	varies	either	as	a	function	of	species	or	the	tissues	sampled.	

Having	assessed	the	effect	of	context,	we	shifted	our	attention	to	three	genomic	

features	of	interest:	genes,	promoters	and	transposable	elements	(TEs).	Among	the	three	

features,	the	set	of	68,264	non-genic,	annotated	TEs	had	the	highest	CMS	rates	(Figure	

1.2B),	as	was	expected	from	previous	studies	of	plant	genomes	(Becker	et.	al.	2011;	Gent	et.	

al.	2013),	with	methylation	levels	of	95.3%	at	CG	sites	and	64.4%	at	CHG	sites	(Table	

1.1;	Figure	1.2B).	That	said,	TEs	also	had	the	highest	DMS	rates,	at	2.62%	in	the	CHG	

context	(Table	1.1;	Figure	1.2C).	CHH	methylation	levels	were	low	(<5%)	throughout	TEs,	

as	noted	previously	for	the	entire	brachypodium	genome	(Takuno	and	Gaut	2013).	In	

contrast	to	TEs,	the	26,072	annotated	genes	had	the	lowest	DMS	rate	at	0.18%	(Table	

1.1;	Figure	1.2C),	but	this	low	rate	may	reflect	the	fact	that	genes	were	primarily	

methylated	in	the	CG	context,	which	had	the	lowest	DMS	rates.	Promoter	regions,	which	

were	defined	as	1.0	kb	5’	upstream	of	the	26,072	genes,	had	noticeably	higher	levels	of	
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conserved	CHG	methylation	between	tissues	(at	14.5%)	than	genes	(3.46%),	but	were	

similar	to	genes	in	most	other	respects	(Figure	1.2;	Table	1.1).	

Given	that	CMSs	and	DMSs	were	especially	prominent	in	TEs,	it	was	not	surprising	

that	the	distribution	of	CMSs	and	DMSs	across	chromosomes	mimicked	the	density	of	TEs	

(Figure	1.2	and	Figure	S1.2),	and	there	was	no	obvious	correlation	between	CMSs	and	

DMSs	with	gene	density	(Figure	1.2G	and	Figure	S1.2).	Altogether,	the	analysis	of	single	

sites	paints	a	clear	picture:	most	methylation	occurred	in	TEs	and	most	variation	between	

tissues	was	within	TEs	in	the	CHG	context.	

Finally,	we	examined	the	pattern	and	location	of	the	448	DMRs	identified	between	

tissues	to	assess	whether	they	paralleled	results	based	on	single	sites.	First,	65%	of	DMRs	

were	hypo-methylated	in	floral	buds	(p	<	0.01),	verifying	increases	in	overall	methylation	

in	this	tissue.	Second,	although	most	DMSs	were	found	in	the	CHG	context	(Figure	1.2C),	we	

found	that	67%	of	the	DMSs	within	all	of	our	DMRs	were	sites	in	the	CHH	context.	This	

observation	suggests	that	there	may	be	a	spatial	(clustered)	context	to	the	mechanisms	

that	underlie	CHH	differences	between	tissues,	consistent	with	the	observation	in	maize	

that	CHH	sites	tend	to	be	clustered	(Gent	et.	al	2013).	Finally,	the	location	of	DMRs	was	

biased:	39%	of	DMRs	were	found	in	unannotated	regions	of	the	genome,	but	31%	were	

found	within	TEs,	17%	within	genes	and	13%	within	promoter	regions.	Given	that	the	total	

number	of	cytosine	sites	within	TEs	and	within	genes	was	similar,	at	~29	million	bases	

(Table	1.1)	each,	the	lower	percentage	in	genes	again	indicates	that	genic	methylation	is	

more	highly	conserved	between	tissues	than	methylation	of	TEs.	

Methylation	&	Gene	Expression:	The	primary	goal	of	this	paper	is	to	determine	

whether	methylation	differentiation	between	tissues	covaries	with	GE.	The	idea	that	GE	
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and	methylation	covary	traces	back	to	the	origin	of	epigenetics	(Diez	et.	al.	2013)	and	

seems	to	be	upheld	by	weak	signals	from	plant	data	(Song	et.	al.	2013;	Zhong	et.	al.	2013.	

Gene	expression	data:	To	measure	GE,	we	generated	RNAseq	data	from	leaf	and	

floral	tissues,	using	the	same	three	plants	and	samples	(biological	replicates)	that	were	

used	to	generate	BSseq	data	(see	Methods).	Each	of	the	replicates	had	>	12	million	RNAseq	

reads	that	mapped	uniquely	to	the	B.	distachyon	genome	(Table	S1.2).	Out	of	26,552	

annotated	protein-coding	genes,	we	retained	26,072	that	did	not	overlap	with	annotated	

TEs,	of	which	19,956	had	evidence	of	expression	in	at	least	one	tissue,	as	determined	by	a	

cutoff	of	FPKM	>	0.02	(see	Materials	and	Methods).	Second,	we	identified	differentially	

expressed	genes	between	tissues	at	an	FDR	of	q	<	0.01	(Figure	S1.3).	A	total	of	7,704	genes	

were	significantly	differentially	expressed	between	leaf	and	floral	tissue;	these	exhibited	no	

obvious	clustering	by	chromosomal	position	(Figure	1.2H	and	Figure	S1.2).	GO	analyses	of	

differentially	expressed	genes	suggested	enrichment	for	functions	in	membrane	and	

microtubule	development	(Table	S1.3).	

GE	and	DMRs:	Since	many	studies	have	focused	on	DMRs	(rather	than	annotation	

features)	to	assess	correlations	with	GE,	we	began	by	testing	for	associations	between	GE	

and	DMRs.	If	DMRs	influence	differential	GE,	we	hypothesized	that	DMRs	should	be	

enriched	around	differentially	expressed	genes.	To	test	this	hypothesis,	we	measured	the	

distance	(in	bp)	between	a	DMR	and	the	closest	differentially	expressed	gene.	We	then	

tested	whether	the	observed	average	distance	from	DMRs	to	genes	was	smaller	than	

expected	at	random,	as	tested	by	permutation	(see	Materials	&	Methods).	We	found	that	on	

average	a	DMR	was	18,710	bp	from	a	differentially	expressed	gene,	which	was	not	

significantly	smaller	than	the	random	expectation	of	17,572	bp	(p	=	0.82;	Figure	S1.4).	
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Based	on	this	analysis,	there	is	no	evidence	to	suggest	that	DMRs	are	enriched	near	

differentially	expressed	genes,	as	one	might	expect	if	DMRs	help	drive	tissue-specific	

expression	on	a	genome-wide	scale.	

Thinking	that	we	may	have	missed	an	important	signal	by	focusing	on	the	entire	

genome,	we	delved	into	the	three	genomic	features	separately.	For	each	feature,	we	

focused	on	DMRs	that	were	hyper-methylated	in	one	vs.	the	other	tissue.	For	example,	we	

tallied	DMRs	within	25	genes	that	were	hyper-methylated	within	floral	buds.	For	this	set	of	

25	genes,	we	predicted	lower	GE	in	floral	than	leaf	tissue.	Similarly,	for	the	19	genes	that	

had	a	methylated	DMR	in	leaf	but	not	floral	tissue,	we	predicted	lower	GE	in	leaf.	These	

predictions	were	not	upheld	by	the	data,	however	(Figure	1.3A).	In	fact,	the	average	level	of	

differential	expression	did	not	vary	among	genes	that	had	a	hyper-methylated	DMR	in	

floral	bud,	a	hyper-methylated	DMR	leaf	or	no	DMR	whatsoever	(Figure	1.3A).	We	repeated	

this	analysis	for	promoter	regions	of	1.0	kb	5’	upstream	of	genes,	and	again	found	no	

discernible	pattern	(Figure	1.3B).	Finally,	because	the	methylation	of	TEs	may	effect	the	

expression	of	nearby	genes	(Lippman	et.	al.	2004;	Hollister	and	Gaut	2009),	we	also	

examined	DMRs	within	annotated	TEs	closest	to	a	gene.	Again,	there	was	no	signal	(Figure	

1.3C).	While	the	lack	of	signal	may	reflect	low	sample	sizes,	the	presence	of	DMRs	did	not	

correlate	with	differential	GE	between	the	two	tissues.	

The	proportion	of	converted	reads:	To	investigate	covariation	between	GE	and	

methylation	more	thoroughly,	we	turned	to	a	measure	of	DNA	methylation	that	

summarizes	the	proportion	of	non-converted	reads	over	the	total	number	of	reads	at	

cytosine	residues	in	the	proper	contexts	(CG,	CHG	or	CHH)	(Zemach	et.	al.	2010).	This	

measure,	which	we	call	propC,	can	be	applied	to	the	entire	genome,	to	specific	genomic	
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features	or	to	specific	contexts	(e.g.,	propCG,	propCHG,	propCHH).	For	example,	over	the	entire	

genome,	propc	was	estimated	to	be	0.1815	for	leaf	tissue	and	0.1823	for	floral	bud	tissue	

throughout	the	entire	genome,	suggesting	again	(very)	slightly	higher	levels	of	methylation	

in	floral	bud	tissue.	The	prop	measures	provide	an	estimate	of	the	methylation	level	for	a	

region,	but	without	a	corresponding	measure	of	significance.	We	focus	on	the	use	of	these	

measures	for	the	remainder	of	our	analyses.	

GE	and	Genic	Methylation:	To	better	understand	patterns	of	methylation	within	

genes,	we	first	assessed	the	relationship	among	propCG,	propCHG,	and	propCHH	within	a	tissue,	

using	correlation	analyses.	In	brief,	all	are	significantly	correlated	with	one	another,	

with	r	values	ranging	from	0.43	to	0.61	(Table	1.2).	However,	propCG	and	propCHG	were	

positively	correlated	in	a	somewhat	striking	pattern:	CHG	methylation	was	often	present	

but	rarely	higher	than	CG	methylation	(i.e.,	in	only	3,424	of	26,072	genes)	(Figure	1.4A).	

This	observation	reaffirms	that	methylation	in	the	CG	context	is	predominant	for	genes	

(Cokus	et.	al.	2008;	Lister	et.	al.	2008;	Zhang	et.	al.	2006)	but	also	illustrates	that	genic	

methylation	is	not	limited	to	the	CG	context	(Takuno	and	Gaut	2012).	

Given	that	CG	methylation	is	the	primary	component	of	genic	methylation,	we	

compared	propCG	to	GE	within	a	tissue.	Previous	work	has	shown	that	the	relationship	

between	GE	and	gene	body	methylation	is	complex	(Lister	et.	al.	2008).	In	general,	

methylated	genes	have	intermediate	levels	of	expression,	such	that	hypo-methylated	genes	

are	both	more-highly	and	less-highly	expressed	than	hyper-methylated	genes	(Zemach	et.	

al.	2010;	Zhang	et.	al.	2006,	Takuno	and	Gaut	2012).	As	expected,	GE	and	genic	methylation	

were	correlated	within	tissues	(r	=	0.287;	p	<	2.2e-16;	Table	1.2),	but	in	a	complex	pattern	
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(Figure	1.3B).	propCHG	and	propCHH	were	also	correlated	with	GE	but	at	lower	levels	(r	=	

0.046,	p	=	1.21x10-13	and	r	=	0.073,	p<2.2x10-18).	

Lastly,	we	compared	differential	methylation	to	differential	GE	between	tissues,	

focusing	on	either	all	of	the	19,956	genes	or	just	the	7,704	that	were	significantly	

differentially	expressed.	Differential	GE	and	methylation	were	not	correlated	

with	propC,	propCHH	or	propCHG	(Table	1.3;	Figure	1.3C)	but	were	correlated	between	CG	

methylation	and	differential	expression	of	the	subset	of	7,704	genes	(Table	1.3).	This	

significant	correlation	was	negative,	indicating	that	higher	gene	expression	covaries	with	

lower	methylation	levels.	Note	that	the	correlation,	while	significant,	had	a	low	absolute	

value	(r	=	-0.0393;	Table	1.3),	suggesting	that	methylation	differences	explain	at	best	a	

small	proportion	(3.9%)	of	the	variance	in	GE	between	tissues.	To	sum:	on	a	genome-wide	

scale,	we	uncovered	moderate	evidence	that	CG	methylation	and	differential	GE	covary	

within	genic	regions.	

Promoter	methylation	and	GE:	Differential	methylation	of	promoter	regions	has	

been	reported	to	correlate	with	GE	during	tomato	ripening	(Zhong	et.	al.	2013)	and	

perhaps	to	tissue-specific	GE	of	soybean	genes	(Song	et.	al.	2013).	Accordingly	we	assessed	

relationships	between	promoter	methylation	and	GE.	For	promoter	regions	there	is	a	clear	

expectation	of	an	inverse	relationship	between	methylation	levels	and	GE	(Zhang	et.	al.	

2006),	such	that	higher	expression	correlates	with	lower	levels	of	methylation.	

We	first	assessed	the	pattern	of	DNA	methylation	within	promoters	and	note	that	it	

varies	as	a	function	of	both	distance	from	the	TSS	and	cytosine	context.	For	example,	CG	

and	CHG	methylation	both	reach	a	zenith	~750	bp	from	the	TSS	(Figure	1.5A	and	1.5B),	as	

documented	previously	(Cokus	et.	al.	2008;	Lister	et.	al.	2008),	but	CHH	methylation	was	
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maximal	~500	bp	from	the	TSS	(Figure	1.5C).	Within	a	tissue,	promoters	again	exhibited	

the	striking	pattern	of	propCG	and	propCHG	correlation,	where	the	former	is	higher	than	the	

latter	for	80%	of	observations	(Figure	1.5D).	The	same	relationships	was	evident	between	

CG	and	CHH	methylation	(Figure	1.5F;	Table	1.2)	but	not	between	CHG	and	CHH	

methylation	(Figure	1.5E).	

We	expected	a	negative	correlation	between	differential	methylation	and	

differential	GE,	and	indeed	the	expected	relationship	was	evident	for	both	CG	and	CHG	

methylation	(Table	1.3).	With	1000	bp	promoter	regions,	the	correlation	was	as	high	as	r	=	

-0.0908	(p	=	4.99e10-14)	for	the	subset	of	7,704	differentially	expressed	genes	(Figure	

1.5G;	Table	1.3).	In	contrast	to	CG	and	CHG	methylation,	propCHH	was	

significantly	positively	correlated	with	differential	GE	(Table	1.3),	showing	that	higher	CHH	

methylation	relates	to	enhanced	gene	expression.	Overall,	for	promoter	regions	we	

conclude	that:	i)	CG	and	CHG	methylation	covary	with	differential	GE	in	the	expected	

direction,	ii)	that	CG	methylation	explains	up	to	~9%	of	the	variation	in	gene	expression	

between	tissues	for	differentially	expressed	genes,	but	iii)	CHH	methylation	differs	from	

the	expected	pattern.	

TE	methylation	and	GE:	Because	the	methylation	of	TEs	is	known	to	suppress	the	

expression	of	nearby	genes	(Lippman	2004;	Hollister	and	Gaut	2013;	Hollister	et.	al.	2011),	

we	expected	that	differences	in	GE	would	correlate	negatively	with	differential	methylation	

of	nearby	TEs.	That	is,	if	a	TE	nearest	to	a	gene	is	more	highly	methylated	in	floral	bud,	we	

predicted	it	should	suppress	GE	in	flowers,	thus	yielding	a	negative	correlation	in	our	

analyses.	We	detected	this	predicted	negative	correlation	but	only	in	the	CG	context	(Table	

1.3).	In	contrast,	correlations	between	differential	GE	and	both	propCHG	and	propCHH	were	
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positive,	with	the	propCHH	comparisons	reaching	statistical	significance	(Table	1.3).	Across	

all	contexts	(propC),	the	relationship	was	also	significantly	positive,	likely	owing	to	the	

positive	trends	for	propCHG	and	propCHH	countervailing	the	trend	for	propCG.	Finally,	we	also	

applied	a	linear	model	to	disentangle	the	effects	of	methylation	vs.	the	distance	(in	bases)	

of	the	TE	from	the	gene	(Table	S1.4).	In	the	linear	model,	the	effect	of	methylation	

remained	significant	(p	<	10−3),	but	the	effect	of	distance	explained	little	and	was	not	

significant.	

	

CONCLUSIONS	

Although	there	is	a	widespread	belief	that	methylation	affects	gene	expression	

during	development	(Law	et.	al.	2010),	relatively	few	studies	have	contrasted	methylation	

and	gene	expression	between	tissues	on	a	genomic	scale.	Moreover,	BSseq	data	have	rarely	

been	replicated	in	these	studies.	Hence,	our	first	goal	was	simple:	to	determine	whether	

methylation	between	two	tissues	is,	in	fact,	differentiated	beyond	the	level	expected	from	

proper	replication.	For	this	comparison	we	chose	two	tissues	that	have	been	sampled	

commonly	in	other	plant	studies—leaves	and	floral	buds.	Overall,	we	were	able	to	detect	a	

significant	signal	of	differentiation	between	tissue	samples	based	on	two	methodological	

approaches	(permutation	tests	and	clustering	analyses)	and	two	measures	of	variation	

(DMSs	and	DMRs).	

Nonetheless,	a	sobering	observation	was	that	the	false	positive	rate	(FPR)	was	

extremely	high	for	contrasts	between	single	replicates.	For	DMS	analyses,	the	lowest	FPR	in	

our	analyses	was	75%.	In	other	words,	had	we	based	our	inferences	on	single	replicates,	

three-quarters	of	our	inferences	about	the	sites	of	“tissue-specific”	methylation	would	have	
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been	incorrect	relative	to	inferences	based	on	the	larger,	replicated	dataset.	The	FPR	for	

DMR	analyses	was	similarly	large,	at	least	80%.	While	there	are	ways	to	decrease	the	FPR	

statistically	in	theory,	they	may	result	in	the	cost	of	sensitivity	and	power.	Such	tradeoffs	in	

the	use	of	BSseq	replicates	are	the	topics	of	ongoing	theoretical	and	algorithmic	research,	

but	thus	far	these	render	improvements	only	for	data	with	less	coverage	those	in	this	study	

(Sun	et.	al.	2014).	Altogether,	we	conclude	that	reliance	on	single	BSseq	replicates	may	be	

misleading	when	the	goal	is	to	focus	on	specific	DMRs	or	DMSs.	For	this	reason,	we	

recommend	analyzes	that	summarize	over	a	region–e.g.,	genes	(Takuno	and	Gaut	2012)	or	

promoters	or	TEs–as	opposed	to	individual	sites	or	individual	DMRs.	Moreover,	because	

replication	has	been	applied	so	rarely	in	plant	studies,	we	hope	that	our	description	of	

within-	and	between-tissue	replicates	helps	guide	interpretation	of	the	existing	literature.	

Although	we	detected	significant	methylation	differentiation	between	tissues,	our	

results	were	similar	to	previous	studies	in	documenting	that	tissues	are	far	more	similar	

than	different	in	their	methylation	patterns	(Zemach	et.	al.	2010).	For	example,	we	detected	

~37-fold	more	sites	conserved	between	tissue	samples	than	variable	sites.	Most	of	the	

observed	differences	occurred	in	the	CHG	context	within	TEs	and	promoters,	but	there	

were	also	slight	biases	in	total	methylation	between	leaf	and	floral	bud.	Overall,	these	

observations	add	to	the	growing	notion	that	methylation	differences	between	plant	tissues	

are	slight,	except	for	a	few	exceptional	tissues,	such	as	the	endosperm	and	the	pollen	

vegetative	nucleus	(Lauria	et.	al.	2004;	Hsieh	et.	al.	2009;	Ibarra	et.	al.	2012;	Zemach	et.	al.	

