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Abstract of the Dissertation

Essays on Reputation and Learning
in Markets and Networks

by

Simpson Zhe Zhang
Doctor of Philosophy in Economics

University of California, Los Angeles, 2016

Professor Moritz Meyer-ter-Vehn, Chair

This dissertation addresses key topics in the economic study of reputation and learning. Many

real world interactions occur among agents who are only partially informed about the qualities of

other agents. Therefore the agents must learn about each other over time as they interact. Over

time, as more information is learned, a reputation will develop for an agent, and this reputation

will inform the decisions of other agents to interact with them. Thus understanding the nature and

impact of reputational effects in dynamic settings is crucial in developing more realistic models of

the world.

The first chapter, based on my paper “Reputational Learning and Network Dynamics” with

Mihaela van der Schaar, considers learning and reputation in a networks model. In many real world

networks agents are initially unsure of each other’s qualities and must learn about each other over

time via repeated interactions. This chapter provides a methodology for studying the dynamics

of such networks, taking into account that agents differ from each other, that they begin with

incomplete information, and that they must learn through past experiences which connections/links

to form and which to break. The network dynamics in the model vary drastically from the dynamics

in models of complete information. With incomplete information and learning, agents who provide

high benets will develop high reputations and remain in the network, while agents who provide

low benets will drop in reputation and become ostracized. We show that the information to which
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agents have access and the speed at which they learn and act can have a tremendous impact on

the resulting network dynamics. Using the model, we can also compute the ex ante social welfare

given an arbitrary initial network, which allows us to characterize the socially optimal network

structures for different sets of agents. Importantly, we show through examples that the optimal

network structure depends sharply on both the initial beliefs of the agents, as well as the rate

of learning by the agents. Due to the potential negative consequences of ostracism, it may be

necessary to place agents with lower initial reputations at less central positions within the network.

The second chapter, based on my paper “Optimal Production Choice with Reputational Con-

cerns”, considers a model where a single firm’s reputation evolves alongside continuous time as it

sells a product. Consumers are initially uncertain about the firm’s quality and learn about it through

the purchasing the firm’s product. The firm chooses its output at every point in time while taking

into account that higher output levels will allow the market to know more information about its

quality. Two cases are analyzed, with both informed and uninformed firms. Uninformed firms are

shown to have convex value functions and always produce more than is profit maximizing. In the

informed firm case, a low quality firm has an less of an incentive to produce than a high quality

firm because it does not wish to give the market information.

The third chapter is based on my paper “A Dynamic Model of Certification and Reputation”

with Mihaela van der Schaar, and is reprinted with permission from the journal Economic Theory.

It considers learning in a market that occurs through reputation and certification simultaneously,

which allows us to investigate the rich interplay and dynamics that can arise. Our work offers four

main insights: (1) Without certication, market learning through reputation alone can get “stuck” at

inefcient levels and high-quality agents may get forced out of the market. (2) Certication “frees”

the reputation of agents, allowing good agents to keep working even after an unfortunate string of

bad signals. (3) Certication can be both benecial and harmful from a social perspective,so a social

planner must choose the certication scheme carefully. In particular, the market will tend to demand

more certication than socially optimal because the market does not bear the certication costs. (4)

Certication and reputational learning can act as complementary forces so that the social welfare

produced by certication can be increased by faster information revelation.
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CHAPTER 1

Reputational Learning and Network Dynamics

1.1 Introduction

Networks are pervasive in all areas of society, ranging from financial networks to organizational

networks to social networks. And an important feature of many real world networks is that agents

do not fully know the characteristics of others and must learn about them over time. For instance

a bank learns about the credit-worthiness of a new borrower, a worker in a firm learns about the

ability of a coworker, and a buyer learns about the product quality of a supplier. Such learning

can strongly affect the resulting shape of the network. As agents receive new information, they

may revise their beliefs about other agents, update their linking decisions, and cause the network

to evolve as a result. To properly analyze such network evolution, it is crucial to understand the

exact mechanism by which learning impacts network dynamics.

The impact of agent learning on network evolution has not been well studied in the existing

literature. A large network science literature analyzes the effect of learning on fixed networks that

have already formed (see e.g. Scott [Sco12]). A smaller microeconomics literature1 studies the

formation of networks - but makes very strong assumptions (e.g., homogeneous agents/entities,

complete information about other agents). Neither the network science literature nor the microe-

conomics literature has so far taken into account that agents behave strategically in deciding what

links to form/maintain/break and that they also begin with incomplete information about others,

so they must learn about others through their interactions. As a result, neither network science

nor microeconomics provides a complete framework for understanding, predicting and guiding the

1See the overview in Jackson [Jac10] for instance.
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formation (and evolution) of real networks and the consequences of network formation.

The overarching goal of this chapter is to develop such a framework. An essential part of the

research agenda is driven by the understanding that individuals within a network are heterogeneous

- some workers are more productive than others, some friends are more helpful than others, and

some borrowers are more creditworthy than others. Furthermore, these characteristics are not

known in advance but must be learned over time via repeated interactions. The rate of learning

itself may also be strongly influenced by the network structure: agents engaged in more interactions

are likely reveal more information about themselves.

As a motivating example, consider a group of financial institutions that are linked together in

a financial network2. These financial institutions provide benefits to each other by engaging in

mutually beneficial trading opportunities, such as providing each other with liquidity or engaging

in joint ventures3. High quality firms will reliably carry through the terms of trade, but low quality

firms are more likely to default and harm their neighbors. Each institution will thus only continue

to link with another institution (over time) if the counterparty is believed to be of sufficiently high

quality. As time progresses, the institutions observe the actions of their counterparties, update their

beliefs about the quality of each counterparty, and change their linking decisions as a result. In

this way, learning by the financial institutions causes the network topology to evolve over time.

The network topology also impacts the rate of learning, as an institution with more connections

interacts with more counterparties, and thus its neighbors have more observations to learn from.

While having more connections opens an institution up to more beneficial opportunities, it also

carries the risk of causing the institution to be shut out of the network more quickly if it starts

defaulting, as in the case of Lehman Brothers due to its exposures to the subprime mortgage market

during the 2008 financial crisis.

Our model takes into account the features of the previous example: agents behave strategically,

begin with incomplete information about each other, and must learn through continued interactions

which connections to form and maintain and which to break. We consider a continuous time model
2Our model can also be applied to a wide range of other networks, such as organizational networks, social networks,

or expertise networks. We discuss some implications for these settings as well throughout the chapter.
3As in the model of Erol [Ero15].
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with a group of agents who are linked according to a network and who send noisy flow benefits to

their neighbors. The benefits that agents provide could be interpreted for instance as the benefits

that financial institutions derive from providing liquidity to each other or from diversifying risk

with each other’s specialized assets. Each agent is distinguished by a fixed quality level which

determines the average value of the flow benefits it produces. Agents observe all the benefits

that their neighbors produce, and they update their beliefs about a neighbor’s quality via Bayes

rule. Neighbors with more connections will reveal more information about themselves over time.

Agents will maintain links with neighbors that provide high benefits, but will cut off links with

neighbors that provide low benefits. Thus the network evolves as agents learn about each other

and update their beliefs. Since the amount of links an agent has determines the rate of learning

about that agent, the rate of learning about an agent changes as the network changes, leading to a

co-evolution of the network topology and information production.

Our model is highly tractable and allows us to completely characterize network dynamics and

give explicit probabilities of the network evolving into various configurations. In addition, we

are able to describe the entire set of stable networks and analytically compute the probability that

any single stable network emerges. This allows for predictions regarding which types of stable

networks are likely to emerge given an initial network.

We also study the implications that learning has on the social welfare and efficiency of a net-

work. Our results show that learning has a beneficial aspect: agents that are of low quality are

likely to produce low signals and will eventually be ostracized from the network. Learning also

has a harmful aspect: even high quality agents may produce an unlucky string of bad signals and

so be forced out of the network. Moreover, even having low quality agents leave the network can

reduce overall social welfare. A marginally low quality agent may harm its neighbor slightly, but

it also receives a large benefit if its neighbor is of very high quality. Thus if the low quality agent

leaves the network, the overall social welfare would actually decrease. The issue here is that agents

only care about the benefit their neighbors are providing them, but not the benefit they are provid-

ing their neighbors. Thus, there is a negative externality every time a link is severed4. In many

4The negative effects of ostracism can be particularly acute in financial networks during times of distress in which

3



situations, the negative effects of learning outweigh the positive effects, so on balance learning is

actually harmful. In particular, increasing the learning rate about marginal agents whose neigh-

bors are high quality agents is bad, because forcing the marginal quality agent out of the network

sacrifices the social benefit of the link to the high quality agent. However, increasing the rate of

learning about a marginal quality agent whose neighbors are also marginal quality agents is good,

because more information will be revealed about that marginal quality agent, allowing its neigh-

bors to more quickly sever their links to it. Thus the impact of learning can be either positive or

negative depending on the specific network.

Our welfare results have important implications for network planning and are useful in a diverse

range of settings, such as in guiding the formation of networks by the policies of a financial regula-

tor, human resources department, online community, etc. Due to the varying effects of learning, we

show that the optimal network structure will be quite different for different groups of agents. For

instance, when agents all have high qualities, the optimal network will be fully connected (which

allows all agents to benefit fully from their repeated interactions). On the other hand, if some

agents have low initial reputations, then a fully connected network may not be optimal because it

will be desirable to isolate low quality agents (or clusters of low quality agents). Because of the

negative effects of learning, it may be optimal to prevent two agents from linking with each other,

even if such agents have initial expected qualities higher than the linking cost. If such agents did

link, they would both send more information about themselves through this link, causing them to

be ostracized more quickly. Thus each agent, as well as the overall network, may become worse

off through the formation of this link due to the faster learning caused by the link. In some cases,

a star or a core-periphery network would generate higher social welfare than a complete network

even when all agents have initial expected qualities higher than the linking cost. Such a situation

arises for instance if there are two separate groups of agents, one group with very high expected

quality and the other group with moderate expected quality. By placing the high quality agents

in the core and the moderate quality agents in the periphery, the high quality agents are able to

banks get shut out of funding, as is the case of a liquidity freeze. Ostracism has also been demonstrated in a wide
variety of social settings in the social psychology literature. We discuss this literature and our model’s implications in
the Literature Review section.
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produce large benefits for the network, and the potential harm from the moderate quality agents is

minimized. This is a new information-based reason for the benefits of a core-periphery network,

in contrast to other non-informational reasons given in the networks literature.

Finally, we consider four extensions of our model that allow for even richer network dynamics

and learning. In the first extension, we allow the mechanism designer to provide the agents with

a subsidy that encourages linking5. The effect of such a subsidy is to promote the amount of

experimentation done by the agents, and we show that a large enough subsidy can always improve

overall social welfare because of this. In the second extension, we allow for agents with high

enough reputations to form new links with each other, and we show that social welfare will be

increased when the linking threshold is set high enough. In the third extension, we allow new

agents to enter the network over time, and we consider the optimal time at which new agents should

arrive. We show that all agents should be allowed to enter the network eventually, but delayed entry

can be desirable in certain types of networks. Lastly, in the fourth extension we allow for agents

that have been ostracized in the past to re-enter the network after a set period of time, and we show

that the negative effects of learning can be mitigated if re-entry occurs frequently enough.

1.2 Literature Review

This chapter represents a novel contribution to the network formation literature, by being among

the first to consider incomplete information and learning in networks, as well as by providing

a tractable model that allows for the computation of many properties, including the ex ante so-

cial welfare, of different network topologies. Other papers in the network literature have usually

studied network dynamics only in settings of complete information when agents perfectly know

each other’s qualities. For example, the papers by Jackson and Wolinsky [JW96], Bala and Goyal

[BG00], Watts [Wat01], and Galeotti and Goyal [GGJ10] all consider networks where the agents

have complete information. In these models, agents are aware of the exact qualities of all other

agents and there is no learning. The network dynamics arise instead from externalities and indirect

5For instance a financial regulator could guarantee transactions within a financial network to make them less risky.
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benefits between agents that are not directly linked. As one link is severed or formed, the benefits

produced by other links changes as well, which causes other agents to sever or form their links in

a chain reaction. For some networks, such as informational networks, these indirect benefits seem

important, as an agent who has many neighbors will likely be able to produce higher quality in-

formation as well. However, in other networks such as friendship networks these indirect benefits

are less relevant and it is the quality of each specific agent that matters the most. This is especially

applicable when a new group of agents is meeting for the first time, as it is likely to be the mutual

learning and agent beliefs that drive the evolution of the network. We argue that the network dy-

namics in such situations are more greatly dependent on reputational effects and mutual learning

than on changes in the values of indirect benefits.

We do not assume any indirect benefits in our model and focus instead on the dynamics re-

sulting from incomplete information and learning. Agent learning strongly influences the network

formation process in a way that would not arise with complete information. Agents that send good

signals will develop high reputations and remain in the network, whereas agents that send bad

signals will develop low reputations and eventually become ostracized by having their neighbors

cut off links. The rate of learning about an agent’s quality affects how quickly the network evolves

and thus has a strong effect on the resulting social welfare. With complete information however,

such dynamics would not occur because agents would know each other’s qualities perfectly at the

onset. For instance, Watts [Wat01] considers a dynamic network formation model where agents

form links under complete information. When there are no indirect benefits between agents in that

paper’s model, each agent would make a one time linking decision with any other agent and never

update its choice later on. But with learning, agents may change their linking choices by break-

ing off links with neighbors that consistently produce low benefits. Thus incomplete information

causes links to fluctuate dynamically over time as new information arrives and beliefs are updated,

instead of staying static as in the complete information case. We argue that such effects are key

and even the main driver of dynamics when a group of agents are meeting for the first time and

forming a network with each other.

In addition, the tractability of our model allows us to explicitly compute the social welfare for
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different network structures even under incomplete information. This tractability arises from the

use of continuous time in our model and the choice of Brownian motion as the information process,

which allows for closed form equations of the probabilities that different networks emerge. In

contrast other networks papers such as Jackson and Wolinsky [JW96] and Bala and Goyal [BG00]

use discrete time models that do not allow for such clean closed form expressions. While these

other papers analyze the efficiency properties of a given fixed network, our welfare results are much

stronger and allow the network to evolve endogenously over time as agents learn and update their

linking decisions. This enables us to compare the ex ante optimality of different initial network

structures, as well as provide general results for when certain networks are optimal. For instance,

we show that when the rate of learning in the network is either very slow or very fast, a complete

network will be optimal if the agent’s initial expected qualities are all higher than the cost of

maintaining the links. But when learning is at an intermediate rate, it may be optimal not to have

all agents connected with each other even if their expected qualities are higher than the linking

cost, due to the externalities associated with learning. Such a result cannot arise under complete

information, where if agent’s qualities are all perfectly known it would be strictly better for all of

them to be linked initially.

This chapter is also tied to the literature on observational learning in networks. Works such

as Golub and Jackson [GJ10], Golub and Jackson [GJ12] and Acemoglu et al ([ADL11] analyze

observational learning in social networks, in which there is a fixed exogenous network on which the

agents interact, and the agents learn about an exogenous state of the world through this network by

observing the actions of neighbors. These papers provide results regarding the speed and accuracy

of the observational learning that can be achieved by agents connected through different types of

networks. This chapter is significantly different from this literature because agents learn about

other agents’ qualities instead of an exogenous state of the world. As such, agents will wish

to update their linking decisions over time as their beliefs about the agents with whom they are

connected with change. Thus, in our paper the network and learning co-evolve, causing the network

structure to evolve endogenously.

A paper that does consider the diffusion of information about agents across a network is Vega-
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Redondo [Veg06]. This paper focuses on the issue of moral hazard and monitoring. It assumes that

players engage in bilateral prisoner’s dilemma games. Information about player actions diffuses

through the network, and agents are able to sustain cooperation through punishing defectors. More

densely connected networks allow for faster information transmission and thus sustain higher levels

of cooperation. The paper analyzes how the structures of networks that emerge is affected by

this transmission of information, and shows through simulations and mean-field analysis that the

inclusion of network based information can increase network density. Our work instead focuses

on adverse selection and on learning about agent types. We show that more information can be

harmful for welfare because it leads to greater ostracization among agents. The tractability of our

model also allows us to consider the social welfare generated across the entire path of network

evolution, as opposed to the welfare of the long run average network. We are thus able to address

issues of network design, and we characterize the optimal initial network structure under different

environments.

There have also been recent related papers in the financial literature studying the impact of

learning and information on the structures of financial networks, such as Blasques et al (2014)

and Babus (2013). Many of these papers seek to explain the core-periphery structures of financial

networks that have been well documented empirically. These papers show that features such as

dealer heterogeneity will lead to such structures. However, the focus of these papers is either

on complete information settings where the types of other agents are directly observable, or on

learning through investing in information gathering (by ensuring repayment of debt) rather than

on learning being affected by the network structure itself. These papers show that since networks

can allow for mutual monitoring by financial institutions, they can also lead to more efficient

trading. The benefits that a network provides also leads to greater stability over time. The settings

of these papers are longer term than our own and are more applicable to stable financial market

circumstances where informational uncertainty about counterparties is low. We view our model

instead as describing a short time period with a lot of uncertainty, such as in the aftermath of a

financial crisis when banks are very unsure of the solvency of other banks, due to the difficulty

in assessing the quality of their assets for instance. In such situations, banks will be hesitant
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to trade with each other and will very carefully try to learn about the solvency of other banks

through observations of repayments, which affect each bank’s reputation. Banks that obtain low

reputations may get shut out of the funding market entirely during liquidity runs, as was the case

during the collapse of Lehman Brothers in the recent financial crisis. Thus it is important for a

financial regulator to carefully structure the trading network and control the interactions so that

such situations can be mitigated.

A closely related networks paper that involves learning with adverse selection is Song and van

der Schaar [SS15]. Like us, this paper also considers learning by agents about the types of other

agents within a network, and it shows how incomplete information and the learning process can

lead to a wide variety of network structures and dynamics. However, this paper considers a discrete

time model and incorporates a different type of learning process in which information is revealed

immediately, after a single interaction. On the contrary, information is revealed gradually in our

model, allowing linking decisions and learning to occur simultaneously. Since learning takes place

gradually instead of instantaneously, we can derive results about how the speed of learning affects

network dynamics and social welfare. Most importantly, our model assumes that the network struc-

ture itself impacts the rate of learning about agents. This assumption is more realistic as learning is

often affected by an agent’s locations within the network itself, and it has strong implications. We

show that it necessitates the need for careful planning by a network designer to properly control the

learning by agents. In addition, our use of continuous time allows our model to be more tractable

and able to provide explicit characterizations of the social welfare of different network structures.

Finally, we note that the negative effects of learning in our model can be linked with the damag-

ing impacts of ostracism found in the social psychology literature. Social ostracism is a prevalent

force that has been documented in the social psychology literature in numerous settings ranging

from online interactions to office workplaces. As Williams and Sommer [WS97] state, “Social

ostracism is a pervasive and ubiquitous phenomenon.” In this literature, ostracism can also occur

when an agent’s perceived quality drops too low, and will have harmful effects on the agent itself.

As the paper by Wesselman et al [WWP13] notes, “Ostracism is a common, yet painful social

experience...Individuals who do not fit the group’s definition of a contributing member may find
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themselves a likely candidate for punitive ostracism”. That paper shows the occurrence of os-

tracism via an online experiment, where agents differed in their ability to play a game, and agents

who play badly became ostracized by the others. This is similar to our model, where agents who

are learned to be of low quality are ostracized. Ostracism can also occur in workplaces, as some

employees may be ostracized by their coworkers. Robinson et al [ROW12] notes that “not only are

such experiences extremely painful, but under some circumstances they can have an even greater

negative impact than other harmful workplace behaviors such as aggression and harassment.” Thus

it is important for companies to consider the harmful effects of ostracism that can occur through

workplace interactions. We provide guidelines for minimizing the negative effects of ostracism

through placing lower reputation agents in less central positions of the network.

1.3 Model

1.3.1 Overview

We consider an infinite horizon continuous time model with a finite set of agents denoted by

V = {1, 2, ...,N}. At every moment in time, the agents choose which other agents to link with,

and a link is established only through mutual consent. These choices are made subject to an

underlying network constraint Ω = {ωi j} that specifies the pairs of agents that are able to link with

each other6. For each pair of agents ωi j = 1 if agents i and j can connect with each other and

ωi j = 0 otherwise. We call agents i and j neighbors if they can connect. Initially (time t = 0),

agents are linked according to a network G0 = {g0
i j} ⊆ Ω. As the network will change over time,

we denote Gt as the network at time t. Moreover, we let kt
i =

∑
j

gt
i j be the number of links that

agent i has at time t, and we let Kt
i denote the set of neighbors of agent i at time t.

Agents receive flow payoffs from each link equal to the benefit of that link minus the cost. Each

agent i must pay a flow cost c for each of its links that is active. Hence, at time t, agent i pays a total

6This network constraint Ω may arise from the specific interests/desires of the agents regarding who they want to
link with, or from potential physical/geographical constraints that limit agents from linking. It may also be planned,
e.g. by the human resources department in a company for a network of employees, or through the policies of a financial
regulator for a network of financial institutions.

10



cost of kt
ic for all its links. Agents also obtain benefits from their links, depending on their linked

neighbors’ qualities qi. However each agent’s true quality is initially unknown to all agents, and we

do not require that agents know their own qualities. At the start of the model, each agent i’s quality

qi is drawn from a commonly known normal distribution N(µi, σ
2
i ) with µi > c. Both the mean

and the variance are allowed to vary across agents, and several of our results below will utilize this

heterogeneity. Agent i generates a different noisy benefit bi j(t) for each agent j that is linked to

it, and these benefits follow a Brownian motion dbi j(t) = qidt + τ−1/2
i dZi j(t), where the drift is the

true quality qi and the variance depends on τi, an exogenous parameter we call the signal precision

of agent i7. Zi j(t) is a standard zero-drift and unit variance Brownian motion, and represents the

random fluctuations in the benefits of each interaction. Zi j(t) is assumed to be independent over

all i and j, and thus all the benefits produced by agent i are conditionally independent given qi.

We assume that all the benefits that agent i produces are observed by all the neighbors of i, which

ensures that agent i’s neighbors all have the same beliefs about i at any point in time (information is

locally public among agent i’s neighbors)8. For each agent i, we define the agent’s benefit history

as the history of all previous benefits,H t
i = {bt′

i j}tt′=0.

We assume that agents are myopic, and they thus consider only the current flow benefit when

making linking decisions9. Each agent’s utility is assumed to be linear in the benefits provided by

each link and the linking cost. This also implies that agents are risk neutral and so consider the

expectation over neighbor qualities when there is uncertainty. The flow utility of agent i at any

7We can think of the signal precision as representing how much information the agent reveals about itself in each
interaction, with a higher precision corresponding to more information. It could depend on the type of interaction with
the agent (e.g. close partnerships or chance encounters), or factors like the agent’s personality.

8This is an important assumption to maintain the tractability of the model. It can be interpreted, for instance,
through an online expertise network where the output of agent i is public, so that all neighbors of agent i can judge
the benefit that i has provided to all its links. Or in an offline setting, we could assume that the neighbors of agent i
are continuously discussing the benefits they have received from i with all other neighbors of i, so that the neighbors
maintain the same beliefs. For most of our results, the information does not need to be fully public; the information
regarding agent i needs only be available to all the direct neighbors of agent i.

9Such an assumption is common within the networks literature to maintain tractability, see Jackson and Wolinsky
(1996) or Watts (2001) for instance. Myopia is an appropriate assumption in financial networks where firm managers
have myopic incentives. Such myopic incentives have been documented empirically in papers such as Jacobson (1993)
and Mizik (2010). We relax this assumption in the extensions section where we allow for subsidies that change agent
linking strategies.
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time t is given by the following equation:

Ui =
∑

{ j∈Kt
i }
(E[q j|H t

i ] − c) (1.1)

1.3.2 Reputation and Learning Speed

Since we have assumed a Brownian motion process, a sufficient statistic for all the individual link

benefits is the average benefit per link produced by agent i up to time t, which we denote as Bi(t).

Given our above assumptions, Bi(t) follows a Brownian motion dBi(t) = qidt + (kt
iτi)−1/2dZi(t)

where the drift rate is the true quality qi, the instantaneous volatility rate (kt
iτi)−1/2 depends on the

number of links agent i has at time t, and Zi(t) is the standard Brownian motion with zero-drift

and unit-variance. Importantly, this equation shows that the more links an agent has, the lower its

volatility rate and the faster its true quality qi is learned. This is because an agent with more links

produces more individual benefits, and so the average over all benefits is more precise. Note also

that an agent with no links would not send any information, and thus there would be no learning

about its quality. Therefore the topology of the network strongly affects the rate of learning about

each agent’s quality.

If at time t all links of agent i are severed, then no benefit will be produced by agent i and this

will be denoted as bt
i = ∅. In this case no information is added and hence, the Brownian motion of

agent i is stopped at the current level. As mentioned, there is a prior belief of an agent i’s quality

N(µi, σ
2
i ), and agents will update this belief in a Bayesian fashion in light of the observations

of flow benefits. These observations combined with the prior quality distribution will result in

a posterior belief distribution of agent i’s quality f (qi|H t
i ) which is also normally distributed10.

We denote µt
i = E[qi|H t

i ] as the expected quality of agent i given the history H t
i and call it the

reputation of agent i at time t. The reputation represents the expected flow benefit of linking with

agent i at time t.

We have assumed that agents are myopic. Therefore, to maximize flow utilities, agent i will

10As mentioned a sufficient statistic for the entire history is Bi(t), so a neighbor only needs to know Bi(t) in order to
calculate this posterior.
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cut off its link with agent j once agent j’s reputation µt
j falls below the linking cost c. Since we

assume all agents have homogeneous linking costs, and all neighbors have the same beliefs, any

other agent that is linked to j will also decide to sever its link. From this moment on, agent j is

effectively ostracized from the network; since it no longer has any links it cannot send any further

information that could potentially improve its reputation11. While in the base model an ostracized

agent cannot return to the network, we relax this assumption in the extensions section.

1.4 Network Dynamics and Stability

1.4.1 Network Dynamics

The dynamics of the model evolve as follows: all pairs of agents that are neighbors according to

the network constraint Ω will choose to link at time zero, since we have assumed that all agents

have initial reputations higher than the cost c (any agent with an initial reputation lower than c is

immediately ostracized from the network and would not need to be considered). Thus the initial

network at time 0 will be the same as the network constraint, G0 = Ω. Over time agents that

send bad signals will have their reputations decrease, and once an agent’s reputation hits c its

neighbors will no longer wish to link with it. All its neighbors will sever their links and the agent

is effectively ostracized from the network. We will show that this always happens for an agent with

true quality qi ≤ c, and will still happen with positive probability for an agent with quality qi > c.

The ostracization of an agent will affect its former neighbors as well. Since they now have once

less link each, they will produce information about themselves more slowly than before, and so

their reputations will be updated less quickly.

The remaining agents in the network will continue to link and send signals until someone

else’s reputation drops too low and that agent is also ostracized. This process will continue until

the qualities of all the remaining agents are known with very high precision and in the limit their

11Although ostracism may seem harsh, as we noted earlier ostracism is a prevelant phenomenon that has been
widely studied in the social psychology literature, in settings ranging from online interactions to office workplaces.
Furthermore, in financial networks low reputation institutions may get shut out of funding completely during liquidity
crisis.
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reputations no longer change. Since agent qualities are fixed, by the law of large numbers, any

agents that remain in the network will have their qualities learned perfectly in the limit as, t → ∞,

and the network will tend towards a limiting structure that we call the stable network. The next

section will explicitly characterize these stable networks, but we note that many different stable

networks could potentially emerge depending on the true qualities of the agents and the signals

they produce.

Figure 1.1 shows the different network dynamics that could emerge even if the initial reputa-

tions of the agents are fixed, due to the uncertainty about the true qualities of the agents as well

as the randomness in the signals they send. From the same initial reputations for the red and blue

agents, many different network dynamics and stable networks are possible. In the top graph the

red (larger circle and bolded line) agent has a true quality less than c and so will be ostracized from

the network for certain at some time, while the blue (smaller circle and thin line) agent has a true

quality above c and so may or may not be ostracized from the network depending on the signals it

sends. Each event leads to a different stable network, either with and one without the blue agent. In

the bottom graph it is the blue agent who has a true quality lower than c and so will be ostracized

for sure, whereas the red agent could potentially stay in the network indefinitely.

1.4.2 Stable Networks

As mentioned, we call the limiting network structure as t goes to infinity, denoted by G∞, a stable

network. Formally, let G∞ ≡ limt→∞Gt. This limiting structure always exists since agent qualities

are fixed, so by the law of large numbers any agent that remains in the network will have its quality

learned to an arbitrary precision over time. The probability that an agent who is still in the network

at time t ever becomes ostracized must therefore tend to zero as t → ∞ (we show this analytically

below). Which specific stable network eventually emerges is random and depends on the signal

realizations of each agent. The tractability of our model allows us to explicitly characterize the set

of stable networks that could emerge given a set of agents and a network constraint Ω, as well as

the impact of the rate of learning on the probability distribution over stable networks.
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Figure 1.1: Illustration of Possible Network Dynamics
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To understand which stable networks G∞ can emerge, we investigate whether a link li j between

agents i, j can exist at t = ∞. If two agents i and j are not neighbors (i.e. ωi j = 0), then it is certain

that g∞i j = 0. If two agents i and j are neighbors (i.e. ωi j = 1), then the existence of this link li j

at t = ∞ requires that the reputations of both i and j never hit c for all finite t, which means that

neither agent is ever ostracized. Hence G∞ will always be a subset of the initial network G0, and is

composed only of agents whose reputations never hit c for all finite t.

