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ABSTRACT OF THE DISSERTATION
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Professor Volodymyr M. Minin, Co-Chair

Hematopoiesis is the complex mechanism by which hematopoietic stem cells produce a variety

of functional blood cells through multiple stages of differentiation. Since the numbers of

various blood cell types need to be maintained in homeostasis, with occasional short-lived

departures from it, hematopoiesis must have multiple regulatory mechanisms. However,

these are still not fully understood. Although many mathematical models of hematopoiesis

regulation have been proposed, more work on developing methods for fitting and interpreting

experimental data that integrate statistical and mechanistic models is needed.

Here, using a new chemical reaction ordinary differential equation model of negative feedback

regulation in hematopoiesis, we develop a scalable, hierarchical Bayesian framework using

a latent variables approach that takes cross heterogeneity into account and infers division,

differentiation, and feedback regulation parameters of hematopoietic cells. We designed and

performed an experiment where mice were injected with the chemotherapy drug 5-FU that

reduces the number of stem and progenitor cells by blocking DNA synthesis and repair, to

perturb the hematopoietic equilibrium. In order to count the number of cells in the BM,

the mouse must be sacrificed. Therefore, each mouse can contribute their cell count data at

xi



a one time point only. To work with partially observed datasets, we use an ODE model to

interpolate the noisy means of the experimental cell count data (the missing data is inferred).

We evaluate the performance of the new model and inferential framework using synthetic

data and find that we are able to distinguish between models that account for biological

variation and models that include only technical variation/measurement error. We find that

the experimental data are best described by a hierarchical model in which the hematopoiesis

model parameters are allowed to vary among mice, suggesting the presence of significant

biological variability. Our experimental data and the model show that, after perturbation,

hematopoiesis returns to equilibrium via damped oscillations, with a notable overshoot of

depleted cell counts that happens shortly after the system is perturbed from equilibrium.

We then explore an alternative way of accounting for data heterogeneity by employing

stochastic differential equations instead of letting division and feedback regulation parame-

ters vary across mice. Computational tractability of the likelihood in a Bayesian inference

framework is achieved by using the linear noise approximation (LNA) derived from the chem-

ical Langevin equation. This enables us to approximate the joint posterior density for the

hematopoietic rate value parameters and missing data. We evaluate the performance of the

new Bayesian LNA model framework and compare it to the Bayesian ODE model frame-

works we developed previously. We find that the new framework can further improve the

out-of-sample prediction, as indicated by leave-one-out cross-validation. We identify limi-

tations of inference for our LNA model when multiple sources of biological and technical

variation of the dataset are significant and then develop a procedure for overcoming them.

Finally, we investigate experimental designs that optimize the amount of information gained

about the model parameter and missing data. We employ a new adversarial approach that

uses a game theory framework for experimental design without the need for calculation of

the posterior probability distributions. This enables us to overcome the cost of traditional

Bayesian optimal design methodology that requires repeated approximations of the pos-

xii



terior distributions, which are expensive to generate and are prohibitively costly for high

dimensional models.
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Chapter 1

Introduction

1.1 Hematopoietic System and Cell Lineage

Hematopoiesis is the complex mechanism by which hematopoietic stem cells (HSCs) produce

diverse functional myeloid and lymphoid cells through multiple stages of differentiation in-

volving multiple types of intermediate progenitor cells in the bone marrow [52]. Although the

hematopoietic system is highly regulated and this regulation ensures the appropriate num-

bers and proportions of HSCs and mature cells are produced, the details of the regulation

are still not well understood. In particular, which hematopoietic cells interact and how they

interact with each other is elusive. Understanding cell fate regulation during hematopoiesis

can provide insight into new regenerative therapeutic options for blood-related diseases and

can help biologists understand the role HSCs play in oncogenesis and aging [31]. In ad-

dition, in clinical trials, stem cell transplantation is a well-known treatment for malignant

diseases like leukemia since such transplantation can reconstruct the hematopoietic system

in a cancer-free manner [30, 64, 34, 58]. Thus, understanding how the hematologic system

responds to and recovers from perturbations is important.
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Figure 1.1: Cell lineage of hematopoietic cells described in [52]: from left to right, long-term
hematopoietic stem cells (LTHSCs) differentiate into short-term hematopoietic stem cells
(STHSCs) that have shorter reconstitution capacity; STHSCs differentiate into multipotent
progenitors (MPPs) that can briefly self-renew; MPPs then differentiate into committed
progenitor cells: common myeloid progenitor cells (CMPs) and common lymphoid progen-
itor cells (CMPs); CMPs differentiate into Granulocyte-Macrophage Progenitors (GMPs),
Megakaryocte-Erythroid Progenitors (MEPs); cells of CLPs downstream and mature cells
are also shown in the figure

The hematopoietic lineage is generated by pluripotent hematopoietic stem cells (HSCs) that

are located inside the bone marrow (BM) and have a strong reconstitution capability. HSCs

then differentiate into multipotent progenitor cells (MPPs) that may self-renew for a short

period of time. MPPs then differentiate into committed progenitor cells and ultimately end

with mature myeloid and lymphoid blood cells located in the peripheral blood (PB) [52].

The hematopoietic system produces 1010 ∼ 1011 mature blood cells on a daily basis [59]. The

hematopoietic system is tightly regulated with secreted biochemical function regulatory cell

fate choices and renewal probabilities. Only a few of these biochemical signaling functions

are known. However, defining cell fate and renewal regulations is an active area of research.
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1.2 Hematopoiesis as a Dynamic System

For about half a century, scientists have been devising mathematical and statistical mod-

els that describe the hematopoiesis process both under normal conditions and in diseased

states [14, 33, 57, 43, 23]. Traditionally, hematopoiesis has been modeled as a multi-type

branching process [46, 70, 78, 20]. A branching process approach represents hematopoiesis

as a stochastic compartmental model where cells self-replicate and differentiate [5, 67]. Re-

cently, barcoding (DNA segments are marked to identify cell fate and track cell lineage)

based on sequencing technology has become available, and researchers have been able to fit

branching process models to data [77, 38, 78]. Lineage tracking strategies allow researchers

to inform interpretable probabilistic models of hematopoiesis that provide insight into cell

fate decisions. However, in branching process models, cells are independent of each other,

and thus feedback regulation cannot be accommodated. Other models for hematopoiesis

use ordinary differential equations (ODEs) [30, 47, 9, 15, 27, 45]. These systems can de-

scribe the mean-field dynamics (assume that cellular system size is large enough to ignore

stochasticity) of the various hematopoietic cell types and typically involve Hill functions that

model sigmoidal responses to biological signal [68]. ODE models can explain the dynamic

behavior of cell compartments in the hematopoietic lineage. However, the Hill equation is

non-linear, and it is not obvious how to extend this approach to a stochastic model. There

are also hybrid models, which are combinations of stochastic agent-based and ODE models

[64, 34, 62, 17, 37]. Agent-based models are used to describe the population dynamics of

small numbers of cells (e.g., stem and progenitor cells), while ODEs are used to describe the

dynamics of more mature cell compartments where there are many cells. While some models

also account for uncertainty via Bayesian or approximate Bayesian methods for model cali-

bration [78, 28, 22, 50], they typically do not account for feedback regulation that plays an

important role in maintaining homeostasis and response to pathological stresses. Thus, al-

though many mathematical models have been developed, fitting differential equation models

3



to experimental data is still an active area of research, mainly stemming from the fact the

data is typically sparse and highly variable due to the inherent stochasticity in hematopoiesis

as well as measurement errors.

1.2.1 Motivating Example of Modeling Hematopoiesis

Previously, a nonlinear Hill equation ODE model has been proposed for the dynamics HSCs

and MPPs in hematopoiesis dynamics [42] with feedback regulation [16]. This model involves

two negative feedback regulations: (i) HSCs negatively regulate the division rate of MPPs

[61] and (ii) MPPs negatively feedback on HSC self-renewal probability [69]. This model,

schematically represented in Fig (1.2), is described by the following ODEs:


N ′

HSC =

(
2p∗0

1 + γ1 ·NMPP

− 1

)
· η1 ·NHSC ,

N ′
MPP = 2(1− p∗0

1 + γ1 ·NMPP

) · η1 ·NHSC +
η2

1 + γ2NHSC

·NMPP ,

(1.1)

where p∗0 is the maximum self-renewal probability of HSCs, γ1 is the feedback parameter

that modulates the effect of MPP cell count on the HSC self-renewal probability, η1 is HSC

total division rate, η2 is MPPs effective division rate, and the feedback regulation rate from

HSCs on η2 is γ2.

[42] developed a Bayesian inference ODE model to calibrate the ODE model and learn the

model parameters. The cell count datasets are collected by using the bone marrow extraction

methods, which are destructive, and consequently, each mouse can contribute their cell count

data at a one time point only since mice must be sacrificed during the data collection. The

cell counts of each mouse prior to the observation time are thus treated as missing data and

consequently need to develop a latent variable approach to interpolate them. Besides, both

the sparse control and perturbation experimental dataset in Figure 1.3 (a-b) show a large

4
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Figure 1.2: Diagram of a two-compartment Hill equation model for hematopoiesis dynamics:
MPPs negatively feedback on the HSC self-renewal probability p0; HSCs negative feedback
on the MPPs effective division rate η2;

data heterogeneity across different cell count magnitudes at observation days 0, 2, 6. These

highly induce that there should be more variability in rate value parameters among different

mice, and the hematopoiesis dynamic should be a stochastic process when recovering to the

hematopoietic equilibrium once the system is perturbed.
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(a) HSC Dataset for motivation example
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(b) MPP Dataset for motivation example

Figure 1.3: Experiemntal data using by motivating example 2-compartment Hill equation
ODE model. Dots refer to the control cell count data, and cross marks refer to the data
after perturbation. Y-axis refers to the number of cell counts, and the x-axis refers to the
day after the first observation. Both control and perturbation data show large variability.
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1.2.2 Motivation of Projects

The variability of the hematopoietic dataset motivates us to build a new hierarchical Bayesian

framework to quantify the biological uncertainty in rate value parameters, which could vary

from one individual to, another and the state of the system just prior to the treatment.

Alternatively, biological variability can be accounted for by replacing the deterministic ODE

model with stochastic models. However, it is nontrivial how to extend the Hill equation

(HE) ODE model to a stochastic model. In addition, most SDE models do not yield the

tractable likelihoods needed for Bayesian inference. Thus, in the third chapter, based on the

motivating differential equation model Eqn.(1.1), we develop a new chemical reaction model

for hematopoiesis that can be extended to an SDE (see section 2.2.2 for details). We then

derive a new hierarchical Bayesian framework that takes model parameter variability across

subjects into account. After checking that model selection methods can reliably identify

the right model compared to the model in which the parameters are shared across individ-

uals, we find that the experimental data are best described by the hierarchical chemical

reaction model. As an alternative approach to explain data heterogeneity, instead of letting

hematopoietic transition rate parameters vary across subjects, we replace the deterministic

ODE model with a stochastic model with a tractable likelihood. We probe the difference

between ODE-based and LNA-based inference by performing a series of simulation studies

using a synthetic hematopoietic dataset where initial condition cell counts are perturbed

from their homeostatic values.

Since our data collection method, which involves doing bone marrow extraction operation

for each mouse, is destructive and consequently expensive, we also want to select the optimal

Bayesian experimental design to optimize the information gain from the partially observed

data while controlling the experimental costs. Traditional methods for Bayesian experi-

mental design require the repeated calculations of posteriors probability distributions of the

parameters, which is computationally prohibitive for high-dimensional models. We employ
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an adversarial method that uses a game theory framework for experimental design without

calculating posteriors. This reduces the optimal design problem to a nested minimax opti-

mization problem which can be solved by a gradient descent-ascent algorithm. We test this

approach with different Bayesian settings and regulation conditions. By evaluating the opti-

mal designs generated by the optimization algorithm using Bayesian utility, we find that the

minimax optimization algorithm using the game theory framework reliably returns optimal

experimental designs.
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Chapter 2

Technical Background

2.1 Bayesian Inference andMarkov Chain Monte Carlo

2.1.1 Bayesian Inference

Bayesian inference gained popularity in the physical and biological sciences [76, 29, 44,

63] because of its ability to incorporate various sources of uncertainty and empirical prior

knowledge about model parameters. Let θ denote parameters of interest governing the

distribution of observed data Y . Then the uncertainty of parameters θ can be quantified by

Bayesian inference through posterior probability distribution:

π(θ|Y ) =
π(Y |θ)π(θ)

π(Y )
, (2.1)

where π(Y |θ) is the likelihood function calculated using sampling distributions of Y and

π(θ) is the given prior distribution of θ based on previous empirical knowledge gained before

seeing Y . Since the marginal distribution of data Y , π(Y ) =
∫
π(Y |θ)π(θ) dθ, does not
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depend on θ, we often work with the unnormalized posterior distribution,

π(θ|Y ) ∝ π(Y |θ)π(θ). (2.2)

In many realistic cases, such as working with a partially observed dataset, the intermediate

state unobserved data can also be treated as latent variables X and for each intermediate

state. Accordingly, diagramed in Figure 2.1. The sampling distributions can be written as

Pr(Xi|Xi−1,θ). Then likelihood function is

Pr(Y |X,θ)) =
N∏
j=1

Pr(Yj |X,θ)) =
N∏
j=1

Pr(Yj |Xj ,θ)

Mj∏
i=2

Pr(Xti
j |X

ti−1

j ,θ)Pr(Xt1
j |θ)π(θ)

(2.3)

where ti for i = 1, · · · ,Mj denote the unobserved intermediate times, j denotes the individual

(mouse), and X ti
j denotes the corresponding data. Further Yj denotes the partially observed

data for mouse j. The augmented posterior consists of parameter θ and latent variable X is

Pr(θ,X|Y )) ∝ Pr(Y ,X|θ)π(θ) (2.4)

Suppose we are interested in a function f(θ), the expected posterior distribution can be

represented as

Eθ|Y (f(θ)) =

∫
f(θ)π(θ|Y )dθ. (2.5)

This intractable integral can be approximated by Monte Carlo integration. Suppose pa-

rameters θj are sampled independently from the posterior or joint posterior distributions.

By the strong law of large numbers, Monte Carlo estimates of the mean and variance can,
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Figure 2.1: Diagram of hidden Markov model for partially observed dataset. Yn refers to the
discrete time partially observed data for mouse n where ∀I ∈ 1, · · · , N Xti

n is the sequence
of latent process unobserved intermediate state variables for observed data Yn for mouse n.
tMn is the observation time for data for mouse n.

respectively, be written as,

µn =
n∑
1

f(θj), where lim
n→∞

µn → Eθ|Y (f(θ)), (2.6)

δ2
n =

1

n

n∑
1

(f(θj)− µn)
2, where lim

n→∞
δ2
n → Varθ|Y (f(θ)), (2.7)

and the posterior distribution of the ordinary Monte Carlo estimate can be calculated by

the central limit theorem,

µn − Eθ|Y (f(θ))

δn/
√
n

→ Z ∼ N(0, 1) (2.8)

where Var(µn) = δn
2/n.

In general, for complex problems, one cannot derive the closed form solutions of the poste-

rior distributions or draw independent samples from the posterior distribution. Thus, it is

necessary to use Markov Chain Monte Carlo (MCMC) numerical approximation to draw a

series of dependent samples that will converge to the target distribution [49].
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2.1.2 Markov Chain Monte Carlo

In Bayesian inference, MCMC is a framework for numerical integration that approximates

the posterior sample distribution and is especially useful for models with large numbers of

parameters θ, whose posterior π(θ|Y ) or π(θ,X|Y ) cannot be sampled directly through

ordinary Monte Carlo methods. The core idea of MCMC is to construct an ergodic Markov

chain {θ1, ...,θn} with the stationary distribution equal to the posterior distribution. The

selected transition kernel is K(θ,θ′). To preserve the stationary distribution K(θ,θ′) gives

the transition probability/density from the current state θ to the next potential state θ′ is

required to satisfy the global balance condition:

Pr(θ) =

∫
K(θ,θ′)Pr(θ′)dθ′, (2.9)

where Pr(θ) is the stationary distribution of state θ. In general, it is difficult to directly

verify that the global balance condition is satrisfied. An alternative sufficient condition is

called detailed balance,

Pr(θ)K(θ′,θ) = Pr(θ′)K(θ,θ′) for ∀θ,θ′. (2.10)

Based on the ergodic theorem, the mean of the integrable function f(θ) will converge to its

target Monte Carlo estimate mean Eqn.(2.6). Due to the autocorrelation of MCMC samples,

the Monte Carlo variance can be written as,

δ2
n =

1

n

1

neff

n∑
1

(f(θj)− µn)
2, (2.11)

where neff = n/(1+2
∑∞

ℓ=1 p̂(ℓ)) is the effective sample size that measures the effectiveness of

a sample chain and p̂(ℓ) is the estimated autocorrelation at lag ℓ. To work with hierarchical

Bayesian models whose parameters vary over different magnitudes, we consider a MCMC
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chain sampler that can be free of parameter tuning. In the next sections, we will give a

brief overview of the main MCMC algorithm we use here that can adaptively choose the

hyperparameters and avoid undesirable random behavior and extra inefficient computation.

Hamiltonian Monte Carlo Sampler

A Hamiltonian Monte Carlo (HMC) sampler [7, 8] is a MCMC algorithm that uses the

samples of density function derivatives to generate efficient transitions K(θ,θ′) spanning

the posterior. This approach uses an auxiliary momentum vector variable ρ sampled from

the joint posterior distribution:

p(ρ, θ) = p(ρ)p(θ), (2.12)

where ρ is sampled from a multivariate normal distribution that does not depend on θ and

p(θ) is a density for parameter θ (which is typically Bayesian posterior for θ),

ρ ∼MvN(0, Σ̃), (2.13)

where Σ̃, usually estimated from MCMC warm-up steps, acts as a change of basis matrix

for the target distribution. Then the Hamiltonian can be defined as,

H(ρ, θ) = − log p(ρ, θ) = − log p(ρ)− log p(θ) (2.14)

let T (ρ|θ) = − log p(ρ, θ) denote the kinetic energy and V (θ) = log p(θ) denote the potential

energy. Then, the transition derivative from the current state θ can be written as,

dθ

dt
=
∂T

∂ρ
,

dρ

dt
= −∂V

∂θ
(2.15)

HMC solves this differential equation system by the leapfrog integrator algorithm, which

takes discrete steps in small time intervals ϵ. In this method, a new initial momentum vector

12



ρ is drawn at every iteration step. A step of the Leapfrog algorithm then updates momentum

and the parameters of interest following the rule,

ρ(t+
ϵ

2
) = ρ(t)− ϵ

2

∂V

∂θ
(θ(t)),

θ(t+ ϵ) = θ(t) + ϵ
∑

ρ(t+
ϵ

2
),

ρ(t+ ϵ) = ρ(t+
ϵ

2
)− ϵ

2

∂V

∂θ
(θ(t+ ϵ).

(2.16)

The integrator algorithm then applies L number of leapfrog steps and changes the momentum

and parameter to (ρ∗, θ∗) in time L ϵ. Finally, the Metropolis acceptance step is used to

account for numerical errors during the integrator algorithm by accepting or rejecting (ρ∗, θ∗)

with probability

min(1, exp(H(ρ, θ)−H(ρ∗, θ∗)))

In general, the computational efficiency of HMC is highly affected by the selection of the

discretization time size ϵ and the number of leapfrog steps L. If ϵ is too small, then too many

small steps are required to be calculated per interval. If ϵ is too large, then the leapfrog

numerical integrator will be inaccurate, and the updates will be frequently rejected. If L is

too small, then the leapfrog trajectory per iteration will be very short, leading to random

walk behavior. If L is too large, then the leapfrog algorithm needs to trace out too long

trajectories. Thus, HMC requires an adaptive algorithm to avoid inefficient computations.

An undesirable selection of either of these two ϵ or L will lead to a dramatic slow down in

MCMC computational performance.

No-U-Turn Sampler

The No-U-Turn sampler (NUTs) can adaptively choose an appropriate number of leapfrog

steps L in each MCMC iteration to enable the updates to span the posterior distributions

efficiently, and the method can also adapt the discretization time size ϵ through primal-
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dual averaging. The motivation for NUTs is to avoid the slow exploration of the state

space during which HMC performs random walk behavior and to maximize the expected

squared jump distance [25] without any ”hand engineering” of tuning parameters. Similarly

to HMC, NUTS also first generates an update based on the last iteration and samples a

new momentum vector ρ from the multivariate normal distributions. Instead of HMC’s

Metropolis correction to deal with the numerical integrator error, NUTs first samples an

entire trajectory that integrates both forward and backward in time to generate a balanced

binary tree for detail balance criteria from the set of numerical trajectories and then samples

updates based on appropriately chosen weight functions. In each iteration of the NUTs

algorithm, the tree depth is increased by one, which leads to a doubling of the number of

leapfrog steps L. Configuring the NUTs sampler places a cap on the maximum tree depth.

The NUTs algorithm ends either when the depth of the tree reaches a given maximum depth

(default is ten which leads to 210 leapfrogs) or there is a U-turn in Euclidean space on a

subtree or the completed tree. Therefore, this algorithm restricts the number of leapfrogs

per iteration as follows:

L ≤ 2maximum tree depth − 1.