2010).	Since	neither	of	these	tissues	contributes	to	ensuing	generations,	these	epigenetic	

changes	may	be	of	little	evolutionary	consequence,	although	it	seems	that	the	pollen	
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vegetative	nucleus	may	play	a	role	in	generation-to-generation	epigenetic	reprogramming	

(Slotkin	et.	al.	2009).	

We	have	shown	that	tissue-specific	methylation	differentiation	is	higher	than	

variation	among	replicates,	but	do	any	of	these	methylation	differences	drive	functional	

differentiation?	To	address	this	question,	we	generated	RNAseq	data	for	the	same	sets	of	

replicates	and	examined	the	correlation	between	differential	GE	and	differential	

methylation,	many	of	which	were	significant.	The	most	striking	aspect	of	these	results	is	

that	they	vary	by	methylation	context.	In	general,	CG	methylation	correlates	with	GE	as	

predicted:	higher	CG	methylation	in	one	tissue	correlates	with	lower	GE	in	that	tissue.	This	

relationship	is	true	whether	one	examines	genes,	promoters	or	TEs	(Table	1.3).	In	contrast,	

the	results	for	CHH	and	CHG	variation	are	more	varied,	with	CHH	methylation	trending	in	

the	opposite	direction	than	predicted	for	both	promoters	and	TEs.	These	observations	

indicate	that	CG	methylation	is	the	primary	component	of	variation	to	affect	(or	at	least	

covary	with)	GE.	This	observation	is	consistent	with	the	fact	that	genic	expression	in	pines	

covaries	with	CG	but	not	CHG	methylation,	even	though	pine	genes	are	heavily	methylated	

in	both	contexts	(Takuno	and	Gaut	2012).	

Another	interesting	aspect	about	methylation	contexts	is	that	they	appear	to	be	

hierarchical,	because	typically	neither	CHH	nor	CHG	variation	exceeds	CG	methylation,	

regardless	of	the	region	under	consideration	(Figures	1.4A,	1.5D,	1.5E	and	1.5F).	These	

results	suggest	that	CG	methylation	acts	in	some	unknown	way	to	limit	methylation	in	the	

other	contexts,	at	least	in	brachypodium.	It	remains	to	be	seen	whether	this	relationship	

holds	for	other	species	and	additional	tissues.	
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Overall,	our	study	suggests	that	methylation	patterns	covary	with	tissue-specific	

expression,	but	also	that	differential	CG	methylation	explains	only	a	small	proportion	of	

tissue-specific	variation	in	GE	(i.e.,	between	1%	and	9%	of	variation;	Table	1.3).	We	note,	

however,	that	our	study	likely	underestimates	the	magnitude	of	the	effect,	for	at	least	two	

reasons.	First,	the	predictive	power	will	probably	increase	with	the	number	of	tissues	

sampled.	An	explicit	goal	of	future	studies	should	be	to	estimate	the	percentage	of	GE	

variation	explained	by	DNA	methylation	based	on	a	broader	range	of	tissue-types;	

however,	to	do	so	will	require	better	sampling–both	in	terms	of	tissues	and	replicates–than	

has	been	performed	to	date.	Second,	like	most	other	papers	in	plant	epigenetic	research,	

our	tissue	samples	undoubtedly	included	multiple	cell	types;	indeed	we	suspect	that	the	

variation	in	cell	types	is	the	primary	reason	for	high	variation	in	DMSs	and	DMRs	among	

biological	replicates	(Figure	1.1).	A	recent	review	has	called	to	question	the	value	of	‘tissue’	

vs.	‘cell’	samples	(Ji	et.	al.	2015).	In	the	review,	the	authors	argue	that	the	signal	of	

differentiation	for	highly	specialized	cells	will	be	masked	within	tissue	samples	that	

contain	multiple	cell	types.	This	may	or	not	be	true,	as	it	depends	critically	on	the	as-yet-

unknown	pattern	of	cell	differentiation	and	of	course	the	cellular	composition	of	tissue	

samples.	Nonetheless,	their	point	is	well	taken:	it	is	possible	that	tissue,	as	opposed	to	cell-

type,	samples	lead	to	underestimate	of	the	overall	contribution	of	epigenetic	variation	to	

gene	expression.	

	

MATERIALS	&	METHODS	

BSseq	Data	and	Mapping:	The	BSseq	data	were	published	previously	(Takuno	and	

Gaut	2013)	and	were	available	in	the	Short	Read	Archive	(accession	nos.	SRX208151–
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SRX208156).	Briefly,	three	B.	distachyon	plants	from	the	Bd21	line	were	grown	under	20-h	

days	to	induce	rapid	flowering.	Spikes	and	leaves	were	harvested	at	the	beginning	of	

anthesis.	For	each	plant	and	tissue,	~two	micrograms	of	genomic	DNA	was	sonicated	and	

purified	using	Qiagen	DNeasy	mini-elute	columns	(Qiagen).	Sequencing	libraries	were	

constructed	with	the	NEBNext	DNA	Sample	Prep	Reagent	Set	1	(New	England	Biolabs,	

Ipswich,	MA)	but	with	methylated	adapters	in	place	of	the	genomic	DNA	adapters.	Ligation	

products	were	purified	with	AMPure	XP	beads	(Beckman,	Brea,	CA).	DNA	was	bisulfite	

treated	using	the	MethylCode	Kit	(Invitrogen,	Carlsbad,	CA)	following	the	manufacturer’s	

guidelines	and	then	PCR	amplified	using	Pfu	Cx	Turbo	(Agilent,	Santa	Clara).	Libraries	were	

sequenced	using	the	Illumina	HiSeq	2000.	The	BSseq	reads	were	mapped	to	the	

brachypodium	reference	genome	(version	1.0)	following	(Takuno	and	Gaut	2013),	which	

included	filtering	of	low-quality	reads	and	bases	(q	<	20)	and	mapping	with	BRAT	software	

(Harris	et.	al.	2010).	Mismatches	for	mapping	were	allowed	only	at	potentially	methylated	

sites.	

mRNAseq	data	and	analysis:	RNAseq	data	were	generated	from	the	same	tissue	

samples	as	BSseq	(Takuno	and	Gaut	2013)	and	are	publicly	in	the	Short	Read	Archive	

(accession	number	SRP063465).	RNAseq	relied	on	total	RNA	isolation	with	the	Qiagen	

RNeasy	Kit,	cDNA	generation	with	the	Ovation	RNA-seq	system	v.	2	and	library	preparation	

with	the	Illumina	TruSeq	DNA	Sample	Prep.	V2.	The	libraries	were	sequenced	on	the	

HiSeq2500	(100	cycle,	single	read)	in	the	UCI	High	Throughput	Genomics	Facility	in	2013.	

RNAseq	reads	were	processed	using	Trimmomatic	(v	0.30)	to	remove	low	quality	reads	

(<20)	and	adapter	sequence.	
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Analyses	of	RNAseq	data	was	based	on	read	mapping	to	the	B.	distachyon	MIPs	v.1.2	

reference	sequence,	using	TopHat	(v1.49.0)	(Trapnell	et.	al.	2012)	with	default	parameters.	

In	this	analysis,	reads	were	counted	for	each	annotated	gene,	so	long	as	that	gene	did	not	

overlap	with	an	annotated	transposable	element	(see	below).	Reads	were	counted	for	each	

gene	in	each	replicate,	and	then	DESeq	(v1.16.0)	(Anders	and	Huber	2010)	was	employed	

to	identify	differential	expression	between	tissues	with	a	false	discovery	rate	of	q	<	0.01.	

For	the	comparison	of	differential	gene	expression	and	differential	methylation	we	used	all	

genes	that	had	the	number	of	fragments	per	kilobase	of	transcript	per	million	mapped	

reads	(FPKM)	>	0.02	in	both	tissues.	The	difference	in	gene	expression	was	defined	as	[log2	

(Flower_FPKM)/(Leaf_FPKM)],	where	Flower_FPKM	and	Leaf_FPKM	were	based	on	data	

from	all	three	replicates.	

Definitions	of	genomic	features,	DMSs,	CMSs,	and	prop	values:	We	used	genome	

annotations	to	define	genes,	promoters	and	TEs.	A	gene	was	defined	from	the	transcription	

start	site	(TSS)	to	the	transcription	stop	site,	including	putative	introns,	using	the	MIPs	

(v1.2)	annotation	(Nussbaumer	et.	al.	2013).	TEs	were	also	based	on	the	MIPs	(v1.2)	

annotation.	TEs	that	overlapped	with	genes	were	removed	from	analysis	along	with	any	

genes	that	were	contained	in	a	TE.	Gene	annotations	were	also	the	basis	for	promoter	

annotation,	which	were	defined	as	the	1.0	kb	region	upstream	from	the	TSS.	

To	determine	whether	individual	cytosines	were	methylated	or	unmethylated,	we	

computed	a	binomial	probability	at	a	significance	level	of	p	≤	0.01,	following	(Lister	et.	al.	

2008).	This	probability	required	a	rate	of	conversion	error,	which	was	calculated	on	

contaminating	chloroplast	data	and	was	~1%	(Takuno	and	Gaut	2013).	The	specific	error	

rate	for	each	tissue	was	found	for	each	replicate	and	for	each	tissue	(i.e.,	L1+L2+L3	and	
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F1+F2+F3;	Table	S1.1).	Once	a	base	was	defined	as	methylated	or	unmethylated	in	each	

tissue,	a	base	that	was	methylated	in	each	tissue	was	deemed	a	conserved	methylation	site	

(CMS).	

To	identify	Differentially	Methylated	Sites	(DMSs),	we	applied	a	Fisher	exact	test	

(FET),	which	was	based	on	a	2X2	table	of	the	number	of	converted	Cs	to	non-converted	C’s	

across	the	two	samples	(Lister	et.	al.	2008).	A	site	was	considered	as	differentially	

methylated	between	two	samples–i.e.,	a	DMS–when	the	FET	yielded	a	p-value	<	0.05.	

DMRs	were	defined	by	the	number	of	DMSs	in	a	row	that	had	a	consistent	direction	

of	methylation	bias	(i.e.,	hypermethylation	in	leaf	or	flower),	that	were	within	500	bp	of	

each	other	and	that	were	uninterrupted	by	a	CMS	or	by	a	DMS	in	the	opposite	direction.	We	

considered	DMSs	in	all	contexts	(i.e.,	CG,	CHG	and	CHH)	to	define	DMRs.	To	assess	

significance,	we	calculated	the	length	of	DMRs	(as	defined	by	the	number	of	unidirectional	

DMSs)	expected	to	be	found	at	random	in	the	genome,	given	both	the	underlying	

distribution	of	cytosines	in	proper	context	and	the	numbers	of	DMSs	and	CMSs.	To	

calculate	the	random	expectation,	we	permuted	DMSs	and	CMSs	among	genomic	sites	in	

their	appropriate	contexts,	identified	DMRs	within	permutated	genomes,	and	ascertained	

DMR	lengths.	After	permuting	across	the	genone,	we	identified	DMRs	and	noted	the	

number	of	DMSs	that	constitute	each	DMR	(Figure	S1.1).	DMRs	that	were	of	a	length	

expected	found	at	p	<	0.01	in	the	permuted	genome	were	considered	‘significant’	for	

analysis	of	observed	data.	

The	final	metric	was	the	proportion	of	methylation	or	propc,	which	was	used	as	a	

measure	of	methylation	across	a	region.	The	prop	value	was	determined	by	adding	the	total	

number	of	converted	reads	over	the	total	number	of	reads	for	cytosines	in	a	specific	
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context.	The	context	could	be	CG	(propCG),	CHG	(propCHG),	CHH	(propCHH)	or	all	three	

contexts	(propC).	

Additional	Statistical	Analyses:	To	construct	the	trees	in	Figure	1.1,	distance	

values	were	converted	to	Newick	format	and	unrooted	neighboring-joining	trees	were	

made	using	the	ape	and	phyclust	libraries	in	R	(RDevelopment	CoreTEAM	2010).	

To	determine	whether	DMRs	were	closer	to	differential	expressed	genes	than	other	

genes,	we	first	labeled	each	gene	as	either	differentially	expressed	or	not.	We	then	

calculated	both	the	observed	distance	from	a	differentially	expressed	gene	to	its	closest	

DMR	and	its	average	across	the	genome.	We	then	randomized	the	labels	(differentially	

expressed	or	not)	among	genes	within	the	genome	and	recalculated	the	average	distance	

between	a	differentially	expressed	gene	and	its	nearest	DMR.	The	randomization	was	

performed	1000	times	to	generate	a	distribution	of	the	average	distance	from	a	DMR	to	a	

gene	and	to	determine	whether	the	observed	average	was	extreme	(Figure	S1.4).	

All	correlations	were	based	on	cor.test	in	R,	using	the	Spearman	correlation.	
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FIGURES	

	

Figure	1.1:	The	inferred	number	of	DMSs	and	DMRs	between	replicates.	A)	The	upper	

matrix	reports	the	number	of	DMSs	between	two	BSseq	replicates.	The	lower	matrix	

reports	the	percentage	of	DMSs	that	map	to	the	same	location	as	the	500,245	DMSs	

inferred	from	the	combined	data	sets.	B)	A	neighbor-joining	phylogeny	representing	the	

relationship	among	the	six	BSseq	samples,	based	on	distances	defined	by	the	lower	matrix	

in	A.	C)	The	upper	matrix	reports	the	number	of	DMRs	between	two	BSseq	replicates.	The	

lower	matrix	provides	the	percentage	of	DMRs	that	overlap	with	the	448	DMRs	inferred	

from	the	combined	data	set.	D)	A	neighbor-joining	phylogeny	representing	the	relationship	

among	the	six	BSseq	samples,	based	on	distances	defined	by	the	lower	matrix	in	C.	
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Figure	1.2:	Context,	direction,	and	regions	of	CMSs	and	DMSs.	A)	The	number	of	sites	in	

the	correct	context	for	methylation	throughout	the	genome	(Total	Cs),	along	with	the	

number	of	CMSs	and	DMSs	in	context.	B)	The	proportion	of	CMSs	relative	to	cytosines	in	

the	correct	context	for	Genes,	Promoters,	TEs	and	the	Whole	Genome.	C)	The	proportion	of	

DMSs	relative	to	cytosines	in	the	correct	context	for	Genes,	Promoters,	TEs	and	the	Whole	

Genome.	Note	the	difference	in	the	scale	of	the	y-axis	between	panels	B	and	C.	D	to	F)	The	

graphs	show	the	CMS,	DMS,	gene	and	TE	density	along	chromosome	1.	Density	was	
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measured	within	a	50kb	sliding	window	for	smoothing.	H)	Differential	gene	expression	

plotted	along	the	physical	length	of	chromosome	1.	The	other	chromosomes	are	

represented	in	Figure	S1.2.	
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Figure	1.3:	Gene	expression	with	respect	to	DMRs	and	their	direction.	A)	A	graph	of	

the	distribution	of	gene	expression	when	a	DMR	is	located	within	a	gene	and	

hypermethylated	in	the	Leaf	or	Floral	Bud,	or	when	there	is	no	DMR	in	the	gene	(None).	For	

the	25	genes	hypermethylated	in	leaf,	we	predicted	positive	values	on	the	y-axis,	signaling	

higher	expression	in	floral	bud,	but	no	bias	was	detected.	For	the	19	genes	

hypermethylated	in	floral	bud,	we	predicted	negative	values	on	the	y-axis,	signaling	higher	

expression	in	leaf,	but	again	no	bias	was	detected.	B)	The	same	graph	of	differential	

expression	when	the	gene	contains	a	DMR	in	its	a	promoter	region.	Again,	there	are	no	

detectable	biases	in	the	direction	of	gene	expression	relative	to	genes	that	do	not	contain	a	

DMR	in	their	promoter	region.	C)	A	graph	of	differential	gene	expression	when	the	TE	

nearest	to	a	gene	has	a	DMR	that	is	hypermethylated	in	leaf,	flower	or	no	(None)	DMR.	For	

all	graphs,	the	box	plots	represent	the	median,	first,	and	third	quartile.	The	whiskers	

represent	the	minimum	and	maximum.	The	numbers	above	the	graph	refer	to	sample	size	

in	each	category.	
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Figure	1.4:	Methylation	patterns	within	genes.	A)	The	correlation	between	propCG	and	

propCHG	between	genes	for	leaf	tissue	(r	=	0.5977;	p	<	2.2e-16);	floral	bud	tissue	is	not	

shown	but	the	relationship	is	essentially	identical.	Methylation	is	plotted	on	a	log	scale.	B)	

A	comparison	of	propCG,	on	a	log	scale,	and	gene	expression	(FPKM)	on	a	log2	scale	within	

leaf	(r	=	0.2867;	p	<2.2e-16);	again,	floral	bud	tissue	is	not	shown	but	essentially	identical.	

C)	A	comparison	of	differential	gene	expression	[log2fold	(flower/leaf)]	vs.	the	difference	

in	propCG	between	leaf	and	floral	bud	tissue.	
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Figure	1.5:	Methylation	patterns	within	promoters	and	its	relationship	to	gene	

expression.	Graphs	A,B	and	C	present	the	level	of	CG,	CHG	and	CHH	methylation,	

respectively,	in	terms	of	distance	from	the	Transcription	Start	Site.	Graphs	D,	E	and	F	

compare	methylation	contexts,	as	measured	by	prop	statistics	in	a	log	scale,	within	leaf	

tissue.	Floral	bud	comparisons	are	not	shown	but	are	visually	identical.	Panels	G,	H	and	I	

compare	differential	gene	expression	[log2fold	(FKPM_Flower/FKPM_Leaf)]	vs.	the	
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difference	in	prop	between	floral	bud	and	leaf	tissue.	The	correlation	values	for	G	and	H	are	

in	Table	1.3.	
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TABLES	

	

Table	1.1:	The	number	of	potential	methylation	sites,	DMSs	and	CMSs	in	each	of	three	

sequence	contexts	(CG,	CHG	and	CHH)	throughout	the	entire	brachypodium	genome	

and	also	for	three	features	separately	(Genes,	Promoters	and	TEs).	
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Table	1.2:	Spearman	correlation	coefficients	between	prop	values	within	a	tissue.	
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Table	1.3:	Spearman	correlations	between	the	difference	in	prop	values	between	

tissues	and	the	log2	fold	change	in	gene	expression.	
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SUPPORTING	INFORMATION	

	

Figure	S1.1:	A	histogram	of	the	length	of	DMRs	found	after	randomization	of	

methylated	cytosines	within	the	brachypodium	genome.	Methylated	cytosines	were	

randomized	in	the	proper	context,	and	the	number	of	DMRs	in	the	same	direction	were	

counted.	Within	a	randomized	genome,	a	run	of	five	or	more	methylated	cytosines	in	length	

represented	1.3%	of	all	potential	runs;	we	defined	a	DMR	to	be	≥	5	methylated	cytosines	in	
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the	same	direction,	because	this	length	represented	a	significant	observation	at	the	p	~0.01	

threshold.	See	Materials	and	Methods	for	additional	details.	
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Figure	S1.2:	Plots	of	chromosomal	densities	of	methylation	features.	Plots	of	

chromosomal	densities	of	A)	CMSs,	B)	DMSs,	C)	genes,	and	D)	TEs.	Density	was	measured	

within	a	50kb	sliding	window	for	smoothing.	E)	The	graphs	plot	differential	gene	

expression	plotted	along	the	physical	length	of	chromosomes.	This	figure	mimics	Figure	1.2	

of	the	main	text,	but	includes	the	remaining	four	chromosomes.	
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Figure	S1.3:	A	volcano	plot	of	the	26,072	genes	tested	for	differential	gene	expression	

between	leaf	and	floral	tissue	samples.	
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Figure	S1.4:	A	histogram	of	the	average	distance	between	DMRs	and	genes.	The	

histogram	is	based	on	1000	randomizations	(see	Materials	and	Methods).	The	red	line	

denotes	the	observed	value.	
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Table	S1.1:		The	estimate	of	the	rate	of	conversion	error.	Estimates	are	based	on	

analysis	of	chloroplast	DNA	in	each	replicate	or	on	combined	replicates.			

