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Abstract

High Dimensional Statistical and Computational Methods for Knowledge Discovery and
Data Mining in Biomedical Data

by

Funan Shi

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Haiyan Huang, Chair

Biomedical sciences have seen radical growth in recent decades, inspired by a plethora of
technological breakthroughs, of which sequencing and imaging are two particular technologies
whose advancements have enabled scientists to explore areas that were previously impossible.
High-throughput sequencing, for instance, is perhaps one of the most groundbreaking ad-
vancements in biology; it allows genetic material (e.g DNA, RNA, proteins) to be identified
cheaply and accurately, granting investigators unprecedented insight into the inner workings
of the genome—the blueprint of all living organisms. Therefore, high-throughput technol-
ogy, and in recent years single cell sequencing in particular, has become the cornerstone of
genetics research. Sequencing can reveal the genomic location of a gene, but often times
the physical locations where a gene is expressed in a cell are also biologically meaningful,
and with imaging technologies like florescent tagging and powerful electronic microscopes,
this information is now possible to ascertain. Of course, the field of imaging technology
is vast, and other areas have also seen tremendous leaps forward. For instance, with the
development of CT scans and better PET tracers, researchers now have an in vivo view of
the metabolic activities in organs, allowing researchers to monitor and study diseases as they
progress, thus generating an unprecedented level of understanding of devastating conditions
such as Alzheimer’s.

In response to the profusion of quality data, statistical techniques that attempts to an-
alyze these data have also flourished into the field of computational biology and statistical
genomics, which has since emerged as an indispensable part of scientific discovery pipeline as
well as an important interface between statistics/machine learning and biomedical sciences.
In this thesis we examine applications of statistical techniques to three vastly different data
sets. In the first work we analyze data from PET brain scans of Alzheimer’s Disease pa-
tients and explore how linear mixed effect model offers a powerful and flexible alternative for
gauging β-Amyloid accumulation. The data we study in the second work consists of single-
cell RNAseq data from mouse embryonic, human embryonic, and human cancer cells, from
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which we introduce a biclustering method to simultaneously extract biologically relevant cell
clusters and genes that are active in those clusters. In the third work, multiple sources of
biological databases consisting of both imaging and sequencing data were leveraged into a
machine learning problem, on which random forest is applied to mine organogenesis master
regulators.
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Chapter 1

Introduction

The field of computational biology is the application of statistical and computational
techniques to areas of biomedical sciences such as genomics, system biology, and medicine.
There has been long history of cross pollination between statistics and biomedical fields;
in fact, many of the frequently used statistical tools today were developed to answer bi-
ological questions. Karl Pearson, considered by many to be the father of mathematical
statistics, developed a suite of commonly used statistical apparatus such as the principal
component analysis, method of moments, chi-squared test, correlation, ...etc, to better un-
derstand heredity in Darwinian evolution. Sir Ronald Fisher, another luminary of equal
standing as Pearson, developed his own statistical toolbox consisting of p-values, maximum
likelihood, randomization, and design of experiments, much of which was originally devel-
oped for the analysis of agricultural data and application to genetic research. Although the
field of computational biology is not new, it has seen rapid advancement in recent decades,
becoming an indispensable apparatus of scientific discovery and an important interface be-
tween statistics/machine learning and biomedical sciences; and this interface has brought
about new problems and challenges that has since enriched the field of statistics itself. Its
emergence was propelled by two forces: the rapid development in the biomedical technol-
ogy that generates ever growing quality, quantity, and variety of data; and commensurate
development in computational technology that enabled the building of ever more complex
statistical machinery to process and analyze the profusion of data timely and efficiently.

One prominent example is high throughput sequencing. One of the biggest scientific
achievements of the 21st century was the Human Genome Project, aiming to chart out the
blueprint of human genetics. The first draft of the human genome was estimated to have cost
$0.5-1 billion over the course of 10 years; since then, with the advent of high throughput
sequencing, a complete human genome can be sequenced for under $2000 [63]. The crux
of high throughput sequencing is shifting the challenge from labor intensive wet-lab work
(Sanger sequencing) to a computational one, where millions of randomly sliced overlapping
short reads are pieced together algorithmically in order to reconstruct the genome, much
like a computational jigsaw puzzle. As one can imagine, the alignment algorithm is highly
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computationally intensive, and only became a reality with a strong computation backdrop.
With orders of magnitude of improvements in both time and cost, high throughput sequenc-
ing technology has since become the cornerstone of genetic research.

Imaging is another area where the marriage of biotechnology and computation drove
tremendous scientific development. Positron emission tomography, commonly known as the
PET-scan, is a non-invasive imaging technique that allows users to see the metabolic activ-
ity of internal organs. The technique has seen successful application in a wide variety of
fields such as oncology, neuroimaging, and cardiology. Due to the non-invasive nature, the
technique has contributed immensely to the advancement of Alzheimer’s Disease research.
Prior to PET imaging, data points about the AD can only be obtained from biopsied post-
mortem brain samples, which means the disease can only be studied at its maturity. With
the advent of PET imaging, however, the disease can be studied in vivo, allowing progression
of the disease to be monitored and studied. The PET-scan was so instrumental in many
medical and scientific advancements that it was named TIME magazine’s scientific discovery
of the year in 2000. The wide adoption of PET technology in biomedical research is not
possible without strong computational support. Medical image registration, for instance, is
a computationally intensive process in which images from various modalities (e.g CT, PET,
MR...etc) are spatially aligned to synergize the insights offered by individual images, which
are often complementary. For instance, CT and PET scans are often executed together
because CT gives high resolution anatomical details, thus tissue-wise metabolic information
extracted from PET+CT scans is generally of higher fidelity than that from PET scans alone.
The medical imagine registration literature is immense [31], but techniques generally involve
extracting features from, comparing intensities of, and optimizing over images with millions
of pixel; and with the prevalence of 3D images and videos in recent years, new challenges
are constantly surfacing that require more complex and intricate algorithms, which in turn
rely on robust computing platforms.

In addition to providing computational solutions for biomedical technologies, increased
computational power also universalized statistical techniques that were previously deemed
too time-consuming. Parallelization, for instance, made it possible to run many computation-
ally intensive algorithms that are currently the backbones of modern statistical repertoire,
such as (but not limited to) Monte Carlo methods, graphical models, a and linear/dynamic
programming. Random forest, for instance, is a prediction technique that involves training
hundreds to thousands of simple tree predictors. This architecture allows the method to
take full advantage of parallelization and derives multi-order of magnitude improvement in
speed. The marriage of statistics and computer sciences (parallelization, optimization, etc)
emerged as a new and exciting field of machine learning, which has seen continual widespread
in analysis of biomedical data.

Computational biology and statistical genomics is an exciting field that tackles the ever-
evolving statistical challenges that comes with the rapid advancements in biomedical sciences.



CHAPTER 1. INTRODUCTION 3

In this work, we present three case studies analyzing data sets generated by the aforemen-
tioned technologies, and use three vastly different statistical methodologies for analysis. Due
to the broad range of background dealt in each project, we will defer details to each individual
chapters.
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Chapter 2

Identifying cell subpopulations and
their genetic drivers from single cell
RNA-Seq data using a biclustering
approach

Single-cell RNA-Seq (scRNA-Seq) has attracted much attention recently because it allows
unprecedented resolution into cellular activity; the technology, therefore, has been widely ap-
plied in studying cell heterogeneity such as the heterogeneity among embryonic cells at varied
developmental stages or cells of different cancer types or subtypes. A pertinent question in
such analyses is to identify cell subpopulations as well as their associated genetic drivers.
Consequently, a multitude of approaches have been developed for clustering or biclustering
analysis of scRNA-Seq data. In this paper, we present a fast and simple iterative biclustering
approach called “BiSNN-Walk” based on the existing SNN-Cliq algorithm.

In this chapter we introduce a fast, simple, self-correcting iterative biclustering method
named “Biclustering using Shared-Nearest-Neighbor and Walktrap” (BiSNN-Walk for short,
pronounced “bison walk”). The BiSNN-Walk expands on the idea of clustering on Shared
Nearest Neighbor (SNN) network constructed from gene expression matrix proposed in Xu
et al’s SNN-Cliq algorithm [84] by adding a gene clustering component to SNN-Cliq’s cell
clustering framework. One of BiSNN-Walk’s differentiating features is that it returns a
ranked list of clusters, which may serve as an indicator of a cluster’s reliability. Another
important feature is that BiSNN-Walk ranks genes in a gene cluster according to their level
of affiliation to the associated cell cluster, making the result more biologically interpretable.
We also introduce a simple entropy-based measure to guide our initial similarity matrices
selection, which serves as a starting point for BiSNN-Walk. In our exploratory analyses, the
entropy measure shows promise for gauging the “clusterability” of similarity matrices.

We applied BiSNN-Walk to three public single cell RNA-Seq data sets and found that
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the algorithm not only maintained SNN-Cliq’s clustering capability, but also produced bio-
logically interpretable results by establishing genes that are characteristic to those clusters.
This chapter follows Shi and Huang [69].

The chapter is organized as follows: Section 2.1 gives a brief overview of RNAseq and
single-cell RNAseq. An overview of selected biclustering algorithms are given in Section 2.2.
Section 2.3 will outline BiSNN-Walk and detail the key steps. Section 2.4 will describe three
scRNA-Seq datasets used for validation, compare our cell clusters against SNN-Cliq, offer
visual comparisons against selected biclustering algorithms, and finally evaluate the gene
clusters via gene overlap and ontological term-enrichment analysis.

2.1 From RNAseq to scRNAseq: A brief overview of

whole transcriptome sequencing

RNAseq is a technique where next-generating sequencing [62] is applied to sequencing
the transcriptome, thus is also called whole transcriptome shotgun sequencing. Since the
transcriptome contains RNA transcripts of a cell that are then translated into proteins that
carry out various tasks around the cell, RNAseq has become a cornerstone of genomic re-
search by allowing us to see what transcripts are floating around in a cell. Because the
starting material for RNAseq needs to go through cleaning and isolation, the final input ma-
terial into the sequencer may not be enough to produce reliable signal; therefore RNAseq is
typically performed with bulk starting material to ensure reliable return of signal; however,
this process means the natural variation between cells are lost in the process. Moreover, if
the cell type is rare or hard to obtain, such as circulating cancer cells or embryonic stem
cells, one may not even be able to obtain enough for starting material.

To combat this limitation, a new RNAseq extension called single-cell RNAseq has been
gaining traction in recent years that enables sequencing with minute amount of starting mate-
rial. The main advancement lies in transcript amplification, which allows the minute amount
of RNA material to be amplified into a viable amount for RNAseq. Multiple displacement
amplification is the most widely used technique, but other variants and approaches have also
been developed to tackle this problem, e.g Smart-seq [60], Smart-Seq2 [55]. In light of the
rise of the technology, an increasing number of experiments have been conducted and yielded
excellent results [14, 60, 85, 83]. The unprecedented resolution into cell states provides hope
for a better understanding of cell function and dysfunction [18], for which scRNA-Seq was
bestowed the honor of “Method of the Year” by Nature in 2013 [51].

Being a high-throughput technique, scRNA-Seq data poses interesting statistical prob-
lems. One such problem is to cluster cells into biological categories, e.g distinct develop-
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mental stages, cell types...etc, to discover cell-based biologics. Compared to other clustering
tasks, algorithms developed for scRNA-Seq data need to take into account the increased
variation in data that comes with sequencing individual heterogeneous cells (e.g. [84, 5]).
To improve upon existing algorithms, a natural extension is to simultaneously identify bi-
ologically important genes for each cell category while performing clustering. Under this
setting of bi-clustering, it is reasonable to expect that the identified signature genes would
not only aid clustering the cells by denoising the data, but also help answer questions such
as “what genes are heavily recruited in the 2-cell stage of mouse embryonic development?”

2.2 Brief review of selected biclustering algorithms

Since a gene may be involved in multiple cell conditions, the biclustering problem we
consider allows for overlapping gene (row) clusters but non-overlapping cells (columns). For
instance, it’s reasonable to assume similar genes would drive 2-cell embryonic and 4-cell
embryonic development due to their chronological proximity. Even though the field of bi-
clustering is vast, there are few methods that specializes in the specific bicluster structure
we consider. Most existing biclustering algorithms such as Block partitioning [27] are not
suitable because they do not allow overlapping gene clusters. More flexible models such as
the Cheng & Church model [12], which considers a bicluster as a submatrix with consistent
column and/or row effects, are often too computationally expensive for the problems we
consider. Coupled Two-way Clustering [24] is a popular method that sequentially divides
an initial cluster until a stable child cluster is found. However, since the method cannot
self-correct, the quality of the child clusters may be entirely dictated by the quality of the
initial cluster.

We select a few reference methods that are suitable for our problem type and are charac-
teristics of different approaches to biclustering. They are Plaid [41], Cheng & Church [12],
Xmotifs [79], and BiMax [47]. We also applied a recently published clustering algorithm,
GiniClust [34], designed to handle scRNA-Seq data. Coupled Two-way Clustering is not
considered since there are no viable implementation of the algorithm, and the authors could
not be reached to obtain one.

Plaid, Cheng & Church. As one of the landmark papers in the field, Plaid and CC are
frequently used as benchmarks. Both Plaid and CC assumes that gene expression can be
expressed in an additive fashion of the form µ+ ai + bj, where µ is the background constant,
ai/bj are row/column specific constants, respectively. The µ, ai, and bj are treated as pa-
rameters in the Plaid model to be fitted, whereas they are set as row, column and overall
means, i.e constants, in CC. The chosen bicluster would have expression values that fall most
consistent around ai, bj, and µ. For Plaid model, after a bicluster is found, its values are
then subtracted, and the residual expression matrix is used to find the subsequent biclusters.
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For CC, after a bicluster is found, random gene expression values are used to replace that
of the true bicluster, and the resulting scrambled “gene expression matrix” is then used for
subsequent runs.

BiMax. Devised as a benchmark algorithm, BiMax is the simplest of the benchmarks.
It operates on binary matrices, and uses a divide and conquer approach to find all maximal
completely bipartite graphs (maximal submatrices containing all 1's).

Xmotifs. For any random cell cluster C we define a gene's expression on the cells in
C as interesting or not interesting, which is called a gene's state on C. We call a gene-cell
bicluster (G,C) an Xmotif if for every cell in C, all of the genes in G are in the same state.
Further more, an Xmotif is maximal if every genes not in the Xmotif has less than β (some
user defined percentage) states in common with genes in G. The algorithm randomly gener-
ates a user-defined number of seed-Xmotifs and attempt to grow them into maximal Xmotifs.

GiniClust. Modified Gini index is used to isolate genes of interest. The submatrix with
rows being the selected genes and columns being the cells are then passed to the clustering
algorithm DBSCAN to obtain cell clusters. Therefore the algorithm will return cell clusters,
but only one cluster of genes, so it’s in fact more an algorithm for clustering than biclustering.

2.3 BiSNN-Walk: biclustering using SNN and

Walktrap

Figure 2.1 details the flow of BiSNN-Walk. In essence, the algorithm iterates between an
inner loop and an outer loop.

The inner loop cycles through three main steps: cell clustering “SNN-Walktrap”, gene
finding, and expression matrix updating (Figure 2.1, steps 1 , 2 , 3 , respectively). We
pass an initial similarity matrix into SNN-Walktrap to obtain a candidate cell cluster, which
is used to find characteristic genes. Step 3 then produces a gene expression matrix con-
taining only those characteristic genes. The reduced expression matrix is in turn used by
SNN-Walktrap to obtain a new cell cluster. The process then iterates until either the cell
cluster stabilizes or a pre-set iteration limit is reached. The inner loop will have produced
one bicluster upon termination.

The process then goes to the outer loop, where the cell cluster found by the inner loop
is removed from the input matrices. The updated matrices are subsequently fed into the
inner loop to obtain the next stable cluster. The process continues until stopping criteria
(described in Section 2.3.5) is met. The following sections will detail several major steps.
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Figure 2.1: BiSNN-Walk algorithm flowchart. Inputs and outputs are in rounded boxes,
functions are in blue texts. The function SNN-Walktrap is a bit complicated, and its details
are laid out in the red box. Steps with circled numbers are crucial steps that will be
repeatedly referenced.
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2.3.1 Step 0: Selecting a Similarity Matrix

The first step is to choose a similarity matrix to be used to obtain the initial cell clus-
ter (Figure 2.1, step 0 ). We consider an initial similarity matrix with high contrast to be
ideal, i.e the correlation between cells of the same type should concentrate tightly near 1,
while that between different types should concentrate around near 0. For illustration, we
will examine four types of similarity matrices: Euclidean distance, Spearman correlation,
Pearson correlation, and the irreproducible discovery rate (IDR) matrix [45]. IDR measure
the dissimilarity between two cell’s active genes, e.g two cells that have a similar set of active
genes and similar expression profiles across those genes will generate a small IDR value, and
vise versa. IDR stands apart from existing cell similarity measures in that it does not resort
to using all of genes or a pre-selected set of ”relevant genes”. The former is not desirable
since a large portion of a cell’s genetic profile consists of housekeeping and non-active genes,
which may lower a method’s power to identify the relationship between two cells. The latter
is not ideal either since the threshold for “active” genes will vary across cells. The use of IDR
bypasses these difficulties. Our results (Appendix G, Table 2) demonstrates that IDR matrix
consistently provides high quality final clustering. For continuity’s sake, a brief overview of
IDR is provided in Section A.2.

To choose which similarity matrix to use, we propose a simple entropy-based measure.

Definition (Entropy of a similarity matrix). Let x be the vector obtained from the upper
triangle of the similarity matrix, we put the values of x into m equal sized bins, akin to what
is done for histograms. Let p = [p1, ..., pm] denote the proportion of values that fall into each
bin 1. The entropy for an m-bin configuration is calculated as

Entropy (p,m) =
m∑
i=1

pi log pi

This entropy can be interpreted as the amount of noise in a similarity matrix, thus a
similarity matrix with large amount of clustering information should have low entropy. Be-
cause entropy calculation depends on m, it is illustrative to compare entropy at several m’s
varying in an appropriate range. We found that the entropy measure performs as expected
in simulation and provides good initial similarity matrix for real data. More detailed explo-
ration of the behaviors of the various initial matrices are organized in Section 2.3.1.1.

2.3.1.1 Exploration of Entropy Measure via Simulation and Real Data

To explore the behavior of the entropy curves, we did a toy simulation where we gener-
ated 10 clusters, with size of each cluster uniformly chosen between 4 and 20. We assume
the similarity (correlation) within a cluster is N (0.7, σ2), and similarity between cluster is

1Ignore bins with 0 counts
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Figure 2.2: Entropy curves from toy simulation. We generate a similarity matrix for 10
clusters where the within-cluster similarity is randomly drawn from N (0.7, σ2), and out-of-
cluster similarity is randomly drawn from N (0.3, σ2). Each curve represents a different value
of σ, varying from 0.02 to 0.18. As one can see, entropy increase monotonically with σ across
all numbers of bins.
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N (0.3, σ2), where σ varies from 0.02 to 0.18. As one can see from the resulting curves in
Figure 2.2, the curves line up according to σ, with the curve corresponding to σ = 0.18
having the highest entropy while the curve corresponding to σ = 0.02 having the lowest.
When we applied this measure to real data sets, we found it can either help yield the best
result among different choices of initial similarity matrices or generate results that are quite
comparable to the best result available (See Table 2.1 for more details).

In real data set, however, using entropy to choose initial matrix does not necessarily pro-
duce the highest quality final clusters. For instance, for Human Embryo data set, we should
choose Spearman correlation as our similarity matrix (Figure 2.3) according to entropy mea-
sure, but Table 2.1 shows us that Euclidean matrix produced the best final clustering result.
This, however, should not detract from the idea of using entropy as a measure of clustering
potential. First, the entropy based measure is used to select a good starting point for the
algorithm, but a good starting point does not guarantee best result. Second, even though
entropy-selected matrix does not yield the best result, they are often quite comparable to the
best result available (Table 2.1). Therefore, we believe entropy-based measure of clustering-
potential is a promising direction, and its theoretical properties will be explored in depth in
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a future paper.

Table 2.1: Comparison between ARIs of final clusters using BiSNN-Walk with four different
initial similarity matrices

Mouse Embryo Human Embryo Human Cancer

IDR 0.472 (310/317) 0.600 (124/124) 0.883 (83/86)
Euclidean 0.447 (314/317) 0.798 (124/124) 0.873 (82/86)
Pearson 0.481 (297/317) 0.677 (124/124) 0.834 (70/86)

Spearman 0.467 (307/317) 0.776 (124/124) 0.880 (86/86)
Number in parentheses is (number of cells clustered / total number of cells)

Bold font indicates the matrix with lowest entropy

2.3.2 Step 1: Cell Clustering by SNN-Walktrap

SNN-Walktrap is the main function used in the inner loop, and is the workhorse of our
algorithm. SNN-Walktrap (Figure 2.1, step 1 ) takes a matrix input (e.g gene expression
or similarity matrix) and return a cell cluster. The process can be broken down into three
steps (Figure 2.1, red box):
Step a : Construct SNN Network Construction of shared-nearest-neighbor is the corner
stone of SNN-Cliq [84], the method that BiSNN-Walk expands on. SNN network defines
the notion of “distance” between two nodes within the context of a local neighborhood as
opposed to a distance quantified by an global measure (e.g Euclidean distance). This local-
ization is desirable for high dimensional data, where the high dimensionality renders global
measures like Euclidean norm less useful as a proxy for distance [1]. Please find an overview
of the construction of a SNN network and the rationale behind its use in Section A.1.