The NUTs proposal acceptance probability can be written as

1

|Bfinal
t |

∑
θ,r∈Bfinal

t

min

{
1,

p(θ, r)

p(θt−1, rt,0)

}
,

where Bfinal
t is the set of states explored during the final doubling of the maximum tree depth,

θt−1, ρt,0 are the initial state and momentum for tth iteration of the Markov chain. NUTs then

adaptively choose a reasonable initial parameter value ϵ according to a heuristic algorithm

that repeatedly doubles or halves ϵ until the acceptance probability of a Langevin update

with current step size ϵ crosses 0.5, making sure that ϵ is small enough for the NUTs algorithm

to approximate the Monte Carlo integral accurately without too much computation.
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2.2 Bayesian Inference with Differential Equations

Mathematical differential equations modeling is frequently used to understand the time evo-

lution of biological systems at the population level and to explain the complex system dy-

namic behavior when cell compartment numbers are perturbed from their equilibrium. These

differential equations contain parameters that need to be specified. Popular approaches to

estimate these parameters included machine learning methods (e.g., neural ODEs, opti-

mization) and probabilistic learning methods (e.g., Bayesian inference). Machine learning

methods typically require a lot of training data that are always not available. In such situ-

ations, Bayesian inference is more attractive because it can quantify parameter uncertainty

without a large training dataset and can incorporate prior knowledge about those parame-

ters. Also, deterministic methods may provide a best fit parameter set, but small errors in

data could lead to large differences in the optimal parameter values. Bayesian parameter

inference consists of two parts: a forward part that numerically integrates the differential

model and simulates it with specific parameters and initial conditions, and a backward part

that the parameters of interests change based on the corresponding posterior density func-

tion value which is the combination of the likelihood density value and prior density value.

In this section, we review Bayesian inference with different types of differential equation

models and will use a simple one-dimensional model to gain some insights into strengths

and limitations. Generalizations to higher dimensions are similar, but the notation for the

one-dimensional model is much simpler.

2.2.1 ODE Parameter Inference

To introduce the concept of Bayesian inference with an ODE model, we consider a simple

logistic population growth model. Let the time-varying total population size be P (t) with

initial condition P (0) = P0. Then, the population growth rate, kP (t) can represent the ex-
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ponential population growth tendency without any limitations, where k is the rate constant.

Let the total capacity of the environment be K. A negative feedback term from the total

capacity of the population size growth rate can be written as 1 − P/K. The population

changes through time according to the corresponding logistic differential equation model:

dP

dt
= kP

(
1− P

K

)
, P (t0) = P0 (2.17)

Let S denote the stoichiometry matrix that provides information about reactants and prod-

ucts in model reactions, where each row corresponds to a reaction compartment, and each

column refers to a certain reaction channel. Let h(t) be the reaction propensity vector that

gives the probability of a reaction occurring in the time interval (t,t+∆t). The logistic model

can also be represented with the following biochemical reactions,

R1 : P
k−→ 2P ; R2 : P + P

k/K−−→ ∅, (2.18)

with S = [[1,−1]] the 1 × 2 stoichiometry matrix and h = [kP (t), (k/K)P (t)2]t the 2 × 1

reaction propensity vector. The logistic differential equation model can then be written in

the chemical reaction form,

dP

dt
= Sh(t) (2.19)

By using separation of variables, we can obtain the solution to the logistic differentiation

equation:

P (t) =
K

1 +Be−kt
, where B =

K − P0

P0

. (2.20)
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We can see that the equilibrium solution when dP
dt

= 0 of the ODE is

P = lim
t→∞

P (t)→ K stable equilibrium or P = 0. (2.21)

In the next subsection, we will see that this logistic differential equation model can be

regarded as a deterministic approximation of a discrete stochastic Markov process. Our

parameters of interest θ in this model are k, K, and P0.

2.2.2 SDE Parameter Inference

Biological processes such as hematopoiesis are stochastic in nature [79, 64, 34], and one of the

classic stochastic models for these biological processes is the Markov Jump Process (MJP).

Markov Jump Process

MJP assumes the population dynamics follow a continuous time Markov chain (CTMC)

model with d-dimensional discrete state space S. Let i, j be the state in S and the transition

probability that the chain in further state j given current i after time unit t ≥ 0 be pij(t).

Then the d × d dimensional transition matrix can be written as p(t) = {pij(t)} where

p(0) = I and each row sums up to 1. Let ∆t ≥ 0 be a time increment, then the transition

matrix satisfies the Chapman-Kolmogorov equation [48]:

p(t+∆t) = p(t)p(∆t), (2.22)

and for each pair of states {i, j}:

pij(t+∆t) =
∑
k∈S

pik(t)pik(∆t), (2.23)
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Let Λ be the transition rate matrix for the MPJ, then the transition rate from state i to j

(j ̸= i) can be written as

Λij = lim
∆t→0

pij(∆t)

∆t
. (2.24)

If CTMC is stable, then Λij <∞ for ∀i, j ∈ S. If CTMC is also conservative, then

Λii = −
∑

j∈S,j ̸=i

Λij, (2.25)

for i ∈ S. By using the Kolmogorov backward equation [48] we obtain

dp

dt
= Λp(t), where p(0) = I (2.26)

and since the chain we consider is ergodic (it is possible to go from every state to every

state), that equation has and converges to a unique solution. Then the unique solution can

be written as:

p(t) = exp(Λ(t)) =
∞∑
k=0

(Λ(t)k)

k!
. (2.27)

Let us consider the Markov jump process of the Logistic differential equation from section

2.2.1, then the transition and related rate can be written as:

ΛP→P ′ =



kP (t), if P ′ = P + 1

k/K · P (t)2, if P ′ = P − 1

−k/K · P (t)2 − kP (t), if P ′ = P

0, otherwise

(2.28)

The solution of the MJP can be simulated using the Gillespie algorithm [26]. However, if the

population size is very large, then calculating transition probability can be computationally

prohibitive [36]. Besides, if the rates are not constant in time, calculating the transition
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probability used in the Gillespie algorithm becomes even more challenging. Thus, we want

to use an alternative approach for simulations.

Derivation of SDE

Deterministic models such as ordinary differential equations (ODE), which can be viewed

as mean-field approximations of the Markov jump process, usually underestimate the un-

certainty of the parameters of interest and can consequently lead to inaccurate inferences.

A standard computational approach is to generate realizations from the Gillespie method,

but there is not a direct connection between the chemical master equation Eqn.(2.19) and

the Gillespie sample path of the process. Another method of accelerating stochastic process

simulations is to simulate from the diffusion approximation of the true process. The diffusion

approximation refers to the continuous state Markov process with continuous time evolution.

Let Y be the d-dimensional Ito diffusion process, then the stochastic differential equation

can be written as

dY (t) = µ(Y (t))dt+ Σ(Y (t))dWt, (2.29)

where µ : Rd → Rd refers to the drift vector function and Σ : Rd → Rd × Rd refers to the

diffusion matrix function. This diffusion process SDE can be regarded as a d-dimensional

Wiener process (Brownian motion) with drift. The SDE can be regarded as the limit of the

diffusion process when the time finite interval ∆t tends to zero. Then, the increment in a

time interval ∆t can be written as

∆Y (t) = µ(Y (t))∆t+ Σ(Y (t))∆Wt, (2.30)

where ∆Wt ∼ N(0,∆t) is the increment in a multivariate Brownian motion. The SDE solu-

tion can be approximated by numerically solving ∆Y (t) using the Euler-Maruyama algorithm

[2].
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The Random Time-Change Representation

From the previous section, we can see that reactions can be represented by the chemical

master equation and can be simulated by the Gillespie algorithm. However, there is no

direct relation between the chemical master equation Eqn.(2.19) and the simulation path Xt

of the Gillespie algorithm. Another equation to help mathematically analyze the Markov

jump process is called random time-change representation [40], which aims to fill this gap

and directly connect the sample path to the master equation. Let Ñi(t),i∈ [1, 2, .., d] be the

count functions for d independent unit Poisson processes

Ñi(t) ∼ Po(hi(Xt, θi)t) for all t (2.31)

and hi(Xt, θi) is the event hazard function (rate law) of reaction i, which measures the event

density, and θi is the rate parameters for reaction i, then the number of reaction events i

happens up to time t can be written as

Rit = Ñi

culmulative reaction propensity︷ ︸︸ ︷(∫ t

0

(hi(Xτ , θi))dτ

)
for ∀i ∈ [1, 2, .., d]. (2.32)

Let Ñ = (Ñ1, Ñ2, ..., Ñd) and Rt = (R1t, ..., Rdt) then

Rt = Ñ

(∫ t

0

(hi(Xτ , θ))dτ

)
. (2.33)

Let X0 be the initial condition of the sample path, S be the stoichiometry matrix, then the

master equation model satisfies the random time-change representation stochastic integral

equation

X t −X0 = SRt = SÑ

(∫ t

0

(hi(Xτ , θ))dτ

)
. (2.34)
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Chemical Langevin Equation

Let’s approximate the Poisson distribution above by the Gaussian distribution; then the

Poisson process can be approximated by

Ñi(t) ≈ t+Wi(t), (2.35)

where Wi(t) refers to the independent Wiener process for reaction type i. The time-change

representation then can be written as

X t −X0 ≈ S

[∫ t

0

(h(Xτ , θ))dτ +W

(∫ t

0

(h(Xτ , θ))dτ

)]
, (2.36)

and the stochastic differential equation can be written as

dX t = Sh(Xτ ,θ) + SDiag{
√

h(Xτ ,θ)}dW t, (2.37)

where dW t is the increment of a d-dimensional Wiener process corresponding to the d-

dimensional reaction propensity vector. Diag{
√

hi(Xτ ,θ)} refers to the diagonal matrix

with a leading diagonal defined by the vector {
√

hi(Xτ ,θ)}. Note that this equation reduces

to the ODE model described in the previous section by letting dW t = 0

Since typical chemical master equations usually have more reaction types, dim(W t(v)) than

reactant compartments, dim(X t(t)), by multivariate statistics, we can rewrite the CLE as

dX t = Shi(Xτ ,θ) +Diag{
√

Shi(Xτ ,θ)S
t}dW t, (2.38)

where now the dimension of (W t) is equal to the dimension of (X t).
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Let us consider a stochastic version of the Logistic differential equation from section 2.2.1:

dP = kP

(
1− P

K

)
dt+

√
kP

(
1 +

P

K

)
dWt. (2.39)

The limitation of SDE inference is that the likelihood is usually intractable. This makes

it challenging for the NUTS MCMC algorithm to converge since the gradient is changing

in every calculation. Some possible methods for dealing with this include using the NUTS

algorithm with a low target acceptance rate or using a stochastic gradient Hamilton Monte

Carlo (SGHMC) algorithm [12].

2.2.3 LNA Parameter Inference

Motivating the using of LNA

In general, the stochastic simulation trajectory distribution is not Gaussian and the transition

density K(θ,θ′) is unknown. The linear noise approximation (LNA) is derived from the

stochastic differential equation (SDE) by performing the first order of Ito-Taylor expansion

and taking the first order contribution. With the Gaussian transition density, LNA can

decompose stochastic processes into separate mean and variance evolution processes. LNA

can also be regarded as a compromise between ODEs and SDEs. In certain situations, LNA

inference is more statistically efficient than ODE inference since it takes more stochasticity

into account LNA is more computationally efficient than SDE inference where the likelihood

is not computationally tractable and the posterior is sensible through the sensitivity analysis.
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Derivation of LNA

LNA will be the methodological basis for the hierarchical Bayesian inference for stochastic

modeling of hematopoiesis presented in Chapter 4. Here we provide an informal derivation

of LNA from CLE Eqn.(2.38) based on [2, 75]. The general idea of LNA is to decompose the

sample path X(t) into a deterministic ODE process η(t) and a stochastic Gaussian process

M(t),

X(t) = η(t) +M(t). (2.40)

Let the Jacobian matrix of the deterministic part η(t), be

J(η(t), θ) =
∂Sh(η(t), θ)

∂η(t)
. (2.41)

Consider rescaling compartment counts and transition rates based on concentrations. Let v

be the system volume, and

X̃(t) = X(t)/v, θ̃i = θi/v
1−mi , (2.42)

where mi is the reactants number in reaction i. Let η̃ = η/v be the rescaled determin-

istic process solution. Then, it can be shown that the stoichiometry matrix and reaction

propensity vector forms can also used in the scaled version of the chemical master equation

dη̃(t) = Sh(η̃(t), θ̃). (2.43)

Then, if the rate laws h(Xτ , θ) for the reactions are also in mass action form e.g., (θ1 ·X1 ·X2),

then we will get

h(X̃, θ̃) = h(X, θ)/v, J(η̃(t), θ̃) = J(η(t), θ). (2.44)
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Then, the rescaled version of the CLE Eqn.(2.38) using Eqn.(2.43) and Eqn.(2.44) can be

rewritten as

dX̃ = Sh(X̃, θ̃)dt+
1√
v

√
S Diag(h(X̃, θ̃)) StdWt. (2.45)

Let M̃ = (X(t)− η(t))/
√
v be the rescaled residual, then it can be shown that the rescaled

version of Eqn.(2.40) is

X̃(t) = η̃(t) +
1√
v
M̃. (2.46)

Then performing a Taylor expansion on the CLE Eqn.(2.45) around η, we can obtain a

linearized SDE:

dX̃ = S h(η̃ +
1√
v
M̃, θ̃)dt+

1√
v

√
S Diag(h(η̃ +

1√
v
M̃, θ̃) StdWt

≈ S

(
h(η̃, θ̃) + J(η̃, θ̃)

1√
v
M̃ +O(1

v
)

)
dt+

1√
v

√
S Diag(h(η̃, θ̃) +O( 1√

v
)) StdWt

= S

(
h(η̃, θ̃) +

1√
v
J(η̃,

1√
v
θ̃)ψ

)
dt+

1√
v

√
S Diag(h(η̃, θ̃) StdWt +O(

1

v
)dt+O( 1√

v
))dWt,

(2.47)

Since M̃ =
√
v(X̃(t)− η̃(t)), and using Eqn.(2.47), the derivative of the rescaled residual can

be written as

dM̃ = J(η̃, θ̃)M̃dt+

√
S Diag(h(η̃, θ̃) StdWt +O(

1

v
)dt+O( 1√

v
))dWt. (2.48)
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Multiplying the Eqn.(2.48) by
√
v and change back to the normal scale using Eqn.(2.46), we

get:

1√
v
d(X(t)− η(t)) = 1√

v
(J(η, θ)(X(t)− η(t)) +O(1)) dt

+

(
1√
v

√
S ·Diag(h(η, θ)) · St +O(1)

)
dWt.

(2.49)

By the local Lipshitz property in time of the Jacobian J(η, θ) and the stochastic part S ·

Diag(h(η, θ)) · St, we can obtain

Xt = ηt +Mt +O(
1√
v
)dt. (2.50)

Next we derive the solution for Xt, ηt and Mt. Based Eqn.(2.50), for large system size v,

LNA can approximate the original sample path X(t) since

XLNA
t = ηt +Mt. (2.51)

Consider the SDE for the residual process M based on the rescaled residual process M̃

Eqn.(2.48):

dM = J(η, θ)Mdt+
√
S Diag(h(η, θ) StdWt. (2.52)

We can solve dM by further decomposing the equation into mean stochastic and variance

stochastic differential equations. To achieve this, first, we need the linear ordinary solution

equation system solution and Itô’s lemma [1].

Lemma 2.1. Solution of Linear Ordinary Differential Equation System

Let F (t) ∈ Rd×d and X t ∈ Rd and the linear ODE is defined as

dX t = F (t)X t, (2.53)
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on t ∈ (0,∞) with initial condition X(0) =X0, then the solution can be written as

X t = B(t, 0)X0, (2.54)

where B(t, 0) ∈ Rd×d refers to the solution of the ODE

dB(t, 0) = F (t)B(t, 0)dt, (2.55)

with initial condition B(0, 0) = I.

Lemma 2.2. Itô’s Lemma

Let the time evolution process be X(t) ∈ Rd, the deterministic and stochastic parts of the

SDE be f(t,X(t)) ∈ Rd and g(t,X(t)) ∈ Rd×r, respectively. Consider a scalar process Y(t)

= ϕ(t,X(t)) where the scalar function ϕ(t,X(t)) is twice continuously differentiable in X(t)

and continuously differentiable in t, then

dY (t) = (ϕt(t,X(t)) + ϕx(t,X(t))f(t,X(t)) +
1

2
tr(ϕxx(t,X(t))g(t,X(t))gt(t,X(t))))dt

+ (ϕx(t,X(t))g(t,X(t))) dWt,

(2.56)

where tr denotes the sum of diagonal terms.

Let B̂ be the change of basis matrix that one can get from Lemma 2.1 by solving

dMt = J(t)Mt, (2.57)

and let the scalar process be M̂ = B̂−1(t, t0)M(t). Then by applying Lemma 2.2 to

Eqn.(2.57), we find

dM̂ = B̂−1(t, t0)M(t)
√
S Diag(h(η, θ) StdWt, (2.58)
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and the solution of the residual M(t) based on Eqn.(2.58) can be written as

M(t) =

deterministic part m(t)︷ ︸︸ ︷
B̂(s, t0)M(t0) +

linear combination of increment Brownian motions part Σ(t)︷ ︸︸ ︷
B̂(t, t0)

∫ t

t0

B̂−1(t, t0)
√
S Diag(h(η, θ) StdWs . (2.59)

The latter term can be regarded as a Gaussian noise term with 0 mean since it is the integral

of linear combinations of Brownian motions. Then, the mean process m(t) in Eqn.(2.59) can

be written as

m(t) = B̂(t, t0)M(t0), (2.60)

and the corresponding ODE for solving Eqn.(2.57) one can get from Lemma 2.1, is

dm(t) = J(η, θ)m(t)dt. (2.61)

The variance process can be obtained by taking by the square the stochastic part of M(t)

in Eqn.(2.59)

Σ(t) = B(t, t0)

(∫ t

t0

B−1(s, t0)S Diag(h(η, θ) S
tB−1(s, t0)

tds

)
B(t, t0)

t. (2.62)

Using Eqn.(2.60) and lemma 2.1, it can be shown that

dB(t, t0) = J(η, θ)B(t, t0)dt, dB(t, t0)
t = B(t, t0)

tJ(η, θ)tdt. (2.63)
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Based on Eqns.(2.59) and Eqn.(2.60), the ODE for Σ(t) can be written as

dΣ(t) = dB(t, t0) ·
(∫ t

t0

B−1(s, t0)S Diag(h(η, θ) S
tB−1(s, t0)

tds

)
·B(t, t0)

t

+B(t, t0) · d
(∫ t

t0

B−1(s, t0)S Diag(h(η, θ) S
tB−1(s, t0)

tds

)
·B(t, t0)

t

+B(t, t0) ·
(∫ t

t0

B−1(s, t0)S Diag(h(η, θ) S
tB−1(s, t0)

tds

)
· dB(t, t0)

t

= J(η, θ)Σ(t) + S Diag(h(η, θ) St + Σ(t)J(η, θ)t dt.

. (2.64)

The stochastic linear noise approximation (LNA) of the original discrete Markov jump pro-

cess, and CLE X(t) = η(t) + M(t), and its discrete-time transition probabilities can be

obtained by solving three ordinary differential equations


dη(t) = Sh(η(t), θ)dt

dm(t) = J(η, θ)m(t)dt

dΣ(t) = J(η, θ)Σ(t) + S Diag(h(η, θ)) St + Σ(t)J(η, θ)t dt.

(2.65)

Instead of only inferring the initial conditions of the sample path as in the ODE and SDE

inference, the LNA forward simulation process also treats intermediate sampling states as

latent parameters to infer. A key parameter in the LNA inference is the time step ∆t between

intermediate observation states. If ∆t is chosen too small, then too many intermediate states

need to be inferred which leads to inefficient Bayesian computation. If ∆t is chosen too large,

then there will be too many cumulative numerical errors for the LNA approximation of the

CLE, which leads to inaccurate results. We select the LNA time step ∆t by first running the

MAP optimization on the Bayesian model and then using those MAP estimated parameters

to generate forward LNA solutions with different ∆t and compare them with Gillespie and

SDE solutions. Here, we select ∆t to be 1 day for all the LNA simulations in this thesis.

Putting everything together, the LNA model for the Logistic differential equation can be
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written as 
dη(t) = kP (1− P

K
)dt

dm(t) = k(1− 2
P

K
)m(t)dt

dΣ(t) = k(1− 2
P

K
)Σ(t) + kP (1 +

P

K
) + Σ(t)k(1− 2

P

K
)t dt.

(2.66)

Non-Restarting and Restarting Version LNA

Let the observation time point sequence be {ti} with increment ∆t. There are two types

of LNA initial conditions: the non-restarting version [39], which follows the update rule

Algorithm 1 where N is the total number of observation times. Here, Dobs is the list of the

days when the data is observed, and δt is the technical measurement error term, estimated

errors arising from measuring of the data. Further, ηt0 , mt0 Σt0 are the initial conditions of

the deterministic mean process, the Gaussian mean, and the Gaussian variance processes,

respectively. And, X0 is the latent initial condition cell counts, and y is the observed data.

Algorithm 1 Non-restarting version LNA algorithm

Require: ηt0 ← X(0), mt0 ← 0, Σt0 ← 0d×d, X0, N, Dobs, y, ∆t, δt
for i in 1:N do

ηti ← dη(ηti−1
, θ,∆t)

mti ← dm(Xti−1
− ηti−1

, θ,∆t)
Σti ← dΣ(0d×d, θ,∆t)
Xi|Xi−1, θ ∼ N(ηti +mti(Xti−1

, ηti−1
),Σti) ▷ Since dm is a homogeneous linear ODE

if i in Dobs then
yi ∼ N(Xi, δt)

end if
end for

The restarting version of LNA [21] aims to address the numerical errors incurred approxi-

mating the transition density of the CLE by a series of ODEs over long time periods which

consequently leads to poor approximations to states Xt for large t. In [21], it was shown

that by replacing the initial conditions of the deterministic part ηti−1
by the posterior mean

of Xt given data y and the restarting LNA for each time interval, the approximation errors

can be avoided for larger ∆t. In addition, it was found that the restarting version of LNA is
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more accurate for partially observed systems. The restarting version of the LNA algorithm

is given in the algorithm 2 below.