Tissue/Replicate1	 Error	Rate	

Leaf	1	 0.0133180	

Leaf	2	 0.0106542	

Leaf	3	 0.0111591	

Floral	Bud	1	 0.0086617	

Floral	Bud	2	 0.0098665	

Floral	Bud	3	 0.0094443	

L1+L2+L3	 0.0115213	

F1+F2+F3	 0.0092799	
	
1	Estimates	for	individual	replicates	are	from	(Takuno	and	Gaut	2013).		Estimates	for	combined	replicates	are	
from	the	sum	of	reads	from	all	leaf	and	floral	bud	replicates.	
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Table	S1.2:		A	summary	of	RNAseq	data.		The	table	provides	the	number	of	reads	after	

quality	trimming,	the	number	of	reads	that	TopHat	used	to	map	for	both	left	and	right	

reads,	and	the	maximum	and	minimum	read	lengths.	The	total	number	of	transcripts	is	

from	based	on	output	from	cufflinks.		

	

Replicate	 No.	In	

(Right)	

No.	Out	

(Right)	

No.	In	

(Left)	

No.	Out	

(Left)	

Max	

Length	

Min	

Length	

Total		

Leaf	1	 18,160,475	 18,143,542	 18,160,475	 18,135,783	 100	 36	 146,973	

Leaf	2	 26,428,934	 26,420,118	 26,428,934	 26,415,012	 100	 36	 137,058	

Leaf	3	 17,868,229	 17,848,933	 17,868,229	 17,848,410	 100	 36	 142,192	

Flower	1	 14,734,746	 14,723,047	 14,734,746	 14,720,678	 100	 36	 163,786	

Flower	2	 24,718,807	 24,700,755	 24,718,807	 24,690,319	 100	 36	 177,207	

Flower	3	 12,599,231	 12,580,503	 12,599,231	 12,578,360	 100	 36	 160,370	
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Table	S1.3:	Go	enrichment	terms	for	differentially	expressed	genes	between	leaf	and	

flower.		Only	the	enrichments	terms	with	a	p-value	<	0.01	are	given.	

	

GO	Term	 	 P-value	

GO:004867	 Serine-type	
endopeptidase	inhibtor	
activity	

0.0054	

GO:0016706,	
GO:0010302	

Oxidoreductase	
activity,	acting	on	
paired	donors,	with	
incorporation	or	
reduction	of	molecular	
oxygen,	2-oxoglutarate	
as	one	donor,	and	
incorporation	of	one	
atom	each	of	oxygen	
into	both	donors	

0.0010	

GO:0016307	 Phosphatidylinositol	
phosphate	kinase	
activity	

0.0072	

GO:0046488,	
GO:0030384	

Phosphatidylinositol	
metabolic	process	

0.0072	

GO:0005874	 Microtubule	 0.0028	

GO:0006184	 GTP	catabolic	process	 0.0006	

GO:0007017	 Microtubule-based	
process	

0.0020	

GO:0043234	 Protein	complex	C	 0.0007	

GO:0051258	 Protein	polymerization	 0.0002	

GO:0044267	 Cellular	protein	
metabolic	process	

0.0087	

GO:0042626	 ATPase	activity,	
coupled	to	
transmembrane	
movement	of	
substances	

0.0056	
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GO:0006633,	
GO:0000037	

Fatty	acid	biosynthetic	
process	

0.0012	

GO:0007165,	
GO:0023033	

Signal	transduction	 0.0029	

GO:0003777	 Microtubule	motor	
activity	

1.418e-06	

GO:0007018	 Microtubule-based	
movement	

1.418e-06	

GO:0003924	 GTPase	activity	 0.0086	

GO:0016887,	
GO:0004002	

ATPase	activity	 0.0034	

GO:0004553,	
GO:0016800	

Hydrolase	activity,	
hydrolyzing	O-glycosyl	
compounds	

0.0027	

GO:0005975	 Carbohydrate	
metabolic	process	

0.0002	

GO:0005840,	
GO:0033279	

Ribosome	 1.505e-14	

GO:0055085	 Transmembrane	
transport	

0.0055	

GO:0003735,	
GO:0003736,	
GO:0003738,	
GO:0003739,	
GO:0003740,	
GO:0003741,	
GO:0003742	

Structural	constituents	
of	ribosome	

8.320e-15	

GO:0006412,	
GO:0006416,	
GO:0006453,	
GO:0043037	

Translation	 1.987e-12	

GO:0016491	 Oxidoreductase	activity	 0.0077	

GO:0016021	 Integral	to	membrane	 0.0096	

GO:0005622	 Intracellular	 2.428e-08	
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GO:0004672,	
GO:0050222	

Protein	kinase	activity	 0.0003	

GO:0016020	 Membrane	 0.0012	

GO:0006468	 Protein	
phosphorylation	

0.0003	

GO:0055114	 Oxidation-reduction	
process	

0.0069	

GO:0005515,	
GO:0045308	

Protein	binding	 0.0005	

GO:0005524	 ATP	binding	 7.660e-11	
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Table	S1.4:		Results	of	the	application	of	linear	models.		The	models	test	for	an	effect	of	

the	TE	distance	to	a	gene	and	of	TE	methylation	to	differential	gene	expression.		

	

	 Coefficient	
Methylation	

P-value1	 Coefficient	
Distance	

P-value	

PropC	 -0.7233***	 0.000118	 3.895e-06	 0.398970	
DMSs	 -0.0193	 0.102	 4.040e-06	 0.382	
1	bolded	values	denote	significance	after	sequential	Bonferroni	correction.		
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Chapter	2:	Modeling	interactions	between	transposable	elements	and	

the	plant	epigenetic	response:	a	surprising	reliance	on	element	

retention	

	

	 Angiosperm	genomes	vary	more	than	1000-fold	in	size,	and	this	variation	correlates	

strongly	with	transposable	element	(TE)	content.	For	plant	species	with	small	genomes,	

like	Arabidopsis	thaliana	or	Brachypodium	distachyon,	DNA	derived	from	TEs	constitute	20-

30%	of	the	genome	(Vogel	et.	al	2010;	Kaul	et.	al.		2010).	Species	with	larger	genomes	have	

commensurately	larger	proportions	of	TE-derived	DNA.	For	example,	TE-derived	DNA	

represents	>85%	of	the	barley	(Hordeum	vulgare)	and	maize	(Zea	mays	ssp.	mays)	genomes	

(Wicker	et	al.,	2005,	Schnable	et	al.,	2009).	When	one	considers	that	the	average	size	of	a	

diploid	angiosperm	genome	is	similar	to	that	of	barley	genome,	at	6400Mb,	then	it	is	clear	

that	most	extant	plant	DNA	is	derived	from	TEs	(Tenaillon	et	al.,	2010).			

	 Despite	the	obvious	evolutionary	success	of	TEs,	their	proliferation	is	checked	by	

their	plant	host.	The	two	entities	engage	in	a	continuous	arms-race,	where	TEs	seek	to	

proliferate	and	hosts	attempt	to	control	them	(Lisch	and	Slotkin,	2011).	In	fact,	most	(if	not	

all)	TEs	are	epigenetically	silenced	under	normal	conditions	(Lisch,	2009).	The	plant	host	

exerts	this	control	by	suppressing	TE	activity	both	before	and	after	transcription.	Post-

transcriptional	modification	relies	chiefly	on	RNAi	that	recognizes	and	degrades	TE	mRNA	

produced	by	RNA	polymerase	II	(Pol	II).	Degradation	requires	associated	factors	like	

RNA-polymerase	6	(RDR6),	which	converts	single-stranded	to	double-stranded	RNA	

(dsRNA);	the	Dicer-like	proteins	DCL2	and	DCL4	that	cleave	dsRNAs	to	produce	21	and	22	

nucleotide	(nt)	small	interfering	siRNAs;	and	the	Argonaute1	(AGO1)	protein	that	guides	
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siRNAs	to	mRNAs	for	cleavage	(Fultz	et	al.,	2015).	Presumably,	21-22nt	siRNAs	can	prime	

multiple	cycles	of	mRNA	cleavage,	but	they	may	have	another	important	function,	which	is	

to	initiate	transcriptional	silencing	(Nuthikattu	et	al.,	2013,	McCue	et	al.,	2015).	Hence,	21-

22nt	siRNAs	can	be	seen	as	dual-purpose,	because	they	are	involved	in	post-transcriptional	

silencing	and	also	because	they	initiate	DNA	methylation	(Cuerda-Gil	and	Slotkin,	2016).		

Transcriptional	silencing	is	achieved	through	epigenetic	modifications	like	DNA	

methylation,	histone	modifications	and	shifts	in	nucleosome	positioning	(Bernatavichute	et	

al.,	2008,	Chodavarapu	et	al.,	2010).	The	first	of	these,	DNA	methylation,	relies	on	the	RNA-

directed	DNA	methylation	(RdDM)	pathway.	RdDM	begins	when	the	plant-	specific	Pol	IV	

transcribes	a	TE.	The	resulting	single-stranded	RNA	is	processed	into	24nt	siRNAs	by	RDR2	

and	DCL3,	two	homologs	that	are	distinct	from	those	employed	in	RNAi.	Ultimately,	the	

24nt	siRNAs	guide	protein	complexes	to	homologous	DNA	sequences	that	are	then	targeted	

for	cytosine	methylation.	Once	DNA	methylation	is	established,	at	least	two	mechanisms	act	

to	maintain	it.	The	first	is	a	positive	feedback	loop:	Pol	IV	and	Pol	V,	the	RNA	polymerases	

involved	in	RdDM,	preferentially	act	on	methylated	DNA	(Law	et	al.,	2013,	Johnson	et	al.,	

2014),	thereby	reinforcing	silencing	(Panda	and	Slotkin,	2013,	Bousios	and	Gaut,	2016).	

The	second	is	the	maintenance	of	symmetric	CG	and	CHG	(where	H	=	A,	C,	or	T)	

methylation	during	DNA	replication	and	cell	division	(Law	and	Jacobsen,	2010).	In	theory,	

then,	once	a	TE	is	targeted	for	DNA	methylation,	the	host	genome	employs	feedbacks	to	

ensure	that	the	TE	reaches	and	maintains	a	quiescent	state.			

Numerous	molecular	studies	have	dissected	the	RNAi	and	RdDM	pathways	

(reviewed	in	(Law	and	Jacobsen,	2010,	Fultz	et	al.,	2015,	Matzke	et	al.,	2015)),	but	several	

important	questions	remain	about	systems0level	interactions	between	TEs	and	their	plant	
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hosts.	One	major	question	is	why	the	host	relies	on	two	mechanisms	–	i.e.,	RNAi	and	RdDM	

–	to	silence	TEs.	Presumably	both	pathways	are	capable	of	silencing;	they	are	thus	

overlapping	and	potentially	redundant.	Moreover,	both	pathways	are	energetically	costly,	

because	they	require	the	production	of	myriad	polymerases,	methylases	and	small	RNAs	

(Bousios	and	Gaut,	2016).	Why	are	two	pathways	maintained	despite	an	energetic	cost?	

One	working	hypothesis	is	that	the	two	pathways	act	synergistically,	but	this	hypothesis	

has	yet	to	be	explored.		

A	second	major	question	concerns	24nt	siRNAs.	As	mentioned	above,	24nt	siRNAs	

are	predominantly	produced	by	the	RdDM	pathway,	which	preferentially	acts	on	TEs	that	

have	already	been	targeted	for	silencing.	An	important	feature	of	these	24nt	siRNAs	is	that	

they	can	act	in	trans	to	guide	the	methylation	of	TEs	that	have	similar	sequence	

characteristics	to	the	original	TE	template	(Slotkin	et	al.,	2005,	Teixeira	et	al.,	2009,	Ito	et	

al.,	2011,	Ye	et	al.,	2012,	Fultz	et	al.,	2015).	Under	this	process,	24nt	siRNAs	may	constitute	

a	kind	of	‘immune	memory’	that	act	as	a	buffer	against	the	possibility	of	TE	activity	(Fultz	et	

al.,	2015).	If	true,	this	implies	that	the	strength	of	the	host	epigenetic	response	is	

proportional	to	the	number	of	similar	TEs	in	the	genome	that	have	already	been	silenced.	

Yet,	no	studies	have	explored	the	potential	co0dependence	between	TE	copy	numbers	and	

the	strength	of	the	host	response.	

Our	final	systems-level	question	concerns	a	separate	process	that	occurs	in	cells	

associated	with	(but	not	part	of)	the	germline.	In	cells	such	as	the	pollen	vegetative	nucleus	

(Slotkin	et	al.,	2009),	some	TEs	are	actively	demethylated,	expressed,	and	utilized	to	

produce	21-22nt	siRNAs.	These	siRNAs	are	then	transported	to	the	germline,	where	they	

presumably	contribute	to	stable	TE	silencing	across	generations	(Slotkin	et	al.,	2009,	Ibarra	
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et	al.,	2012,	Martínez	et	al.,	2016,	Martinez	and	Köhler,	2017).	But	what	is	the	systems-level	

benefit	of	this	additional	step	in	the	host	response,	given	that	there	are	already	at	least	two	

overlapping	pathways	dedicated	to	silencing	TEs	and	also	that	symmetric	DNA	methylation	

is	typically	inherited	faithfully?		

Here,	we	address	these	questions	by	building	a	model	of	host:TE	interactions	based	

on	ordinary	differential	equations	(ODEs).	ODE	models	have	been	used	widely	to	study	

biological	phenomena	that	range	from	population	growth	(Malthus,	1798),	to	

predator0prey	interactions	(Volterra,	1926),	to	the	dynamics	of	viral	infection	and	

reproduction	(Perelson,	2002).		ODE	models	have	also	studied	the	interactions	between	

TEs	and	the	host	response,	but	without	a	focus	on	plants	and	with	few	details	of	host	

response	mechanisms	(Abrusán	and	Krambeck,	2006).	Our	model	includes	proxies	for	

RNAi,	RdDM	and	additional	factors	like	TE	propagation	and	TE	deletion.	We	study	

properties	of	the	model	but	also	estimate	reasonable	biological	parameters	by	fitting	the	

model	to	biological	data,	specifically	from	the	study	of	the	accumulation	of	the	Evade	

element	in	an	A.	thaliana	inbred	line	(Mari-Ordonez	et	al.,	2013).	Given	these	parameter	

estimates,	we	explore	dynamics	of	the	model	and	address	systems0level	questions	about	

host:TE	interactions.	We	focus	on	three	sets	of	questions:	i)	Are	both	pre0	and	post-

transcriptional	silencing	necessary	to	control	TEs?	If	not,	what	advantage	is	gained	by	

having	two	mechanisms?	ii)	Given	that	methylated	TEs	may	be	an	important	source	of	

immune	memory,	does	TE	deletion	affect	the	dynamics	of	the	host	response?	And,	finally,	

iii)	What	is	the	added	benefit	of	a	third	mechanism	for	generating	21-22nt	siRNAs	in	the	

germline?	

RESULTS	
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A	model	of	TE	propagation	and	silencing:	Our	model	assumes	that	a	TE	begins	as	

single	copy	and	expresses	mRNA	at	rate	v	(Figure	2.1;	Table	2.1).	Among	the	produced	

mRNA,	a	proportion	p	is	transposed	into	new	genomic	copies	of	the	TE	per	host	generation.	

Another	proportion,	ε,	of	the	TE	mRNA	is	processed	into	21-22nt	siRNAs.	Note	that	p	+	ε	≤	

1.0	under	our	model.	We	assume	that	the	21-22nt	siRNAs	degrade	at	rate	δ	and	initiate	TE	

silencing	at	rate	i.	Initiation	encompasses	both	post-transcriptional	silencing	(RNAi)	and	

the	onset	of	methylation,	following	previous	models	(Nuthikattu	et	al.,	2013,	McCue	et	al.,	

2015).	Finally,	24nt	siRNAs	reinforce	methylation	at	rate	r,	representing	RdDM.	In	our	

model,	24nt	siRNAs	are	trans-acting	and	thus	may	affect	numerous	TE	insertions,	including	

active	elements.	Overall,	active	TEs	(aTEs)	may	become	silenced	TEs	(sTEs)	through	21-

22nt	siRNAs,	24nt	siRNAs,	or	by	a	combination	of	both	(Figure	2.1).			

The	model	includes	two	additional	parameters.	The	first	is	TE	deletion	from	the	

genome,	which	occurs	at	rate	d	for	both	aTEs	and	sTEs.	The	second	is	the	loss	of	silencing	

from	TEs	over	time	(e.g.	through	the	loss	of	methylation),	which	can	lead	to	reactivation	of	

TEs	at	rate	u.		Methylation	loss	has	been	shown	to	occur	in	mutation	accumulation	lines	

(Schmitz	et	al.,	2011),	and	rateu	is	included	to	reflect	this	biological	process.	When	u	=	0,	

maintenance	of	silencing	is	perfect,	but	silencing	is	not	maintained	when	u	=	1.	The	model	

is	represented	diagrammatically	in	Figure	2.1	and	consists	of	three	differential	equations:	

𝑑(𝑎𝑇𝐸)
𝑑𝑡 = 𝑣 ∗ 𝑝 − 𝑑 − 𝑖 ∗ 𝑠𝑖𝑅𝑁𝐴 − 𝑟 ∗ 𝑠𝑇𝐸 ∗ 𝑎𝑇𝐸 +  𝑢 ∗ 𝑠𝑇𝐸	

𝑑(𝑠𝑇𝐸)
𝑑𝑡 = 𝑖 ∗ 𝑠𝑖𝑅𝑁𝐴 + 𝑟 ∗ 𝑠𝑇𝐸 ∗ 𝑎𝑇𝐸 − 𝑑 + 𝑢 ∗ 𝑠𝑇𝐸	

!"(!"#$%)
!"

= 𝜀 ∗ 𝑣 ∗ 𝑎𝑇𝐸 − 𝛿 ∗ 𝑠𝑖𝑅𝑁𝐴		
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The	first	equation	describes	the	change	in	the	number	of	aTEs	over	time;	the	second	

describes	the	change	in	the	number	of	sTEs	over	time,	and	the	third	monitors	numbers	of	

21-22nt	siRNAs	over	time.	While	these	three	equations	represent	our	basic	model,	Figure	

2.1	includes	a	dashed	arrow	representing	a	fourth	process,	the	epigenetic	remodeling	of	

TEs	in	the	germline.	This	process	will	be	incorporated	after	we	first	explore	the	dynamics	

of	the	basic	model.			