Step b : Walktrap Clustering After a network is constructed using SNN, we use Walk-
trap [57] to perform cell clustering. The Walktrap algorithm is an agglomerative hierarchical
clustering scheme akin to a complete-linkage hierarchical clustering. The distance between
node i and node j is related to the difference in the behaviors of two random walks starting
at the two nodes. A very important feature of Walktrap is that one does not need specify a
priori the number of clusters. Cutting threshold of the tree is set automatically and is related
to the distance measure. The intuitiveness of the cutting threshold was a major reason for
choosing Walktrap as our clustering algorithm. Please refer to Section A.3 for an overview
of the algorithm.

Step c : Select Candidate Cluster Walktrap, being a clustering algorithm, will identify
several cell clusters; our purpose here, however, is to find the best one. To define “best”,
we use a heuristic involving three common clustering metrics: conductance, transitivity, and
the Jaccard score.
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Figure 2.3: Entropy curves of initial similarity matrices from the three scRNA-Seq data sets
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Definition (Conductance and Transitivity). Let G (V,E) denote a network, with V =
{vi : i = 1, ..., n} denoting a set of nodes and E = {ei,j ∈ R+ : i, j = 1, ..., n} denote a set
of edges. Let C denote a cluster, and let S (C) = {ei,j : vi ∈ C, vj /∈ C} be the edges that
are connected to outside the cluster, and I (C) = {ei,j : vi, vj ∈ C} be the edges that are
connected within the cluster, then conductance is defined as

conductance (C) =
|S (C)|

min {|I (C)| , |I (V \C)|}

=
# of edges connected to other clusters

min {# of edges in the cluster, # of edges outside the cluster}

Transitivity, or clustering coefficient, is easier described in words

transitivity (C) =
3×# of triangles in the cluster

# of connected triplet of vertices, or V shapes

=
# of triangles in the cluster

# of total possible triangles if all nodes are connected

Conductance is bounded below by 0, where zero-conductance implies cluster C is isolated
from rest of the network, i.e lower conductivity indicates a better isolated cluster. Note if the
cluster is the entire node set, C = V , then we force conductance (C) = conductance (V ) = 0.

Transitivity is bounded between [0,1], where 0 means all members of the cluster are iso-
lated points, and 1 indicates a perfect clique.

We may encounter two situations here:

1. When the inner loop is first called (at the very beginning of the algorithm or by the
outer loop), we need to initialize a candidate cluster. We select a single candidate
from the Walktrap clusters according to two well-known network clustering measures:
conductance and transitivity. Conductance measures how well separated a cluster is
from rest of the network, and transitivity measures the connectedness of nodes within
a cluster. To select a single one from the Walktrap clusters, we first rank them with
respect to conductivity, and break ties using transitivity.

2. On subsequent iterations of the inner loop, when there already exists a candidate
cluster, we want to improve upon the existing one. We calculate the Jaccard score
of each Walktrap cluster with the candidate cluster as a measure of agreement, and
select the Walktrap cluster of the highest agreement with the candidate cluster as
the new candidate. However, if all Walktrap clusters that overlaps with the original
cluster are of sizes 2 or less, then we will stop improving upon the old candidate
cluster and choose a new initial cluster from the Walktrap clusters using conductance
and transitivity as described previously. The rationale behind this heuristic is that
Walktrap will sometimes return clusters of the same transitivity and conductance (e.g
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isolated perfect cliques), so the Jaccard measure serves as another tie breaker as well
as ensuring a sense of continuity among the iterations’ candidate clusters.

2.3.3 Step 2: Finding Characteristic Genes

Let C denote a cluster, and Q denote the quantile matrix, i.e Q is a g×n matrix such that
Qij = quantile of gene i’s expression level for cell j. Quantizing the raw expression level is
a form of normalization that makes the expression across cells more comparable. Define the
contrast of gene i on cluster C as

zi,C = median (Qij : j ∈ C)− 75thQuantile (Qij : j /∈ C) (2.1)

We call gene i “characteristic to cluster C” if zi,C > 0. In other words, the characteristic
genes are those that are generally more highly expressed in C than the rest of the cells.
The characteristic genes will be ranked according to their contrast—genes with higher con-

trast are more representative of the cluster. We could, of course, replace 75thQuantile with
Median and the Max in equation (2.1), but our concern is that the median would result
in too liberal a list for genes to be called cluster-specific “characteristic genes”, while the
max would return too conservative a list and would thus remove potentially useful clustering

information; 75thQuantile, therefore, was chosen as compromise.

2.3.4 Step 3: Using Characteristic Genes for Subsequent
Analysis

As noted in the flowchart (Main Paper: Figure 1, 3 ), the selected genes will be used to
subset the gene expression matrix, which will be fed into the SNN-Walktrap procedure. The
rationale behind using only the characteristic genes as our next input is to rid of impurities
in the cluster. Assuming our initial cluster mostly contains cells of one state, then it’s
reasonable to believe that the characteristic genes associated with this cluster will most
likely be most relevant to that state. Thus we will see these cells forming a tighter group
in a SNN network constructed using only the characteristic genes, thus removing cells of a
foreign state. Figure 2.4 demonstrates this ”purification” step at work.

2.3.5 Stopping Criteria

The algorithm stops if all Walktrap clusters obtained from Walktrap clustering are of
size 2 or less or all candidate have zero transitivity, when further clustering is meaningless.
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Figure 2.4: First 3 outer loops of BiSNN-Walk on mouse embryo data set. Outer loop 1
has three inner loops. On the first inner loop, our initial cluster contains nine fibroblast
cells and one mid-blastocyst cell. Notice that on the second inner loop, the mid-blastocyst is
removed from the cell, and we obtain the cleaned stable cluster on our third inner loop. The
second outer loop also contains three inner loops. On the first inner loop, we obtain our
initial cluster of seven early 2-cell-stage cells and one 16-cell-stage cell. On the second
inner loop, the 16-cell-stage cell was removed, and the zygotes, who are much closer in
developmental to early 2-cell stage, are added. On the third inner loop, we obtain the
cleaned stable cluster. A similar self-correcting behavior can be seen in the third outer loop.

2.4 Results

2.4.1 Validation Data

We use three public datasets to evaluate our algorithm: Mouse Embryonic Cells [14],
Human Embryonic Cells [85], and Human Cancer/Somatic Cells [60]. To ensure a level of
uniformity of the gene expression, we ran RNA short-reads from each experiment through
the standard ENCODE pipeline [19] using STAR for alignment [16] and RSEM for calling
differential expression [44]. Gene expressions are normalized using transcript per million
(TPM). The three data sets will be referred hereafter as “mouse”, “human embryo”, and
“human cancer”, respectively.

The run time of BiSNN-Walk is O(krnm2), where k = number of clusters or number of
outer loop iterations, n = number of genes, m = number of cells and r = number of inner loop iterations.
Since m and k ∝ m are relatively small compared to n, n will dominate the runtime. r is
reflective of the quality of the data—cleaner data will require less iterations. The minimum
number of r is 2: one round to obtain an initial cluster, and another round to verify that
it’s stable. Table 2.6 details BiSNN-Walk’s outputs on the evaluation data sets.
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Mouse Embryonic Cells. The size of the gene expression matrix is 41, 128 genes ×
317 cells. All mouse embryonic cells are crossed between CAST female mated to C57 male
cell lines. Embryonic cells were collected during 10 developmental stages from zygote to
blastocysts. Somatic cells (liver and fibroblast) are also collected. For consistency’s sake,
somatic cells are obtained from either C57 x CAST or CAST x C57 offsprings. See Main
Paper: Table 2 for details. Cells are sequence using either Smart-seq or Smart-seq2 technol-
ogy [14]. This data set will be here on referred to as “mouse”.

Human Embryonic Cells. The size of the gene expression matrix is 60, 483 genes ×
124 cells. In this work, Yan et al [85] investigates the genetic markers involved in the deriva-
tion of human embryonic stem cells (hESC) by examining the development of human embryo
through its developmental stages. 124 embryonic cells were obtained from in-vitro fertiliza-
tion patients. Patients are aged controlled to be within 25-35 years old with mean age of 30.
The cells were categorized into into 8 categories, details show in Main Paper: Table 3. The
sequencing technology introduced and used in this study is called “single cell RNA-Seq”.
This dataset will here on be referred to as “human embryo”.

Human Cancer Cells The size of the gene expression matrix is 60, 483 genes × 86 cells.
In this work the sequencing technique “Smart-seq” was introduced by Ramskold et al. [60]
and applied to various low frequency cancer cells such as circulating tumor cells or somatic
cells that are difficult to obtain in mass quantities, such as brain cells. A total of 86 human
cells are reported by the study2, details about cell species are listed in Main Paper: Table
4. Though the study contains both cancer cells and various somatic cells, we will dub this
data set “human cancer” for short.

2.4.2 Cell Clustering Results

2.4.2.1 Performance Comparison vs. SNN-Cliq

Adjusted Rand Index, a recommended metric to quantify agreement between clusters in
[65, 49], was used to compare our clustering results against SNN-Cliq’s. Please refer to Ap-
pendix E for an overview of ARI. Direct comparison between the two clustering algorithms
is not straightforward. First, SNN-Cliq requires the neighborhood parameter k, and there
is little guidance as to how to choose this parameter; we therefore obtained the SNN-Cliq
clusters by varying k from 4 to 12, and considered the clustering result with the highest
ARI; in other words, we purposely gave an advantage to SNN-Cliq’s clustering result. In
addition, neither BiSNN-Walk nor SNN-Cliq clustered all cells, therefore we also used the
number of clustered cells to gauge algorithm performance, with more cells clustered being

2The study also contained 2 white blood cells, but the sequencing quality was extremely poor, and is
confirmed by the author to be unusable through email correspondence. The study also contained reports on
mouse cells, but are not used in our data because they cannot be compared directly to human cells.
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more preferable.

From the results shown in Table 2.2, BiSNN-Walk is comparable to SNN-Cliq in terms
of cell-clustering quality. For mouse data, ARI for SNN-Cliq is higher, but it only clustered
about half of the cells. A major difficulty with this data set is distinguishing the three blas-
tocyst stages. SNN-Cliq refused to cluster this stage almost entirely at optimal k parameter,
which is why only 177 out of the 317 cells were clustered. In fact, if we force SNN-Cliq to
cluster a similar number of cells (304/317) as BiSNN-Walk, SNN-Cliq’s ARI drops down
to 0.465, slightly lower than our result. For human cancer, SNN-Cliq has much lower ARI
even though the number of cells clustered are comparable. For human embryo, BiSNN-Walk
has a slightly lower ARI while the number of clustered cells are the same. Taking a closer
look at the results, we found that BiSNN-Walk was not able to separate zygote, oocyte, and
2-cell-stage cells, whereas SNN-Cliq could. This problem does not appear if we had used
Euclidean distance as initial similarity matrix; in fact, in that case we actually have a slightly
higher ARI than SNN-Cliq (0.798 vs 0.796). This is yet another motivation for exploring
the theoretical properties of our entropy-based measure so we can select a more appropriate
starting point.

Figure 2.5 shows heatmaps of BiSNN-Walk clusters against ground truths. Both ground
truth and BiSNN-Walk clusters are roughly ordered chronologically, and the visible diago-
nal block structure suggests strong concordance. As mentioned previously, it is difficult to
separate 8- and 16-cell cells as well as the early-, mid-, and late-stage blastocysts; however,
the diagonal structure of the heatmap indicates that developmental stages that are chrono-
logically close are clustered together. Human embryo cell clusters are also ordered according
to developmental stages. Similar to mouse data, the diagonal pattern is clearly visible, indi-
cating developmental stages are clustered by chronological proximity. Human cancer results
are not ordered in any particular order, but as indicated by the diagonal structure and the
high ARI score, most ground truth cell types are found perfectly. LNCaP cell (prostate can-
cer cell-line cells) and LNCaP-HTC cells (prostate cancer cells isolated by EPCAM markers
in petridish) could not be separated due to their close resemblance. SKMEL5 and UACC
are two melanoma cell lines, and could not be separated due to their similarity. The PC3
bladder cancer cell line were not clustered because they were among the last four cells to
be clustered, causing Walktrap to returns two clusters of size 2, thus triggering the stopping
condition.

2.4.2.2 Performance Comparison vs. Selected Algorithms

BiSNN-Walk is compared with GiniClust [34], a recently published clustering algorithm
specifically designed to handle scRNA-Seq data, and four general purpose biclustering al-
gorithms: Plaid [41], Cheng & Church [12], Xmotifs [79], and BiMax [47]. Please refer to
Appendix J for brief overviews of the algorithms.



CHAPTER 2. SINGLE CELL RNASEQ BICLUSTERING 18

Figure 2.5: BiSNN-Walk clusters compared to ground truths. x-axis are the BiSNN-Walk
clusters, and y-axis ground truth. The value in each grid represents the percentage of
ground truth cluster that is in the BiSNN-Walk cluster. For example, in Mouse data, the
BiSNN-Walk cluster “Zy & 2e” contains all zygote and early 2-cell stage cells, thus the
values in grids (“Zy & 2e”, “zy”) and (“Zy & 2e”, “2.e”) are both 1. The distinct diagonal
pattern for all three datasets indicate that the ground truth was well-recovered by
BiSNN-Walk clusters.

0.00

0.25

0.50

0.75

1.00
value

Percentage of

Ground Truth found

100%
75%
50%
25%
0%

Figure 3

To train each algorithm, we first find impactful tuning parameter(s) and explore a range
of values where such parameters returned reasonable answers. We then pick candidate values
from that range and perform an exhaustive search to choose the clustering most concordant
with the ground truth (measured by Adjusted Rand Index). Again, we purposely gave an
advantage to these methods for their parameter selections.

GiniClust returns non-overlapping cell clusters, so we use ARI to measure its cell cluster-
ing performance. As the results in Table 2.2 shows, BiSNN-Walk’s clustering results surpass
that of GiniClust’s on all three data sets, as measured by ARI. GiniClust’s performance on
the developmental data sets, i.e mouse and human embryo, was unspectacular. It was able to
cluster together cells who are roughly close in developmental stages, but was not able to find
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the finer stages. This may be because GiniClust was designed to isolate small tight-knit rare
cell types rather than general purpose biclustering. GiniClust’s human cancer clusters were
quite decent, though it only clustered 80% of the cells. Please find more detailed discussion
on GiniClust results in Figure 2.9.

Because the other clustering algorithms allow overlapping cell clusters, ARI is not a suit-
able measure, thus we will visually compare their results to BiSNN-Walk’s. Figure 2.6 shows
the cell clustering performance of each algorithm for the mouse data set. Among the four
algorithms, only Plaid clusters showed a reasonable diagonal structure, indicating decent
alignment with ground truth. A closer examination shows that the Plaid was able to cluster
related cell stages together, but did not have the specificity to obtain as fine a resolution as
BiSNN-Walk clusters. Cell clustering results for other organism show a similar theme, plots
are shown in Appendix J.

The failure of the four biclustering algorithms stems from requiring inputs, i.e a gene ex-
hibits high expression and one exhibiting zero expression is equally informative. For RNAseq
data, for a given cell the majority of the genes will exhibit zero expression, the biclustering
algorithms in consideration thus were not designed to process this kind of input. Another
failure point for these algorithm is the fact that they all consider both overlapping cell and
gene clusters, though this formulation is more general, it also works to the disadvantage to
the algorithms because they cannot take advantage of the simpler cluster structure of the
RNAseq data. We’d be remiss if we did not mention that the algorithm may need expert
tuning to achieve maximum performance.

2.4.3 Gene Clustering Results

One of the main features of our method is that it simultaneously clusters both cells and
genes. We argue that our gene clusters indeed make sense using two methods of evaluation:
gene overlap analysis and biological term enrichment analysis.

In gene overlap analysis we examine the overlap of top 100 characteristic genes of each
cluster. Clusters who are more biologically similar should share more characteristic genes.
For instance, mid-2-cell and late-2-cell stages should share more genetic drivers than, say,
mid 2-cell and blastocyst stage. In enrichment analysis we enrich the top 100 characteristic
genes of each cluster and see whether the enriched terms makes sense in the context of the
cluster. For instance, for a cluster that contains mostly of brain cells, its characteristic genes
should return neuron-related enriched terms. In other words, in gene overlap analysis, we
check whether gene clusters make sense relative to each other, and in enrichment analysis,
we verify whether the gene clusters are representative of their associated cell cluster.
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Figure 2.6: Cell clusters found by biclustering algorithm compared to ground truth for the
mouse dataset. x-axis are the cell clusters found by indicated algorithm, ordered roughly by
developmental stage. y-axis is ground truth ordered by developmental stage. The value in
each grid represents the percentage of ground truth cluster that is in each cell cluster. The
lack of distinct diagonal patterns indicate the cell clusters found by these algorithms weren’t
homogenous.
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Figure 2.7: Cell-clusters found by selected biclustering algorithm compared to ground truth
for the human embryo dataset. x-axis are the cell-clusters found by indicated algorithm,
ordered roughly by developmental stage. y-axis is ground truth ordered by developmental
stage. The value in each grid represents the percentage of ground truth cluster that is in
each cell cluster.
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Figure 2.8: Cell-clusters found by selected biclustering algorithm compared to ground truth
for the human cancer dataset. x-axis are the cell-clusters found by indicated algorithm,
y-axis is ground truth. The value in each grid represents the percentage of ground truth
cluster that is in each cell cluster.
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Figure 2.9: Heatmap of BiSNN-Walk (left) and GiniClust (right) cell clusters plotted
against ground truth. x-axis are the cell-clusters found by indicated algorithm, y-axis is
ground truth. The value in each grid represents the percentage of ground truth cluster that
is in each cell cluster.
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2.4.3.1 Gene Overlap Analysis

Figure 2.10 shows heatmaps of the overlap between top 100 characteristic genes of each
cluster. For mouse and human embryo data, the apparent block diagonal structure in Figure
2.10 confirms the hypothesis that stages that are chronologically close will share more char-
acteristic genes. For human cancer, as expected, we see very low overlap between clusters
of different cell types except a somewhat elevated association between “Melanoma CTC”
(circulating melanoma cells) and “Melanoma CL” (cancer line melanoma cells), which is
reasonable, since they are of the same cell type. However the reason why only see a overlap
of 15 genes may be explained by previous observation that CTC profiles are quite distinct
from those of cancer cell lines [58].

2.4.3.2 Biological Enrichment Analysis

To perform enrichment analysis, we took the top 100 characteristic genes for each cluster
and checked whether enrichment terms make sense with respect to the types of cells in the
cluster. GO-term enrichment was used for human cancer data, whereas Anatomy Enrich-
ment was performed on mouse data. Since Anatomy Enrichment is not available for human,
no enrichment analysis was performed for human embryo. Selected enrichment results are
shown in Table 2.7 and Table 2.8, respectively. Enrichment was performed using InterMine’s
Python API [73].

Mouse result shows highly relevant enriched terms for somatic cells (fibroblast, liver) and
early embryonic cells (2-cell and 4-cell stage). 8-cell to blastocyst cells were not enriched
well because the clusters themselves are quite heterogeneous in the first place. Most of
the human cancer cells how highly relevant enriched terms. No enrichment was found for
prostate and bladder cancer clusters because none of the 82 prostate genes and 11 bladder
related genes were part of the gene expression in the first place3. This indicates that these
organs are poorly studied. The lack of enrichment in the “Melanoma CTC” cluster, as
argued previously, is likely due to the genetic profile of CTCs exhibiting stark departure
from Melanocyte and Melanoma cell-line cells, both of which are significantly enriched with
the term “melanosome”.

3Prostate and bladder-related genes were queried from www.humanmine.org
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Figure 2.10: Overlap between top 100 characteristic genes of each cluster. The color
saturation indicates the number overlapping genes between the top 100 characteristic genes
of two clusters. Maximum value for each grid is therefore 100.
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2.5 Discussion and Future Work

Clustering is an important tool for genetic analysis; however, finding important genes
associated with those clusters is sometimes of more scientific interest. In this work we pre-
sented a simple, fast, and self-correcting biclustering algorithm BiSNN-Walk that is based
on SNN-Cliq [84]. Results from applying BiSNN-Walk to three large scRNA-Seq studies
showed that BiSNN-Walk is able to retain and even improve SNN-Cliq’s clustering per-
formance. Moreover, since BiSNN-Walk extracts clusters one at a time according to their
“tightness” (measured by transitivity and conductance), the order in which the clusters are
found can be reflectively of their reliability. Being a biclustering algorithm, BiSNN-Walk also
returns characteristic genes ranked by their relevance to the associated cell cluster. We have
shown from multiple perspectives that BiSNN-Walk returns biologically sensible biclusters.

We used a simple entropy-based measure as a guidance to choose among initial similarity
matrices. Using entropy as a surrogate for “clusterability” is a novel idea, and in our case
it served well for choosing highly clusterable similarity matrix as initial input. Further
investigations on this idea is underway. Several other areas of the algorithm can be improved.
The stopping criterion is currently too naive and should be further investigated and improved.
The definition of characteristic genes is a bit ad hoc. Though it worked well in the three
public datasets, a systematic way of tuning this parameter would greatly improve usability.

Table 2.2: Performance comparison between BiSNN-Walk, SNN-Cliq, and GiniClust. ARIs
are calculated against ground truth.