We say that an agent is included in the stable network if their reputation never hits c for all t,

so that they are never ostracized from the network. 12

Note that being included in the stable network does not imply that an agent has any links in the

stable network, as it could also be that all of the neighbors of that agent were ostracized even though

the agent itself was not. We can calculate the ex ante probability that an agent i is included in the

stable network, which we denote by P(S i) with S i denoting the event in which agent i is included

in the stable network. This can be accomplished using standard results regarding Brownian motion

hitting probabilities, since P(S i) is equal to the probability that the agent’s reputation never hits c

for all finite t. The following proposition gives this probability.

Proposition 1. P(S i) depends only on the initial quality distribution and the link cost and can be

computed by

P(S i) =

∫ ∞

c
(1 − exp(− 2

σ2
i

(µi − c)(qi − c)))φ
(
(qi − µi)

1
σi

)
dqi/σi (1.2)

Proof. See appendix. �

Proposition 1 has several important implications. Note that since P(S i) is positive and less than

1 for all i, no agent is certain to be included in or excluded from the stable network. Also note that

the probability an agent is part of the stable network is independent of that agent’s signal precision

12As a technical note, when we make the ostracization classification, we assume that an agent who has all its
neighbors ostracized will continue to send information about itself at its signal precision level, with the signals sent
via the same probability distribution based on its true quality. Thus we still considered the agent “ostracized” if
its reputation drops to c via this information process even after all its other neighbors have been ostracized. This
assumption is made for technical purposes only and has no impact on the dynamics of the model, as the agent has no
links in any such case.
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τi. Thus the rate at which the agent sends information does not affect the chance that it is in the

stable network. This is because the rate at which the agent sends information only affects when it

gets ostracized from the network, but not if it gets ostracized overall13. Furthermore, note that the

probability an agent i is included in the stable network is independent of its links with other agents

and the properties of those agents. Connections with other agents affect the rate at which an agent

sends information but not the agent’s true quality, and so will not impact whether it is eventually

ostracized from the network.

Using the explicit expression above, we can also describe how P(S i) depends on an agent’s

initial mean and variance, µi and σi.

Corollary 1. For each agent i, P(S i) is increasing in its initial mean quality µi, decreasing in the

variance of its initial quality σ2
i , and decreasing in the link cost c. Moreover, limµi→∞ P(S i) = 1,

limσi→0 P(S i) = 1, limc→−∞ P(S i) = 1.

Proof. See appendix. �

These properties are intuitive since an agent with a higher mean quality and smaller variance is

less likely to have its reputation drop below c, and so is less likely to become ostracized. Moreover,

lowering the linking cost also reduces the hitting probability since the agent’s reputation would now

have to fall lower to be excluded from the network.

As mentioned, G∞ must be a subset of G0. Further, it can contain links only amongst pairs of

agents that are both included in the stable network and were linked in the initial network. Equiva-

lently, the set of stable networks can be thought of as the set of networks that can be reached from

G0 by sequentially ostracizing agents. Let I{S i} denote the indicator variable of the event in which

agent i is included in the stable network. Formally, a network can be stable if and only if it is a ma-

trix with entries given by gi j = I{S i}I{S j}I{g0
i j = 1}, for some realization of {S i,

¬ S i}i∈V . Links can

13To understand this intuitively, recall that reputation evolves through Bayes updating of the Brownian motion.
A higher precision increases the amount of information sent at every moment in time, but the overall probability
distribution of the information that is sent across all time remains the same. To see this rigorously, note that in the
proof of Proposition 1 in the appendix, the survival probability of an agent depends on τi only through the term tτi.
Thus increasing τi and decreasing the time t proportionally leaves the survival probability unchanged overall.
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exist only among agents that were never ostracized and were linked in the original network. Note

that different realizations of {S i,
¬ S i}i∈V could potentially correspond to the same stable network14.

By Proposition 1, we know that the rates of learning do not affect the probability of each event

S i. Since the rate of learning has no effect at an individual level, it cannot have an effect at the

aggregate level either. This is formalized in the following theorem. We can also use the equation

in Proposition 1 to derive an analytic expression for the probability that any specific stable network

emerges, which is presented in the corollary below.

Theorem 1. The signal precisions of the agents, {τi}i∈V , do not affect the set of stable networks

that can emerge or the probability that any stable network emerges.

Proof. It is clear that a network G must be a subset of G0 and can be stable if and only if there

exists at least one combination of events {S i,
¬ S i}i∈V such that gi j = I{S i}I{S j}I{g0

i j = 1}. Thus the

set of stable networks does not depend on the learning speed. Moreover, according to Proposition

1, P(S i) is independent over the different agents and does not depend on the speed of learning.

Hence the probability that any specific link exists in the stable network exists also independent of

the learning speed, so the probability of any stable network emerging is also independent of the

learning speed. �

Corollary 2. The probability that a network G is a stable network is given by
∑
{S i}

∏
i P(S i) where

the summation is over all realizations of {S i,
¬ S i}i∈V that correspond to G.

Figure 1.2 shows an example of how the corollary can be applied to a simple network of three

agents. This figure shows the five possible stable networks that could emerge given an initial

network of three agents. In addition, P(S i) is given for all the agents, which allows us to calculate

the exact probability of each of these networks emerging. For the first four networks, there is only

one realization of {S i,
¬ S i}i∈V that corresponds to it. For the last network, there are four possible

realizations, one in which ¬S i occurs for all agents, and three in which S i occurs for a single agent.

14For instance suppose that the network comprises only two agents i and j. Then the event in which S i but not S j

occurs and the event in which both S i and S j occur lead to the same stable network structure: the empty network.
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Figure 1.2: Set of Stable Networks Given an Initial Network
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We have shown that the speed of learning has no impact on the probability that a network

G is stable. This is intuitive since learning only affects the duration of a link but not its final

state. However, learning will have a crucial role on the social welfare of a network, which directly

depends on how long the agents are connected. We will consider the impact of learning on the

social welfare in the next section.

1.5 Welfare Computation

We will analyze overall social welfare from an ex ante perspective, given only the network con-

straint Ω and the prior agent quality distributions. Importantly the ex ante welfare is calculated

before the agent qualities are learned and any signals are sent. This type of welfare is the most

suitable for the type of design settings we will consider later, as it requires the least knowledge

on the part of the network designer. Let P(Lt
i j|q,G0) denote the probability that the link between

agents i and j still exists at time t. Also, let the parameter ρ represent the discount rate of the

network designer15. We can define the overall ex ante social welfare W formally as follows:

W =

∫ ∞

q1=−∞
...

∫ ∞

qN=−∞

∑

i, j

∫ ∞

0
e−ρt(q j − c)P(Lt

i j|q,G0)dtφ(
qN − µN

σN
)dqN/σN ...φ(

q1 − µ1

σ1
)dq1/σ1

(1.3)

We will show that this social welfare expression can be calculated in a tractable fashion using

a somewhat indirect approach. This approach utilizes the fact that the ex ante social welfare is

an expectation over all the possible ex post signal realizations. Thus we can calculate the ex

ante welfare by integrating over all possible realizations of the ex post welfare, which simplifies

equation 3 to a much more tractable form.

15We are assuming that the designer itself is more patient than the myopic agents. This can be thought of, for
instance, as a company manager who is more patient than its workers who act myopically in their interactions, or a
financial regulator that is more patient than the financial institutions, which have managers with myopic incentives.

20



1.5.1 Ex post welfare

Consider an ex post realization of agent hitting times ε = {εti
i }i∈V, where εti

i denotes the event in

which agent i’s reputation hits c at time ti given all the agent signals (note that ti = ∞ means that

agent i’s reputation never hits c). In the event in which ti < ∞, since the belief at time ti is correct,

the expected value of agent i’s quality conditional on this event εti
i is E[qi|εti<∞

i ] = c. In the event

with ti = ∞, since the initial belief is accurate in expectation

µi = E[qi] = P(εti<∞
i )E[qi|εti<∞

i ] + P(εti=∞
i )E[qi|εti=∞

i ] (1.4)

= (1 − P(S i))c + P(S i)E[qi|εti=∞
i ] (1.5)

and we have

E[qi|εti=∞
i ] =

µi − (1 − P(S i))c
P(S i)

(1.6)

where P(S i) is given by Proposition 1 and is independent of the network and the learning speed.

According to the above discussion, given an ex post realization ε, an agent i obtains 0 surplus

from its neighbors that have finite hitting times and obtains positive surplus from those whose

reputation never hits c (and are thus included in the stable network). The exact benefit agent i

receives in the second case depends on its own hitting time ti, which determines the link breaking

time with the other agents. We can calculate the ex post surplus that an agent i receives given ε as

follows:

Wi(ε) = Eq|ε


∑

j:g0
i j=1

∫ min{ti,t j}

0
e−ρt(q j − c)dt

 (1.7)

=
∑

j:g0
i j=1,t j=∞

∫ ti

0
e−ρt

(
µ j − (1 − P(S j))c

P(S j)
− c

)
dt (1.8)

=
1 − e−ρti

ρ

∑

j:g0
i j=1,t j=∞

µ j − c
P(S j)

(1.9)

Note that this Wi is taken from the perspective of the designer as it incorporates futures payoffs at

the discount rate of ρ. This equation shows that in each ex post realization of other agent hitting

times, agent i benefits if ti increases and it is ostracized later from the network. Summing over all
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agents, the social welfare given the ex post realization ε is therefore

W(ε) =
∑

i


1 − e−ρti

ρ

∑

j:g0
i j=1,t j=∞

µ j − c
P(S j)

 (1.10)

By taking the expectation over the events ε, the ex ante social welfare can be found as W =

Eε[W(ε)]. In order to compute the ex ante social welfare, we still need to know the distribution of

the ti, which is coupled in a complicated manner with the initial network and the learning process.

For instance, if the neighbor of agent i has a low hitting time and is ostracized quickly, then agent i

sends information at a slower rate and its own hitting time would increase. Thus directly computing

the social welfare using the above equation is still difficult. In the next subsection, we develop an

indirect method to calculate the distribution of ti.

1.5.2 Hitting time mapping

Recall that an agent’s links will scale up the rate at which it sends information compared to the

rate it would send information if its precision were constant at the base level of τi. Thus each link

also scales down the time at which the agent’s reputation hits c. So to calculate when the agent is

ostracized, we can first find when the agent’s reputation would hit c through sending signals at its

signal precision level, and then scale this time downwards proportionately based on the network

effect16. Consider an ex post realization of hitting times ε̂ = {ε̂ti
i }i∈V in which agent i’s reputation

would hit c at time ti if its precision were fixed at τi at all times. Note that the events ε̂ti
i are

independent from each other across different agents, and since the precision is fixed they also do

not depend on the network structure. The probability of ε̂ti
i can be explicitly computed in the

following lemma.

Lemma 1. The probability density function f (ε̂ti
i ),∀ti < ∞ can be computed as

f (ε̂ti
i ) =

∫ ∞

−∞

µi − c
σ2

i
√
τi

t−3/2φ


√

tτi(qi − c) +

1
σ2

i
(µi − c)
√

tτi

 φ(
qi − µi

σ
)dqi/σi (1.11)

The probability mass point function f (ε̂ti=∞
i ) = P(S i).

16Refer to footnote 12 for a justification of this type of scaling.
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Proof. See appendix. �

Using Lemma 1, we can easily obtain the distribution of joint events f (ε̂) =
∏

i f (ε̂ti
i ) due to

the fact that the individual events are independent. This would measure the joint probability of the

agents exiting the network at times {ti}i∈V if the information sending speed of the agents were not

being scaled by the number of their links. If there were no network effect, the ex ante social welfare

could be directly computed using the distribution of hitting times given by Lemma 1. However,

due to the network effect, the actual hitting times may vary for each ε̂. Let M : [0,∞]N → [0,∞]N

be the hitting time mapping function, which maps the hitting times with no network effect to the

actual hitting times when there is a network effect. Figure 1.3 presents an algorithm for computing

M, which operates by scaling the information speed of each agent at every time t by their current

number of neighbors and updating the speed at which an agent sends information when a neighbor

is ostracized.

Note that if ti = ∞ in the event ε̂ti
i then it is also∞ in the mapped event εti

i . This means that an

agent that never leaves the network with no scaling effect will not leave when the times are scaled

either. Then given a realization ε̂, the ex post social surplus can be computed as

W(ε̂) =
∑

i


1 − e−ρMi(t)

ρ

∑

j:g0
i j=1,t j=∞

µ j − c
P(S j)

 (1.12)

Therefore, the ex ante social welfare is W = Eε̂[W(ε̂)]. We note that this is a tractable equation

for the ex ante social welfare given any network structure and set of agents. Proposition 1 gives the

explicit expression for P(S j), and Lemma 1 provides the distribution of ε̂. Thus our model allows

for easy and tractable computations of the ex ante social welfare of any type of network. Theorem

2 below formalizes this result.

Theorem 2. Given Ω, the initial quality distributions, and the link cost c, the overall ex ante social

welfare can be computed as follows

W = Eε̂


∑

i


1 − e−ρMi(t)

ρ

∑

j:g0
i j=1,t j=∞

µ j − c
P(S j)



 (1.13)
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Figure 1.3: Algorithm for Hitting Time Mapping Function
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where the distribution of ε̂ is computed using Lemma 1 and the hitting time mapping function M is

given in the appendix.

1.6 Impact of Information and Learning

In this section we study the impact of learning on ex ante welfare, both individual and overall,

given an initial network G0. In particular, we will show how the agents’ signal precisions, a rep-

resentation of the rate of learning, impact individual agent welfare as well as the overall social

welfare.

As a benchmark, we consider the social welfare when there is no learning, which we denote

by W∗. When there is no learning, no existing link will be severed. The social welfare of an agent

i without learning can thus be computed by summing over the mean qualities of all agents it is

connected with initially:

W∗
i =

∑

j:g0
i j=1

∫ ∞

0
e−ρt(µ j − c)dt =

1
ρ

∑

j:g0
i j=1

(µ j − c) (1.14)

The ex ante overall social welfare without learning is given by the sum over the individual

welfares:

W∗ =
∑

i

W∗
i =

1
ρ

∑

i

∑

j:g0
i j=1

(µ j − c) (1.15)

1.6.1 Overall Impact of Learning

Let W(τ1, ..., τN) be the ex ante social welfare when agents learn each other’s true quality with the

signal precisions being τ1, ..., τN . We also let Wi(τ1, ..., τN) represent an agent i’s ex ante welfare

given these signal precisions. The next theorem states that in any network, the addition of learning

has a negative impact on every individual’s ex ante welfare for any value of the signal precisions.

This immediately implies that it lowers the overall ex ante social welfare as well.

Theorem 3. Wi(τ1, ..., τN) < W∗
i for all i and for all τ1, ...τN .
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Proof. See appendix. �

There are two main factors that are at work in this result. First, the myopia of the agents causes

the learning to be done inefficiently. Second, cutting off a link imposes a negative externality on

the agent who is ostracized, since that agent can no longer receive benefits from its neighbors.

Taken together, these factors lead to a reduction in overall social welfare. More precisely, when a

link li j is severed due to agent j’s reputation hitting c, agent i does not gain welfare compared to

the case without learning. This is because the expected value of having a link with i from t∗j on is

0 and thus having the link or not makes no difference17. However, agent j loses welfare compared

to the case without learning because agent i’s reputation is still above the link cost and thus having

the link would benefit j over not having the link.

This result supports the damaging impacts of ostracism found in the social psychology litera-

ture, which were mentioned above in the literature review. The social psychology literature usually

documents the harmful effects of ostracism from the perspective of the agents that have become

ostracized and can no longer benefit from interactions with the other agents. However, our result

goes further by stating that the possibility of ostracism will actually lower every agent’s social wel-

fare from an ex ante perspective. By allowing for the ostracism of others, agents open themselves

up to ostracism as well, which lowers their own welfare by more than they benefit from ostraciz-

ing other agents. Theorem 3 shows that every agent is hurt ex ante by ostracism, even those that

wouldn’t themselves be ostracized in the majority of the ex post realizations of the network.

1.6.2 Impact of Individual Information

The previous result showed that learning is harmful on aggregate: under learning both individual

and overall network welfare are lower than without learning. However, we show in this subsection

that learning need not be harmful at an individual level, as the rate that a single agent sends infor-

mation changes. We now investigate more closely how the information generation rate of a single

17Agent myopia is causing the cut-off value to be too high, and so the agent does not benefit from its learning.
This feature of reputational learning is similar to that shown in van der Schaar and Zhang (2014). In Section VIII we
discuss a possible solution for this problem by providing agents a subsidy to increase experimentation.
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agent (i.e. an agent’s signal precision) affects welfare. The faster an agent generates information

about its own reputation, the faster the other agents will learn its true quality (if the link is not

broken).

First we characterize the impact of an agent’s signal precision on that agent’s own welfare. The

next proposition shows that sending more information about itself will always harm an agent.

Proposition 2. Wi(τi, τ−i) is strictly decreasing in τi.

Proof. Consider any ex post realization ε = {εti
i }i∈V . If ti = ∞, then changing τi alone does not

change the fact that agent i would stay in the network forever, as so it does not affect the hitting

time realization of any other agent either. Thus agent i’s welfare Wi(ε) is not affected. If ti < ∞,

then the welfare of agent i depends on (1) the mean quality of all the neighboring agents j whose

t j = ∞ and (2) its own hitting time ti. Since (1) is not affected by changing τi, we only need to

study how τi affects ti.

Intuitively ti is decreasing in τi since agent i’s information sending speed is faster due to a

higher precision. We provide a more rigorous proof by contradiction as follows. Suppose agent i’s

new hitting time increases to t′i = ti + ∆ > ti. In this new realization, consider the duration from 0

to ti. Since t′i > ti, all other agents’ information sending process and speed do not change before

ti. Hence, agent i’s instantaneous precision at t ≤ ti changes to (τt
i)
′ =

τ′i
τi
τt

i. Hence, information

sending by agent i is faster at any moment in time before ti. Since, the stopping time t′i is larger

than ti, the total amount of information sent by agent i given τ′i is larger than that given τi. Because

the total information sent should remain the same, this causes a contradiction. Therefore t′i should

be smaller than ti for a larger τ′i . �

This result is in accordance with Theorem 3 and shows that an agent sending information about

itself will strictly decrease its own welfare. This is because in each realization in which the agent

is ostracized from the network, the agent will now be ostracized sooner and hence it will enjoy less

benefits from others. Since the agent already starts out with the maximal amount of links it can

obtain, it in effect has nothing to gain and everything to lose by allowing its own reputation to vary.

We relax this assumption in the extensions section and allow agents to form new links with those
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they are not connected with initially; under those circumstances an agent will be able to benefit by

generating more information about itself.

Though increasing the information sending speed is always harmful for an agent itself, it can

actually be helpful to its direct neighbors. The next proposition provides a sufficient condition on

the initial network such that this holds.

Proposition 3. Given an initial network G0, for any two initially connected agents i and j that are

linked through a unique path (i.e. the direct link), increasing one’s precision increases the other’s

welfare.

Proof. Consider any ex post realization ε = {εti
i }i∈V . If ti = ∞, then increasing agent i’s signal

precision τi does not change the realization εti
i . Hence t j is not affected. If ti < ∞, then according

to Theorem 1, the new hitting time t′i is sooner if agent i’s signal precision is larger. This causes

the link between agent i and j to be severed (weakly) sooner, leading to a (weakly) later hitting

time of agent j because agent j will send information at a slower speed for a longer time. Since

changing agent i’s signal precision does not change the finiteness of the hitting time of all other

agents, agent j’s welfare increases due to a longer hitting time for itself. �

Since the information sending speed of agent j slows after agent i is ostracized, agent j’s hitting

time is larger. Agent j thus prefers its direct neighbor to send more information, so that it can cut

off more quickly in case the neighbor is bad. After the link is broken, agent j will also be able

to reveal less information about itself, which is beneficial according to Proposition 2. In this way

agent j would enjoy more benefits for a longer time from its links with its other neighbors. We can

extend this analysis for more distant agents when the two agents are connected through a unique

path. This is summarized in the corollary to Proposition 3 below.

Corollary 3. Given any initial network G0, for any two agents i and j that have a unique path

between them, increasing one’s signal precision decreases/increases the other’s welfare if they are

an odd/even number of hops away from each other.

The above result shows an odd-even effect of the distance between two agents on the agent’s
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Figure 1.4: Example for Corollary 3

welfare. In all minimally connected networks (such as star, tree, forest networks), any two agents

have a unique path between each other and thus the impact of any agent’s information sending

speed on any other agent’s welfare can be completely characterized.

As an example, consider a network where four agents i, j, k, l are connected via a unique path,

as depicted in Figure 2. Agent i is linked with agent j, agent j is linked with agent k, and agent

k is linked with agent l. Then if agent i sends more information about itself, it stays connected

with agent j for a shorter period of time. This causes agent j to send less information about itself,

causing agent k to cut off its link with j more slowly if j were to be ostracized. Then agent k is

able to link with its other neighbors for a shorter length of time in expectation, decreasing the ex

ante welfare of k. Thus agent k is hurt when the neighbor of its neighbor, agent i, sends more

information. However agent l now links with its own neighbors for a longer length of time, and so

it benefits when i sends more information. However, when there are multiple paths between agents,

which implies there are cycles in the network, the impact of the signal precision of an agent on the

other agents’ welfares is much less clear. The reason is that with cycles the neighbor of an agent

i’s neighbor may also be linked with agent i itself18, and so the positive and negative effects of

information from Corollary 3 are entangled together. The following proposition shows that even

for an immediate neighbor, the impact could be totally opposite of Proposition 3 when cycles are

18This is known in the social network literature as triadic closure.
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Figure 1.5: Counterexample for Proposition 4

present in the network.

Proposition 4. If the initial network G0 has cycles, then it is possible that increasing some agent’s

signal precision decreases its immediate neighbor’s welfare.

Proof. We prove by constructing a counterexample, which is shown in Figure 2. Consider a net-

work with K > 3 agents. Agents 1, 2, 3 form a line and the other K − 3 agents connect to both and

only agents 1 and 2. We assume that agent 3’s quality is perfectly known and large. Hence, agent

3’s reputation never hits c. We also assume that the mean qualities of agents 4 to K are close to c.

Hence, agent 2 almost does not gain benefit from those agents even when K → ∞.

Consider a realization in which agent 1’s reputation hits c at t1 < ∞ and agent 2’s reputation

hits c at t2 < ∞. By increasing the signal precision of agent 1, its hitting time decreases to t′1 < t1.

If t′1 > t2, then agent 2’s hitting time is not affected, i.e. t′2 = t2. Otherwise, the new hitting

time may be different from t2. To simplify the analysis, we consider the extreme case in which

τi → ∞, thereby t′1 → 0. Therefore, agent 2 loses the link with agent 1 from the beginning in

any realization. However, since agents 3 to K also lose the link with agent 1 from the beginning,

for those whose hitting time was earlier than t2, their hitting time would increase by a factor of 2.

If there are at least three agents among 4 to K whose hitting was between [t2/4, t2/2], agent 2’s

information sending speed will increase sufficiently much that agent 2’s hitting time is smaller. By

making K large we can always making the probability of this event be large enough. Thus, agent

2’s hitting time will decrease on average. �

30



We have seen that increasing the information sending speed of an individual agent i could be

both good or bad for other agents depending on their locations in the network and their relation

with agent i. We note that it could similarly be good or bad for overall social welfare. Thus in

contrast with Theorem 3, increasing the amount of information about a single agent can benefit

the network overall. This would happen for instance, if there are three agents, i, j, and k who are

connected in a line, with links i j and jk. Suppose that the mean of agent k’s quality is much higher

than those of the other two agents. Then most of the welfare in this network comes through the

link between agents j and k. If agent i sends more information, agent j would be able to preserve

its link with agent k for a longer period of time, and overall social welfare would increase. This

example highlights how critical the network structure is in determining the overall impact of more

information by a single agent.

1.7 Optimal Initial Networks

In this section, we study which initial networks G0 maximize the overall ex ante social welfare.

Equivalently, we could think of a benevolent network planner that wishes to design the network

constraint Ω by choosing which agents are able to form links with which other agents. For instance,

in the financial network setting we could think of a regulator that specifies which types of financial

institutions are allowed to transact with which other types of institutions in order to maximize

overall social welfare19.

1.7.1 Fully connected networks

One intuition is that a fully connected network would be the optimal initial network since it results

in the largest number of links initially, and we have assumed that all agents have an initial reputa-

tion higher than the linking cost c. This intuition is accurate in certain cases, such as if the designer

19We note that many other types of objection functions are also possible instead of the overall ex ante social welfare.
For instance the designer may wish to maximize network welfare generated over a certain time interval, or before a
set deadline is reached. Or the designer may weigh the welfare of some agents more heavily than that of others. Given
the tractability of our model, many of our results can be extended for these alternative settings.
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is extremely impatient (i.e. ρ → ∞). Since the designer cares only about the initial time period,

and when time is short almost no new information can be learned, it is best to make the decision

based on the agents’ starting reputations. Surprisingly though, the fully connected network is also

optimal on the other extreme, when the designer is completely patient (i.e. ρ → 0). In this case,

the designer cares about the social welfare of the stable network that eventually develops, and al-

lowing all agents to be connected initially leads to the largest probability of links in the final stable

network. We prove these welfare results in the following proposition.

Further, note that the designer’s level of patience is inversely related with the rate of learning,

as faster learning means that information is revealed sooner and thus less patience is required.

Therefore a similar result holds for the rate of learning: as the rate of learning becomes extremal

the fully connected network becomes optimal as well. So for instance, a financial regulator should

optimally let all types of financial institutions transact with each other if it is very patient or very

impatient, or the information production is extremely fast or slow.

Proposition 5. 1. If the designer is either completely impatient (i.e. ρ→ ∞) or completely patient

(i.e. ρ→ 0), the optimal initial network is the fully connected network.

2. Fix the other parameters of the model and suppose the agents’ signal precisions are all multi-

plied by the same constant λ. If learning becomes very fast (i.e. λ→ ∞) or very slow (i.e. λ→ 0),

then the optimal initial network is the fully connected network.

Proof. See appendix. �

When the designer is either completely patient or impatient, the social welfare depends only

on the network G0 or G∞, respectively. The exact hitting time does not affect the social welfare.

Similarly if the learning is very slow, then the network structure always remains at G0, and if the

learning is very fast then G∞ is realized very quickly, so in both cases a fully connected network

is optimal. The idea is that in both extremes, the exact path of learning is no longer critical and so

the negative externalities of information are mitigated.

For intermediate levels of patience or learning however, changes in individual agent hitting

times due to linking could have a significant impact on the social welfare. We will show that
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having all agents fully connected with each other is not always the optimal choice. In the next

proposition though we show that the fully connected network is optimal in the case where the

agents are homogeneous and have very high initial qualities.

Proposition 6. Suppose all agents are ex ante identical. Fixing the other parameters, there exists

µ̄ such that if µi > µ̄ ∀i, then the optimal initial network is the fully connected network.

Proof. We will prove that for µ̄ large enough, the social welfare of any non fully connected network

will be increased through the addition of any new link. Therefore the welfare of the fully connected

network will be greater than the welfare of any other network. Consider an arbitrary network

constraint Ω that is not fully connected. Suppose that a link between agents i and j is added to the

network, and consider the welfare of the new network constraint Ω′.

First consider the change in welfare of agent i. In any realization where agent i is ostracized,

its welfare through having the extra link with j decreases by no more than (N−2)µ
ρ

, the welfare loss

when it loses all its links with the other agents immediately. In any realization where agent i is

not ostracized, its welfare with the additional link increases by µ

ρ
, the discounted value of the new

link given the expected quality of agent j. Thus the change in welfare for agent i is bounded below

by P(S i)
µ

ρ
+ (1 − P(S i))

(N−2)µ
ρ

= µ(P(S i)
(N−1)
ρ
− (N−2)

ρ
). Similarly, we can show that the change in

welfare for agent j is bounded below by µ(P(S j)
(N−1)
ρ
− (N−2)

ρ
).

Now consider the change in welfare for all the other agents in the network. In any realization

where both agent i and agent j are not ostracized, the hitting times of all the agents in the network

are unaffected by the new link. In any realization where either agent i or agent j are ostracized, the

change in welfare for all the other agents is bounded below by (N−2)(N−1)µ
ρ

. Thus the total change

in welfare for all other agents in the network is bounded below by [P(S i)(1 − P(S j)) + (P(S j)(1 −
P(S i)) + (1 − P(S i))(1 − P(S j))]

(N−2)(N−1)µ
ρ

.