Model	Equilibria:	Once	a	TE	has	invaded	a	host	it	has	three	possible	fates:	it	may	

fail	to	successfully	invade	and	be	lost	completely;	it	may	establish	itself	and	reach	an	

equilibrium	number	of	copies	over	time;	or	it	may	expand	in	copy	number	unabated.	An	

advantage	of	ODE	models	is	that	we	can	analytically	solve	the	equilibrium	points	to	

understand	TE	invasion	behavior	and	parameter	dependence.	We	identified	two	

equilibrium	points	in	our	system.	The	first	is	when	there	are	no	Tes	and,	hence,	no	21-22nt	

and	24nt	siRNAs	in	the	host.	That	is,	the	equilibrium	points	for	the	active	copies	(aTEeq),	

silenced	copies	(sTEeq)	and	siRNA	(siRNAeq)	are	equal	to	zero.	Stability	around	this	point	

provides	information	as	to	whether	a	TE	will	successfully	invade	the	genome	or	be	lost.	We	

investigated	stability	(Methods;	see	Equation	3)	and	found	that	it	does	not	rely	on	any	of	

the	parameters	associated	with	epigenetic	processes	0	i.e.,	I,	ε	or	r.		Instead,	stability	relies	

only	on	the	parameters	for	TE	expression,	propagation,	and	deletion	(v,	p,	and	d).		Although	

Equation	3	is	complex,	the	Jacobian	matrix	(see	Methods)	suggests	the	intuitive	notion	that	

invasion	proceeds	when	expression	and	propagation	(v*p)	outcompetes	deletion	(d).				

Once	a	TE	has	established	its	presence	in	the	host,	it	may	increase	in	number	until	

the	second	equilibrium	point	(see	Methods).	The	equilibrium	points	for	aTEs	and	sTEs	are	

given	by:	
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𝑑(𝑎𝑇𝐸)
𝑑𝑡 = 𝑣 ∗ 𝑝 − 𝑑 − 𝑖 ∗ 𝑠𝑖𝑅𝑁𝐴 − 𝑟 ∗ 𝑠𝑇𝐸 ∗ 𝑎𝑇𝐸 +  𝑢 ∗ 𝑠𝑇𝐸	

𝑑(𝑠𝑇𝐸)
𝑑𝑡 = 𝑖 ∗ 𝑠𝑖𝑅𝑁𝐴 + 𝑟 ∗ 𝑠𝑇𝐸 ∗ 𝑎𝑇𝐸 − 𝑑 + 𝑢 ∗ 𝑠𝑇𝐸	

!"(!"#$%)
!"

= 𝜀 ∗ 𝑣 ∗ 𝑎𝑇𝐸 − 𝛿 ∗ 𝑠𝑖𝑅𝑁𝐴		

	

The	first	equation	describes	the	change	in	the	number	of	aTEs	over	time;	the	second	

describes	the	change	in	the	number	of	sTEs	over	time,	and	the	third	monitors	numbers	of	

21-22nt	siRNAs	over	time.	While	these	three	equations	represent	our	basic	model,	Figure	

2.1	includes	a	dashed	arrow	representing	a	fourth	process,	the	epigenetic	remodeling	of	

TEs	in	the	germline.	This	process	will	be	incorporated	after	we	first	explore	the	dynamics	

of	the	basic	model.		

	 Model	Equilibria:	Once	a	TE	has	invaded	a	host	it	has	three	possible	fates:	it	may	

fail	to	successfully	invade	and	be	lost	completely;	it	may	establish	itself	and	reach	an	

equilibrium	number	of	copies	over	time;	or	it	may	expand	in	copy	number	unabated.	An	

advantage	of	ODE	models	is	that	we	can	analytically	solve	the	equilibrium	points	to	

understand	TE	invasion	behavior	and	parameter	dependence.	We	identified	two	

equilibrium	points	in	our	system.	The	first	is	when	there	are	no	TEs	and,	hence,	no	21-22nt	

and	24nt	siRNAs	in	the	host.	That	is,	the	equilibrium	points	for	the	active	copies	(aTEeq),	

silenced	copies	(sTEeq)	and	siRNA	(siRNAeq)	are	equal	to	zero.	Stability	around	this	point	

provides	information	as	to	whether	a	TE	will	successfully	invade	the	genome	or	be	lost.	We	

investigated	stability	(Methods;	see	Equation	3)	and	found	it	does	not	rely	on	any	of	the	

parameters	associated	with	epigenetic	processes	-	i.e.,	i,	e	or	r.		Instead,	stability	relies	only	

on	the	parameters	for	TE	expression,	propagation,	and	deletion	(v,	p,	and	d).		Although	

Equation	3	is	complex,	the	Jacobian	matrix	(see	Methods)	suggests	the	intuitive	notion	that	
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invasion	proceeds	when	expression	and	propagation	(v*p)	outcompetes	deletion	(d),	

leading	to	a	possible	invasion.			

	 Once	a	TE	has	established	its	presence	in	the	host,	it	may	increase	in	number	until	

the	second	equilibrium	point	(see	Methods).	The	equilibrium	points	are	given	by:	

	

𝑎𝑇𝐸!! =
!

!
! ! !∗!

(!!!!)

			 	 	 [Equation	1]	

	

𝑠𝑇𝐸!" =
!∗!
! !!

!
! ! !∗!

(!!!!)

			 	 	 [Equation	2]	

	

with	siRNAeq	given	by	Equation	4	(see	Methods).	These	two	equations	illustrate	that	

aTEs	and	sTEs	have	similar	parameter	dependencies.	However,	equilibrium	values	of	sTEs	

depend	more	explicitly	on	v	and	p	in	the	numerator	than	does	the	equilibrium	values	of	

aTEs.	This	is	an	interesting	observation	because	v	and	p	are	properties	of	aTEs;	it	drives	

home	the	point	that	equilibria	copy	number	of	sTEs	relies	intricately	on	the	properties	of	

their	active	counterparts.	The	denominator	of	the	two	equations	clearly	indicates	that	

increasing	r	tends	to	decrease	both	aTEeq	and	sTEeq.	Finally,	the	equations	also	hint	at	a	

complex	relationship	between	equilibrium	copy	numbers	and	d,	because	the	latter	appears	

twice	in	the	denominator	(and	once	in	the	nominator	for	sTEeq).	As	dincreases,	these	

appearances	have	opposite	effects	on	equilibrium	values.			

To	explore	these	and	other	parameter	dependencies	further,	we	first	fit	the	model	to	

biological	data	and	then	perturbed	parameter	values	separately	to	assess	their	effects	on	

TE	copy	numbers.				
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				Fitting	the	model	to	biological	data:	It	can	be	difficult	to	identify	biologically	

reasonable	parameter	values	for	ODE	models.	To	address	this	concern,	we	fitted	our	model	

to	experimental	data	from	the	study	of	Mari-Ordonez	et	al.	(2013)	(Mari-Ordonez	et	al.,	

2013),	who	characterized	the	expression	and	transposition	of	a	single-copy	of	the	Evade	

retroelement	that	had	become	unmethylated	in	A.	thaliana	met1-mutant	epigenetic	

recombinant	inbred	lines.	By	following	two	lines	to	generations	14	and	15,	they	showed	

that	Evade	was	highly	expressed	until	generation	11	and	7,	respectively,	after	which	

expression	plummeted	precipitously,	presumably	due	to	host	silencing.	The	number	of	

Evade	copies	increased	rapidly	while	its	expression	was	high,	to	a	maximum	of	~40	copies	

after	11	and	7	generations.		

	To	fit	our	model	to	their	data,	we	extracted	information	about	Evade	copy	numbers	

and	relative	expression	(see	Methods).	We	focused	on	one	inbred	line	(met1)	from	their	

study,	because	this	was	the	only	line	for	which	data	were	sampled	for	consecutive	

generations:	in	total	seven	generations	(from	8	to	14)	since	the	reactivation	of	the	single	

Evade	element.	We	fitted	the	model	to	the	Evade	data	with	a	Monte	Carlo	approach	that	

concurrently	considered	the	total	TE	copy	number	(i.e.,	the	combined	total	of	aTEs	and	

sTEs)	and	expression.	Our	set	of	fitted	parameter	values	are	reported	in	Table	2.1.	These	

parameter	values	produced	a	good	fit	to	the	copy	number	data,	and	a	curve	of	similar	shape	

to	the	observed	relative	expression	data	over	time	(Figure	2.2A).	[Note	that	our	measure	of	

expression	is	only	a	proxy	for	expression	measured	experimentally;	see	Methods.]	We	

recognize	that	we	have	fitted	a	complex	model	to	relatively	simple	data	and	that	our	fitted	

parameters	may	represent	one	of	many	potential	reasonably	fitting	parameter	sets.	They	

nonetheless	provide	a	biologically-plausible	foundation	for	examining	model	behavior.								
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Model	behavior	under	fitted	parameters:	Given	the	fitted	parameters,	we	

explored	host:TE	dynamics	over	500	generations,	monitoring	numbers	of	aTEs,	sTEs	and	

total	TE	copy	number	(=aTEs	+	sTEs)	(Figure	2.2B).	With	these	parameter	values,	the	

model	produces	oscillations	of	all	three	entities	for	~200	generations	until	it	reaches	an	

equilibrium.	The	oscillations	of	aTEs	and	sTEs	are	somewhat	out	of	phase	with	one	

another.	We	interpret	these	results	as	reflecting	feedbacks	in	the	epigenetic	system.	When	

a	TE	first	invades	a	host,	the	combination	of	expression	(fitted	value	v	=	1.63;	Table	2.1)	

and	propagation	(p	=	0.340)	create	an	initial	burst	in	TE	copy	number.	If	TEs	were	able	to	

grow	unabated,	there	would	be	an	exponential	increase	at	a	rate	of	0.554	(=v*p)	TEs	per	

generation.	However,	some	transcripts	are	processed	into	21-22nt	siRNAs	(ε	=	0.051)that	

silence	TEs	at	rate	i	=	0.062.	These	21-22nt	siRNAs	degrade	quickly	for	each	host	

generation	(δ=0.999),	and	therefore	any	new	21-22nt	siRNAs	are	not	residual,	but	must	be	

made	from	active	TEs.	However,	once	initiation	of	methylation	has	begun	as	part	of	i,	

reinforcement	quickly	takes	hold	at	rate	r	=	0.025.	Eventually,	the	number	of	sTEs	

increases	and	the	number	of	aTEs	decreases,	so	that	total	expression	begins	to	decline.	As	

TEs	become	silenced,	they	have	two	fates	under	our	model:	they	can	be	deleted	from	the	

genome	or	become	active	again	due	to	loss	of	silencing	(Figure	2.1).	Since	loss	of	silencing	

was	very	low	(u	=	4	x	10-6)	in	the	fitted	parameter	set,	the	main	fate	of	sTEs	is	to	be	deleted	

(d	=	0.16).	As	these	quiescent	TEs	are	lost,	so	is	the	source	of	reinforcing	24nt	siRNAs.	

When	reinforcement	becomes	unreliable,	the	host	loses	epigenetic	control,	the	subset	of	

remaining	aTEs	propagate,	and	the	phased	cycle	begins	again.	These	cycles	dissipate	in	

amplitude	until	equilibria	are	reached	at	~20	total	TE	copies,	with	more	sTEs	(~14)	than	
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aTEs	(~6)	(Figure	2.2B).	It	is	important	to	note	that	the	equilibrium	is	not	necessarily	

static;	it	can	be	reached	when	equal	numbers	of	TEs	are	created	vs.	deleted.			

These	phased	interactions	occur	with	the	fitted	parameters	but	also	occur	regularly	

with	other	parameter	combinations.	They	are	not,	however,	a	necessary	outcome	of	the	

model	(see	examples	below).			

Examining	initiation	(i)	and	reinforcement	(r):	We	have	shown	that	the	model	

can	have	complex,	oscillating	dynamics	based	on	parameters	inferred	from	biological	data.	

These	parameters	can	be	modified	independently	to	explore	the	importance	of	various	

processes.	In	this	section,	we	assess	the	effect	of	perturbing	the	system	by	varying	either	

initiation	(i)	or	reinforcement	(r),	or	both,	while	holding	the	remaining	parameters	to	the	

values	estimated	from	the	Evade	data.	We	first	set	i	=	0,	and	the	result	was	both	intuitive	

and	trivial.	With	i	=	0	silencing	never	begins.	Hence,	the	number	of	aTEs	trended	upward	at	

an	exponential	rate,	with	no	resulting	sTEs	(Figure	2.3A).			

The	effect	of	setting	r	to	zero	was	less	straightforward,	because	i	was	>	0	and	hence	

silencing	was	initiated.	Without	reinforcement,	copy	numbers	no	longer	oscillated,	but	

instead	burst	and	rapidly	reached	a	maximum	for	both	aTEs	and	sTEs.	These	copy	numbers	

remained	flat,	implying	a	steady	state	in	which	silencing	was	initiated	by	21-22	siRNAs	and	

there	was	sufficient	transposition	to	counteract	TE	deletion.	Under	these	parameter	values,	

the	steady	state	of	sTEs	was	higher	than	that	of	aTEs	(Figure	2.3A),	as	with	the	equilibria	

reached	with	fitted	parameters	(Figure	2.2B).		

If	initiation	by	21-22nt	siRNAs	is	sufficient	to	reach	a	steady	state	and	to	control	

TEs,	then	what	is	the	advantage	of	reinforcement	by	24nt	siRNAs?	To	address	this	question,	

we	varied	i	and	r	across	their	parameter	ranges	and	assessed	total	copy	numbers	(=aTEs	+	
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sTEs).	To	help	characterize	effects,	we	focused	on	two	descriptive	statistics,	TEmax	and	

TEfinal	(see	Figure	2.2B).	TEmax	is	the	highest	total	TE	copy	number	achieved	under	a	set	of	

model	parameters,	and	TEfinal	is	the	total	copy	number	after	5,000	generations,	a	point	by	

which	total	aTE	and	sTE	copy	numbers	have	typically	reached	a	steady0state.	When	

varying	i	and	r,	we	found	that	their	relationship	was	non-linear	(Figure	2.3B).	Briefly,	if	r	

≥0.5	then	any	change	in	i	had	little	effect	on	TEmax	and	TEfinal,	so	long	as	there	was	at	least	

some	initiation.	In	contrast,	when	r	was	low	(e.g.,	r≤	0.1),	the	value	of	i	had	notable	effects	

on	both	TEmax	and	TEfinal.	For	example,	when	r	=	0.001,	TEmax	varied	over	2	orders	of	

magnitude	as	a	function	of	i.	Similarly,	TEfinal	differed	~330fold	when	i	ranged	from	0.001	

to	0.99	(Figure	2.3B).	This	relationship	implies	that	reinforcement	can	counter	TE	

propagation	efficiently,	even	when	initiation	of	silencing	is	weak.	This	observation	held	

true	when	also	adjusting	for	TE	expression	(v)	and	deletion	(d)	(Figure	S2.1).	

The	effects	of	TE	deletion	(d):	Theoretically,	high	TE	deletion	rates	should	be	

advantageous	for	the	plant	host,	because	they	limit	opportunities	for	transposition	and	

consequent	deleterious	mutations.	However,	high	amounts	of	TE	deletion	could	have	

consequences	for	immune	memory,	because	quiescent	TEs	may	be	a	major	source	of	trans-

acting	24nt	siRNAs	(Teixeira	et	al.,	2009,	Ito	et	al.,	2011,	Fultz	et	al.,	2015).	Hence,	high	

deletion	rates	may	adversely	affect	the	epigenetic	response.	To	illustrate	the	effect	of	

deletion	on	TE	copy	numbers,	we	varied	the	deletion	parameter	d	from	0.001	to	0.99	

(Figure	2.4),	while	holding	the	remaining	parameters	to	their	fitted	values	(Table	2.1).				

The	model	produced	four	noteworthy	results.	First,	when	TE	deletion	was	very	low	

(d	=0.001),	aTEs	burst	quickly	to	high	copy	number	(~30).		After	peaking	at	a	total	copy	

number	of	~80,	all	TEs	were	silenced	and	the	population	of	sTEs	declined	slowly	over	time,	
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reflecting	the	low	rate	of	deletion	(Figure	2.4).	Throughout	this	process,	there	were	no	

aTEs	after	the	initial	burst.	Second,	when	d	increased	(0.01	≤d	<	0.5),	the	system	generated	

oscillations	in	the	number	of	aTE	and	sTEs.	The	amplitude,	frequency,	and	equilibrium	

values	(TEfinal)	vary	with	d.	Note	that	the	running	average	of	sTEs	exceeded	that	of	aTEs	for	

these	parameter	values	(Figure	2.4).	Third,	when	TE	deletion	was	at	intermediate	levels	(d	

=	0.5),	aTEs	reached	a	steady-state,	but	there	were	very	few	sTEs.	Finally,	when	the	rate	of	

TE	deletion	was	very	high	(d	=	0.99),	all	TEs	were	removed	from	the	genome.	Overall,	we	

interpret	these	results	to	convey	a	somewhat	counterintuitive	idea:	if	the	goal	is	to	have	

few	aTEs,	then	it	is	beneficial	either	to	have	dramatically	high	rates	of	TE	deletion	(e.g.,	d	=	

0.99)	or	to	have	such	low	(e.g.,	0.01-0.1)	deletion	rates	to	preserve	a	reservoir	of	sTEs	that	

contribute	to	reinforcement	of	silencing.	This	supports	our	observation,	based	on	

equilibrium	equations	(Equations	1	and	2),	that	deletion	plays	a	complex	role	in	

determining	aTEeq	and	sTEeq.								

Additional	parameters:	We	also	varied	values	of	expression	(v),	propagation	(p),	

and	loss	of	silencing	(u),	while	the	remainder	of	the	parameters	were	held	at	their	fitted	

values.	The	parameter	v	was	arbitrarily	ranged	between	0	and	5.	The	chief	effect	of	this	

range	was	on	the	amplitude	and	periodicity	of	TE	oscillations.	Higher	expression	levels	led	

to	more	dramatic	copy	number	oscillations	(Figure	S2.2).	Importantly,	at	low	parameter	

values	(e.g.,	v	≤0.5)	TEs	either	did	not	invade	the	genome	or	were	maintained	at	very	low	

copy	numbers	(<5	total	TEs)	over	the	long	term.	Varying	p	produced	results	similar	to	

varying	v	(Figure	S2.3).	Increasing	p	did,	however,	tend	to	lead	to	higher	TEmax	and	average	

copy	numbers	relative	to	the	parameter	values	we	explored	for	v	(Figure	S2.2).	This	was	

presumably	because	there	is	a	trade	off	with	v;	as	it	increases,	so	does	the	production	of	21-
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22nt	siRNAs,	which	then	potentially	affect	RNAi.	Propagation	(p),	on	the	other	hand,	

contributes	only	to	the	proliferation	of	more	TEs.	Note	that	low	levels	of	propagation	(p	<	

0.25)	resulted	in	no	invasion.	Hence,	TEs	cannot	invade	if	expression	or	propagation	are	

low.		