Mouse Embryo Human Embryo Human Cancer

BiSNN-Walk 0.472 (311/317) 0.776 (124/124) 0.883 (82/86)
SNN-Cliq 0.574 (177/317) 0.796 (124/124) 0.661 (86/86)
GiniClust 0.098 (317/317) 0.379 (119/124) 0.870 (69/86)
Number in parentheses is (number of cells clustered / total number of cells)
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Table 2.3: Collection details of mouse embryonic cells

Developmental Stage Hrs after Ovulation No. of Samples

Zygote 20-24 4
Early 2 Cell 31-32 8
Mid 2 Cell 39-40 12
Late 2 Cell 46-48 10

4 Cell 54-56 14
8 Cell 68-70 48
16 Cell 76-78 58

Early Blastocyst 86-88 43
Mid Blastocyst 92-94 60
Late Blastocyst 100-102 30

C57 2 Cell NA* 8
Liver - 13

Fibroblast - 10
*In correpondence with the author of the paper, the “C57 2-Cell” cells have different genetic background
than the other 2-cell cells, and are of low sequencing quality. So their exact placement of the C57 2-cell

cells in the 2-cell developmental stage is unclear.
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Table 2.4: Collection details of human embryonic cells

Developmental Stage Hrs (after fertilization) No. of Samples

Oocyte 4 (after retrieval) 3
Zygote 19 3
2 Cell 27 6
4 Cell 48 12
8 Cell 72 20

Morulae 96 16
Late Blastocyst 144 30

hESC ∼30 days 32
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Table 2.5: Collection details of human somatic/cancer cells

Cell Type No. of Samples

universal human reference RNA 20
brain 16

prostate cancer cell line (PC3) 4
bladder cancer cell line (T24) 4

melanoma derived circulating tumor cells (CTC) 6
melanocytes 2

melanoma cancer 7
embryonic stem cells 8

prostate cancer cells (picked from petri-dish) 7
prostate cancer cells (isolated by EPCAM marker) 8
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Time Elapsed (s) Avg No. Inner Loops No. Clusters Found (No. Real Clusters)

Mouse 311 4 14 (13)
Human Embryo 109 3.8 10 (9)
Human Cancer 86 3.7 8 (11)

Table 2.6: BiSNN-Walk Output Information. “Avg No. Inner Loops” is average number of
inner loops called per round of outer loop, and can be interpreted as either the speed of
convergence or quality of the data, as faster convergence is achieved with cleaner data.
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Cluster Name Cell Types Enriched Terms

Zy & 2.e
Zygote germ cell of ovary
Early 2-cell germ cell of gonad

2-cell stage conceptus

2
2-cell 2-cell stage conceptus

1-cell stage conceptus

2.m
mid 2-cell 2-cell stage conceptus

1-cell stage conceptus
4-cell stage conceptus

2.l
late 2-cell 2-cell stage conceptus

1-cell stage conceptus
4 4-cell 2-cell stage conceptus
8 8-cell

8-16
8-cell
16-cell

Bl.e
early blastocyst embryo endoderm
mid blastocyst endoderm

Bl.e+Bl.m(1)
early blastocyst primitive endoderm
mid blastocyst endoderm
late blastocyst early conceptus

Bl.e+Bl.m(2)
early blastocyst
mid blastocyst
late blastocyst

Bl.m+Bl.l
late blastocyst
mid blastocyst
mid 2-cell

liver(1)
liver liver

liver lobe
liver and biliary system

liver(2)
liver liver

liver lobe
liver and biliary system

fib
fibroblast tendon

mesenchyme
bone

Table 2.7: Enriched terms for mouse embryo data set. As one can see, liver, fibroblast,
and early developmental stages were well enriched. Early- and mid-blastocyst also clusters
saw relevant enrichment. For Bl.e+Bl.m(2) and Bl.m+Bl.l cluster, significant terms were
found, but were not reported since they did not seem relevant to the developmental stage.
No significant terms were found for 8-cell and 16-cell clusters. Please refer to
Supplementary file for full list of enriched terms. EMAPA mouse development anatomy
ontology database was used for enrichment.
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Cluster Name Cell Types Enriched Terms

Ref RNA reference RNA

hESC
human embryonic stem cells stem cell population maintenance

somatic stem cell population maintenance
embryo development

Brain
brain neuron part

axon part
synapse part

Prostate
LNCaP cell line cells
LNCaP HTC petridish extracted

Bladder T24 bladder cancer cell line
Melanoma CTC circulating melanoma tumor cells

Melanoma CL
SKMEL5 melanoma cell line melanosome membrane
UACC melanoma cell line

Melanoma CTC circulating melanoma tutor cells melanosome membrane

Table 2.8: Enriched terms for human cancer data set. As one can see, four of the eight
clusters saw relevant enrichment. Ref RNA saw a wide mix of significant terms, as
expected. Significantly enriched terms were returned for all clusters except Melanoma CTC,
but were not reported since they did not seem relevant to the particular cell type. For the
full list of enriched terms please refer to Supplementary Information.
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Chapter 3

A more powerful and flexible method
for measuring Amyloid-β
accumulation through linear
regression

3.1 Introduction

Alzheimer’s Disease (AD) is currently an incurable neuro-degenerative disorder whose
symptoms include memory loss, depression, bipolar disorder, irritability etc. Despite decades
of medical advances, it is still unclear what causes its onset and progression. Old age is con-
sidered the most common trigger for AD, however, innate factors such as genetics as well as
acquired factors such as depression were also associated with the disease’s onset [6]. Among
the many hypothesized causes of AD, amyloid hypothesis and τ hypothesis are the most
widely accepted [50]. Amyloid and τ hypothesis both stipulate that the increased accumu-
lation of the respective protein (Amyloid-β or Aβ protein in the former and τ protein the
latter) due to lack of clearance or overproduction, leads to a cascade of events ultimately
resulting in neuronal death, a process that can begin as early as 1-2 decades prior to onset of
any clinical symptoms. In the late 1970’s and early 1980’s, amyloid and τ were identified as
among the potential culprits for the onset of AD. Numerous genotype-phenotype and genetic
linkage studies on familial AD in the 1990’s linked AD onset to mutations in genes associated
with the production or deposition of amyloid proteins [26, 66, 76], providing further support
for amyloid hypothesis. With copious amount of experimental evidence, Aβ soon became
the main focus of AD research for the next two and half decades, and to this day remains
a widely accepted therapeutic targets across the globe [68]. Medical and pharmaceutical
effort by targeting amyloid, however, has not seen significant return on investment, as all
major amyloid-targeting drug development thus far have ended in failure [36]. In addition,
with recent advancement in amyloid imaging technology, several contradicting observations
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against the amyloid hypothesis emerged, such as studies where Aβ accumulation not corre-
lating well with disease progression [17, 46]. At the same time, multiple evidence supporting
τ also surfaced, such as spatial patterns of τ accumulation correlating better patterns of
neurodegeneration than amyloid [3, 52]. τ pathology, therefore, re-emerged as the main al-
ternative to amyloid for medical and pharmaceutical research. The merits and foibles of both
hypothesis are still actively debated in the AD community, and both are presently actively
pursued. Work presented here applies to amyloid imaging data.

The state of the art technology for imaging Aβ accumulation is florbetapir-PET (Positron
Emission Tomography). Florbetapir is a radioactive tracer specifically engineered to bind to
Aβ proteins [81]. The PET machine will pick up on the positron emitted by the tracer and
locate its position, and in turn produce a 256×256×80 3D image, with each voxel reflecting
the level of Aβ accumulation in that area. The PET voxel intensities are then translated
into numerical representation called Standard Uptake Values (SUV). To avoid working with
millions of voxel-wise SUVs of an image, the brain is usually partitioned into different func-
tional anatomical regions (the exact partition differ according to imaging pipeline) called
regions of interests (ROIs). The average SUV of all pixels in each region are calculated, and
these ROI-level SUVs are the values that people typically work with. Subsequent mentions
of SUV will refer to ROI-level SUVs instead of voxel-wise SUVs.

ROIs fall into two categories: target and reference. Target ROIs are regions where Aβ
may accumulate, while reference ROIs are regions that are relatively disease free. Under
ideal conditions, tracers would bind exclusively to Aβ proteins, so that the signal collected
by PET scans is directly proportional to the actual accumulation of Aβ plaque, such binding
is called specific binding. However, in practice, tracers may be free floating (don’t bind to
anything) or bind to other materials. This is called non-displaceable binding. See Figure
3.1 for a schematic.
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Figure 3.1: Pharmacokinetic schematic of the sources of PET signals in target vs reference re-
gions. Blood flow carries tracer molecules, which enter and exit the non-displaceable binding com-
partments, where tracers are bound to non-amyloid material. In both target and reference regions,
non-displaceably bound tracer molecules can return to blood flow (unbound state); however, in tar-
get regions where Aβ proteins tend to accumulate, tracers can also become bound to the protein, a
process called specific binding. The signal we wish to measure is the specific-binding compartment
in red in the target region; however, in practice the actual signal is the aggregate from both spe-
cific and non-displaceable compartments, therefore, the signal from the reference region is used as
a benchmark for the non-displaceable portion of the target ROI signal.

Since the signal obtained by PET in the target region is a combination of specific and
non-displaceable, the latter must be correctly accounted for in order for the SUV to correctly
reflect the state of accumulation. To this end, the field has converged to a measure called
Standard Uptake Value Ratio (SUVr), which is a rough estimate of the binding potential,
an important constant in particle kinetic theory [40]. SUVr is defined as

SUV r =
SUV of target region

SUV of reference region

Despite its ubiquity, SUVr has several drawbacks. First, as a ratio-based statistic with
a random numerator and denominator, SUVr’s statistical properties can be tricky to under-
stand. Secondly, changes in Aβ accumulation can be masked by the interaction between
the random numerator and the random denominator. Lastly, SUVr does not allow straight-
forward incorporation of exogenous information such as race, gender, and age, therefore
accounting for the interaction effect of these predictors would be even more difficult. There-
fore, we propose an alternative measure to SUVr, which we dub the ∆-measure, in hope to
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side step the aforementioned issues. As of the time of the writing the authors are not aware
of any alternative to SUVr.

This chapter is organized as follows: Section 3.2 introduces the two amyloid imagine
data sets we will analyze; Section 3.3 details the exploratory analysis that unveiled a linear
relationship between target and reference SUV common to both data sets. Based on this
linear relationship, we introduce an alternative measure (dubbed ∆-measure) to SUVr for
gauging amyloid accumulation in Section 3.4. We propose a generating model for target
SUV in Section 3.5.1, which serves as the statistical backdrop for analyzing the statistical
behaviors of the two measures in the subsequent Section 3.5.2. Finally, Section 3.6 compares
the performance of SUVr and ∆-measure on both real and simulated data.

3.2 Data

Two datasets were obtained for subsequent analysis.

The first data set is from Genentech’s ABBY/BLAZE Phase 2 trials (Clinical Trial ID:
NCT01723826). This dataset consists of SUVs from 30 AD-positive patients at 16 ROIs
(12 target, 4 reference ROIs) over 3 scans (entry, 47 weeks, 69 weeks). Only the entry and
47-weeks scans were used for subsequent analysis since 10 patients dropped out of the study
at week 69, greatly reducing the fidelity the week-69 analysis results. All patients were di-
agnosed as AD and Aβ+ at entry scan, and were age-controlled at 55-years or older. Image
processing was done by INVICRO (previously Molecular Neuroimaging).

The second dataset was obtained from the ADNI GO and ADNI 2, which we will col-
lectively refer to as “ADNI” 1. To make the the ADNI dataset comparable to BLAZE, we
only used data from 40 AD patients in the study. Each patient was scanned twice (entry
scan, two year follow up scan), and data on 9 ROIs (4 target, 5 reference) are provided. The
image processing was done by the Jagust Lab at UC Berkeley.

Although the detailed delineation of target and reference regions may differ by processing
pipelines, they agree on the general anatomical locations. To keep the analysis tractable,
subcortical white matter was used as the reference ROI for both data sets, as recommended
by multiple recent studies [67, 70, 39, 9].

1 Data used in preparation of this article was obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided data but did not participate in analysis or writing
of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf
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3.3 Explore the linear relationship between target

and reference SUVs

Let T it , R
i
t denote respectively the target and reference region SUV at time t for patient

i. Unless otherwise mentioned, t = 1 will denote entry scan, and t = 2 the follow up scan.

Figure 3.2 plots T1 and R1 for both ADNI and BLAZE where we see T and R exhibits a
clear linear relationship. This observation suggests a linear relationship of the form

T i1 = α1 +
(
β1 ×Ri

1

)
+ εi1 (3.1)

Where α1 denotes the contribution to T1 (target ROI SUV) from specific binding, β1×R1

is the contribution from non-displaceable binding, and ε1 is the error.

Plotting the data for time 2 shows that the linear relationship between T and R carries
across time (Figures B.2, B.5). This means the following modification to Eq. 3.1 provides a
reasonable description of T2:

T i2 = α2 +
(
β2 ×Ri

2

)
+ εi2 (3.2)

Let e1 and e2 denote the least squares residuals of Eq. 3.1 and 3.2, respectively. When
we plot e1 vs e2, another linear pattern emerges (Figure 3.3), suggesting a strong patient
effect, i.e if patient is above the fitted line (from Eq. 3.1) at t1 then they will likely be above
fitted line at t2. Let Zi denote the patient effect for patient i. The updated relationship
should be of the form

T it = αt +
(
βt ×Ri

t

)
+ Zi + εit

Using feasible generalized least squares, one can check that it’s reasonable to assume β
to be constant across time (details presented in Section B.3). Piecing together the above
observations suggests that Eq. 3.3 provides a reasonable description between target and
reference SUVs.

T it = αt +
(
β ×Ri

t

)
+ Zi + εit (3.3)

The linear relationship described by Eq. 3.3 will be used in Section 3.4.2 to derive a new
measure for gauging amyloid accumulation. In Section 3.5.1, we will leveraged this relation-
ship again to propose a data generating model to approximate the generation of target SUVs.

It’s worth noting that even though ADNI and BLAZE uses completely different image
acquisition/processing pipeline, the linear relationship persists in both datasets (A vs B in
Figures 3.2, 3.3, and 3.4). In addition, the linear relationship shown in Figures 3.2, 3.3,
and 3.4 carries across all target/reference combinations and across time (see Appendix B.1).
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Figure 3.2: T1 vs R1. T1 and R1 denote target and reference SUV at t1 respectively. Target:
frontal cortex, Reference: subcortical whitematter. A: ADNI, B: BLAZE.

These observations indicate that the linear relationship is likely biologically meaningful.

3.4 Measures for gauging Aβ accumulation

In this section we first give a brief overview of how SUVr is commonly used to measure
amyloid accumulation in Section 3.4.1. We then introduce an alternative measure in Sec-
tion 3.4.2 that was derived from the linear relationship between target and reference SUVs
observed in Section 3.3.

3.4.1 SUVr

As mentioned in Introduction, SUVr is the de-facto measure to gauge amyloid accumu-
lation. To quantify the change in amyloid accumulation between time points for patient i,
SUVr at two different time points are subtracted, i.e ∆SUV r = SUV r(t2) − SUV r(t1). A
common method to determine whether a group of n patient saw significant accumulation is
to perform the one-sample T-test on the collected ∆SUV r differentials for each patient, i.e
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Figure 3.3: e1 vs e2. et is the residual from regression Tt on Rt, i.e the realization of εt from
Eq. 3.1 and 3.2. The figure shows the scatter plot between e1 and e2. Linear relationship indicates
a strong patient effect. Target: frontal cortex, Reference: subcortical white matter. A: ADNI, B:
BLAZE.

{∆SUV r1, ...,∆SUV rn}.

3.4.2 ∆-measure: leveraging linear relationships between target
and reference SUVs

Eq. 3.3 suggests a linear relationship between the changes in SUVs of the form

∆T i = ∆α +
(
β ×∆Ri

)
+ εi (3.4)

Where ∆T i = T i2 − T i1, ∆Ri = Ri
2 − Ri

1, ∆α = α2 − α1, and εi = εi2 − εi1. Figure 3.4
shows the scatter plot of ∆T vs ∆R, where we observe a distinct linear relationship. One
may notice that the linear relationship between ∆T and ∆R appear more pronounced than
that between T and R. This is because the patient effect Zi is canceled during subtraction,
reducing the error.
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Figure 3.4: ∆T vs ∆R. Removing the patient effect by subtracting SUVs at t1 from that at t2
(∆T = T2 − T1, ∆R = R2 − R1) produced a more pronounced linear relationship than in Figure
3.2. Target: frontal cortex, Reference: subcortical whitematter. A: ADNI, B: BLAZE.

This formulation lends itself to an alternative normalization to SUVr. Eq. 3.4 provides
a clear relationship between the change in target SUV and reference SUV: if ∆R = 0, then
∆T = ∆α + ε, that is, if we see no change in reference SUV (i.e non-displaceable binding
remains constant), then the expected change in target SUV (i.e specific binding) is ∆α.

To determine group level amyloid accumulation, we need to determine whether ∆α is
significantly different from zero. Since ∆-measure is derived from simple linear regression,
Kendall–Theil Sen Siegel non–parametric linear regression can be used to estimate ∆α,
call this estimator ∆̃α. A bootstrapped confidence interval of ∆̃α can be constructed to
determine whether there is statistically significant group–level accumulation.

A parametric alternative is available if we make a fairly standard assumption that the
error {εi} from Eq. 3.4 are independent and identically distributedN(0, σ2

ε ) for some constant
σ2
ε . Under these assumptions, the least squares estimator for ∆α, denoted ∆̂α, has the

following distribution

∆̂α ∼ N
(

∆α, σ̂2
ε

∑
iR

i

n
∑

i(R
i − R̄)2

)
Where R̄ = 1

n

∑n
i=1Ri, and σ̂ε = 1

n−2

∑n
i=1(T i − T̂ i)2, T̂ i is the fitted value for T i. To
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Figure 3.5: Diagnostic plots for ∆T ∼ ∆R regression using BLAZE data. Scale–location and
residual–fitted plots show no evidence of heteroskedasticity; QQ plot indicates that normality as-
sumption holds well; and leverage plot identified no influential points.

determine group level accumulation, one then simply tests H0 : ∆α = 0 vs Ha : ∆α 6= 0
using ∆̂α as test statistic.

Figure 3.5 shows the diagnostic plots of least squared fit for Eq. 3.4. Scale-location and
residual-fitted plots show no evidence of heteroskedasticity; QQ plot indicates that normality
assumption holds well; and leverage plot identified no influential points. Considering each
observation correspond to distinct patient, the independence assumption is also sensible.
These evidence suggest that i.i.d normal assumption mentioned previously is well supported
by the data. Testing of ∆-measure in subsequent analysis will be done using the parametric
approach.

3.5 Compare statistical properties of SUVr and

∆-measure under assumed parametric generating

model

Since SUVr and ∆–measure are alternate measures, it would be illuminating to study the
statistical behavior of the two measures under a common set of modeling assumptions. First,
in Section 3.5.1, we propose an data generating model that approximates the generation of
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the target SUVs, and offer empirical support for our proposed model. Then, in Section 3.5.2,
we study the statistical behavior of the two measures under the proposed generating model.

3.5.1 Approximating the generation of target SUVs

We have seen in Section 3.3 that there is clear linear relationship between target and
reference SUVs (Eq. 3.3). However, to transform Eq. 3.3 into a data-generating model for
T it , we will need to make distributional assumptions about εit, Z

i, and Ri
t.

In accordance to classical linear mixed effect model, we assume

1. Errors are i.i.d Gaussian, i.e εit ∼
i.i.d

N(0, σ2
ε ),∀t, i

2. Patient effects are i.i.d Gaussian, i.e Zi ∼
i.i.d

N(0, σ2
Z) ∀i for some constant σ2

Z .

To assess the plausibility of the assumption 1, we first note that, from the QQ plot
in Figure 3.5, it’s fair to assume εi from Eq. 3.4 is normally distributed. Also note that
εi = εi2 − εi1 (εit from Eq. 3.3). While these observations do not imply εi1, εi2 are individually
Gaussian, but it does make such assumption plausible.

The similar argument applies to assumption 2. The diagnostic QQ plots for the regres-
sion stated by Eq. 3.1 for both BLAZE (Figure 3.6 and ADNI (Figure B.7) indicate that
Zi + εi1 being Gaussian is reasonable, making Zi being Gaussian a fair assumption as well.

We make the additional assumption that

3. Ri
t ∼ N(µR, σ

2
R) ∀i, t for some constants µR and σ2

R

We claim plausibility of assumption 3 using the following evidence. We first assess nor-
mality using QQ plots. Figure 3.7 shows the QQ plots of R1 for ADNI and BLAZE. Despite
ADNI having slightly heavy tails and BLAZE exhibiting left skew, most of the points track
the QQ line well, giving credibility to the Gaussian assumption.

To assess whether Ri
2 have the same mean, variance, and distribution as Ri

1, we used
the two sided two sample t-test for different means, F-test for different variances, and
Kolmogorov–Smirnov for different distributions. Results are recorded in Table 3.1, where it
clearly shows that there is not enough evidence to reject that Ri

1 =
D
Ri

2 in distribution, as

the p-values for all tests are far from the thresholds usually considered statistically significant.
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Figure 3.6: Diagnostic plots for T1 ∼ R1 regression using BLAZE data.