Algorithm 2 Restarting version LNA alogrithm

Require: ηt0 ← X(0), mt0 ← 0, Σt0 ← 0d×d, X0, N, Dobs, y, ∆t, δt
for i in 1:N do

ηti ← dη(Xti−1
, θ,∆t)

mti ← dm(0d, θ,∆t)
Σti ← dΣ(0d×d, θ,∆t)
Xi|Xi−1, θ ∼ N(ηti(Xti−1

),Σti) ▷ Since mti ≡ 0 and ηt is nonlinear ODE of Xti−1

if i in Dobs then
yi ∼ N(Xi, δt)

end if
end for

By evaluating two algorithms on partially observed datasets by using multiple combinations

of parameters, we also found that restarting the version of LNA achieves a better approx-

imation of the Markov jump process and the CLE solution. Thus, we decided to sue the

restarting version of the LNA for inference throughout this thesis.

2.2.4 Comparing LNA Inference with ODE and SDE Inference

In general, a Markov jump process that can be simulated by the Gillespie algorithm is

the ideal model. We usually consider a fast approach for connecting the chemical master

equation and time evolution sample paths by using the SDE to approximate the Markov jump

process when the system size is large enough. The SDE, derived by a diffusion approximation,

involves a Gaussian approximation to the independent Poisson process (see section 2.2.2).

When the system size v is large enough, the SDE solution can be approximated by its

deterministic part which refers to the ODE solution (see section 2.2.1). However, SDE

inference does not have a tractable likelihood which means that it won’t lead to a tractable

distribution of X t based on given the initial conditions X0. ODE inference only describes

the mean process of the Markov jump process. LNA, which is derived from Ito-Taylor
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Bayesian Inference with Dynamical Systems

Differential
Equation

❋ refers to limitations
✔ refers to advantages

ODE

❋ biological processes are stochastic in nature, therefore ignoring stochas-
ticity in the biological process can lead to inaccurate inference
✔ not computationally expensive, can be applied to high dimensional
models

LNA

❋ can be viewed as the first order expansion of Ito-Taylor expansion of
SDE which only consider the lowest order fluctuations about the deter-
ministic mean
✔ accurate for any chemical reaction network (CRN) if the master equa-
tion contains only first-order reactions (can accurately approximate a
linear SDE system)
✔ can approximate Markov jump processes with higher order reactions
if the population size is large enough
✔ the restarting version of LNA can avoid the error accumulation during
the calculation

SDE

❋ transition density K(θ,θ′) is generally unknown and thus won’t lead
to a tractable distribution of Xt given initial condition X0

❋ likelihood is intractable
✔ account for stochasticity in the time evolution process and can use
Approximate Bayesian Computation (ABC) to accelerate the estimation
of the posterior distributions

Table 2.1: Limitations and advantages of using different dynamic models in the context of
Bayesian inference. Ordinary differential equations (ODEs) only describe the mean field
process whereas stochastic differential equations (SDEs) can approximate the Markov jump
process when the system size is large enough. The Linear Noise Approximation (LNA) with
tractable likelihood can be derived from the SDE through the Ito-Taylor Expansion.

expansion of SDE (see section 2.2.3), can be regarded as a compromise between SDE and

ODE inference. LNA is a stochastic process and has tractable likelihood by a decomposing

SDE into a deterministic mean process, a Gaussian mean process, and a Gaussian variance

process. A comparison of the advantages and limitations of ODE, LNA, and SDE inference

can be seen in Table 2.1.
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2.3 Bayesian Model Evaluation and Selection

2.3.1 Bayes Factor

To select the most plausible model, we employ Bayesian model selection that relies on the

Bayes Factor approach [35]. Let D be the dataset, Mk be the kth candidate model and θ

be the parameters. Without loss of generality, the marginal likelihood of the data under the

model can be written,

p(D|Mk) =

∫
p(D|θ,Mk)p(θ)dθ (2.67)

, which naturally includes a penalty for models that include too many variables since the

marginal likelihood integrates through all the parameters. Then by Bayes rule, the posterior

probability of the kth model Mk over the observed data can be written as,

p(Mk|D) =
p(D|Mk)p(Mk)∑
k p(D|Mk)p(Mk)

, k=1,2,... (2.68)

In our case we only compare two models at a time, sayM0 andM1, then the relative marginal

likelihood of model M0 to model M1 can be written as:

p(M0|D)

p(M1|D)
=
p(D|M0)

p(D|M1)

p(M0)

p(M1)
. (2.69)

Then, the Bayes factor of model M1, in favor of model M0, is defined as

B10 =
p(D|M1)

p(D|M0)
=
p(M0)

p(M1)

p(M1|D)

p(M0|D)
. (2.70)

If the log scale Bayes factor log10(B10) is larger than 1/2, then there is substantial evidence

that data are generated by model M1. If log10(B10) is larger than 2, then there is decisive

evidence that data are generated by model M1. Details can be found in Table 2.2.
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Bayes Factor Interpretation [35]
log10(B10) B10 Evidence against M0

0 to 1/2 1 to 3.2 Not worth than a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

Table 2.2: Bayes factor interpretation table. B10: Bayes factor of modelM1 in favor of model
M0. The table shows the logB10

and B10 value ranges when evidence of M1 against M0 is
not worth than a bare mention, substantial, strong, and decisive respectively.

2.3.2 PSIS-LOO-CV

Pareto Smoothed Importance Sampling (PSIS) Leave-one-out (LOO) cross-validation (CV)

is a popular model evaluation metric in both machine learning and probabilistic learning.

The predictive density evaluated at data yi can be approximated by importance sampling,

which can adjust Monte Carlo integration to account for the fact that sampling draws could

come from the wrong distribution [2, 73]. Let θs be a sampling from the posterior p(θ|D),

then the leave-one-out predictive density given the data without ith data can be written as

p(yi|X i,D−i) =

∫
p(yi|X i,θ)p(X i,θ|D−i)dθ ≈

∑S
s=1 p(yi|X i,θ

s)ws
i∑s

x=1w
s
i

, (2.71)

where ws
i are the importance weights defined as

ws
i =

p(θs|X i,D−i)

p(θs|y−i)
∝ 1

p(Di|θs)
. (2.72)

Note that the leave-one-out cross-validation likelihood also naturally includes a penalty for

the number of parameters (by integrating over all parameters). However, in many Bayesian

estimation situations, the importance ratios may have heavy right tails, which leads to large

or infinite variances of the importance weights from the approximated distributions. PSIS is

a self-normalized importance sampling estimator by introducing a shape parameter k. This

shape parameter aims to smooth the weight distribution and stabilize importance sampling

33



estimates to ensure finite variances. This consequently results in a more robust and better

evaluation of fitted Bayesian models [73]. The expected log point-wise predictive density

(elpd) LOO can the calculated by

elpdLOO =
1

n

N∑
i=1

p(yi|X i,D−i, w
s
i (ki)) (2.73)

By using PSIS-LOO-CV, models are selected based on cv elpdLOO, which measures a score

related to the out-of-sample prediction accuracy, and naive elpdLOO, which measures a score

related to the in-sample prediction accuracy. When comparing two fitted models, we can

estimate the difference in their expected predictive accuracy by the difference in cv elpdLOO.

Thus, the higher the cv elpdLOO, the more plausible the data is generated by the model.

Besides, the models can also be ranked by a set of Akaike-like weights assigned to each

model, which can be used in pseudo-Bayesian model averaging based on cv elpdLOO,

looweight =
exp([cv elpd1

LOO]), · · · cv elpdK
LOO])∑K

k=1 exp(cv elpdk
LOO])

(2.74)

where K is the total number of models and cv elpdk
LOO refer to the cv elpdLOO of model k.

34



Chapter 3

Hierarchical Bayesian ODE Modeling

and Model Selections for

Hematopoiesis Dynamics

3.1 Introduction

To understand the hematopoiesis dynamics feedback regulation mechanism through mathe-

matical and statistical models, we also need to learn the parameters governing these models.

One approach to such parameter estimation requries observing how cell counts re-equilibrate

after the perturbation from their steady states. Thus, we analyze data from experiments in

mice where the hematopoietic system is temporarily perturbed by a single administration

of a chemotherapy agent (5-FU). The system re-equilibrates after about 30 days after the

5-FU treatment. A confounding factor is that there are batch effects across the experimental

cohorts due to the practiced necessity of using different filters during flow cytometry mea-

surements. Thus, we also want to account for these batch effects during inference. One main
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obstacle is that the data for the hematopoiesis process can only be partially observed. More

specifically, the hematopoietic cell compartment population counts can not be collected in

a longitudinal way because the mice used in the experiment are sacrificed to perform mea-

surements. Each mouse can contribute its cell count data only at one certain time point.

Following [42], we use a Bayesian latent variable approach where the unobserved data are

treated as latent variables to be inferred and an ODE model is used to interpolate the cell

counts until the observations times. Unlike [42], where feedback regulation was modeled

using nonlinear Hill functions, here we use a chemical reaction framework that incorpo-

rates feedback by assuming hematopoietic cell compartments produce chemical factors that

interact with the cell compartments. One advantage of this approach is that our new chem-

ical reaction model can be easily extended to a stochastic model with a tractable likelihood

for Bayesian inference using a linear noise approximation [39] – a topic explored in Chapter 4.

We investigate the underlying dynamics and estimate the parameters in the chemical reaction

model using a new hierarchical Bayesian inference framework that accounts for heterogene-

ity in parameter values across individuals and corrects for batch effects through an offset

parameter that is also inferred. This enables us to integrate all the experimental data to

perform the inference. We validate our approach using synthetic data. Applying this frame-

work to the experimental data and using Bayesian model selection criteria, we find that the

experimental data is best described by a hierarchical model, indicating that mouse-to-mouse

variations in parameters are a significant source of variability in the data. By accounting

for both biological and technical variability (e.g., due to the measurement/model errors), we

discover that the system responds to the perturbation via an overshoot followed by damped

oscillations, which are characteristic of negative feedback systems and consistent with the

equilibrium being a stable spiral.
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3.2 Methods

This section provides a comprehensive overview of the experimental data, data generation

process, and perturbation methods as well as the proposed new chemical reaction model and

the process of simplifying it. We examine the dynamics that arise from interactions between

various hematopoietic cells after the perturbation treatment and then use data from per-

turbation experiments to calibrate and refine our ODE model that accounts for cell-to-cell

interactions. We also describe the hierarchical Bayesian methods to infer our models’ pa-

rameters and perform model selection based on Bayes factors and a cross-validation criteria.

Two experiments were conducted on young female mice to perturb the number of hematopoi-

etic cells from their homeostatic values. In both experiments, mice were injected a single

time with 5-FU, which is a drug commonly used for cancer chemotherapy. 5-FU acts by

inhibiting thymidylate synthase, thereby blocking DNA synthesis and repair and triggering

the death of dividing cells. In the first experiment, data is collected 5, 7, 10, 15, 20, and 24

days after 5-FU is administered, and at each time point, the bone marrow (BM) of 4 mice

is analyzed. The data is shown in Figure 3.1 (a-d). There are also 4 control mice, whose

cell counts are measured before treatment and placed at day 30 since the system returns to

homeostasis by about three weeks after 5-FU treatment. Figure 3.1 (a,c) shows the numbers

of HSC and multipotent progenitors (MPP) in the bone marrow measured by flow cytometry

(see Appendix A.0.1). Although there is a significant amount of variation, the data suggest

that the homeostatic values (day 30) for the HSC counts Figure 3.1 (a) are smaller than

those recorded at an early time (e.g., day 5), which implies an overshoot consistent with

the release of negative feedback regulation [10], likely due to cell death in response to 5-FU

treatment. Similar results may also be observed for MPPs in Figure 3.1 (c), but the large

variation makes it difficult to draw definitive conclusions. These results motivated a second

experiment to be performed that focused on the dynamics at early times 1, 3, 5, and 10 days

after 5-FU is administered (see Figure 3.1 (b,d)), referred to as the experimental dataset 2.
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As in the first experiment, there were 4 control mice that were placed on day 30. However,

in the second experiment, due to the supply problems, a different filter type was used in

the flow cytometry measurements (see Appendix A.0.1) for details, which made the abso-

lute cell counts not directly comparable across the two experiments due to this batch effect

(note different scales in Figure 3.1 (a,c) versus (b,d)). The results suggest that the HSC

and MPP cell numbers first decrease after the 5-FU administration, then increase, possibly

overshooting homeostasis, and then settle down to the homeostatic values, although there is

still significant variation in the data. As described below, in order to integrate the datasets

from both experiments and account for the batch effect, we introduce and infer the value

of an offset parameter in the mathematical model that accounts for the different cell count

scales in the two experiments.

0 5 10 15 20 25 30
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0

lo
g 

ce
ll 

co
un

ts

(a) ExpD1 HSCs Data

0 5 10 15 20 25 30
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0

 

(b) ExpD2 HSCs Data

0 5 10 15 20 25 30
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0

 

(c) ExpD1 MPPs Data

0 5 10 15 20 25 30
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0

 
(d) ExpD2 MPPs Data

0 5 10 15 20 25 30
days

5.5

6.5

7.5

8.5

9.5

10.5

lo
g 

ce
ll 

co
un

ts

(e) CRSD HSCs Data
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(h) HESD MPPs Data

Figure 3.1: Experimental dataset (top row) and synthetic dataset (bottom row): ExpD:
experimental dataset; CRSD: synthetic dataset generated by our chemical reaction model,
HESD: synthetic dataset generated by the Hill equation model; points: cell count data;
curves: latent ODE trajectories for synthetic data generation process; (a,b) log-scaled cell
counts of HSCs in the experimental datasets 1 and 2 (ExpD1 and ExpD2) (c,d) MPPs in the
ExpD1 and ExpD2 (e,f) HSCs and MPPs in the CRSD (g,h) HSCs and MPPs in the HESD
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3.2.1 Latent Variable Modeling Approach

In order to count the number of cells in the BM, the mouse must be sacrificed. Therefore, each

mouse can contribute their count data at a one-time point only. We use log-transformed cell

counts of HSCs and MPPs as the data. In our data generation model, prior to the observation

time, we assume that each mouse cell counts start at unobserved initial conditions at the

time of the perturbation experiment. We then use ODEs to model the expected values of the

distribution of the observed cell counts. The variance of this distribution accounts for the

experimental measurement noise. Since the experimental cell count data shown in Figure

3.1 (a-d) indicates that the hematopoietic cell trajectories exhibit a high range of mouse-

to-mouse variability, we also account for biological variation both in the initial condition

(which is not observed) and in the ODE model parameters to account for potential sources

of heterogeneity. Figure 3.1 (e-h) show the synthetic data generated by the chemical reaction

and Hill equation models using the Bayesian latent variables approach that generates the

synthetic data as illustrated in Figure 3.2 (a), where the points indicate the measurements

and the curves are the ODE trajectories. Let the day of the perturbation experiment be tp.

The log-transformed initial cell count means on the first observation day t0 is shown as a

log-scale initial condition means (red star) for all the mice. The unobserved cell count initial

conditions for mouse i, ui where i ∈ {1, 2, 3, 4}, are sampled from a multivariate normal

distribution with mean equal to the red star and a covariance matrix to account for the

biological varibility on day t0. Both the mean and covariance matrix are learned from the

data. For each mouse i, yi denotes the observed values of the cell counts for each mouse when

it was sacrificed. We assume each yi is sampled from the multivariate normal distribution

with the ODE solution at that time being the mean and covariance matrice that account

for the measurement error. We use two ODE models a nonlinear Hill equation (HE) model

(Figure 3.2 (b)) and a new chemical reaction (CR) model (Figure 3.2 (c)); the HE model

was previously used in [42].
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Figure 3.2: Data generation process and mechanistic ODEmodels (a) data generation process
which accounts for both biological and technical variations via a latent variable approach: tp
is the 5-FU treatment time; mice are being observed at discrete irregular times e.g. t0, t2, t4;
t0: first observation day; for i ∈ 1,2,3,4, ui refers to the latent initial cell count of mouse i at
t0 and yi refers to the observed cell count of mouse i at the time ti when it was sacrificed.
The curves denote ODE trajectories. (b) two-compartment Hill equation (HE) model for
hematopoiesis [42]; where cell count of MPPs negatively feedback on the self-renewal rate of
HSCs (c) two-compartment chemical reaction (CR) ODE model for hematopoiesis; chemical
factor P is assumed to be produced by MPPs and accelerates HSCs direct differentiation
rate.

3.2.2 Mathematical Models

Our data suggest that the most significant change in the hematopoietic system induced by

5-FU is in the stem and early progenitor compartments which is consistent with the experi-

mental studies [46]. A number of experimental studies report that the dynamics of mature

hematopoietic cells are independent of hematopoietic stem cells (HSCs) in hematopoiesis for

at least half a year after HSCs are pertubed [71, 65, 66, 53, 60]. Thus, we model the dynamics

of the HSCs (combining both long-term and short-term) and multipotent progenitor (MPPs)

cells, which are the next cells downstream in the lineage. Models that assume feedback on

HSCs behavior from other cell types will be considered in future work.
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Hill Equation Model

Previously, a nonlinear Hill equation (HE) ODE model has been proposed for the of HSCs

and MPPs hematopoiesis dynamics [42] with feedback regulations [16]. The model involves

a negative feedback regulation on HSCs self-renewal rate and a feedforward regulation on

MPPs decay rate. Here, as shown in Figure 3.2 (b), we simplify the model and only consider

negative feedback regulation fromMPPs on the HSC self-renewal. The HE model is described

by the following ODEs:


N ′

HSC =

(
2p∗0

1 + γ1 ·NMPP

− 1

)
· η1 ·NHSC ,

N ′
MPP = 2(1− p∗0

1 + γ1 ·NMPP

) · η1 ·NHSC − η2 ·NMPP ,

(3.1)

where p∗0 is the maximum self-renewal probability of HSCs, γ1 is the feedback gain from

MPP cell count on the HSC self-renewal probability, η1 is HSC division rate, η2 is the MPPs

decay rate.

Chemical Reaction Equation Model

We model the feedback regulation on the HSC self-renewal rate by introducing a chemical

factor P that is assumed to be produced by MPPs at a constant rate that interacts with

HSCs and induces the HSCs to differentiate to MPPs Figure 3.2 (c). We assume that the

MPPs secrete the factor P at a rate u1 and P decays at a rate w1. Following [9, 4], we assume

that the HSC division rates are constants. We also lump the rates for MPP self-renewal,

differentiation, and decay into a parameter u3, which is also assumed to be constant, we

assume the HSC direct differentiation rate to MPP is time-dependent, based on the factor
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P. This gives the CR ODE model:


N ′

HSC = v1 ·NHSC − v4 ·NP ·NHSC ,

N ′
MPP = v2 ·NHSC + v4 ·NP ·NHSC − u3 ·NMPP ,

N ′
P = u1 ·NMPP − w1 ·NP ,

(3.2)

where v1 is the HSC net proliferation rate which equals the self-renewal rate minus the

death rates of HSCs, v2 is the HSCs asymmetric division rate and v4 is the HSC direct

differentiation parameter. Since the chemical factor typically evolves much faster than the

cell self-renewal, differentiation and death process, we further assume that the factor P is

in a steady state. As a result, Np can be regarded as proportional to the number of MPPs.

Without loss of generality, let

Np =
u1
w1

NMPP . (3.3)

Using Eqn.(3.2.2) and Eqn.(3.2.2) and defining r1 = v4 · u1/w1, then the chemical reaction

ODE system can be written as


N ′

HSC = (v1 − r1 ·NMPP ) ·NHSC ,

N ′
MPP = (v2 + r1 ·NMPP ) ·NHSC − u3 ·NMPP ,

(3.4)

where r1 ·NMPP is the effective direct differentiation rate from HSCs into MPPs. To explore

the model behavior numerically, we match the HSC net gain rate, the MPP net gain, and

the MPP decay rate between our new chemical reaction ODE model and the previous Hill

equation ODE model. We get the following relationship:
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v1 + v2 = η1,

u3 = η2,

v1 − r1 ·NMPP = (
2p∗0

1 + γ1 ·NMPP

− 1) · η1,

v1 + r1 ·NMPP = 2(1− p∗0
1 + γ1 ·NMPP

) · η1.

(3.5)

To compare the two models fairly, we need to set the priors for the parameter combinations

shown above to be approximated by the same distribution. The plots of four synchronized

net priors plots can be seen in Appendix Figure A.1. The 95% confidence intervals for two

prior sets (non-hierarchical and hierarchical) can be seen at tables A.1 and table A.2. Let

p0 = p∗0/(1 + γ1 · NMPP ) − 1. Then, adding the last two equations in the system 3.2.2, we

obtain, 
2p0 − 1 = v1/η1 − r1/η1

2(1− p0) = v1/η1 + r1/η1

(3.6)

from which it follows that

p0 = 1/2 · (1 + v1/η1 + r1/η1).

Observe that the HSC self-renewal probability p0 > 0.5 as expected for stem cell dynamics.

3.2.3 Scalable Bayesian Hierarchical Framework

To study the regulatory mechanism occurring in an individual mouse, latent variable ap-

proaches can be employed to track multiple cell compartment counts over time as described

in the data generation process section 3.2.1. We model the experimental measurement error

explicitly by including a technical noise parameter. In order to take into account the wide

discrepancies between the raw counts of different cell compartments, we decide to transform

all the cell count numbers into a logarithmic scale. We assume that the log-transformed

HSCs and MPPs counts for all the mice at initial observation day t0 after the perturbation
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experiment follow multivariate normal distributions with means equal to µHSC and µMPP

respectively and the same standard deviation (std) δb. This model variance among the initial

cell counts is due to biological differences between the mice. Let µ be the bivariate vector for

the µHSC and µMPP and ui be the log-scale cell count initial conditions for mouse number

i. Suppose that the total number of mice is N . Then, we can write the initial conditions for

each mouse as

ui ∼MvN(µ, δ2bI), (3.7)

for all i ∈ {1, 2, · · · , N}

Without loss of generality, we assume that the firstm mice are sacrificed and observed during

the first observation day of the experiment right after the 5-FU administration. Let yi(t) be

the log-scale observed cell counts data for mouse i at time t and assume the observed data

is obtained with technical measurement errors δt. Then for the mice that are sacrificed to

the day after 5-FU is applied as

yi(t0) ∼MvN(ui, δ
2
t I), (3.8)

for ∀ i ∈ {1, 2, · · · ,m}.