	Our	model	also	assumes	a	process	of	silencing	loss	(u),	for	which	the	most	likely	

example	is	methylation	loss.		Methylation	loss	is	known	to	be	low	based	on	empirical	data	

because	symmetric	methylation	is	typically	maintained	faithfully	through	cell	division	

(Becker	et	al.,	2011).	Indeed,	our	fitted	parameter	estimate	was	u=4	x	10-6,	suggesting	that	

a	very	low	amount	of	sTEs	become	aTEs	due	to,	for	example,	leaky	maintenance	of	

symmetrical	methylation.	Overall,	we	found	that	varying	the	u	parameter	had	little	effect	

on	model	behavior	at	parameter	values	<	0.01	(Figure	S2.4).	This	implies	that	variation	in	

spontaneous	demethylation	rates	are	likely	to	have	few	effects	on	the	dynamics	of	host:TE	

interactions	unless	u	varies	by	several	orders	of	magnitudes	from	our	fitted	estimate.		

	TE	reactivation	dampens	TE	oscillations:	Finally,	we	incorporated	an	interesting	

biological	observation	–	i.e.,	the	fact	that	TEs	are	activated	in	some	reproductive	tissues,	

ostensibly	to	ensure	the	transmission	of	a	complement	of	siRNAs	to	egg	and	sperm	(Slotkin	

et	al.,	2009,	Ibarra	et	al.,	2012,	Martínez	et	al.,	2016,	Martinez	and	Köhler,	2017).	TEs	are	

known,	for	example,	to	be	demethylated	and	reactivated	in	the	pollen	vegetative	nucleus,	

which	accompanies	the	sperm	cell,	but	does	not	contribute	DNA	to	the	fertilized	zygote.	

The	reactivated	TEs	are	sources	of	21-22nt	sRNAs	that	are	transported	to	the	sperm	and	

presumably	target	silencing	of	TEs	in	the	zygote	(Slotkin	et	al.,	2009).	The	net	effect	of	this	

process	is	to	increase	the	numbers	of	21022nt	siRNAs	in	germline	cells;	these	21-22nt	

sRNA	originate	not	only	from	aTEs,	but	also	from	sTEs	(see	below).		
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	We	added	this	mechanism	to	our	model	with	an	equation	that	increases	the	number	

of	21-22nt	siRNAs	in	the	system	at	a	level	proportional	to	the	number	of	sTEs	that	were	

demethylated	in	the	companion	cells.	That	is,		

	

𝑑𝑠𝑖𝑅𝑁𝐴
𝑑𝑡 = 𝜀 ∗ 𝑣 ∗ 𝑇𝐸 +𝑚𝑇𝐸 − 𝛿 ∗ 𝑠𝑅𝑁𝐴	

	

This	equation	is	represented	by	the	dotted	arrow	in	Figure	2.1.	We	evaluated	the	

effects	of	this	additional	process	on	the	system	with	fitted	parameter	values.	The	effects	

were	consistent:	it	decreased	TEmax,	TEfinal	and	the	periodicity	of	copy	number	

oscillations	(Figure	2.5).	Thus,	this	additional	process	yields	notable	decrements	in	TE	copy	

numbers.			

	

DISCUSSION	

In	this	study,	we	have	devised	an	ODE	model	to	examine	the	systems	dynamics	of	TE	

propagation	within	the	context	of	the	epigenetic	response	of	a	plant	host	(Figure	2.1).	

Although	there	are	clear	limitations	to	our	approach,	the	model	has	produced	at	least	four	

fundamental	insights.	The	first	is	the	prediction	of	oscillating	copy	numbers	typified	by	a	

burst	of	TE	activity,	followed	by	silencing,	deletion	and	then	reactivity.	Despite	these	

oscillations,	the	system	often	reached	equilibrium	copy	numbers	(Figure	2.2).	Second,	our	

model	emphasizes	the	importance	of	reinforcement	by	RdDM-like	processes,	because	it	

buffers	potential	upstream	inefficiencies	in	the	initialization	of	silencing	(Figure	2.3).	Third,	

we	show	that	these	outcomes	are	linked	to	the	rate	of	TE	deletion.	Somewhat	non-

intuitively,	the	model	predicts	that	either	low	or	very	high	levels	of	deletion	lead	to	more	
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efficient	control	of	the	number	of	aTEs	(Figure	2.4).	Finally,	we	show	that	de-methylation	

within	germline	cells	reinforces	host	defenses	by	dampening	TE	bursts	and	lowering	

steady-state	copy	numbers	(Figure	2.5).	Below,	we	first	discuss	the	caveats	of	our	ODE	

model	before	placing	our	insights	into	the	context	of	plant	genome	structure	and	evolution.			

Caveats:	Every	model	has	limitations,	and	ours	is	no	exception.	One	important	

consideration	is	that	our	biological	knowledge	of	the	host	response	is	incomplete.	For	

example,	the	details	of	the	initiation	of	methylation	are	not	yet	clear,	because	there	are	at	

least	two	competing	(but	likely	non-exclusive)	hypotheses	as	to	how	the	host	transitions	

from	RNAi	to	the	RdDM	response	(Mari-Ordonez	et	al.,	2013,	Nuthikattu	et	al.,	2013,	McCue	

et	al.,	2015).	Furthermore,	some	aspects	of	the	host	response	have	not	been	included	in	our	

model,	such	as	recent	discoveries	that	18-22nt	tRNA	fragments	(Martinez	et	al.,	2017,	

Schorn	et	al.,	2017)	and	some	miRNAs	(Creasey	et	al.,	2014)	may	interfere	with	TE	

replication	and	propagation.	However,	these	additional	host	mechanisms	fit	relatively	

easily	in	our	model,	because	they	would	likely	affect	conversion	(ε)	and	initiation	(i)	

(Figure	2.1).	In	this	sense,	our	model	already	implicitly	accounts	for	some	exciting	new	

findings,	but	other	new	insights	may	require	model	modifications.		

Another	limitation	is	that	we	have	studied	the	invasion	of	only	one	TE	family.	In	

reality,	plant	genomes	harbor	a	multitude	of	TE	types	that	may	interact	with	each	other	and	

also	vary	with	respect	to	the	host	response.		For	example,	some	but	not	all	TE	families	in	A.	

thaliana	are	recognized	by	endogenous	miRNAs	(Creasey	et	al.,	2014),	and	short,	non-

autonomous	DNA	elements	are	methylated	less	efficiently	than	longer,	autonomous	

elements	(Hollister	and	Gaut,	2009),	perhaps	in	part	due	to	biases	in	genomic	location	

(Zemach	et	al.,	2013).		Finally,	we	have	used	only	one	dataset	to	fit	the	model,	which	
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followed	the	invasion	of	the	Evade	TE	for	a	short	period	of	few	host	generations	

(Mari0Ordonez	et	al.,	2013).	The	reliance	on	Evade	reflects	the	fact	that	very	few	studies	

have	monitored	the	copy	number	and	expression	of	TEs	within	a	plant	genome	over	time,	

particularly	beginning	from	recent	invasion	or	reactivation.	We	recognize	the	limitations	of	

the	empirical	data,	but	they	nonetheless	allow	a	glimpse	into	model	behavior	under	

relevant	parameter	values.			

Invasion	and	Oscillations:	How	long	does	it	take	to	silence	TEs	in	vivo?	Our	

understanding	of	the	duration	and	intensity	of	TE	amplification	bursts	remains	limited	

(Bousios	and	Gaut,	2016).	In	order	to	be	silenced,	a	TE	must	first	invade.	Based	on	our	

model	and	analyses	of	the	stability	of	the	first	equilibrium	point	(where	

aTEs=sTEs=siRNA=0),	invasion	depends	on	expression	(v),	propagation	(p),	and	deletion	

(d)	but	not	on	downstream	properties	of	the	host	response,	such	as	conversion	of	TE	

transcripts	to	21-22nt	siRNAs	(ε),	initiation	(i)	and	reinforcement	(r).	Put	simply,	v*p	needs	

to	outpace	d	for	a	TE	to	successfully	invade	the	host.	We	also	investigated	invasion	by	

modifying	v	and	p	from	the	fitted	parameter	values	(Table	2.1);	invasion	did	not	occur	

when	expression	or	propagation	were	low	(v	<	0.5,	Figure	S2.2;	p	<	0.25	Figure	S2.3).	

Assuming	a	TE	invades	successfully,	it	has	the	potential	to	increase	rapidly	in	copy	

number.	Under	many	parameter	values	explored	in	this	work,	the	maximum	duration	of	a	

TE	burst	lasts	for	only	a	few	dozen	generations	before	they	are	temporarily	silenced	and	

decrease	in	copy	number	(Figures	2.2,	2.4,	S2.2,	S2.3,	S2.4).	These	results	likely	reflect	our	

reliance	on	data	from	a	study	in	which	silencing	occurred	rapidly	(Mari-Ordonez	et	al.,	

2013),	but	there	is	other	experimental	evidence	that	host	defenses	react	quickly	to	silence	

active	TEs	within	a	few	host	generations	(Ito	et	al.,	2011;	Teixeira	et	al.,	2009).	It	is	
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interesting	to	note	that	these	experimental	studies	contradict	numerous	genome-wide	

analyses,	which	suggest	that	TE	families	experience	massive	bursts	lasting	thousands	or	

even	millions	of	years	(Piegu	et	al.,	2006,	Schnable	et	al.,	2009,	Bousios	et	al.,	2012,	Daron	

et	al.,	2014).	One	likely	explanation	for	this	incongruence	may	be	the	difficulty	of	resolving	

the	occurrence	of	multiple	rounds	of	episodic	bursts	within	the	expanded	timeframes	

reported	by	the	genome-wide	studies.	Limited	resolution	may	be	due	to	technical	issues	

related	to	in	silico	TE	identification,	accurate	age	estimation,	and	perhaps	even	

heterogeneous	rates	of	TE	sequence	loss	and	decay	across	the	genome	(Tian	et	al.,	2009).	

No	matter	the	cause,	the	apparent	gaps	between	experimental	and	genome-wide	studies	

deserves	further	thought	and	consideration.	Longer-term	experimental	studies	that	

monitor	TE	copy	numbers	over	time	and	under	different	stress	conditions	would	certainly	

be	welcome	contributions	to	our	empirical	understanding	of	host:TE	interactions.		

Equilibria:	Another	question	is	whether	TEs	reach	long-term	equilibria	within	a	

genome.	In	our	model,	the	oscillations	often	reduce	in	intensity	over	time	to	reach	a	steady	

state	(Figures	2.2,	2.4,	S2.2,	S2.3,	S2.4).	In	this	equilibrium,	sTEs	are	found	in	higher	

numbers	than	aTEs	whenever	(v*p)/d	>	2	(Equations	1	and	2).			

Our	ODE-based	approach	regularly	predicts	two	phases	of	host:TE	dynamics:	one	

shaped	by	frequent	changes	in	TE	numbers,	and	another	characterized	by	an	equilibrium.	

TE	evolution	has	been	modeled	extensively	with	population	genetic	approaches	

(Charlesworth	and	Charlesworth,	1983,	Charlesworth	et	al.,	1994,	Brookfield,	2005,	Le	

Rouzic	and	Deceliere,	2005),	too,	and	the	basic	models	predict	that	TEs	reach	steady-state	

copy	numbers	after	the	first	TE	invasion	through	a	transposition-selection	equilibrium.	In	

other	words,	they	do	not	predict	oscillations	prior	to	an	equilibrium.	In	contrast,	some	
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studies	have	expanded	their	models	to	include	TE	sequence	evolution	or	competition	

between	TEs,	and	these	often	predict	oscillations	in	TE	copy	numbers	(Le	Rouzic	and	Capy,	

2006,	Le	Rouzic	et	al.,	2007a,	b).	For	example,	Le	Rouzic	et	al.	(2007)	investigated	host-

parasite	interactions	between	autonomous	TEs	and	their	non-autonomous	counterparts,	

and	they	found	oscillations	in	copy	numbers	between	both	entities.	Notably,	the	oscillations	

continued	indefinitely;	an	equilibrium	was	rarely	reached	unless	there	were	very	low	

mutation	rates	and	few	adaptive	TE	insertions.	Le	Rouzic	et	al.	(2007),	and	also	Brookfield	

(2005),	have	argued	that	equilibriums	are	reached	under	conditions	that	are	probably	

unrealistic	for	in	vivo	TEs.	This	is	because	the	parameters	that	affect	TE	dynamics	such	as	

selection,	transposition	and	deletion	are	likely	to	change	at	faster	rates	than	the	time	

required	to	reach	an	equilibrium.	Our	model	does	not	include	autonomous	and	

non0autonomous	TEs,	nor	does	it	allow	perturbations	in	subsequent	generations.	Yet,	the	

focus	on	active	and	silenced	TEs	may	mimic	some	characteristics	of	host0parasite	

relationships	and	may	contribute	to	our	observed	oscillating	dynamics.	We	must	caution,	

however,	that	our	model	is	not	explicitly	evolutionary,	because	it	does	not	consider	fitness	

or	population	variation.		

The	Importance	of	Overlapping	Mechanisms:	Why	do	plants	maintain	two	

overlapping	and	energetically	costly	pathways	(RNAi	and	RdDM)	to	silence	TEs?	Here	it	

encompasses	post-transcriptional	silencing	and	the	initiation	of	methylation,	and	

rrepresents	RdDM	(Figure	2.1).	Our	results	show	that	only	a	small	amount	of	i	is	needed	to	

begin	silencing	of	an	unrecognized	TE,	but	r	is	necessary	to	counter	propagation	efficiently.	

For	example,	the	host	maintains	TE	copy	numbers	at	low	levels	even	when	iis	inefficient	

(e.g.,	i	=	0.001),	so	long	as	r	reinforces	silencing	by	a	value	of	r≥	0.1	(Figure	2.3B).	RNAi	is	
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clearly	not	as	efficient	at	limiting	TE	copy	numbers	when	there	is	no	RdDM,	yet	it	is	

essential	for	silencing	TEs	(Figure	2.3A).	Hence,	to	the	extent	the	model	is	correct,	it	implies	

that	plants	must	have	RNAi	to	start	the	process	of	silencing,	but	RdDM	vastly	enhances	host	

control	over	TEs.	The	inclusion	of	another,	apparently	overlapping	mechanism	–	i.e.,	the	

active	demethylation	of	TEs	in	cells	that	contribute	siRNAs	to	germline	cells	–	further	

enhances	host	silencing	(Figure	2.5).	

Our	data	are	consistent	with	the	argument	that	24nt	siRNAs	are	important	for	

buffering	TE	activity,	even	though	they	seem	unnecessary	because	most	methylation	is	

maintained	independently	of	RdDM	in	heterochromatic	regions	(Zemach	et	al.,	2013).	In	

fact,	it	was	recently	shown	that	these	heterochromatic	regions	also	produce	24nt	siRNAs,	

albeit	to	a	smaller	extent	(Li	et	al.,	2015).	These	findings	are	consistent	with	the	idea	that	

24nt	siRNAs	may	act	as	immune	memory	(Fultz	et	al.,	2015),	based	on	evidence	that	they	

may	play	a	key	role	in	suppressing	reactivated	TEs	(Teixeira	et	al.,	2009,	Ito	et	al.,	2011,	

Fultz	et	al.,	2015).	

The	curious	case	of	TE	deletion:	If	24nt	siRNAs	act	as	a	source	of	immune	

memory,	then	the	retention	of	silenced	TEs	may	be	a	benefit	to	the	host,	because	they	may	

be	the	template	for	24nt	siRNA	production.	This	relationship	is	implied	by	our	analyses	of	

the	deletion	(d)	parameter	under	the	Evade	model	(Figure	2.4).	If	the	goal	is	simply	to	rid	

the	genome	of	TEs,	the	most	efficient	method	is	to	have	a	very	high	d	(>	0.5)	that	removes	

all	aTEs	and	sTEs.	However,	deletions	are	mediated	by	ectopic	recombination	and	

illegitimate	recombination	(Devos	et	al.,	2002)	that	may	introduce	a	substantial	fitness	cost	

due	to	the	potential	for	catastrophic	mutations	(Langley	et	al.,	1988).	Assuming	that	high	

ectopic	recombination	carries	an	unacceptable	fitness	cost,	our	model	suggests	that	the	
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next	best	solution	to	limit	the	number	of	aTEs	is	to	have	very	low	rates	of	TE	deletion	(d	≤	

0.01).	

Hence,	our	argument	is	that	the	retention	of	silenced	TE	benefits	the	host	by	

boosting	immune	memory.	In	theory,	this	immune	memory	provides	a	defense	against	the	

invasion	of	new	TEs	that	have	sequence	homology	to	existing	genomic	TEs	and	also	against	

TEs	that	have	escaped	silencing	and	need	to	be	re-silenced.	Two	interesting	features	of	

acquired	immune	memory	are	that	it	is	energetically	expensive	but	also	maintained	under	

frequent	cycles	of	reinfection	(Best	and	Hoyle,	2013).	Under	the	parameter	values	explored	

with	our	model,	the	system	usually	reaches	a	steady	state	in	which	the	copy	number	of	

aTEs	is	greater	than	zero.	To	the	extent	that	these	dynamics	reflect	reality,	a	non-zero	

equilibrium	of	aTEs	defines	a	system	in	which	reinfection	is	not	merely	frequent	but	

constant.	This	observation	may	explain	one	feature	of	the	selective	pressure	to	maintain	

RdDM-like	mechanisms,	even	though	it	seems	as	if	most	TEs	within	plant	genomes	are	

effectively	silenced.	There	is	also	a	conjecture	that	‘zombie’	TEs	are	maintained	in	the	

genome	in	order	to	produce	siRNAs	that	boost	immune	memory	and	can	trigger	the	trans-

silencing	of	active	relatives	(Lisch,	2009).	Indirect	in	silico	evidence	for	the	existence	of	

zombie	TEs	has	been	recently	produced	in	maize	(Bousios	et	al.,	2016).		

Finally,	if	low	rates	of	TE	deletion	are	somehow	beneficial	to	the	host	response,	this	

process	could	drive	genome	size	increases	over	evolutionary	time,	because	each	new	TE	

infection	or	TE	reactivation	adds	copies	that	are	silenced,	retained	and	not	quickly	deleted.	

This	model	offers	a	partial	explanation	for	the	high	TE	contents	and	genome	sizes	of	plant	

genomes.		We	also	note	that	this	is	unlikely	to	be	a	run-away	process,	because	there	is	
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evidence	for	selection	on	genome	size	(Diez	et	al.,	2013;	Bilinski	et	al.,	2017),	especially	

when	genome	size	gets	too	large	(Knight	et	al.,	2005).			

Future	Directions:	This	is	the	first	study	to	explicitly	incorporate	features	of	the	

plant	host	response	into	a	quantitative	model	of	host:TE	dynamics.We	view	this	model	as	a	

foundation	for	further	extensions	that	will	continue	to	elucidate	important	features	of	

host:TE	interactions.	One	promising	avenue	will	be	to	extend	our	model	to	include	

populations,	genetic	drift	and	fitness	(Szitenberg	et	al.,	2016),	perhaps	with	a	potential	for	

rare	beneficial	effects	(Le	Rouzic	et	al.,	2007a).		Such	an	approach	is	likely	to	yield	more	

realistic	understandings	of	the	evolution	of	host:TE	interactions	than	are	available	at	

present.	It	will	also	be	illustrative	to	model	multiple	TE	families,	including	autonomous	and	

non-autonomous	elements,	and	the	possibility	for	siRNA	cross-homologies	between	them.	

Finally,	an	important	future	goal	will	be	to	mimic	reality	by	introducing	perturbations	into	

the	model.	One	potential	example	is	polyploidy,	which	is	thought	to	lead	to	epigenetic	

re0patterning	(Matzke	et	al.,	1999),	but	for	which	the	causes	remain	a	mystery.			