Figure 3.7: QQ plots of reference SUV (subcortical white matter) for entry scan. A: ADNI,
B: BLAZE.
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Table 3.1: P-values from testing whether R1 =
D
R2

ADNI BLAZE
T-test 0.87 0.94
F-test 0.23 0.93

KS-test 0.57 0.32

Table 3.1: P-values of two sided T-test (for different means), F-test (for different variance),
and Kolmogorov–Smirnov test (for difference in distribution) to ascertain whether R1 =

D
R2

In addition, we make the following assumptions that are difficult to verify using data at
hand, but we believe are fairly standard and non-controversial.

4. Constant correlation of reference SUV across patient/time: Cor(Ri
t, R

i
τ ) = ρ, ∀i, t 6= τ

5. Variables are pairwise independent: Ri
t ⊥ εit ⊥ Zi,∀i, t

In summary, we believe the following is a reasonable generating model for target SUVs

T it = αt +
(
β ×Ri

t

)
+ Zi + εit (3.5)

where Ri
t ∼ N(µ)R, σ

2
R),∀i, t

Zi ∼ N(0, σ2
Z),∀i

εit ∼ N(0, σ2
ε ),∀i, t

Cor(Ri
t, R

i
τ ) = ρ, ∀i, t 6= τ

Ri
t ⊥ εit ⊥ Zi,∀i, t

3.5.2 Statistical properties of SUVr and ∆-measure under the
assumed generating model

In this section we investigate the statistical behavior of SUVr and ∆-measure under the
generating model proposed in Section 3.5.1.

Proposition 3.5.1. Given the generating model (Eq. 3.5), the expected value and variance
of ∆SUV r = T2

R2
− T1

R1
are

E
[
∆SUV r

]
=

∆α

µR
(1 + CV 2

R) (3.6)

where

CVR =
σR
µR

is the coefficient of variation of R
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and a second-order approximation of the variance is

V ar(∆SUV r) ≈
( 1

µ2
R(1 + CV 2

R)
+

2CV 2
R(2 + CV 2

R)

µ2
R(1 + CV 2

R)3

)
(2σ2

Z + 2σ2
ε + α2

1 + α2
2)−

(α1 + α2)2

µ2
R

[
1 + CV 2

R

]2

−

2× 1 + 2CV 2
R + 10ρCV 2

R

(1 + 2ρCV 2
R)3

α1α2 + σ2
Z

µ2
R

(3.7)

And ∆̂α is normally distributed with mean and variance stated below:

E(∆̂α) = ∆α (3.8)

V ar(∆̂α) ≈ 2σ2
ε

n

[n− 2

n− 1
+

n

(n− 1)2

]
(3.9)

Proof. The derivation of Proposition 3.5.1 involves repeated use of Taylor’s theorem. Details
of the proof are relegated to Section B.4.

There are four parameters that control V ar(∆SUV r): σε, σZ , ρ, and CVR.

CV R is the coefficient of variation of the reference ROI, which measures the group-level
variation of the reference ROI: high CV R indicates high patient-to-patient reference varia-
tion. For SUVr, the ideal scenario would be all patients have identical reference uptake (per-

fect reference), i.e CV R = 0. From Proposition 3.5.1, under CVR = 0, V ar(∆SUV r) = 2σ2
ε

µ2R
,

and it is apparent that ∆SUV r and ∆̂α have the same power, since they have identical test
statistic. As CV R increases, however, ∆SUV r’s power decreases as noise starts to add up.
This is potentially hard to control, since uptake of Aβ tracers in the reference is a natural
process and cannot be selectively controlled without simultaneously jeopardizing the fidelity
of the target ROIs. The empirical CV R is about 0.37 for BLAZE, and 0.15 for ADNI, which
means we expect ∆-measure to work better for BLAZE, and both empirical and simulated
results support this insight (Section 3.6.1, 3.6.2).

σ2
Z is the amount of patient-level variability, i.e how different patients are from one-

another. This is accounted for explicitly in the ∆-measure; SUVr, however, requires external
control such as careful patient screening and experimental design to mitigate the potential
impact σ2

Z . According to Eq. 3.7, σ2
Z has complicated interaction with CVR and ρ. If we

make the simplifying assumption that ρ = 0.5, which is close to the empirical estimates
(Table 3.2), then εZ contributes to V ar(∆SUV r) according to the following relationship:

V ar(∆SUV r) ≈ · · ·+ σ2
Z

4CV 2
R

µ2
R(1 + CV 2

R)
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Empirically σZ is 0.25 for BLAZE and 0.1 for ADNI.

ρ = Cor(R1, R2) is the correlation of reference SUV between the first and second scan
for a patient. The effect of ρ on V ar(∆SUV r) takes the following form:

V ar(∆SUV r) ≈ · · · − 2× 1 + 2CV 2
R + 10ρCV 2

R

(1 + 2ρCV 2
R)3︸ ︷︷ ︸

multiplier

α1α2 + σ2
Z

µ2
R

Where the “multiplier” part is always positive if ρ ≥ 0, thus will always decrease V ar(∆SUV r),
but its magnitude is highly non-linear with respect to ρ and CVR. Empirically ρ = 0.55 for
ADNI and ρ = 0.32 for BLAZE.

σ2
ε is statistical error from various other sources such as measurement, registration, and

alignment error...etc. This can potentially be improved via better data collection and pro-
cessing pipeline, such as more accurate instruments, and more sophisticated registration
software to achieve more precise alignment.

Among the parameters, CV R, ρ, and ε2Z do not affect ∆-measure because it is specifically
designed to side-step these issues, and ε2 will naturally affects both methods. Table 3.2
lists the empirical estimates for the four crucial parameters mentioned above for ADNI and
BLAZE data.

Table 3.2: Estimates of model parameters for BLAZE and ADNI data sets

CVR σZ ρ σε
ADNI 0.15 0.09 0.55 0.045

BLAZE 0.37 0.27 0.32 0.065

3.6 Results

3.6.1 Performance comparison on real data

Table 3.3 and 3.4 compares the p-values of detecting Aβ accumulation in various target
regions using SUVr and ∆-measure, using subcortical white matter as reference. Testing of
∆-measure is done using the parametric approach mentioned in Section 3.4.2. Since both
data sets consists of AD positive patients, we assume Aβ accumulation, as suggested by the
Amyloid Hypothesis, although this cannot be verified. One can see that for BLAZE data,
both methods are in agreement in state of accumulation. ∆-measure is generally be more
sensitive to detecting an increase in the target signal from baseline compared to ∆SUVr
by having smaller p-values in 9 out of the 11 target ROIS (Table 3.3, disregarding the
counter-intuitive result from target ROI “caudate”). However, for the ADNI cohort, this
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observation is not recapitulated (Table 3.4). This likely due to BLAZE having higher group
level variability (CV 2

R) and patient effect (σ2
Z) per Eq. 3.7, both increases the variance (thus

decreases the power) of ∆SUV r.

Table 3.3: Performance comparison between ∆-measure and ∆SUV r using BLAZE data

Tar ROI ∆α ∆S̄ ∆α pval ∆S̄ pval
frontal 0.0184 0.0091 0.0006 0.0091

post cingulum 0.0188 0.0134 0.0245 0.0530
parietal 0.0139 0.0084 0.1950 0.1871

lateral temporal 0.0358 0.0193 0.0009 0.0019
medial temporal 0.0248 0.0119 0.0030 0.0104

orbitofrontal 0.0128 0.0040 0.2913 0.6180
occipital 0.0551 0.0292 0.0000 0.0002

anterior cingulum 0.0155 0.0070 0.0518 0.0871
rectus 0.0185 0.0066 0.2796 0.6058

caudate -0.0180 -0.0123 0.1304 0.1369
putamen 0.0499 0.0272 0.0001 0.0002
thalamus 0.0090 0.0093 0.3211 0.1317

Table 3.3: Comparing the p-values for testing progression for BLAZE placebo arm using ∆-measure

vs SUVr on various target ROIs. Subcortical white matter was used as reference ROI. The columns

∆α and ∆S̄ are the effect size (estimates of progression), and columns “∆α pval” and “∆S̄ pval”

are the corresponding p-values.

Table 3.4: Performance comparison between ∆-measure and ∆SUV r using ADNI data

∆α ∆S̄ ∆α pval ∆S̄ pval
frontal 0.0221 0.0163 0.0914 0.0270

cingulate 0.0154 0.0117 0.1933 0.1078
parietal 0.0181 0.0165 0.0826 0.0052

temporal -0.0048 0.0005 0.6860 0.9377

Table 3.4: Comparing the p-values for testing progression for ADNI using ∆-measure vs that using

SUVr on various target regions using subcortical white matter as reference region. The columns

∆α and ∆S̄ are the estimates of progression, and columns “∆α pval” and “∆S̄” pval are the

corresponding p-values. ∆-measure yielded larger p-values in more target regions, indicating less

sensitivity in detecting progression, assuming progression is true. This is likely the result of higher

variation in the reference ROI (i.e higher CV 2
R and σ2

Z) in the ADNI data set compared to BLAZE.
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3.6.2 Power analysis on simulated data

We compared the power of the two methods in detecting treatment effect using parametric
bootstrapped simulations by using Eq. 3.5 as the base generating model and adding an
additional treatment effect parameter. The generating equation following Eq. 3.10.

T it = αt + txEfft × 1{patient i is treated} + βRi
t + Zi + εit (3.10)

We generate data for 15 placebo and 30 treatment patients, in accordance with our sam-
ple size in BLAZE Phase II trial. We set αt1 = 0.02 and αt2 = 0.05, and impose a treatment
effect of -0.02. β at 0.8, similar to the empirical value of the same parameter. We draw
zi independently from N(0, σ2

z) distribution, and similarly, εit are drawn independently from
N(0, σ2

ε ) distribution, where σ2
ε/σ

2
z are set at various values to ascertain their effect on the

power of the two methods (see Results). Target SUVs are simulated by supplying boot-
strapped reference SUVs into Eq. 3.10. Two simulations are produced, one using ADNI,
and the other using BLAZE.

Figure 3.8 shows the power curves when the reference SUVs are sampled from BLAZE
and ADNI respectively. There are drastic differences in the behaviors of the power curves.

In BLAZE, the advantage of ∆-measure is clear: the power curves of ∆-measure is
markedly above that of SUVr at all configurations. Most notably, under the empirical setting
of the BLAZE data, there is a substantial power difference between the two approaches.

∆-measure’s advantage seen in BLAZE simulation, however, does not appear in ADNI
simulation. The power curve diverges only when σε is small and σZ is high; and when σε is
relative large at 0.065, as is seen in the ADNI data, the power curves do not diverge. This
echoes our theoretical understanding (Section 3.5.2) as well as empirical observations, where
∆-achieves consistently achieves lower p-values in BLAZE, but not in ADNI (Table 3.3 vs
Table 3.4).

3.7 Conclusion

In our exploratory analysis (Section 3.3), we discovered that target and reference in SUVs
exhibited clear linear relationship that persists across time, target-reference-ROI combina-
tions, as well as processing pipelines, which is evidence that this relationship is likely to be
biologically meaningful. Based on this linear relationship, we proposed an alternate measure
to SUVr, dubbed the ∆-measure, for gauging changes in specific binding signal (Section
3.4.2).

To study the statistical behaviors of the two measures, we first proposed a reasonable
linear-mixed-effect-based generating model for generating target SUVs, and offered empiri-
cal justification for some modeling assumptions (Eq. 3.5, Section 3.5.1). We then used the
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Figure 3.8: Power curve comparison between ∆-measure and ∆SUV r using simulated data
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proposed model as the statistical backdrop and studied and commented on the effect of the
model parameters on the statistical behavior of the two measures (Section 3.5.2).

To compare the performance of the two measures we used both real data as well as
simulation. Comparison of the two measures on ADNI and BLAZE data showed ∆-measure
to be more sensitive for detecting accumulation under BLAZE data, but not in ADNI. We
attribute this performance discrepancy by using the proposed generating model as basis of
analysis and identifying two model parameters (σZ and CVR) that had markedly different
behaviors between the two data sets (Section 3.6).

We then provided simulation-based power comparisons using parametric bootstrapped
data (Section 3.6.2). In the power comparison, we see that ∆-measure outperforms SUVr by
a considerable margin under BLAZE-inspired data, but does not offer significant advantage
under ADNI-inspired data. This observation recapitulates the performance discrepancy in
the real data comparison.

From both theoretical and empirical investigations, we see that ∆-measure serves as a
suitable alternative to SUVr. Because ∆-measure is rooted in linear regression, it offers a
much more flexible framework to 1) incorporate predictors such as age, gender, cognitive
scores, and 2) simultaneously evaluate treatment and progression at multiple time points.
A similar exercise would be considerably more difficult using the SUVr approach. This
particular aspect of the model was not explored in this work due to the lack sufficient
patient-level meta data, it is nonetheless a promising investigative direction and a natural
application for the ∆-measure.
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Chapter 4

Data-driven discovery of
organogenesis master regulator
candidates for D. melanogaster and C.
elegans

4.1 Introduction

Organogensis, or the formation of organs, is an exciting field in developmental biology
as its advancements requires bringing together advancements in a variety of fields of studies
such as cell biology, molecular biology, genetics, and biostatistics. Recent investigations into
organogenesis of many model organisms suggest that cell fate could be highly influenced by
a dynamic network of small but potent “master regulators”, the absent of which may lead to
ectopic- or non-development. For instance, the transcription factor eyeless (ey) was named
the master regulator of Drosophila eye[7], and further evidence suggested that dachshund
(dac), eye absent (eya), and sine oculis (so) work with ey to form a regulatory network that
determines the development of the organ [10, 56]. Worm pharynx is another such organ
system whose genesis and maintenance is organized by a handful of transcription factors
[48]. Assuming these findings generalize, i.e master regulators exists for all organisms for all
organs, then it would be very useful to our understanding of system biology to identify these
master regulators.

Data that directly link TFs to organ systems are rare, because TFs influence organ de-
velopment indirectly by regulating genes that drive organ development via cis-regulatory
modules (CRMs). Impact of TFs on organ system, however, can still be studied through
intermediate datasets that are often prevalent and accessible. For instance, TF binding site
data can be used to infer regulatory activity between TF and genes; gene-organ relationship,
in turn, can be obtained via large scale projects such as in-situ database curated by the
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Celniker lab [78]. Since these studies are often well-established and comprehensive, we can
leverage information provided by these data sources to mine potential tissue-specific master
regulators. This work outlines a data-driven mining approach to uncovering high-fidelity
organ-specific candidate regulators by taking advantage of such public datasets. The imme-
diate value of the work is providing dry-lab guidance to wet-lab experimentation, which is
expensive and labor intensive yet remains the definitive way of validating a master regulator.

Machine learning techniques have been applied to master regulator analysis with some
success. For instance, Lefebvre et al. [43] introduced MARINa that performs master reg-
ulator discovery using a inferred regulatory map between TFs and regulons (activated or
repressed targets) as well as the relevant gene expressions profile between contrasting cell
states as inputs. Gevaert and Plevritis [25] introduced a three step discovery algorithm in
which a generalized linear model is used to identify potential TF regulators, and a elastic-
net based algorithm is used to construct TF-gene regulatory network, and finally master
regulators and their downstream targets are identified using module network analysis. A
more recent work by Sikdar and Datta [71] introduced a two-step hypothesis-testing-based
algorithm in which the inferred regulatory modules of a TF between treatment and control
groups are compared and the TF with the highest Kendall statistic is crowned the master
regulator. An issue these algorithms share in common is that the conclusions drawn depend
heavily on the dependability of the regulatory network inferred or taken as input by the
algorithms. This is potential problematic, especially when regulatory network itself is still
a field of active research, and often lack concrete experimental evidence supporting their
reliability. The hypothesis-testing-based algorithm [71] also has makes a debatable assump-
tion that the master regulator is at the top of the regulatory hierarchy, especially when TFs
often achieve gene regulation by collaborating in a regulatory network [8]. The algorithm
we present is agnostic to the TF network structure, thus side-stepping aforementioned issues.

The text is organized as follows. In Section 4.2 we present data acquisition and processing
for D. melanogastar and C. elegans. Section 4.3 will detail the mining algorithm. Specifically,
section 4.3.4 covers how to extract and select candidate TFs for the two organisms. Section
4.4 will comment on on the quality of the TFs obtained.

4.2 Data

As mentioned previously, TFs affect tissue development indirectly by influencing genetic
drivers of tissue development, and our objective is to elicit the TFs that drive the develop-
ment process of a particular tissue. The framing of the problem is reminiscent of the problem
of feature selection in machine learning, where the goal is to ascertain the few features from
a collection that are the top drivers of some underlying process. Our objective can be trans-
lated into such a machine learning problem by leveraging the following three categories of
information:
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1. Genomic location of genes. For model organisms this is generally curated by labs across
the world and are publicly available. The datasets we use in this work are obtained
from Wormbase and Flybase for C. elegans and D. melanogastar, respectively. We
hereafter refer to this category of information as Gene-Location data.

2. Data related to activation of genes in specific organs of interest. There are a growing
number of large scaled efforts trying to curate tissue-specific gene profiles for many
model organisms, e.g Drosophila [78], human [74], multi-organism [54]. We will use
Celniker lab’s (LBL) in-situ database [78] for D. melanogster and Waterston lab’s FACS
RNA-Seq data for C. elegans (Warner and Waterston, in preparation). We hereafter
refer to this category of information as Gene-Organ data.

3. Genomic locations of TF binding site. Numerous large scale databases are available (e.g
Chip-base [86]), however, the TF binding information we use in this work are obtained
from experiments of collaborator laboratories. We hereafter refer to this category of
information as TF-Location data.

Gene-Organ data will be used to construct the response Yn×1, where n = number of genes.
Suppose our organ of interest is the nervous system, then we will assign Yi = 1 if gene i is
associated with nervous system according to the gene-organ database and 0 otherwise. The
Gene-Location and TF-location data will be used to construct the feature matrix Xn×m,
where Xi,j denotes pseudo-measures of the interaction/regulation strength between gene i
and TF j. Section 4.3 will describe construction details.

We will now detail the descriptions of databases used for D. melanogaster and C. elegans
in Section 4.2.1 and 4.2.2, respectively.

4.2.1 D. melanogaster

The Gene-Organ dataset we use is the in-situ database curated by the Celniker lab in
Lawrence Berkeley National Laboratory [78, 77, 29, 59]. As the name suggests, in-situ hy-
bridization [22] is the main technique applied. In this data, gene specific anti-sense florescent
riboprobes are manufactured and hybridize into fixed Drosophila embryo such that flores-
cence microscopy can be used to determine gene’s physical location in a developing embryo.
Figure 4.1 shows an example where the gene Ptx1 lights up in areas that are associated
with development of Malpighian tubules. Based on the physical location of gene expression,
embryologists use expert knowledge about embryonic cell fate and annotate the gene-tissue
association using controlled vocabulary. At the time of writing, expert annotation of 7,921
genes are available in the in-situ database [59]; however, because not all genes conform with
labeling in the reference genome, some genes were forced to be left out, resulting in only
6,056 being used in the final construction. In this work we will look at gut and nervous
system.
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Figure 4.1: Example of Ptx1 gene imaged during Stage 11 of D. melanogaster embryonic
development

The TF-Location data is obtained from ChIP-chip experiments conducted in [72]. In
this study, two replicate experiments are done for each TF. For a particular TF, replicates
are passed through MACS2 separately [87] with an p-value threshold of 10−3 to obtain two
sets of potential peaks. Then replicates are then pooled and MACS2 is called again with
p-value threshold of 10−3 on the pooled experiments. Peaks from individual experiments are
only retained if they also show up in the pooled peak set. The retained peaks from individual
experiments are then ranked according to their p-value, producing two sets of ranked peaks,
which are input into the IDR framework [45] to assess reproducibility of the peaks. Peaks
are retained if they meet the IDR threshold of 0.05. All TF peaks in the resulting data are
accompanied by a local IDR value, which will be used in subsequent analysis as a surrogate
for regulation strength between TF and genes near the genomic region.

The Gene-Location data used is the UCSC fly genome v19 (GRCh37.p13) [38, 64].

4.2.2 C. elegans

The Gene-Organ data is the fluorescence-activated cell sorting (FACS) RNA-seq data
provided by the Waterston Lab as the gene-organ data (Warner and Waterston, in prepara-
tion). In each experiment, a specific tissue cell type (e.g muscle) from the FACS process will
go through RNA-Seq, which returns tissue-specific expression levels of genes. Expression
levels are measured in depth coverage per million reads (DCPM), and the cells from muscle,
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hypodermis, nervous system, pharynx, intestine are analyzed.

TF-Location data we use is the uniform IDR thresholded peak calls for C.elegans mod-
ENCODE TF ChIP-seq data [4]. In short, the TF peaks from ChIP-seq experiments are
called by SPP using an FDR of 0.9. The artificially high FDR threshold allows both sig-
nal and noise to pass through, where by peaks from replicates are then passed through the
IDR protocol (threshold of 0.05 was used) and sorted into signal and noise components to
determine the irreducible discovery rate of each peak location. The resulting peaks that
passes the IDR step are pooled across replicates and SPP is called again with the relaxed
FDR threshold of 0.9. A final output consists of peak location and the FDR of each location
outputted by SPP. See [4] for detailed description of the data generation and peak calling
procedures.

Gene-Location data is obtained from WormBase release WS248 [82].