Combining the above two observations, we note that the change in welfare for the whole net-

work is bounded below by µ[P(S i)
(N−1)
ρ
− (N−2)

ρ
+ P(S j)

(N−1)
ρ
− (N−2)

ρ
+ P(S i)(1−P(S j)) + (P(S j)(1−

P(S i)) + (1 − P(S i))(1 − P(S j))
(N−2)(N−1)

ρ
]. When µ̄ is large, P(S i) converges to 1 by Proposition 1.

Thus for µ̄ large enough, the lower bound for the change in welfare of agents i and j converges to
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2(N−1)µ
ρ

, a positive number.

When µ̄ is large, P(S i) and P(S j) converge to 1 by Proposition 1. Thus the lower bound for the

change in welfare converges to 2µ
ρ

, a positive. �

1.7.2 Core-periphery networks

As agents become more heterogeneous in terms of their initial mean quality, different network

structures other than the fully connected network can be optimal initial networks. Suppose agents

are divided into two separate types, and the initial mean quality of the high type agent is µH while

the initial mean quality of the low type agent is µL < µH. We show that when the expected

qualities of the two types are sufficiently different, the optimal initial network has a core-periphery

structure20.

Theorem 4. Suppose that there are two groups of agents, one with initial quality µL and one with

initial quality µH. Fixing all other parameters, there exists µ̄ such that ∀µH > µ̄, the optimal initial

network is a core-periphery network where all high type agents are connected with all other agents

and no two low type agents are connected. (µ̄ will depend on the other network parameters.)

Proof. We first show that all high type agents should connect to all other high type agents. This

is based on a similar argument as in the proof of Proposition 6. Since when µH → ∞, all high

type agents will stay in the stable network with very high probability, adding a link between any

two high type agents will strictly improve their welfare while impacting the welfare of all other

agents with very low probability. Hence, there must exist a large enough value for µH such that the

welfare of high type agents is maximized when all high type agents connect to all other high type

agents in the initial network.

Next we show that all low type agents should not connect to each other in any network where

each is linked to at least 1 high type agent. When µH → ∞, the welfare obtained by a link with

any low type agent j is dominated by that a link with high type agents, i.e. we can suppose that

20Although this theorem, assumes there are exactly two types, a similar result holds if instead the agents are com-
posed of two groups and within each group have parameters that are sufficiently close together.
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the welfare received by a link with another low type agent is approximately zero in comparison to

a link with the high type agents. Having additional links with other low-type agents reduces the

hitting time of agent j, M j(t), in the event that it gets ostracized, thereby reducing agent j’s welfare

by more than the welfare gain of the additional link. Therefore, low type agents do not connect to

each other in the optimal initial network.

Finally we show that all low type agents should connect with every high type agent. Since the

probability that the high type agent is ostracized approaches zero, such a link does not affect them

relative to the extra welfare that the low type agents receive. Thus we consider only the effect on

the welfare of the low type agent to be connected with all high type agents. In a realization where

the low type agent is not ostracized, this is optimal for all agents, as the high type agent stays in the

network with very high probability when µH is large enough. Thus both agents have their welfare

increased while not affecting the welfare of all other agents. We show that it is also optimal in

realizations where the low type agent is ostracized. Again we will assume that the high type agent

is not ostracized, which will hold for µH high enough. The low type agent receives a flow payoff of

µH from every high type agent that it has an active link with. Note that in the hitting time mapping

function the hitting time of an ostracized agent i is scaled by 1/K, where K is the total number of

high type neighbors. Thus the decrease in hitting time is exactly balanced out by the increase in

flow payoff in the case without discounting, and with discounting it is strictly better for the low

type agent to have an extra link.

�

The above result shows that high quality agents should be placed in the core and connected with

all other agents, while low quality agents should be placed in the periphery and not connected with

other low quality agents. Thus agents with lower initial reputations should be placed in less central

positions within the network in order to mitigate the negative effects of ostracism. Allowing low

quality agents to connect with too many other agents would increase the rate at which they send

information, causing them to be ostracized sooner and hurting them more than they would gain

through the direct benefits of the extra links. This core-periphery structure is commonly seen
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in many real-world financial networks, with large well capitalized banks in the core and smaller

banks in the periphery. A reason for this could be that the greater reputation of large banks lets them

withstand negative shocks more easily without being ostracized by their counterparties. Smaller

banks produce less information through their lesser number of transactions, allowing them to avoid

being ostracized as quickly. 21

We note that the above result depends heavily on the type of learning environment that is

present. From Proposition 6, we know that if the designer wad either very patient or impatient,

or if learning was very slow or very fast, then the optimal network would be the fully connected

network. It is only when the learning is at an intermediate level that the above result hold.

1.7.3 Star Networks

Star networks are common networks in the real world, where a single central agent is connected

with many periphery agents. Examples include a single boss and many subordinates, the head of a

political party that coordinates the disparate branches of the party, or a large trader that deals with

many small traders. There are several important forces to consider when placing agents within a

star network. Such networks depend greatly on the central agent, because that agent is connected

with all other agents and thus has the most links. The central agent is therefore the most important

agent to consider, and choosing the best agent to be in the center is crucial to the overall welfare of

the network.

The initial mean and the signal precision of the central agent are two exogenous parameters that

must be carefully considered when choosing the central agent. A high initial mean is beneficial

because it increases the expected flow benefits that all the other agents who are connected to the

central agent will receive. However, a higher signal precision is harmful because it allows for a

greater probability that the central agent becomes ostracized quickly, thus causing the network to

fall apart. Such an event would greatly lower social welfare. Therefore there is a trade off between

21We note that financial regulators have started imposing core-periphery structures on various financial networks to
encourage stability. Many banks are now required to trade through a central clearing counterparty (CCP), which is a
large financial institution that is ideally very stable. The idea is that trading with the CCP will mitigate the uncertainties
that individual banks have about each other’s qualities and thus prevent liquidity runs during financial crisis.
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the initial mean and the signal precision of the central agent: it is desirable to have a central agent

with a higher mean but a lower signal precision. In particular, choosing the agent based only on

its initial mean expected quality is not optimal, whereas under complete information it would be

optimal to always place the highest quality agent in the center.

We show these results formally in the next proposition. For concreteness, suppose that the

central agent in the network is denoted by agent 1. The exogenous parameters of the agents are

defined the same way as previously.

Proposition 7. The overall social welfare is strictly increasing in µ1 and strictly decreasing in τ1

and σ2
1.

Proof. We can break social welfare into two components: the welfare of the central agent, and

the welfares of each periphery agent. Notice that the welfares of the periphery agents are strictly

increasing in µ1 but do not depend σ1 or τ1 for the same reasons as in the proof of Theorem 3.

Also, the welfare of the central agent is strictly increasing in µ1 as that allows the central agent to

stay in the network for a longer period of time. Thus overall social welfare is increasing in µ1. The

welfare of the central agent is strictly decreasing in τ1 for the same reasons as in Proposition 2.

Thus overall social welfare is decreasing in this parameter. �

For the periphery agents on the other hand, the exogenous parameters have a much less clear

relationship with the overall social welfare. We can actually show through examples that social

welfare can increase or decrease in each of these factors for periphery agents. The same relation-

ships as for the central agent can hold, and a simple example would be a two person network.

However a marginally higher mean or a lower signal precision by a single periphery agent can

actually decrease overall welfare. For instance, consider a network where the central agent has an

initial mean quality close to c, one periphery agent denoted by agent i also has an initial mean qual-

ity close to c, and the qualities of all other periphery agents is very high. In such a case, increasing

the mean quality of agent i by a small amount, or decreasing agent i’s signal precision would harm

overall social welfare. These changes would result in the central agent being connected to agent

i for a longer stretch of time, which is undesirable since the other periphery agents are of much
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higher quality, and so having the central agent send more information is harmful. Thus, in such a

network it would be better for agent i to send information more quickly in order for it to exit the

network sooner.

We notice again that the tradeoff denoted above matters only at intermediate values of learning,

whereas if learning becomes very slow (or the designer becomes very impatient), then this tradeoff

goes away. This is summarized in the following proposition.

Proposition 8. If the rate of learning becomes very slow (i.e. λ→ 0), then the optimal star network

is obtained by placing the agent with the highest initial mean in the center.

Proof. In the limit of very slow learning, only the initial welfare generated matters, and placing

the agent with the highest mean in the center generates the highest welfare. �

Proposition 8 shows that the decision to place an agent at the center depends only on each

agent’s initial mean in the limit of very slow learning learning (a similar result holds for very high

designer impatience). This is similar to Proposition 5, although only in one direction. When the

network is constrained to be a star network, the highest initial welfare is obtained by having the

highest initial quality agent in the center if the learning is very slow.

1.7.4 Ring networks

In this section we focus on a special type of network: a ring network. Suppose for convenience

that agents are homogeneous in terms of initial mean quality and variance. Assume that under the

network constraint Ω each agent is limited to at most two neighbors. Hence, for a given number

of agents, they would only be able to form one or multiple ring networks of different sizes. This

could represent a work environment in which agents work in pairs on projects and can work on up

to two projects at a time, or a financial network in which financial institutions seek two partners to

trade with.

We study how the size of different rings affects the welfare an agent obtains and hence, we

can determine the optimal size of the rings that agents should form together. Let W(n) denote
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the welfare an agent can obtain if it is in a ring of size n under the network constraint Ω22. We

show that networks with rings of three agents (thus there is triadic closure among the agents) will

maximize both agent welfare and overall social welfare.23

Proposition 9. The optimal size of a ring network is 3 agents.

Proof. Consider a ring network consisting of three agents i, j, k. We focus on the welfare of agent

i and show that it is maximized compared to rings of other sizes. Since agents are identical, this

means that total social welfare is maximized as well.

Agent i obtains a positive benefit in two cases: (1) realizations in which both agents j and k’s

reputation never hit c; (2) realizations in which exactly one of agents j and k’s reputation never

hits c. The probabilities that these two cases happen are independent of the network structure

by Proposition 1. In the first case, having additional agent(s) between agent j and k does not

affect agent i’s realization and hence, agent i’s welfare is not affected. In the second case, having

additional agent(s) between agent j and k will change i’s realization with positive probability.

Consider a realization in which agent k’s reputation never hits c and agent j’s reputation hits c at

t j. In the ring of size 3, agent j’s direct neighbor besides i (i.e. agent k) never hits c. When there

are additional agents, it is either the case that agent j’s new direct neighbor never hits c or hits c

before infinity. If agent j’s new direct neighbor hits c before infinity, then agent j’s new hitting

time may increase and hence agent i’s new hitting time may decrease, leading to a lower welfare

for agent i. �

The intuition behind this result is similar to the reasoning of Proposition 3, in which having a

direct neighbor send more information is beneficial for an agent. With only three agents in each

ring, an agent learns about a neighbor that would be excluded from the stable network at a faster

rate, since that neighbor remains connected with the other neighbor, when the other neighbor is

included in the stable network, until the first neighbor is ostracized. This guarantees a fast rate of

learning about the low expected quality neighbor, allowing the agent itself to have more time to
22For convenience we assume that the number of agents N is divisible by n
23The social networks literature views triadic closure as the result of common preferences or trust, whereas our

model derives a reputational reason for such networks.
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stay connected with the high expected quality neighbor that is not ostracized. With more than three

agents, the neighbor that is excluded from the stable network may have its own neighbor disconnect

in advance, slowing the rate of information the ostracized neighbor produces and hurting the agent

itself.

We can extend this result to ring networks with more than three agents. Similar to the odd/even

effect highlighted in Corollary 3, we can show that rings with an odd number of agents will always

have higher expected social welfare than ring networks with an even number of agents. However,

as the number of agents grows large the difference in the social welfare of an even and odd number

of agents eventually goes to zero.

Corollary 4. If n is odd, then W(n) > W(m),∀m > n. If n is even, then W(n) < W(m),∀m > n.

Moreover, W(n) converges to a limit as n approaches infinity.

Proof. The proof is similar to that of Proposition 7 except we take into account the odd-even effect

discussed in Corollary 3. We still only need to consider the case when exactly one of agents j and

k’s reputation never hits c. Without loss of generality assume that j is not included in the stable

network. With four agents, social welfare is lower than with three because the neighbor of j, call

it l, may be ostracized before than j is ostracized, causing j’s information speed to slow down.

With five agents, social welfare is higher than with four because in the same case, there is a chance

that agent l’s other neighbor is ostracized before agent l is ostracized, resulting in a decrease in

agent l’s information speed and an increase in agent j’s information speed. This argument can be

extended indefinitely for any number of agents to prove the above result. We note that the limits of

the social welfares are the same, since the probability of a neighbor very far away sending a signal

that affects agent j’s hitting time approaches zero as the number of agents becomes very large.

Such an event can only occur if all the agents in between have an ostracism time less than agent j

itself, an event with probability that approaches zero as the number of agents gets large. �
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1.8 Extensions

As seen above, learning can have a negative impact on social welfare in a variety of networks, and

a large reason for this is the myopia of the agents. Since the agents are not experimenting for long

enough, learning is inefficient and social welfare is lost. In this section, we consider four possible

extensions that could alleviate this issue and allow for higher social welfare.

1.8.1 Linking Subsidy

A potential method of addressing the negative effects of learning is to give subsidies to the agents

for linking with others. For instance, a company may wish to give workers awards or bonuses for

collaborating with colleagues. Or in a financial setting, a regulator may give financial incentives for

firms conducting mutual investments, or guarantee interbank transactions during a financial crisis

to lower default risk. We model a subsidy by assuming that for every link that an agent maintains,

it receives an extra flow benefit of δ from the network designer. This linking subsidy does not affect

the social welfare computation since it is a direct transfer from the network designer to the agent,

but it would change agents’ decisions of when to break a link. Since agents are myopic, an agent

i will break its link with agent j if and only if agent j’s reputation drops below c − δ. The linking

subsidy thus causes the agents to learn more information about their neighbor’s quality and break

only if it is really likely to be bad. We show below that by properly choosing the linking subsidy

the social welfare can improve compared with the case when there is no learning about agents’

qualities. Let W(δ) denote the ex ante social welfare when the linking subsidy is equal to δ.

Theorem 5. There exists δ̄ such that ∀δ > δ̄, W(δ) > W∗. Moreover, lim
δ→∞

W(δ) = W∗.

Proof. See appendix. �

Note that by Theorem 3, this result also shows that the social welfare is higher than the standard

network model with no subsidy. Thus by imparting subsidies on agents to encourage them to

experiment for longer, the social welfare is higher than previously. The intuition is that when

the link subsidy is high enough, any link that is broken will involve an agent that was of really
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bad quality. Thus although the agent that is ostracized may still hurt from being disconnected, its

neighbors will benefit by a sufficiently large amount that overall social welfare increases. Thus

learning is now beneficial and improves welfare overall. The second part of the theorem states that

if the linking subsidy becomes too high, then the social welfare will converge to the social welfare

without learning. This is because when the subsidy is too high it becomes almost impossible for a

link to break, and so the network with high probability will not change, just like in the case without

learning. Thus having a linking subsidy is beneficial for the network, but the subsidy cannot be set

too high either in order to maximize social welfare.

1.8.2 New Link Formation

Another way that learning would be more socially beneficial is if agents were able to form new

links with other agents whose reputations are very high. In this extension, we assume that a pair

of agents who are not initially linked according to the network constraint Ω can form a new link

by incurring an instantaneous cost γ > 0. There is no cost to forming links with agents that they

are connected to under Ω. So unlike previously when there was a hard barrier between agents not

connected according to Ω, agents can now break this barrier by paying an instantaneous cost. This

cost could be exogenous, for instance the cost of time and energy in becoming familiar with a new

agent, or the cost of reducing some physical barrier between the agents (distance or geographic

barriers). The cost could also be set by the network designer such as a tax on link creation. Since

we assume the formation cost is instantaneous, it is infinitesimal in the social welfare calculation

and so only affects welfare through its impact on agent actions.

We assume that forming a link this way requires bilateral consent as usual. Agent i will want to

form a link with agent j if agent j’s reputation is higher than c + γ. Therefore a new link between

agents i and j is formed at time t if and only if µt
i ≥ c + γ and µt

j ≥ c + γ. The dynamics of our

model will now feature some agents attaining high reputation levels and being able to link with

other previously inaccessible agents that have also attained high reputation levels. Allowing these

two high quality agents to link together will improve social welfare due to the large mutual benefits

that are generated from their link.
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We can compare the social welfare produced by allowing this extra link formation against

the social welfare in the basic model. Let W(γ) denote the ex ante social welfare when the link

formation cost is equal to γ, and let W be the social welfare in the basic model without the extra

link formation.

Theorem 6. There exists γ̄ such that ∀γ ≥ γ̄, W(γ) > W.

Proof. Consider any realization ε when link formation is not allowed. The ex post welfare W(ε)

is changed only when there is some time t∗ such that there exist two agents i and j, who are not

initially connected, such that µt∗
i ≥ c + γ and µt∗

j ≥ c + γ. In the original realization ε, conditional

on t∗, there are two cases

• ζ1: Both agents’ reputations never hit c after t∗.

• ζ2: At least one agent’s reputation hits c after t∗.

When ζ2 occurs, allowing link formation may change the hitting time of all agents’ in the network

and hence, the welfare W(ε|ζ2) may change. However, the probability of ζ2 occurring tends to zero

as γ̄ tends to infinity by Proposition 1. When ζ1 occurs, the social welfare increases by at least
e−ρt∗

ρ

(c+γ̄)−(1−P(ζ1))c
P(ζ1) . When ζ2 occurs, the welfare decreases by at most B(ζ2), a function that is at

most linear in γ̄ as it grows large, since the set of agents and their initial qualities are fixed. Thus

the overall change in welfare can be written as

W ′(ε) −W(ε) ≥ P(ζ1)
e−ρt∗

ρ

(c + γ̄) − (1 − P(ζ1))c
P(ζ1)

− P(ζ2)e−ρt∗B(ζ2) (1.16)

By choosing γ̄ large enough, we can ensure that P(ζ2) is small enough such that the change is

positive in all such realizations ε. Therefore W(γ) > W.

�

This theorem states that if the link formation cost is high enough then the social welfare is im-

proved over the base model because two agents that decide to form a new link will do so with high
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reputations. Thus the social welfare generated by a new link is likely to be high as well, and this

dominates any potential informational externalities that the link could create. Note however that a

γ that is too low may actually harm welfare, for instance if there are a group of moderate quality

agents that are all linked to a very high quality agent, but separated from each other according to

Ω. This is similar to the setting of Theorem 5. In such a case, allowing moderate reputation agents

to link with each other would cause them to harm each other via the negative informational effects

of the link. This would reduce welfare overall compared to the base model. Therefore allowing

for new link formation can improve welfare, but the threshold for the link being formed must be

sufficiently high as well. The optimal γ̄ would depend on the specific properties of the network. If

as in the example there exists a group of very high initial quality agents that the moderate quality

agents are linked with, then γ̄ would likely be higher as well, as it becomes more important for

moderate quality agents to not be linked with each other.

1.8.3 Agent Entry

Our model can also be tractably extended to allow agents to enter into the network over time.

Specifically, suppose that for the set of N agents in V there is a corresponding set of entry times

{ei}i∈V , with ei ≥ 0 ∀i. Agents with ei = 0 are present in the network at the beginning, while

agents who have ei > 0 enter later on. These entry times are fixed and known to the agents in the

model. There is still the network constraint Ω over the set of all N potential agents that specifies

which agents are allowed to connect to each other, including agents that arrive later. This network

constraint determines where agents enter into the network at their entry times. The learning process

is the same as before, with learning occurring for agents within the network based on their current

amount of neighbors, and no learning occurring for an agent that has not yet entered.

Agents still make decisions myopically and will connect with a neighbor for as long as that

neighbor’s reputation is above the connection cost. Since we assume all agents have initial rep-

utations above the cost, an incumbent agent with always wish to connect with a newly entering

agent. However, the new agent would not want to connect with one of its neighbors that has al-

ready been ostracized previously within the network. The dynamics will evolve similarly to before,
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with agents connecting to neighbors until a neighbor’s reputation falls too low, at which point the

neighbor will be ostracized. The difference now is that new agents will arrive at certain times, and

when they do they will change the benefits and amount of information produced by the network.

We can compare the model with agent entry against the base model where all agents were

present in the beginning, i.e. ei = 0 ∀i ∈ V . We fix a network topology Ω and perform comparative

statics on the entry times of the agents. We first show that incorporating agent entry will not change

either the set or the distribution of stable networks.

Proposition 10. The set of stable networks is unchanged with agent entry. The probability of each

stable network emerging is the same as that given in Corollary 2 and identical to the case without

agent entry.

Proof. First note that Proposition 1 still holds for each agent, regardless of the specific entry times.

This is because the later entry of an agent only shifts the time at which it gets ostracized, but will

not change the fact that it ever gets ostracized. Since the probability that each agent is ostracized is

not affected, the set of stable networks and the probability that each stable network emerges does

not change either. Thus the same probability distribution over stable networks as in corollary 1

will result. �

Although the properties of the final stable networks are not affected by agent entry, the overall

social welfare will be affected. It is possible to calculate social welfare in a similar method as in

Theorem 2, as we can account for agent entry by rescaling the hitting times of the agents in the

network appropriately. Incorporating agent entry has two separate effects on social welfare: first,

the links that the entering agent has are started later, so the benefits from those links are realized

later as well and thus discounted more heavily; second, the neighbors of the entering agent send

less information before that agent enters, and the agent itself may send information more slowly

if one of its neighbors is ostracized before it enters, delaying the time at which the agent and its

neighbors are potentially ostracized from the network. The first effect hurts social welfare because

the benefits from any link are positive in expectation. However, the second effect can improve

social welfare by delaying the agents’ ostracization times and increasing the benefits that each
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Figure 1.6: Example for Theorem 7

agent is able to extract from the network. It is possible for the second effect to dominate the first,

so that delaying entry for an agent raises social welfare overall.

Theorem 7. For some network parameters, increasing a single agent’s entry time ei can increase

social welfare.

Proof. We prove using an example, shown in Figure 3. In this network of three agents, suppose

that the white agent’s quality is very high and known, so there is no uncertainty about this agent.

Suppose both the red (large circle and bolded line) and the blue (small circle and thin line) agents

qualities are unknown and close to c. Since the white agent’s quality is very high, the social welfare

of the network will be completely determined by the amount of time the blue agent connects with

the white agent. By delaying the entry of the red agent, the blue agent is able to stay connected for

longer in each realization, and so social welfare increases. �

In this example, note that although delaying the entry of the red agent is helpful, it is still better
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to have the red agent enter at some finite time instead of never entering. This is because the blue

agent’s reputation will eventually converge to its true quality by the law of large numbers, and in

the case where the blue agent has a good quality, enabling a link with the red agent will produce

positive benefits. In addition, after waiting for a sufficiently large amount of time, the probability

that the blue agent ever becomes ostracized if it hasn’t already goes to zero, so the red agent is

unlikely to impact the blue agent’s connection with the white agent. Thus delaying the entry of the

red agent is beneficial, but the red agent should not be excluded from the network altogether.

This argument holds in general for any network as well, all agents should have finite entry

times to ensure optimal social welfare. As an implication, a financial regulator may wish to delay

new firms from entering the network in times of crisis when there is a lot of uncertainty, and only

allow them to enter once the crisis has ended and reputations are more stable.

1.8.4 Agent Re-entry

Our model can be tractably extended to allow agents to be forgiven and then let back into the

network. For instance, suppose that a worker in a company can improve its quality after it becomes

ostracized through some exogenous means, such as going back to school to increase its abilities,

or taking counseling to better its personality. In financial networks, suppose that a bank can get

recapitalized by the government after it gets shut out of the network, allowing its expected quality

to increase. After the agent undergoes this exogenous process, the agent’s reputation improves and

so the other agents are again willing to link with it. We show that agent forgiveness in this manner

can increase social welfare as well as mitigate the negative effects of learning. In fact, learning

may now actually become beneficial.

We model agent forgiveness by assuming that when an agent is ostracized from the network,

the agent can reenter the network at a later time. How long the agent must wait before reentry is an

exogenous parameter, which we denote by L. When the agent reenters, its reputation is the same

as the reputation that it started out with initially, N(µi, σ
2
i ).24 As mentioned above, this re-entry

24We make this assumption to avoid adding too many new exogenous parameters. Our results can be extended to a
more general setting as well where the reputation changes upon re-entry.
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could be the result of the agent undergoing additional training or preparation to improve its original

quality. An alternative interpretation is also possible where this is in fact a new agent entering the

network, but from the same population or background as the original agent. Thus the new agent

starts out with the same reputation as the other agent.

We assume that each agent can reenter into the network as long as it has not already been

ostracized in the past a total of R times. Therefore an agent can reenter the network as long as it

has not already reentered R − 1 times in the past. R is an exogenous parameter that represents the

degree to which ostracized agents are willing to undergo the process to improve themselves. A

higher value of R means that the ostracized agents are willing to undergo the improvement process

even if they have been ostracized multiple times in the past.

With agent re-entry, we can still compute the set of stable networks, as well as the probability

that each stable network emerges. The probability that an agent is included in the stable network is

now equal to the probability that an agent does not get ostracized a total of R times in a row. Since

the agent’s reputation is redrawn each time upon re-entry, this probability can be computed using

the products of the probabilities in Proposition 1. The exact formula is given in the following

proposition. Compared with the original probabilities, agent re-entry implies that each agent is

more likely to be part of the stable network, since they have more chances with which to get a high

quality draw.

Proposition 11. P(S i) depends only on the initial quality distribution and the link cost and can be

computed by

P(S i) = 1 −
(
1 −

∫ ∞

c
(1 − exp(− 2

σ2
i

(µi − c)(qi − c)))φ
(
(qi − µi)

1
σi

)
dqi

)R

(1.17)

‘

Proof. The probability that an agent is ostracized permanently is found by taking the 1 minus the

probability in Proposition 1, and then raising that to the power of R. Thus, the probability that an

agent is included in the stable network is found by taking 1 minus this probability. �

Note that since this probability is very similar to the probability given in Proposition 1, all of
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the relationships between this probability and the exogenous parameters (initial mean, variance,

signal precision, and link cost) highlighted in Corollary 1 and Theorem 1 continue to hold. In

addition, we can derive an analogue of Corollary 2 using these new probabilities. Thus we can still

characterize the explicit probability that any stable network emerges as time goes to infinity and

the re-entry process by all the agents has concluded.

We can also derive results about agent welfare when re-entry is possible. Specifically, we

can show that if the number of periods of re-entry R is sufficiently large, and the time that an

agent takes to reenter L is sufficiently small, then learning becomes beneficial. This is intuitive,

because if agents are learned about faster, then bad agents can exit the network sooner to undergo

improvement while good agents will stay in and are unaffected. Thus, having agent forgiveness

mitigates the negative effects of learning, and makes learning a positive overall.

Theorem 8. If R is sufficiently large compared to τi, and L is sufficiently small compared to τi,

then a small increase in τi increases the overall social welfare of the network.

Proof. Note that as R converges to infinity, the probability that each agent is included in the stable

network goes to 1. Therefore the social welfare generated by any agent i will depend on the first

time instance at which it enters and does not become ostracized. This is because L is very small, so

agent i loses very little benefit when it is ostracized. The first time at which agent i reenters and does

not get ostracized is strictly decreasing in its information precision τi, since a faster information

speed implies that it gets ostracized earlier later on. Thus a larger information precision increases

overall social welfare. �

We can extend the above result to show that a clique is the optimal network when the network

is very forgiving and the downtime of reentry is low. A clique would allow all agents to link with

each other and benefit from the resulting mutual interactions. In addition, since learning is now

beneficial, the fact that each agent has many links in a clique and thus sends a lot of information

also increases social welfare. This result highlights the fact that with agent forgiveness, more

densely connected networks can become optimal, and the designer can allow for more links in the

initial networks.
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Theorem 9. If R is sufficiently large compared to τi for all i, and L is sufficiently small compared

to τi for all i, then a clique is the optimal initial network.

Proof. Similar to the above proof, note that as R converges to infinity, the probability that each

agent is included in the stable network goes to 1, and so the social welfare generated by any agent

i will depend on the first time instance at which it enters and does not become ostracized. With a

clique, each agent has as many neighbors as possible and sends information very quickly, and so

the timing of this first time instance becomes sooner. Notice also that each agent’s flow payoff is

positive at any point in time that they are in the network. Since L is very small, agents are in the

network almost continuously, and so having more links increases the flow benefits that each agent

receives. Thus a clique is the optimal network. �

1.9 Conclusion

This paper analyzed agent learning and the resulting network dynamics when there is incomplete

information. We presented a highly tractable model that explicitly characterized what the set of

stable networks are for a given network, showed how learning affects both individual and social

welfare depending on the specific network topology, and analyzed what optimal network structures

look like for different groups of agents. Our results shed new light on network dynamics in real

world situations, and they offer guidelines for optimal network design when there is initial uncer-

tainty about the agents. When agents are sufficiently myopic in their actions, ostracism becomes

harmful not just for the ostracized agents themselves, but to all agents in an ex ante fashion. A net-

work designer should thus structure links appropriately in order to minimize the negative effects of

ostracism.