	

METHODS		

Equilibria	and	Stability:	To	find	equilibria,	we	solved	for	aTE,	sTE,	and	siRNA	

when	all	equations	were	equal	to	zero.	For	all	analyses	of	equilibria	and	stability	we	

assumed	u=0	and	δ=1	for	simplicity,	but	also	because	it	is	biologically	reasonable	to	assume	

that	maintenance	of	the	silenced	state	is	strong	(u=0),	based	on	the	conservation	of	

symmetric	methylation,	and	that	siRNAs	degrade	rapidly	(δ=1).		The	first	equilibrium	point	

was	aTEeq=	sTEeq=	siRNAeq	=	0.	To	derive	the	stability	of	this	equilbrium,	we	calculated	the	

Jacobian	matrix	for	the	ODEs,	which	provided:		
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𝑱𝑻𝑬 0,0,0 =
𝑣 ∗ 𝑝 − 𝑑 0 0

0
𝜀 ∗ 𝑣

−𝑑
0

0
1
	

	

The	eigenvalues	yielded:	
	

𝑑𝑒𝑡  𝑱!" 0,0,0 −  𝜆 ∗ 𝑰 =  𝜆! + 𝑣 ∗ 𝑝 ∗ 𝜆! + 𝑣 ∗ 𝑝 ∗ 𝑑 − 𝑣 ∗ 𝑝 + 𝑑! ∗ 𝜆 − 𝑑 ∗ 𝑣 ∗ 𝑝 −  𝑑!	

[Equation	3]	

	

where	λ	is	the	eigenvalue.		The	equation	clearly	communicates	that	stability	

depends	on	a	complex	relationship	among	v,p,	and	d	but	only	these	parameters.	The	second	

equilibrium	point	is	shown	in	equations	1	and	2	for	aTEeq	and	sTEeq;	the	corresponding	

equation	for	siRNAeq	is:	

	

𝑠𝑖𝑅𝑁𝐴!" =
!

!
!∗!!

!

(!!!!)

	 	 [Equation	4]	

	

We	also	examined	the	Jacobian	matrix	and	eigenvalues	to	study	stability	for	this	

equilibrium	point.		However,	the	stability	equation	was	complex	and	yielded	no	simple	and	

general	trends	for	relationships	between	stability	and	individual	parameters.			

Fitted	parameters:	We	obtained	the	data	from	Mari-Ordonez	et	al.	(2013)	by	

loading	their	Figure	2.3a	onto	WebPlotDigitizer	(http://arohatgi.info/WebPlotDigitizer/).	

To	estimate	model	parameters	that	fit	the	empirical	data,	we	used	the	sum	of	least	squares	

method,	based	on	the	following	formula:	

𝑠𝑞𝐸𝑟 =  (𝐸!" − 𝑂!")! + 𝑤 ∗ (𝐸!"# − 𝑂!"#)!	

	



75	
	

In	this	formula,	ECN	and	OCN	are	the	expected	and	observed	copy	number	

respectively.	The	expected	copy	number	was	defined	as	the	sum	of	aTEs	and	sTEs	obtained	

from	the	model.	EExp	and	OExp	are	the	expected	and	observed	values,	respectively,	for	

relative	expression.			

The	expected	relative	expression	for	generation	n	was	obtained	from	the	model	by	

taking	the	total	expression	in	generation	8,	which	is	equal	to	v	multiplied	by	the	aTE	copy	

number	at	generation	8,	and	comparing	that	to	the	total	expression	at	generation	n,	which	

is	equal	to	v	*	the	number	of	aTEs	in	generation	n.	Note,	however,	that	our	measure	of	

relative	expression	may	not	correspond	perfectly	to	that	from	Mari-Ordonez	et	al	(2013),	

because	the	empirical	data	on	relative	expression	actually	compares	two	genes	(Evade	and	

ACT2)	within	each	generation	and	also	because	qRT-PCR	can	be	inaccurate,	especially	

when	it	is	used	as	a	ratio	(of	ACT2	vs.	Evade	expression).	In	the	sqER	equation,	we	assigned	

w	a	weight	of	40	to	reflect	the	magnitude	of	difference	in	the	empirical	data,	because	copy	

number	reached	~40	and	relative	expression	plateaued	at	~1	(Figure	2.2A).			

We	used	a	Monte	Carlo	approach	to	estimate	fitted	parameters.	In	this	approach,	all	

seven	parameters	were	initialized	with	randomly0drawn	values	from	a	uniform	

distribution	between	0	and	1,	except	for	v,	which	was	ranged	between	0	and	20.	We	also	

imposed	the	constraint	that	p	+	ε	≤	1.0.	Given	initial	parameters,	the	square	error	(sqEr)	

was	calculated	as	above.	A	single	parameter	was	then	altered,	with	a	step	size	between	00.1	

and	0.1	for	all	parameters	(except	v	where	step	size	was	between	01.0	and	1.0).	The	sqEr	

was	calculated	would	be	calculated	and	the	iteration	would	only	move	forward	if	sqErn	>	

sqErn+1;	otherwise	a	new	step	size	would	be	calculated.	All	the	parameters	(in	the	following	

order:	v,	d,	p,	i,	r,	ε,	and	δ)	were	iterated	through	100	times	with	50	steps	for	each	
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parameter,	until	the	final	fitted	parameters	were	found	with	the	smallest	sqEr	for	each	run.	

The	initialization	and	iteration	of	all	parameters	was	performed	>10,000	times;	the	lowest	

sqEr	across	all	10,000	runs	was	used	to	define	the	fitted	parameters.	

Running	the	ODE	model:	The	ODE	model	was	run	using	odeint	from	the	

scipy.integrate	package	and	python	(v2.6.6).	Figure	2.1A	was	made	with	draw.oi,	all	other	

figures	were	made	with	R	(v.	3.3.2).	The	heatmaps	were	made	with	heatmap2,	from	the	

gplots	library.	
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FIGURES	

	

Figure	2.1:	A	schematic	of	the	model,	with	details	provided	in	the	text.	The	dashed	arrow	

represents	a	step	specific	to	cells	that	contribute	to	germline	material.	
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Figure	2.2:	A)	Model	fit	to	the	Evade	data	for	total	copy	number	(left)	and	relative	

expression	(right).	The	empirical	data	from	the	Evade	study	are	represented	by	circles;	the	

whiskers	indicate	standard	deviation.	The	model	results	based	on	the	fitted	parameters	

(Table	2.1)	are	represented	by	the	solid	line.	B)	Long-term	behavior	of	the	model,	based	on	

the	fitted	parameters	to	the	Evade	data.	Arrows	show	TEmax	and	TEfinal,	which	are	defined	in	

the	text.		Copy	number	refers	to	the	summation	of	aTEs	and	sTEs.	
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Figure	2.3:	Model	behavior	with	the	fitted	values	for	all	parameters	but	initiation	(i)	and	

reinforcement	(r).	A)	Graphs	illustrate	the	effect	of	setting	initiation	and	reinforcement	

parameters	to	zero	for	active	TEs	(left)	and	methylated	TEs	(right).	In	both	graphs,	the	gray	

dashed	lines	represent	the	number	of	TEs	based	on	the	fitted	model	parameters	to	the	

Evade	data	(see	also	Figure	2.2B).	B)	Heat	maps	showing	the	TEmax	(left)	and	TEfinal	(right)	

for	the	total	copy	number	(=	aTEs	+	sTEs)	based	on	varied	values	of	initiation	(y-axis)	and	
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reinforcement	(x-axis),	with	copy	number	displayed	in	each	cell.	The	dashed	cell	in	each	

heat	map	represents	the	fitted	values	(Table	2.1).	
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Figure	2.4:	Model	behavior	with	the	fitted	values	for	all	parameters	but	TE	deletion	(d),	

which	is	varied	from	0.001	to	0.99.	
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Figure	2.5:	TE	reactivation	in	pollen.	The	black	line	is	based	on	the	model	with	fitted	

parameters	(no	pollen	reactivation);	the	dashed	line	is	using	the	same	parameters	but	

including	additional	feedback	for	pollen	guard	cells	(pollen	reactivation).	Both	lines	

indicate	total	copy	numbers	(=aTEs	+	sTEs).	The	additional	mechanism	in	pollen	guard	

cells	is	denoted	by	the	dashed	arrow	in	Figure	2.1.	
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TABLES	

	

Table	2.1:	Summary	of	parameters	and	their	fitted	estimates	

Parameter*	 Description	 Fitted	Estimate	

v	 Amount	of	Pol	II	
mRNA	expressed	by	
active	TEs	

1.63	

p	 Proportion	of	mRNA	
that	contributes	to	
transposition	

0.340	

e	 Proportion	of	mRNA	
that	contributes	to	
21nt	siRNA	
production	

0.0510	

i	 The	rate	at	which	
21-22	nt	siRNA	
initiate	methylation	

0.0619	

r	 The	rate	at	which	24	
nt	siRNA	reinforce	
methylation	

0.0250	

l	 The	rate	of	TE	
removal	per	
generation	

0.161	

u	 The	rate	of	
methylation	loss	per	
generation	

0.000004	

δ	 The	rate	of	
degradation	of	21-
22nt	siRNAs	per	
generation	

0.999	
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SUPPORTING	INFORMATION	

	

Figure	S2.1:	Heatmaps	of	TEmax	(left)	and	TEfinal	(right)	that	vary	TE	expression	(v),	

initiation	(i),	reinforcement	(r)	and	deletion	(d)	while	holding	all	other	parameters	to	fitted	

values.	Actual	numbers	of	TEmax	and	TEfinal	are	located	in	heatmap	cells.	A.	Varies	
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reinforcement	from	0.001	to	0.99	and	TE	expression	from	0.1	to	10.	B.	Varies	initiation	

from	0.001	and	0.99	and	TE	expression	from	0.1	to	10.	C.	Varies	reinforcement	from	0.001	

to	0.99	and	deletion	from	0.001	to	0.99.	
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Figure	S2.2:	Model	behavior	with	the	fitted	values	for	all	parameters	but	TE	expression	(v),	

which	is	varied	from	0.1	to	5.0	in	these	examples.	
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Figure	S2.3:	Model	behavior	with	the	fitted	values	for	all	parameters	but	TE	propagation	

(p),	which	is	varied	from	0.001	to	0.99.	The	insets	illustrate	the	effect	over	a	shorter	time-

frame	of	100	generations.	
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Figure	S2.4:	Model	behavior	with	the	fitted	values	for	all	parameters	but	methylation	loss	

(u),	which	is	varied	from	0.000001	to	0.99.	The	insets	illustrate	the	effect	over	a	shorter	

time-frame	of	100	generations.			
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Chapter	3:	The	genomic	effects	of	selfing	in	maize	

	

Charles	Darwin	was	interested	in	the	prevalence	of	outcrossing	and	the	many	

mechanisms	that	prevent	self-fertilization	across	plant	species.		He	was	the	first	to	show	

that	self-fertilization	can	lead	to	detrimental	fitness	effects	(Darwin	1876).	After	his	

seminal	work,	scientists	have	shown	that	inbreeding	lowers	fitness	across	many	plant	

species	(reviewed	in	Charlesworth	and	Willis	2009).		In	fact,	fitness	can	become	so	low	in	

some	experimental	systems	that	inbred	lines	go	extinct;	that	is,	they	have	no	reproductive	

fitness.		Interestingly,	however,	when	inbred	lines	are	intercrossed	they	often	produce	

hybrids	that	are	not	only	of	higher	fitness	than	the	parents,	they	can	also	exceed	the	

performance	of	best	parent	(Zhang	et.	al	2008).	This	phenomenon,	known	as	‘heterosis,’	is	

frequently	used	to	improve	important	food	crops	such	as	maize	(Zea	mays	ssp,	mays)	and	

Oryza	sativa	(rice).	It	is	important	to	understand	both	inbreeding	and	heterosis,	because	

they	are	valuable	tools	for	crop	breeding.	

In	this	paper	we	focus	on	the	genomic	effects	of	inbreeding,	including	expected	

increases	in	homozygosity	(Charlesworth	and	Willis	2009).	One	explanation	for	reduced	

fitness	involves	the	uncovering	of	recessive	detrimental	alleles.	After	inbreeding,	more	

deleterious	recessive	alleles	may	become	homozygous,	hence	increasing	the	genetic	load	

and	decreasing	fitness.	One	potential	way	a	genome	can	combat	this	increased	genetic	load	

is	to	remove	or	‘purge’	alleles	from	the	population.		For	these	alleles	to	be	purged	they	need	

to	be	of	large	effect	or	semilethal	when	in	a	homozygous	state	(Lande	and	Schemske	1985;	

Charlesworth	et	al.	1990;	Hedrick	1994;	Schultz	and	Willis	1995).	If	purging	does	occur,	

then	the	relative	fitness	of	inbred	individuals	need	not	decrease	(Crnokrak	and	Barrett	
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2002).	For	this	reason,	purging	is	a	likely	a	method	for	a	species	to	combat	the	harmful	

effects	of	inbreeding.	

Another	predicted,	and	perhaps	related,	effect	of	inbreeding	is	a	reduction	in	

genome	size	(GS),	because	selfing	species	tend	to	have	smaller	genomes	than	outcrossers	

(Price	1976;	Govindaraju	and	Cullis	1991).	A	likely	reason	for	GS	differences	between	

selfing	and	outcrossing	plant	species	is	disparities	in	the	number	and	extent	of	repetitive	

regions,	because	repetitive	regions	constitute	the	vast	majority	of	most	plant	genomes,	

including	>85%	of	the	genomes	in	maize	(Tenaillon	et.	al.	2010)	[In	contrast,	gene	content	

constitutes	a	smaller,	more	highly	conserved	component	of	plant	genomes.]	Consistent	

with	this	view,	GS	and	transposable	element	(TE)	content	is	strongly	and	positively	

correlated	across	angiosperm	species.	Differences	in	GS	and	TE	content	occur	not	only	

between	species,	but	within	species	as	well.		For	example,	two	maize	genomes	have	been	

shown	to	differ	by	22%	in	size,	with	90%	of	that	difference	due	to	repetitive	elements	

(Vielle-Calzada	et.	al.	2009).		This	observation,	along	with	previous	comparisons	among	

maize	individuals	suggests	that	GS	can	change	rapidly	(Diez	et.	al.	2013).			

If	it	is	the	case	that	repetitive	elements	are	lost	in	genomes	after	selfing,	what	is	the	

cause	for	this	loss	of	TEs?	As	TEs	are	a	source	of	deleterious	mutations,	we	expect	after	

generations	of	selfing	they	will	be	purged	from	the	genome	(Wright	et.	al.	2013).	In	

addition,	we	predict	that	TEs	near	genes	will	especially	be	prone	to	loss,	because	they	have	

deleterious	effects	on	gene	expression	(Hollister	and	Gaut	2009).	If	this	loss	of	TEs	is	large	

enough,	it	could	cause	the	declines	in	GS	that	are	observed	across	selfing	species.	Finally,	if	

genomic	content	is	being	lost,	what	is	the	mechanism	that	removes	repetitive	elements?		

One	mechanism	that	has	been	investigated	in	the	literature	is	ectopic	recombination	(along	
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with	unequal	recombination),	which	can	remove	TE	insertions	from	the	genome	and	lesson	

the	TE	load	(Kalendar	et.	al.	2000;	Vitte	and	Bennetzen	2006).		It	is	not	clear,	however,	if	

these	mechanisms	act	rapidly	enough	to	cause	effects	over	the	timespan	of	generations.		An	

alternative	mechanism	in	the	context	of	selfing	is	segregation	that	systematically	biases	

against	the	retention	of	heterozygous	TE	insertions.		

In	this	experiment	we	ask	two	questions:	what	happens	to	genomes	over	the	first	

few	generations	after	a	transition	to	selfing,	and	how	might	these	changes	reflect	purging?	

As	of	yet,	no	experiments	have	been	designed	to	explicitly	address	these	questions.	In	

contrast,	there	have	been	many	studies	that	contrast	outcrossing	to	selfing	plants	in	

phenology,	population	structure,	genomic	diversity	and	evolutionary	fate	(Wright	et	al.	

2013;	Takebayashi	and	Morrell	2001).		Yet	these	effects	probably	accrue	after	not	during,	

the	transition	to	selfing.	A	smaller	number	of	studies	have	found	evidence	for	purging	by	

comparing	inbreeding	depression	between	naturally	inbreeding	and	naturally	outcrossing	

species	(Weller	et.	al.	2005;	Crnokrak	and	Barrett	2002)	but	without	assessing	the	genomic	

effects	of	inbreeding.		Here	we	take	an	experimental	approach	to	examine	the	immediate	

effects	of	selfing	on	genome	content	and	to	characterize	potential	mechanisms	of	purging.	

To	explore	these	questions,	we	employ	an	experimental	evolution	approach.	The	

experiment	begins	with	a	single	heterozygous	parent	from	each	of	11	landraces	of	maize.		

The	parent	is	selfed	(S1),	three	S1	individuals	are	sampled,	and	the	fourth	is	selfed	again	

(S2)	(Figure	3.1).		This	process	proceeds	until	S6.		Here	we	monitor	shifts	in	GS	and	genome	

content	between	the	S1	and	the	S6	generations,	representing	the	onset	of	selfing	and	the	

end	of	the	experiment	(Table	3.1).		For	individuals	grown	from	S1	and	S6	seed,	we	have	
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used	cell	flow	cytometry	to	estimate	GS	and	also	applied	whole	genome	sequencing	to	

study	changes	in	genomic	content.		

Using	this	experimental	setup	we	address	three	questions	about	selfing	in	plant	

genomes.	First,	since	other	studies	have	shown	that	there	is	a	smaller	GS	for	inbreeding	

species,	we	investigate	whether	a	change	in	GS	can	occur	after	only	six	generations	of	

selfing.	Second,	we	use	whole-genome	sequencing	to	explore	whether	specific	genomic	

components	have	changed	through	six	generations.		Our	primary	prediction	is	that	TEs	are	

lost	through	the	process	of	selfing.	Finally,	we	speculate	the	question	of	potential	

mechanisms	for	TE	loss	in	the	context	of	our	data.			

	

MATERIAL	AND	METHODS	

	

Plant	materials.	We	performed	our	experiment	on	11	maize	landraces	(Table	3.1)	

that	were	selfed	by	John	Doebley	(U.	Wisconsin)	and	maintained	through	single-seed	

descent	for	six	generations.		Landraces	were	chosen	as	the	parental	material	because	they	

are	typically	highly	heterozygous.	As	noted	above,	four	sibling	seeds	were	retained	from	

each	generation.		One	seed	was	grown	and	selfed,	and	the	remaining	three	seeds	were	

saved	for	sampling.		All	of	the	sibling	seeds	were	grown	in	the	UC	Irvine	greenhouses	after	

germination	on	petri	dishes.	Leaf	and	tassel	tissue	were	collected	from	all	samples.			Based	

on	this	design,	we	expected	to	sample	materials	from	198	plants,	but	only	73	grew,	due	to	

germination	failures.		