4.3 Methods: constructing a learning problem

We will combine the three data types outlined in Section 4.2 into a classification problem.
Classification problems are often of the form

Y = f(X) + ε

Where Y denotes a n × 1 response vector, often binary. X is the n ×m predictor matrix,
f is some predictor function that we want to fit, and ε captures the error. Sections 4.3.1
and 4.3.2 will detail the construction of Y and X, respectively; Section 4.3.3 will outline the
model (f) we are going to use, and Section 4.3.4 will tie the ideas together and present a
method of selecting the master regulator candidates.

4.3.1 Construction of the response vector

The learning problem will be tissue specific, i.e, we need separate setups for each tissue
type. The response vector will be binary of length n, with 1 indicating the gene is associated
with the tissue type, i.e it is present in the embryonic regions associated with the tissue.

For D. melanogaster, first collect all controlled vocabulary related to the tissue of interest.
Then, for each gene, search through its annotations for the tissue-specific vocabulary. For
instance, all terms associated with nervous system will contain “nerv” (e.g nervous, nerve),
“cns” (central nervous system), so for each gene, we will look at all its expert-annotated
terms and pattern match for “nerv” and “cns”. If pattern match exists, then we will mark
1 (i.e asscociated) in the response vector corresponding to this gene, and 0 other wise.

For C. elegans, a gene is deemed to be associated with a particular tissue if its DCPM for
a tissue is 10 folds higher than the average of other tissues. The threshold of 10 was chosen to
be conservative, but analysis show that this particular threshold produces reasonable results
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(Section 4.4).

4.3.2 Construction of the predictor matrix

We use the Gene-Location and TF-Location data to construct feature matrix Xn×m,
with Xi,j being a pseudo-measure of the intensity in which TF j regulates gene i. Peak calls
from both D. melanogaster and C. elegans data come with significance measure for the peaks,
e.g for D. melanogaster it’s the local IDR, and for C. elegans the FDR. We use negative log
of the significance measure as a pseudo-measure for the strength of regulation. For gene i
and TF j, we first find the genomic locations of all of gene i’s transcripts, then record all
TF j’s peaks that fall within 1kb up or down stream from TSS’s of gene i’s transcripts. The
2kbps region around TSS site was chosen be cause it was observed that many factors display
upstream or downstream activity within a 2kbp span covering the TSS [2]. We then sum up
the negative log value of unique peaks, and the resulting value serves as a pseudo-measure
gauging the strength in which TF j regulates gene i. Figure 4.2 offers a schematic. The
resulting predictor matrix will be referred to as X. For Drosophila, X is 6, 056 × 199 and
for worm 20, 426× 252.

With this construction, we make the important simplifying assumption that proximity of
a transcription factor binding site is indicative of regulation. This, however, does not hold
true due to the presence of trans regulation. Therefore, the X matrix in the learning problem
can be refined using this information. Another way to refine the input data is to consider
cross species TF binding site information, as it was shown that cross-species comparison
greatly improves TF occupancy prediction [37]. More over, currently only static binding
information considered, however it can was shown that TF residence time as opposed to
steady state binding information is a better indicator of regulation [75].

4.3.3 Balanced Random Forest

There are myriad of approaches for solving binary classification problem, we chose random
forest because it has proven to be successful in handling cases where relationship between
predictors and response may not be linear, as in our case. However, numerous studies have
shown that class size imbalance adversely affect tree-based methods like random forest [42],
thus some form of resampling is needed to improve predictive power. We down sample the
larger population so that the final response vector contains the same number of 0’s and
1’s, producing a balanced learning problem. Random forest will assign each feature a rank
according to variable importance (measured by % increase in MSE1). We run 20 independent
trials of the learning problem so that each feature will have 20 ranks from each of the 20

1Produced by importance(..., type=1) from the randomForest R package
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Figure 4.2: Example calculation for filling in one cell of the predictor matrix.

trials, and the median of the 20 ranks is taken as the overall measure of importance. Figure
4.3 demonstrates the flow of the algorithm.

4.3.4 Selecting significant TFs

From previous step, we obtain a ranked list of TFs for each tissue type. A TF may be
important for multiple organ systems, such as TFs that regulate housekeeping genes; our
objectives, however, is to detect organ-specific TFs. To solve this problem, we measure the
importance of a TF to a specific organ by its relative importance to other tissue types.

For D. melanogaster, we have two organ systems of interest—nervous system and gut,
we use the difference in logged rank difference to score the TF’s relative importance be-
tween organ systems. The advantage of logged rank difference is that a same gap higher
in the list has a much bigger effect of the same rank difference lower on the list. For in-
stance, if TF i is ranked 3 in gut, and ranked 23 in nervous system, their ranked difference is
log 3− log 23 = −2.03; however, the rank difference between 23 and 43, also a rank difference
of 20 nominal ranks, is only log 23 − log 43 = −0.63; in fact, if TF i is ranked 23rd, TF j
would need to be ranked as low as 175th to achieve the same score of -2.03.
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Figure 4.3: Flowchart for repeated balanced random forest runs.

This approach can be generalized to comparing more than two organs. The C. Elegans
data, for instance, has five tissue types. In this case, we split the tissue types into two groups,
say {pharynx, nervous system} and {muscle, hypodermis, and intestine}, and calculate the

logged ranked difference for the mean of the two groups. We do this for all 5 +

(
5
2

)
= 15

different splits, and take the split with the highest differential. We then assign importance
according to the absolute values of the rank differentials.

This approach only reports the differentials, and does not give a cut-off to select the
specific TFs. The choice of threshold is left to the user’s discretion, and for this
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TF Muscles Hypodermis Nervous System Intestine Pharynx Differential

hlh -1EM 1 38 26 30 47.5 3.57
pqm-1L4 25.5 17 37 16.5 1 3.18

RPC-15Y A 44 15.5 42 17.5 39 0.93

Table 4.1: Median importance factor returned by balanced random forecast on each of the
five organ systems. For each TF (row), the number indicates the median importance score
for each tissue, and color indicate the grouping that generated the highest differential.

4.4 Results

The most reliable way of validating whether a TF is a organogensis regulator is to perform
RNAi knockout experiments. This option was not available at the time of the writing, so
experimentally verified GO terms will be used as the primary evidence of TF’s involvement
in a specific organ. Unless mentioned specifically, GO terms are derived from experimental
evidence2. AUC are approximately 0.65 for fly and 0.7 for worm, which are on the low side in
terms of predictive power, but this should not invalidate the TFs selected, since at its heart
this is a feature selection problem, and features can still be important without the overall
model having high predicative power. The reason for the low predicative power of the model
is likely due to the dependence structure between the TFs not sufficiently captured since

1. Not all TFs binding information is available (e.g only 199 of the supposed 708 TFs [30]
were available for fly data), and

2. Regulation of gene expression often involves interaction between TFs to ensure robust
expression [75], and this inter-dependence is not fully captured in the design matrix.

Despite these caveats, one can see that the TFs recovered are sensible.

4.4.1 D. melanogaster

One can see that the majority of the TFs selected as master regulators for the nervous
system are associated with nervous GO terms. It is reassuring that Lola, a well known
regulator for fly nervous system development, shows up as the top nervous system TF.

The gut organ is a bit more ambiguous. None of the enriched GO terms are directly
related to gut. There are various TFs with terms dealing with organs that may be tan-
gential to gut development, such as muscle, epidermis, pharynx, and trachea (grh, h, vri,
respectively). There are a few top gut TFs such as Max, dsx that have very few GO terms
defined. It should also be noted that among the 2056 out of the 6506 genes labeled to be
gut associated in the in-situ dataset, only 44 had experimentally verified gut GO terms, yet
among the 1230 (out of 6506) genes labeled nerve-related, 254 have experimentally verified

2experimental evidence with codes IMP, IEP, EXP, IGI, IDA, or IPI
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Table 4.2: Top Discovered TFs that may be driving gut development in D. melanogaster

TF Gut Rank NS Rank Differential Relevant GO Terms

dm 3 20 1.90
Max 2 12 1.79

grn 1 3 1.10
organ morphogenesis
tissue development

br 8 18 0.81 muscle fiber development
Neu2 57 133 0.68
grh 33 60 0.60 epithelial cell morphogenesis

CG7045 22 39 0.57
dsx 77 129 0.52
h 14 23 0.50 cell morphogenesis

cnc 46 74 0.48 pharynx development

EcR 5 8 0.47
Malpighian tubule morphogenesis

epidermis development
vri 7 11 0.45 open tracheal system development

Table 4.3: Top Discovered TFs that may be driving nervous system development

TF NS Rank Gut Rank Differential Relevant GO Terms

Lola 1 11 2.40
neurogenesis

dendrite morphogenesis
bab1 5 26 1.65
Dif 7 18 0.94 peripheral nervous system neuron development
dac 43 80 0.62 neuron differentiation

HmgD 27 47 0.55 dendrite morphogenesis
ftz 10 16 0.47 central nervous system development3

eyg 48 76 0.46
CG12155 41 26 0.46
CG13624 15 23 0.43

chn 46 74 0.40
peripheral nervous system development

dendrite morphogenesis
nervous system development

nervous-system-related GO terms. This shows that either the nervous-system is much better
studied and/or there are discrepancies in expert labeling in the in-situ data, both of which
would have negatively impacted the efficacy of the random forest approach. The average
AUC across 20 balanced random forecast run is 0.65 for both nervous system and gut.
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Tissues Significant TFs AUC

Muscle hlh-1, unc-62 , nhr-11 0.76
Hypodermis blmp-1, elt-1, nhr-23, nhr-25 0.64

Nervous System ham-1, lys-2 0.81
Pharynx pha-4 0.60
Intestine pqm-1, nhr-28 0.72

Table 4.4: Significant TFs for each organ system for C. elegans among 20 groupings with
highest importance differential (12 are shown because repeats are combined). The AUC-ROC
is the averaged across 20 runs of balanced random forecast.

4.4.2 C. elegans

There are abundant experimental evidence associating the top transcription factors to
their respective organ systems, except the intestine.

hlh-1 was found to be a myogenic regulatory factor family transcription factor that
converts almost all cells to a muscle-like fate, regardless of their lineage of origin [21]. unc-
62 was also found to be involved in muscle cell differentiation [35].

There are abundant experimental evidence suggesting pha-4 being one of the central
regulator of pharynx development [48]. Gaudet and Mango showed that pha-4 “specifies
organ identity for C. elegans pharyngeal cells” [23].

blmp-1 and elt-1 have shown to play important roles in epidermis development. blmp-1 in
epidermal cell fate specification [53] and elt-1 in positive regulation of epidermis development,
[32]. Knocking down of nhr-25 resulted in induction of epidermal infection genes, showing
that the transcription factor is an crucial player in epidermis maintenance [80].

Experimental evidence supports ham-1 being a potential master regulator for nervous
system development, being involved in “cell fate determination” [28] and “neuron migration”
[15].

However, we could not find relevant literature on the top intestine TFs, a result mirroring
that of D. melanogaster (Section 4.4.1). We have found that there are only 15 genes with GO
terms containing “gut” or “intestine” 4, compared to 504 for nervous system (“nerv”), 105
for pharynx (“pharyn”), 607 for muscle (“muscle” or “muscular”), and 100 for hypodermis
(“hypoderm”). Thus, unless the gut is a much less complex organ than the pharynx, this
may be evidence that worm intestine’s regulatory/genetic activity may not be well-studied.

4Data from WormMine: http://intermine.wormbase.org/tools/wormmine/results.do?trail=\%

257Cquery\%257Cresults.0&queryBuilder=true
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4.5 Conclusion

In this work we presented a methodology for uncovering organ-specific candidate master
regulators by mining large public datasets and formulating the synergistic information therein
into a feature selection problem.

We used down-sampled balanced random forest to perform feature selection due to its
ability to handle non-linear relationships between features and response, but users are free to
use any feature selection method of their choice. The methodology was applied to two model
organisms, D. melanogaster and C. elegans, where nervous system and gut were examined
in the former, and hypodermis, muscle, nervous system, pharynx, and intestine in the lat-
ter. We uncovered biologically plausible candidates for both organisms, but could not find
evidence in literature supporting the discovered regulator candidates for D. melanogaster
gut or C. elegans intestine. Using FlyMine and WormMine services [73], however, we have
found that there are very few genes that have GO-terms associated with intestine or gut,
indicating that the organ may not be studied as extensively as others.

In constructing the learning problem we have made myriad of assumptions, which should
be verified and relaxed when possible. For instance, a crucial assumption we made is that
proximity implies regulation, but this does not hold true due to the presence of trans reg-
ulation. Thus one way to improve the construction of the feature matrix is to incorporate
trans regulation information.

This work is still preliminary and can be extended in many directions.
As mentioned in the Results section (Section 4.4), experimental validation such as RNAi

knock-down would provide more concrete evidence to the discovered master regulator can-
didates. For instance, dm and br have shown high potential to be master regulators for fly
gut, which can only be verified via wetlab experiments.

There are other downstream fundamental questions that is not answered by this frame-
work, but can be further explored via the results. For instance, co-occurrence of master
regulator candidates in random forest’s trees may reveal key organ-specific regulatory net-
works.

One of the major drawbacks of the proposed method is its inability to handle extremely
unbalanced data. For instance, we could not obtain reasonable results for Drosophila eye be-
cause there were only 20 genes (out of 6,056) associated with the eye, and such imbalanced
presented a major hurdle for random forest feature selection. A natural follow-up, then,
would be using techniques such as gradient boosted trees, where a popular implementation
XGBoost [11] has a parameter5 specifically designed for imbalanced data.

Data-driven discovery of organ-specific master regulator can serve as useful guidance for
expensive wet lab discovery of master regulators by providing high fidelity candidates. We

5Specifically, scale pos weight
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were able to uncover plausible candidate despite the many simplifying assumptions in the
methodology. Therefore we think this approach has the potential to yield more precise and
definitive biological insights upon further tuning and refinement.
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Appendix A

Supporting material for “Identifying
cell subpopulations and their genetic
drivers from single cell RNA-Seq data
using a biclustering approach”

A.1 Construction of SNN Network

Let’s demonstrate the edge-weight calculation using a simple example. Let X be a 2× 8
matrix, i.e we have 2 genes and 8 cells with fabricated gene expressions, shown in Figure
A.1.

X =

[
0 0 0.25 0.25 1.5 1.75 1.5 1.75
0 0.25 0.25 0 1.5 1.5 1.75 1.75

]
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Appendix Figure 1

Figure A.1: Positions of cells
in gene expression space. This
shows the relative positions of
the cells in the gene expression
space in our example. It is
apparent that our cells should
be grouped into two clusters
{a, b, c, d} and {e, f, g, h}.

Let’s calculate the edge weight between a and b. First find the list of neighbors ranked in
order of proximity (using Euclidean distance), in this case a’s neighborhood is {a, b, c, d, e, h, g, f}
and that of b is {b, a, c, d, e, h, g, f}. Then define an integer k so that we only look at the



APPENDIX A. APPENDIX FOR “SINGLE CELL RNASEQ BICLUSTERING” 71

top k neighbors in each list (this is why sometimes shared-nearest-neighbor is also called the
k-nearest-neighbor). Let k = 3, then the neighbor list we actually use are {a, b, c} for a and
{b, a, c} for b. Searching through the pair of listings, we find the highest positions of their
common neighbors, in this case, a, who is ranked 0 in a’s neighborhood and 1 in b’s (or b,
who is ranked 1 in a’s neighborhood and 0 in b’s). Note that even though c is a common
neighbor, it is ranked lower than the other common neighbors (i.e a and b) in the list, so
it is not used to calculate proximity. The average rank of the highest common neighbor
in this case is 0+1

2
= 0.5, and the edge weight is therefore k − 0.5 = 3 − 0.5 = 2.5. Take

another example, suppose we want to create an edge between a and e, with k = 3, then
the corresponding neighborhood lists are {a, b, c} and {e, h, g}. Since no common neighbor
exists, the an edge will not be drawn between a and e in the final graph. Using the procedure
described above, Figure A.2 shows the networks create using SNN constructor with k = 2
and k = 3, respectively.
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Appendix Figure 2

Figure A.2: Constructed SNN
network using example gene ex-
pression matrix with k = 2 (left)
and k = 3 (right). Notice that
the k = 3 network contains more
edges, because lower k will yield a
more sparse network by construc-
tion.

In general, let n be the number of genes and m be the number of cells, then the n ×m
gene expression represents m points in Rn, the algorithm constructs a network with nodes
being cells and edge weights between two cells being pseudo-measure of their proximity in
Rn. Let c denote a cell, define a positive integer k to be the neighborhood size such that
Vk (c) is an ordered list of k cells who are c’s closest neighbor measured in Euclidean distance,
with the first element of Vk(c) being the closest to c. Define rankk(a, c) to be the position
of cell a in Vk(c). Then the weight of the edge between cells a and c is defined as

w (a, c) ,

{
max

{
k − rankk(b,a)+rankk(b,c)

2

}
if c ∈ V (a) ∪ V (c)

0 o.w

In short, the closer two nodes are to their shared neighbor, the more weight will be assigned
to the edge that connects them. In BiSNN-Walk k is hard-coded to be dlog (n)e. This is
because BiSNN-Walk contains a self-correcting scheme, so it does not require a refined se-
lection of k, and we found that dlog (n)e is reasonable under most scenarios.
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We chose to construct SNN instead of directly using similarity matrices for two reasons.
First, in SNN networks, the notion of “distance” between two nodes is established in the
context of a local neighborhood instead of quantified by an absolute measure, such as the
Euclidean distance. This localization of distance is especially desirable for high dimensional
data, where the absolute distance measure like Euclidean distance becomes less and less
useful for gauging proximity with higher dimensions [1]. Secondly, the edge weights between
two nodes in an SNN network implicitly carries information about the similarity between
the two neighborhoods of the two nodes, whereas in a similarity matrix, the similarity score
between two cells only carries information about the two nodes themselves. Through its edge
construction, SNN creates a filter that condenses informative neighborhood characteristics,
which are otherwise lost in similarity matrices.

A.2 Overview of irreducible discovery rate

One of the most pertinent question in high throughput sequencing is whether the signal
we see in the data are real, or true positives. For instance, suppose we were to conduct
a Chip-seq experiment to find binding sites (peaks) of a transcription factor, suppose we
were to repeat the experiment under identical settings many times, the peaks that show up
as significant across experiments would be considered “reproducible”. In practice, however,
we usually an experiment is only replicated twice due to budget and time constraints, and
irreproducible discovery rate was introduced to quantify the “reproducibility” of the sig-
nals in the replicate experiments. Other measures of reproducibility also exist before the
introduction of IDR, the most prominent of which include Spearman’s correlation and rank
correlation; however, the idea that set IDR apart from its predecessors is that it makes a
lot more sense to measure reproducibility using the signals that are actually reproducible; in
other words, one should not use the entire experiment to measure reproducibility of replicate
experiments. Also, there was a lack of measure that quantify local reproducibility, i.e using
the previous Chip-seq example, it is also worthwhile to know the reproducibility of individual
peaks.

The main idea of IDR is that it separates the pairs into two groups (remember, we
have two replicates of every experiment, thus the data is a n × 2 matrix, i.e n pairs),
a reproducible group, and a non-reproducible group. Let (xi,1, xi,2) denote the pair of
observations, assume (xi,1, xi,2) ∼ F 1 (·, ·) if the pair belongs to the reproducible group,
∼ F 0 (·, ·) otherwise. Suppose the proportion of genuine signals is π1 and that of spurrious
signals is π0 = 1 − π1, then (xi,1, xi,2) ∼ F (·, ·) = π1F

1 (·, ·) + π0F
0 (·, ·). Let F1 (·) ≡

marginal distribution of the first coordinate, and F2 (·) similarly defined.
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Now let’s define the dependence structure within each group. Let

(zi,1, zi,2) ∼ BN

((
µ
µ

)
,

(
ρσ2 σ2

σ2 ρσ2

))
µ1 > 0, ρ > 0 if the pair are drawn from the genuine group, otherwise (zi,1, zi,2) ∼ SBN .
Here ρ gauges the overall reproducibility between two experiments, and is the notion of IDR
we use in our study. Let G denote the marginal distributions of zi,j, then

G (·) =
π1

σ
Φ

(
· − µ
σ

)
+ π0Φ (·)

In our model, (zi,1, zi,2) are the unobserved latent variables that induces (xi,1, xi,2) ac-
cording to the following relationship

xi,1 = F−1
1 (G (zi,1)) (A.1)

with xi,2 similarly defined. In other words, the drawing of (zi,1, zi,2) (thus G) gives
(xi,1, xi,2) their dependence structure, while F dictates the actual value they will take. This
is referred to by the paper as the copula mixture model.

According to Eq. A.1, (zi,1, zi,2) = (G−1 (F1 (xi,1)) , G−1 (F2 (xi,2))). Assume all pairs
are independent and identically distributed, i.e they are all induced by their respective
i.i.d (zi,1, zi,2)’s, then the semi-parameterized likelihood function is parameterized by θ =
(π1, µ, ρ, σ) and (F1, F2) and can be written as

L (θ) =
n∏
i=1

[π0h0

(
G−1 (F1 (xi,1)) , G−1 (F2 (xi,2))

)
+ (A.2)

π1h1

(
G−1 (F1 (xi,1)) , G−1 (F2 (xi,2))

)
] (A.3)

Where h1 is the density of BN

((
µ1

µ1

)
,

(
ρσ2 σ2

σ2 ρσ2

))
and h0 is the density of SBN.

EM algorithm is used to fit L (θ) using the following steps:

1. First compute the marginal empirical distribution F̂1 (xi,1) =
ri,1
n

, where ri,1 = rank of

xi,1 in expriment 1. F̂2 (xi,2) similarly defined.