Our results could be extended in several interesting ways. One natural extension would be to

allow the qualities of agents to evolve over time. In the simplest extension, the agent’s quality qi

itself change according to an exogenous stochastic process, for instance a Brownian motion. More

interestingly, it would be natural to assume that the evolution of quality depends endogenously on

the information the agent receives so that agents who receive better information tend to have higher
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quality and hence also generate better information in the future. Thus, the structure of the network

and the quality of the agents in the network co-evolves. Higher quality agents may link to agents

that are also of higher quality, and so their qualities would improve quickly, while lower quality

agents may struggle to find good agents to link with, and their qualities would decline as a result.

Other possible extensions include having private information among the agents instead of lo-

cally public information. In this way agents would learn about their neighbors at different rates,

and so they may make different decisions when connecting or disconnecting with other agents.

This result could mitigate the negative effects of learning, as information is different across link,

and so having more links does not increase the rate of learning. Agent preferences could also

be heterogeneous, which would further increase the diversity of links and the range of linking

decisions. This is a topic we are currently researching in van der Schaar and Zhang (2015).

Finally, it would be interesting to allow agents to engage in games with their linked neighbors

instead of merely generating flow benefits. Games played over networks have been analyzed in

several papers within the networks literature (see Jackson and Zenou (2014) for a review), but

never in a dynamic setting with learning such as that considered in the current paper. The game

played by agents could be a prisoner’s dilemma or another type of cooperation game where the

payoffs depend on the agent’s types. Agents would need to seek out other agents that they can

achieve high payoffs in the game with, and this process would also require learning over time

about a neighbor’s type. As agents are able to learn each other’s type more accurately, they may

achieve greater efficiency in their plays and also sustain cooperation for a longer length of time.

1.10 Appendix

1.10.1 Proof of Proposition 1

Proof. Suppose for now that agent i’s reputation always evolves at the constant signal precision

τi. Then given the true quality qi for agent i, the probability that agent i’s reputation never hits c

before t can be found using standard arguments (see for example Wang and Pötzelberger (1997))
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and is given by

P(S t
i |qi) = Φ


√

tτi(qi − c) +

1
σ2

i
(µi − c)
√

tτi

 (1.18)

− exp(− 2
σ2

i

(µi − c)(qi − c))Φ


√

tτi(qi − c) −
1
σ2

i
(µi − c)
√

tτi

 (1.19)

Therefore, given qi, the probability that agent i stays in the network is

P(S i|qi) = lim
t→∞

P(S t
i |qi) (1.20)

• If qi > c, as t → ∞, then we have Φ

(√
tτi(qi − c) +

1
σ2

i
(µi−c)
√

tτi

)
→ 1 and

Φ

(√
tτi(qi − c) −

1
σ2

i
(µi−c)
√

tτi

)
→ 1. Thus, P(S i|qi) = 1 − exp(− 2

σ2
i
(µi − c)(qi − c)), namely agent

i stays in the network with positive probability and the probability is increasing in the true

quality qi.

• If qi < c, as t → ∞, then we have Φ

(√
tτi(qi − c) +

1
σ2

i
(µi−c)
√

tτi

)
→ 0 and

Φ

(√
tτi(qi − c) −

1
σ2

i
(µi−c)
√

tτi

)
→ 0, thus P(S i|qi) = 0, namely agent i’s reputation hits c before

t = ∞ for sure.

• If qi = c, it is clear that P(S t
i |qi) = 0 as t → ∞.

Taking the expectation over qi, we have

P(S i) =

∫ ∞

c
(1 − exp(− 2

σ2
i

(µi − c)(qi − c)))φ
(
(qi − µi)

1
σi

)
dqi/σi (1.21)

From the above expression we can see that P(S i) only depends on the initial quality distribution (µi

andσi) and the link cost c but does not depend on the Brownian motion precision τi. Since breaking

links only changes the Brownian motion precision, the probability that an agent’s reputation never

hits c is independent of the initial network G0 or the signal precision τi. �
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1.10.2 Proof of Corollary 1

Proof. We first show that P(S i) is increasing in µi. Let qi − µi = x. Then P(S i) can be rewritten as

P(S i) =

∫ ∞

c−µi

(1 − exp(− 2
σ2

i

(µi − c)(µi − c + x)))φ
(

x
σi

)
dx/σi (1.22)

Consider a larger mean quality µ′i > µi, we have

P(S i|µ′i) =

∫ ∞

c−µ′i
(1 − exp(− 2

σ2
i

(µ′i − c)(µ′i − c + x)))φ
(

x
σi

)
dx/σi (1.23)

>

∫ ∞

c−µi

(1 − exp(− 2
σ2

i

(µ′i − c)(µ′i − c + x)))φ
(

x
σi

)
dx/σi (1.24)

>

∫ ∞

c−µi

(1 − exp(− 2
σ2

i

(µi − c)(µi − c + x)))φ
(

x
σi

)
dx/σi = P(S i|µi) (1.25)

Therefore, P(S i) is increasing in µi.

Next we show that P(S i) is decreasing in σi.

P(S i) =

∫ ∞

c−µi

φ(
x
σi

)dx/σi −
∫ ∞

c−µi

e
− 2
σ2

i
(µi−c)(µi−c+x)) 1

σi
√

2π
e−

1
2

(
x
σi

)2

dx (1.26)

=

∫ ∞

c−µi

φ(
x
σi

)dx/σi −
∫ ∞

c−µi

1

σi
√

2π
e
− 1

2σ2
i

(2(µi−c)+x)2)
dx (1.27)

=

∫ ∞

c−µi

φ(
x
σi

)dx/σi −
∫ ∞

µi−c
φ(

x
σi

)dx/σi =

∫ µi−c

c−µi

φ(
x
σi

)dx/σi (1.28)

Therefore, P(S i) is decreasing in σi.

Finally, we show that P(S i) is decreasing in c. Consider a smaller c′ < c, we have

P(S i|c) =

∫ ∞

c
(1 − exp(− 2

σ2
i

(µi − c)(qi − c)))φ
(
(qi − µi)

1
σi

)
dqi/σi (1.29)

<

∫ ∞

c
(1 − exp(− 2

σ2
i

(µi − c′)(qi − c′)))φ
(
(qi − µi)

1
σi

)
dqi/σi (1.30)

<

∫ ∞

c′
(1 − exp(− 2

σ2
i

(µi − c′)(qi − c′)))φ
(
(qi − µi)

1
σi

)
dqi/σi = P(S i|c′) (1.31)

The first inequality is because for qi > c, 1− exp(− 2
σ2

i
(µi− c)(qi− c)) < 1− exp(− 2

σ2
i
(µi− c)(qi− c)).

The second inequality is because for c′ < qi < c, 1 − exp(− 2
σ2

i
(µi − c)(qi − c)) > 0. �
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1.10.3 Proof of Lemma 1

Proof. Since the Brownian motion precision is constant, using the survival probability

P(S t
i |qi) = Φ


√

tτi(qi − c) +

1
σ2

i
(µi − c)
√

tτi

 (1.32)

− exp(− 2
σ2

i

(µi − c)(qi − c))Φ


√

tτi(qi − c) −
1
σ2

i
(µi − c)
√

tτi

 (1.33)

we can compute f (ε̂t
i|qi) = −dP(S t

i |qi)
dt as

f (ε̂t
i|qi) = −1

2

(√
τi(qi − c)t−1/2 − µi − c

σ2
i
√
τi

t−3/2
)
φ


√

tτi(qi − c) +

1
σ2

i
(µi − c)
√

tτi

 (1.34)

+e
− 2
σ2

i
(µi−c)(qi−c) 1

2

(√
τi(qi − c)t−1/2 +

µi − c
σ2

i
√
τi

t−3/2
)
φ


√

tτi(qi − c) −
1
σ2

i
(µi − c)
√

tτi

 (1.35)

= −1
2

(√
τi(qi − c)t−1/2 − µi − c

σ2
i
√
τi

t−3/2
)
φ


√

tτi(qi − c) +

1
σ2

i
(µi − c)
√

tτi

 (1.36)

+
1
2

(√
τi(qi − c)t−1/2 +

µi − c
σ2

i
√
τi

t−3/2
)
φ


√

tτi(qi − c) +

1
σ2

i
(µi − c)
√

tτi

 (1.37)

=
µi − c
σ2

i
√
τi

t−3/2φ


√

tτi(qi − c) +

1
σ2

i
(µi − c)
√

tτi

 (1.38)

Taking the expectation over qi, we obtain f (ε̂ti
i ). �

1.10.4 Proof of Theorem 3

Proof. Consider the ex ante surplus Wi j that agent i obtains from the link with a neighbor j. The

ex ante welfare for agent i is simply the summation of this surplus over all j that i is linked with.

Wi j can be computed as

Wi j =

∫

q

∫ ∞

0
e−ρtP(Lt

i j|q)(q j − c)dtφ(q)dq (1.39)
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where P(Lt
i j|q) is the probability that the link between i and j still exists at time t. Let t∗ be the time

at which the link between i and j is broken. Then the social welfare can be computed as

Wi j =

∫

q

∫ ∞

0
e−ρt(q j − c)dtφ(q)dq − Et∗[

∫ ∞

t∗
e−ρtEq j(q j − c|t ≥ t∗)dt] (1.40)

=

∫ ∞

0
e−ρt(µ j − c)dt − Et∗[

∫ ∞

t∗
e−ρtEq j(q j − c|t ≥ t∗)dt] (1.41)

where the expectation is taken over the realizations in which the hitting time is t∗. The second term

can be further decomposed. Let t∗i denote the case when t∗ = ti, namely agent i’s reputation hits c

before agent j, and t∗j be the case where t∗ = t j, namely agent j’s reputation hits c before agent i.

Then

Wi j =

∫ ∞

0
e−ρt(µ j−c)dt−Et∗i [

∫ ∞

t∗i

e−ρtEq j(q j−c|t ≥ t∗i )dt]−Et∗j [
∫ ∞

t∗j

e−ρtEq j(q j−c|t ≥ t∗j)dt] (1.42)

In the case of t∗j , for any t ≥ t∗j , since the learning has stopped, Eq j(qc − c|t ≥ t∗j) = 0 by the

definition of t∗j . Similarly, Eq j(q j − c|t ≥ t∗i ) > 0 because at t∗i the expected quality of q j is strictly

greater than c since agent j has not been ostracized. Therefore,

Wi j = W∗
i j − Et∗i [

∫ ∞

t∗i

e−ρtEq j(q j − c|t ≥ t∗i )dt] < W∗
i j (1.43)

Summing over all j that i is linked with, we conclude that the agent i’s ex ante welfare with learning

is strictly less than that when there is no learning. Note that this result holds independently of the

values of τ1, ..., τN , as the signal precisions affect only the distribution of agent hitting times, but

not the expected quality of the agents conditional on ever being ostracized. �

1.10.5 Proof of Proposition 5

Proof. From Theorem 2, we have that the ex ante social welfare is given by:

W = Eε̂

∑

i


1 − e−ρMi(t)

ρ

∑

j:g0
i j=1,t j=∞

µ j − c
P(S j)

 (1.44)

If the designer is completely impatient, it only cares about the social surplus at time 0 since with

probability approaching 1 no links will be broken among the agents. Since all agents’ expected
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qualities are above the linking cost, having all agents connected with each other yields the highest

social surplus. Similarly if learning becomes very slow, then the agent’s reputations are never

updated and the same reasoning applies. In both cases the e−ρMi(t) term approaches zero in the

above equation regardless of the network structure, and so adding more agents increases welfare.

If the designer is completely patient, only the stable networks matter. Since the stable network

does not depend on the speed of learning and the probability that an agent stays in the stable

network is independent of others by Proposition 1, having all agents connected with each other

leads to the maximum number of links in the stable networks and hence the highest social surplus.

Similarly if learning becomes very fast, the stable network will always be reached immediately and

the same reasoning applies. In both cases the e−ρMi(t) term approaches one in the above equation

regardless of the network structure, and so adding more agents increases welfare. �

1.10.6 Proof of Theorem 5

Proof. (1) Consider the welfare on link li j. As in the proof of Theorem 3, let t∗i denote the event in

which agent i’s reputation hits c − δ at time t∗i before agent j. The ex ante welfare of link li j can be

computed as

Wi j + W ji =

∫ ∞

0
e−ρt(µ0

i + µ0
j − 2c)dt (1.45)

−Et∗i [
∫ ∞

t∗
e−ρtEqi,q j(qi + q j − 2c|t ≥ t∗i )dt] (1.46)

−Et∗j [
∫ ∞

t∗
e−ρtEqi,q j(qi + q j − 2c|t ≥ t∗j)dt] (1.47)

Note that the first integral in the above equation represents W∗
i j + W∗

ji, the social welfare of the link

without learning.

In the case of t∗i , for any t ≥ t∗i , since the learning has stopped, Eqi,q j(qi−c|t ≥ t∗i ) = c−δ−c = −δ
by the definition of t∗. Since agent j is not ostracized, we would have Eqi,q j(q j − c|t ≥ t∗i ) > −δ.
Let h(δ, t∗i ) = Eqi,q j(qi + q j − 2c|t ≥ t∗i ) = Eqi,q j(q j|t ≥ t∗i ) − 2c − δ. This is the net change in flow

payoff after the link is severed. We will show that for any t∗i , h(δ, t∗i ) < 0 if δ is sufficiently large. A

symmetric argument then establishes that h(δ, t∗j) < 0, and the two together imply that the welfare
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of the link with learning is greater than W∗
i j + W∗

ji. Then, adding up over all links shows that the

overall social welfare is higher than that without learning.

To prove that h(δ, t∗i ) < 0 if δ is sufficiently large, we will show that Eqi,q j(q j|t ≥ t∗i ) is bounded

above for any t∗i as δ tends to infinity. Consider any ex post realization of t∗i , which implies that

agent j’s reputation does not hit c − δ before t∗i . There are two possibilities for agent j’s reputation

(here we assume that agent j continues sending information at its fixed signal precision if all its

other neighbors are ostracized, as in section 4):

• ζ1: it never hits c − δ after t∗i either.

• ζ2: it hits c − δ at some time after t∗i .

Clearly, E(q j|ζ1) > E(q j|ζ2) = c − δ. Hence Eqi,q j(q j|t ≥ t∗) < E(q j|ζ1). The value of E(q j|ζ1) is

given by equation (6) in the text, with c replaced by c − δ. When δ → ∞, using equation (6) we

can show that lim
δ→∞

E(q j|ζ1) = µ0
j through the application of L’Hopital’s rule.

Therefore, ∀ε > 0, there exists δ′i j such that ∀δ > δ′i j, E(q j|ζ1) − µ0
j < ε. Hence, fix a value of

ε > 0 and let δ̄i j = max{δ′i j, µ
0
j − 2c + ε}, which ensures for all δ > δ̄i j, E(q j|ζ1) − 2c − δ < 0. This

also implies that h(δ, t∗i ) < 0 for all t∗i and δ > δ̄i j. By choosing δ̄ = maxi, j δ̄i j, we ensure the overall

ex ante social welfare is greater than W∗.

(2) Define Hi j(δ) = Et∗i [
∫ ∞

t∗i
e−ρtEqi,q j(qi + q j − 2c|t ≥ t∗i )dt]. We will prove lim

δ→∞
Hi j(δ) = 0. To

prove this, we will show that for any sequence δn → ∞, the sequence Hi j(δn) → 0. We divide

Hi j(δ) into two parts,

Hi j(δ) = Et∗i <t̂(δ)


∫ ∞

t∗i

Eqi,q j[e
−ρt(qi + q j − 2c|t ≥ t∗i )]dt

 (1.48)

+Et∗i ≥t̂(δ)


∫ ∞

t∗i

Eqi,q j[e
−ρt(qi + q j − 2c|t ≥ t∗i )]dt

 (1.49)

= H′i j(δ) + H′′i j(δ) (1.50)

for some t̂(δ). We will find a sequence t̂(δn) such that both H′i j(δn)→ 0 and H′′i j(δn)→ 0 as δn → ∞.

Let t̂(δn) = δn. First we will show that for δn large enough, P(t∗i < δn) < 1
δ2

n
. Note for a given qi,

the probability that the agent is ostracized before time δn is equal to:
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1 − P(S δn
i |qi) = 1 − Φ


√
δnτi(qi − c + δn) +

1
σ2

i
(µi − c + δn)
√
δnτi

 (1.51)

− exp(− 2
σ2

i

(µi − c + δn)(qi − c + δn))Φ


√
δnτi(qi − c + δn) −

1
σ2

i
(µi − c + δn)
√
δnτi

 (1.52)

Note that limx→∞Φ(x) = 1 − e
−x2

2

x
√

2π
. Therefore the term above approaches zero faster than 1

δ2
n

as

δn → ∞. Integrating over all qi shows that P(t∗i < δn) < 1
δ2

n
for large δn.

Now consider H′(δn), it is bounded by

|H′(δn)| < P(t∗i < δn) sup
t∗i <δn

|
∫ ∞

t∗i

Eqi,q j[e
−ρt(qi + q j − 2c|t ≥ t∗i )]dt| (1.53)

<
supt∗i <δn

|
∫ ∞

t∗i
Eqi,q j[e

−ρt(qi + q j − 2c|t ≥ t∗i )]dt|
δ2

n
(1.54)

<
1
ρδ2

n
sup
t∗i <δn

|E[q j|ζ1] − c + δn| (1.55)

Since as δn → ∞, E[q j|ζ1]→ µ0
j , we conclude that |H′(δn)| → 0.

Consider H′′(δn), it is bounded by

|H′′(δn)| < sup
t∗i ≥δn

|
∫ ∞

t∗i

Eqi,q j[e
−ρt(qi + q j − 2c|t ≥ t∗i )]dt| (1.56)

<
1

eρδn
sup
t∗i >δn

|
∫ ∞

t∗i

Eqi,q j[e
−ρ(t−δn)(qi + q j − 2c|t ≥ t∗i )]| (1.57)

<
1

ρeρδn
sup
t∗i <δn

|E[q j|ζ1] − c + δn|t ≥ t∗i | (1.58)

Similarly, since as δn → ∞, E[q j|t ≥ t∗i ]→ µ0
j , we conclude that |H′′(δn)| → 0. �

58



References

[ADL11] Daron Acemoglu, Munther A Dahleh, Ilan Lobel, and Asuman Ozdaglar. “Bayesian
learning in social networks.” The Review of Economic Studies, 78(4):1201–1236, 2011.

[AO11] Daron Acemoglu and Asuman Ozdaglar. “Opinion dynamics and learning in social
networks.” Dynamic Games and Applications, 1(1):3–49, 2011.

[BG00] Venkatesh Bala and Sanjeev Goyal. “A noncooperative model of network formation.”
Econometrica, 68(5):1181–1229, 2000.

[Ero15] Selman Erol. “Network hazard and bailouts.” Technical report, working paper, 2015.

[EV14] Selman Erol and Rakesh Vohra. “Network Formation and Systemic Risk, Second Ver-
sion.” 2014.

[GG10] Andrea Galeotti and Sanjeev Goyal. “The law of the few.” The American Economic
Review, pp. 1468–1492, 2010.

[GGJ10] Andrea Galeotti, Sanjeev Goyal, Matthew O Jackson, Fernando Vega-Redondo, and
Leeat Yariv. “Network games.” The review of economic studies, 77(1):218–244, 2010.

[GGK06] Andrea Galeotti, Sanjeev Goyal, and Jurjen Kamphorst. “Network formation with
heterogeneous players.” Games and Economic Behavior, 54(2):353–372, 2006.

[GJ10] Benjamin Golub and Matthew O Jackson. “Naive learning in social networks and
the wisdom of crowds.” American Economic Journal: Microeconomics, pp. 112–149,
2010.

[GJ12] Benjamin Golub and Matthew O Jackson. “How Homophily Affects the Speed
of Learning and Best-Response Dynamics.” The Quarterly Journal of Economics,
127(3):1287–1338, 2012.

[GK03] Douglas Gale and Shachar Kariv. “Bayesian learning in social networks.” Games and
Economic Behavior, 45(2):329–346, 2003.

[GRU09] Jacob K Goeree, Arno Riedl, and Aljaž Ule. “In search of stars: Network formation
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CHAPTER 2

Optimal Production Choice with Reputational Dynamics

2.1 Introduction

The age old saying “Better to keep your mouth shut and be thought a fool than to open it and remove

all doubt” reveals a proverbial truth about the management of one’s reputation. An imprudent

person who acts openly will risk immediately revealing his ignorance to the audience. It may be

better to check one’s tongue, imparting less information and merely raising suspicion. Similarly, a

substandard firm could keep a low profile, minimizing product diffusion like the snake oil salesmen

of old who traveled from town to town cheating uninformed customers. Information is a valuable

commodity, and the less of it these quacks reveal to their customers the better.

On the flip side, exceptional firms may wish for as many people to use their product as possible,

building up a solid reputation to pump up their customer base. After all, there may be no better form

of advertising than a satisfied customer. Web retailers are no stranger to this idea, and programs

such as Amazon Vine allow companies give away new products for free to customers simply to

elicit reviews. The hope is that more positive reviews will attract more customers, offsetting the

cost of these gifts. And research has shown that online product sales are positively correlated with

both quality and volume of reviews. Chevalier and Mayzlin use data from Amazon and Barnes

and Nobles to show that both the amount of reviews and the quality of ratings will increase sales

[CM06]. Dellarocas et al. show that online user reviews of movies are a better predictor of movie

success than even critic reviews [DAZ04]. Thus there is clearly an advantage for firms to engage

in such loss-leading behavior. Bonatti [Bon11] also finds theoretical support for a firm to engage

in introductory pricing to increase its total sales.
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We may also wish to know how reputational concerns are taken into account when one does not

know his true quality. Consider the case of a new employee who is uncertain about his aptitude. He

learns about his true quality through the projects he takes on, but the market will also learn along

with him. How active should this person be, taking into consideration both current payoffs and fu-

ture reputational dividends? By analyzing this problem and the ones mentioned above through the

framework of our reputational model, we can explicitly characterize this tradeoff and understand

the reputational dynamics at work.

2.2 Literature Review

Reputational models are powerful and informative tools that give insight into how agents behave in

the face of continuously repeated interactions. In these types of models, there is usually uncertainty

over the agent’s true quality, which is resolved over time through information that the market

receives. Reputation models can be applied to a broad variety of circumstances. For instance, the

agent could represent an academic with an unknown skill, and his true quality is revealed through

the quality of the papers that he publishes. Or the agent could be a firm that sells goods of unknown

quality, which the market can learn about through customer reviews.

Reputation models can be tailored to fit different situations more closely by varying the un-

derlying assumptions inherent in the model. For example, models meant to represent a short time

frame may consider the agent’s quality as fixed, while models that span longer time frames may

allow for either exogenous or endogenous quality changes. Likewise, the types of signals that are

sent can depend on the situation. For an academic writing a scholarly paper, it may be natural to

assume perfect good news signals, which means that only high quality academics could publish

good papers. In contrast, for a firm producing industrial equipment, perfect bad news could be

assumed meaning that only bad firms would produce defective products.

The main contribution of this chapter will be that the signals the market receives are both en-

dogenously dependent on the agent’s production choice, as well as noisy so that quality cannot

be determined immediately after a signal. This is in contrast to other papers that relax these as-
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sumptions. For example, a seminal paper by Holmstrom [Hol99] considers managerial incentive

problems in a discrete time setting. The manager’s output is an additive function of his true qual-

ity, his effort level, and a noise term, and each period his output can be perfectly observed by the

market, although it cannot be contracted upon. The manager thus has an incentive to work only for

future reputational reasons since he is paid in advance. However, Holmstrom finds that reputational

incentives will not be strong enough because the reputational motive can only be temporary. The

paper concludes that managers produce less than the efficient output level, with effort declining to

zero as the manager’s quality becomes more certain. Adding in stochastic shocks to the manager’s

ability can result in effort being supplied indefinitely, but it will still always be at a suboptimal

level.

Another important paper is by Bar-Isaac [Bar03] who considers a discrete time model where a

firm produces a single unit every period. The product can either be a success or failure, with high

quality firms being more likely to produce successful products. Each period, the market observes

the quality of this product and updates its beliefs about the firm’s type. The firm’s reputation

determines the price it receives, and if the firm’s reputation falls too low then it may wish to exit the

market. The main result is that if the firm’s know their own types, high quality firms would never

exit the market. This is because merely staying in the market signals strength, so by observing the

continued production of the firm, the market will update the firm’s reputation to a level that makes

it worthwhile for the high quality firm to continue on.

Bar-Isaac’s model is closely related to the one we will examine due to its assumption of an

infinite horizon. This allows for him to consider Markov perfect equilibrium that depend only on

the agent’s current reputation. Our model will be an extension of his model, with firms allowed to

produce numerous goods each period instead of just one. Instead of considering the exit decisions

of high and low quality firms, we will consider production decisions. A big difference is that

production cannot be directly observed by the market, whereas exit can. Production is inferred by

through rate at which the market receives its signals, and thus the mere event of the signal itself

allows the firm to update its belief irrespective of the signal’s content. And since there is no exit,

instead of a hard lower bound on reputation all reputation values will be possible. But the drift in
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reputation at different levels will vary based on the firm’s equilibrium production choices.

Board and Meyer-ter-Vehn [BV13] consider a variant of the Bar-Isaac model that allows the

firms to invest in their quality. This model is set in continuous time, and firms receive random

Poisson shocks that change their quality depending on how they have been investing. If they are

fully investing in quality, then after the shock they will become a high quality firm. However

if they do not invest in quality, they will become a low quality firm. Their result is that if the

market receives perfect good news signals, then in equilibrium firms will invest in quality at low

reputation levels and not invest at high reputation levels. However, if the market receives perfect

bad news signals, then in equilibrium firms do the opposite; they invest at high reputations and do

not invest at low reputations. In their paper, firms can indirectly control market signals through

quality investment, but this chapter will allow firms to directly control market signals through

quantity choice.

One related paper that considers directly controllably endogenous signals is by Chung and Esö

[CE07]. They consider a two stage game where the first stage represents the short run and the

second stage represents the long run. Both the agent and the market are partially informed about

the agent’s true quality, but the agent has better information in that he receives an additional signal

about his true quality before the game starts. In the first stage the agent chooses between two

projects, which both have the same costs but differ in how informative they are about the agent’s

quality. In the second stage the agent must decide whether to stay in the market or exit. He

receives a payoff proportional to his true quality if he stays in the market or a fixed payoff if he

exits. Since the agent also has uncertainty about his own type, he has an incentive to choose the

more informative action in the first stage to make a better decision in the second stage. However, an

agent that is surer about his quality, whether it is good or bad, would gain less from the information

in the first stage. Thus the paper finds that in equilibrium, agents that are confident that they are

either good or bad choose the less informative action. Agents that are unsure of their quality will

choose the more informative action. In this sense, the equilibrium is non-monotonic in the agent’s

expected quality.

This chapter will act as an extension to the Chung and Esö in that it frames the problem in
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continuous time with reputational dynamics a la Board and Meyer-ter-Vehn. Analogous to choos-

ing between projects that provide different levels of information, firms will choose among differ-

ent quantity levels that provide different amounts of information. Also, instead of choosing two

projects once, the choice will be done infinitely often in continuous time. This means that there

will not be a single second stage long run payoff, but instead there will be an infinite stream of

payoffs. And our model assumes that higher quantities entail higher costs, which is unlike the

Chung and Es model since they assumed that costs were the same for both projects.

Finally, a recent working paper by Bonatti and Horner [BH12] considers a related reputation

model with perfect good news signals. The interpretation is of a new worker completing a single

project, and only high quality workers can possibly be successful. Workers can choose among a

continuum of effort levels, which linearly affects the arrival rate of the signal. Both the market and

the agent are uninformed about the agent’s quality, but workers have the advantage of observing

their effort levels whereas the market cannot. In contrast to other reputation papers, this model

assumes a finite horizon and workers face a penalty if they do not succeed before the time limit.

Since effort cannot be observed, wages can only be based on the expected level of effort in equilib-

rium. The main novelty of this model is the strategic substitutability between effort today and effort

tomorrow. Higher wages tomorrow will mean lower effort today, since exerting effort increases the

chances of the game ending. Thus it is not possible to incentivize the agent very strongly early

on since the agent will therefore exert little effort in the beginning to prolong the game. They

conclude that in equilibrium wages must be single peaked, starting out low at the beginning and

steadily rising until an apex, at which point it starts decreasing again once the belief of the worker’s

quality drops too low. Equilibrium effort is thus too low and too late compared with the efficient

level.

Like this chapter, the arrival rate is linear in the worker’s chosen effort. However, this chap-

ter will allow the signal to be noisy, so a single signal will not resolve the uncertainty over the

worker’s true quality. Their model assumes that low quality firms cannot succeed, which implies

that reputation can only drift downwards without a breakthrough. In our model, noise implies that

the worker’s reputations could bounce up and down from one level to the next, only converging to
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their true values over time. In addition, we will assume that the time horizon is infinite, allowing

us to consider Markov perfect equilibrium that depend only on the agent’s current reputation. And

since we will assume that agents are paid directly for their output instead of their expected output,

the equilibrium effort and wage in the uninformed agent case will be efficient.

2.3 Model

We consider a monopolist seller of a single good that faces an infinite amount of risk-neutral

homogeneous consumers. Our model fits equally well if we assume the agent is a firm selling

products or a worker selling labor, but we will stick with the first story for the sake of this chapter.