For those mice whose cell counts are measured after t0, assume that mouse j is sacrificed

at day tj. We assume that the latent trajectories for the cell populations follow an ODE

model, denoted as λ(u,θ, t). This allows us to simulate all the cell counts before the mouse

is harvested for measurement. Then, the log-scale cell accounts for mouse j at time tj can

be represented as λ(uj ,θ, tj) and the conditional distribution for these mice can be written

as

yj(tj) ∼MvN(λ(uj ,θ, tj), δ
2
t I), (3.9)

for all j ∈ {m+ 1,m+ 2, · · · , N}, where θ = {v1, v2, u3, r1} is the vector of rate parameter

values and tj is the total timespan of the ODE system. Following our data-generating pro-

cedure, we also assume that observations are independent of each other, then the likelihood
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function is taken to be the product of the multivariate normal densities:

p(y|ΘNH) =
m∏
i=1

p(yi|ui, δ
2
t I) ·

N∏
j=m+1

p(yi|λ(uj ,θ, tj), δ
2
t I), (3.10)

where ΘNH = (θ,u1:N , δb, δt) refers to the rate parameters for the ODE model, the gen-

erated log-scale initial cell counts as well as the biological and technical standard deviation

terms, respectively. Then by the Bayes rule, the posterior distribution of ΘNH conditional

on the log-transformed cell count data can be represented as:

p(ΘNH |y) ∝ p(y|ΘNH)p(ΘNH), (3.11)

where p(ΘNH) = p(θ) ·
∏N

i=1 p(ui|µ) · p(µ) · p(δb) · p(δt). We assume that each parameter

θ∗ ∈ ΘNH , θ∗ has a Lognormal distribution and consequently θ∗ ∈ (0,∞).

3.2.4 Bayesian Cross-Dataset Hierarchical Framework

Traditionally, investigations in hematopoiesis focus on species-level ensemble averages of cell

counts and rate parameter values [47, 9]. This approach can smooth out and underestimate

the noise from outliers. However, cell populations are generally heterogeneous, and all cells

do not respond identically to perturbations. These motivate us to study the case in which

the parameters vary among the mice. Thus, we enhance the framework to rationalize mice

population variability within the same dataset and extend the framework to integrate data

from various experimental datasets. This requires statistical inference for unknown model

parameters based on multi-individual data, which accounts for heterogeneity caused by both

intrinsic variance (e.g., variations in initial cell counts and rate values) and extrinsic variance

(e.g. variation during the wet lab experiments that results in batch effects). Unlike the

previous framework, here we capture population-level heterogeneity by letting the rate values
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for each mouse differ from the others but are drawn from the same prior distributions:

θik ∼ N(µθk , σθk), (3.12)

where θk represents one of the rate values in θ = {v1, v2.u3, w1}; µθk and σθk are the prior

mean and prior standard deviation of the rate values, respectively, which are assumed to be

normally distributed:

µθk ∼ N(µµθk
, σµθk

), (3.13)

σθk ∼ N(µσθk
, σσθk

). (3.14)

Here µµθk
and σµθk

are the prior mean and prior standard deviation of µθk and µσθk
. µσθk

and

σσθk
are the prior mean and prior standard deviation of σθk . We also let the biological variance

and technical variance be compartment-specific: δbHSC
, δbMPP

and δtHSC
, δtMPP

. Then the log-

scale initial cell counts are distributed as:

ui ∼MvN

µ,

δ2bHSC
0

0 δ2bMPP


 , (3.15)

for i ∈ 1, · · · ,N Any offset in cell numbers, due to differences in measurement techniques

among different datasets, could be regarded as another technical error. Let the log-scale

dataset offset index be τ between the two experiments due to using different filters: τi = τ :

1i is in experiment 2 · τ + yi(t0) ∼MvN

ui,

δ2tHSC
0

0 δ2tMPP


 , (3.16)

for all i in {1, 2, · · · ,m} for mice observed on t0, while

1i is in experiment 2 · τ + yj(tj) ∼MvN

λ(uj ,θ
j , tj),

δ2tHSC
0,

0 δ2tMPP


 , (3.17)
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for all j in {m+ 1,m+ 2, · · · , N} which were sacrificed after t0. Further, we assume

τ ∗ ∼ N(µτ∗ , δτ∗), (3.18)

and τ = [τ ∗, τ ∗] (e.g., we assume the same offset for HSCs and MPPs) where µτ∗ and δτ∗

refer to the prior mean and prior standard deviation of the dataset offset parameter value.

Assuming that observations are independent of each other, then the likelihood function can

now be written as

p(y|ΘH) =
m∏
i=1

p(−τi + yi|ui, δ
2
t I) ·

N∏
j=m+1

p(−τj + yj|λ(uj ,θ
j , tj), δ

2
t I), (3.19)

where ΘH = (θ1:N ,u1:N , δbHSC
, δbMPP

, δtHSC
, δtMPP

, τ1:N ) refers to the rate parameters, ini-

tial cell count conditions, standard deviation terms, and the offset index parameter value.

By the Bayes rule, the posterior distribution of ΘH conditional on the log-transformed real

count data can be represented as:

p(ΘH |y) ∝ p(y|ΘH)p(ΘH), (3.20)

where

p(ΘH) =
N∏
i=1

4∏
k=1

p(θik|µθk , σθk)·
N∏
i=1

p(ui|µ) · p(µ) · p(δbHSC
) · p(δbMPP

) · p(δtHSC
) · p(δtMPP

)

·
4∏

k=1

p(µθk |µµθk
, σµθk

) ·
4∏

k=1

p(σθk |µσθk
, σσθk

)

(3.21)
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3.2.5 Parameter Initialization of MCMC by Optimization

For the initialization of the MCMC sampling chain, we choose the Maximum a posteriori

(MAP) estimate approach, which estimates the mode of posterior distributions [24] obtained

with the limited memory Broyden Fletcher Goldfarb Shanno algorithm (LBFGS) optimizer

[41].

θ̂ = argmax
θ

p(y|θ)π(θ). (3.22)

3.2.6 ODE Parameter Inference Algorithms for Partially Observed

Dataset

The algorithms to simulate from the ODE model for the non-hierarchical and hierarchical

frameworks are given in algorithms 3 and 4 below. Both algorithms involve forward simu-

lation and backward parameter estimation. µΘ and δΘ are the prior means and standard

deviations of our parameters of interest. iobs and jobs are the list of observation days and

numbers of mice observed at each observation day. Dobs is the observed dataset. Flag is

the matrix that tells which dataset the mice belong to. τ is the offset index parameter on

log-scale cell counts between two experiment datasets. θ are the rate value parameters, and

uinit are the latent initial cell counts for all the mice. δinit, δtech are the cell count initial con-

dition standard deviation and technical standard deviation, respectively. Since our dataset is

relatively small, the hierarchical model can be much more efficient by changing the geometric

of the priors using non-centered parameterization see Appendix A.0.2 for detail.
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Algorithm 3 ODE forward simulation with non-hierarchical Bayesian framework

Require: µΘ, δΘ, iobs, jobs, ∆t, Dobs, F lag
Ni = len(iobs)
ZΘ ∼ N(0, 1)
Θ = µΘ + δΘ ·ZΘ

θ,uinit, δinit, δtech, τ = Θ
for i in 1:Ni do

for j in 1:jobs[i] do
u[j, i, 1] ∼MvN(uinit, δinit ∗ I)
if i==1 then

if Flag[j,i]==1 then
Dobs[j, i] ∼MvN(u[j, i], δtech ∗ I)

else
−τ +Dobs[j, i] ∼MvN(u[j, i, 1], δtech ∗ I)

end if
else

if Flag[j,i]==1 then
Dobs[j, i] ∼MvN(λ(u[j, i], ilst[i],θ), δtech ∗ I)

else
−τ +Dobs[j, i] ∼MvN(λ(u[j, i], ilst[i],θ), δtech ∗ I)

end if
end if

end for
end for
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Algorithm 4 ODE forward simulation with hierarchical Bayesian framework

Require: µΘ, δΘ, iobs, jobs, Dobs, F lag
Ni = len(iobs)
ZΘ ∼ N(0, 1)
Θ = µΘ + δΘ ·ZΘ

µθ,σθ,uinit, δ
HSC
init , δ

MPP
init , δHSC

tech , δ
MPP
tech , τ = Θ

for i in 1:Ni do
for j in 1:jobs[i] do

u[j, i, 1] ∼MvN(uinit, Diag(δ
HSC
init , δ

MPP
init ))

if i==1 then
if Flag[j,i]==1 then

Dobs[j, i] ∼MvN(u[j, i], δtech ∗ I)
else
−τ +Dobs[j, i] ∼MvN(u[j, i, 1], Diag(δHSC

tech , δ
MPP
tech ))

end if
else

θcurr ∼ N(µθ,σθ)
if Flag[j,i]==1 then

Dobs[j, i] ∼MvN(λ(u[j, i], ilst[i],θcurr), Diag(δ
HSC
tech , δ

MPP
tech )

else
−τ +Dobs[j, i] ∼MvN(λ(u[j, i], ilst[i],θcurr), Diag(δ

HSC
tech , δ

MPP
tech ))

end if
end if

end for
end for
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3.3 Results

3.3.1 Bayesian Inference and Model Selection for Synthetic

Hematopoiesis Dataset

Validation of CR Model and Parameter Inference Framework

In order to test and evaluate our new Chemical Reaction (CR) ODE model to show it can

reproduce the dynamic behavior of the non-linear Hill equation (HE) ODE model as well

as to demonstrate that the model parameters are identifiable, we first generate synthetic

data from the CR model Figures 3.1 (e,f) and fit by both models under non-hierarchical

(NH) Bayesian framework (see the prior and posterior plots in appendix Figure A.2). We

then generate data from the HE model Figures 3.1 (g,h) and fit the data by both the HE

model and the CR model under the NH Bayesian framework (see the prior and posterior

plots in appendix Figure A.3). The prior and posterior violin plots for the HSC net division

and MPP decay rates are shown in Figure 3.3 (a-d). We observe that both the HE and

CR models can recover the corresponding ground truth parameter values (black horizontal

lines) used for synthetic data generation. Figure 3.3 (e-h) shows the dynamic uncertainty

plots for the CR model synthetic data fit by both CR and HE models. Specifically, the

points refer to the synthetic dataset. The shaded areas refer to the 95% credible interval

posterior predictive distributions of all the ODE solution trajectories without accounting for

the technical errors. The curves refer to the median of the shaded areas. The line plots

refer to the 95% credible interval of the posterior predictive plots that account for technical

errors. Thus, the technical errors account for differences between the line plot range and

the shaded line range on the observation days. As we can see in these posterior predictive

distributions, both models can fit the synthetic dataset generated by both models equally

well. The dynamic uncertainty plots for the Hill equation model synthetic dataset (HESD)
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are shown in Figure 3.3 (e-f) and the chemical reaction synthetic dataset (CRSD) are shown

in Figure 3.3 (i-l). Observe that the shaded areas in the dynamic uncertainty plots when

fitting the CR Model to the synthetic dataset are generally wider than that of fitting the HE

model to the synthetic dataset, and the line plots at the observation times when fitting the

CR Model to the synthetic dataset are generally shorter than that of fitting the HE model to

the synthetic dataset. This indicates that the CR model is more likely to classify variability

in the data as biological variation while the HE model tends to classify the variability as

technical measurement error.

Validation of Hierarchical Inference Framework

Next, we will focus on the CR model and validate NH and the hierarchical (H) frameworks

as described in section 3.2.3. In Figures 3.4 (a-d), the violin plots for the prior and posterior

distributions for the four rate value parameters; the HSC self-renewal rate v1, the HSC

asymmetric division rate v2, the MPP decay rate u3, and the HSC effective differentiation

rate r1 using a dataset generated by the NHCR model (NHCRSD). From these figures,

we can see that inference using both the hierarchical and non-hierarchical CR models are

able to recover the ground truth parameters although the NH CR model is more certain

of the parameters. Figure 3.4 (e-h) shows the violin plots with a dataset generated from

the HCR model. Inference using both the hierarchical and non-hierarchical models is also

able to recover the ground truth values reasonably. The dynamic uncertainty plots for all

the synthetic datasets can be seen in Figure 3.4(i-p), we compare the fits using the NHCR

and hierarchical chemical reaction (HCR) models. We see that the CR model under both

the H/NH frameworks can fit the NHSD and HSD well. The HCR model classifies noise in

the data as arising more from biological variance, while the NHCR model classifies the data

variability as being due to technical errors. The prior and posterior parameter distribution

violin plots for the NHCR model fit NHSD is presented in Appendix Figure A.4. The
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Figure 3.3: Prior and posterior violin plots, dynamic uncertainty plots for fitting both chem-
ical reaction and Hill equation models to the synthetic dataset generated by both models.
Fitting both the chemical reaction synthetic dataset (CRSD) and the Hill equation synthetic
dataset (HESD) by chemical reaction (CR) and hill equation (HE) models; (a-d) violin plots
for the prior and posterior distributions for the net HSC total division rate and the MPP
decay rate fitting the CR and HE models to the (a,b) CRSD; (c,d) HESD; (e-l) the dynamic
uncertainty plots where the shaded areas refer to the 95% credible interval posterior predic-
tive distributions of all the ODE solution trajectories without accounting for the technical
errors. The curves refer to the median of the shaded areas. The line plots refer to the 95%
credible interval of the posterior predictive intervals that account for technical errors at the
data observation time. (e,f) log scale HESD HSCs data fitted by both ODE models; (g,h)
log scale HESE MPP data fitted by both ODE models; (i,j) log scale CRSD HSC data fitted
by both ODE models; (k,l) log scale CRSD MPP data fitted by both ODE models.
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corresponding plots for the other parameters using various combinations of the datasets can

be found in appendix Figures A.5, A.6, A.7 Lastly, as shown in table 3.1, the Bayes factor

Eqn.(2.70) decisively selects the correct model for each dataset based on table 3.1 and criteria

table 2.2.

Figure 3.4: Prior and posterior violin plots, dynamic uncertainty plots for fitting non-
hierarchical/hierarchical chemical reaction (NHCR/HCR) models to the synthetic data gen-
erated by both hierarchical model (H)/non-hierarchical (NH) frameworks (HSD/NHSD).
Page(54-55). (a-h) violin plots for priors and inferred posteriors parameter distribution (a-
d) using NHSD (e-h) using HSD; prior and posterior distributions violin plots for (a/e) HSCs
self-renewal rate; (b/f) HSCs asymmetric division rate; (c/g) MPPs decay rate; (d/h) HSCs
effective differentiation rate. (i-p) dynamic uncertainty plots where where the shaded areas
refer to the 95% credible interval posterior predictive distributions of all the ODE solution
trajectories without accounting for the technical errors. The curves refer to the median of
the shaded areas. The line plots refer to the 95% credible interval of the posterior predictive
intervals that account for technical errors at the data observation time. (i,j): log scale NHSD
HSCs count fitting by the NHCR/HCR model (k,l): log scale NHSD MPPs data fitted by
NHCR/HCR models (m,n): log scale HSD HSCs data using the NHCR/HCR models; (o,p):
log scale HSD MPPs data fitted by the NHCR/HCR

Validation of the Inference Framework with Bacth Effects

We next incorporate an offset in our synthetic datasets. We denote the offset version of

NHSD as ONHSD and the offset version of HSD as OHSD. Figure 3.5 shows the prior and

posterior distribution violin plots of the inferred rate parameters using NHSD (a-e) and HSD

(f-j). We can see that inference using both HCR/NHCR models recover the ground truth

values of the parameters reasonably, except the offset parameter in Figure 3.5 (j), where

the NHCR ODE model struggles to locate the ground truth. Figure 3.5 (k-z) shows that

the posterior predictive distributions of both the HCR/NHCR ODE models can fit both

synthetic datasets well. Again the HCR and NHCR models differ in the classification of the

variability in the data. The Bayesian model selection using the Bayes factor Eqn. (2.70) is

also able, in the presence of the offset, to decisively select the right mode (Table 3.2). (See
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also Appendix Figures A.8, A.9, A.10, A.11 for prior and posterior distribution plots.)
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Figure 3.5: Prior and posterior violin plots for fitting both non-hierarchical and hierarchical
chemical reaction model to the multiple synthetic datasets with offset parameter generated
from both models. Fitting offset version hierarchical chemical reaction (OHCR) and non-
hierarchical chemical reaction (ONHCR) model to synthetic dataset generated from both
models (OHSD, ONHSD); (a-j): violin plots of prior and inferred posteriors parameter dis-
tributions (a-e): using ONHSD (f-j): using OHSD; violin plots of prior and inferred posteriors
parameter distributions for (a,f): HSCs self-renewal rate (b,g): HSCs asymmetric division
rate (c,h): MPPs decay rate (d,i): HSCs effective differentiation rate (e,j): offset parameter
index value between two experimental datasets due to the batch effects

3.3.2 Bayesian Hierarchical Inference and Model Selection for

Experimental Data

Next, we infer the parameters using the HCR and NHCR models for the experimental

datasets. The results are shown in Figure 3.7; in (a-c), we can see that the inference can

identify the rate value parameters and the offset parameter with the experimental dataset.

Figures 3.7 (f-m) show the posterior predictive distribution plots for the experimental data.

We can see that the 95% credible interval posterior plots, without consideration of technical
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Figure 3.6: Dynamic uncertainty plots for fitting both non-hierarchical and hierarchical
chemical reaction (HCR/NHCR) model to the multiple synthetic datasets with offset pa-
rameter generated from both models (HSD/NHSD). Page(57-58). (a-h) dynamic uncertainty
plots where the shaded areas refer to the 95% credible interval posterior predictive distribu-
tions of all the ODE solution trajectories without accounting for the technical errors. The
curves refer to the median of the shaded areas. The line plots refer to the 95% credible
interval of the posterior predictive intervals that account for technical errors at the data ob-
servation time. (a,e): log scale NHSD1 HSCs, MPPs data fitted by the NHCR model (b,f)
log scale NHSD1 HSCs, MPPs data fitted by the HCR model (c,g) log scale NHSD2 HSCs,
MPPs data fitted by the NHCR model (d,h) log scale NHSD2 HSCs, MPPs data fitted by
the HCR model (i,m): log scale HSD1 HSCs, MPPs data fitted by the NHCR model (j,n) log
scale HSD1 HSCs, MPPs data fitted by the HCR model (k,o) log scale HSD2 HSCs, MPPs
data fitted by the NHCR model (l,p) log scale HSD2 HSCs, MPPs data fitted by the HCR
model

errors in the HCR model, cover more data points than those of the NHCR model. Accord-

ingly, the Bayes factor selects the HCR model decisively (table 3.2). (See Appendix Figures

A.12, A.14 in for the prior and posterior distribution)
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Figure 3.7: Fit both hierarchical chemical reaction (HCR) and non-hierarchical chemical
reaction (NHCR) model to experimental datasets (ExpD). (a-e) violin plots for priors and
inferred posteriors parameter distributions inference (a) HSC self-renewal rate; (b) HSC
asymmetric division rate; (c) MPP decay rate; (d) HSC direct differentiation rate; (e) off-
set parameter between two experimental datasets due to the batch effects; (f-m) dynacmic
uncertainty plots for fitting both models to ExpD where the shaded areas refer to the 95%
credible interval posterior predictive distributions of all the ODE solution trajectories with-
out accounting for the technical errors. The curves refer to the median of the shaded areas.
The line plots refer to the 95% credible interval of the posterior predictive intervals that
account for technical errors at the data observation time. (f,j): log scale ExpD1 HSC, MPP
data fitted by the NHCR model (g,k) log scale ExpD1 HSC, MPP data fitted by the HCR
model (h,l) log scale ExpD12 HSC, MPP data fitted by the NHCR model (i,m) log scale
ExpD2 HSC, MPP data fitted by the HCR model
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3.3.3 Model Selection for Hematopoiesis Dynamics

We now present the datasets of model selection for the synthetic and experimental datasets.

Denote model 0 to be the NHCR model. Let model 1 be the HCR model. Let BF10 defined in

Eqn.(2.70) be the Bayes factor of model 1 in favor of model 0 and BF01 be the Bayes factor of

model 0 in favor of model 1. In table 3.1, we can see that the Bayes factor can decisively select

the right model which synthetic data is generated from based on Bayes factor interpretation

table 2.2. Bayes factor decisively selects the hierarchical chemical reaction model for the

experimental dataset which indicates that more stochasticity needs to take into account

besides the cell count initial condition biological variation and operation technical error.

Note that our hierarchical chemical reaction model mimics that real stochastic ODE model,

this result agrees with our motivation to replace ODE with a stochastic process model e.g.,

LNA for the latent variable approach described in section 3.2.1.

Bayes Factor Model Selection Table
Dataset NHCR LML HCR LML log10(BF01) log10(BF10) Model Selection
NHSD 37.84 18.08 8.58 -8.58 NHCR Decisive
HSD -68.03 -36.72 -13.6 13.6 HCR Decisive
ONHSD 30.66 8.1 9.79 -9.79 NHCR Decisive
OHSD -67.56 -39.02 -12.39 12.39 HCR Decisive

Table 3.1: Bayes factor model selection table for 2D synthetic hematopoiesis datasets.
NHCR: non-hierarchical chemical reaction model; HCR: hierarchical chemical reaction mode;
LML: log marginal likelihood; NHSD: synthetic datasets generated by NHCR model; HSD:
synthetic datasets generated by HCR model; ONHSD: synthetic datasets generated by
NHCR model with offset index between two synthetic dataset due to the batch effects;
OHSD: synthetic datasets generated by HCR model with offset index between two synthetic
dataset due to the batch effects.

We also fit the non-hierarchical and hierarchical hill equation model to the experimental

dataset. The prior posterior violin plots and dynamic uncertainty plots can be found in

the Appendix Figures A.13 and Figure A.15. Table 3.2 shows the model selections among

four models (HCR, HHE, NHCR, and NHHE) by model selection methods Bayes factor and

PSIS-LOO described in section 2.3. Based on 8000 iterations of MCMC for each model,
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we can see that the HCR model achieves the highest log model marginal likelihood -71.31

calculated by Eqn.(2.67) and Bayes factor model probability 0.584 calculated by Eqn. (2.68).