2. Let ui,1 ≡ n−1
n
F̂1 (xi,1) be the empirical quantile of xi,1. The factor n−1

n
is applied to

avoid unboundedness of G−1 at 1. Obtain ui,2 with similar fashion

3. Initialize θ, denote it θ(0) =
(
π

(0)
1 , ρ(0), µ(0), σ(0)

)
4. Compute pseudo data zi,1 = G−1 (ui,1), and zi,2.
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5. Apply EM algorithm on the likelihood function of the augmented dataset Yi = (zi, Ki),
where zi = (zi,1, zi,2) and the latent variable

Ki =

{
1 zi ∈ reproducible group

0 o.w

The corresponding likelihood is

l (θ) ≡
n∑
i=1

{Ki (log π1 + log h1 (zi)) + (1−Ki) (log π0 + log h0 (zi))}

For the Expectation step, we need to find the expectation of l (θ):

Q
(
θ|θ(0)

)
= EK|Z,θ(0)l (θ)

=
n∑
i=1

{
EK|Z,θ(0) [Ki] (log π1 + log h1 (zi)) +

[
1− EK|Z,θ(0) (Ki)

]
(log π0 + log h0 (zi))

}
where

EK|Z,θ(0) [Ki] = P
(
Ki = 1|zi, θ(0)

)
=

P
(
Ki = 1, zi|θ(0)

)
P (zi|θ(0))

=
π

(0)
1 h1 (zi)

π
(0)
1 h1 (zi) +

(
1− π(0)

1

)
h0 (zi)

For the Maximization step, we need to maximizeQ
(
θ|θ(0)

)
which involves fairly straight-

forward calculus steps. After convergence, set the resulting θ as θ(1).

6. If convergence criterion is not met, e.g ‖θ(0) − θ(1)‖ < ε for some predefined ε, set
θ(1) 7→ θ(0) and return to step 4.

A.3 Overview of Walktrap Clustering

Walktrap Clustering was proposed by Pascal Pons and Matthieu Latapy in [57]. The
method uses an agglomerative hierarchical clustering to cluster the the nodes, and the paper
also suggests a method of cutting the resulting tree. Notation here will follow the paper as
closely as possible.

Let G (V,E) be an undirected graph with vertices V and edges E, where |V | = n, and
|E| = m. Let A be the adjacency or weight matrix, and D = diag (d1, ..., dn) is the n × n
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diagonal matrix containing the corresponding degree (sum of weights if graph is weighted)

of each node. P = [Pij] =
[
Aij
di

]
be the corresponding n× n transition matrix.

The most important piece of any hierarchical clustering algorithm is the definition of
distance between nodes. Here the distance between nodes is defined as

Definition. The distance between node i and j is

rij (t) =

√√√√√ n∑
k=1

(
[P t]ik − [P t]jk

)2

dk
(A.4)

= ‖D−
1
2

[
P t
]
i· −D

− 1
2

[
P t
]
j· ‖ (A.5)

where t is some predefined time.

Since [
P t
]
ij

= P (a walk starting at node i will end up at j at time t)

The vector [P t]i· can be thought of a visiting “profile” of a walk starting at i, at time t, then
if i and j share many neighbors, then their visiting profile should be similar, thus the corre-
sponding distance rij (t) should be small. The D−

1
2 factor is just a normalizing factor that

down weights the effect of nodes with large degrees, whom, by the nature of the transition
matrix, will be visited more no matter the starting position .

rij (t) is closely associated with the spectral properties of the transition matrix P . Let
{λα : 1 ≤ α ≤ n} and {vα : 1 ≤ α ≤ n} be the eigenvalues and eigenvectors of P , then

r2
ij (t) =

n∑
α=1

λ2t
α (vα (i)− vα (j))2

where vα (i) is the ith element of the vector vα.

Since rij (t) is the “distance” between node i and j only at time t, it’s a better idea to
examine at the entire history of the walk over all t, which leads to the generalized distance
r̂ij, which defined as

Definition. Let {ck : k = 1, ...,∞, ck ≥ 0 ∀k,
∑
ck = 1} be a set of predefined weights. Let

P̂i· =
∑∞

k=1 ckP
k
i· , The generalized distance

r̂2
ij =

n∑
α=1

f 2 (λα) (vα (i)− vα (j))2 (A.6)

= ‖D−
1
2 P̂i· −D−

1
2 P̂j·‖ (A.7)

where f (x) =
∑∞

k=1 ckx
k is a power series function dictated by {ck}.
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Example. If we consider the continuous parallel of the random walk defined by P , i.e in
the continuous random walk, the probability of a walk starting in node i and ending up in
node j after time t is [

e(P−I)t]
ij

Then the associated generalized distance with this transition matrix is

r̂2
ij =

n∑
α=1

e2t(λα−1) (vα (i)− vα (j))2 (A.8)

with ck = tk

k!
e−t.

Since computing r̂2
ij exactly require us to know all the eigenvectors, it is entirely possible

when P is small, but becomes quite expensive when P is large (O (n3)), so in most cases
we will use the form A.8 and approximate P̂i·. To approximate

∑∞
k=1 ckP

k
i· notice that since∑

j

[
P k
]
ij

= 1 and
[
P k
]
ij
≥ 0 ∀i, j, and

∑
k ck =

∑
k
tk

k!
e−t = 1, then for any ε > 0, there

exists an integer r such that ‖
∑∞

k=r+1 ckP
k
i·‖ < ε by Cauchy-Schwartz. We can approximate

P̂i· with
∑r

k=1 ckP
k
i· with some predefined r.

So far we only talked about node-to-node distance, in order for the distance to be used
in a heirarchical setting, we’ll need to extend this notion to cluster-cluster and cluster-node
setting. Let C be a cluster, the average probability of a walk starting at any of the members
in C to reach node j is

P̂Cj =
1

|C|
∑
i∈C

P̂ij

then the corresponding generalized distance between two clusters is

r̂C1C2 = ‖D−
1
2 P̂C1· −D−

1
2 P̂C2·‖

Therefore, to build the tree, we will start with every node being its own cluster, call this
clustering P1. And in the next step, like the regular hierarchical clustering, we will merge
two of the clusters (nodes) in P1 to obtain the next clustering P2. For each step k clusters
from the clustering Pk−1, and all nodes will be merged into a single cluster by step n − 1,
which will be the root of the tree.

At each step we will merge clusters by minimizing the following quantity

σk =
1

n

∑
C∈Pk

∑
i∈C

r̂2
iC

Which is the average squared distance of a node to the cluster it belongs to. Minimizing
this quantity directly at each step is computationally intensive, and requiring O

(
|Pk|2

)
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computation time for each k, instead we try to find, let C1, C2 ∈ Pk, and C3 = C1∪C2, then

∆σ (C1, C2) =
1

n

(∑
i∈C3

r̂iC3 −
∑
i∈C1

r̂iC1 −
∑
i∈C2

r̂iC2

)
Which relates to r̂2

C1C2
like

∆σ (C1, C2) =
1

n

|C1| |C2|
|C1|+ |C2|

r̂C1C2

So as long as we know r̂C1C2 , ∆σ (C1, C2) can be calculated in linear time.

To cut the tree, we use the quantity

ηk =
∆σk

∆σk−1

=
σk+1 − σk
σk − σk−1

Intuitively, the idea is that when two very distant communities are merged, we would see a
large ∆σ, so the the preferable cluserting Pk should contain distant clusters so that further
merging of Pk+1 would greatly increase σk, but previous clustering Pk−1 still contain similar
clusters such that Pk−1 to Pk does not increase σk significantly, that is, we cut the tree at
k = argmaxkηk.

A.4 Overview of Adjusted Rand Index

The Rand index is developed by William M. Rand for the purpose of quantifying the
agreement between two clustering results in his seminal paper “Objective criteria for the eval-
uation of clustering methods” [61]. The method assumes that the clusters do not overlap, i.e
each item belongs to only one cluster. In our case, let U = {U1, ..., UM} and V = {V1, ..., VN}
be two sets of clusters on cells 1, ..., n. Define the following quantities, as mentioned in the
main text,

a = pairs belong to the same cluster in U as well as V (A.9)

b = pairs belong to the same cluster in U but different clusters in V (A.10)

c = pairs belong to different clusters in U but the same cluster in V (A.11)

d = pairs belong to different clusters in U as well as V (A.12)

a is a set of nodes, but if there is no confusion we will also use a to denote its cardinality.
The Rand index of the clustering U, V is

RI (U, V ) =
a+ d

a+ b+ c+ d
=

a+ d(
n
2

)
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The Rand Index is bounded between [0, 1]. Suppose we break down the cluster memberships
in a different way as shown in Table A.1.

V1 V2 · · · VN total
U1 n11 n12 · · · n1N n1·
U2 n21 n22 · · · n2N n2·
...

...
. . .

...
...

UM nM1 nM2 · · · nMN nM ·
total n·1 n·2 · · · n···N n

Table A.1: Contingency table showing the break-down of membership assignment of node-
pairs. Here nij = number of nodes that are simultaneously assigned to clusters Ui and Vj.

Table A.1 allows us to easily calculate a few important quantities, e.g(
nij
2

)
= total number of possible node pairs that are assigned to Ui and Vj(

ni·
2

)
= total number of possible node pairs that are assigned to Ui(

n
2

)
= total number of possible node pairs

Using these quantities we can calculate the probability of a node pair belonging to a+ d:

a+ d =


(
n
2

)
︸ ︷︷ ︸
total #
pairs

−

[
M∑
i=1

(
ni·
2

)
+

N∑
i=1

(
n·j
2

)
−

M∑
i=1

N∑
j=1

(
nij
2

)]
︸ ︷︷ ︸

total # pairs clustered together in at least one of the partitions

︸ ︷︷ ︸
total # pairs that are clustered into different clusters in both partitions

+

M∑
i=1

N∑
j=1

(
nij
2

)
︸ ︷︷ ︸

total # pairs that were clustered
to the same cluster in both partitions

=

(
n
2

)
+ 2

M∑
i=1

N∑
j=1

(
nij
2

)
−

[
M∑
i=1

(
ni·
2

)
+

N∑
i=1

(
n·j
2

)]

One issue with the Rand Index is that, suppose T = {Tl, l = 1...L} is the ground truth
partition, then RI (U, T ) and RI (V, T ) are not comparable, that is, even if RI (U, T ) >
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RI (V, T ) it is no necessarily the case that U is a better partition than V with respect to
T because there is no consistent baseline measure. In other words, comparing RI (U, T )
and RI (V, T ) is akin to comparing realizations of X ∼ N (µx, σ

2) and Y ∼ N (µy, σ
2)

without actually knowing what µx and µy are. This fact severely limits the usefulness of
the Rand Index; therefore, Hubert and Arabie proposed to frame the problem in terms of a
hypergeometric model [33], in which we assume that the number of elements in ni·’s and n·j’s
are fixed, and Nij’s are random variables. Then, the probability of a node pair to belong to
Ui and Vj is

E


(
Nij

2

)
(
n
2

)
 =

(
ni·
2

)
(
n
2

)
(
n·j
2

)
(
n
2

) (A.13)

Thus

E

[(
Nij

2

)]
=

(
ni·
2

)(
n·j
2

)
(
n
2

)
Then, with some simple algebra

E [RI (U, V )] =

E

[(
n
2

)
+ 2

∑M
i=1

∑N
j=1

(
Nij

2

)
−
[∑M

i=1

(
ni·
2

)
+
∑N

i=1

(
n·j
2

)]]
(
n
2

) (A.14)

= 1 + 2
M∑
i=1

N∑
j=1

(
ni·
2

)(
n·j
2

)
(
n
2

)2 −

 M∑
i=1

(
ni·
2

)
(
n
2

) +
N∑
i=1

(
n·j
2

)
(
n
2

)
 (A.15)

Using the chance-corrected form of an index: index−E[index]
max[index]−E[index]

and noting Rand Index is
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boudned above by 1, then

ARI (U, V ) =
RI (U, V )− E [RI (U, V )]

1− E [RI (U, V )]
(A.16)

=

∑M
i=1

∑N
j=1

(
nij
2

)
−

∑M
i=1

 ni·
2

∑N
j=1

 n·j
2


 n

2



1
2

[∑M
i=1

(
ni·
2

)
+
∑N

i=1

(
n·j
2

)]
−

∑M
i=1

 ni·
2

∑N
j=1

 n·j
2


 n

2



(A.17)
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Appendix B

Supporting material for “A more
powerful and flexible method of
measuring Amyloid-β accumulation
using linear model”

B.1 Linear relationship between target vs reference

SUV persists across time

This section contains scatter plots of T1 vs R1, T2 vs R2, and T2 − T1 vs R2 − R1 across
all reported target vs reference ROIs for both ADNI and BLAZE data sets. From these
plots one can see that the linear relationship between target and reference SUVs persists
through time, target/reference combinations, as well as processing pipelines, indicating that
the linear relationship is likely biologically meaningful.

Due to their large dimensions, plots may not display properly within the document, so
the corresponding URLs are provided in their respective captions for reference.
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Figure B.1: T1 vs R1 across all target and reference ROIs for ADNI. The linear relation-
ship is particularly strong with Subcortical White Matter and Composite White Matter as
reference ROIs. For full size image see: https://www.dropbox.com/s/qgu2ofwa8y9t769/

adni_slopeVSinterceptALLpoints-t1.pdf?dl=0
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Figure B.2: T2 vs R2 across all target and reference ROIs for ADNI. As with Figure
B.1, the linear relationship is strongest with Subcortical White Matter and Composite
White Matter as reference ROIs. For full size image see: https://www.dropbox.com/s/

aiq3uefm0ud9kcx/adni_slopeVSinterceptALLpoints-t2.pdf?dl=0
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Figure B.3: T2 − T1 vs R2 − R1 across all target and reference ROIs for ADNI.
The linear relationship is very strong across combinations of target and reference
ROIs. For full size image see: https://www.dropbox.com/s/evsrar7coa2bajt/adni_

slopeVSinterceptALLpoints-t2-t1.pdf?dl=0
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Reference SUV
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V

a=0.045 | sd=0.103 | pval=0.67  
b = 0.749 | sd=0.06 | pval = 0
R−squared = 0.861
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Tar: Parietal_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.243 | sd=0.201 | pval=0.24  
b = 1.415 | sd=0.265 | pval = 0.118
R−squared = 0.532
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Tar: Parietal_Cortex_R vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.253 | sd=0.126 | pval=0.06  
b = 0.758 | sd=0.088 | pval = 0.006
R−squared = 0.748
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Tar: Parietal_Cortex_R vs. Ref: Pons

Reference SUV
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a=0.206 | sd=0.12 | pval=0.1  
b = 0.825 | sd=0.088 | pval = 0.046
R−squared = 0.78
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Tar: Parietal_Cortex_R vs. Ref: Subcortical_white_matter

Reference SUV

Ta
rg

et
 S

U
V

a=0.012 | sd=0.084 | pval=0.89  
b = 0.776 | sd=0.049 | pval = 0
R−squared = 0.909
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Tar: Parietal_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.239 | sd=0.201 | pval=0.25  
b = 1.437 | sd=0.265 | pval = 0.1
R−squared = 0.54
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Tar: Occipital_Cortex_L vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.31 | sd=0.12 | pval=0.02  
b = 0.694 | sd=0.084 | pval = 0
R−squared = 0.733
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Tar: Occipital_Cortex_L vs. Ref: Pons

Reference SUV
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a=0.251 | sd=0.109 | pval=0.03  
b = 0.768 | sd=0.079 | pval = 0.003
R−squared = 0.789
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Tar: Occipital_Cortex_L vs. Ref: Subcortical_white_matter

Reference SUV
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a=0.125 | sd=0.104 | pval=0.24  
b = 0.69 | sd=0.061 | pval = 0
R−squared = 0.838
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Tar: Occipital_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.177 | sd=0.158 | pval=0.28  
b = 1.48 | sd=0.209 | pval = 0.021
R−squared = 0.668
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Tar: Occipital_Cortex_R vs. Ref: Cerebellar_white_matter
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Ta
rg

et
 S

U
V

a=0.307 | sd=0.116 | pval=0.01  
b = 0.692 | sd=0.081 | pval = 0
R−squared = 0.744
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Tar: Occipital_Cortex_R vs. Ref: Pons

Reference SUV
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a=0.245 | sd=0.103 | pval=0.03  
b = 0.768 | sd=0.075 | pval = 0.002
R−squared = 0.807
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Tar: Occipital_Cortex_R vs. Ref: Subcortical_white_matter
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a=0.088 | sd=0.079 | pval=0.28  
b = 0.709 | sd=0.046 | pval = 0
R−squared = 0.905
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Tar: Occipital_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.254 | sd=0.175 | pval=0.16  
b = 1.37 | sd=0.231 | pval = 0.109
R−squared = 0.584
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Tar: Cingulum_Ant_L vs. Ref: Cerebellar_white_matter

Reference SUV

Ta
rg

et
 S

U
V

a=0.273 | sd=0.134 | pval=0.05  
b = 0.848 | sd=0.094 | pval = 0.105
R−squared = 0.766
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Tar: Cingulum_Ant_L vs. Ref: Pons

Reference SUV
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a=0.211 | sd=0.123 | pval=0.1  
b = 0.93 | sd=0.089 | pval = 0.434
R−squared = 0.812
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Tar: Cingulum_Ant_L vs. Ref: Subcortical_white_matter

Reference SUV
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a=−0.008 | sd=0.071 | pval=0.91  
b = 0.876 | sd=0.042 | pval = 0.003
R−squared = 0.947
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Tar: Cingulum_Ant_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.226 | sd=0.212 | pval=0.3  
b = 1.651 | sd=0.28 | pval = 0.02
R−squared = 0.582
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Tar: Cingulum_Ant_R vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.265 | sd=0.13 | pval=0.05  
b = 0.822 | sd=0.091 | pval = 0.05
R−squared = 0.766
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Tar: Cingulum_Ant_R vs. Ref: Pons

Reference SUV
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a=0.211 | sd=0.122 | pval=0.1  
b = 0.897 | sd=0.089 | pval = 0.246
R−squared = 0.804
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Tar: Cingulum_Ant_R vs. Ref: Subcortical_white_matter

Reference SUV
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a=0.005 | sd=0.079 | pval=0.95  
b = 0.842 | sd=0.046 | pval = 0.001
R−squared = 0.93
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Tar: Cingulum_Ant_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.209 | sd=0.203 | pval=0.31  
b = 1.615 | sd=0.268 | pval = 0.022
R−squared = 0.593
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Tar: Cingulum_Post_L vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.309 | sd=0.157 | pval=0.06  
b = 0.863 | sd=0.109 | pval = 0.21
R−squared = 0.714
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Tar: Cingulum_Post_L vs. Ref: Pons

Reference SUV
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a=0.234 | sd=0.144 | pval=0.12  
b = 0.955 | sd=0.104 | pval = 0.667
R−squared = 0.77

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Tar: Cingulum_Post_L vs. Ref: Subcortical_white_matter

Reference SUV
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a=−0.014 | sd=0.088 | pval=0.87  
b = 0.914 | sd=0.051 | pval = 0.094
R−squared = 0.927
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Tar: Cingulum_Post_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.327 | sd=0.248 | pval=0.2  
b = 1.591 | sd=0.327 | pval = 0.071
R−squared = 0.486
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Tar: Cingulum_Post_R vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.328 | sd=0.166 | pval=0.06  
b = 0.831 | sd=0.115 | pval = 0.143
R−squared = 0.675
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Tar: Cingulum_Post_R vs. Ref: Pons

Reference SUV
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a=0.25 | sd=0.153 | pval=0.11  
b = 0.924 | sd=0.111 | pval = 0.493
R−squared = 0.735
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Tar: Cingulum_Post_R vs. Ref: Subcortical_white_matter

Reference SUV

Ta
rg

et
 S

U
V

a=−0.011 | sd=0.097 | pval=0.91  
b = 0.896 | sd=0.057 | pval = 0.066
R−squared = 0.909
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Tar: Cingulum_Post_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.369 | sd=0.256 | pval=0.16  
b = 1.501 | sd=0.338 | pval = 0.138
R−squared = 0.442
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Tar: Rectus_L vs. Ref: Cerebellar_white_matter
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a=0.335 | sd=0.132 | pval=0.02  
b = 0.75 | sd=0.092 | pval = 0.006
R−squared = 0.728
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Tar: Rectus_L vs. Ref: Pons

Reference SUV
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a=0.279 | sd=0.123 | pval=0.03  
b = 0.823 | sd=0.089 | pval = 0.048
R−squared = 0.772
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Tar: Rectus_L vs. Ref: Subcortical_white_matter

Reference SUV
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a=0.083 | sd=0.087 | pval=0.35  
b = 0.777 | sd=0.051 | pval = 0
R−squared = 0.904
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Tar: Rectus_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.218 | sd=0.18 | pval=0.24  
b = 1.562 | sd=0.238 | pval = 0.018
R−squared = 0.634
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Tar: Rectus_R vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.283 | sd=0.116 | pval=0.02  
b = 0.773 | sd=0.081 | pval = 0.005
R−squared = 0.785
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Tar: Rectus_R vs. Ref: Pons
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Figure B.4: T1 vs R1 across all target and reference ROIs for BLAZE. Lin-
ear relationship carries across all combinations of target and reference ROIs.
For full size image see: https://www.dropbox.com/s/vff0m791m07smkk/blaze_

slopeVSinterceptALLpoints-t1.pdf?dl=0
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a=0.111 | sd=0.144 | pval=0.45  
b = 0.911 | sd=0.102 | pval = 0.383
R−squared = 0.761
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Tar: Orbitofrontal_Cortex_L vs. Ref: Subcortical_white_matter