The firm can either be high quality or low quality, where quality is denoted by θ ∈ {H, L}. And the

product sold by the firm can turn out to be either good or bad, with a high quality firm having a

higher chance of producing a good product. Specifically, high quality firms produce a good product

with probability g, and low quality firms produce a good product with probability b < g. Firms are

drawn from an initial distribution with fraction x0 being high quality and 1 − x0 being low quality.

Consequently, x0 is the market’s prior over the firm’s true quality, and it is also the firm’s time zero

reputation. The firm’s reputation at time t is denoted by xt ∈ [0, 1], which represents the market’s

belief of the probability that the firm is high quality.

For simplicity, we assume buyers have a value of 1 for a successful good and 0 for an unsuc-

cessful good, and we assume they bid up the good until the market price equals the probability

that the good is successful. These two assumptions imply that the price the firm receives at every

moment in time is a linear combination of the firm’s reputation:

pt = xtg + (1 − xt)b (2.1)

A firm can sell as much quantity as it wants during time t at price pt, but it faces an increasing,

twice continuously differentiable, and strictly convex cost function. We assume that the product

is infinitely divisible for simplicity, so that the firm’s production choice can be taken from a con-

tinuum of values. The instantaneous profit the firm receives is πt(qt) = pqt − C(qt). We make
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the assumption that C(0) < b, so the inferior firm never has to exit even if the market knows with

certainty that it is low quality. Note that convexity of the cost function is not required for the

force of our arguments. We need only that C′(q) → ∞ as q → ∞ so that production remains

bounded. But this could introduce discontinuities into our value function which would complicate

the computations, so we will thus use the assumption of strict convexity.

The market receives signals at random intervals that indicate if the product was successful or

unsuccessful. These signals can be thought of as individuals posting reviews online or new con-

sumer reports being published. The higher the quantity that the firm produces, the faster these

signals will arrive and the more information the market will get about the firm’s true quality.

Specifically, these signals follow a Poisson process with arrival rate λ(qt) = qt. We assume that the

arrival rate is linear in the production quantity for simplicity. The probability that the signal is good

equals the probability that the firm produces a successful good (which is equivalent to the reviews

posted being honest). So if the firm is of high quality, the signal will be good with probability g

and be bad with probability 1 − g. Conversely if the firm is of low quality, the signal will be good

with probability b and be bad with probability 1 − b. Importantly, the signal arrival rate does not

depend on the actual quality of the firm outside of its production choice. This will be crucial for

the uninformed firm, implying that the market will not update its beliefs without a signal arriving.

This chapter will examine two separate cases regarding the firm’s a priori knowledge. First,

we will assume that the firm is unaware of its true quality and has no private information. Thus

the firm must learn by observing the same signals that the market receives. Then, we will assume

that firm’s know with certainty their own quality at the beginning. In this case, firm’s will never

update their own beliefs but will need to take into account both the market’s beliefs about its own

production choice and the market’s beliefs about the other type of firm’s production choice. The

dynamics of reputation and firm production choices will be quite distinct across the two models.
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2.4 Analysis of Uninformed Firm

In the first case, the firm starts out uninformed about its true quality, having only the same prior

as the market. It receives no information about its true quality outside of the signals that the entire

market receives. Although the firm can directly observe the history of its production decisions

and the market cannot, our assumption that the signal arrival rate does not depend on firm quality

implies that this history cannot provide any information beyond the realizations of the signals

themselves. So because the firm and the market start off with the same prior, their beliefs will

evolve in exactly the same way through observing the signals. Thus the firm’s own belief that it is

a high quality firm at any time t will be the same as the market reputation xt.

Consequently, if no signal arrives then the firm’s reputation does not change. Suppose that

the firm chooses to produce qt at time t. Since the market and firm share the same beliefs, the

probability that the firm is high quality given that no signal arrives in the time period [t, t + dt] is

xt+dt =
(1 − qtdt)xt

(1 − qtdt)xt + (1 − qtdt)(1 − xt)
= xt (2.2)

If a signal does arrive, then the firm’s reputation will evolve according to Bayes rule. We will

let xg denote the new reputation after a good signal and xb denote the new reputation after a bad

signal. Applying Bayes rule gives the following set of formulas:

xg =
gx

gx + b(1 − x)
= x +

(g − b)x(1 − x)
gx + b(1 − x)

(2.3)

xb =
(1 − g)x

(1 − g)x + (1 − b)(1 − x)
= x − (g − b)x(1 − x)

(1 − g)x + (1 − b)(1 − x)
(2.4)

These equations imply that reputation change is greatest for middle values of reputation, and

that reputation will not change at the extremes x = 0 and x = 1. When the market is very ambiva-

lent about the firm’s quality, a signal will have a strong influence. On the other hand, if the market

is very sure about the quality of the firm, a signal will have little effect.
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The firm must choose qt to maximize its value at every time t:

V(x0) = Ext ,qt ,q̃t

[ ∫ ∞

t=0
e( − rt)(qt pt −C(qt))dt

]
(2.5)

We look for Markov perfect equilibrium where the firm’s actions and the market’s beliefs de-

pend only on the firm’s current reputation. Thus the firm’s past history of realizations is not rele-

vant except for its impact on the firm’s current reputation. A Markov perfect equilibrium will be

defined by a set of quantity decisions by the firm q(x) and market beliefs ˆq(x) such that market

beliefs are correct, and the firm’s quantity choice maximizes its value function given these beliefs:

q ∈ argmaxqV(x0).

We can rewrite the value function above into a continuous time Bellman equation:

V(x) = max
q

(pq −C(q))dt + qdt(pV(xg) + (1 − p)V(xb) − V(x)) + (1 − rdt)V(x) (2.6)

The three terms in this expression represent the firm’s instantaneous profit, the change in firm

value after the arrival of a signal, and the firm’s value without a signal respectively. Here r repre-

sents the discount rate. Rearranging the above equation gives the following:

V(x) = max
q

1
r + q

(pq −C(q)) +
q

r + q
(pV(xg) + (1 − p)V(xb)) (2.7)

This can be seen as a weighted sum of the flow payoff and the jump payoff. The higher the

value of r, the more weight is placed on the current flow value. Now, we turn to solving for the

firm’s optimal production choice. Taking the first order condition of the equation 2.6 gives

C′(q) = p + (pV(xg) + (1 − p)V(xb) − V(x)) (2.8)

This says that marginal cost is equal to the price, plus the expected change in reputation after

a signal arrives. The optimal q is therefore continuous as long as V is continuous. If the value

function is convex, the firm stands to gain after a signal comes and will produce strictly more than
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the profit maximizing quantity. Taking the FOC of equation 2.7 allows a solution for the optimal

quantity choice independent of the current value:

(q + r)C′(q) − rp −C(q) = r(pV(xg) + (1 − p)V(xb)) (2.9)

This equation sets the change in the current payoff from increasing production, given by the

first term in equation 2.7, against the change in the future payoff from increasing production, given

by the second term in equation 2.7.

We can derive several properties about the value function defined above:

Proposition 1. 1. V(x) is unique and continuous.

2. V(x) is strictly increasing in x.

3. V(x) is strictly convex in x.

Proof. We prove these properties by applying the contraction mapping theorem. First, we define

the operator T : B[0, 1] → B[0, 1] over the set of bounded continuous real-valued functions on

the domain [0, 1]. We also restrict the range of these functions, V : [0, 1] → [0, π(1)
r ], and V(0) =

0,V(1) =
π(1)

r . This means that the value functions must be bounded below by zero and bounded

above by the present discounted value of having reputation one. This follows directly from the fact

that reputation can never change at these two extremes. The form of our operator is:

T (V(x)) = max
q

1
r + q

(pq −C(q)) +
q

r + q
(pV(xg) + (1 − p)V(xb))

T takes bounded continuous real-valued functions on the domain [0, 1] to bounded continuous

real-valued functions on the domain [0, 1] since both xg and xb are in [0, 1] and the cost function

is convex. The function will be continuous if V is continuous because q(x) is continuous for

continuous V . Note that if the range of V was [0, π(1)
r ], then the new range will also be [0, π(1)

r ] since

the value can never be lower than zero or be above the value of having reputation one forever, and

we will achieve equality at the endpoints x = 0 and x = 1.

70



Next, we prove Blackwell’s sufficiency conditions for a maximum. First, we show that T

satisfies monotonicity, which means that for any two functions V,W ∈ B[0, 1] with V(x) ≥ W(x)

for all x ∈ [0, 1], we must have T (V(x)) ≥ T (W(x). This can be seen by setting the optimal quantity

choice under function V equal to the optimal quantity choice under function W, or qV(x) = qW(x).

Then T (V(x)) ≥ T (W(x) because V(x) ≥ W(x) for all x ∈ [0, 1]. But since qV(x) may be different

from qW(x) in general, we will have T (V(x)) ≥ T (W(x).

Now we prove that T satisfies discounting, or that there exists some α ∈ (0, 1) such that

T (V(x)) + αa ≥ T (V(x) + a) for all constants a. We have:

T (V(x) + a) = max
q

1
r + q

(pq −C(q)) +
q

r + q
(pV(xg) + (1 − p)V(xb) + a)

≤ max
q

1
r + q

(pq −C(q)) +
q

r + q
(pV(xg) + (1 − p)V(xb)) + αa = T (V(x)) + αa

We can choose α ∈ max
{

q(x)
r+q(x)

∣∣∣ x ∈ [0, 1]
}

to satisfy the above equation. The convexity of

the cost function together with the fact that the value function is bounded ensures that the optimal

quantity is bounded above. Thus, discounting is satisfied and our operator T is a contraction

mapping. So by the contraction mapping theorem, V(x) is unique and continuous.

Now we prove that the operator will take strictly increasing functions to strictly increasing

functions. To prove that the value function is increasing, we consider two reputation levels with

x1 > x2 and compare the value at those points. Let q1, q2 be the optimal quantities at x1 and x2

respectively. Set q1 = q2 and note that the actual value at x1 will be weakly higher than choosing

q2. We have

T (V(x1)) − T (V(x2)) =
q2

r + q2

(
p1V(x1g) + (1 − p1)V(x1b) − p2V(x2g) − (1 − p2)V(x2b)

)

Since pV(xg) + (1 − p)V(xb) is strictly increasing if V is strictly increasing, this implies that

(V(x1)) ≥ T (V(x2)) with equality holding only at q2 = 0. But the only time a zero quantity would

be produced is at x = 0, since we assume that a firm can make a positive profit at any reputation
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higher than zero. This implies that the value at any reputation higher than zero is also positive.

Thus we have T (V(x1)) ≥ T (V(x2)).

Finally, we prove that the operator takes strictly convex functions to strictly convex functions.

Suppose that we have two reputation levels x1 and x2, and a convex combination of these two points

xλ = λx1 + (1−λ)x2 for some λ ∈ (0, 1). Then we want to show that V(x′) < λV(x1) + (1−λ)V(x2).

Denote the optimal production choice at xλ by qλ. Now we calculate the convex combination of

the value at x1 and x2 with production choice qλ, and we note that in general the value at x1 and x2

must be even higher. Then we have:

λT (V(x1)) + (1 − λ)T (V(x2))

=
1

r + qλ
((λp1 + (1 − λ)p2)q′ −C(q′))

+
qλ

r + qλ
(λp1V(x1g) + (1 − λ)p2V(x2g) + λ(1 − p1)V(x1b) + (1 − λ)p2V(x2b))

Note that λp1 + (1 − λ)p2 = pλ by the linearity of p. Also, note that the function pV(xg) + (1 −
p)V(xb) is convex if V is convex. This can be proven by looking at the second derivative (where

S (x) is used to denote the above function)

S ′(x) = (g − b)V(xg) + pV ′(xg)
bg
p2 − (g − b)V(xb)

+ (1 − p)V ′(xb)
(1 − b)(1 − g)

(1 − p)2

= (g − b)(V(xg) − V(xb)) +
bg
p

V ′(xg) +
(1 − b)(1 − g)

1 − p
V ′(xb)

S ′′(x) = (g − b)
(
V ′(xg)

bg
p2 − V ′(xb)

(1 − b)(1 − g)
(1 − p)2

)
− bg

p2 (g − b)V ′(xg) +
bg
p

V ′′(xg)
bg
p2

+
(1 − b)(1 − g)

(1 − p)2 (g − b)V ′(xb) +
(1 − b)(1 − g)

(1 − p)
V ′′(xb)

(1 − b)(1 − g)
(1 − p)2

=
b2g2

p3 V ′′(xg) +
(1 − b)2(1 − g)2

(1 − p)3 V ′′(xb) > 0
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Putting the above two facts together, we have that

λT (V(x1)) + (1 − λ)T (V(x2)) − T (V(xλ)) =

qλ
r + qλ

[
λ(p1V(x1g) + (1 − p1)V(x1b)) + (1 − λ)(p2V(x2g)

+(1 − p2)V(x2b)) − pλV(xλg) − (1 − pλ)V(xλb)
]

> 0

�

Thus our operator takes strictly convex functions to strictly convex functions and so the actual

value function itself must be strictly convex. Note that this proof is using a revealed preference

argument because we fix qλ, the optimal production choice at xλ, and assume that the firm chooses

this qλ at the two endpoints x1 and x2 as well.

The fact that our value function is strictly convex is very important, because it implies that

experimentation is good for the firm. This means that the firm wishes to produce more than is

profit maximizing in order to learn more information. Specifically, we can prove the following set

of facts about the optimal production choice.

Proposition 2. 1. The optimal quantity is weakly higher than the myopic profit maximizing

quantity.

2. The difference between the optimal quantity and the profit maximizing quantity is zero only

at the extremes x = 0 and x = 1.

3. The optimal quantity is strictly increasing and continuous.

Proof. The first part can be proven simply by using equation 2.8 above:

C′(q) = p +
(
pV(xg) + (1 − p)V(xb) − V(x)

)
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Since the value function is convex, the second term is positive and the convexity of the cost

function implies that the optimal quantity will be higher than where marginal cost equals price.

The second part can also be proven by using the above equation. Since the reputation no longer

changes at the extremes x = 0 and x = 1, we have the familiar condition that price equals marginal

cost, which leads to the same amount of production as in the no reputation case. At all other

reputational values the reputation will update after a signal, so the convexity of the value function

implies that the quantity is strictly greater than the profit maximizing quantity.

The third part can be proven by rearranging equation 2.9 above:

(q + r)C′(q) −C(q) = r
[
p +

(
pV(xg) + (1 − p)V(xb)

)]

The right hand side of this equation is strictly increasing in x, and the left hand side is strictly

increasing in q by the convexity of the cost function. Thus as x increases, q must increase. In addi-

tion, the continuity of the value function guarantees that the intersection point will be continuous

in x.

�

The fact that the optimal quality is strictly increasing shows that although there are two forces

impacting the increase of q above the myopic optimum, a positive force from additional informa-

tion acquisition and a negative force from myopic profit maximization, the total effect on q balances

out so that q is still strictly increasing in reputation, as in the myopic case. Note that this is true

for any convex costs, even if they are very weakly convex and almost linear. Although information

acquisition has a very strong positive force at intermediate levels of x and diminishes at high x, the

negative force of myopic profit optimization also decreases since the myopically optimal quantity

rises at higher reputations. This balances out so that the optimal quantity is strictly increasing.
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2.5 Analytic Example

By making some simplifying assumptions on the signals that the market receives, we can compute

an analytic solution for both the optimal quantity choice and the firm’s value function. Specifically,

we will assume that the signal the market receives is perfectly informative. This means that the

high quality firm always sends the good signal and the low quality always sends the bad signal.

Thus upon a high signal reputation jumps up to 1 and a low signal brings reputation down to 0.

Quality will be perfectly learned after the signal arrives, so the firm merely needs to decide how

fast it wants this signal to come. Since reputation no longer changes, we can simplify our above

value function to the following:

V(x) = max
q

1
r + q

(
xq −C(q)

)
+

q
r + q

(
xV(1) + (1 − x)V(0)

)
(2.10)

Now if we assume a cost function, we can explicitly solve for both the optimal quantity choice

and the value function directly. Let us assume that cost is quadratic and equal to C(q) = q2. This

means that our value function is:

V(x) = max
q

1
r + q

(xq − q2) +
q

r + q

( x
4r

)

Solving for the optimal quantity choice using equation 2.9 gives:

q2 + 2rq = r
[
x +

x
4r

]

This implies that the optimal quantity choice is

q(x) =
−2r +

√
4r2 + 4rx + x

2

Note that at x = 0, the optimal quantity is 0, and at x = 1, the optimal quantity is 1
2 . Thus

the optimal quantity equals the profit maximizing quantity at those two reputation extremes. In

75



Figure 2.1: Value Function of the Firm with and without Reputational Concerns

general, this function is strictly increasing and concave in reputation x. By plugging this optimal

quantity into the value function above, we can get an analytic solution for the value function.

V(x) = 2r + x +
x

4r
−

√
x + 4r(r + x)

Notice that at x = 0 the value is equal to 0 and at x = 1 the value is equal to 1
4r , which is

the profit maximizing level at both points. The value function is strictly convex in reputation,

indicating that the firm has an incentive to overproduce at every level of reputation.

Figure 2.1 shows the value at every level of reputation. Here, it is assumed that r = 1. The blue

line shows the value function above, and the purple line shows the value if there were no reputa-

tional dynamics and the firm stayed at the same reputation forever (so profit equals x2

4 ). The value

function is strictly above the value without reputation, showing how the ability to overproduce

increases the firm’s value.
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Figure 2.2: Production Choice of the Firm with and without Reputational Concerns

Figure 2.2 shows the production choice of the firm in this case. The quantity is always above

the myopic profit maximizing quantity and is concave and strictly increasing. We note that the

quantity does not have to be strictly concave, as it could be convex for low values of reputation as

long as it equals the profit maximizing production choice at the endpoints.

2.6 Analysis of Informed Firm

Now we consider the model with informed firms that know their true quality with certainty. We

now need to consider the market’s beliefs about the firm’s production choice since high quality and

low quality firms may choose different quantities and thus send signals at different rates. How the

market updates will depend both on the signal realization as well as the fact that the signal was

actually received. For instance, if a high quality firm chooses to produce a higher quantity than

a low quality firm, a high quality firm would be more likely to send a signal. Thus if the market

receives a signal, this would indicate that the firm is likely to be high quality.

Suppose that the market believes that the high quality firm is producing a quantity q̃H and the
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low quality firm is producing a quantity q̃L. Thus q̃H and q̃L will be the market’s belief about the

arrival rates of the signals from the two types. Using Bayes rule, we can find how reputation is

updated depending on the signal realization. After the receipt of a good signal, the reputation will

be updated according to

xg =
gq̃H x

gq̃H x + bq̃L(1 − x)
= x +

(gq̃H − bq̃L)x(1 − x)
gq̃H x + bq̃L(1 − x)

And after the receipt of a bad signal, the reputation will be updated according to

xb =
(1 − g)xq̃H

((1 − g)xq̃H + (1 − b)(1 − x)q̃L
= x +

(
(1 − g)q̃H − (1 − b)q̃L

)
x(1 − x)

(1 − g)q̃H x + (1 − b)q̃L(1 − x)

It is important to note that the firm’s reputation could actually rise after the receipt of a bad

signal if

q̃L < q̃H
1 − g
1 − b

In this case, the bad firm is expected to produce so little that receiving any signal is better than

receiving no signal.

In the case that no signal arrives, we can again use Bayes rule and the markets beliefs to find

the change in reputation. Without a signal, reputation is updated according to

x′ =
(1 − q̃Hdt)x

((1 − q̃Hdt)x + (1 − q̃Ldt)(1 − x)
= x +

(q̃L − q̃H)x(1 − x)dt
(1 − q̃Hdt)x + (1 − q̃Ldt)(1 − x)

⇒ dx ≈ (q̃L − q̃H)x(1 − x)dt as dt → 0

The value function for both types will still be the expected discounted value of the profit

streams. Both types of firms must choose qt to maximize its value at every time t given the market

beliefs:
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Vθ0(x0) = Eθ0,x0,qθ,q̃H ,q̃L

[ ∫ ∞

t=0
e−rt(qt pt −C(qt)

)
dt

]

We will again solve for the Markov perfect equilibrium of this model. A Markov perfect

equilibrium will be defined by a set of quantity decisions by the firm q(x) and market beliefs q̃(x)

such that:

1. Both firm’s quantity choice maximizes their value functions:

qθ ∈ argmaxq{Vθ(x0)}

2. Market beliefs are correct: q̃H(x) = qH(x), q̃L(x) = qL(x) for all x

We can write the continuous time Bellman equation for the high quality firm as

VH(x) = max
q

(
pq−C(q)

)
dt+qdt

(
gVH(xg)+(1−g)VH(xb)−VH(x+dx)

)
+(1−rdt)VH(x+dx) (2.11)

Here the three parts of the value function are the same as in the uninformed firm case, but there

is an extra drift term in the value without signal. The value function of the low quality firm is

similar and is given by

VL(x) = max
q

(
pq−C(q)

)
dt +qdt(bVL(xg)+ (1−b)VL(xb)−VL(x+dx))+ (1− rdt)VL(x+dx) (2.12)

We can rewrite both value functions to get the following set of equations

VH(x) = max
q

1
r + q

(
pq −C(q) + V ′H(q̃L − q̃H

)
x(1 − x)) +

q
r + q

(
gVH(xg) + (1 − g)VH(xb)

)
(2.13)

VL(x) = max
q

1
r + q

(
pq −C(q) + V ′L(q̃L − q̃H)x(1 − x)

)
+

q
r + q

(bVL(xg) + (1 − b)VL(xb)) (2.14)
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These equations express the firm’s value as a weighted sum of the flow payoff and the jump

payoff. Increasing q shifts more weight to the jump term since signals become more likely. And

increasing r shifts more weight on the flow term since the future is discounted more heavily. Now

we can take the first order condition to get the equations for the optimal profit of the high quality

and the low quality firm

(qH + r)C′(qH) −C(qH) = r
[
p +

(
gVH(xg) + (1 − g)VH(xb)

)]
+ V ′H(q̃H − q̃L)x(1 − x)

(qL + r)C′(qL) −C(qL) = r
[
p +

(
bVL(xg) + (1 − b)VL(xb)

)]
+ V ′L(q̃H − q̃L)x(1 − x)

Note that these are a pair of differential equations which may not be possible to solve analyti-

cally. We will not attempt to directly solve these equations. Instead, we will make some simplifying

assumptions on the signal types to gain analytical tractability and derive certain results.

2.7 Noiseless Signals

We will first solve the above problem first for the case where the signals are perfectly precise. This

is equivalent to saying that only high type firms can produce a good product and only low type

firms can produce a bad product. Without noise, all the uncertainty will be resolved after the first

signal arrives, so all the dynamics must take place before then. Thus, all the interior reputation

movements will be determined solely by reputational drift. The two quantity expressions above

can now be rewritten as:

(qH + r)C′(qH) −C(qH) = r[p + (V(1))] + V ′H(q̃H − q̃L)x(1 − x)

(qL + r)C′(qL) −C(qL) = rp + V ′L(q̃H − q̃L)x(1 − x)

We can prove that with noiseless signals, the high quality firm must produce a strictly higher

quantity than the low quality firm.
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Proposition 3. For noiseless signals, at every reputation level in (0, 1) and any set of market beliefs

over production choices {q̃H, q̃L}, it must be the case that qH > qL and VH > VL.

Proof. Consider an arbitrary reputation level x0 and an arbitrary set of market beliefs {q̃H, q̃L}. Note

that fixing the market beliefs determines reputational drift at all reputational values. We compare

the production incentives of the high quality firm and the low quality firm. First we write the value

function at time t as the present discounted value of all future profits.

Vθ(x0; qt, q̃t) = Eθ,x0,qt ,q̃t

[ ∫ ∞

t=0
e−rt(πt(qt))dt

]

Consider the stream of profits {πτ(qτ)}τ=∞τ=t that both types of firms receive from time t all the

way into the future. Note that until the first signal arrives for both types, this stream of profits is

exactly the same. After the first signal comes, the high firm gets π
(
q(1)

)
forever, while the low

firm gets 0 forever. Thus the high firm has a strictly higher incentive to hasten the signal’s arrival

at every level of reputation.

To show this explicitly, let x∅ denote the path of reputation in the absence of a signal. Specifi-

cally, it is the deterministic solution to the ODE governing reputation change given by

d(xt) = −(q̃H − q̃L)xt(1 − xt)

We can then break down the value function for both types. Let ∆ denote a small time increment,

and let js(xt) be the new reputation after a signal, which with no noise will be 1 for a good firm

and 0 for a bad firm.

Vθ(x0) = Eθ,x0

[ ∫ ∞

t=0
e−rt(πt(qt)

)
dt

]

=

∫ ∆

0
πt
(
qθ(x∅t )

)
dt + e−r∆

∫ ∆

0
qθ(x∅t )e−qθ(x∅t )tV( js(xt))dt + e−r∆e−

∫ ∆

0 qθ(x∅t )dtVθ(x∅∆)

≈
∫ ∆

0
πt
(
qθ(x∅t )

)
dt + e−r∆

∫ ∆

0
qθ(x∅t )V( js(xt))dt + e−r∆e−

∫ ∆

0 qθ(x∅t )dtVθ(x∅∆)
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We have broken the value function up into three separate terms: the profit in the period [0,∆],

the continuation value after a signal arrives, and the continuation value without a signal arriving.

Now we show that VH(x0)−VL(x0) is strictly increasing in q(x∅t ) for all values of x∅t , which will be

sufficient to prove that the high type has a higher optimal value of q than the low type.

VH(x0) − VL(x0)

= e−r∆

∫ ∆

0
qθ(x∅t )

(
V
(

jg(xt)
)
− V

(
jb(xt)

))
dt + e−r∆e−

∫ ∆

0 qθ(x∅t )dt
(
VH(x∅∆) − VL(x∅∆)

)

≈ e−r∆

∫ ∆

0
qθ(x∅t )

(
V(1) − V(0) −

(
VH(x∅∆) − VL(x∅∆)

))
dt + e−r∆

(
VH(x∅∆) − VL(x∅∆)

)

This must be increasing in q because the difference between V(1) and V(0) must be greater

than the difference at all other values of reputation since those are the maximum and minimum

values respectively. This is sufficient to show that qH > qL at all values of reputation. To show that

VH > VL, we can iterate the formula above recursively to get the following infinite sum:

VH(x0) − VL(x0) =

∞∑

n=0

e−r(n+1)∆
j=n∏

j=0

e−
∫ ( j+1)∆

j qθ(x∅t )dt
∫ ∆

0
qθ(x∅t+n∆)

(
V(1) − V(0)

)
dt

Since this is positive, our result holds for all values of x0. �

2.8 Noisy Signals

Now we will introduce some noise into our problem. First, we will consider the case of partially

noisy signals. Suppose that one of the signals is perfectly precise, while the other one is noisy.

This could be the case if only high type firms can produce a good product, while low type firms

could produce either good or bad products. Then low type firms are the only ones who can send

the bad signal, which means the bad signal perfectly distinguishes the two types. But a good signal

would still leave some ambiguity. Conversely, we could also assume that only the low type firm

can produce bad signals, while the high type firm can produce good signals and bad signals. In

that case the good signal is perfectly distinguishing while the bad signal is not.
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Let us assume for now that the good signal is perfectly distinguishing while the bad signal

leaves some doubt. The other case will be similar. In this case, the two value function expressions

found in section 2.6 can be rewritten as:

VH(x) = max
q

1
r + q

(pq −C(q) + V ′H(q̃L − q̃H)x(1 − x)) +
q

r + q
(gV(1) + (1 − g)VH(xb))

VL(x) = max
q

1
r + q

(pq −C(q) + V ′L(q̃L − q̃H)x(1 − x)) +
q

r + q
VL(xb))

For the high quality firm, a good signal boosts reputation up to one, giving the firm a value of

V(1) =
π(1)

r . The subscript is not written here because a low quality firm has the same payoff at one

since its reputation does not change. A low quality firm will get a bad signal for sure and jump to

reputation xb.

The main difficulty in analyzing these pairs of equations is the derivative term in the equations.

This derivative corresponds to the change in firm value with no signal arrival, and is multiplied

by the drift without a signal arrival, (q̃L − q̃H)x(1 − x). With the derivative term, these equations

become a pair of differential equations that are hard to solve. However, we can use the fact that

this derivative term disappears at values of x where the drift is zero to calculate the production

incentives at those points. Specifically, we will show that it cannot be possible to have zero drift at

any point, because that would imply strictly higher production incentives for the high quality firm.

We will now impose a restriction on the types of beliefs held by the market. Specifically, we

will assume that both q̃H and q̃L are continuous in x. This restriction is necessary to ensure that firm

incentives do not change too much as x changes, since a big switch in the relative magnitudes of

q̃H and q̃L would greatly change the amount that reputation jumps by after a signal. Although this

restriction is somewhat strict, it is plausible because flow profits are continuous in reputation, so it

seems reasonable for the market to believe that firms change their production choices smoothly as

well. And we showed previously that q(x) is indeed continuous in the uninformed firm case.