PSIS-LOO also shows that the HCR model has the highest out-of-sample cross-validation

expected log predictive density (cv elpd) 80.19 and the highest in-sample cross-validation

expected log predictive density (näıve elpd) 86.01 which leads to highest in-sample predict

density by Eqn. (2.73). HCR model also achieves the highest PSIS-LOO model weight 0.982

by Eqn.(2.74).

Model Selection Table for Experimental Data
Metric / Model HCR HHE NHCR NHHE
Log Marginal Likelihood -71.16 -71.66 -86.95 -93.09
Posterior Model Probability 0.621 0.378 8.67e-8 1.86e-10
Log Bayes Factor HCR/Model 0.00 0.494 15.78 21.93
PSIS-LOO cv elpd -5.82 -9.87 -46.81 -47.40
PSIS-LOO näıve elpd 80.19 79.43 -8.98 -6.60
PSIS-LOO loo weight 0.982 0.171 1.5e-18 8.6e-19
Number of Parameters 287 287 105 105

Table 3.2: Bayes factor and PSIS-LOO-CV model selection table for 2D experimental
datasets. NHCR: non-hierarchical chemical reaction model; HCR: hierarchical chemical
reaction models; NHHE: non-hierarchical hill equation model; HHE: hierarchical hill equa-
tion model; LML: log marginal likelihood; NHSD: synthetic datasets generated by NHCR
model; HSD: synthetic datasets generated by HCR model; ONHSD: synthetic datasets gen-
erated by NHCR model with offset index between two synthetic dataset due to the batch
effects; OHSD: synthetic datasets generated by HCR model with offset index between two
synthetic dataset due to the batch effects; PSIS-LOO cv epld: out-of-sample leave-one-out
cross-validation expected log predictive density; PSIS-LOO näıve elpd: in-sample leave-one-
out cross-validation expected log predictive density. PSIS-LOO loo weight: model weight by
PSIS-LOO

10 Fold Cross Validation and Leave-Out-A-Day validation

We also performed 10-fold cross-validation (see Appendix Figures A.16-A.19) and leave-out-

a-day validation (see Appendix Figure A.20) to test the model and Bayesian framework
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robustness. The hierarchical and non-hierarchical posterior predictive summary can be seen

in appendix tables (A.3 and A.4). Those validations are measured by median absolute error

(MAE), which describes the typical difference between the observed value and their posterior

predictive means and the median absolute scaled error (MASE) measures the typical number

of standard deviations that the observed values fall from their posterior predictive values.

In the 10-fold cross-validation, we can see that both HSC and MPP validation data fall in

1.5 standard deviations from their posterior predictive mean, which means that they are

inside their 95% CI posterior prediction intervals for most of the folds. Leaving out the

data on day 5 or 7 leads to larger MASE, and consequently, fewer validation data fall in

the 95% posterior prediction interval see Appendix Figure A.20. This means that the cell

count overshoot produced by feedback regulation plays a significant role in hematopoiesis

dynamics.

3.4 Conclusion

In this project, we develop a new chemical reaction (CR) model for the hematopoiesis dy-

namic, which can be easily extended to a stochastic process model (e.g., SDE, LNA) and

a hierarchical Bayesian framework for parameter inference. We validate the CR model and

the hierarchical inference framework with/without batch effects by comparing the results

of fitted models to synthetic datasets and model selection criteria (Bayes factor and PSIS-

LOO-CV). We find that the HCR is the most plausible model that describes experimental

datasets. This suggests there is significant biological variability among data. As the dy-

namic system re-equilibrates, oscillations consisting of stable spirals are observed, which is

the characteristic of negative feedback regulation as expected. However, by observing that

the HCR fitted posterior distributions of parameters, we find that the HSC self-renewal rate

is higher than expected since we lump the rapidly dividing short-term HSCs (STHSCs) and
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more slowly dividing long-term HSCs (LTHSCs). For future work, we will invest extended

model by separating HSCs into STHSCs and LTHSCs. Besides, we will also incorporate

variability through the stochastic process model.
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Chapter 4

Stochastic Systems and Parameter

Inference for Models of Hematopoiesis

4.1 Introduction

Hematopoiesis is a complex mechanism by which hematopoietic stem cells produce a variety

of functional blood cells through multiple stages of differentiation. Since the numbers of

various blood cell types need to be maintained in homeostasis, with occasional short-lived

departures from it, hematopoiesis must be subject to multiple regulatory mechanisms. How-

ever, these regulatory mechanisms are still not well understood. Mathematical models can

help us formulate hypotheses about regulatory mechanisms. However, fitting models to data

is challenging because the data — typically hematopoietic stem cell, multipotent progenitor,

and mature blood cell counts — is noisy. This motivates us to use a latent variable approach

to account for the unobserved data. In Chapter 3, using a new chemical reaction (CR)

ordinary differential equation model of negative feedback regulation in hematopoiesis, we

develop a scalable, hierarchical Bayesian framework that accounts for across-subject hetero-
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geneity and infers division and feedback regulation parameters governing hematopoietic cell

dynamics. We evaluate the performance of the new model and inferential framework using

synthetic data and data from experiments in mice treated with the chemotherapy drug 5FU

to perturb the hematopoietic system. The framework distinguishes between models that

account for biological variation and those with only technical variation/measurement error.

We find that the experimental data are best described by a hierarchical model in which the

hematopoiesis model parameters were allowed to vary among mice, suggesting the presence

of significant biological variability. As the system re-equilibrates, oscillations are observed,

which are characteristic of negative feedback. In this work, we extend the CR model to

account for more hematopoietic cell compartment types to explore an alternative way of ac-

counting for data heterogeneity by employing a stochastic differential equation (SDE) model

of hematopoiesis instead of letting division and feedback regulation parameters vary across

mice. We use a linear noise approximation (LNA) to obtain a tractable likelihood function,

which enables us to use Bayesian parameter inference without additional approximations.

We test the performance of the stochastic inference framework using synthetic hematopoiesis

datasets and find a nontrivial relationship between the variability of the initial condition,

measurement error, and variability in the stochastic dynamical system. We find that using

the stochastic model to interpolate the latent cell counts can further improve the PSIS-LOO

out-of-sample cross-validation expected log predictive density elpdloo Eqn.(2.73) from the

non-hierarchical/hierarchical ODE model frameworks we developed in Chapter 3. By fitting

the LNA model to the experimental data, we find a limitation in using the stochastic process

model to interpolate missing data when the latent initial condition cell count variation at

the first observation day is substantial since the different sources of biological variations can

compensate for one another. Thus, we propose a solution for this limitation by estimating

the initial condition variance and technical measurement errors directly from the experi-

mental dataset. By fixing the initial condition variance and technical measurement error

estimated from the experiment dataset, we find the experimental dataset is best described
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by the stochastic LNA parameter inference model.

4.2 Methods

Hematopoietic stem cells (HSCs) can be divided into long-term HSCs (LTHSCs) and short-

term HSCs (STHSCs). LTHSCs are highly self-renewing cells with long-term reconstitution

capacity through the entire animal life span and LTHSCs can differentiate into STHSCs,

which only have a short-term reconstitution ability. STHSCs can further differentiate into

multipotent progenitor cells (MPPs), which are believed to only briefly self-renew or do

not have self-renewal ability [13, 52]. For data in Chapter 3, LTHSCs and STHSCs are

aggregated. However, since the aggregated HSCs self-renewal rate for the best-fitted HCR

model is a bit higher than expected and the larger thae the cell counts for each compartment,

the similar NHODE and LNA forward simulation results, in this work, we consider both

types of HSCs and extend the two-compartment chemical reaction model used in Chapter

3 to a three-compartment model by separating the HSCs into LTHSCs and STHSCs. The

experimental datasets for the three-compartment model can be seen in Figure 4.1 (a-c),

where the dots refer to the data from experiment one and cross marks refer to the data from

experiment two.

4.2.1 3-Compartment Chemical Reaction ODE Model

Then we consider the following reactions: R1 LTHSC can self-renewal with rate v1 refers

to the highly self-renewing feature; LTHSC can differentiate into STHSC in two ways: R2

LTHSC can do asymmetric division, which produces one LTHSC and one STHSC with rate

v2 and R3 LTHSC can interact with MPP and directly differentiate into STHSC with rate

constant r1. Since STHSC are short-term, we don’t directly model its self-renewal rate and
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Figure 4.1: Experimental dataset and synthetic dataset for 3-compartment hematopoiesis
dynamics. LT: long-term HSCs; ST: short-term HSCs; dot points are the data from exper-
imental one and cross marks are the data from experimental two (a,b,c) referring to the
LT, ST, MPP dataset for the two real experiments; (d,e,f) refer to LT, ST, MPP synthetic
dataset which is generated by Gillespie algorithm using the parameter values as MAP opti-
mization point estimation on the experimental data.

death rate directly. Consider STHSC also differentiates into MPP in two ways: R4 STHSC

can do asymmetric division, which produces one STHSC and one MPP with the rate v3 and

R5 STHSC can interact with MPP and directly differentiate into MPP with rate constant

q1. R6 MPP lumped decay with rate u3. Then those reactions can be written as

R1 : LTHSC
v1−→ 2LTHSC; R2 : LTHSC

v2−→ LTHSC + STHSC;

R3 : LTHSC +MPP
r1−→ STHSC +MPP ; R4 : STHSC

v3−→ STHSC +MPP ;

R5 : STHSC +MPP
q1−→ 2MPP ; R6 :MPP

u3−→ ϕ. (4.1)
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The 3-compartment ODE system for these reactions can be written as


N ′

LTHSC = v1 ·NLTHSC − r1 ·NLTHSC ·NSTHSC

N ′
STHSC = v2 ·NLTHSC + r1 ·NLTHSC ·NSTHSC − q1 ·NSTHSC ·NMPP

N ′
MPP = v3 ·NSTHSC + q1 ·NSTHSC ·NMPP − u3 ·NMPP .

(4.2)

The diagram illustration for those reactions can be seen in Figure 4.2 where the MPPs cell

count negatively feedback on both LTHSCs and STHSCs’ self-renewal rate.

ST MPPLT

Figure 4.2: Diagram of 3D chemical reaction model for hematopoiesis dynamics. LT, ST,
MPP refer to long-term HSC, short-term HSC and MPP respectively. The system involves
two feedback regulations: MPPs cell count negatively feedback regulation on both LTHSCs
and STHSCs’ self-renewal rate. Since STHSC are short-term, we don’t directly model its
self-renewal rate and death rate directly. The corresponding chemical reaction equations for
this diagram can be seen at section .(4.1)

4.2.2 Derivation of LNA for 3D Chemical Reaction Model

Following the LNA derivation in section 2.2.3, we first write the ODE system Eqn.(4.2)

into the multiplication form of stochemistry matrix, which rows refer to the different cell
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compartments and columns refer to different reaction channels,

S =

R1 R2 R3 R4 R5 R6


1 0 −1 0 0 0 LTHSC

0 1 1 0 −1 0 STHSC

0 0 0 1 1 −1 MPP,

(4.3)

and the reaction propensity vector which consist of all the transition rate of Markov jump

process for the reactions is given by

h(X(t), θ) =





v1 · LTHSC(t) R1

v2 · LTHSC(t) R2

r1 · LTHSC(t) ·MPP (t) R3

v3 · STHSC(t) R4

q1 · STHSC(t) ·MPP (t) R5

u3 ·MPP (t) R6.

(4.4)

Let H(X(t), θ = Diag{h(X(t), θ} be the reaction propensity matrix. Based on the derived

CLE Eqn.(2.40) by applying the normal approximation to the independent homogenous

Possion process, the SDE of this chemical reaction model takes the form

dX(t) = Shi(X(t),θ)dt+Diag{
√

SH(X(t),θ)St}dWt. (4.5)

Log Transform of the Differential Equations

Solving differential equations with initial conditions perturbed from their equilibrium can

lead the time evolution sample paths to vary in different magnitudes and consequently, it

is more reasonable to infer multiplicative noise terms instead of inferring additive noise

69



terms for Bayesian computation. We can transform our differential equations all into the

log scale for better computation performance. Another reason is that for some situations

e.g. bone marrow transplantation operation dataset where the initial conditions of com-

partments can be very small, when solving LNA forward simulations, the compartment

number can go negative which may break down the LNA inference process because it can

make variance process Σ(t) non-positive definite and cannot do Cholesky decomposition. Let

X̂(t) = ϕ(X(t), t) = log(X(t)+1)→ X(t) = exp( ˆX(t))− 1. By Lemma 2.2, we can get that

∂ϕ(X(t), t)

∂X
=

1

X
,

∂2ϕ(X(t), t)

∂X2
=
−1
X2

,
∂ϕ(X(t), t)

∂t
= 0 (4.6)

and the log-transformed SDE becomes

dX̂(t) = Diag(exp(−X̂(t))− 0.5 exp(−2X̂(t)))f(exp(X̂(t))− 1, t)

+Diag(exp(−X̂(t)))g(exp(X̂(t))− 1, t)

= f(X̂, t)dt+ g(X̂, t)dWt

(4.7)

For the reasons described above, we log-transform the cell compartment counts into

X̂(t) = log(X(t) + 1), (4.8)

and X(t) = exp(X̂(t)) − 1. By lemma 2.2, we can log-transform SED Eqn.(4.5) by using

changing of variable X(t) Eqn.(4.8) to get

dX̂(t) =

log-transformed deterministic solution process η∗(X̂(t))︷ ︸︸ ︷
Diag

{
exp(−X̂(t))− 0.5 exp(−2X̂(t))

}
· Sh(exp(X̂(t))− 1,θ) dt

+

log-transformed Gaussian process (Φ∗(X̂(t)))1/2︷ ︸︸ ︷
Diag

{
exp(−X̂(t))

}
·Diag

{√
SH(exp(X̂(t))− 1,θ)St

}
dWt.

(4.9)
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The Jacobian matrix for this equation can be written as J(X̂(t)) = ∂η(X̂(t))

∂X̂
. From the LNA

formula Eqn.(2.65) derived in section 2.2.3, we obtain the following LNA system for this

log-transformed problem:


dη(t) = η∗(X̂(t))

dm(t) = J(X̂(t))m(t)dt

dΣ(t) =
(
J(X̂(t))Σ(t) + (Φ∗(X̂(t)))1/2((Φ∗(X̂(t)))1/2)t +Σ(X̂(t))J(X̂(t))

)
dt.

(4.10)

4.2.3 LNA Framework for Partially Observed Datasets

As the Figure 4.3 shows for LNA diagram illustration, denote the time at which 5-FU is

administered as tp; In order to take into account the wide discrepancies between the raw

counts of different cell compartments, we decide to transform all the cell count numbers

into a logarithmic scale. We assume that the log-transformed LTHSCs, STHSCs, and MPPs

counts for all the mice at initial observation day t0 after the perturbation experiment follow

multivariate normal distributions with means equal to µLT , µST and µMPP respectively and

the same standard deviation δinit. This model variance among the initial cell counts is due to

biological differences between the mice. Let µ (red star in Figure 4.3) be the vector for the

µLT , µST and µMPP and xi
0 be the log-scale cell count initial conditions for mouse number

i. Suppose that the total number of mice is N . Then, we can write the initial conditions for

each mouse as

x0
i ∼MvN(µ, δ2initI), (4.11)

for all i ∈ {1, 2, · · · , N}. Without loss of generality, we assume that the first m mice are

sacrificed and observed during the first observation day t0 of the experiment right after the

5-FU administration. Let yi(t) be the log-scale observed cell counts data for mouse i at time
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t and assume the observed data is obtained with technical measurement errors δtech. Then

for the mice that are sacrificed to the day t0 after 5-FU is applied as

yi(t0) ∼MvN(x0
i , δ

2
techI), (4.12)

for ∀ i ∈ {1, 2, · · · ,m}.

We choose the time step ∆t for the LNA algorithm by first running the MAP optimization

on fitting Bayesian model to the experimental datasets and then using those MAP point

estimation parameters to generate LNA forward simulations with different ∆t and compare

them with Gillespie and SDE solutions. Based on forward simulation results, we select ∆t

to be a 1-day interval which balances the computational efficiency and accuracy of LNA

approximation to the SDE solution. Let variables xi
j refer to the latent LNA intermediate

step j cell counts for mouse i. For each mouse i, the intermediate state cell counts at LNA

step j can be calculated by

xj
i ∼ N(ηj +mj,Σj), (4.13)

where the deterministic mean process solution ηj, Gaussian mean process solution mj,

Gaussian variance process solution Σj are calculated by using ODE system Eqn.(4.10) with

initial condition ηj−1,mj−1,Σj−1 and rate value parameters θ = {v1, v2, v3, r1, q1, u3} which

are sampled from the prior distributions in time interval ∆t. For those mice whose cell

counts are measured after t0, assume that mouse j is sacrificed at day tLNAj
. We assume

that the latent trajectories for the cell populations follow an LNA model. This allows us to

simulate all the cell counts before the mouse is harvested for measurement. Let the log-scale

dataset offset index be τ between the two experiments due to using different filters. Then,

the log-scale observed cell accounts for mouse j at time tLNAj
can be represented as

1is in experiment 2 · τ + yj(tLNAj
) ∼MvN(xj

LNAj
, δ2techI), (4.14)
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for all j ∈ {m+1,m+2, · · · , N}. Following our data-generating procedure, we also assume

that observations are independent of each other, then the posterior density can be represented

as Let Θ = {θ,x0, δinit, δtech, τ} be the prior parameters which are sampled by the non-

centered parameterization described in Appendix section A.0.2 which the non-centered prior

mean µΘ, standard deviation δΘ and center ZΘ. Then posterior density value can be written

as

Pr(Θ,X|1is in experiment 2 ·τ +y) ∝ Pr(1is in experiment 2 ·τ +y|Θ,X)Pr(X|Θ)Pr(Θ) (4.15)

Then the posterior density function can be written as

Pr(1 is in experiment 2 · τ + y|Θ,X)Pr(X|Θ)Pr(Θ) =

N∏
j=1

Pr(1j is in experiment 2 · τ + yj|X
tLNAj

j , δtech · I)·

LNAj∏
i=1

Pr(Xti
j |DoLNA(X

ti−1

j ,θ)) · Pr(Xt0
j |u

mean
init , δinit · I)

Pr(umean
init ,θ, δinit, δtech|µΘ, δΘ,ZΘ) · π(µΘ)π(δΘ)π(ZΘ)

(4.16)

Let iobs and jobs be the list of observation days and numbers of mice observed at each

observation day. Flag is the matrix that tells which dataset the mice belong to. θ are

the rate value parameters. The LNA inference algorithm includes forward simulation and

backward parameter estimation and is given in Algorithm 5 Restart version of LNA Inference.
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Algorithm 5 Restarting version LNA forward simulation

Require: µΘ, δΘ, iobs, jobs, ∆t, y, F lag
Ni = len(iobs)
ZΘ ∼ N(0, 1)
Θ = µΘ + δΘ ·ZΘ

θ,uinit, δinit, δtech, τ = Θ
for i in 1:Ni do

for j in 1:jobs[i] do
u[j, i, 1] ∼MvN(uinit, δInit ∗ I)
if i==1 then

if Flag[j,i]==1 then
y[j, i] ∼MvN(u[j, i, 1], δtech ∗ I)

else
−τ + y[j, i] ∼MvN(u[j, i, 1], δInit ∗ I)

end if
else

NLNA = iobs/∆t+ 1
for iLNA in 1:NLNA do

ηcurr ← dη(u[j, i, iLNA − 1],θ,∆t)
Σcurr ← dΣ(0,θ,∆t)
u[j, i, iLNA] ∼ N(ηcurr,Σcurr)

end for
if Flag[j,i]==1 then

y[j, i] ∼MvN(u[j, i, NLNA], δtech ∗ I)
else
−τ + y[j, i] ∼MvN(u[j, i, NLNA], δtech ∗ I)

end if
end if

end for
end for
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Figure 4.3: Data generation process diagram illustration of LNA model. Data generation
process which accounts for both biological variation and technical variation via a latent
variable approach; latent cell count trajectories are assumed to be LNA trajectories; mice
are being observed at discrete irregular times, e.g., t0, t2, t4; x

i
0 refer to the initial cell count

of mouse i at t0 and the red star is the inferred log-scale initial condition cell count mean.
yi refers to the observed cell count of mouse i at the time it is sacrificed. xij refers to the
latent LNA intermediate step j cell count for mouse i.

4.3 Results

4.3.1 Simulation Study on Synthetic Hematopoietic Dataset

To check the parameter identifiability for the new 3D LNA CR model described in section

4.2.2, we first fit the model to a synthetic dataset shown in Figure 4.1 (d-f) generated by

the LNA algorithm which mimics the experimental dataset. The parameter values used for

data generation are based on MAP point estimation optimization described in section 3.2.5.