Genome	size	estimation	with	cell	flow	cytometry.	Plant	material	was	collected	

from	a	single	leaf	harvest	with	the	same	level	of	maturity	for	each	plant.		To	estimate	GS,	
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leaf	samples	from	S1	and	S6	from	each	landrace	were	sent	to	Plant	Cytometry	Services	

(Schijndel.	Netherlands).	Flow	cytometry	used	4’6-diamindino-2-phenylindole	(DAPI)	

staining	and	Ilex	crenata	‘Fastigiata’	(2C	=	2.2pg)	as	an	internal	standard.	Flow	cytometry	is	

well	suited	for	detection	of	small	variation	of	total	DNA	among	samples	(Dolezel	and	Bartos	

2005).	In	order	to	limit	technical	error,	three	technical	replicates	were	performed	for	each	

plant,	and	the	reference	maize	inbred	line	B73	was	included	in	every	batch.	To	assess	

whether	GS	had	changed	as	a	consequence	of	selfing,	we	performed	a	t-test	between	the	S1	

and	S6	generations,	including	both	sibling	and	technical	replicates	(Table	3.1).	

Whole-genome	Sequencing.	We	selected	six	landraces	and	32	individuals	for	

whole-genome	sequencing,	focusing	on	the	S1	and	S6	generations.	DNA	was	extracted	from	

frozen	leaf	tissue	using	the	QIAGEN	DNeasy	Plant	Mini	kit.	DNA	was	multiplexed	into	

libraries	with	Illumina	TruSeq	PCR	Free	kit.	The	libraries	were	sequenced	on	the	

HiSeq2500	(100	bp	read	length,	paired-end,	2	lanes)	in	the	UCI	High	Throughput	Genomics	

Facility	in	2015	(landraces	MR01,	MR08,	MR18,	and	MR19)	and	on	the	HiSeq3000	(150	bp	

read	length,	paired-end,	1	lane)	in	the	UC	Davis	DNA	Technologies	Core	in	2016	(landraces	

MR09	and	MR22).	Sequenced	reads	were	processed	by	Trimmomatic	(v0.35)	to	remove	

barcodes	and	low	quality	reads	(<20).		Reads	were	also	required	to	have	a	minimum	read	

length	of	36.	

Mapping	and	normalizing	counts.	Processed	reads	were	mapped	onto	maize	

genome	AGP	version	4		(AGPv4;	Jiao	et.	al.	2017)	using	BWA-MEM	(v0.7.12)	with	the–k	9	

and	–T	25	options.	To	prevent	double	counts	of	a	feature,	only	one	of	the	paired	reads	was	

used	and	only	the	primary	alignment	was	kept	for	each	read	(samtools	v1.3).	Individuals	
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were	sequenced	to	an	average	coverage	of	~4X,	but	they	ranged	from	~2X	to	10X	(Table	

S3.1)	

Altogether,	we	counted	read	counts	for	four	genomic	components:		genes,	

chromosomal	knobs,	rDNA	and	TEs.		The	annotation	features	for	protein	coding	genes	and	

TE	gff	files	for	AGPv4	were	obtained	from	the	Gramene	database	on	1/5/17.	To	identify	

regions	containing	knob	and	rDNA	sequences,	fasta	files	of	both	features	were	mapped	to	

the	genome	using	blat	(v36).		The	regions	mapping	to	either	feature	were	then	added	to	gff	

files	(blattogff	v3)	for	read	count	analyses.		To	count	reads,	all	features	were	merged	

(bedtools	merge	v.2.25.0)	to	avoid	double	counting.	Bedtools	coverage	was	used	to	count	

reads	that	overlapped	at	least	90%	with	each	feature.	

We	used	BUSCO	genes	to	normalize	between	libraries,	on	the	expectation	that	these	

highly	conserved	genes	represent	an	invariant	component	of	the	genome.		To	identify	a	

conserved	set	of	BUSCO	genes,	we	ran	BUSCO	(v3)	on	the	maize	B73	genome.	From	the	

resulting	set	of	1,309	single-copy	BUSCO	genes,	we	eliminated	any	that	appeared	to	be	

multi-copy	or	that	overlapped	with	TE	annotations	in	AGPv4.		Any	gene,	knob,	or	rDNA	

annotation	that	overlapped	with	a	TE	was	also	removed.		

We	identified	TEs	from	the	AGPv4	gff	file	and	employed	their	TE	family	designations	

for	additional	analyses.		For	some	analyses,	we	investigated	TEs	that	were	near	genes;	

these	‘genic	TEs’	were	defined	as	falling	within	the	gene	or	within	5kb	on	either	side	of	the	

gene.	Normalized	counts	were	counts	divided	by	the	total	number	of	BUSCO	genes	for	that	

genome.		To	verify	that	our	use	of	BUSCO	genes	was	accurate,	we	simulated	datasets	with	

BUSCO	normalizations	based	on	Chromosome	10	(see	Results	below).	
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Relationship	between	GS	and	genomic	components.	Linear	regression	and	

ANOVA	analyses	were	performed	to	assess	relationships	between	GS	and	genomic	

components.	Normalized	counts	for	genomic	components	and	the	response	variable	cell	

flow	cytometry	for	GS	data	were	applied	in	a	linear	model	(GS	~	genes	+	TEs	+	knobs	+	

rDNA)	with	no	transformations	to	find	associations.	We	also	used	ANOVA	to	test	for	

significant	differences	between	generations	(g),	landraces	(l),	and	interactions	(g	x	l)	for	

each	of	the	four	components	(Normalized	Counts	~	g	+	l	+	g:l).	This	same	ANOVA	was	

applied	to	genic	and	nongenic	TEs	and	TE	families.	All	statistics	were	performed	in	R	

(v.3.34).	

	

RESULTS	

Selfing	can	lead	to	rapid	declines	in	GS.	We	first	measured	GS	for	each	line,	using	

triplicated	flow	cytometry	measurements	on	S1	and	S6	plants	from	all	11	lines	(Table	3.1).		

We	note	that	some	of	the	lines	did	not	have	three	S6	individuals;	for	example	only	a	single	

S6	individual	germinated	for	landrace	Araguito	(MR01)	and	for	other	lines	we	employed	S7	

individuals		(Table	3.1).			

	 Across	all	eleven	landraces,	three	lines	had	a	significant	decrease	in	GS	(p<0.05)	

between	S1	and	S6,	with	up	to	20%	estimated	loss	in	GS	(Figure	3.2;	Table	3.1).	For	the	

remaining	8	lines,	we	did	not	detect	difference	in	GS	based	on	flow	cytometry.	Interestingly,	

none	of	the	lines	exhibited	larger	GS	after	selfing,	suggesting	that	the	probability	of	GS	loss	

is	significantly	higher	than	that	of	GS	gain.		To	make	this	inference,	we	measured	the	

probability	of	loss	as	3	lines	with	observed	GS	loss	out	of	11	total	lines	(=0.273).		If	the	

probability	of	GS	gain	were	equivalent,	then	zero	observations	of	GS	increases	would	be	
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improbable	even	with	this	relatively	small	(n=11)	number	of	observations	(binomial,	p	<	

0.03).		Thus,	in	our	experiment,	selfing	is	biased	toward	GS	reductions	over	GS	increases.			

Counting	genomic	components	and	normalizing	across	libraries.	The	flow	

cytometry	results	suggest	that	GS	can	vary	both	dramatically,	with	up	to	20%	loss	of	the	GS,	

and	rapidly,	in	just	six	generations.		These	observations	lead	to	two	questions	about	the	

observed	GS	declines:		What	causes	some	genomes	to	decline	and	not	others?	And	which	

genomic	components	are	lost	during	this	decline?		To	answer	these	questions	we	

performed	whole-genome	sequencing	on	six	lines:	three	with	decreased	GS	and	three	with	

constant	GS.	For	each	line	that	was	sequenced,	between	one	and	three	individuals	were	

sequenced	for	S1	and	S6	to	provide	a	replicated	measure	(Table	S3.1).			

We	mapped	reads	to	the	reference	genome	and	separated	the	genome	into	four	

different	components:	genes,	TEs,	knobs,	and	rDNA.	We	investigated	these	repetitive	

elements	because	TEs	(Tenaillon	et.	al.	2011),	heterochromatic	knobs	(McClintock	1978),	

and	rDNA	(Havlova	et.	al.	2016)	have	been	found	to	account	for	within-species	variation	in	

GS.	We	counted	the	total	number	of	reads	for	each	of	the	components	and	normalized	by	

counts	from	761	BUSCO	genes.		

To	compare	counts	among	individuals,	it	is	important	to	assess	the	accuracy	of	our	

normalization	approach.		We	tested	BUSCO	normalization	via	simulations	of	TE	loss	and	

gain.	For	the	simulations,	we	used	the	smallest	chromosome	10	for	computational	

efficiency.	We	randomly	removed	either	10%	or	20%	of	TEs	from	the	chromosome,	

duplicated	10%	of	TEs,	or	did	not	change	the	chromosome.	Each	treatment	was	repeated	

five	times	with	different	random	TEs	removed	or	gained.	The	short-read	simulator	wgsim	

was	used	to	simulate	datasets	with	~2x	and	10X	coverage,	mimicking	the	potential	for	
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different	coverages	among	our	libraries.		For	each	simulation,	reads	were	mapped	to	

chromosome	10,	counted	across	annotation	features	(non-BUSCO	genes,	TEs,	knobs	and	

rDNA)	and	then	normalized	by	dividing	by	the	total	counts	for	BUSCO	genes	on	

chromosome	10.	Based	on	these	simulations,	we	were	able	to	recover	the	expected	

decrease	in	genomic	components	(Figure	S3.1),	but	it	did	not	recapitulate	genome	gain	in	

TEs	as	accurately.		It	is	likely	that	the	inability	to	estimate	TE	gains	is	a	feature	of	our	

simulations,	because	we	duplicated	TEs	as	exact,	tandem	copies	of	chromosomal	TEs,	

which	would	lead	to	systematic	undercounting	of	the	duplicated	TEs.	Nonetheless,	our	

simulations	indicate	that	our	normalization	approach	is	sufficient	to	compare	TE	loss	

among	datasets	with	different	coverages	and	different	degrees	of	TE	loss	with	the	

assumption	that	BUSCO	genes	are	constant	between	landraces.			

Genomic	components	and	GS.	Given	normalized	counts	for	all	individuals	and	for	

each	of	the	four	genomic	components,	we	investigated	the	genomic	components	associated	

with	GS.	To	do	this	we	used	a	linear	regression	model	that	compared	cell	flow	cytometry	

(as	the	measure	of	GS)	to	the	normalized	counts	for	each	of	the	genomic	components	

(Figure	3.3).			After	applying	the	regression	to	all	32	individuals,	we	found	no	discernible	

relationship	between	GS	and	gene	counts.		However,	GS	was	associated	significantly	

(p<0.01)	with	TEs,	with	a	high	correlation	coefficient	(r=0.95,	p<0.001).	For	each	increase	

in	a	normalized	TE	count	there	was	a	predicted	increase	in	0.004	pg/1C	or	400	kbp	in	GS,	

when	genes,	knobs	and	rDNA	were	held	constant.	In	the	linear	model	rDNA	also	associated	

significantly	with	GS	(p=0.018)	when	holding	all	other	features	constant	and	had	a	

significantly	high	correlation	(0.71,	p<0.001).	To	our	surprise	given	previous	research	

(Chia	et.	al.	2012),	we	did	not	find	knobs	to	be	significant	with	GS	when	holding	TEs	and	
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rDNA	constant.	This	may	be	due,	in	part,	to	confounding	effects	between	knobs	and	TEs	

and	the	correlation	between	them	(cor=0.84,	p<0.001)	(Figure	S3.2;	see	Discussion).	When	

both	are	placed	in	the	linear	model	TEs	have	a	stronger	linear	association	with	GS	than	

knobs.	However,	knobs	also	have	a	strong	correlation	with	GS	(0.79,	p<0.001);	we	

therefore	suspect	that	they	contribute	to	GS	shifts	in	our	experiment	(see	below).		

Shifts	in	genomic	components	over	generations.	Over	all	32	individuals,	we	have	

shown	that	three	genomic	components	correlate	with	GS,	but	what	about	the	specific	lines	

that	exhibited	a	GS	reduction	from	S1	to	S6	(Figure	3.2)?		We	plotted	the	normalized	counts	

for	each	of	the	four	genomic	components,	separating	the	three	lines	[Araguito	(MR01),	

Costeno	(MR08)	and	Reventador	(MR18)]	with	reductions	in	GS	from	those	with	no	

observable	shift	in	GS	[Cravo	Riograndense	(MR09),	Santo	Domingo	(MR19)	and	Tuxpeno	

(MR22)].			For	those	with	a	GS	reduction,	they	exhibited	losses	of	counts	within	TEs,	rDNA	

and	knobs	from	generation	S1	to	S6.	On	average	there	was	a	significant	~7%	(p=0.017)	and	

~8%	(p=0.012)	loss	of	TEs	and	knobs,	respectively,	between	S1	and	S6	for	landraces	that	

decreased	GS	through	selfing.	In	contrast,	the	counts	in	the	other	landraces	remained	

similar	from	S1	to	S6	for	all	four	genomic	components	(Figure	3.4),	although	Santo	

Domingo	shows	an	intriguing	hints	of	TE	increase	(2%,	not	significant).			

We	applied	an	ANOVA	to	the	counts	of	each	of	the	four	genomic	components	to	

partition	the	variance	across	generations	(g),	landraces	(l),	and	interaction	(g	x	l).	There	

were	no	significant	components	of	variation	for	genes	(Table	3.2).		In	contrast,	TEs,	Knobs	

and	rDNA	varied	significantly	across	landraces	(p	<	10-9).		Only	TEs	and	knobs	were	

significant	across	generations	(p	≤	0.012)	and	for	g	x	l	interactions	(p	≤	0.011).		The	results	
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corroborate	our	previous	inference	that	TEs	and	knobs	are	the	two	components	most	

responsible	for	genome	changes	from	S1	to	S6.			

Which	TEs	are	being	lost?	Since	TEs	are	the	largest	component	of	the	maize	

genome	and	associated	with	GS,	we	suspect	that	they	are	the	primary	driving	force	behind	

GS	loss.	We	further	hypothesize	that	the	loss	is	attributed	to	TE	insertions	that	are	

deleterious.	To	investigate	this	possibility,	we	analyzed	TEs	that	are	in	and	around	genes	–	

i.e,	that	overlap	with	or	are	within	a	5kb	window	of	genes	(genic	TEs).		We	focused	on	genic	

TEs	because	they	have	been	shown	to	affect	the	expression	of	nearby	genes	and	thus	

represent	a	component	of	genetic	load	(Hollister	et.	al.	2009;Wright	et.	al	2003).		We	found	

that	landraces	that	had	a	GS	decrease	began	with	~3.5%	(p=0.002)	higher	amounts	of	genic	

TEs	in	S1	than	landraces	with	no	change	in	GS	(Figure	3.5).	Interestingly,	the	landrace	with	

the	highest	total	amount	of	TE	counts	(Santo	Domingo;	Figure	3.4)	had	a	relatively	low	

number	of	genic	TE	counts	in	S1.		The	difference	in	genic	TE	content	disappeared	by	S6;	

that	is,	for	S6	there	was	no	a	significant	difference	(p=0.680)	in	genic	TE	counts	between	

landraces	with	and	without	a	GS	decrease.		Hence,	selfing	appears	to	decrease	GS	from	

landraces	that	have	high	burdens	of	genic	TEs.		We	note,	however,	that	the	number	of	genic	

TEs	is	not	sufficient	to	fully	explain	GS	decreases,	because	they	represent	only	11%	of	the	

total	TE	content.		Nonetheless,	these	analyses	suggest	that	the	number	of	genic	TEs	could	

be	important	for	determining	whether	there	is	GS	loss	due	to	selfing.	

In	addition	to	looking	at	regions	where	TEs	have	been	lost,	we	also	explored	

whether	specific	TE	types	were	purged.		We	put	TE	families	into	four	broad	categories:		

terminal	repeat	retrotransposons	(LTRs),	helitrons,	SINEs	and	LINEs.	We	predicted	that	the	

trend	of	TE	loss	is	most	likely	due	to	loss	of	long	terminal	repeat	retrotransposons	(LTRs),	
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both	because	LTRs	represent	the	largest	component	of	the	maize	genome	(SanMiguel	et.	al.	

1996;	Schnable	et.	al.	2009)	and	because	terminal	repeats	are	vulnerable	to	ectopic	

recombination	(Devos	et.	al.	2002).	Indeed,	~7%	of	LTRs	were	lost	from	S1	to	S6	in	

landraces	that	saw	a	GS	reduction	(p=0.011;	Figure	S3.3).	However,	loss	was	not	specific	to	

LTRs,	because	Helitrons	and	SINEs	have	a	similar	pattern	of	loss	in	landraces	that	had	a	

shift	in	GS,	with	4%	and	1%	lost	on	average,	respectively,	from	S1	to	S6.	Interestingly,	

LINEs,	which	have	relatively	low	counts,	are	strongly	reduced	from	S1	to	S6	for	Santa	

Domingo	(MR19),	which	did	not	have	an	overall	significant	change	in	GS,	suggesting	that	

there	were	ongoing	shifts	in	genome	content	even	in	those	lines	that	did	not	exhibit	a	GS	

shift	as	measured	by	flow	cytometry.		Finally,	we	applied	an	ANOVA	to	the	TE	types	among	

all	six	lines	for	S1	and	S6.		The	ANOVA	indicated	that	all	four	TE	types	differ	significantly	

among	landraces	(p	<	10-6),	that	three	of	the	four	types	–	LTRs,	helitrons	and	SINEs)	–	

differed	between	generations	(p	<	0.02),	and	that	two	of	these	(LTRs	and	helitrons)	

exhibited	g	x	l	interactions	(p	<	0.02)	(Table	S3.3).		

	

DISCUSSION	

In	this	study	we	document	that	some	genomes	decrease	rapidly	in	size	after	the	

onset	of	selfing.		Three	of	the	eleven	inbred	lines	exhibited	a	GS	loss,	as	measured	by	flow	

cytometry,	after	only	six	generations	of	selfing.		Remarkably,	none	of	the	inbred	lines	

exhibited	an	increase	in	GS,	suggesting	that	selfing	introduces	a	biological	bias	toward	

smaller	genomes.		It	is	also	possible	that	some	aspect	of	the	growing	conditions	drove	GS	

reductions,	because	it	has	been	shown	(for	example)	that	GS	can	decrease	with	selection	

for	rapid	flowering	in	maize	(Rayburn	et.	al.	1994).		Nonetheless,	our	results	are	
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concordant	with	macroanalyses	that	identify	a	correlation	between	GS	and	selfing	across	

176	seed	plants	(Govindaraju	and	Cullis	1991).		We	nonetheless	find	it	surprising	to	see	

such	a	drastic	reduction	in	GS	after	only	six	generations,	because	previous	studies	have	

examined	much	longer	timescales,	such	as	that	between	selfers	and	outcrossing	subspecies	

(Albach	and	Greilbuber	2004).		Previous	studies	have	shown	that	GS	can	vary	significantly	

within	and	between	subspecies	of	Z.	mays	(Diez	et.	al.	2013),	but	we	have	now	shown	the	

rapidity	at	which	this	can	occur	in	the	context	of	selfing.	Our	results	are	also	consistent	

with	the	fact	that	the	GS	of	maize	inbred	lines	is	smaller	than	some	open-pollinated	maize	

varieties	and	the	wild	relatives	of	maize	(Laurie	and	Bennett,	1985).		Overall	our	results	

and	previous	results	suggest	that	average	GSs	have	decreased	through	the	processes	of	

domestication	and	subsequent	crop	improvement,	perhaps	because	of	inbreeding	and	

strong	selection	against	lower	fit	individuals	(Rayburn	et	al.,	1994).	