With continuous beliefs, we can prove a similar result to Proposition 3, that the high quality

firm will always produce more than a low quality firm in any equilibrium.
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Proposition 4. For partially noisy signals, given any set of market beliefs q̃H, q̃L, we have VH > VL

for all x ∈ [0, 1). In addition, in any possible Markov perfect equilibrium with continuous beliefs,

it must be the case that qH > qL for all x < 1.

Proof. First consider an arbitrary reputation level x ∈ [0, 1) and an arbitrary set of market beliefs

q̃H, q̃L. As before, fixing market beliefs means that reputational drift is determined at all reputa-

tional values. Consider again the stream of profits πτ(qτ)τ=∞τ=t that both types of firms receive from

time t all the way into the future. Now suppose that the high quality firm mimics the optimal strat-

egy qL(x) of the low quality firm, and note that the two firms will have the same distribution over

signal arrival times (but not signal types). Although a bad signal will not end the updating process,

both types of firms will still have the same reputation after a bad signal. Thus the only difference

in this profit stream occurs after the first good signal for the high firm. And since this boosts the

high firm’s reputation up to 1 giving it the greatest profits forever, the high firm must have a strictly

higher value function at every level of reputation.

Now we prove that in any Markov perfect equilibrium, it must be the case that qHqL for all

x < 1. First, we show that at x = 0, the high quality firm will produce strictly more than the low

quality firm. Note that drift is 0 at x = 0. The high quality firm and low quality firm have value

functions given by

VH(0) = max
q

1
r + q

(
pq −C(q)

)
+

q
r + q

(
gV(1) + (1 − g)VH(0)

)

VL(0) = max
q

1
r + q

(
pq −C(q)

)
+

q
r + q

VL(0)

Now since gV(1) + (1 − g)VH(0) > VL(0) by the fact that VH > VL, the high quality firm has a

strictly higher incentive to increase q. Thus we have qH(0) > qL(0). By continuity, this also implies

that there exists ε > 0 such that qH(x) ≥ qL(x) for all x ∈ [0, ε].

Now suppose for contradiction that qH(x) < qL(x) for some x. Let x̂ = inf
(
x

∣∣∣ qH(x) < qL(x)
)
.

Since qH(x) ≥ qL(x) for small x and the beliefs are continuous, we must have that qH(x̂) = qL(x̂),

which means that q̃H(x̂) = q̃H(x̂) since we are in a Markov perfect equilibrium. Thus, the drift at x̂
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is equal to zero, and we can write the value functions for the firms at x̂ as

VH(x̂) = max
q

1
r + q

(
pq −C(q)

)
+

q
r + q

(
gV(1) + (1 − g)VH(x̂b)

)

VL(x̂) = max
q

1
r + q

(
pq −C(q)

)
+

q
r + q

VL(x̂b)

Since gV(1) + (1 − g)VH(x̂b) > VL(x̂b), the high quality firm has a strictly higher production

incentive at x̂, which means that qH(x̂) > qL(x̂), a contradiction. Thus there cannot be any x at

which qH(x) < qL(x).

�

Finally, we focus on the most complex case with fully noisy signals. In this case, we have

g, b ∈ (0, 1) with g > b. Since the signals are fully noisy, the reputation of both types of firms will

not change at 0 or 1, and both firms will have the same value at these reputations. Once again, we

will impose restrictions on the beliefs to make sure that the firm’s incentives are tractable. First,

we will maintain our previous assumption that both q̃H and q̃L are continuous in x. In addition,

we will also assume that the reputation jumps after a signal are increasing in x. From above, these

jumps are equal to

xg =
gx

gx + b(1 − x)q̃L/q̃H
, xb =

(1 − g)x
((1 − g)x + (1 − b)(1 − x)q̃L/q̃H

Assuming that these jumps are increasing means that the ratio q̃L/q̃H is not increasing too

quickly in x. With this assumption, we can prove that the value functions Vθ(x) of both types

of firms is strictly increasing in x. This is done with a revealed preference argument; a firm at

a higher reputation level can mimic the strategy of a firm at a lower reputation level and receive

strictly higher flow payoffs, while still maintaining a higher reputation after every history. Thus its

value will be strictly higher than that of the lower reputation firm.

Given these two assumptions, we can prove that a high type firm must produce more than a low

type firm at any reputation level.
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Proposition 5. For fully noisy signals, in any possible Markov perfect equilibrium with continuous

beliefs and increasing reputation jumps, it must be the case that VH > VL and qH > qL for all

x ∈ (0, 1).

Proof. First we prove that the high quality firm has a strictly higher value for all x ∈ (0, 1). Con-

sider an arbitrary reputation levelx ∈ (0, 1) and focus on the stream of profits {πτ(qτ)}τ=∞τ=t that both

types of firms receive from time t all the way into the future. Now suppose that at every time t the

high quality firm mimics the strategy qt of the low quality firm, and note that the two firms will

have the same distribution over signal arrival times (but not signal types). After any signal, a high

quality firm is more likely to jump to a higher level of reputation than the low quality firm, and thus

receive strictly higher flow payoffs. By the monotonicity of the reputation jumps, the reputation of

the high quality firm will never fall below the reputation of the low quality firm. Thus all the future

flow payoffs of the high quality firm will be strictly higher in expectation, and thus VH > VL.

Since VH(0) = VL(0), VH(1) = VL(1), and VH > VL for all x ∈ (0, 1), there exists some x̃ ∈ (0, 1)

such that V ′H(x̃) < V ′L(x̃). We write down the value functions for the high and low quality firm at x̃,

and we suppose for contradiction that q̃L(x̃) ≥ q̃H(x̃). Then

VH(x̃) = max
q

1
r + q

(
pq −C(q) + V ′H(q̃L − q̃H)x̃(1 − x̃)

)
+

q
r + q

(
gVH(x̃g) + (1 − g)VH(x̃b)

)

VL(x̃) = max
q

1
r + q

(
pq −C(q) + V ′L(q̃L − q̃H)x̃(1 − x̃)

)
+

q
r + q

(
bVL(x̃g) + (1 − b)VL(x̃b)

)

Note that the high quality firm has a strictly higher incentive to increase q, because

V ′H(q̃L − q̃H)x̃(1 − x̃) < V ′L(q̃L − q̃H)x̃(1 − x̃)

and gVH(x̃g) + (1 − g)VH(x̃b) > bVL(x̃g) + (1 − b)VL(x̃b)

Thus we must have that qL(x̃) < qH(x̃). Then by continuity of the beliefs, there must be some

range [a, b] such that the qH > qL for all values in this range. Suppose for contradiction that there

exists some x such that qL(x) > qH(x). Again by continuity of beliefs there exists some range of
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beliefs [c, d] such that: qH < qLfor all x ∈ (c, d), qH = qL for x ∈ {c, d}, and either c > 0 or d < 1.

Then let x̂ = max{c, 1 − d}, and note that qH(x̂) = qL(x̂) and x̂ ∈ (0, 1).

Now we can proceed in a similar fashion as in the proof of Proposition 4. Since qH(x̂) = qL(x̂),

we have that q̃H(x̂) = q̃L(x̂) since we are in a Markov perfect equilibrium. Thus, the drift at x̂ is

equal to zero, and we can write the value functions for the firms at x̂ as

VH(x̂) = max
q

1
r + q

(pq −C(q)) +
q

r + q
(gVH(x̂q) + (1 − g)VH(x̂b))

VL(x̂) = max
q

1
r + q

(pq −C(q)) +
q

r + q
(bVL(x̂q) + (1 − b)VL((x̂b))

Since gV(1) + (1 − g)VH(x̂b) > VL(x̂b), the high quality firm has a strictly higher production

incentive at x̂, which means that qH(x̂) > qL(x̂), a contradiction. Thus there cannot be any x at

which qH(x) < qL(x).

�

2.9 Conclusion

This chapter has analyzed the optimal production choices of firms in a continuous time setting.

By allowing the quantity to have a direct effect on the signals that the firm sends, firms must

balance their current profit against future gains from reputational effects. In the uninformed case,

firms must have convex value functions, which imply that it is optimal to always produce more

than is profit maximizing. This can be interpreted as firms choosing to experiment in order to get

information more quickly, and paying the cost out of current profits to do so. The implication is

that new firms who are unsure of their true quality should try to produce at higher levels initially

just so they and the market can learn as quickly as possible. Similarly, new workers should try to

assume as many projects as possible to learn their true aptitude.

In the informed firm case, we placed some restrictions on the type of signals that were possible

and found that the high quality firms would indeed produce more than the low quality firms. This

confirms our intuition that low quality firms may wish to hide their true nature, while high quality
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firms want to “advertise” by getting more consumers using the product. In the cases of partially

noisy and fully noisy signals, we also placed additional restrictions on the types of beliefs that the

market could hold, and again found that high quality firms must produce more than low quality

firms in any equilibrium.

For future research, we wish to verify our results under less restrictive assumptions on the

beliefs of the market. The conjecture is that even with milder assumptions than continuity or

monotonicity of the jump functions, low quality firms will still be producing strictly less than high

quality firms because they want to hide their true quality from the market. The more signals a

low quality firm sends, the faster its reputation should drop and the more future profits it will lose.

And a high quality firm has the other incentive, to send more signals and get to a high reputation

quickly. The problem with this line of argument though, is that the solution is highly dependent on

the market’s beliefs. It is certainly possible to create arbitrary beliefs whereby the high type firm

wishes to work less with fully noisy signals. For instance, it could be the case that at an arbitrary

reputation level x, the market believes that low type firms work very little compared to high type

firms so that even a bad signal raises reputation significantly. However, suppose that at a reputation

x′ > x, low type firms are believed to work much more relative to high type firms, such that a good

signal decreases reputation significantly to below even x. And suppose that at an intermediate

reputation level x̂ ∈ (x, x′), the beliefs are such that a good signal increases reputation to x′ and a

bad signal decreases reputation to x. Then the good firm may wish to work less than the bad firm,

since being at reputation x′ is less desirable than being at reputation x. Indeed, it may even be the

case that the low quality firm has a higher value at this point than the high quality firm! This type

of scenario would need to be ruled out with a detailed look at what market beliefs are constrained

to be in equilibrium. More research can be performed to characterize these reputational effects

with fully noisy signals.
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Abstract Markets typically have many ways of learning about quality, with two of the
most important being reputational forces and certification, and these types of learning
often interact with and influence each other. This paper is the first to consider markets
where learning occurs through these different sources simultaneously, which allows
us to investigate the rich interplay and dynamics that can arise. Our work offers four
main insights: (1) Without certification, market learning through reputation alone can
get “stuck” at inefficient levels and high-quality agents may get forced out of the
market. (2) Certification “frees” the reputation of agents, allowing good agents to
keep working even after an unfortunate string of bad signals. (3) Certification can be
both beneficial and harmful from a social perspective, so a social planner must choose
the certification scheme carefully. In particular, the market will tend to demand more
certification than socially optimal because the market does not bear the certification
costs. (4) Certification and reputational learning can act as complementary forces so
that the social welfare produced by certification can be increased by faster information
revelation.
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1 Introduction

A market typically has several sources from which to learn about the quality of an
agent, such as the agent’s prior work history, or reports from trusted outside sources
like a certification board. An agent’s work results provide a steady, but noisy, flow of
information to the market, allowing the agent’s reputation to be continuously updated.
Certification boards also exist in many industries such as healthcare and accounting,
and certification verifies that a minimum level of quality has been met. The previ-
ous literature has explored markets where quality is learned through each source of
information separately, but the combined effects of the two have not yet been well
analyzed. Given that these different informational sources often coexist, important
questions are raised regarding how they can, and should, interact in a marketplace.
As an example, physicians can become board certified to demonstrate proficiency in
a medical specialty, and patients also learn about physicians from the experiences of
previous patients. While certification helps increase a physician’s reputation, it also
places significant costs on the physician. In such a market, will the physician choose
to perform board certification immediately after entering, or only after some time
depending on his performance results? And how stringently should the medical board
set its certification requirements if it wishes to maximize social welfare? By consid-
ering a general model which incorporates both types of learning, this paper is able to
address such questions.

Our main results show that certification remains an important component of a mar-
ketplace even when learning can be done through other channels. The key observation
is that certification provides a very different kind of information to the market, a
type of information that is socially beneficial due both to its informativeness as well
as its dependability. Without certification, even high-quality agents may experience
an unfortunate string of bad reports and so get forced out of the market. Once out
of the market, agents can no longer work and thus cannot produce more informa-
tion that would change the market’s opinion. Certification, however, remedies this
problem by acting as a safety net, letting these socially beneficial agents continue
to work. The type and amount of information revealed by the agent’s work his-
tory can have a strong effect on the social welfare provided by certification, and
we show that contrary to the case without certification, faster information revelation
can be socially beneficial. Thus, certification and the agent’s work history can act as
complements.

In this paper, we focus attention on markets with pricing frictions that result in fixed
wages for the agent. With pricing frictions, information revelation can get “stuck” at
inefficient levels of reputation,1 so that the learning via reputation may not actually
increase social welfare. Since principals are myopic and have limited incentive to

1 See for instance the discussion in Sect. 3 of Bar-Isaac and Tadelis (2008).
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experiment, the market does not learn in a socially efficient manner. For instance,
patients who see physicians for special procedures are unlikely to return and thus do
not internalize the value produced through their own observations. Thus, they may
refuse to see newer and less known physicians, even though the visit would produce
information beneficial to future patients. If wages are fixed for all physicians, these
less known physicians may not be able to get employed altogether, even if their true
quality was actually very high. We show in Theorem 1 that under certain conditions,
reputational learning alone cannot increase social welfare due to this inefficiency of the
learning process. Thus, the markets that we analyze are the ones in which certification
can be the most important, by reducing asymmetric information and keeping high-
quality agents in the market.

While our fixed wage assumption may represent a departure from the literature,
which usually assumes completely flexible wages like in Holmström (1999), we argue
that fixed wages are a reasonable assumption in many real-world markets where certi-
fication is present. For instance, doctors who see Medicare patients are paid according
to a fixed fee for service schedule. This payment schedule is decided by the govern-
ment every year and remains the same for all doctors regardless of their reputations. In
this market, certification plays an extremely important role as doctors can voluntarily
choose to get board certified in order to verify their expertise. Although certification
does not increase the wage a doctor receives, it helps ensures a steady flow of patients
by increasing the doctor’s reputation. Outside the US, many European markets also
have prices for medical services that are completely fixed by the government, and
there are similar informational issues.

In addition to a mandated fixed wage, our model is also applicable to markets with
binding price floors, such as a minimum wage or union negotiated price. Especially
for lower skilled workers, such as florists or custodians, these price floors can often be
binding. In such markets, the wage will be “fixed” at the level of the price floor because
the agent cannot work for less and the agent does not have enough market power to
demand more. Agents still benefit from good reputations because it helps them find
work, while agents that develop bad reputations will not get hired. Certification can be
quite important to such markets both to guarantee the quality of workers for employers,
as well as to boost the reputation of high-quality workers and help them to continue
working. The regulation and licensing of lower skilled workers have been on a sharp
rise in recent years,2 so the proper use of certification in these markets represents a
very timely issue.

Our model features reputational dynamics related to those in Holmström (1999),
with an agent of uncertain quality working for a market of homogenous short-lived
principals. The agent knows its own quality, but the market does not and must infer
quality through the agent’s work history, which generates a stochastic process that
is publically observable. The agent’s work history thus provides a steady stream of
information to the market, continuously updating the agent’s reputation. Our model
imposes few assumptions on the stochastic process itself, or the agent’s initial quality
distribution. In contrast, most papers in the reputation literature make much stronger

2 See for example the New York Times article “Why License a Florist” (http://nyti.ms/1wnLUZk, Kleiner
(2014)).

123
93



512 M. Van Der Schaar, S. Zhang

assumptions such as binary quality types or Brownian motion signals3. Conditional on
its work history, the agent chooses when (or whether) to certify, revealing additional
information to the market. Certification has a cost to the agent of k and verifies that
true quality lies above some standard q , but does not reveal the exact quality level.
This type of “imprecise” certification is one of the most common in practice, with
examples such as board certification for doctors, pass/fail exams for accountants, and
security seals for websites.

We first consider a benchmark model without certification and learning only through
the agent’s work history. Even in this simpler setting, we find surprising results. The
key driver of these results is that high-quality agents can be forced out of the market
after a string of bad signals, after which learning stops and the agent’s reputation
has no chance to improve. Since learning may be halted prematurely, having access
to the agent’s work history alone does not guarantee a socially efficient outcome.
In fact, our result shows that for many types of information processes,work history
information does not provide any social benefit at all. This result is reminiscent of
work on “bad reputation” (Ely and Välimäki 2003; Ely et al. 2008) where the ineptness
of reputation is due to the myopia of the short-lived principals. But in our model, the
failure of reputational forces alone results not because of moral hazard, but because of
an informational friction between principals and agents. Principals are not willing to
hire once the agent’s expected quality falls to the price level, but there is still positive
social value from hiring at this because an agent with a low reputation might still be of
high quality—hiring has an informational value, but since the principal only interacts
once, it does not appropriate this value. Thus, principals would force agents, even
agents who face no moral hazard issues, out of the market inefficiently due to their
short-sightedness.

Given the ineffectiveness of learning through the work history alone, we then intro-
duce certification into the model to see if welfare can be improved through a combi-
nation of the two information sources. The decision to become certified or not at any
given moment is a strategic one, which depends on the results of the agent’s previous
work history. There are many equilibria as in most signaling games. However, we
show that all equilibria share a common feature: They are type independent, meaning
that all types of agents could get certified will choose to certify after the same work
histories. This implies that every equilibrium is characterized by a single certification
stopping time strategy that is used by all types of agents regardless of quality. But
there are many different stopping times strategies that could constitute an equilib-
rium, with some requiring the agent to certify very early on, or even immediately,
and others requiring the agent to certify later. We characterize the specific equilib-
ria that maximize principal, agent, and social welfare and rank them based on how
quickly certification occurs: Agents prefer later certification than is socially optimal,
and principals prefer earlier certification than is socially optimal.

After characterizing these three different types of equilibria, we then perform com-
parative statics to find the optimal certification standard and price level for each type
of equilibrium. We find that certification increases welfare if the standards are set

3 Such as Holmström (1999), Bar-Isaac (2003), and Bonatti (2011).
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appropriately, and certification costs are low. In addition, the information produced
by the agent’s work history and certification act in a complementary fashion, with
faster information revelation increasing the welfare generated by certification. How-
ever, certification will also decrease welfare if certification costs are very high or the
standards are set inappropriately. When costs are too high, certification will destroy
more social welfare than it generates. But even when costs are low, certification may
not increase welfare if the certification standards are set incorrectly. For instance, in
some equilibrium, the market belief will expect too much certification. Such a case can
occur in the principal optimal equilibrium, since principals do not internalize certifica-
tion costs. Because agents are forced to certify at inefficient reputation levels, overall
welfare could actually be reduced. Thus, it is important to set certification standards
appropriately depending on the specific market beliefs.

2 Literature review

2.1 Reputation papers

Our work is closely related to several papers in the reputation literature, such as
Holmström (1999), Mailath and Samuelson (2001), Bar-Isaac (2003), and Ely and
Välimäki (2003). All of these papers have some form of reputational mechanism
that follows from work history, but ours is the first to allow the agent to certify and
send information through this channel. Holmström (1999) presents the classic “signal
jamming” model where an agent of unknown quality can exert effort to bias the
market’s perception. Contingent contracts are not possible and without reputational
incentives the agent would exert no effort. Holmström finds that reputation can provide
work incentives in the short run while the agent’s quality is unknown, but not in
the long run once quality does become known. Crucially, there is no exit in this
model and so the agent’s quality will become known perfectly over time. We show
that when there is an exit point, perhaps due to market frictions resulting in fixed
prices, then agents may be forced out before their true quality is revealed. In this case
certification is necessary as a form of insurance, so that high quality agents can stay
in the market and continue working. Mailath and Samuelson (2001) also considers
permanent reputations with moral hazard like Holmström, but with firms that know
their own qualities. They show that good firms will build up reputations and exert
effort in order to separate themselves from low-quality firms. In our paper, there is no
moral hazard and good agents will instead certify to separate themselves. Also related
is Board and Meyer-ter-Vehn (2013), in which a firm invests in order to improve its
quality and reputation, while in this paper the quality is fixed, but can be verified
through certification. Finally, Ordoñez (2013) analyzes a situation where managers
can take actions such as scapegoating after failures or successes in order to manage
their reputations, which is similar to our model where agents can choose to certify in
order to increase their reputations.

Unlike these previous papers that do not consider exit, a reputational paper that
does focus on exit is Bar-Isaac (2003). This model arrives at the striking conclusion
that high-quality agents never exit the market, because staying in the market is a signal
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of quality that increases reputation. Even an agent who receives a string of bad signals
can demonstrate resolve by refusing to quit, which boosts the market’s perceptions.
Importantly, Bar-Isaac assumes that the wage varies at every moment in time to equal
the agent’s expected quality, so good agents can internalize the future benefits of repu-
tation and are thus willing to sustain a period of negative payoffs. While flexible wages
are reasonable for some markets, we argue that there are also some markets where fixed
wages are more reasonable. Flexible wages require the agent to have market power (in
fact the agent is extracting full surplus from principals), which can be unrealistic in
many types of markets where agents have unknown qualities. Without market power
(e.g., Bertrand competition), agents may be unable to internalize the benefits of high
reputation and thus unwilling to endure negative flow payoffs. Second, good agents
may be forced to sustain numerous periods of negative payoffs in equilibrium, which
may not be feasible for markets where they have liquidity constraints. With liquidity
constraints, both good and bad agents may be forced to exit at the same time once their
reputation drops below cost. Finally, in some markets factors such as market customs
and menu costs can make changing wages quite difficult. When wages are fixed, we
show opposite results: High-quality agents are forced to exit the market with positive
probability and learning may not be socially efficient.

While most papers in the literature show that reputation can increase social welfare,
the papers by Ely and Välimäki (2003) and Ely et al. (2008) are noteworthy in showing
cases where reputation is potentially harmful. Ely and Välimäki (2003) consider a car
repair framework, with both honest and dishonest mechanics. Honest mechanics wish
to recommend the best repair for a car, be it a cheap tune-up or an expensive engine
repair, whereas dishonest mechanics always want to recommend engine repairs. The
mechanic’s reputation represents the probability of being honest, which will change
over time depending on how many tune-ups or engine repairs are recommended.
The paper shows that a reputational mechanism may actually destroy social surplus:
Honest mechanics have an incentive to recommend tune-ups even when engine repairs
are truly needed in order to boost reputation. But such an action hurts the consumer,
who is short lived and so does not internalize the benefit of higher reputation for the
mechanic. In equilibrium, the market may break down as consumers are not willing to
go to either type of mechanic. Ely et al. (2008) extends this model to a more general
framework and shows that similar results will hold in models that feature “temptation”
actions for the long-lived player. These “temptations” are actions that boost reputation
but are socially inefficient, like recommending tune-ups in place of engine repairs. The
assumption of short-lived consumers is critical in both papers, as Ely and Välimäki
(2003) shows that a long-lived consumer could devise a mechanism that benefits from
the information process. The results in these papers are related to those of our model,
which also considers a market of short-lived players. Because of myopia, the market
is unable to internalize the benefits of experimentation and so learning may stop early
at an inefficient level. But our model does not require moral hazard in the way of
“temptations,” as agents face no moral hazard in their actions. Even without moral
hazard, we show that the market myopia by itself can be sufficient to undercut the
value of reputation if prices are fixed and principals unwilling to experiment. The
inefficiency thus results from an informational friction rather than a strategic friction.
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Finally, there are some related papers that consider how entry costs may be necessary
to complement the gains from reputation in markets where there is free entry. Klein
and Leffler (1981) shows that if there are moral hazard issues, firms need to earn
price premiums in order to incentivize them not to cheat. With free entry, such price
premiums cannot be sustained in equilibrium, and so it is important to have fixed entry
or investment costs to support these premiums. Atkeson et al. (2012) also consider a
reputational model with free entry. In their paper, producers make quality decisions
at the time of entry, and these qualities are then fixed afterward. The market learns
over time about quality via signals as in our paper, and the government can impose
fixed entry costs for entry into the market. These costs do not produce information as
in certification, but do allow for higher-quality firms to enter as in Klein and Leffler,
leading to greater social welfare. While we do not explicitly model free entry in our
paper, certification is costly and can be thought of as an entry barrier to a market.
Indeed, we show that in some markets certification will act as a de facto license,
with non-certifying agents unable to ever find work. However, there are two main
differences between certification and the entry costs in these other papers. The first is
that certification provides information to the market, and so serves more than just a
signaling role since not all agents can pass certification. The second is that certification
can also happen after an agent enters the market, with the agent choosing to certify
only if it sends bad signals. Thus, very high-quality agents may not need to pay the
certification cost if they produce good results, leading to a potentially more efficient
outcome than one where all agents must pay an entry cost.

2.2 Certification papers

Our work represents a novel approach to the certification literature, where the agent’s
certification choice has never been combined with a similar reputational mechanism
in a dynamic setting. Much of the focus of the theoretical certification literature has
instead been on the certifier’s actions and revolves around studying the decisions made
by a strategic certifier who can control the type of information that it releases about
agents or the payments that it charges (Lizzeri 1999; Stahl and Strausz 2011; Farhi et
al. 2013). Some papers also allow the certifier to collude with agents and assign false
ratings as in Strausz (2005). In contrast, our paper focuses more on the agent’s deci-
sion process and how its reputation affects its certification decision and the principals’
beliefs. This allows us to analyze the strategic aspects of certification for the agent,
and show how even the possibility of certification will affect an agent’s reputation. We
do not explicitly model the certifier, instead delegating it to the role of the mechanism
designer and analyzing the comparative statics of our model with regard to the certi-
fication standard. This implicitly assumes that the certifier is not strategic, is always
accurate in its judgments, and is not allowed to cheat. Thus, our work is best suited
to markets where the certifier is a government agency, which would be trustworthy
and sets certification standards in a benevolent fashion. Finally, we note that while
papers by Shapiro (1983) and Panzar and Savage (2011) have considered the welfare
implications of minimum standards when agents have reputational concerns, the focus
of our work is different because these models consider reputation in terms of moral
hazard instead of adverse selection, and so there is no learning about the agent’s type.
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Although our work on combining agent reputation and certification is new from
a theoretical perspective, there have been interesting empirical papers published on
this subject. For instance, Xiao (2010) tests the value of certification in the childcare
industry. In childcare, certification is voluntary and usually chosen by only a small
fraction of firms. The paper shows that the social value generated by certification
is positive, albeit small. Further, the costs of certification are not negligible, such as
administrative and personnel costs. Thus, certification on the whole is a negative for the
industry, as the benefits are outweighed by the costs. In our model, we show that this is
certainly a possibility when certification is present, in particular when market beliefs
are pessimistic and require certification often. In such a situation, the informational
value of certification is outweighed by the inherent costs, resulting in lower social
welfare.

Jin and Leslie (2003) analyzes the impact of the introduction of government issued
hygiene grade cards on restaurant cleanliness in Los Angeles. They find that cleanli-
ness did in fact improve significantly after the government started using these grade
cards. Restaurant revenue is significantly affected by the posted scores, with restaurants
that received an “A” grade getting a 5.7 percent increase in revenue from mandatory
disclosure, while restaurants that received a “B” got only a .7 percent increase, and
restaurants that received a “C” got a 1 percent decrease. This provides evidence that
consumers do pay attention to this additional source of information, and that market
demand was changing as a result. Jin and Leslie (2009) extends this study by consider-
ing whether reputational effects alone are adequate to explain this restaurant behavior.
The paper assumes that restaurants affiliated with chains have an incentive to free ride
on the chain’s reputation. Thus, franchised stores tend to have lower hygiene scores
than company-owned stores. After the introduction of the grade cards, the authors
assume that such incentives would go away, because consumers are able to infer
hygiene directly from the posted scores. From the data, the authors find evidence that
the introduction of grade cards causes hygiene scores to increase more for non-chain
stores than for chain stores, lending support to the idea that chain stores care more
about reputation in the absence of grading cards. And in comparing the effect of repu-
tation versus the effect of the grade cards, the authors find that hygiene improvements
due to reputation were 70 % as large as hygiene improvements due to the posted grade
cards. The significant changes in hygiene after grade cards were introduced thus shows
that certification can send a clearer output to the market than mere reputational effects,
and that reputation alone may not be sufficient to solve adverse selection problems.
Our model echoes this result, by showing that certification can increase social welfare
even if the market can learn via the agent’s reputation.

3 The model

We consider an infinite horizon continuous time model with a single long-lived agent
and a marketplace of principals.4 The agent has a fixed quality q that is determined
at the start of the game according to a commonly known continuous distribution

4 Alternatively, we can think of the agent as representing a firm and the principals as representing consumers.
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q ∼ f0(q), which has a finite mean μ0. Denote the support of this distribution by D,
which can be any measurable non-null set in R. The agent is privately informed about
its own quality, but the market must learn this quality over time. We assume the agent
has a reservation value of c < μ0, which represents the agent’s disutility of work and
outside options. The agent also has a discount rate of ρ. At each moment in time the
agent meets a different short-lived principal, who can make an offer to the agent at a
fixed price p. We will assume throughout the paper that the price satisfies p ≥ c so
that agents are always willing to accept an offer.