The synthetic dataset has the same observation design as the experimental datasets and has

similar cell count trajectory magnitudes and time evolution oscillation dynamics. By fitting
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non-hierarchical, hierarchical ODE models (NHODE, HODE models), described in section

3.2.4 and non-hierarchical LNA model, respectively, to this synthetic dataset using Bayesian

inference, we find that the posterior distributions of parameter posteriors from all the three

models are identifiable and the ground truth parameter values, which used for generating the

synthetic dataset, are correctly recovered which can be seen in Figure 4.4 (a-l) Compared to

NHODE and HODE fitted posterior posterior violin plots in Figure 4.4 (a-l), LNA posterior

violin plots for parameters are generally narrower, which means that the LNAmodel inference

is more certain about those parameter values. A comparison of dynamic uncertainty plots

for the three models on synthetic dataset 1 based on 3000 iterations of MCMC using the

NUTs algorithm is shown in Figure 4.5 and Appendix Figure B.1 for synthetic datasets 1 and

2 respectively. Specifically, the dotted point marks refer to the synthetic data; the shaded

areas indicate the 95% credible intervals of the differential equation solutions at each time

point; the trajectories are the median solutions of the differential equations; the line plots

are the posterior predictive intervals at the data observation time. Take Figure 4.5, which

describes the dynamic uncertainty plots for synthetic dataset 1 for example, the first and

second columns show the ODE and LNA dynamic uncertainty plots respectively. We can

see that the LNA model can generate wider 95% credible intervals of posterior predictive

distribution based on differential equation solutions than that of ODE, even the parameter

posteriors of LNA are generally narrower. The third column describes dynamic uncertainty

plots for the HODE model. We can see that the shaded areas of the HODE model are much

wider than that of ODE and LNA, while the line plots for the HODE model have similar

lengths as that of ODE and LNA. This agrees with the posterior violin plots in Figure 4.4

(h) that the technical standard deviation posterior mean is much smaller than that of ODE

and LNA. Besides, from Figure 4.4, we can see that the shaded areas of the HODE model

near the steady states (day 30) are still wide which is not as expected while that of the

LNA model is wide at early observation days but relatively narrow near the steady state as

expected since it indicates the large biological variability among mice near the steady states.
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By using the Bayesian model selection method PSIS-LOO-CV described in section 2.3.2, we

found that the LNA model has the highest out-of-sample elpdLOO= -54.17 among the three

models followed by the HODE model.
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Figure 4.4: Prior and posterior violin plots for fitting non-hierarchical/hierarchical ODE
(ODE/HODE) and LNA models to the synthetic dataset which is generated by Gillespie
algorithm using the parameter values as MAP optimization point estimation on the experi-
mental data. (a-l) prior and fitted posterior violinplots for (a) v1: LTHSCs self-renewal rate;
(b) v2: LTHSCs asymmetric division rate; (c) v3 STHSCs asymmetric division rate; (d) r1:
LTHSCs effective differentiation rate into STHSCs; (e) q1 STHSCs effective differentiation
rate into MPPs; (f) u3 MPP lumped decay rate.(g) Init Std: initial condition cell count
standard deviation; (h) Tech Std: technical measurement error standard deviation; (i) LT
init: LTHSCs initial cell count mean; (j) ST init: STHSCs initial cell count mean; (k) MPP
init: MPPs initial cell count means; (l) offset index: offset parameter value between the two
synthetic datasets due to the batch effects

77



4.3.2 Inference Results on Experimental Hematopoietic Dataset

We next fit the NHODE, HODE, and LNA models to the experimental datasets. As we

can see in the Bayesian model selection table 4.2, by using the metric PSIS-LOO elpdLOO

described in section 2.3.2, we find that the LNA model achieves the highest out-of-sample

leave-one-out expected log point-wise predictive density elpdLOO= -66.20 among the three

models followed by the HODE model. From the prior and fitted posterior violin plots in

Figure 4.6 of the NHODE, LNA, and HODE models, we can see that the posterior violin

plots for the NHODE and that of the LNA model are very similar. The HODE model

has generally higher rate value posterior means and smaller technical standard deviation

posterior means than those of the LNA and NHODE models. We next ask why the LNA

and NHODE models yield similar parameter inference results. This motivates us to propose

a hypothesis:

Hypothesis 4.1. For Bayesian inference with differential equations using partially observed

datasets, the stochastic process model classifies most of the data heterogeneity into the ini-

tial condition variation rather than in the stochasticity of solving time evolution stochastic

PSIS-LOO Model Selection Table for Synthetic Dataset
Metric / Model LNA NHODE HODE
PSIS-LOO cv elpd -54.17 -60.08 -55.64
PSIS-LOO näıve elpd -36.60 -32.68 -9.52
PSIS-LOO loo weight 0.8112 0.002 0.1865
Number of Parameters 1932 156 287

Table 4.1: Model selection table for hematopoiesis synthetic dataset. PSIS-LOO cv epld:
out-of-sample leave-one-out cross-validation expected log predictive density; PSIS-LOO
näıve lpd: in-sample leave-one-out expected log predictive density; PSIS-LOO loo weight:
model weight by PSIS-LOO; The most important metric we want to maximize is cv epld.
We can see that the chemical reaction (CR) LNA model achieves the highest value of cv epld
using synthetic datasets.
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differential equations when both initial condition biological variation and technical variation

are substantial. The prior-posterior violin plots and 2σ Bayesian credible intervals (BCIs)

of the stochastic process model and NHODE model inference are distinct when the ground

truth initial condition cell count variation is relatively small. The inference results become

similar as the initial condition variation gets larger.

4.3.3 Parameter Inference using a Synthetic Bone Marrow Trans-

plants Dataset

To test the hypothesis 4.1, we perform a series of simulation experiments. We take the

initial condition, a system with much smaller cell counts, to increase the biological variation

in solving the time evolution stochastic process LNA model. Let the log-scale initial means

of the cell compartments (µLT , µST , µMPP ) = (log(12), log(18), log(67)) respectively. This

mimics a bone marrow transplantation where cells are introduced to bone marrow in which

the cells are removed. Based on the similar inference results of the NHODE model and

the LNA model, we want to explore the magnitude levels of initial condition variance and

technical variance that can make LNA and NHODE inference results distinct from each other

(especially the cases when all the ground truth parameter values are correctly identified

by using LNA model while they are not fully correctly recovered by using ODE model).

Firstly, instead of partially observed datasets, we want to validate that all the ground truth

parameter values used for time-series synthetic data generation can be correctly recovered

by the LNA model.

Simulation Study 4.1. Generate a time series synthetic transplant dataset from the LNA

model and show that all the parameters, especially the initial condition standard deviation

term are identifiable and the ground truth values used for synthetic data generation are

correctly recovered.
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We generate synthetic datasets using the LNA model Eqn.(4.10) with 4 fully observed mice

and different initial condition standard deviation levels δinit=[0.05, 0.1, 0.2, 0.3]. Then, we

assume that mice are not sacrificed during the bone marrow extraction operation and are

periodically observed on days [1, 3, 5, 7, 10, 15, 20, 24, 30]. As we can see in Figure 4.8,

both the ground truth parameter values of initial conditional noise δinit (a-d) and technical

noise δtech (e-h) term posteriors are correctly recovered their ground truth values. From

Figure 4.8 (i-l), we can see that the LTHSC posterior predictive intervals and 2σ BCIs

describe the LTHSC synthetic data well and the 2σ BCIs grow wider as the ground truth

initial conditional standard deviation increases. The full prior and posterior violin plots and

dynamic uncertainty plot results can be found in the Appendix Figures (B.3-B.6).

Secondly, we want to validate that the LNA model tends to classify biological variability in

data into initial condition variance of cell counts instead in the stochastic data generation

process by LNA algorithm when initial condition variance can be substantial.

Simulation Study 4.2. Generate partially observed synthetic transplant datasets from the

LNA model, which only uses two observation days at the early times. Fixing all the parame-

ters at their ground truth values except initial condition cell counts and standard deviation,

we show that the total standard deviation term (initial condition standard deviation term

+ technical standard deviation term) is identifiable and the ground truth value can be cor-

rectly recovered when the observation number of the later day is small but the total standard

deviation will be overestimated when the observation number of the later day getting larger.

In this study, we generate partially observed synthetic data only on days 1 and 3 using the

LNA model with synthetic experimental designs in the form [# of mice being observed at day

1, # of mice being observed at day 3] and the observation numbers are [48,1], [48,3], [48,5],

[48,10], [48,20] respectively. During the Bayesian inference, all the rate value parameters are

fixed to their ground truth values, and we only infer standard deviation terms and latent

initial condition cell counts. From Figure 4.9 (a-e), we can see that as the mice observation
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number on day 3 increases, both NHODE and LNA models tend to overestimate the total

standard deviation level to compensate for the data variability on day 3, which stems from

the stochastic nature of solving LNA differential equations.

Thirdly, we want to explore the relationship between LNA/NHODE inference results and

the magnitudes of initial condition variance and technical measurement errors. Thus, we

propose two types of simulation experiments for this exploration. One is to fix the initial

condition cell count variance at the ground truth value and infer all other parameters.

Simulation Study 4.3. Generate partially observed synthetic transplant datasets from the

LNA model with different initial condition standard deviation and technical standard devia-

tion levels. Fix the initial condition standard deviation level at the ground truth value during

the Bayesian inference and compare all other parameter value posterior distributions and

dynamic uncertainty plots between fitted LNA and NHODE models.

In this study, we generate partially observed transplantation synthetic datasets with different

log-scale initial conditional standard deviation level δinit=[0.0001, 0.001, 0.01, 0.02, 0.05 ,0.1

,0.2 ,0.3]. We fix the initial condition standard deviation term to its ground truth value and

infer all other parameters. As we can see in Figure 4.10 (a-d), when δinit is small, then both

ODE and LNA tend to overestimate the technical standard deviation δtech level to account

for the data variability from the LNA data generation process. As the fixed ground truth

value of δinit increases, the posterior means of δtech for both NHODE and LNA move closer

to their ground truth values, and the ground truth values can be correctly recovered when

δinit is large enough e.g., δinit=0.2 or 0.3. The NHODE and LNA dynamic uncertainty plots

for the LTHSCs can be seen in the (e-h), and (i-l), respectively. We can see that the 2σ BCIs

of the NHODE model get closer to that of the LNA model when δinit increases. In general,

the NHODE and LNA inference results become similar as δinit increases. The full posterior

violin plot and dynamic uncertainty plot can be seen in the Appendix Figures (B.7-B.10).
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In Appendix Figure B.11, we explore the technical error term δtech using the NHODE and

the LNA models when the ground truth values of δrealinit and δrealtech are relatively large. We

find that the larger the δrealinit and δrealtech, the better δtech can be correctly identified. The δtech

posterior mean of LNA is generally closer to the δrealtech than that of the NHODE inference. In

Figure Appendix B.12, we explore the technical error term δtech using the NHODE and LNA

models when the ground truth values of δrealinit and δrealtech are relatively small. The results are

similar to the case when δrealinit is relatively large. Then we further decrease the δinit. Figure

4.11 shows the case when δinit = 1e-4, δtech= 0.1. In Figure 4.11, (a-j), we can observe

that LNA inference has narrower posteriors than that of the NHODE model inference and

(g) LNA inference can correctly identify the technical standard deviation value while ODE

inference using the NHODE model overestimates it.

Fourthly, we do the simulation experiment in another way using the synthetic data generated

in simulation study 4.3 by fixing the technical variance at the ground truth value and inferring

all other parameters.

Simulation Study 4.4. Use the same synthetic data generated from simulation study 4.3.

Fix the technical standard deviation term at its ground truth value during the Bayesian

inference and compare the parameter value posterior distributions and dynamic uncertainty

plots between fitted LNA and ODE models.

In this study, we use the same partially observed synthetic dataset generated in simulation

study 4.3. Then, we fix the technical standard deviation term δtech to its ground truth

value and infer all the other parameters. As we can see in Figure 4.12 (a-d), both the LNA

and the NHODE inference overestimate the initial condition noise level δinit. The posterior

distribution mean of δinit moves closer to the ground truth values as δinit increases. Figures

4.12 (e-h), (i-l) show the NHODE and LNA dynamic uncertainty plots for the LTHSC

dataset, respectively. We observe that NHODE 2σ BCIs are closer to that of LNA when

δinit increases. The full posterior violin plot and posterior predictive plot results can be seen
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in Appendix Figures (B.13-B.16). In Appendix Figure B.17, we explore the initial condition

standard deviation term δinit using ODE and LNA inference when the ground truth values

of δrealinit and δ
real
tech are in relatively large scales which are respectively selected in [0.05, 0.1, 0.2,

0.3] and [0.1, 0.2, 0.3]. We find that the δinit posterior means of LNA are generally closer to

δrealinit than those from the NHODE inference. When δrealtech is large enough and δrealinit is small

enough, both ODE and LNA tend to correctly identify δrealinit . The best δinit posterior for

both the NHODE and LNA model inferences is achieved in Figure B.17 (i) when δrealinit has

a relatively small value (e.g., 0.05) and δrealtech has relatively large value (e.g., 0.3). In figure

Appendix B.18, we explore the initial condition standard deviation term δinit using ODE

and LNA inference when the ground truth values of δrealinit and δrealtech are in relatively small

scales which are respectively selected in [0.001, 0.005, 0.01, 0.02] and [0.001, 0.01, 0.1, 0.3].

We observe that when δrealtech is 0.001 and 0.01, the LNA inference tends to classify all the data

heterogeneity into initial condition variance. When δrealtech increases to 0.1 and 0.3, then the

LNA inference is more likely to correctly identify δinit while the NHODE inference overesti-

mates it. We show the prior posterior violin plots and dynamic uncertainty plots for selected

case (m) in figure 4.13 when δrealinit = 0.02 and δrealtech = 0.3. We can see that most of the

LNA inference posteriors can correctly identify the ground truth values for the parameters

of interest, while some of the posteriors of the NHODE model inference do not recover the

correct value (b,e,f,g). The dynamic uncertainty plots for LTHSCs for fitted NHODE and

LNA models are shown in (k,l) respectively. We can observe the LNA 2σ BCIs are much

wider than that of ODE while their posterior interval widths are similar.

Fifthly, we want to validate a potential solution for the issue described in hypothesis 4.1 that

LNA classifies data heterogeneity into initial condition variation instead of in the stochastic

time evolution process when initial condition variation can be substantial.

Simulation Study 4.5. Generate partially observed synthetic transplant dataset from the

LNA model with different initial condition standard deviation levels. Fix both the initial
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condition and technical standard deviation terms at ground truth values during the Bayesian

inference and compare the parameter value posterior distributions and dynamic uncertainty

plots between fitted LNA and NHODE models. This is motivated by the fact that the technical

standard deviation term can be directly estimated if there is enough vehicle data, while the

total standard deviation term can be directly estimated if there is enough data observation

at day 1. We can then estimate the initial condition standard deviation based on estimated

technical and total standard deviation terms.

Based on the fact that technical noise and initial condition noise can be directly estimated

when there are enough vehicles and day 1 observation, we perform the Bayesian inference with

initial condition noise and technical noise both fixed to the ground truth values during the

Bayesian LNA inference with partially observed synthetic datasets. As we can see from the

prior posterior violin plots in Figure 4.14 (a-i), all the parameters of interest are identifiable

and the ground truth values are recovered correctly.

Those simulation results support our hypothesis 4.1 about the relationship between the

level of initial condition standard deviation δinit and technical standard deviation δtech, and

differences between inference results using the LNA and the NHODE models. We find when

the biological variation in the initial condition is relatively small and technical standard

deviation is relatively large, then the ground truth values can be correctly recovered by the

LNA model while that cannot be fully correctly recovered by ODE inference. However, when

the initial condition standard deviation is substantial, the LNA model inference and ODE

inference results are similar.
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4.3.4 Inference Results on Experimental Hematopoietic Dataset

with Fixed Initial Condition and Technical Variance

Motived by simulation study 4.5, since the cell count measurement of vehicles (which is also

treated as data at day 30) is only affected by technical variation source, we can estimate

from eight vehicles that δtech ≈ 0.35 in for log-scale cell counts. On the first observation

day, the cell count measurement is only affected by the initial condition cell count and

technical variation without any biological variation. We can estimate the sum standard

deviation
√
δ2init + δ2tech. The initial condition standard deviation can then be estimated by

those two terms, and we find that δinit ≈ 0.3. We then perform the Bayesian inference

for the experimental dataset with fixed initial condition standard deviation and technical

measurement standard deviation. The prior posterior violin plot and dynamic uncertainty

plot results in Figure 4.15: (a-j) show that LNA inference has narrower posteriors than those

of the NHODE and HODE models, which indicates that LNA is more certain about those

parameters. (j,k) show the ODE and LNA dynamic uncertainty plots respectively. We can

see that the LNA model can generate wider 95% credible intervals of posterior predictive

distribution based on differential equation solutions than that of ODE, even the parameter

posteriors of LNA are generally narrower. (l) describes dynamic uncertainty plots for the

PSIS-LOO Model Selection Table for Experimental Dataset
Metric / Model LNA NHODE HODE
PSIS-LOO cv elpd -66.20 -68.22 -66.63
PSIS-LOO näıve elpd -40.90 -42.22 -33.88
PSIS-LOO loo weight 0.5608 0.0743 0.3648
Number of Parameters 1932 156 482

Table 4.2: Model selection table for hematopoiesis experimental dataset. PSIS-LOO cv epld:
out-of-sample leave-one-out cross-validation expected log predictive density; PSIS-LOO
näıve lpd: in-sample leave-one-out expected log predictive density; PSIS-LOO loo weight:
model weight by PSIS-LOO; The most important metric we want to maximize is cv epld.
We can see that the chemical reaction (CR) LNA model achieves the highest value of cv epld
using the experimental dataset.
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HODE model. We can see that the shaded areas of the HODE model are much wider than

that of ODE and LNA. Besides, from Figure 4.15, we can see that the shaded areas of the

HODE model near the steady states (day 30) are still wide, which is not as expected, while

that of the LNA model is wide at early observation days but relatively narrow near the

steady state as expected since it indicates the large biological variability among mice near

the steady states. By using the Bayesian model selection method PSIS-LOO-CV described in

section 2.3.2, we found that the LNA model has the highest out-of-sample elpdLOO= -62.84

among the three models followed by the HODE model in table 4.3.

Model Selection for Experimental Dataset with std terms Fixed
Metric / Model LNA NHODE HODE
PSIS-LOO cv elpd -62.84 -67.83 -66.18
PSIS-LOO näıve elpd -46.47 -44.76 -33.86
PSIS-LOO loo weight 0.9594 0.006 0.034
Number of Parameters 1932 156 482

Table 4.3: Model selection table for hematopoiesis 3D real dataset when both initial condition
and technical measurement standard deviation terms fixed. PSIS-LOO cv epld: out-of-
sample leave-one-out cross-validation expected log predictive density; PSIS-LOO näıve lpd:
in-sample leave-one-out expected log predictive density; PSIS-LOO loo weight: model weight
by PSIS-LOO; The most important metric we want to maximize is cv epld. We can see that
the chemical reaction (CR) LNA model achieves the highest value of cv epld using the
experimental dataset.
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Figure 4.5: Dynamic uncertainty plots for fitting non-hierarchical/hierarchical ODE
(ODE/HODE) and LNA models to the synthetic dataset which is generated by Gillespie
algorithm using the parameter values as MAP optimization point estimation on the exper-
imental data (ExpD). LT: LTHSCs; ST: STHSCs; In dynamic uncertainty plots (a-i), the
grey shaded areas refer to the 95% credible intervals of time evolution differential equation
solutions without technical measurement error; black dot marks refer to partially observed
data, each dot related to a certain mouse; black trajectory refers to the median of time evolu-
tion differential equation solutions; Line plots refer to the 95% posterior predictive intervals
at the experimental observation day; (a-c) plots for LT data in SD1; (d-f) plots for ST data
in SD1; (g-i) plots for MPP data in SD1
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Figure 4.6: Prior and posterior violin plots for fitting non-hierarchical/hierarchical ODE
(ODE/HODE) and LNA models to the experimental dataset. (a-l) prior and fitted posterior
violinplots for (a) v1: LTHSCs self-renewal rate; (b) v2: LTHSCs asymmetric division rate;
(c) v3 STHSCs asymmetric division rate; (d) r1: LTHSCs effective differentiation rate into
STHSCs; (e) q1 STHSCs effective differentiation rate into MPPs; (f) u3 MPP lumped decay
rate.(g) Init Std: initial condition cell count standard deviation; (h) Tech Std: technical
measurement error standard deviation; (i) LT init: LTHSCs initial cell count mean; (j) ST
init: STHSCs initial cell count mean; (k) MPP init: MPPs initial cell count means; (l) offset
index: offset parameter value between the two experiment datasets due to the batch effects
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Figure 4.7: Dynamic uncertainty plots for fitting non-hierarchical/hierarchical ODE
(ODE/HODE) and LNA models to the experimental data (ExpD). LT: LTHSCs; ST: STH-
SCs; In dynamic uncertainty plots (a-i), the grey shaded areas refer to the 95% credible
intervals of time evolution differential equation solutions without technical measurement er-
ror; black dot marks refer to partially observed data, each dot related to a certain mouse;
black trajectory refers to the median of time evolution differential equation solutions; Line
plots refer to the 95% posterior predictive intervals at the experimental observation day;
(a-c) plots for LT data in ExpD1; (d-f) plots for ST data in ExpD1; (g-i) plots for MPP data
in synthetic ExpD1
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Figure 4.8: Prior and posterior violin plots, dynamic uncertainty plots for simulation study
4.1 using time-series synthetic datasets. δinit: initial condition standard deviation; δtech:
technical measurement standard deviation; δrealinit : ground truth values of δinit. (a-d) prior
and posterior violin plots for δinit for synthetic dataset generated by different values of δrealinit