Reference SUV
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a=−0.004 | sd=0.092 | pval=0.97  
b = 0.819 | sd=0.053 | pval = 0.001
R−squared = 0.904
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Tar: Orbitofrontal_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.059 | sd=0.237 | pval=0.8  
b = 1.727 | sd=0.308 | pval = 0.018
R−squared = 0.557

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0

1.
0

1.
5

2.
0

Tar: Orbitofrontal_Cortex_R vs. Ref: Cerebellar_white_matter
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a=0.191 | sd=0.14 | pval=0.18  
b = 0.811 | sd=0.094 | pval = 0.044
R−squared = 0.749
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Tar: Orbitofrontal_Cortex_R vs. Ref: Pons
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a=0.12 | sd=0.137 | pval=0.39  
b = 0.902 | sd=0.097 | pval = 0.311
R−squared = 0.777
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Tar: Orbitofrontal_Cortex_R vs. Ref: Subcortical_white_matter
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a=0.016 | sd=0.087 | pval=0.85  
b = 0.805 | sd=0.051 | pval = 0
R−squared = 0.909
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Tar: Orbitofrontal_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R
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a=0.078 | sd=0.232 | pval=0.74  
b = 1.699 | sd=0.301 | pval = 0.02
R−squared = 0.561
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Tar: Lateral_Temporal_Cortex_L vs. Ref: Cerebellar_white_matter
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Ta
rg

et
 S

U
V

a=0.104 | sd=0.15 | pval=0.49  
b = 0.865 | sd=0.1 | pval = 0.179
R−squared = 0.748
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Tar: Lateral_Temporal_Cortex_L vs. Ref: Pons
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Ta
rg

et
 S

U
V

a=0.015 | sd=0.141 | pval=0.92  
b = 0.973 | sd=0.1 | pval = 0.787
R−squared = 0.791
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Tar: Lateral_Temporal_Cortex_L vs. Ref: Subcortical_white_matter
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a=−0.085 | sd=0.092 | pval=0.37  
b = 0.861 | sd=0.054 | pval = 0.01
R−squared = 0.912
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Tar: Lateral_Temporal_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R
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a=−0.075 | sd=0.234 | pval=0.75  
b = 1.89 | sd=0.303 | pval = 0.003
R−squared = 0.609
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Tar: Lateral_Temporal_Cortex_R vs. Ref: Cerebellar_white_matter
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a=0.155 | sd=0.138 | pval=0.27  
b = 0.83 | sd=0.093 | pval = 0.067
R−squared = 0.762
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Tar: Lateral_Temporal_Cortex_R vs. Ref: Pons

Reference SUV

Ta
rg

et
 S

U
V

a=0.078 | sd=0.133 | pval=0.56  
b = 0.927 | sd=0.094 | pval = 0.437
R−squared = 0.796
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Tar: Lateral_Temporal_Cortex_R vs. Ref: Subcortical_white_matter
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a=−0.011 | sd=0.089 | pval=0.9  
b = 0.817 | sd=0.052 | pval = 0
R−squared = 0.908
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Tar: Lateral_Temporal_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R
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a=0.058 | sd=0.237 | pval=0.81  
b = 1.713 | sd=0.308 | pval = 0.021
R−squared = 0.553
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Tar: Mesial_Temporal_Cortex_L vs. Ref: Cerebellar_white_matter
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a=0.141 | sd=0.103 | pval=0.18  
b = 0.713 | sd=0.069 | pval = 0
R−squared = 0.809
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Tar: Mesial_Temporal_Cortex_L vs. Ref: Pons
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a=0.074 | sd=0.097 | pval=0.45  
b = 0.796 | sd=0.068 | pval = 0.003
R−squared = 0.845
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Tar: Mesial_Temporal_Cortex_L vs. Ref: Subcortical_white_matter
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a=0.001 | sd=0.05 | pval=0.98  
b = 0.699 | sd=0.029 | pval = 0
R−squared = 0.959
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Tar: Mesial_Temporal_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R
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a=−0.013 | sd=0.171 | pval=0.94  
b = 1.564 | sd=0.222 | pval = 0.011
R−squared = 0.665

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Tar: Mesial_Temporal_Cortex_R vs. Ref: Cerebellar_white_matter
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Ta
rg

et
 S

U
V

a=0.144 | sd=0.096 | pval=0.15  
b = 0.697 | sd=0.065 | pval = 0
R−squared = 0.823
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Tar: Mesial_Temporal_Cortex_R vs. Ref: Pons
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a=0.086 | sd=0.093 | pval=0.36  
b = 0.773 | sd=0.066 | pval = 0.001
R−squared = 0.848
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Tar: Mesial_Temporal_Cortex_R vs. Ref: Subcortical_white_matter
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a=0.025 | sd=0.056 | pval=0.65  
b = 0.673 | sd=0.032 | pval = 0
R−squared = 0.945
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Tar: Mesial_Temporal_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R
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a=0.022 | sd=0.171 | pval=0.9  
b = 1.493 | sd=0.222 | pval = 0.027
R−squared = 0.644
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Tar: Parietal_Cortex_L vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.149 | sd=0.129 | pval=0.26  
b = 0.803 | sd=0.087 | pval = 0.023
R−squared = 0.774
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Tar: Parietal_Cortex_L vs. Ref: Pons
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a=0.073 | sd=0.123 | pval=0.56  
b = 0.898 | sd=0.087 | pval = 0.24
R−squared = 0.811
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Tar: Parietal_Cortex_L vs. Ref: Subcortical_white_matter

Reference SUV
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a=0.002 | sd=0.088 | pval=0.98  
b = 0.782 | sd=0.051 | pval = 0
R−squared = 0.904
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Tar: Parietal_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R
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a=0.056 | sd=0.226 | pval=0.8  
b = 1.656 | sd=0.293 | pval = 0.025
R−squared = 0.562
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Tar: Parietal_Cortex_R vs. Ref: Cerebellar_white_matter
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a=0.156 | sd=0.127 | pval=0.23  
b = 0.81 | sd=0.085 | pval = 0.026
R−squared = 0.784
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Tar: Parietal_Cortex_R vs. Ref: Pons
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a=0.078 | sd=0.12 | pval=0.52  
b = 0.906 | sd=0.084 | pval = 0.265
R−squared = 0.822
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Tar: Parietal_Cortex_R vs. Ref: Subcortical_white_matter
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a=0.009 | sd=0.084 | pval=0.91  
b = 0.788 | sd=0.049 | pval = 0
R−squared = 0.912
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Tar: Parietal_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R
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a=0.074 | sd=0.227 | pval=0.75  
b = 1.655 | sd=0.295 | pval = 0.026
R−squared = 0.558
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Tar: Occipital_Cortex_L vs. Ref: Cerebellar_white_matter
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a=0.146 | sd=0.145 | pval=0.32  
b = 0.82 | sd=0.097 | pval = 0.064
R−squared = 0.74
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Tar: Occipital_Cortex_L vs. Ref: Pons
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a=0.069 | sd=0.14 | pval=0.63  
b = 0.916 | sd=0.099 | pval = 0.396
R−squared = 0.774
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Tar: Occipital_Cortex_L vs. Ref: Subcortical_white_matter
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a=0.037 | sd=0.128 | pval=0.77  
b = 0.774 | sd=0.075 | pval = 0.002
R−squared = 0.812
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Tar: Occipital_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=−0.068 | sd=0.213 | pval=0.75  
b = 1.849 | sd=0.276 | pval = 0.002
R−squared = 0.642
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Tar: Occipital_Cortex_R vs. Ref: Cerebellar_white_matter
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a=0.237 | sd=0.146 | pval=0.12  
b = 0.759 | sd=0.098 | pval = 0.014
R−squared = 0.707
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Tar: Occipital_Cortex_R vs. Ref: Pons

Reference SUV
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a=0.163 | sd=0.142 | pval=0.26  
b = 0.85 | sd=0.1 | pval = 0.134
R−squared = 0.742
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Tar: Occipital_Cortex_R vs. Ref: Subcortical_white_matter

Reference SUV
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a=0.077 | sd=0.107 | pval=0.48  
b = 0.752 | sd=0.062 | pval = 0
R−squared = 0.854
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Tar: Occipital_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.132 | sd=0.232 | pval=0.57  
b = 1.587 | sd=0.3 | pval = 0.051
R−squared = 0.528
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Tar: Cingulum_Ant_L vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.072 | sd=0.156 | pval=0.65  
b = 0.963 | sd=0.105 | pval = 0.724
R−squared = 0.772
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Tar: Cingulum_Ant_L vs. Ref: Pons

Reference SUV
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a=−0.041 | sd=0.139 | pval=0.77  
b = 1.093 | sd=0.098 | pval = 0.343
R−squared = 0.832
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Tar: Cingulum_Ant_L vs. Ref: Subcortical_white_matter

Reference SUV
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a=−0.147 | sd=0.076 | pval=0.06  
b = 0.963 | sd=0.044 | pval = 0.402
R−squared = 0.95
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Tar: Cingulum_Ant_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=−0.006 | sd=0.279 | pval=0.98  
b = 1.943 | sd=0.362 | pval = 0.009
R−squared = 0.536
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Tar: Cingulum_Ant_R vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.121 | sd=0.147 | pval=0.42  
b = 0.911 | sd=0.099 | pval = 0.367
R−squared = 0.773
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Tar: Cingulum_Ant_R vs. Ref: Pons

Reference SUV
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a=0.019 | sd=0.133 | pval=0.89  
b = 1.029 | sd=0.094 | pval = 0.758
R−squared = 0.827
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Tar: Cingulum_Ant_R vs. Ref: Subcortical_white_matter

Reference SUV

Ta
rg

et
 S

U
V

a=−0.072 | sd=0.082 | pval=0.39  
b = 0.902 | sd=0.048 | pval = 0.041
R−squared = 0.934
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Tar: Cingulum_Ant_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.003 | sd=0.253 | pval=0.99  
b = 1.894 | sd=0.329 | pval = 0.007
R−squared = 0.571
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Tar: Cingulum_Post_L vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.332 | sd=0.167 | pval=0.06  
b = 0.83 | sd=0.112 | pval = 0.129
R−squared = 0.688
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Tar: Cingulum_Post_L vs. Ref: Pons

Reference SUV
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a=0.238 | sd=0.159 | pval=0.15  
b = 0.939 | sd=0.112 | pval = 0.587
R−squared = 0.737
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Tar: Cingulum_Post_L vs. Ref: Subcortical_white_matter

Reference SUV
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a=0.098 | sd=0.097 | pval=0.32  
b = 0.857 | sd=0.056 | pval = 0.011
R−squared = 0.902
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Tar: Cingulum_Post_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.367 | sd=0.289 | pval=0.22  
b = 1.539 | sd=0.374 | pval = 0.15
R−squared = 0.403
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Tar: Cingulum_Post_R vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.308 | sd=0.17 | pval=0.08  
b = 0.83 | sd=0.114 | pval = 0.137
R−squared = 0.678
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Tar: Cingulum_Post_R vs. Ref: Pons

Reference SUV
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a=0.206 | sd=0.16 | pval=0.21  
b = 0.944 | sd=0.113 | pval = 0.621
R−squared = 0.736
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Tar: Cingulum_Post_R vs. Ref: Subcortical_white_matter

Reference SUV
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a=0.068 | sd=0.1 | pval=0.5  
b = 0.861 | sd=0.058 | pval = 0.017
R−squared = 0.898
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Tar: Cingulum_Post_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.32 | sd=0.288 | pval=0.28  
b = 1.569 | sd=0.374 | pval = 0.128
R−squared = 0.414
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Tar: Rectus_L vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.132 | sd=0.145 | pval=0.37  
b = 0.875 | sd=0.097 | pval = 0.198
R−squared = 0.764
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Tar: Rectus_L vs. Ref: Pons

Reference SUV
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a=0.053 | sd=0.14 | pval=0.71  
b = 0.976 | sd=0.099 | pval = 0.808
R−squared = 0.796
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Tar: Rectus_L vs. Ref: Subcortical_white_matter

Reference SUV

Ta
rg

et
 S

U
V

a=−0.04 | sd=0.095 | pval=0.68  
b = 0.86 | sd=0.055 | pval = 0.011
R−squared = 0.907
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Tar: Rectus_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV

Ta
rg

et
 S

U
V

a=0.048 | sd=0.253 | pval=0.85  
b = 1.783 | sd=0.328 | pval = 0.017
R−squared = 0.541
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Tar: Rectus_R vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.134 | sd=0.136 | pval=0.33  
b = 0.865 | sd=0.092 | pval = 0.141
R−squared = 0.781
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Tar: Rectus_R vs. Ref: Pons

Reference SUV
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a=0.062 | sd=0.133 | pval=0.65  
b = 0.96 | sd=0.094 | pval = 0.671
R−squared = 0.806
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Tar: Rectus_R vs. Ref: Subcortical_white_matter

Reference SUV
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a=−0.013 | sd=0.098 | pval=0.9  
b = 0.836 | sd=0.057 | pval = 0.004
R−squared = 0.897
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Tar: Rectus_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.044 | sd=0.243 | pval=0.86  
b = 1.772 | sd=0.315 | pval = 0.014
R−squared = 0.558
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Tar: Caudate_L vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.138 | sd=0.108 | pval=0.21  
b = 0.631 | sd=0.073 | pval = 0
R−squared = 0.751
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Tar: Caudate_L vs. Ref: Pons

Reference SUV
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a=0.068 | sd=0.1 | pval=0.5  
b = 0.713 | sd=0.071 | pval = 0
R−squared = 0.803

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5

0.
8

1.
0

1.
2

1.
4

1.
6

Tar: Caudate_L vs. Ref: Subcortical_white_matter

Reference SUV
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a=0.019 | sd=0.078 | pval=0.8  
b = 0.617 | sd=0.045 | pval = 0
R−squared = 0.882
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Tar: Caudate_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.099 | sd=0.191 | pval=0.61  
b = 1.258 | sd=0.247 | pval = 0.297
R−squared = 0.509
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Tar: Caudate_R vs. Ref: Cerebellar_white_matter

Reference SUV
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a=0.134 | sd=0.109 | pval=0.23  
b = 0.653 | sd=0.073 | pval = 0
R−squared = 0.76
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Tar: Caudate_R vs. Ref: Pons

Reference SUV

Ta
rg

et
 S

U
V

a=0.073 | sd=0.105 | pval=0.5  
b = 0.729 | sd=0.074 | pval = 0
R−squared = 0.794
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Tar: Caudate_R vs. Ref: Subcortical_white_matter

Reference SUV
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a=0.019 | sd=0.081 | pval=0.82  
b = 0.633 | sd=0.047 | pval = 0
R−squared = 0.879
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Tar: Caudate_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Reference SUV
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a=0.023 | sd=0.179 | pval=0.9  
b = 1.393 | sd=0.232 | pval = 0.09
R−squared = 0.59
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Tar: Putamen_L vs. Ref: Cerebellar_white_matter
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a=0.117 | sd=0.118 | pval=0.33  
b = 0.901 | sd=0.079 | pval = 0.211
R−squared = 0.839
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Tar: Putamen_L vs. Ref: Pons

Reference SUV
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a=0.029 | sd=0.105 | pval=0.79  
b = 1.01 | sd=0.074 | pval = 0.892
R−squared = 0.882
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Figure B.5: T2 vs R2 across all target and reference ROIs for BLAZE. Lin-
ear relationship carries across all combinations of target and reference ROIs.
For full size image see: https://www.dropbox.com/s/2q86bgqwcqtufuo/blaze_

slopeVSinterceptALLpoints-t2.pdf?dl=0
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Tar: Lateral_Temporal_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=0.014 | sd=0.021 | pval=0.5  
b = 1.816 | sd=0.106 | pval = 0(vs b=1)
R−squared = 0.922
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Tar: Lateral_Temporal_Cortex_R vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.012 | sd=0.012 | pval=0.3  
b = 0.95 | sd=0.03 | pval = 0.099(vs b=1)
R−squared = 0.975
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Tar: Lateral_Temporal_Cortex_R vs. Ref: Pons

Delta Reference SUV
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a=−0.004 | sd=0.01 | pval=0.67  
b = 1.004 | sd=0.027 | pval = 0.88(vs b=1)
R−squared = 0.983
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Tar: Lateral_Temporal_Cortex_R vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.036 | sd=0.01 | pval=0  
b = 0.819 | sd=0.022 | pval = 0(vs b=1)
R−squared = 0.982
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Tar: Lateral_Temporal_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=0.015 | sd=0.023 | pval=0.54  
b = 1.756 | sd=0.118 | pval = 0(vs b=1)
R−squared = 0.899
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Tar: Mesial_Temporal_Cortex_L vs. Ref: Cerebellar_white_matter

Delta Reference SUV

D
el

ta
 T

ar
ge

t S
U

V

a=−0.015 | sd=0.008 | pval=0.08  
b = 0.822 | sd=0.021 | pval = 0(vs b=1)
R−squared = 0.984
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Tar: Mesial_Temporal_Cortex_L vs. Ref: Pons

Delta Reference SUV
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a=−0.008 | sd=0.008 | pval=0.34  
b = 0.865 | sd=0.022 | pval = 0(vs b=1)
R−squared = 0.984
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Tar: Mesial_Temporal_Cortex_L vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.026 | sd=0.008 | pval=0  
b = 0.707 | sd=0.017 | pval = 0(vs b=1)
R−squared = 0.986
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Tar: Mesial_Temporal_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=0.008 | sd=0.018 | pval=0.65  
b = 1.532 | sd=0.089 | pval = 0(vs b=1)
R−squared = 0.923
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Tar: Mesial_Temporal_Cortex_R vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.016 | sd=0.01 | pval=0.12  
b = 0.77 | sd=0.025 | pval = 0(vs b=1)
R−squared = 0.974
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Tar: Mesial_Temporal_Cortex_R vs. Ref: Pons

Delta Reference SUV
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a=−0.009 | sd=0.009 | pval=0.3  
b = 0.813 | sd=0.024 | pval = 0(vs b=1)
R−squared = 0.979
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Tar: Mesial_Temporal_Cortex_R vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.023 | sd=0.009 | pval=0.02  
b = 0.662 | sd=0.021 | pval = 0(vs b=1)
R−squared = 0.976
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Tar: Mesial_Temporal_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=0.006 | sd=0.015 | pval=0.72  
b = 1.45 | sd=0.078 | pval = 0(vs b=1)
R−squared = 0.933
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Tar: Parietal_Cortex_L vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.033 | sd=0.016 | pval=0.05  
b = 0.897 | sd=0.042 | pval = 0.013(vs b=1)
R−squared = 0.949
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Tar: Parietal_Cortex_L vs. Ref: Pons

Delta Reference SUV
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a=−0.026 | sd=0.015 | pval=0.1  
b = 0.946 | sd=0.042 | pval = 0.195(vs b=1)
R−squared = 0.954
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Tar: Parietal_Cortex_L vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.012 | sd=0.011 | pval=0.28  
b = 0.782 | sd=0.024 | pval = 0(vs b=1)
R−squared = 0.977
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Tar: Parietal_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=−0.008 | sd=0.025 | pval=0.76  
b = 1.651 | sd=0.128 | pval = 0(vs b=1)
R−squared = 0.869
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Tar: Parietal_Cortex_R vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.03 | sd=0.016 | pval=0.07  
b = 0.922 | sd=0.041 | pval = 0.059(vs b=1)
R−squared = 0.952
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Tar: Parietal_Cortex_R vs. Ref: Pons

Delta Reference SUV
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a=−0.022 | sd=0.015 | pval=0.14  
b = 0.973 | sd=0.041 | pval = 0.506(vs b=1)
R−squared = 0.958
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Tar: Parietal_Cortex_R vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.016 | sd=0.011 | pval=0.16  
b = 0.802 | sd=0.025 | pval = 0(vs b=1)
R−squared = 0.976
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Tar: Parietal_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=−0.004 | sd=0.027 | pval=0.89  
b = 1.684 | sd=0.137 | pval = 0(vs b=1)
R−squared = 0.858
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Tar: Occipital_Cortex_L vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=0.004 | sd=0.015 | pval=0.81  
b = 0.951 | sd=0.039 | pval = 0.204(vs b=1)
R−squared = 0.96
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Tar: Occipital_Cortex_L vs. Ref: Pons

Delta Reference SUV
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a=0.012 | sd=0.014 | pval=0.41  
b = 1.004 | sd=0.038 | pval = 0.916(vs b=1)
R−squared = 0.966
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Tar: Occipital_Cortex_L vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.051 | sd=0.013 | pval=0  
b = 0.822 | sd=0.029 | pval = 0(vs b=1)
R−squared = 0.97
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Tar: Occipital_Cortex_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=0.03 | sd=0.022 | pval=0.18  
b = 1.787 | sd=0.109 | pval = 0(vs b=1)
R−squared = 0.915
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Tar: Occipital_Cortex_R vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=0.012 | sd=0.016 | pval=0.46  
b = 0.925 | sd=0.041 | pval = 0.07(vs b=1)
R−squared = 0.952
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Tar: Occipital_Cortex_R vs. Ref: Pons