If the agent accepts the offer, it will work for one infinitesimal instant of time and
return output with true quality q. The market’s observations (or reports) of q are noisy,
and the evolution of these observations follows a càdlàg5 stochastic process Rq(t).
This stochastic process will depend on the agent’s true quality q, with a different
stochastic process Rq(t) corresponding to each q. We define the agent’s work history

as the history of all previous observations by the market, Ht = {
R(t ′)

}t
t ′=0, which

is a continuous set of realizations of the stochastic process up to time t . We also call
the set L ≡ {

Rq (t)
}

q∈D an information process for the market. The set L is common
knowledge, so the market knows what kind of stochastic process to expect from each
type of agent. Thus, given any history Ht , the market can update its prior beliefs
about the agent via Bayes’ rule. We define the agent’s time t work history rating as
the market’s belief of the agent’s quality distribution given only information from the
work history, ft (q|Ht ).

We make some restrictions on the information process L to ensure that the agent’s
work history rating will evolve in a sufficiently continuous fashion over time. Let
μt ≡ E [q|Ht ] be the time t expected mean of the agent’s quality, and let μ

q
t ≡

E
[
q|Ht , q < q

]
be the time t expected mean of the agent’s quality given that it lies

below some cutoff q . We say that the information process is admissible if for any

q ∈ D, the generated paths of μt and
{
μ

q
t

}

q∈R are almost surely right-continuous

and upper semi-continuous in time. That is, at any point of discontinuity these means
can jump upwards but not downwards. The reason that our continuity requirement
needs only to be one-sided will become apparent in the next section. We will only use
admissible information processes in this paper.

Note that a restriction on L entails a restriction on the types of stochastic signals
Rq(t) that can be allowed. One way to satisfy our continuity requirement is for the
market to only be able to infer a little bit of information from R(t) at any point in
time. For instance suppose that for every q, Rq(t) is the diffusion d Rq(t) = qdt +
σr d Z(t), with drift q and variance σ 2

r (and precision τr ), and with Z(t) a standard
Brownian motion. This type of process would result if the market observes each unit
of output with some normal noise, and we note that this is the continuous time non-
moral hazard version of Holmström (1999). In this case, the agent’s work history
rating would evolve continuously in time, and so our admissibility requirement is
satisfied. Even more general diffusion processes are admissible, such as d Rq(t) =
f (q,Ht )dt + g(Ht )d Z(t) so that the drift and variance do not have independent

5 Right-continuous with left limits.
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or stationary increments. However, stochastic processes such as d Rq(t) = qdt +
qσr d Z(t), where the variance depends on the quality, are not admissible because the
variance would be learned immediately through Bayes’ rule, causing the means to
jump downwards with positive probability. The variance may depend on the history
of previous signals or any other public information, but not on the agent’s true quality.

Stochastic processes with jumps can also be considered. For instance, suppose we
have a Poisson process with an arrival rate λ(q), where λ is increasing in q. This is
a good news Poisson process, where an arrival indicates a positive event like being
mentioned in an article or winning an award. Without a signal arrival, the means drift
slowly and continuously downwards, and at a signal arrival, the expected mean and
all truncated means would jump upwards. Thus, our admissibility condition would
be satisfied. More generally the arrival rate could depend on the history as well,
λ(q,Ht ), as long as it was still increasing in q at all t . And if the stochastic process
was a combination of diffusions and good news Poisson processes, the result could
still hold. However, if the stochastic process was a bad news Poisson process, where
λ(q) was decreasing in q, then admissibility would be violated because at a signal
arrival the means would jump downwards. So with bad news, the path of μt may not
be right-continuous and upper semi-continuous. Thus, jump stochastic processes are
admissible as long as they indicate good news, but not if they indicate bad news.

Finally, note that the stochastic process of reports about the agent only runs if the
agent is actually working. If at a time t the principal does not hire the agent, no output
gets produced and the stochastic process is stopped at that value of R(t). Since the
agent is not working, no further information gets sent. If the agent does get hired again
in the future, then the stochastic process can once again proceed at that time. We will
show that this can only happen if the agent passes certification; that is unless the agent
certifies he will be kicked out of the market forever.

At every moment of time t , the agent can choose to certify if it has not done so
already by paying a one-time certification cost of k > 0 and getting certified if it has a
quality level of at least q , which is a fixed exogenous standard. We assume that q ≥ p,
which will imply that certified agents never get forced out of the market. We also
assume that k <

p−c
ρ

so that the cost is low enough for the agent to want to choose
certification (this inequality implies that the net present value of staying in the market
forever is greater than the certification cost). We denote the time t certification status
by θt ∈ {[0, t] ∪ φ}, where a number represents the time at which that agent became
certified and φ means that the agent has not yet certified. Once the agent becomes
certified, all future principals will know for certain that the agent quality is at least q .
Since this information is permanent and public knowledge to all future principals, an
agent only needs to be certified once.

We also assume principals do not know if an agent attempts to certify and fails, so
an agent that cannot pass certification has no incentive to certify. Such an assumption
is relevant when q > p. If the market could observe agents that certify and fail, an
agent with quality q < q may have an incentive to attempt certification to increase its
reputation. For instance, if the market believed that attempting certification was more
likely by agents with qualities in the range [p, q], then attempting certification, even
when the agent cannot pass, would increase the agent’s reputation.
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There are thus two sources of information in our market: The first being the history
of observations from work history, Ht = {

R(t ′)
}t

t ′=0, and the second being the certifi-
cation status of the agent θt . Upon observing these sources of information, the market
uses Bayes’ rule in updating its beliefs about agent quality. Together, these two signals
combined with the prior quality distribution will result in a posterior belief distribu-
tion of agent quality ft (q|θt ,Ht ), which we call the reputation of the agent. This is
different from the work history rating that was defined previously because it also takes
into account the agent’s certification status. Note that the reputation can be calculated
from the work history rating by using Bayes’ rule together with θt on the work history
rating ft (q|Ht ). We will use Ft (q|θt ,Ht ) to denote the cdf of the reputation. Note
that we sometimes suppress the notation and write ft (q) and Ft (q) for the reputation
and cdf of the reputation, respectively. We also use F−

t (q) to denote limq↗q Ft (q).
We assume principals have identical linear utilities given by U (p, q) = q−p. Since

principals are short lived, they care only about maximizing their current utility. Given
the above linear utility function, we assume principals will hire uncertified agents if
and only if p < E[q|θt = φ,Ht ], where the expectation is taken with respect to the
agent’s time t reputation. Principals will hire an agent that certified at t ′ if and only if
p ≤ E[q|θt = t ′,Ht ].6 Note that once the agent’s expected quality falls below p the
agent will not be able to work again unless it certifies, because principals would not
be willing to hire at any quality level less than p, so no outputs will be produced and
no further information sent. Thus, the market’s beliefs will be stuck unless the agent
improves its reputation through certification.

If the agent works at time t , it receives a flow payoff of πt = p − c. Otherwise,
the agent receives a payoff of πt = 0. And the agent must pay a one-time cost
of k when it chooses to certify, which can be incorporated by subtracting the flow
payoffs after certification, changing them to πt = p − c − ρk (our assumption that
q ≥ p implies that a certified agent will always keep working). Thus, the agent
decides whether to certify at time t through maximizing its expected discounted value,∫ ∞

t ′=t e
−ρ(t ′−t)E [πt ′ |θt ,Ht , q] dt ′, taking into account the state variables: the agent’s

certification status θt = φ, the history of outputs Ht , and the agent’s true quality
q. The agent’s certification strategy can be represented by an optimal stopping time
that is measurable with respect to the filtration generated by Rq(t). We denote the
stopping time strategy for an agent of type q by τ(q), which depends on the specific
history of signals Ht , and we note that τ(q) = ∞ for all q < q since these agents
cannot pass certification. The market must also have beliefs about the certification
strategy of agents of each possible quality, and we represent these beliefs using τ̃ (q).
In equilibrium, these beliefs must be correct so that τ̃ (q) = τ(q).

4 Benchmark case: no certification

In order to analyze the welfare benefits of certification, we will first derive some
welfare results for a benchmark setting with no certification. This can be considered

6 For technical reasons, we assume principals who are indifferent will hire certified agents, but not uncer-
tified agents. The distinction ensures that certified agents will be hired regardless of the market’s beliefs,
while uncertified agents have a well-defined time at which they leave the market.
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a specialized case of the above model with q = ∞. A principal will hire at time
t if and only if p < E[q|θt ,Ht ], with the expectation taken with respect to the
agent’s reputation, ft (q|θt ,Ht ). Since the agent will never certify, its reputation is
always equal to the work history rating, ft (q|Ht ). To analyze this model we thus
need to determine how the agent’s reputation evolves as a function of its work history.
Working generates a stochastic process Rq(t), and without certification the market
will update its beliefs only through this stochastic process itself. Through Bayes’ rule
the agent’s expected quality level, μt ≡ Et [q|Ht ], will be continuously updated as
the market receives information. The reputational dynamics in the benchmark are as
follows: The agent starts out with a quality μ0 > p (for μ0 ≤ p no hiring ever takes
place) and continues working as long as its expected quality stays higher than p, but
the first time that its expected quality drops to or below p it will be forced to stop. At
this point, no principals are willing to hire the agent, and thus, the stochastic process
is stopped forever causing no future principals to hire either (Fig. 1).

Fig. 1 Reputational dynamics in benchmark. The agent starts out with an expected quality greater than the
price, and the expected quality then evolves according to the stochastic process generated by the outputs.
The agent continues getting hired until its expected quality falls to the price, at which point it stops working
forever. The probability that the agent stops working depends on its true quality and the price and may be
strictly positive even for very high-quality agents

Given this characterization of the dynamics, once the agent stops working it can
never start again. Thus, the probability that the agent is still working at time t , denoted
by P (St |q, p,L), is the same as the probability that the hitting time of μt against
the price p or any lower value is greater than t . Since we only consider admissible
information processes, at the first time that μt falls below p it must be that μt = p.
This is due to the fact that the agent’s expected quality can never jump downwards.
Let t∗ ≡ inf{t |μt = p} denote this (stochastic) hitting time.7 So P (St |q, p,L), the
probability that the agent is still working at time t , is equal to the probability that
t∗ > t . Now we can write out the ex ante expected social surplus (sum of principal
and agent surplus) for a price p as:

7 Note that when p ≥ μ0, we have t∗ = 0 and the agent is never hired.
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W (p,L) =
∫ ∞

−∞

[∫ ∞

0
e−ρt (q − c) P (St |q, p,L) dt

]
f0(q)dq

For an agent with quality q, the social welfare at every moment will be given by
q − c if the agent is hired and 0 otherwise. Thus, hiring is socially optimal if and only
if q ≥ c. There are two sources of inefficiency in our model: Perceived quality may
be above p even though true quality is below c so that principals are hiring when they
should not (bad agents are working), or perceived quality is below p even though true
quality is above c so that principals are not hiring when they should (good agents are
not working).

Although in general the working probability may not have an analytic expres-
sion, and so the social surplus cannot be directly computed, we can nonetheless still
prove results about welfare. We show a perhaps surprising result: For all information
processes that are admissible, the ex ante social welfare will be less than if no informa-
tion were generated at all. That is, the information provided through the reputational
mechanism can actually improve social welfare.

We define a blind process to be any information process such that Rq (t) =
Rq ′ (t),∀q, q ′ ∈ D. Under a blind process, the information provided to the market
is completely uninformative of the agent’s true quality, and so no learning occurs. At
all times t , the agent’s work history reputation is thus the same as the initial prior,
ft (q|Ht ) = f0(q).

Theorem 1 (Blind Boundedness) Let Lb denote any blind process. If L is an admis-
sible information process, then W (p,L) ≤ W

(
p,Lb

)
f or all p ∈ R.

Proof See Appendix. �
The intuition for this theorem is that since the market is forcing out agents when

their expected quality hits p, the social welfare impact must be weakly negative for
any p ≥ c because beliefs are correct, and so the expected quality of an agent that
leaves must be higher than the social cost of that agent. If, at the time the agent is
getting kicked out, we could instead choose to let that agent stay in and work forever,
we would wish to do so. Then since under the blind process no agent ever gets kicked
out, the blind process must be weakly better than any other admissible information
process. So all admissible information processes give a social welfare that is bounded
above by the blind process.

It is important to emphasize that the principals are short lived, which creates a
source of inefficiency in the marketplace because principals do not internalize the
social benefits of experimentation. Once the agent’s expected quality level reaches
the price, it would still be socially beneficial for the agent to work, because working
sends information to the market and this information is valuable. Unlike a short-
lived principal, a long-lived principal that could make future purchases would wish
to continue hiring the agent because there is a chance the agent’s reputation could
improve and thus a positive value from experimentation.

In addition, from the proof we can see that the social welfare for any information
process is the same as for a blind process if p = c, but can be strictly less if p > c.
This implies that for any admissible information process, the socially optimal price is
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equal to the agent’s reservation value. When price is exactly equal to the reservation
value, there is equal social welfare from letting agents with μt = p stay and work
forever, or leave immediately. But when p > c it is strictly better to have agents that
are being kicked out stay in because they are still generating positive flow payoffs in
expectation. Thus, it is socially optimal to set the price as low as possible in order to
make the exiting process more efficient. Note that if it was possible to subsidize agents
to work below their reservation values, this would increase social welfare because an
agent with expected quality equal to c still generates positive value to society through
the information it provides by working.

5 General model

5.1 Belief updating with certification

Having shown the inefficiency of information revelation when certification is not
possible, we now turn to the general model with both the work history and certification.
If certification is available, agents will have a decision to make regarding the exact
time to undergo certification. For an agent whose true quality is above q and has
not undergone certification before time t , its expected discounted value if it chooses
certification at time t will be

∫ ∞
t e−ρ(t ′−t)E [πt ′ |θt = t,Ht , q] dt ′. We can analyze

πt ′ by solving the principals’ problem. Principals update the agent’s reputation with
Bayes’ rule, and they will hire an uncertified agent if the expected quality level is above
the price given the certification status and history of outputs, or p < E[qt |θt = φ,Ht ].
Recall that they will hire an agent that certified at time t ′ if p ≤ E[qt |θt = t ′,Ht ], so
principals will hire certified agents when indifferent but not uncertified agents.

The introduction of certification will result in posterior beliefs that are truncated
distributions, even for agents that do not get certified. Suppose for instance that in
equilibrium all types of agents with quality at least q are expected to certify at time
0. Given this fact, an agent that becomes certified at time 0 will be believed to have a
quality higher than q. If the prior distribution is f0(q), then the posterior distribution
given certification will be f0(q) truncated to be over the interval [q,∞). Since all
types of agents in this quality region choose to certify, the relative density inside the
support is unchanged. Likewise, the reputation for an agent that does not certify will
also be updated. The market will believe that the agent has a quality less than q , and so
the posterior becomes f0(q) truncated to be over the region (−∞, q). An agent that
certifies will continue to work forever (since we have assumed q ≥ p), and an agent
that does not certify will stop working if the truncated mean drops below the price.

The key with certification, and the reason that it can improve welfare, is that high-
quality agents who certify will be able to keep working even if they send an unlucky
string of bad signals. Without certification such agents would instead be inefficiently
kicked out of the market. In this way, certification is “freeing” the reputation of good
agents which could otherwise get “stuck.” Another way to look at it is from the
perspective of the agents that are getting kicked out because they do not certify. Since
their posterior gets truncated downwards, the expected mean of such agents can fall
below the price level. Thus, unlike the benchmark case where agents got kicked out
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when μt = p ≥ c, here we can kick out agents with an expected mean less than
c, and so kicking out these agents is socially efficient. This aspect of certification is
welfare improving, but since certification also has a cost, welfare may decrease as well
if certification is not implemented correctly.

5.2 Agent’s certification strategy

We now analyze the agent’s optimal certification stopping time strategy τ(q). In gen-
eral this will also depend on what the market’s beliefs τ̃ (q) are, but we will show that
for any beliefs the agent’s strategy will have a common structure.

Throughout this section it is important to keep in mind two assumptions that we
are making. For convenience, we assume that the certification standard q ≥ p, which
implies that the agent will never stop working if it certifies. Using this assumption
reduces the set of equilibria allowing for greater tractability, and implies that once
certified the principals no longer need to doubt the agent’s quality. With this assump-
tion, the payoff after certifying is deterministic and given by p−c

ρ
− k. For technical

reasons, we assume that even if the agent’s reputation had zero density on [q,∞), and
it passes certification, then the market will still be willing to hire the agent forever.
This assumption matters only off the equilibrium path, where it ensures that the cer-
tification incentives for an agent remain the same. The second important assumption
is that k <

p−c
ρ

, so that the certification cost is low enough for the agent to be able
to benefit from certification. This can also be thought of as a restriction on the price,
specifically that p > kρ + c. This condition then means that the price is high enough
to cover the cost of certification. Thus, an agent that is being forced out of the market
would choose to certify and continue working instead of exiting forever. Without this
assumption, the only possible equilibria would involve no certification.

We show in the following theorem that under our assumptions the only possible
equilibria are type independent equilibria, where after any given work history either
all types of agents with quality above q will choose to certify, or none will. Thus, in
equilibrium all types of agents will use the same stopping time strategy τ ∗ and get
certified after the same work histories.8

Theorem 2 (Type Independence) In each equilibrium ε, all types of agents with qual-
ity q ≥ q have the same certification stopping time strategy τ ∗

ε .

This type independence result arises from the fact that all agents who are able to certify
face the same costs and benefits from certification. Note that since reputation depends
only on the observed history, fixing a work history also fixes the agent’s reputation
independently of its true quality for any (not necessarily type independent) market
strategy beliefs τ̃ (q). Given the agent’s reputation, either it can still work without
having to certify, or it must certify to work. In the first case, since agents do not
receive a higher flow payoff once certified, they would like to delay certification in

8 Recall that the agent’s certification strategy τ∗ represents a certification time given the work history.
Therefore, saying that all agent’s use the same certification strategy is equivalent to saying that they certify
after the same work histories.
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order to delay the certification cost. Thus, no types of agents will choose to certify, and
instead wait until their reputation falls lower. In the second case, since all agents prefer
to certify rather than remain unemployed (given our assumption that the certification
cost is sufficiently low), all agents would choose to certify regardless of their true
quality.

This result does not mean that an agent’s quality is irrelevant. For instance, agents
with higher qualities may be more likely to send better signals and have better work
histories. Since their reputations are more likely to be higher ex ante, they will be less
likely to need to certify. Thus, the ex ante probability that an agent certifies at a given
time t will in general depend heavily on its true quality. The type independence result
says instead that given a history of signals, agents of all types will make the same
certification decision. But the probability distribution over the history of signals will
vary depending on agent quality.

Due to our type independence result, we will maintain the following notation in
this paper: For any time t , let μNC

t represent the mean of the non-certifying agents
and μC

t represent the mean of certifying agents, if the market were to believe that all
types of agents with quality q ≥ q would choose to certify at that t . Formally, μNC

t ≡
E

[
q|Ht , q < q

]
and μC

t ≡ E
[
q|Ht , q ≥ q

]
. These two expectations will be helpful

for characterizing the equilibria of our model. We also keep with our previous notation
by letting μt ≡ Et [q|Ht ] be the agent’s expected quality using only information from
the work history. This is equal to the agent’s expected quality given that it has not
certified, Et [q|θt = φ,Ht ], if the market were to believe that no agents would certify
before time t (i.e., τ̃ ∗ > t).

Now that we have shown the equilibria are all type independent, we characterize the
possible equilibrium optimal stopping time strategies τ ∗. The corollary below shows
that the agent’s equilibrium certification time is related to the agent’s work history and
reputation through the values of μNC

t and μt . If μNC
t ≤ p, then agent’s that do not

certify if the market expects all types of agents to certify cannot keep working, and so
all types of agents will choose to certify with these market strategy beliefs. Further,
if μt ≤ p then no type of agent can keep working without certifying regardless of
market strategy beliefs, and so all types of agents that can certify will certify for any
market strategy beliefs.

Corollary Fix any time t and history Ht such that μt ′ > p for all t ′ < t . Suppose
that τ ∗ is an equilibrium stopping time strategy such that τ ∗ ≥ t given this history.
Then it is possible for τ ∗ = t if and only if μNC

t ≤ p . Further, it must be the case
that τ ∗ = t if and only if μt = p.

Proof This follows from the Proof of Theorem 2. �
Note that there are some histories in which no types of agents certifying or all types
of agents certifying are both supportable in equilibrium. The above corollary implies
that as long as μt > p no agents certifying is supportable in equilibrium, and as long
as μNC

t ≤ p, all types of agents certifying is supportable in equilibrium. The first
condition indicates that if no agents are believed by the market to certify, all types of
agents can keep working without certifying. The second condition indicates that if all
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types of agents with qualities in
[
q,∞

)
are believed to certify, then agents that do

not certify will be forced to stop working. As long as μt < p ≤ μNC
t , we could have

either type of behavior in equilibrium at time t . Figure 2 below highlights the range
of possible equilibrium if the work histories follow Brownian motions.9

Fig. 2 Range of possible equilibria The agent starts with an expected quality above the price of p = 0,
and continues getting hired without certifying until its expected quality falls into the shaded region. Within
this shaded region, if the market expects the agent to certify, then the agent will be forced to certify or exit.
But if the market expects the agent not to certify, then the agent will choose not to certify. The higher curve
represents the earliest supportable certification time for the agent and the lower curve represents the latest
time. Above the higher curve, certification is not supportable in equilibrium, and at or below the lower
curve, certification must occur

5.3 Equilibrium characterization

As we have shown, and as is common in signaling games, many different equilibria
are possible. Thus, we narrow down the set of equilibria by focusing on the specific
equilibria that give the highest payoffs to the different players in our model. In order
to find out which equilibrium maximizes principal, agent, or social surplus, we find
the specific equilibrium beliefs and strategies that will result in the highest payoffs to
each party. Theorem 2 implies that every equilibrium features a single stopping time
strategy used by all types of agents. We denote the agent optimal, socially optimal,
and principal optimal equilibrium stopping times by τ ∗

a , τ ∗
s , and τ ∗

p , respectively. The
next section characterizes the optimal equilibria for these three different cases. We
show that the different types of optimal equilibria can be ranked according to the

9 With Brownian motion signals and a normal prior, the posterior will always be normal and so the expected
mean μt will be strictly increasing in the truncated mean μNC

t . Thus, we can transform the condition
μt ≤ p ≤ μNC

t into just a condition on p and μt , allowing us to depict the stopping times explicitly via
cutoffs for the expected mean as in Fig. 2.

123
107



526 M. Van Der Schaar, S. Zhang

equilibrium certification times. Theorem 3 summarizes our main findings: We see that
principals always prefer earlier certification than is socially optimal and that agents
always prefer later certification than is socially optimal.

Theorem 3 The optimal stopping times for the principal, agent, and social welfare
cases must satisfy

τ ∗
p ≤ τ ∗

s ≤ τ ∗
a

Proof The result follows from a comparison of the stopping times in Propositions 1,
2, and 3 below. �

5.3.1 Agent optimal equilibrium

We start with characterizing the best equilibrium from the agent’s point of view. Since
the agent is long lived, the notion of optimality we will use is the one that maximizes

the agent’s expected value at time 0, given by
∫ ∞

0 e−ρt (p − c) dt − Eτ∗
a

[
e−ρτ∗

a k
]

if q ≥ q or Eτ∗
a

[∫ ∞
0 e−ρt (p − c) dt

]
if q < q . In general, the agent’s expected

discounted value will depend on its own quality level, but we show that the specific
equilibrium that maximizes the agent’s value does not.

Proposition 1 The equilibrium that maximizes the agent’s payoff is for τ ∗
a =

inf{t |μt ≤ p}.
Note that τ ∗

a is the absolute latest that the agent can certify in equilibrium because at
this point the agent must stop working no matter what the market certification beliefs
are. This proposition thus shows that the best equilibrium from the agent’s perspective
will always delay certification for as long as possible, with certification occurring just
as it would be forced to exit the market. Since agents bear the full cost of certification
and do not directly benefit in terms of flow payoffs, they are much less willing to certify
than principals would want them to. In this equilibrium the beliefs expect certification
at the latest possible time, and so we will call them optimistic beliefs.

If μo ≤ p then agents cannot work initially and must certify to get hired. In this
case certification act as a de facto license, with non-certifying agents never being able
to work. Certification thus functions as an entrance key into the market itself. But as
long as μ0 > p, in any agent optimal equilibrium certification will not be a de facto
license. Instead the equilibrium will feature delayed certification, with agents working
and sending information initially before needing to certify if their reputation drops too
low. In this case the particular information process will make a big difference on the
timing of the agent’s certification decision, as well as the overall social welfare that is
generated by certification.

5.3.2 Social welfare optimal equilibrium

Next, we characterize the equilibrium beliefs that maximize the total social welfare
for the market. We will use the same notion of ex ante social welfare that was defined
in Sect. 4, meaning that we want to maximize the working probability of good agents
while minimizing the working probability of bad agents. The formula is given by:
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W =
∫ ∞

q

[
E

[∫ ∞

0
e−ρt (q − c) dt − e−ρτ∗

s k|q
]]

f0(q)dq

+
∫ q

−∞

[

E

[∫ τ∗
s

0
e−ρt (q − c) dt |q

]]

f0(q)dq

Early certification is beneficial because it verifies that an agent’s quality is high
more quickly. However, since certification is also costly, we may want agents to delay
certification if their reputation is sufficiently high, since that saves the discounted flow
cost of certification, as well as keeps the option value of certifying for the future.
The following proposition characterizes a necessary condition for certification to be
socially optimal: The agent should certify only if its reputation is lower than the
following cutoff.

Proposition 2 At the socially optimal stopping time τ ∗
s , if the expected quality of the

agent is strictly higher than the price, μτ∗
s

> p , then the following condition must
also be satisfied:

μNC
τ∗

s
≤ c + ρk − ρk

F−
τ∗

s

(
q
) (1)

We note that this bound can also be a sufficient condition for some information
processes. With a blind process (1) gives the exact value of the truncated mean below
which it becomes optimal to have the agent certify. Certification is socially beneficial
because it gets rid of “bad” agents with qualities less than c, but it is socially harmful
because it can get rid of “good” agents with qualities above c but below q and it also
carries a cost of k. Certification at any time t must balance these two aspects together,
and (1) gives a condition on how low the mean of non-certifying agents (i.e., the agents
that would be kicked out by certification) must be for certification to be beneficial.

However, it is possible for (1) not to be satisfied at any t ≤ t∗ = inf{t |μt ≤ p}. In
this case we would have τ ∗

s = t∗, because when the expected quality falls below the
price, the unique equilibrium is for an agent to certify. Consequently, the agent optimal
stopping time and the socially optimal stopping time would coincide. In general,
however, the socially optimal stopping time can be strictly earlier than the agent
optimal stopping time due to the beneficial information that certification provides.

5.3.3 Principal optimal equilibrium

Finally, we analyze the equilibrium that maximizes the utility of the principals. The
right notion of maximizing principal utility is a bit tricky since each principal is short
lived and only cares about itself. The equilibrium that gives the time t principal the
highest payoff will in general be different than the equilibrium that gives the time t ′
principal the highest payoff. One way to define principal welfare would be to aggregate
all principal utilities ex ante, similar to the way we computed the social welfare
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PW =
∫ ∞

q
E

[∫ ∞

0
e−ρt (q − p) dt |q

]
f0(q)dq

+
∫ q

−∞
E

[∫ τ∗
s

0
e−ρt (q − p) dt |q

]

f0(q)dq

For such a definition of principal welfare, the result of Theorem 3 still holds. However,
such coordination among principals may seem unrealistic given that all the principals
are short lived. We resolve this tension in the following way: Principals that arrive
earlier should have a greater say in the equilibrium than principals who arrive later,
because presumably the later principals may not be able to interact with or even know
of the agent at earlier times. Thus, we define a principal optimal equilibrium to be
the equilibrium in which the agent certifies at the first (stochastic) time t such that
given the agent’s reputation, the principal at t prefers hiring the agent only if it could
certify over always hiring the agent.10 Formally, the agent certifies at the first t such that
(
μC

t − p
) (

1 − F−
t

(
q
))

≥ μt − p. We show in the proof of the following proposition

that such an equilibrium always exists and is unique. In this equilibrium, the earlier
principals have more influence over the agent, with later principals having an influence
only if the agent has not certified early on. This notion of principal optimality is not
the same as the net present value of principal surplus defined above, since the myopic
time t principal does not consider the welfare of future principals.