(e-h) prior and posterior violin plots for δtech for synthetic dataset generated by different
values of δrealinit (i-l) dynamic uncertainty plots for LTHSCs data fitted by LNA model where
the grey shaded areas refer to the 95% credible intervals of time evolution differential equation
solutions without technical measurement error; black dot marks refer to partially observed
data, each dot related to a certain mouse; black trajectory refers to the median of time
evolution differential equation solutions; Line plots refer to the 95% posterior predictive
intervals at the observation day
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Figure 4.9: Prior and posterior distributions of the initial condition and technical measure-
ment standard deviation sum for simulation study 4.2 using partially observed synthetic
dataset. Blue areas: prior distributions of sum standard deviation; orange areas: fitted
LNA posterior distributions of total standard deviation; green areas: fitted ODE posterior
distributions of total standard deviation; green line: ground truth values of total standard
deviation. The dataset only includes day 1 and day 3 observation after the perturbation
exam; the synthetic mice data used on day 1 and 3 are respectively (a) [48,1], (b) [48,3], (c)
[48,5], (d) [48,10], (e) [48,20]
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Figure 4.10: Prior and posterior violin plots, dynamic uncertainty plots for simulation study
4.3 where initial condition standard deviation are fixed at ground truth value and infer all
other parameters during the Bayesian inference. δinit: initial condition standard deviation;
δtech: technical measurement standard deviation; δrealinit : ground truth values of δinit. (a-d)
prior and posterior violin plots for technical measurement standard deviation δtech. Dynamic
uncertainty plots (e-h) for LTHSCs data fitted by the ODE model. (i-l) for LTHSCs data
fitted by the LNA model. The grey shaded areas refer to the 95% credible intervals of
time evolution differential equation solutions without technical measurement error; black dot
marks refer to partially observed data, each dot related to a certain mouse; black trajectory
refers to the median of time evolution differential equation solutions; Line plots refer to the
95% posterior predictive intervals at the observation day
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Figure 4.11: Prior and posterior violin plots, dynamic uncertainty plots for the selected case
when δrealinit = 1e-4, δrealtech=0.1 and the ground truth parameter values can be correctly recovered
by LNA model while cannot be fully correctly recovered by ODE model for simulation
study 4.3 fix initial condition standard deviation at ground truth value and infer all other
parameters. (a-j) prior and fitted posterior violin plots for (a) v1: LTHSCs self-renewal rate;
(b) v2: LTHSCs asymmetric division rate; (c) v3 STHSCs asymmetric division rate; (d) r1:
LTHSCs effective differentiation rate into STHSCs; (e) q1 STHSCs effective differentiation
rate into MPPs; (f) u3 MPP lumped decay rate.(g) Tech Std: technical measurement error
standard deviation; (h) LT init: LTHSCs initial cell count mean; (i) ST init: STHSCs initial
cell count mean; (j) MPP init: MPPs initial cell count means; (k,l) dynamic uncertainty plots
for LTHSCs data fitted by ODE and LNA. The grey shaded areas refer to the 95% credible
intervals of time evolution differential equation solutions without technical measurement
error; black dot marks refer to partially observed data, each dot related to a certain mouse;
black trajectory refers to the median of time evolution differential equation solutions; Line
plots refer to the 95% posterior predictive intervals at the observation day.
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Figure 4.12: Prior and posterior violin plots, dynamic uncertainty plots for simulation study
4.4 where technical measurement standard deviation is fixed at ground truth value and
infer all other parameters during the Bayesian inference. δinit: initial condition standard
deviation; δtech: technical measurement standard deviation; δrealinit : ground truth values of
δinit. (a-d) prior and posterior violin plots for technical measurement standard deviation
δtech. Dynamic uncertainty plots (e-h) for LTHSCs data fitted by the ODE model. (i-l) for
LTHSCs data fitted by the LNA model. The grey shaded areas refer to the 95% credible
intervals of time evolution differential equation solutions without technical measurement
error; black dot marks refer to partially observed data, each dot related to a certain mouse;
black trajectory refers to the median of time evolution differential equation solutions; Line
plots refer to the 95% posterior predictive intervals at the observation day
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Figure 4.13: Prior and posterior violin plots, dynamic uncertainty plots for the selected case
when δrealinit = 0.02, δrealtech=0.3 and the ground truth parameter values can be correctly recovered
by LNA model while cannot be fully correctly recovered by ODE model for simulation study
4.4 fix technical measurement standard deviation at ground truth value and infer all other
parameters. (a-j) prior and fitted posterior violin plots for (a) v1: LTHSCs self-renewal rate;
(b) v2: LTHSCs asymmetric division rate; (c) v3 STHSCs asymmetric division rate; (d) r1:
LTHSCs effective differentiation rate into STHSCs; (e) q1 STHSCs effective differentiation
rate into MPPs; (f) u3 MPP lumped decay rate.(g) Tech Std: technical measurement error
standard deviation; (h) LT init: LTHSCs initial cell count mean; (i) ST init: STHSCs initial
cell count mean; (j) MPP init: MPPs initial cell count means; (k,l) dynamic uncertainty plots
for LTHSCs data fitted by ODE and LNA. The grey shaded areas refer to the 95% credible
intervals of time evolution differential equation solutions without technical measurement
error; black dot marks refer to partially observed data, each dot related to a certain mouse;
black trajectory refers to the median of time evolution differential equation solutions; Line
plots refer to the 95% posterior predictive intervals at the observation day.
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Figure 4.14: Prior and posterior violin plots, dynamic uncertainty plots when both initial
condition standard deviation and technical measurement standard deviation terms are fixed
at ground truth values for simulation study 4.5 during the Bayesian inference. (a-i) Violin
plots for priors and inferred posteriors parameter distributions. Init condition standard
deviation and technical measurement standard deviation are both fixed to ground truth
value during the inference time. v1: LTHSCs self-renewal rate; v2: asymmetric division rate;
r1: LTHSCs directly differentiate into STHSCs rate. q1: STHSCs directly differentiate into
MPP with rate constant q1. u3: MPP lumped decay rate. (a-l) dynamic uncertainty plots
for LTHSC, STHSC, and MPP. the grey shaded areas refers to the 95% credible intervals
of time evolution differential equation solutions; black dots refer to partially observed data,
each dot related to a certain mouse; black trajectory refers to median of time evolution
differential equation solutions; Line plots refer to the 95% posterior predictive intervals at
the experimental observation day;
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Figure 4.15: Prior and posterior violin plots, dynamic uncertainty plots for fitting non-
hierarchical/hierarchical ODE (ODE/HODE) and LNA models to the experimental datasets
with initial condition standard deviation and technical measurement standard deviation fixed
at data estimated level. (a-j) prior and fitted posterior violin plots for (a) v1: LTHSCs self-
renewal rate; (b) v2: LTHSCs asymmetric division rate; (c) v3 STHSCs asymmetric division
rate; (d) r1: LTHSCs effective differentiation rate into STHSCs; (e) q1 STHSCs effective
differentiation rate into MPPs; (f) u3 MPP lumped decay rate.(g) LT init: LTHSCs initial
cell count mean; (h) ST init: STHSCs initial cell count mean; (i) MPP init: MPPs initial cell
count means; (j,k,l) dynamic uncertainty plots for LTHSCs data fitted by NHODE, HODE
and LNA models. The grey shaded areas refer to the 95% credible intervals of time evolution
differential equation solutions without technical measurement error; black dot marks refer
to partially observed data, each dot related to a certain mouse; black trajectory refers to the
median of time evolution differential equation solutions; Line plots refer to the 95% posterior
predictive intervals at the observation day.
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4.4 Conclusion

In this project, we consider an alternative approach to account for data heterogeneity by

using a stochastic process model under a non-hierarchical Bayesian framework to interpolate

the latent cell count time evolution data generation process instead of letting the rate pa-

rameter values vary among mice. The computational tractability of Bayesian inference with

a stochastic process model is achieved by using LNA which can be regarded as a compromise

between the deterministic ODE model and intractable SDE model. Since the HSCs self-

renewal rate for the best-fitted 2-compartment model to the experimental dataset is a bit

higher than expected and also the larger the counts for each cell compartment, the similar

the LNA forward simulation results to the ODE forward simulation results. We extended

our model to 3D by decomposing HSCs into LTHSCs and STHSCs then derived the corre-

sponding LNA formula for this model in the log scale. After evaluating models on a synthetic

dataset is generated by the Gillespie algorithm using the parameter values as MAP optimiza-

tion point estimation on the experimental data. using PSIS-LOO-CV, we found that the

Bayesian LNA model can further improve the out-of-sample expected log predictive density

than the hierarchical model we previously developed. We found that Bayesian LNA infer-

ence can generally lead to narrower posterior distributions which means that it can be more

certain to correctly identify the ground truth parameter values. By fitting 3-compartment

NHODE, LNA and HODE models to the experimental dataset, we find a limitation that

fitted posterior distributions for parameters of interest and dynamic uncertainty posterior

predictive plots between Bayesian ODE inference and Bayesian LNA inference are similar

since the inferred initial condition variance is substantial. We then propose a hypothesis

that the Bayesian inference results of LNA and ODE models are distinct when ground truth

initial condition cell count variation is relatively small and the inference results become sim-

ilar as the initial condition variation gets larger. To validate this hypothesis, we experiment

on a series of simulation experiments includes: using time-series synthetic datasets instead
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of partially observed synthetic data to see whether all the parameters can be correctly re-

covered; only using early observation data to show how the LNA model misclassifies the

biological variability into initial condition standard deviation instead of to the stochastic

nature of solving stochastic differential equations; generate synthetic dataset using different

magnitudes of initial condition standard deviation and technical measure standard deviation.

During the Bayesian inference, fixing initial condition standard deviation at its ground truth

and inferring all other parameters or fixing technical measure error at its ground truth and

inferring all other parameters. We find that posterior violin plots and 2σ Bayesian credible

intervals (BCIs) of the stochastic process model and ODE model inference is distinct when

the real initial condition cell count variation is relatively small while the inference results

become similar as initial condition variation gets larger, and finally propose a solution to this

limitation by estimating the initial condition standard deviation and technical measurement

standard deviation directly from the experimental dataset and fix both standard deviations

during the Bayesian inference. We observe similar results to that of the fitting models to

the synthetic dataset generated by the Gillespie algorithm using the parameter values as

MAP optimization point estimation on the experimental data: Bayesian LNA inference can

generally lead to narrower posterior distributions than that of NHODE and HODE which

means that LNA can be more certain to correctly identify the parameter values. The exper-

imental datasets are best described by the LNA model since it achieves the highest value of

out-of-sample expected log predictive density.
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Chapter 5

Bayesian Optimal Experimental

Design for Hematopoesis using Game

Theory

5.1 Introduction

Bayesian inference is attractive in situations where we do not have much data but have some

prior knowledge about model parameters that can uncover the underlying mechanism of

biological processes. Selecting a good experimental design is very important to control the

costs of experiments while maximizing information gain from the data. Therefore, optimal

experimental design has a long history in pharmacokinetics, ecology, and epidemiology [19,

3, 81, 54, 80]. Take the hematopoiesis experiment in the previous chapter, for example. Mice

are sacrificed during the bone marrow extraction operation in order to measure hematopoietic

cell counts. Thus, the resulting cell count data obtained from the experiment can be only

partially observed for each individual instead of observed as time series. Thus, working with

100



partially observed data from mice is challenging, so it is crucial to carefully choose a data

collection schedule after the perturbation experiment: on what days to sacrifice mice and

how many to sacrifice on each day. A classical Bayesian approach to finding an optimal

experimental design is seeking to maximize the Kullback-Leibler (KL) divergence between

prior and posterior distributions by considering a large number of potential designs [42, 11,

32, 18]. However, this optimization procedure is very expensive when dealing with high-

dimensional complex model systems. To overcome this difficulty, a game theory approach

was recently developed [55]. We use this new method to find the optimal experimental

design for our hematopoiesis perturbation experiment and avoid repeated approximations of

the posterior distributions under all possible experimental designs.

5.1.1 Motivating Examples

In a previous work on choosing an optimal experimental design for a hematopoiesis per-

turbation experiment, the authors selected the optimal design with a Bayesian utility score

based on information gain using KL divergence and demonstrated that proper designs can

lead to better estimation of parameters of interest with only a few observations [42]. Let a

dataset be Dobs, model parameters of interest be Θ, and a design be τ . Then the expected

utility score for design τ can be written as

U(τ ) = EΘ,Dobs
[u(Dobs, τ )] =

∫
Dobs

∫
Θ

u(Dobs, τ )p(yobs|Θ, τ )π(Θ)dΘdyobs, (5.1)

where the KL divergence score function is

u(Dobs, τ ) =

∫
Θ

log

(
p(Θ|Dobs, τ )

p(Θ)

)
p(Θ|Dobs, τ )dΘ. (5.2)

The diagram illustration for the optimal experimental design using the utility in Eqn.(5.1)
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can be seen in Figure 5.1. Start from selecting various experimental designs e.g., τ 1, τ 2, τ 3

that specify different sets of observation days and different numbers of mice to observe on

those days. Then, we generate multiple synthetic datasets for each experimental design based

on the prior belief of the model parameters under the Bayesian framework, e.g., synthetic

dataset j of design k is denoted as Dk
j . Then, we perform the posterior calculation for

each synthetic dataset, e.g., we calculate posterior density p(Θ|Dk
j ) of synthetic dataset

Dk
j . Finally, we calculate and compare the expected utilities using Eqn.(5.1) to choose one

optimal design among all the potential designs. The best design is selected as the one with

the highest expected utility.

𝑡0 𝑡1 𝑡2 𝑡3

Design 𝜏1

𝑡4

Generate Synthetic Data D1
{1:N}

Posterior Calculation P(Θ| D1
{1:N} ) 

U(D1
{1:N} ,𝜏1)

Expected Utility

𝑡0 𝑡1 𝑡2 𝑡3

Design 𝜏2

𝑡4

Generate Synthetic Data D2
{1:N}

U(D2
{1:N} ,𝜏2)

𝑡0 𝑡1 𝑡2 𝑡3

Design 𝜏3

𝑡4

Generate Synthetic Data D3
{1:N}

U(D3
{1:N} ,𝜏3)

Posterior Calculation P(Θ| D2
{1:N} ) 

Posterior Calculation P(Θ| D3
{1:N} ) 

Figure 5.1: Diagram illustration for the optimal experimental design motivating examples.
τj refers to the experimental design j. Dk

j : refers to synthetic dataset j of design k; p(Θ|Dk
j )

refers to posterior density of synthetic dataset Dk
j . U(D

k
j , τ j) refers to the expected utility

for synthetic dataset Dk
j from experimental design τj
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5.2 Methods

Here we follow [55, 74] to provide a derivation for a score function based on a Fisher infor-

mation distance and review a framework for the game theory optimization approach.

5.2.1 Fisher Information Matrix (FIM)

The Fisher information matrix (FIM) for parameters of interest Θ can be regarded as an

approximation to the posterior precision of Θ [72] or the expected value of the observed

Fisher information (the negative of the hessian matrix of the log-likelihood function with

respect to the parameter vector). Let τ be the experimental design and p(D|Θ, τ ) be the

prior predictive density function. The FIM can be written as

IΘ(Θ, τ ) = ED∼p(D|Θ,τ )(u(D,Θ, τ )tu(D,Θ, τ )), (5.3)

where u(D,Θ, τ ) refers to the score function (the gradient of the log-likelihood function with

respect to the parameter vector). Let the scoring rule (which provides a summary measure

for the evaluation of probabilistic prediction) be S(q(Θ),Θ) where q(Θ) is the density of Θ.

Then the expected utility of design τ for the Bayesian approach can be chosen as

Uentropy diff = EΘ∼π(Θ|D,τ )S(π(Θ|D, τ ),Θ)− EΘ∼π(Θ)S(π(Θ),Θ), (5.4)

Udivergence = EΘ∼π(Θ)[S(π(Θ|D, τ ),Θ)− S(π(Θ),Θ)], (5.5)

where Uentropy diff measures the entropy difference of the posterior and prior density distribu-

tions and Udivergence measures the divergence from prior density to posterior density.
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5.2.2 Hyvärinen Score Rule

Hyvärinen score rule is very popular for unnormalized densities since the score function

S(q(Θ),Θ) only depends on derivatives of log density log(q(Θ)). The score function, entropy

difference and density divergence utilities under Hyvärinen score rule can be written as

S(q(Θ),Θ)) = 2∆log(q(Θ),Θ)) + ||∇log(q(Θ),Θ)||2, (5.6)

Uentropy diff = EΘ∼π(Θ|D,τ )||∇logπ(Θ|D, τ )||2 − EΘ∼π(Θ)||∇logπ(Θ)||2, (5.7)

Udivergence = EΘ∼π(Θ)||∇logπ(Θ|D, τ )− ||∇logπ(Θ)||2, (5.8)

where || · || refers to the L2 norm. Let

Utrace = EΘ∼π(Θ) [tr(IΘ(Θ, τ ))] = tr
(
EΘ∼π(Θ) [IΘ(Θ, τ )]

)
. (5.9)

Let

Ī = EΘ∼π(Θ)I(Θ, τ ). (5.10)

Since the Utrace and Uentropy diff and Udivergence are proved to have the same expectation value

with only additive constant difference [74], they are equivalent when used to choose an

optimal experimental design. An intuitive explanation for this equivalence is that maximizing

Utrace is approximately equivalent to maximizing the sum of the eigenvalues {λ1, · · ·λn} of

matrix Ī, which is often equivalent to maximizing one of the eigenvalue λi of matrix Ī while

other eigenvalues λjare small for ∀j ∈ (1, · · ·N), j ̸= i [74, 51],

max
Θ,τ
Utrace ⇐⇒ max

n∈{1,···N}

∑
λn ⇐⇒ maxλi while λj are small for ∀j ∈ (1, · · ·N), j ̸= i.

(5.11)

Then the Fisher information gain (FIG) is defined as

JFIG = EΘ∼π(Θ)tr(I(Θ, τ )) = tr(EΘ∼π(Θ)I(Θ, τ )). (5.12)

104



It can be also shown that maximizing Utrace is equvilent to maximizing JFIG [56]. Then

under the Hyvärinen Score Rule, JFIG can be used as a utility based on the trace of the

Fisher information.

5.2.3 Game Theory Framework

The game involves two players — an experimenter and a critic and five decision actions:

selecting experimental design τ , selecting an invertible matrix A, draring parameters of

interest Θ from prior distributions, generating observed data y and calculating critic reward

function K. Note that the reward function for the experimenter is −K. Since the optimal

design problem involves players performing actions sequentially, e.g., changing designs at

each iteration, it is appropriate to consider the subgame perfect equilibria (SPE) condition:

players take action to maximize their expected reward based on the assumption that later

actions will also do so.

At each iteration during the game given the current design τ , first, parameters of interest Θ,

e.g., rate parameter values and initial condition values, are drawn from the prior distribu-

tions. Then the critic selects an invertible change of base matrix A, creating new parameter

variables

Φ = A−1Θ (5.13)

, that aims to avoid poor designs in practice (e.g., requiring all observations to occur at a

single time point when expected utility is optimized given accurate inference for one linear

combination of parameters but not for others [55]). By selecting a linear transformation of

the parameter Θ to less favorable ones Φ, the framework can then account for optimization

under different sets of parameters. Note that posterior densities and the score function are
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unchanged by this base change operation if |det(A)| = 1 since

πΦ(Φ|y, τ ) = πΘ(Θ|y, τ )|det(A)| = πΘ(Θ|y, τ ), and (5.14)

log(πΦ(Φ|y, τ )) = log(πΘ(Θ|y, τ )) + log(|det(A)|) = log(πΘ(Θ|y, τ )). (5.15)

Next, based on the Eqns.(5.3, 5.12, 5.13), let

K(τ ,A) = −EΘ∼π(Θ)tr[(Au(Θ, τ ))tAu(Θ, τ )] = −EΘ∼π(Θ)tr[A
tI(Θ, τ )A] (5.16)

be the reward of critics, and then the experimenter will select a new design that tries to

maximize his reward -K(τ ,A) or equivalently minimize the critic’s reward K(τ ,A). Note

that the selection decisions made by the experimenter and the critic are based on the back-

ward auto differentiation of their reward from the last iteration. Then satisfying the SPE

criteria is equivalent to solving the nested minimax optimization problem

min
τ

max
A
K(τ ,A). (5.17)

5.2.4 ODE Model

Here we use the previously developed two-compartment ODE model for hematopoiesis dy-

namics in Section 3.2.2:
N ′

HSC = (v1 − r1 ·NMPP ) ·NHSC ,

N ′
MPP = (v2 + r1 ·NMPP ) ·NHSC − u3 ·NMPP ,

(5.18)

where v1 is the HSCs net proliferation rate; r1 is the feedback regulation parameter from

MPPs on HSC net proliferation rate; v2 is the HSCs asymmetric division rate; u3 is the

MPPs lumped decay rate. The initial condition mean of HSCs and MPPs µHSC and µMPP
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Algorithm 6 Nested minimax optimization gradient decent ascent (GDA) algorithm

Require: τ init,Ainit, lrA, lrτ , F lagreg, N,µΘ, σΘ, λ
τ curr = τ init

Acurr = Ainit

for i in 1:N do
Θ ∼ LN(µΘ,σΘ)
θ,µinit, σinit, σtech = Θ
usol ← λ(θ,µinit)[τ curr]
J ← ∂usol/∂θ
Iθ(τcurr) = σ2

techJ tJ
if Flagreg == 0 then
K(τ curr,Acurr) = −tr[AtI(Θ, τ )A]

else
magnitude = log10(|tr[AtI(Θ, τ )A]|)− 1
K(τ curr,Acurr) = −tr[AtI(Θ, τ )A] + 10magnitude ∗ reg(τ curr)

end if
∇K(τ curr,Acurr)← auto differentiation
Acurr− = lrA · ∇AcurrK(τ curr,Acurr)
τ curr+ = lrτ · ∇τ currK(τ curr,Acurr)

end for

are chosen as 30, 67.

5.2.5 Bayesian Framework

For all the Bayesian frameworks, we set the priors of rate value parameters and initial

condition cell counts as follows

v1 ∼ LN(0.802, 0.1), v2 ∼ LN(0.672, 0.1), u3 ∼ LN(0.4016, 0.1)

r3 ∼ LN(1.63e− 6, 0.1), µHSC ∼ LN(30, 0.1), µMPP ∼ LN(67, 0.1) (5.19)

Beside, let λ([µHSC , µMPP ], τ [i]) be the ODE solution of Eqn.(5.18) with initial cell counts

[µHSC , µMPP ] and at observation time τ [i]. We consider three different Bayesian settings as

below.
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Setting 1

We consider the non-hierarchical Bayesian framework where all the mice start from the same

initial condition cell counts, and the technical standard deviation is fixed at 0.1 during the

observation time, then the rest of the framework can be written as

δinit = 0, δtech = 0.1,

and the initial condition cell counts for mouse i can be written as

ui = [µHSC , µMPP ].