	 Given	GS	variation,	we	investigated	the	genomic	components	that	contribute	to	size	

variation	–	that	is,	features	such	as	genes,	TEs,	rDNAs	and	heterochromatic	knobs.		One	

somewhat	trivial	possibility	is	that	chromosomes	with	large	knobs	were	somehow	

disfavored	during	selfing,	such	that	GS	decreases	are	driven	solely	by	knob	content.		While	

we	do	find	a	significant	association	between	knobs	and	GS	(Figures	3.3	and	3.4),	the	

association	with	TEs	is	stronger	and	accounts	for	a	larger	proportion	of	GS	change,	because	

knobs	constitute	only	8%	of	the	maize	genome	(Ananiev	et	al.,	1998)	while	TEs	compose	

>85%	(Schnable	et.	al.	2009).		

	 Our	results	complement	evidence	that	maize	genomes	vary	substantially	in	TE	

content	(Wang	and	Dooner,	2006;	Morgante	et.	al.	2007).	In	more	recent	studies,	the	

measurement	of	knobs	and	TEs	has	been	enhanced	by	the	use	of	high-throughput	
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sequencing	(Tenaillon	et	al.,	2011).	For	example,	one	study	found	genomic	differences	

among	that	maize	inbred	lines	are	driven	by	differences	in	knob	repeats	and	that	the	

overall	TE	content	of	these	lines	correlates	negatively	with	GS	(Chia	et	al.,	2012).		In	

contrast,	we	find	that	both	TEs	and	knobs	correlate	positively	with	GS.		The	differences	

between	our	studies	and	past	studies	may	be	from	differences	in	methods.		Past	studies	

have	mapped	to	exemplar	TEs;	presumably	TE	content	can	be	underestimated,	depending	

on	the	exemplar	set.		Our	study	has	used	whole	genome	mapping	to	specific	TEs,	which	

likely	results	in	a	higher	proportion	of	counts	mapping	to	TEs,	especially	with	the	improved	

long-read	assembled	reference	genome	(Jiao	et.	al.	2017).			

That	is	not	to	say	that	our	method	is	perfect.		Even	with	improvement	of	the	maize	genome	

assembly,	repeat	regions	such	as	knob	repeats	are	difficult	to	assemble,	annotate	and	map,	

and	so	they	may	be	underrepresented.		However,	our	reliance	on	AGPv4	should	minimize	

this	to	the	extent	possible.		It	is	also	possible	that	we	are	underestimating	the	number	of	

knobs	because	we	remove	any	that	overlap	with	TEs	(~47%)	causing	a	bias	towards	TEs.	

That	said,	we	still	find	a	small	change	in	the	knob	counts	is	associated	with	changes	in	the	

GS.		Finally,	we	have	not	included	centromeric	or	telomeric	repeats	in	our	study,	and	these	

could	also	contribute	to	shifts	in	GS.		Overall,	our	four	components	account	for	>75%	of	

mapped	reads,	on	average.	

	 In	the	transition	from	outcrossing	to	selfing,	we	believe	that	a	decrease	in	GS	can	be	

attributed	to	two	different	factors.	The	first	is	pressure	for	a	smaller	genome,	which	results	

in	the	loss	of	repetitive	regions.	It	has	long	been	suggested	that	large	genomes	are	

disadvantageous	(Knight	et	al.,	2005)	over	short	time	scales	(Smarda	et	al.,	2007)	and	

hence	there	could	be	selection	against	large	GS	(Smarda	et	al.,	2010).	There	is	also	some	
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evidence	of	GS	limitations	in	maize	(Poggio	et	al.,	1998).		If	this	were	a	strong	force,	

however,	we	would	expect	GS	losses	to	occur	in	all	landraces	that	transition	to	sefling,	but	

this	is	not	true.	In	fact,	one	of	our	landraces	(Santo	Domingo)	with	a	large	GS	remains	

constant	and	may	even	increase	in	the	number	of	TEs	and	knobs	(Figure	3.5).	Thus,	we	do	

not	have	strong	evidence	that	there	are	limitations	GS	per	se	in	the	context	of	selfing.		

A	second	factor	could	be	loss	of	genic	TEs	that	are	deleterious	and	thus	purged	from	the	

genome	after	selfing.	We	find	some	intriguing	evidence	for	this,	because	all	three	landraces	

that	had	a	GS	decrease	contained	higher	counts	of	genic	TEs	in	S1	than	landraces	whose	GS	

remained	constant	(Figure	3.4).		At	the	cessation	of	selfing,	nearly	all	landraces	had	a	

similar	number	of	TEs	in	genic	regions	at	S6.		We	propose	that	GS	reduction	is	a	complex	

combination	of	both	GS	constraints	and	purging	of	deleterious	TEs,	especially	near	genes.				

	 We	know	very	little	about	the	efficiency	of	DNA	removal	across	TE	families	and	

genomic	components	or	about	the	possible	causes	of	GS	loss.	One	mechanism	that	could	

remove	TEs	is	ectopic	or	unequal	recombination.	Ectopic	recombination	causes	double-

strand	DNA	breaks	in	the	terminal	repeat	sequences	of	an	intact	LTR	retrotransposons,	and	

solo	LTRs	result	from	errors	in	homologous-recombination-mediated	repair	(Mani	and	

Chinnaiyan	2010).	Since	the	maize	genome	is	composed	mainly	of	LTRs,	we	should	

therefore	expect	to	see	solo	LTR	sequences	as	a	consequence	of	ectopic	recombination	

(Fehry	et.	al.	2015).		The	maize	genome	contains	many	solo-LTRs,	but	we	did	not	find	any	

evidence	for	increased	mapping	to	these	solo-LTRs	in	S6	(Figure	S3.4).		That	said,	we	

consider	this	to	be	a	preliminary	result,	because	a	more	fitting	metric	will	be	to	contrast	the	

ratio	of	counts	between	LTRs	and	internal	TE	regions	across	generations.		This	approach	

might	be	particularly	insightful	in	the	context	of	recombination	rates,	because	unequal	



104	
	

recombination	events	and	TEs	are	closely	linked	and	where	genomic	regions	have	high	

recombination	they	tend	to	have	a	high	density	of	TEs	(Tian	et.	al.	2009,	Kent	et.	al	2017).	

These	regions	may	have	a	more	difficult	time	purging	TEs	during	the	transition	to	selfing.	

Therefore,	the	genomes	with	more	TEs	in	high	recombination	regions	may	be	subject	to	

higher	levels	of	ectopic	recombination	and	thus	loss	in	genome	size.	

	 Another	mechanism	that	could	lead	to	smaller	GS	is	biased	segregation	against	

heterozygous	TE	insertions.		Outcrossing	species	may	have	many	TE	insertions	as	

heterozygotes,	but	it	is	possible	that	segregation	is	biased	against	large	TE	insertions,	

particularly	near	genes.	Over	generations	of	selection	this	phenomenon	might	eventually	

lead	to	smaller	genome	sizes	and	TE	decreases	in	euchromatic	regions.	This	mechanism	

does	not	depend	on	the	GS	per	se,	but	on	the	location	of	TE	insertions.		That	said,	it	is	still	

somewhat	mysterious	how	selection	against	individual	TE	insertions	could	lead	to	smaller	

genome	sizes,	because	six	generations	is	likely	not	enough	to	uncouple	linkage	among	TE	

insertions.			Perhaps	segregation	tends	to	favor	shorter	chromosomes,	and	only	parents	

with	substantial	differences	in	TE	insertions	ultimately	exhibit	GS	decreases.	If	this	is	the	

case,	then	we	predict	that	the	three	lines	with	a	GS	reduction	originated	from	more	

heterozygous	parental	chromosomes	and	specifically	chromosomes	that	are	more	

heterozygous	for	TE	insertions.	Further	work	is	being	implemented	on	SNP	heterozygosity	

of	these	lines	to	explore	this	hypothesis.	

We	have	shown	that	the	transition	from	outcrossing	to	selfing	can	shift	GS	and	genomic	

content	swiftly.	As	GS	is	associated	with	heterchromatic	knobs	and	TEs,	we	find	these	are	

most	likely	the	driving	force	for	a	reduction	in	GS.	Where	these	repeat	sequences	are	

located	and	the	total	number	may	predict	whether	this	any	loss	in	GS	at	all.	TEs	have	been	



105	
	

found	to	repeatedly	make	significant	contributions	to	genome	evolution.	With	better	

sequencing	technology	we	can	further	uncover	the	effects	of	inbreeding	and	its	relationship	

with	GS	and	TE	content.	There	is	still	much	to	learn	about	the	majority	of	components	of	

higher	plant	genomes	and	processes	that	shape	them.	
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FIGURES	

	

Figure	3.1:	Schematic	of	experimental	setup.		A	single	individual	from	each	of	11	

outcrossing	landraces	were	selfed	with	single	seed	descent.		For	each	generation,	three	

sibling	seeds	were	retained.	Generations	S1	and	S6	were	measured	with	cell	flow	

cytometry	and	whole	genome	sequencing.	

	 	

11	outcrossing	
landraces	

S1	 S2	 S3	 S4	 S5	 S6	

Cell	flow	cytometry	(11	landraces)	
Whole	Genome	Sequencing	(6	landraces)	
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Figure	3.2:	Cell	flow	cytometry	measurements	for	all	11	landraces	for	generation	S1	and	

S6.	Error	bars	show	both	sibling	seed	replicates	and	technical	triplicates.	Black	solid	lines	

show	landraces	with	a	significant	decrease	in	GS	and	gray	dashed	lines	show	landraces	

with	no	change	in	GS.	
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Figure	3.3:	Linear	relationships	between	GS	(pg/1C)	and	normalized	counts	of	genes,	TEs,	

knobs,	and	rDNA.		Each	dot	represents	a	single	individual,	and	the	individuals	constitute	

the	entire	sample	of	S1	and	S6	individuals	across	11	landraces.		The	GS	of	each	individual	is	

the	average	among	technical	replicates.	Correlations	for	all	graphs	can	be	found	in	Figure	

S3.2.	
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Figure	3.4:	Differences	in	genomic	components	between	landraces	and	generations.	The	

plots	on	the	left	show	results	for	landraces	without	a	significant	GS	change,	as	measured	by	
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flow	cytometry	(Table	3.1).		The	plots	on	the	right	illustrate	results	based	on	landraces	that	

had	a	reduction	in	GS	(Table	3.1).	The	plots	with	blue	boxplots	represent	genes,	green	

boxplots	represent	TEs,	yellow	boxplots	represent	knobs	and	red	boxplots	represent	rDNA.	

The	generation	and	landrace	are	indicated	in	the	x-axis	of	each	plot	–	e.g.,	“1.MRO1”	

represents	the	S1	generation	of	landrace	Araguito.		See	Table	3.1	for	the	names	of	

landraces.		
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Figure	3.5:	Differences	in	genic	TEs	between	landraces	and	generations.	Left	is	landraces	

that	saw	a	reduction	in	GS,	right	is	landraces	that	saw	no	change	in	GS.		
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TABLES	

	

Table	3.1:	Shows	all	eleven	landraces	and	the	number	of	sibling	replicates	available	from	

generations	1	and	6.		The	t-test	examines	the	null	hypothesis	of	equal	GS	between	S1	and	

S6.			

*We	also	sampled	two	individuals	from	S5	for	MR01,	and	the	t-test	contrast	was	also	

significant	for	S1	vs.	S5	and	S6;	p	=	1.87x10-6	)		

**MR13,	MR19	did	not	have	any	viable	S6	samples,	but	S7	was	used	for	cell	flow	cytometry	

measurements,	in	addition		

**For	MR23,	S2	was	used	in	place	of	S1.	

Landrace	 Sibling	Replicates	

(S1,S6)	

	Genome	Reduction?	

(t.test	p-value)	

Whole-genome	

sequencing?	

MR01	(Araguito)*	 3,1	 Yes	(2.95x10-4)	 Yes	

MR05	 3,3	 No	(0.333)	 No	

MR08	(Costeno)	 3,3	 Yes	(7.91x10-4)	 Yes	

MR09	(Cravo	

Rioganense)	

2,3	 No	(0.684)	 Yes	

MR11		 2,3	 No	(0.223)	 No	

MR13	 2,1**	 No	(0.759)	 No	

MR14	 3,1	 No	(0.149)	 No	

MR18	(Reventador)	 3,3	 Yes	(5.24x10-4)	 Yes	

MR19(Santo	Domingo)	 3,3**	 No	(0.447)	 Yes	

MR22	(Tuxpeno)	 3,2	 No	(0.444)	 Yes	

MR23	 3***,3	 No	(0.638)	 No	
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Table	3.2:	Results	of	the	linear	model	that	includes	GS	(pg/1C)	and	four	genomic	

components.	*	represent	significance.	

	 Estimate	 Std.	Error	 t	value	 p-value	

Genes	 0.007	 0.007	 -1.15	 0.269	

TE	 0.004	 3.97x10-4	 9.18	 2.53x10-9***	

Knobs	 -0.962	 0.515	 -1.87	 0.074	

rDNA	 0.042	 0.017	 2.55	 0.018*	
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Table	3.3:	P-values	for	ANOVA	for	each	of	the	genomic	features	whether	differences	in	

variation	are	explained	by	landrace,	generation	or	an	interaction	between	landrace	and	

generation.	*	represent	signifigance	

	 Landrace	 Generation	 Landrace:Generation	

Genes	 0.182	 0.151	 0.323	

TEs	 2.75x10-11***	 0.012*	 0.011*	

Knobs	 2.69x10-14***	 1.32x10-3***	 1.56x10-4***	

rDNA	 9.03x10-10***	 0.151	 0.020*	
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SUPPORTING	INFORMATION	
	

	
Figure	S3.1:	Simulation	results	for	BUSCO	method	on	chromosome	10,	where	either	10%	

or	20%	of	TEs	were	lost	(10Loss,	20Loss),	10%	of	TEs	were	gained	(10Gain)	or	there	was	

no	change	to	the	genome	(None).		The	simulations	were	run	with	either	10X	or	2X	

coverage.		The	simulation	parameters	are	indicated	in	the	x-axis	labels;	;	for	example,	

“10Loss.2”	simulated	the	loss	of	10%	of	TEs	with	genome	coverage	of	2x.		The	boxplots	

represent	results	from	5	simulations.		The	black	bar	within	the	boxplot	is	the	median,	and	

the	whiskers	represent	the	25th	and	75th	percentile.			
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Figure	S3.2:	Correlations	between	genomic	components.	The	diagonal	line	has	histograms	

of	GS	(pg/1C)	and	genomic	components	(normalized	counts).	Top-right	shows	correlations	

between	GS	and	genomic	components	with	stars	representing	significance.	Bottom-left	

shows	plots	along	with	best	fit	lines.	
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Figure	S3.3:	Differences	in	TE	families	between	generations	and	landraces	

	 	

1.
M

R
09

6.
M

R
09

1.
M

R
19

6.
M

R
19

1.
M

R
22

6.
M

R
22

420

440

460

480

500

520
No GS Shift

N
or

m
al

ize
d 

C
ou

nt
s 

(L
TR

s)

1.
M

R
01

6.
M

R
01

1.
M

R
08

6.
M

R
08

1.
M

R
18

6.
M

R
18

440

460

480

500

520

GS Reduction

1.
M

R
09

6.
M

R
09

1.
M

R
19

6.
M

R
19

1.
M

R
22

6.
M

R
22

108

110

112

114

116

N
or

m
al

ize
d 

C
ou

nt
s 

(H
el

itr
on

s)

1.
M

R
01

6.
M

R
01

1.
M

R
08

6.
M

R
08

1.
M

R
18

6.
M

R
18

112

114

116

118

120

122

1.
M

R
09

6.
M

R
09

1.
M

R
19

6.
M

R
19

1.
M

R
22

6.
M

R
22

0.055

0.060

0.065

0.070

N
or

m
al

ize
d 

C
ou

nt
s 

(S
IN

E)

1.
M

R
01

6.
M

R
01

1.
M

R
08

6.
M

R
08

1.
M

R
18

6.
M

R
18

0.064

0.066

0.068

0.070

0.072

0.074

1.
M

R
09

6.
M

R
09

1.
M

R
19

6.
M

R
19

1.
M

R
22

6.
M

R
22

0.026

0.028

0.030

0.032

N
or

m
al

ize
d 

C
ou

nt
s 

(L
IN

E)

1.
M

R
01

6.
M

R
01

1.
M

R
08

6.
M

R
08

1.
M

R
18

6.
M

R
18

0.028

0.030

0.032

0.034



118	
	

	

	

Figure	S3.4:	Differences	in	solo-LTRs	between	landraces	and	generations.	
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Table	S3.1:	Shows	number	of	total	reads	(read1	and	read2)	and	the	number	of	mapped	

reads	after	filtering	for	quality	and	trimming		

Plant	 Landrace	 Generation	 Total	Raw	

Reads	

Mapping	&	

Filtering	

6	 MR01	 1	 27,983,116	 26,668,715	

50	 MR08	 1	 26,986,772	 25,573,929	

54	 MR08	 6	 24,736,425	 19,722,223	

129	 MR01	 6	 25,711,281	 27,246,849	

130	 MR08	 1	 26,012,183	 24,360,061	

134	 MR08	 6	 26,376,723	 24,897,807	

158	 MR01	 1	 23,942,518	 22,549,068	

183	 MR08	 1	 26,003,832	 24,820,978	

187	 MR08	 6	 26,614,842	 25,539,393	

24	 MR19	 1	 30,255,041	 28,314,178	

29	 MR19	 6	 30,396,790	 28,288,266	

60	 MR18	 1	 22,990,097	 21,426,200	

65	 MR18	 6	 23,031,606	 21,489,571	

83	 MR18	 1	 26,956,437	 25,230,033	

88	 MR18	 6	 21,093,782	 19,673,250	

94	 MR19	 1	 21,750,767	 20,279,482	

99	 MR19	 6	 27,445,943	 25,288,443	

141	 MR18	 1	 26,114,974	 23,878,265	

146	 MR18	 6	 25,478,194	 23,681,434	

204	 MR19	 1	 26,701,082	
	

24,735,502	

209	 MR19	 1	 25,592,077	 23,853,751	

135	 MR22	 1	 33,047,402	 31,847,965	

140	 MR22	 6	 36,347,768	 35,025,312	
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164	 MR22	 1	 35,933,487	 34,665,308	

169	 MR22	 6	 34,623,472	 33,276,187	

203	 MR22	 6	 34,157,920	 23,978,643	

1	 MR09	 1	 35,316,631	 33,981,512	

5	 MR09	 6	 35,407,139	 34,075,274	

31	 MR22	 1	 31,346,952	 30,133,410	

108	 MR09	 1	 33,526,492	 32,336,580	

112	 MR09	 6	 36,830,659	 35,544,758	
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Table	S3.2:	ANOVA	p-values	for	genic	TEs	

	 Landrace	 Generation	 Landrace:Generation	

Genic	TEs	 0.001**	 0.005**	 0.006**	
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Table	S3.3:	ANOVA	p-values	for	TE	families	between	generations,	landraces	and	the	

interaction	between	generations	and	landrace	

	 Landrace	 Generation	 Landrace:Generation	

LTRs	 2.09x10-11***	 0.015*	 0.013*	

Helitrons	 1.07x10-7***	 0.007**	 0.009**	

SINEs	 3.72x10-9***	 0.017*	 0.557	

LINEs	 4.37x10-13***	 0.427	 0.524	
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