Proposition 3 The principal optimal equilibrium stopping time is

τ ∗
p = inf{t |μNC

t ≤ p} (2)

This Proposition gives a cutoff in terms of μNC
t , with principals wanting the agent

to certify the first time its truncated expected quality falls below the price. Certification
is good for principals because it gets rid of “bad” agents with qualities less than p,
but it may also hurt principals because it can get rid of “good” agents with qualities
between p and q . The cutoff μNC

t = p is the quality such that these two effects exactly
balance out. We see from (2) that the best equilibria for principals are those where the
certification strategy beliefs τ ∗ expect agents to certify at the highest possible truncated
quality that is still an equilibrium, since μNC

t ≤ p is necessary for certification to
occur. Since this is the highest possible supportable value, we call such types of beliefs
pessimistic beliefs. Because principals do not bear the cost of certification, they want
agents to certify at the fastest possible time that is supportable in an equilibrium. We
will denote the principal optimal equilibrium stopping time by τ ∗

p .
Note that if q = p then μNC

t ≤ p for all t , and so principals will want certification
by all types of agents immediately. In such a case, certification acts as a de facto license
because any agent that does not certify will be immediately excluded from the market
and unable to work at all. With a de facto license, the actual information process being

10 If q = p, then principals would always wish to hire the agent only if it could certify. However, if q > p,
and if the principal believes it is very likely that the agent’s quality falls between (p, q), the principal may
prefer to hire all types of agents instead of hiring only when the agent’s quality was above q.
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used by the market is irrelevant since agents certify before any learning takes place,
and they then stay in the market forever regardless of the signals that are sent.

However, for q > p it could be possible that μNC
0 > p, and so principals may not

want agents to certify immediately. In this case, if the agent’s initial reputation is high
enough, then the principals will want the agent to work for a while and only certify
if its reputation drops too low, with the specific threshold given by Eq. (2). Thus, the
equilibrium will be a delayed certification equilibrium. In this type of equilibrium, the
information process itself matters because it affects how quickly the agent’s reputation
changes.

Putting together all our results for the optimal certification times from Theorem 3
allows us to show on the graph below what the optimal stopping time thresholds are for
the special case of Brownian motion reports. Figure 3 below highlights the different
optimal certification thresholds, which assume the same type of Brownian motion as
in Fig. 2. The principal optimal threshold is the highest supportable threshold, the
agent optimal threshold is the lowest supportable threshold, and the socially optimal
threshold is in between.

Fig. 3 Optimal certification cutoffs. This figure shows several thresholds that represent optimal certification
cutoff qualities for principals and agents, as well as the socially optimal cutoff quality. The principal and
agent thresholds represent optimal stopping rules: The agent should certify the first time that its expected
quality hits each threshold. The socially optimal threshold represents a necessary condition: The agent
should certify only if its expected quality is below the threshold. The principal optimal threshold lies far
above the other two, whereas the socially optimal and agent optimal thresholds are close together and
coincide after a while. The first point shows the optimal certification time from the principal’s perspective,
and the second point shows the optimal certification time from the agent’s perspective, as well as the socially
optimal certification time

6 Optimal certification standards

6.1 Certification standards for socially optimal beliefs

Now that we have characterized what can happen in the various types of equilibrium,
we will perform some comparative statics in order to analyze the socially optimal
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certification standards and prices. This analysis will tell us how certification should be
implemented depending on what type of equilibrium is expected. Thus, we are now
analyzing a mechanism design framework, where the designer chooses the q and p
in order to maximize social welfare. In doing so we maintain our assumption that the
certification standard must be set higher than the price, q ≥ p. However, we no longer

require that p−c
ρ

< k, so it is possible to set the price sufficiently low that agents would

never wish to get certified. Note also that the price can be chosen such that p−c
ρ

= k,

in which case the agent is indifferent between certifying and leaving the market11.
Since there are many possible equilibrium, and the optimal standard and price will
differ across equilibrium, we focus specifically on the socially optimal, agent optimal,
and principal optimal equilibria that we analyzed above.

We start by analyzing socially optimal equilibrium because it is the most straight-
forward case. We assume that for any choice of p, q by the designer, the market will
hold the socially optimal beliefs that were discussed in the previous section. Since
these beliefs are part of an equilibrium, the agent will play according to these beliefs.
With this restriction on the resulting game equilibrium, we find the values of p, q that
maximize ex ante social welfare.

Although finding the socially optimal equilibrium stopping time strategy is chal-
lenging in general, characterizing how the price and standard should be set is much
simpler. The reason is that, unlike in the principal and agent optimal cases, the beliefs
will always be chosen in a socially optimal fashion, and we do not need to alter
the price and standard in order to counteract possible “bad beliefs” that expect cer-
tification at inefficient reputation levels. Thus, it is socially optimal to set the stan-
dard and price as low as possible (but still above c) to allow as many good firms
to certify as necessary. Let p∗ = c + kρ and q∗ = p, and let W ∗(k, p∗, q∗,L) be
the corresponding ex ante social welfare given this certification standard and price
assuming a socially optimal equilibrium. This corresponds to the lowest possible
price that still allows for certification, and the lowest possible standard given this
price. The next theorem states that the price and standard should be set at these low-
est possible levels as long as the resulting social welfare is higher than that without
certification.

Theorem 4 Assuming that a socially optimal equilibrium will occur, the price and
certification standard that maximize ex ante social welfare are given by:

1. p = c + kρ and q = p if W ∗ ≥ μ0−c
ρ

.

2. p = c and q = ∞ if W ∗ ≤ μ0−c
ρ

.

11 When this equation holds with equality, there may now be equilibria that are type dependent, because
agents are indifferent between certifying and exiting the market, so some types could choose to certify and
other types could choose to exit. But all the type independent equilibria characterized by the corollary to
theorem 2 will still exist as well, and they will generate higher social welfare than the corresponding type
dependent equilibria. This is because it is socially optimal for an agent with quality q ≥ q to certify instead
of exiting the market, so the type dependent equilibria that feature some types exiting will be suboptimal.
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6.2 Socially optimal certification standards for pessimistic beliefs

We now characterize the social welfare maximizing certification standards and prices
for the pessimistic beliefs defined in Sect. 5.3.3, which result in a principal optimal
equilibrium. Unlike with the socially optimal beliefs, these beliefs are not aimed at
maximizing the social welfare and so we may need to manipulate the standards and
prices in order to increase welfare. We analyze the comparative statics of our model for
the parameters q and p, assuming that given any choice of the parameters a principal
optimal equilibrium will occur. We present a perhaps surprising result: Certification
should only be implemented in a principal optimal equilibrium as a de facto license. In
this equilibrium, the principals should never get to learn from an agent’s work history
at all before certification occurs.

The next theorem tells us exactly what the optimal certification standards and prices
are as a function of the certification cost. When the certification cost is sufficiently
high, certification should not be allowed, and so we end up with our benchmark model.
When the certification cost is low, certification should be allowed and implemented
as a de facto license where agents certify immediately. In no situation is it optimal
to allow delayed certification, where agents do not certify immediately, but only after
working and sending some signals.

Theorem 5 Assuming a principal optimal equilibrium will occur, the price and cer-
tification standard that maximize ex ante social welfare are given by:

1. p = c + kρ and q = p if k ≤ μc
0−c
ρ

− μ0−c
ρ(1−F−

0 (c+ρk))
.

2. p = c and q = ∞ if k ≥ μc
0−c
ρ

− μ0−c
ρ(1−F−

0 (c+ρk))
.

When q = p, principals will want certification immediately, and when q = ∞ no
agents will ever be able to certify. Thus, there is no case where agents are allowed
to certify but not forced to certify immediately. The reason why delayed certification
is never optimal is that if it were implemented the pessimistic beliefs would require
certification by agents very early and often, and in fact so early and often that certifica-
tion destroys social welfare. To understand this intuitively, note that under pessimistic
beliefs the mean of a non-certifying agent will be exactly equal to the price level.
Thus, we have the same result as in the benchmark, where we are always kicking out
agents who have expected qualities above c. And since p > c in order to allow for
certification, kicking out these agents will strictly reduce social welfare. Even worse,
high-quality agents are also forced to pay for the cost of certification, destroying addi-
tional social value. Since the myopic principals would want the agent to certify at
inefficient reputation levels, the value of certification gets entirely undercut.

Because certification should act as a de facto license under these types of beliefs,
learning through the work history will be irrelevant and does not affect the social wel-
fare. Agents that do not certify can never work, and agents that do certify never exit, so
it does not matter what type of information the work history is sending. For any infor-
mation process, the ex ante social welfare will be the same. When certification costs
are low enough, de facto licenses will provide a higher social welfare than the no certi-
fication benchmark and thus should be implemented. In fact, for k = 0 we can achieve
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the first best outcome through setting q = p = c, which results in all socially benefi-
cial agents working forever, and all other agents exiting immediately. And as k → 0,
we can asymptotically achieve first best by setting the price and certification standard
lower and lower. However, if certification costs are too high, then too much social wel-
fare is lost through certification itself, and it is thus better to not allow for certification.

6.3 Socially optimal certification standards for optimistic beliefs

Now we will analyze the agent optimal equilibrium that features the optimistic beliefs
mentioned earlier in Sect. 5.3.1. Since optimistic beliefs never result in de facto licenses
if μ0 > p, the social welfare generated by these beliefs can be heavily dependent on
the specific information process that the market has access to. In order for certification
to occur, the price needs to be high enough to compensate for the cost of certification,
so we need p ≥ c +kρ or the result is no certification. Given that agents with qualities
higher than c+kρ contribute positively by certifying instead of exiting, the certification
standard q should be set equal to p no matter what the optimal p is. The inequality
p ≥ c + kρ need not be binding, because it may be optimal for the price to be raised
so that certification occurs sooner. For instance, if the certification cost k is very low,
then it is optimal to have p higher so that we can get certification earlier.

Also note that a de facto license can be implemented if the price is set at p ≥ μ0,
since then principals would never buy from non-certifying agents. The optimal way to
implement a de facto license is to set p = q = max(c + ρk, μ0), for similar reasons
as in the principal optimal case. However, a de facto license would result in all types
of agents with qualities less than μ0 but greater than c getting forced out of the market.
Thus, it may be better not to have a de facto license, but delayed certification instead.

In general then, for k sufficiently low it will be optimal to have q = p ∈ [c+ρk, μ0],
where the exact value depends on the information process itself. This results in either
delayed certification if p < μ0 or a de facto license if p ≥ μ0. If k is too high, then
we should set p = c and q = ∞ to ensure that no certification occurs. The exact
cutoff value for k, as well as the exact values of the price and certification standard,
will depend on the information process because that will influence the social welfare
of any delayed certification scheme.

Given that delayed certification can be desirable in an agent optimal equilibrium,
one may think that the social welfare under optimistic beliefs will always be higher
than the social welfare under pessimistic beliefs, where delayed certification could
never be optimal. However, optimistic beliefs also have a downside – de facto licenses
are now much harder to implement because the price needs to be set at a very high level
to do so. Under pessimistic beliefs, we could asymptotically get first best as k → 0
by implementing a de facto license. But that is not the case with optimistic beliefs,
as the next theorem shows. With optimistic beliefs, a de facto license cannot achieve
first best, and delayed certification cannot achieve first best either for any positive k12.
Given any value of k, we define Wa(k,L) as the optimal ex ante social welfare in the

12 When k = 0, agents do not mind certifying at an expected quality above the price, and so first best can
be achieved in an agent optimal equilibrium.
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agent optimal equilibrium. That is, this is the highest social welfare that can result in
an agent optimal equilibrium from any choice of p and q .

Theorem 6 Suppose that the initial quality distribution f0(q) has positive density on
the interval [c − ε, c + ε] for some ε > 0. Then for all k > 0 , the value of the ex ante
social welfare in an agent optimal equilibrium is strictly bounded away from the first
best value, supk>0 Wa (k,L) <

∫ ∞
c

q−c
ρ

f0(q)dq.

Proof See Appendix. �
This theorem shows that given any information process, the ex ante social welfare

is strictly bounded away from the optimal as costs become low, as long as it is initially
possible for the agent to have a quality close to c. However, we note that if the infor-
mation process itself become very informative, then the optimal social welfare can
be asymptotically achieved. Define a fully revealing information process to be such
that almost surely τ ∗

a < ∞ for all types of agents with q < c. This means that bad
agents will for sure be forced to certify at some point, and thus will always get kicked
out of the market in the long run. Such a property holds as long as the information
process allows bad agents to be distinguished from good agents over time. For fully
revealing information processes, faster information revelation will allow for the first
best social welfare to be asymptotically achieved when certification costs are low.
Formally, we say that an information process L′ is faster than another process L if for
some n > 1, R′

q (t) = Rq (nt) for all t, q. The parameter n tells us how much faster
one process is at sending information than another. For some information processes,
faster information has a natural interpretation. For example, with the Brownian motion
d Rq(t) = qdt + σr d Z(t), a faster information process would correspond to dividing
the variance of the Brownian motion by n. For Poisson processes, faster information
would correspond to multiplying the arrival rates by n.

The reason that faster information revelation is helpful is with certification is
because low-quality agents will get kicked out of the market very quickly, while high-
quality agents can still stay in.13 As the following proposition shows, first best can be
asymptotically achieved if the certification costs become very low and the information
arrives at a very fast speed. Thus, information revelation and certification can act in
a complementary fashion, with more information increasing the welfare provided by
certification.

Proposition 4 Suppose that L is a fully revealing information process, and let {L′
n}

be a sequence of information processes that are faster than L by the factor n. Then
we have

lim
n→∞ sup

k>0
Wa

(
k, p, q,L′

n

)
=

∞∫

c

q − c

ρ
f0(q)dq

Proof See Appendix. �

13 Note that without certification, faster information cannot increase welfare as shown by Theorem 1.
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On the other hand, if certification costs are high and a delayed certification scheme
were attempted, faster information revelation could actually lower social welfare.
When costs are high, the price and certification standard may need to be much higher
than c to get agents to certify. But setting high certification standards will make cer-
tification kick out agents less efficiently than before because exiting agents will have
higher quality levels. A faster information process compounds this problem by getting
to the kick out point faster, thus lowering social welfare. In this case, it may be better
not to implement certification.

7 Conclusion

This paper analyzed how two separate avenues of information, certification and work
history, can interact to affect learning about the quality of an agent. We showed that
the information provided by the work history alone cannot raise social surplus, mak-
ing certification necessary even when the market can learn through the agent’s work
history. With certification, all equilibria will feature type independent certification
strategies, and the various equilibria that maximize principal, agent, and social wel-
fare can be ordered according to the equilibrium certification stopping time strategies.
Principals will prefer the agent to certify at the earliest possible time, and thus, delayed
certification by the agent will not be socially efficient. With pessimistic beliefs, only
a de facto license type of certification can be socially beneficial. On the other hand,
in the agent optimal case, the agent will delay certification for as long as possible.
This is suboptimal if the certification costs are low, and it is socially beneficial to
have the agent certify quickly. In this case, faster information revelation can increase
social welfare, creating a complementarity between the reputational forces and
certification.

There are several possible extensions for future research that could have interesting
implications. One important case is to allow for variable prices that depend partially or
even wholly on the agent’s reputation. Such a change complicates the exit decision for
the agent, because it may wish to keep working even if the price falls below its own
reservation value. In extreme cases such as Bar-Isaac (2003), higher-quality agents
may never exit, which means that there is no loss in efficiency in the long run. Thus,
certification would only be useful to flush bad agents out of the market sooner, and so
certification would be less valuable than in the current model.

Another interesting extension is to allow for moral hazard. For instance, the agent
could increase the quality of its work by exerting effort, which would also send more
positive information to the market. The agent may thus choose greater effort to increase
its reputation instead of certifying. And after the agent does certify, its work incentives
may drop quite significantly. Principals would anticipate this and therefore prefer the
agent to wait longer instead of certifying quickly. So with moral hazard, delayed certi-
fication could now be socially beneficial in a principal optimal equilibrium. Likewise,
certification times in socially optimal equilibrium may get delayed as well. Certifi-
cation may thus become less beneficial with moral hazard, because it undercuts an
agent’s incentive to signal through effort.
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8 Appendix

8.1 Proof of Theorem 1

First note that if the price is less than c, the agent would refuse to accept any offers,
and so the social welfare is equal to 0 regardless of the information process. Thus, we
only need to consider prices p ≥ c.

Note that under any blind process, the agent’s expected quality is never updated,
and so since we assume that μo > p the agent will never stop working. The ex ante
social surplus can thus be calculated as μ0−c

ρ
. For a general information process the

market continues to hire any agent until its expected quality drops below p, and for
an admissible process this happens at the first time that μt = p. We can write out the
ex ante expected social welfare for any information process as

W (p,L) =
∫ ∞

−∞

[∫ ∞

0
e−ρt (q − c) dt

]
f0 (q) dq − Eq,t∗

[∫ ∞

t∗
e−ρt (q − c) dt

]

=
∫ ∞

−∞

[∫ ∞

0
e−ρt (q−c)dt

]
f0 (q) dq−Et∗

[∫ ∞

t∗
Eq

[
e−ρt (q−c)|t∗] dt

]

= μ0 − c

ρ
− p − c

ρ
Et∗

[
e−ρt∗

]
≤ μ0 − c

ρ

�
8.2 Proof of Theorem 2

Suppose the market believes that agents are following some (not necessarily type
independent) certification strategy τ̃ (q). Consider any time t ′ and history Ht ′ , and
let the expected quality for an agent that has not certified by t ′ be given by μN

t ′ ≡
E [q|Ht ′ , θt ′ = φ]. Note that for any market strategy beliefs, the value of μN

t ′ depends
only on the work historyHt ′and certification status θt ′ , and not the agent’s true quality.
Thus, fixing the work history and certification status, all agents will have the same μN

t ′
regardless of their true quality. There are two possible cases: μN

t ′ > p or μN
t ′ ≤ p,

and we show that for both cases, either all types of agents with qualities q ≥ q will
choose to certify at t ′ or no types of agents will choose to certify at t ′.

First consider the case where μN
t ′ > p. Then agents can still work even without

certifying. The payoff of an agent that chooses to certify is given by p−c
ρ

− k. This
payoff is identical for all agents with quality q ≥ q because of our assumption that
q ≥ p, and so certified agents will never stop working. Now consider the alternate

strategy of waiting until the time t̂ ≡ inf
{
t |μN

t ≤ p
}

and then certifying. This strategy
gives a payoff of ∫ t̂

0
e−ρt (p − c) dt −

(
e−ρ t̂

) (
p − c

ρ
− k

)

This alternate strategy gives a payoff higher than certifying immediately by (1 −
e−ρ t̂ ) ∗ k. So certifying at time t ′ is not optimal, and with this μN

t ′ all types of agents
would choose not to certify.
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Next consider the case where μN
t ′ ≤ p. An agent that does not certify will not be

able to work at time t ′, and so receives a maximum payoff of

(1 − ρdt)

(
p − c

ρ
− k

)

This is the payoff the agent would receive if it certified at time t ′ + dt . Since no
observations are made, the mean at a later time cannot be greater than p unless the
agent were to certify at some time t ′ + dt . If the agent instead chooses to certify
immediately at time t ′, it would get a payoff of

p − c

ρ
− k > (1 − ρdt)

(
p − c

ρ
− k

)

Thus, certifying in the current time step would increase the payoff by ρdt
(

p−c
ρ

−k
)

.

Therefore, all types of agents would choose to certify given this value of μt ′ N .
Since all agents with quality q ≥ q would choose the same certification decision

for any value of μN
t ′ , every equilibrium must feature all agents with quality q ≥ q

utilizing the same certification strategy τ ∗
ε . �

8.3 Proof of Proposition 1

Consider any equilibrium that requires the agent to certify at a time t ′ where μt ′ > p.
Now let us compare the payoffs to the agent against the equilibrium where the agent
certifies at the first time t such that μt ≤ p. In the second equilibrium, at time t ′ the
agent would instead delay certification until the time t∗ = inf {t |μt = p}. Since the
payoff from certification is the same regardless, the agent would be able to improve its
payoff by the amount (e−ρt ′ − e−ρt∗)k. Thus, no equilibrium that requires the agent
to certify at a μt > p can be agent optimal. �

8.4 Proof of Proposition 2

We fix an arbitrary equilibrium and compute the social welfare flow payoff difference at
the equilibrium certification time τ ∗ between certification and no certification. Without
certification, the social welfare flow payoff is given by

Eτ∗ [q − c] =
∫ ∞

−∞
(q − c) fτ∗(q)dq

With certification this would become

Eτ∗ [q−c] =
(

1−F−
τ∗

(
q
)) ∫ ∞

q
(q−c) fτ∗(q|q ≥ q)dq =

∫ ∞

q
(q − c) fτ∗(q)dq
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Thus, the difference in the two expectations is given by

lim
q ′↗q

∫ q ′

−∞
(q − c) fτ∗(q)dq

Certification has a higher flow payoff if and only if the difference in expectations plus
the flow cost of certification is less than zero:

lim
q ′↗q

∫ q ′

−∞
(q − c) fτ∗(q)dq + ρk

(
1 − F−

τ∗
(

q
))

≤ 0

Or equivalently
(
μNC

τ∗ − c − ρk
)

F−
τ∗(q) ≤ −ρk, which leads to (1).

Now suppose for the sake of contradiction that (1) does not hold at the certification
time τ ∗. We will consider the following strategy that can be an equilibrium, and we
show that it provides a higher social welfare than certifying at time τ ∗ if (1) does not
hold at τ ∗. Suppose instead that the agent keeps working until 1: the first t > τ ∗ such
that (1) holds, or until 2: the first t > τ ∗ such that μt ≤ p, and then the agent certifies.

Note that the agent keeps working without certifying as long as the social welfare
flow payoff from not certifying is greater than the flow payoff from certifying at τ ∗.
Once the agent certifies, the flow payoffs are the same as with certifying at τ ∗. Thus,
under this alternate strategy the flow payoffs can never be less than under certifying
at τ ∗. Therefore, the total social welfare generated must be higher as well. �

8.5 Proof of Proposition 3

The short run time t principal’s utility is given by μt − p = Et [q − p], so the principal
prefers certification if and only if this expectation with certification is higher than the
expectation without certification. Without certification, we have

Et [q − p] =
∫ ∞

−∞
(q − p) ft (q)dq

With certification this would become

Et [q − p] =
(

1 − F−
t

(
q
)) ∫ ∞

q
(q − p) ft (q|q ≥ q)dq =

∫ ∞

q
(q − p) ft (q)dq

Thus, the difference in the two expectations is given by

lim
q ′↗q

∫ q ′

−∞
(q − p) ft (q)dq

Certification is preferred if and only if the above term is less than zero.

∫ p

−∞
(q − p) ft (q)dq + lim

q ′↗q

∫ q ′

p
(q − p) ft (q)dq ≤ 0

123
119



538 M. Van Der Schaar, S. Zhang

This means that the benefit of removing bad agents (qualities below p) from the market
outweighs the costs of removing the good agents (qualities above p). Or equivalently:

(
μNC

t − p
)

F−
t (q) ≤ 0

μNC
t ≤ p

This results in Eq. (2) in the Proposition. Since at each time t , that time t principal
wishes for the agent to certify if and only if this equation holds, the resulting certifi-
cation strategy will feature the agent certifying at the first moment that this equation
holds. By the corollary to theorem 2, we know that such a certification strategy can be
an equilibrium. �

8.6 Proof of Theorem 4

First note that if p < c + ρk there can be no certification in equilibrium. The optimal
way to implement no certification is to set p = c, q = ∞ from Theorem 1. This results

in a social welfare of μ0−c
ρ

for any admissible information process. Next, suppose that
we wish to allow certification in equilibrium. Thus, we need to set p ≥ c + ρk.
We show that for any p ≥ c + ρk and any q ≥ p, we can achieve at least as high
of a welfare by setting q = p = c + ρk. Given the first set of parameters, denote
the socially optimal certification stopping time by τ ∗

s . But under the second set of
parameters, τ ∗

s can also be implemented because μNC
τ∗

s
≤ p will also hold at any τ ∗

s

(recall that μNC
t ≤ p for all t if q = p), and μt > p for all t < τ ∗

s . In addition,
once implemented the social welfare provided by certification will be at least as high,
because all types of agents with qualities q > c + ρk contribute positively to social
welfare by certifying instead of exiting. Thus, the social welfare with q = p = c +ρk
must be at least as high as with any other standard. �

8.7 Proof of Theorem 5

This proof will proceed in several steps. Note that certification can be broken up into
three possible types: immediate certification at t = 0, delayed certification that takes
place at some t > 0, and no certification for all times. Which type of certification results
will depend on the specific values of q and p. We prove that under pessimistic principal
beliefs, delayed certification is never optimal. Then, we characterize the social welfare
generated by immediate and no certification. We prove that immediate certification
and no certification can both be optimal depending on how high the certification cost
is.

First we show that implementing delayed certification is never socially optimal. If
the price is set lower than c + ρk, then certification can never occur because agents
would prefer to exit than certify. Thus, for any type of certification to be implemented,
we must have p ≥ c + ρk. Next, note that under pessimistic principal beliefs, the
certification standard q must be set high enough such that μNC

0 > p because otherwise
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agents would be expected and thus forced to certify immediately in a principal optimal
equilibrium by Proposition 3. In particular, this requires that q > p.

Now we analyze the social welfare generated by any delayed certification scheme,
and we show that the welfare is strictly less than under no certification. Let t̂ =
inf

{
t |μNC

t ≤ p
}
. In a principal optimal equilibrium, t̂ is the time at which certification

would occur. Note that admissibility implies that at t , the truncated expected mean
μNC

t̂
= p. For any p and q that satisfy the above conditions, we can compute the

resulting social welfare as:

W (p) =
∫ ∞

−∞

[∫ ∞

0
e−ρt (q − c) dt

]
f0 (q) dq − Et̂

[
ke−ρ t̂

(
1 − F−

t̂

(
q
))

+F−
t̂

(
q
) ∫ ∞

t̂
e−ρt

(
μNC

t̂
− c

)
dt

]

= μ0 − c

ρ
−

(
k Et̂

[
e−ρ t̂

(
1 − F−

t̂

(
q
))]

+ p − c

ρ
Et̂

[
e−ρ t̂ F−

t̂

(
q
)])

≤ μ0 − c

ρ

This proves that the social welfare of any delayed certification scheme is bounded
above by setting p = c and q = ∞, which results in no certification. From the blind

boundedness theorem, we know that the payoff of such a scheme is exactly μ0−c
ρ

.
Now, fixing a q , the welfare provided by a de facto license is given by the expression

∫ ∞
q (

q−c
ρ

− k) f0 (q) dq. Given a k, the optimal certification standard is q = c + ρk.

The reason is that any agent that certifies will give a social welfare of q−c
ρ

−k, and this
is the quality where this expression is equal to zero. Any agent with a quality higher
than this amount contributes positively to welfare by certifying. Since we require that
p ≤ q and we need p ≥ c + ρk for certification to occur, this implies that we need to
set p = c+ρk in order to implement immediate certification. Thus, the highest ex ante
surplus generated by any immediate certification scheme is

∫ ∞
c+ρk(

q−c
ρ

−k) f0 (q) dq =
(

μC
0 −c
ρ

− k

)
(
1 − F−

0 (c + ρk)
)
.

Thus, to see whether immediate certification is better, or whether no certification is
better, we need to see which of the two surpluses is higher. This depends on the value

of k, and specifically the cutoff value will be given by k∗ = μC
0 −c
ρ

− μ0−c
ρ
(
1−F−

0 (c+ρk)
) .

�
8.8 Proof of Theorem 6

First note that if either no certification or a de facto license is implemented, the social
welfare will always be bounded away from the social optimal. With no certification,
the welfare always equals the benchmark welfare for any k, and with a de facto license,
the price and standard have to be set to at least μ0. The social welfare of the de facto
license is thus equal to

∫ ∞
μ0

(
q−c
ρ

− k) f0 (q) dq, which is bounded away from the first

best welfare,
∫ ∞

c (
q−c
ρ

) f0 (q) dq, for any value of k.
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Thus, in order to get asymptotic efficiency as k → 0, we need to do it through
a delayed certification scheme. We now show that the social welfare of any delayed
certification scheme will also be bounded away from first best. First note that if the
standard q� c, then first best cannot be achieved. The reason is that before certification
occurs, we are losing welfare from letting bad agents work, and after certification
occurs we also lose welfare since not all good agents are working. Then assume that
p, q → c. Fix any path of the expected mean for the agent. Let t∗c = inf{t |μt ≤
p; p = c} be the stopping time of this path in the limit as the price approaches c. In
order to achieve first best as k → 0, we must have t∗c = 0 or else bad agents will
be working for some stretch of time. But for any admissible information process this
is impossible since μ0 > p. Thus, t∗c is strictly above 0, and so delayed certification
cannot achieve first best. �

8.9 Proof of Proposition 4

From the proof of Theorem 6, we see that immediate certification and no certification
cannot asymptotically achieve first best as the information speed increases, because the
speed of the reputational mechanism does not affect social welfare in either case. So
we must show that the social welfare of a delayed certification scheme approaches first
best. We wish to show that as the speed becomes very high, t∗c (q) → 0 ∀q < c, because
doing so means that all agents who have socially inefficient qualities will be kicked
out extremely quickly, and the good agents will be able to stay in forever (perhaps
paying the certification cost that asymptotically approaches 0). Since the process is
fully revealing, almost surely t∗c (q) < ∞ for agents with quality q < c. Then as n gets

large, agents will be kicked out at time t∗c (q)

n instead, which approaches 0 for all finite
t∗c (q). Thus, t∗c (q) → 0 ∀q < c and so delayed certification asymptotically achieves
the first best outcome. �
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