Delta Reference SUV
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a=0.02 | sd=0.016 | pval=0.21  
b = 0.974 | sd=0.043 | pval = 0.543(vs b=1)
R−squared = 0.954
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Tar: Occipital_Cortex_R vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.059 | sd=0.014 | pval=0  
b = 0.8 | sd=0.031 | pval = 0(vs b=1)
R−squared = 0.964
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Tar: Occipital_Cortex_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=0.038 | sd=0.023 | pval=0.12  
b = 1.728 | sd=0.117 | pval = 0(vs b=1)
R−squared = 0.897
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Tar: Cingulum_Ant_L vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.046 | sd=0.015 | pval=0.01  
b = 1.052 | sd=0.039 | pval = 0.184(vs b=1)
R−squared = 0.967
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Tar: Cingulum_Ant_L vs. Ref: Pons

Delta Reference SUV
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a=−0.037 | sd=0.016 | pval=0.03  
b = 1.106 | sd=0.042 | pval = 0.013(vs b=1)
R−squared = 0.964
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Tar: Cingulum_Ant_L vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.007 | sd=0.01 | pval=0.5  
b = 0.912 | sd=0.023 | pval = 0(vs b=1)
R−squared = 0.984
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Tar: Cingulum_Ant_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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t S
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V

a=−0.016 | sd=0.03 | pval=0.61  
b = 1.914 | sd=0.152 | pval = 0(vs b=1)
R−squared = 0.864
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Tar: Cingulum_Ant_R vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.026 | sd=0.013 | pval=0.06  
b = 0.999 | sd=0.035 | pval = 0.977(vs b=1)
R−squared = 0.971
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Tar: Cingulum_Ant_R vs. Ref: Pons

Delta Reference SUV
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V

a=−0.018 | sd=0.013 | pval=0.17  
b = 1.053 | sd=0.034 | pval = 0.122(vs b=1)
R−squared = 0.974

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−0.5 0.0 0.5 1.0

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Tar: Cingulum_Ant_R vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.024 | sd=0.009 | pval=0.01  
b = 0.865 | sd=0.019 | pval = 0(vs b=1)
R−squared = 0.988
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Tar: Cingulum_Ant_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=0.002 | sd=0.027 | pval=0.93  
b = 1.832 | sd=0.134 | pval = 0(vs b=1)
R−squared = 0.882
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Tar: Cingulum_Post_L vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.034 | sd=0.014 | pval=0.02  
b = 1.029 | sd=0.037 | pval = 0.428(vs b=1)
R−squared = 0.969

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

−0
.5

0.
0

0.
5

Tar: Cingulum_Post_L vs. Ref: Pons

Delta Reference SUV
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a=−0.025 | sd=0.014 | pval=0.09  
b = 1.083 | sd=0.038 | pval = 0.03(vs b=1)
R−squared = 0.97
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Tar: Cingulum_Post_L vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.018 | sd=0.009 | pval=0.07  
b = 0.891 | sd=0.021 | pval = 0(vs b=1)
R−squared = 0.986
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Tar: Cingulum_Post_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=−0.005 | sd=0.027 | pval=0.86  
b = 1.897 | sd=0.134 | pval = 0(vs b=1)
R−squared = 0.889
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Tar: Cingulum_Post_R vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.03 | sd=0.013 | pval=0.02  
b = 0.993 | sd=0.032 | pval = 0.829(vs b=1)
R−squared = 0.974
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Tar: Cingulum_Post_R vs. Ref: Pons

Delta Reference SUV
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a=−0.022 | sd=0.012 | pval=0.09  
b = 1.046 | sd=0.034 | pval = 0.17(vs b=1)
R−squared = 0.975
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Tar: Cingulum_Post_R vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.02 | sd=0.011 | pval=0.08  
b = 0.856 | sd=0.025 | pval = 0(vs b=1)
R−squared = 0.98
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Tar: Cingulum_Post_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=−0.002 | sd=0.027 | pval=0.95  
b = 1.811 | sd=0.138 | pval = 0(vs b=1)
R−squared = 0.874
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Tar: Rectus_L vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.036 | sd=0.013 | pval=0.01  
b = 1.006 | sd=0.035 | pval = 0.863(vs b=1)
R−squared = 0.971
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Tar: Rectus_L vs. Ref: Pons

Delta Reference SUV
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V

a=−0.026 | sd=0.016 | pval=0.12  
b = 1.051 | sd=0.044 | pval = 0.251(vs b=1)
R−squared = 0.957
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Tar: Rectus_L vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.015 | sd=0.017 | pval=0.38  
b = 0.856 | sd=0.038 | pval = 0(vs b=1)
R−squared = 0.952

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.2 0.0 0.2 0.4

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Tar: Rectus_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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V

a=−0.007 | sd=0.028 | pval=0.82  
b = 1.831 | sd=0.142 | pval = 0(vs b=1)
R−squared = 0.869
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Tar: Rectus_R vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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V

a=−0.027 | sd=0.014 | pval=0.06  
b = 0.97 | sd=0.036 | pval = 0.405(vs b=1)
R−squared = 0.967
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Tar: Rectus_R vs. Ref: Pons

Delta Reference SUV
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V

a=−0.019 | sd=0.015 | pval=0.24  
b = 1.017 | sd=0.042 | pval = 0.685(vs b=1)
R−squared = 0.959
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Tar: Rectus_R vs. Ref: Subcortical_white_matter

Delta Reference SUV
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V

a=0.022 | sd=0.017 | pval=0.22  
b = 0.825 | sd=0.039 | pval = 0(vs b=1)
R−squared = 0.947
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Tar: Rectus_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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a=0.001 | sd=0.026 | pval=0.98  
b = 1.779 | sd=0.133 | pval = 0(vs b=1)
R−squared = 0.877

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Tar: Caudate_L vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.073 | sd=0.014 | pval=0  
b = 0.75 | sd=0.036 | pval = 0(vs b=1)
R−squared = 0.945
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Tar: Caudate_L vs. Ref: Pons

Delta Reference SUV
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a=−0.067 | sd=0.013 | pval=0  
b = 0.792 | sd=0.036 | pval = 0(vs b=1)
R−squared = 0.95
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Tar: Caudate_L vs. Ref: Subcortical_white_matter

Delta Reference SUV

D
el

ta
 T

ar
ge

t S
U

V

a=−0.035 | sd=0.012 | pval=0.01  
b = 0.649 | sd=0.027 | pval = 0(vs b=1)
R−squared = 0.959
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Tar: Caudate_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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V

a=−0.051 | sd=0.023 | pval=0.04  
b = 1.363 | sd=0.118 | pval = 0.002(vs b=1)
R−squared = 0.842
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Tar: Caudate_R vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.037 | sd=0.017 | pval=0.04  
b = 0.724 | sd=0.044 | pval = 0(vs b=1)
R−squared = 0.917
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Tar: Caudate_R vs. Ref: Pons

Delta Reference SUV
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V

a=−0.031 | sd=0.016 | pval=0.06  
b = 0.765 | sd=0.043 | pval = 0(vs b=1)
R−squared = 0.926
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Tar: Caudate_R vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=−0.001 | sd=0.015 | pval=0.96  
b = 0.627 | sd=0.034 | pval = 0(vs b=1)
R−squared = 0.933
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Tar: Caudate_R vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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V

a=−0.016 | sd=0.026 | pval=0.54  
b = 1.304 | sd=0.129 | pval = 0.018(vs b=1)
R−squared = 0.804
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Tar: Putamen_L vs. Ref: Cerebellar_white_matter

Delta Reference SUV
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a=−0.001 | sd=0.012 | pval=0.96  
b = 0.991 | sd=0.03 | pval = 0.767(vs b=1)
R−squared = 0.977
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Tar: Putamen_L vs. Ref: Pons

Delta Reference SUV
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V

a=0.008 | sd=0.011 | pval=0.49  
b = 1.043 | sd=0.031 | pval = 0.171(vs b=1)
R−squared = 0.978
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Tar: Putamen_L vs. Ref: Subcortical_white_matter

Delta Reference SUV
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a=0.049 | sd=0.012 | pval=0  
b = 0.851 | sd=0.026 | pval = 0(vs b=1)
R−squared = 0.977

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

−0.2 0.0 0.2 0.4

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Tar: Putamen_L vs. Ref: AVG_Cerebellar_Cortex_L&R

Delta Reference SUV
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V

a=0.027 | sd=0.024 | pval=0.26  
b = 1.834 | sd=0.12 | pval = 0(vs b=1)
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Figure B.6: T2 − T1 vs R2 − T1 across all target and reference ROIs for
BLAZE. Linear relationship carries across all combinations of target and reference
ROIs. For full size image see: https://www.dropbox.com/s/3fq98lzwn9tbr68/blaze_

slopeVSinterceptALLpoints-t2-t1.pdf?dl=0
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B.2 ADNI linear regression diagnostic plots

Figure B.7: Diagnostic plots for linear models regressing T1 on R1 for ADNI data set.
Scale-location and residual-fitted plots indicated no heteroskedasticity. QQ plot showed that
normality assumption holds reasonably well. Leverage plot identified no influential points.
See Figure 3.6 for corresponding diagnostic plot for BLAZE data set. Target: Frontal Cortex,
Reference: Subcortical White Matter.

B.3 Using feasible generalized least squares to verify

that β is constant across time

This is an aside from the main text showing that the slope parameter β can be assumed
to be constant across time. One can safely skip this section without losing context.

We use Feasible Generalized Least Sqaures (FGLS) [20]. The regression framework takes
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the following form 

T 1
1

T 2
1
...
T 30

1

T 1
2

T 2
2
...
T 30

2


=



1 0 R1
1 0

1 0 R2
1 0

...
...

...
...

1 0 R30
1 0

0 1 0 R1
2

0 1 0 R2
2

...
...

...
...

0 1 0 R30
2




α1

α2

β1

β2

+



ε11
ε21
...
ε30

1

ε12
ε22
...
ε30

2



Let A30×30 =

 σ2 · · · 0
...

. . .
...

0 · · · σ2

, B30×30 =

 ρ · · · 0
...

. . .
...

0 · · · ρ

, then the covariance of the error

term [ε11, ..., ε
30
1 , ε

1
2, ..., ε

30
2 ] is G60×60 =

[
A B
B A

]
. The pseudo-code for the FGLS procedure

is as follows:

1. Initialize σ2 = 1 and ρ = 0, i.e G = I60×60. Set converged = False

2. While (not converged)

a) Let Q be a matrix such that G = QQT

b) Let X̃ = Q−1X, Ỹ = Q−1Y , fit the regression model Ỹ ∼ X̃ and the obtain the
coefficient estimates. Obtain the residual vector [e1

1, ..., e
30
1 , e

1
2, ..., e

30
2 ].

c) Set σ2
new = 1

60
[(e1

1)2 + ... + (e30
1 )2 + (e1

2)2 + ... + (e30
2 )2], ρnew = 1

30

∑30
i=1 e

i
1e
i
2,

and set Anew =

 σ2
new · · · 0
...

. . .
...

0 · · · σ2
new

, Bnew =

 ρnew · · · 0
...

. . .
...

0 · · · ρnew

, Gnew =

[
Anew Bnew

Bnew Anew

]
d) If ‖G−Gnew‖F < some predefined threshold, where ‖ · ‖F is the Frobenius norm,

set converged = True. Otherwise let G = Gnew and repeat the while loop.

3. Return the regression estimates β̂ =


α̂1

α̂2

β̂1

β̂2

 and covariance matrix [XTG−1X]−1.

We apply FGLS procedure to BLAZE data with t1 = entry scanand t2 = week 47. To
test whether β̂1 = β̂2, i.e a contrast function of Λ = [0, 0, 1,−1]T , we use the common F-

test for contrasts [13], which states that (ΛT β̂)2

ΛTGΛ
∼ F (1, 56), which returns a effect size of
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0.064 and the corresponding p-value of 0.80, thus the conclusion of accepting the null that
β̂1 − β̂2 = 0. When the same procedure is carried out on ADNI data with 40 patients, we
obtain a F-statistic of 0.012 on 76 degrees of freedom, which translates to a p-value of 0.91,
thus for ADNI data, we also accept the null that β1 − β0 = 0.

B.4 Deviation details of Proposition 3.5.1

This section contains derivation details of We will use Formulae B.1 and B.2 repeatedly:
if E(X) = µX , E(Y ) = µY , V ar(X) = σ2

X , V ar(Y ) = σ2
Y , and cor(X, Y ) = ρ, then

E
(X
Y

)
≈ µX

µY
+

1

µ2
Y

[σ2
Y (
µX
µY

)− 2ρσY σX ] (B.1)

E
(
XY

)
≈ µXµY + 2ρσXσY (B.2)

Notice also that (R−µ
σR

)2 ∼ χ2
1, another fact that we will exploit repeatedly.

From here on out, patient ID superscript will be omitted, i.e T it = Tt, R
i
t = Rt

B.4.1 SUVr

For some single person, his/her SUVr, SUV rt, according to the the generation model,
Eq 3.3 are:

SUV r2 =
α2

R2

+ β +
Z

R2

+
ε2
R2

SUV r1 =
α1

R1

+ β +
Z

R1

+
ε1
R1

Thus the expected value of ∆SUV r is calculated as

∆SUV r = SUV r(t2)− SUV r(t1)

=
(α2

R2

− α1

R1

)
+ Z

( 1

R2

− 1

R1

)
+
( ε2
R2

− ε1
R1

)
E
[
∆SUV r

]
= E

[(α2

R2

− α1

R1

)
+ Z

( 1

R2

− 1

R1

)
+
( ε2
R2

− ε1
R1

)]
≈ α2 − α1

µR

(
1 +

(σR
µR

)2]
=
α2 − α1

µR
(1 + CV 2

R),

Because

E(Z) = 0 and
ε2
R2

=D
ε1
R1

CVR =
σR
µR

is the coefficient of variation of R
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The variance calculation is a bit more complicated

V ar(∆SUV r) = V ar
[α2 + Z + ε2

R2

− α1 + Z + ε1
R1

]
= V ar

(α2 + Z + ε2
R2

)
︸ ︷︷ ︸

(∗)

+V ar
(α1 + Z + ε1

R1

)
︸ ︷︷ ︸

(∗∗)

−2Cov
(α2 + Z + ε2

R2

,
α1 + Z + ε1

R1

)
︸ ︷︷ ︸

(#)

We will use the following side calculations for (∗) and (#) respectively. Calculation for
(∗∗) will be omitted since the calculation of the two are very similar.

Side calculation for (∗). A note on notation, E(expr)2 ≡ E(expr2) and E2(expr) ≡
[E(expr)]2.

(∗) = E
( 1

R2
2

)
E(α2 + Z + ε2)2 − E2[

1

R2

]E2(α2 + Z + ε2)︸ ︷︷ ︸
=α2

2

≈ (
1

µ2 + σ2
R

+
2σ2

R(σ2
R + 2µ2)

(µ2 + σ2
R)3

)(σ2
Z + σ2

ε + α2
2)− α2

2

µ2
[1 + (

σR
µ

)2]2

owing to the fact that (
R2

σR
)2 ∼ χ2

1((
µ

σR
)2)

so V ar(R2
2) = σ4

RV ar((
R2

σR
)2) = σ4

R2(1 + 2(
µ

σR
)2) = 2σ2

R(σ2
R + 2µ2)
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Side calculation for (#)

(#) = E
[(α2 + Z + ε2)(α1 + Z + ε1)

R1R2

]
−E
[α2 + Z + ε2

R2

]
E
[α1 + Z + ε1

R1

]
where

E
[(α2 + Z + ε2)(α1 + Z + ε1)

R1R2

]
= E

[α1α2 + Z2 + (α1 + α2)Z + (ε1 + ε2)Z + ε1ε2 + α1ε2 + α2ε1
R1R2

]
V ar(R1R2)

≈ α1α2 + σ2
Z

µ2 + 2ρσ2
R

+
α1α2 + σ2

Z

[µ2 + 2ρσ2
R]3

[2µ2σ2
R(1− ρ) + 4ρσ2

R(2µ2 − ρσ2
R)]

and

E
[α2 + Z + ε2

R2

]
≈ α2

µ
+

1

µ2
[σ2
R

α2

µ
] =

α2

µ

[
1 +

(σR
µ

)2]
so

(#) =
α1α2 + σ2

Z

µ2 + 2ρσ2
R

[
1 +

2µ2σ2
R(1− ρ) + 4ρσ2

R(2µ2 − ρσ2
R)

(µ2 + 2ρσ2
R)2

]
−α1α2

µ2

[
1 +

(σR
µ

)2]2
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Thus

V ar(∆SUV r) = σ2
∆SUV r = (∗) + (∗∗)− 2× (#)

≈ (
1

µ2
R + σ2

R

+
2σ2

R(σ2
R + 2µ2

R)

(µ2
R + σ2

R)3
)(σ2

Z + σ2
ε + α2

1)− α2
1

µ2
R

[1 + (
σR
µR

)2]2 +

(
1

µ2
R + σ2

R

+
2σ2

R(σ2
R + 2µ2

R)

(µ2
R + σ2

R)3
)(σ2

Z + σ2
ε + α2

2)− α2
2

µ2
R

[1 + (
σR
µR

)2]2 −

2× {α1α2 + σ2
Z

µ2
R + 2ρσ2

R

[1 +
2µ2

Rσ
2
R(1− ρ) + 4ρσ2

R(2µ2
R − ρσ2

R)

(µ2
R + 2ρσ2

R)2
]− α1α2

µ2
R

[1 + (
σR
µR

)2]2}

=
( 1

µ2
R + σ2

R

+
2σ2

R(σ2
R + 2µ2

R)

(µ2
R + σ2

R)3

)
(2σ2

Z + 2σ2
ε + α2

1 + α2
2)−

α2
1

µ2
R

[
1 +

(σR
µR

)2]2

− α2
2

µ2
R

[
1 +

(σR
µR

)2]2

−

2×
{
α1α2 + σ2

Z

µ2
R + 2ρσ2

R

[
1 +

2µ2
Rσ

2
R(1− ρ) + 4ρσ2

R(2µ2
R − ρσ2

R)

(µ2
R + 2ρσ2

R)2

]
− α1α2

µ2
R

[
1 +

(σR
µR

)2]2
}

=
( 1

µ2
R(1 + CV 2

R)
+

2CV 2
R(2 + CV 2

R)

µ2
R(1 + CV 2

R)3

)
(2σ2

Z + 2σ2
ε + α2

1 + α2
2)−

(α1 + α2)2

µ2
R

[
1 + CV 2

R

]2

−

2× 1 + 2CV 2
R + 10ρCV 2

R

(1 + 2ρCV 2
R)3

α1α2 + σ2
Z

µ2
R

,

where CV 2
R ≡

σ2
R

µ2
R

So if we have patients 1, ..., n, then we will have ∆SUV r1, ...,∆SUV rn i.i.d, and the
statistic of interest will be ¯∆SUV r = 1

n

∑
∆SUV ri, and the p-value behaves like

E[∆SUV r]√
V ar(∆SUV r)

n

B.4.2 ∆-Model

For the ∆-model, we have

∆T i = (α2 − α1) + β∆Ri + εi

For notation simplicity, let us denote the above formula as

Y = ∆α + βX + ε
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And from our assumptions we have X ∼ N(0, 2(1− ρ)σ2
R) and ε ∼ N(0, 2σ2

ε ).

Since least squared estimate is unbiased, we have

E[∆̂α] = ∆α

And

V ar(α̂) = V ar( E(α̂|X)︸ ︷︷ ︸
=α, since unbiased

) + E(V ar(α̂|X))

= E(V ar(α̂|X))

= E[
2σ2

ε

n

∑
X2
i∑

(Xi − X̄)2
]

=
2σ2

ε

n
E[

∑
X2
i∑

(Xi − X̄)2
]

Now ∑
(

Xi√
2(1− ρ)σR

)2 ∼ χ2
n

E[
∑

X2
i ] = 2(1− ρ)σ2

RE[
∑

(
Xi

2(1− ρ)σR
)2]

= 2n(1− ρ)σ2
R

And it is well known that

E[
∑

(Xi − X̄)2] = 2(1− ρ)(n− 1)σ2
R

Also

Cov(
∑

X2
i ,
∑

(Xi − X̄)2) = Cov(
∑

(Xi − X̄)2 + nX̄2,
∑

(Xi − X̄)2)

= V ar(
∑

(Xi − X̄)2)

since sample mean and sample variance are uncorrelated

= 4(1− ρ)2σ4
R(n− 1)

So

E[

∑
X2
i∑

(Xi − X̄)2
] ≈ 2(1− ρ)nσ2

R

2(1− ρ)(n− 1)σ2
R

+

1

4(1− ρ)2σ4
R(n− 1)2

[4(1− ρ)2σ4
R(n− 1)[

2(1− ρ)nσ2
R

2(1− ρ)(n− 1)σ2
R

]−

8(1− ρ)2σ4
R(n− 1)]

=
n

n− 1
+

n

(n− 1)2
− 2

(n− 1)

=
n− 2

n− 1
+

n

(n− 1)2
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Thus

V ar(∆̂α) ≈ 2σ2
ε

n
[
n− 2

n− 1
+

n

(n− 1)2
]

As one can see

• First of all, E[∆̂α] = ∆α, and does not depend on any parameters whereas E(∆SUV r) =

(α2 − α1)( 1
µ
− σ2

R

µ3
) also depends on the mean and variances of the reference SUV. If

there’s too much variantion in reference, the expected value might change signs.

• V ar(α̂) depends only on σε and n. Whereas V ar(∆SUV r) is a complicated function
involving σε, σR, σZ , and µ.