Then the ith observation data follows the distribution

yi ∼MvN

λ(ui, τ [i])),

λ(ui, τ [i]))
2
HSC 0

0 λ(ui, τ [I]))
2
MPP

 · 0.01 · I
 .

Setting 2

We consider the hierarchical Bayesian inference framework where the initial condition cell

counts of all mice are sampled from the same prior distribution with fixed initial condition

standard deviation and technical standard deviation. Then the rest of the framework can

be written as

δinit = 0.1, δtech = 0.1,

and the initial condition cell counts for mouse i can be written as

ui ∼MvN

[µHSC , µMPP ],

µ2
HSC 0

0 µ2
MPP

 · 0.01 · I
 .
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The ith observation data follows the distribution

yi ∼MvN

λ(ui, τ [i])),

λ(ui, τ [i]))
2
HSC 0

0 λ(ui, τ [I]))
2
MPP

 · 0.01 · I
 .

Setting 3

We consider the hierarchical Bayesian framework where the initial condition cell counts of all

mice are sampled from the same prior distribution. The initial condition standard deviation

and technical standard deviation are also being inferred, then the rest of the framework can

be written as

δinit ∼ LN(0.1, 0.1), δtech ∼ LN(0.1, 0.1)

and the initial condition cell counts for mouse i can be written as

ui ∼MvN

[µHSC , µMPP ],

µ2
HSC 0

0 µ2
MPP

 · δ2init · I
 .

The ith observation data follows the distribution

yi ∼MvN

λ(ui, τ [i])),

λ(ui, τ [i]))
2
HSC 0

0 λ(ui, τ [I]))
2
MPP

 · δ2tech · I
 .

5.2.6 Regulation Term

Without any regulation constraint on the optimization reward function, the optimal designs

obtained from the framework can only include a few clusters of repeated observation days.

This happens when the Bayesian estimation is too certain of the oscillation dynamics based

on the given priors and differential equation model. However, in the real data analysis
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scenarios, without any model misspecification, we also want to observe more days with

some gap between them for model criticism. The reason for this is that the experimental

design days will converge to a few (e.g., three) clusters of repeated observation without any

regulation [56]. An intuitive explanation for this is that the early observation can learn

the initial condition values, the intermediate observations learn the rate parameters, the

late observation learns the steady state values, and consequently, all the parameters can be

identified through three clusters of repeated observations. Thus, we also propose a regulation

term that enforces at most three data that can be observed per day and a 2-day gap between

observations to keep a couple of data observed at other times for model criticism.

Algorithm 7 Regulation term for nested minimax optimization algrorithm

Require: τ
Flag1, Flag2, Reg = 0,0,0
τ sorted = sort(τ )
gaps = τ sorted[2 : N ]− τ sorted[1 : N − 1]
for i in 3:N-1 do

Flag1 = Flag2
if gaps[i− 2] ≤ 0.2 and gaps[i− 1] ≤ 0.2 then

Flag2 = 1
if Flag1 == 0 then

Reg += Relu(2.0-gaps[i])
else

Reg += Relu(2.0-gaps[i-1])
end if

end if
end for

5.2.7 Evaluation Metric

For design evaluation, we consider the Bayesian utility using KL divergence described in

section 5.1.1 that optimize the information gain by maximizing the distance between prior

and posterior distributions.
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5.3 Results

We employ the adversarial optimization approach with the three Bayesian settings described

in Section 5.2.5 and with or without the regulation term developed in Section 5.2.6. Each of

the six optimization cases is run for 600,000 iterations. The initial condition design includes

24 mice that are evenly spaced between day 0 and day 35.

5.3.1 Optimization Trace Plots and Final Designs

Optimization results without the regulation term for each Bayesian setting can be seen in

Figures 5.2, 5.4, and 5.6, respectively. These optimal designs are similar. Subfigure (a) refers

to the observation trace plot of the designs that the experimenter chosen changed in terms of

GDA iterations. We can see that designs converge to three clusters of repeated observation

days that are at an initial observation time, an intermediate time, and a late time when the

system is near the steady state. Subfigure (b) refers to the trace plots of matrix A element

values which are selected by the critic in log-scale in terms of the GDA iterations. We can

see that the elements in matrix A converge and mix well in the later iterations. Subfigure

(c) refers to the reward function value K(τ ,A), which the critic wants to maximize and the

experimenter wants to minimize. We can see that object K value converges and mixes well

in the later GDA iterations. Subfigure (d) refers to the experimental design at the last GDA

optimization iteration, which we use to calculate the Bayesian utility for design evaluation.

The optimization results with the regulation terms for each Bayesian setting can be seen in

Figures 5.3, 5.5, and 5.7, respectively. They have similar optimization designs. Subfigure

(a) refers to the observation trace plot of the designs that the experimenter chosen changed

in terms of GDA iterations. Different from the cases when there is no regulation term, the

designs selected by the experimenter are enforced to have some gaps when the number of a
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cluster exceeds the maximum capacity. This leads the designs to converge into nine clusters

of repeated observation days with gaps between them. Subfigure (b) refers to the trace

plots of matrix A element values which are selected by the critic in log-scale in terms of

the iterations. We can see that the elements in matrix A converge and mix well in the later

iterations. Subfigure (c) refers to the reward function value K. Different from the trace plot

for the cases without regulation term, we can see that in the late iterations, there are some

overshoots of the reward score value K(τ ,A). This is caused by the regulation term when

there are more than three data that want to converge into the same cluster or two clusters are

too close to each other. Then in the next few iterations after the overshoot, the experimenter

modifies his designs by enforcing extra data away from the cluster with maximum capacity,

and consequently, the reward value return to the steady state value magnitude. Subfigure

(d) refers to the experimental design at the last GDA optimization iteration, which we use

to calculate the Bayesian utility for design evaluation. We can see that observation data is

being assigned to 9 different clusters.

The final experimental designs for all the cases can be seen in Figure 5.8. From the non-

regulation (non-gap) cases, we can see that the intermediate and late observation clusters

move early as the initial condition standard deviation and technical standard deviation are

both fixed to 0.1 in log-scale or further both being inferred compared to the case when there

is no initial condition standard deviation and the technical standard deviation is fixed to

0.1 in the log-scale. From the regulation (gap) cases, we can see that the new observation

clusters are separated from the corresponding clusters in the non-regulation cases.
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5.3.2 Design Evaluation with Different Beyasian Settings and Reg-

ulation Condition

We evaluate the final designs for each Bayesian setting and regulation condition by using the

Bayesian utility described in Section 5.1.1. The mean Bayesian utility are estimated by 20

synthetic datasets for each design and 3000 iterations of the MCMC algorithm for parameter

posterior approximation using each synthetic dataset. From table 5.1, we can see that for

each setting, the expected Bayesian utility of the case without regulation are all larger than

that of the corresponding cases when regulation is on. This indicates that the minimax

optimization algorithm reliably returns the optimal designs for each Bayesian setting.

Design Comparison Table
Metric / Design Non-Reg Reg

Setting 1
Mean Bayesian utility 336.7 333.4

Setting 2
Mean Bayesian utility 367.5 349.5

Setting 3
Mean Bayesian utility 272.2 252.3

Table 5.1: Experimental design evaluation table using Bayesian utility. The mean Bayesian
utilities are estimated by Bayesian inference on synthetic datasets generated based on the
final GDA iteration design in different Bayesian settings and regulation conditions.
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Figure 5.2: Optimal experimental design using two-compartment ODE model under the
Bayesian setting that initial condition standard deviation is 0, technical standard deviation
term is fixed at 0.1 in log-scale and no regulation on the number of mice per observation
day and the gap between each observation cluster. GDA: gradient decent ascent algorithm.
Subfigure (a) refers to the traceplot, which describes the trajectories for each observation
time in terms of the GDA iterations. Subfigure (b) refers to the traceplots of the log-scale
element values in matrix A which are chosen by the critic to minimize the experimenter’s
expected rewards. Subfigure (c) traceplot of K objective value which refers to the criticizer’s
reward in terms of GDA iterations. Subfigure (d) refers to the experimental design at the
final GDA iteration.
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Figure 5.3: Optimal experimental design using two-compartment ODE model under the
Bayesian setting that initial condition standard deviation is 0, technical standard deviation
term is fixed at 0.1 in log-scale and with the regulation on the number of mice per observation
day and the gap between each observation cluster. GDA: gradient decent ascent algorithm.
Subfigure (a) refers to the traceplot, which describes the trajectories for each observation
time in terms of the GDA iterations. Subfigure (b) refers to the traceplots of the log-scale
element values in matrix A which are chosen by the critic to minimize the experimenter’s
expected rewards. Subfigure (c) traceplot of K objective value which refers to the criticizer’s
reward in terms of GDA iterations. Subfigure (d) refers to the experimental design at the
final GDA iteration.
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Figure 5.4: Optimal experimental design using two-compartment ODE model under the
Bayesian setting that both initial condition standard deviation and technical standard de-
viation term are fixed at 0.1 in log-scale and no regulation on the number of mice per
observation day and the gap between each observation cluster. GDA: gradient decent ascent
algorithm. Subfigure (a) refers to the traceplot, which describes the trajectories for each
observation time in terms of the GDA iterations. Subfigure (b) refers to the traceplots of
the log-scale element values in matrix A which are chosen by the critic to minimize the ex-
perimenter’s expected rewards. Subfigure (c) traceplot of K objective value which refers to
the criticizer’s reward in terms of GDA iterations. Subfigure (d) refers to the experimental
design at the final GDA iteration.
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Figure 5.5: Optimal experimental design using two-compartment ODE model under the
Bayesian setting that both initial condition standard deviation and technical standard de-
viation term are fixed at 0.1 in log-scale and with regulation on the number of mice per
observation day and the gap between each observation cluster. GDA: gradient decent ascent
algorithm. Subfigure (a) refers to the traceplot, which describes the trajectories for each
observation time in terms of the GDA iterations. Subfigure (b) refers to the traceplots of
the log-scale element values in matrix A which are chosen by the critic to minimize the ex-
perimenter’s expected rewards. Subfigure (c) traceplot of K objective value which refers to
the criticizer’s reward in terms of GDA iterations. Subfigure (d) refers to the experimental
design at the final GDA iteration.
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Figure 5.6: Optimal experimental design using two-compartment ODE model under the
Bayesian setting that both initial condition standard deviation and technical standard devi-
ation term are both being inferred and no regulation on the number of mice per observation
day and the gap between each observation cluster. GDA: gradient decent ascent algorithm.
Subfigure (a) refers to the traceplot, which describes the trajectories for each observation
time in terms of the GDA iterations. Subfigure (b) refers to the traceplots of the log-scale
element values in matrix A which are chosen by the critic to minimize the experimenter’s
expected rewards. Subfigure (c) traceplot of K objective value which refers to the criticizer’s
reward in terms of GDA iterations. Subfigure (d) refers to the experimental design at the
final GDA iteration.
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Figure 5.7: Optimal experimental design using two-compartment ODE model under the
Bayesian setting that both initial condition standard deviation and technical standard devi-
ation term are both being inferred and with regulation on the number of mice per observation
day and the gap between each observation cluster. GDA: gradient decent ascent algorithm.
Subfigure (a) refers to the traceplot, which describes the trajectories for each observation
time in terms of the GDA iterations. Subfigure (b) refers to the traceplots of the log-scale
element values in matrix A which are chosen by the critic to minimize the experimenter’s
expected rewards. Subfigure (c) traceplot of K objective value which refers to the criticizer’s
reward in terms of GDA iterations. Subfigure (d) refers to the experimental design at the
final GDA iteration.
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Figure 5.8: Observation time comparison of optimal experimental designs under different
Bayesian settings and regulation condtions.
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5.4 Conclusion

Since our data collection method, which involves doing bone marrow extraction operation for

each mouse, is destructive and consequently expensive, we want to investigate experimental

designs that optimize the amount of information gained about the model parameters. We

first walk through a traditional method for Bayesian experimental design, which requires the

repeated approximations of posteriors probability distributions of the parameters for calcu-

lating Bayesian utility. However, this is computationally prohibitive for high-dimensional

models. Thus, we employ a new adversarial approach that uses a game theory framework

for experimental design without calculating posteriors. We show that this new approach

reduces the optimal design problem to a nested minimax optimization problem that can

be solved by a gradient descent-ascent algorithm. Next, we propose a regulation term for

model criticism and then test the optimization approach under different Bayesian settings

from our previously developed Bayesian framework and regulation conditions. By evalu-

ating the optimal designs generated by the GDA algorithm using Bayesian utility, we find

that the minimax optimization algorithm using the game theory framework reliably returns

optimal experimental designs. For future work, we will experiment with this minimax opti-

mization approach with the ODE model which includes more cell types (e.g., decomposing

HSCs into long-term HSCs and short-HSCs or including more downstream cells of MPPs)

as well as using the stochastic LNA model to interpolate the missing data instead of using

the deterministic ODE model.
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Chapter 6

Conclusion & Future Directions

We have proposed a new chemical reaction (CR) ODE model and showed that it can fit data

generated by a traditional Hill equation (HE) ODE model in the context of hematopoiesis.

We then proposed a hierarchical Bayesian framework, which accounts for technical variation

as well as biological variation across individuals through rate parameters. By integrating

the chemical reaction ODE model and the hierarchical Bayesian framework, we mimicked

the stochastic biological process of hematopoiesis cell dynamics and performed parameter

inference for the cell division, differentiation, and decay rates as well as the feedback gains

for the various cell compartments. We used real experimental datasets to establish synthetic

datasets for a chemical reaction model with both Hierarchical and Non-Hierarchical Bayesian

frameworks. We employed a latent variable approach for the data generation process by

assuming that the missing data of cell counts follow the ODE trajectories.

By comparing the inference results for CR ODE and HE ODE models on synthetic data, we

found that both models can sufficiently recover the ground truth parameter values. However,

the CR ODE model is more likely to classify data noise as biological variation while the HE

ODE model tends to classify it as technical variation. We found that the Bayes factor model
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selection method can decisively select the model that produced the synthetic data. Finally,

we tested the chemical reaction ODE model with both frameworks on real experimental

datasets and found that the Bayes factor selected the hierarchical framework decisively.

This suggests that biological heterogeneity and variability is an important source of noise

in the data, and it implies that such variability needs to be considered when perturbing the

system to achieve desired results.

We then considered an alternative approach to accounting for data heterogeneity by us-

ing a stochastic process model in a non-hierarchical Bayesian framework for the latent cell

count time evolution data generation process instead of letting the rate parameter values

vary among mice. The computational tractability of Bayesian inference with a stochastic

process model is achieved using LNA, which can be regarded as a compromise between the

deterministic ODE model and the intractable SDE model. We extended our model to 3D by

separating HSCs into LTHSC and STHSC, then derived the corresponding LNA formula for

this model in log scale. After evaluating models on a synthetic dataset that mimics our real

experimental dataset using PSIS-LOO-CV, we found that the Bayesian LNA model can fur-

ther improve the out-of-sample prediction accuracy compared to the hierarchical model we

previously developed. The real experimental dataset also reliably selects the Bayesian LNA

as the appropriate model. We found that Bayesian inference of the LNA model generally

leads to narrower posterior distributions, which means that the LNA model is more certain

of the parameter values.

To understand the difference between the Bayesian stochastic process model and the Bayesian

ODE model, we proposed a hypothesis that: for hierarchical Bayesian inference with differen-

tial equations using partially observed datasets, the stochastic process model classifies most

of the data heterogeneity into the initial condition variation rather than in the stochasticity

of solving time evolution stochastic differential equations if both initial condition biological

variation and technical variations are substantial. We did a series of simulation experiments

123



which shows that the posterior violin plots and 2σ Bayesian credible interval (BCI) of the

stochastic process model and ODE model inference are distinct when the ground truth initial

condition cell count variation is relatively small while the inference results become similar

as initial condition variation gets larger. The results support our hypothesis and point out a

limitation of Bayesian inference using a stochastic process model with the partially observed

dataset. We then developed a procedure to overcome this limitation by directly measuring

the initial condition and technical measurement variances from the dataset and fixing those

variances during the Bayesian inference.

Since our data collection method is very expensive, we also want to maximize the informa-

tion gain from the data while controlling the experimental cost. Thus, we experimented

with exploring the best potential experimental design. A fundamental practice is to set

different experimental designs and generate synthetic data accordingly. By sampling the

posterior for each experimental design and calculating the information gain between priors

and those posteriors, one can select the design with the largest information gain as the

optimal design. However, this approach is very computationally expensive because of the

many MCMC samples that need to be generated. To avoid this computational cost, we

employed an adversarial approach to select the optimal experimental design that can be

used. Game Theory methods are used to circumvent the costly posterior sampling processes

used in Bayesian utility selection methods. Instead of repeatedly calculating the Bayesian

utility, we reduced the experiment selection process to an optimization minimax problem for

computation efficiency. We experimented with this approach with three Bayesian settings

using the two-compartment chemical reaction ODE model and a regulation term. The final

designs converge to a few clusters of repeated observation days. By evaluating those designs

with Bayesian utility, we found that the optimization results reliably return the optimal

experimental design based on information gain from the posterior to prior distributions.

As further work, we will extend our new explanatory and data-driven chemical reaction ODE
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model to account for more downstream cells of MPPs e.g. Granulocytes (GRAs) with our

new scalable Bayesian LNA Framework. By visualizing the second experimental dataset

which focuses on the early 10 days after the perturbation, we find that the GRAs are also

perturbed from their steady state value Thus, we will also incorporate GRAs into our model.

By using the new stochastic process model with more cell compartments (e.g. GRAs), our

current two experimental datasets may not be enough to reliably infer the model parameters.

For this situation, we will try to explore the best potential experimental designs using the

game theory framework with higher dimensional models which include more downstream

cells of MPPs and the Bayesian LNA framework.
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Appendix A

Chapter 3 Supplementary

A.0.1 Experimental Methods

Mice: Female C57B/6 mice (Jackson Laboratory), aged 8-10 weeks were used for experi-

ments. All experiments were approved by the Institutional Animal Use and Care Committee

of University of California, Irvine

Exposure: mice received an intraperitoneal injection of 5-Fluorouracil (5-FU) at 50mg/kg.

Control mice received an intraperitoneal injection of 100 µl saline.

Flow cytometry analysis of cell populations: Bone marrow (BM) from tibia and femur were

isolated by flushing bones, followed by lysing of red blood cells with Ammonium Chloride

Potassium (ACK) buffer. Cells were then resuspended in Phosphate Buffered Saline (PBS)

+ 2% Fetal Bovine Serum (FBS) with antibody cocktail and incubated at 4°C for 30 minutes

prior to washing. Cells were then analyzed on a NovoCyte (ACEA).

Antibodies: BV650 Sca-1 (clone D7, BioLegend), PerCP Cy5.5 CD48 (clone HM48-1, Bi-
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oLegend), PE CD150 (clone TC15-12FL2.2 BioLegend), c-kit APC-Cy7 (clone 2B8), FITC

CD34, APC lineage cocktail (Ter119, Mac1, Gr1, B220, CD3, CD4 and CD8)

A.0.2 Synchronization for Same Priors

Two Compartment Chemical Reaction ODE Model

N ′
HSC = v1 ·NHSC − r1 ·NHSC ·NMPP

N ′
MPP = v2 ·NHSC + r1 ·NHSC ·NMPP − u3 ·NMPP

where v1 is the HSC net proliferation rate which equals to the self-renewal rate minus the

death rates of HSCs; v2 is the HSCs asymmetric division rate; r1 is the HSC direct differen-

tiation parameter; u3 is the MPPs decay parameters.

Two Compartment Hill Equation Model


N ′

HSC = (
2p0

1 + γ1 ·NMPP

− 1) · η1 ·NHSC

N ′
MPP = 2(1− p0

1 + γ1 ·NMPP

) · η1 ·NHSC − η2 ·NMPP

where p0 is the HSCs maximum self-renewal probability; γ1 is the feedback parameter from

MPPs cell counts to p0; η1 is the HSCs total division rate; η2 is the MPPs decay rate.

Model Comparison

To compare both chemical reaction and hill equation model equally, we group each model

into net gain and net loss rate for comparison and to set similar priors.

N ′
HSC = (v1 − r1 ·NMPP ) ·NHSC

N ′
MPP = (v2 + r1 ·NMPP ) ·NHSC − u3 ·NMPP
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N ′

HSC = (
2p0

1 + γ1 ·NMPP

− 1) · η1 ·NHSC

N ′
MPP = 2(1− p0

1 + γ1 ·NMPP

) · η1 ·NHSC − η2 ·NMPP ..
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Figure A.1: Prior synchronization for chemical reaction and Hill equation models under non-
hierarchical (NH) and hierarchical (H) Bayesian framework. Blue areas: prior distributions
for the chemical reaction model; orange areas: prior distributions for the Hill equation
model. (a-d) priors synchronization for non-hierarchical chemical reaction and hill equation
models for synthetic and experimental datasets; (e-h) priors synchronization for hierarchical
chemical reaction and Hill equation models for synthetic and experimental dataset

Non-Centered Parameterization

In our partially observed data case see experimental materials section 3.2, let µu be the

initial mean condition and µθ be the one-dimensional mean rate value parameter, then for

each individual k, we assume that their individual specific parameters follow centered normal

probability density functions

uk ∼ N(µuk
, δuk

) θk ∼ N(µθk , δθk).
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These centered densities can be regarded as capture the absolute behaviors which is inde-

pendent of latent parameter means µu and µθ. The posterior density function can be written

as

Pr(θ,u,µu,µθ, δu, δθ|y) ∝

Likelihood Function︷ ︸︸ ︷
M∏
k=1

p(yk|uk,θk)

Prior Density Function︷ ︸︸ ︷
M∏
k=1

p(uk|µuk
, δuk

)p(θuk
|µθk

, δθk)π(µuk
)π(δuk

)π(µθk
)π(δθk).

When there is not much data, the hierarchical model can be much more efficient by changing

the geometric of the priors: since the normal distribution family is closed under translations

and scaling, one can also consider non-centered parameterization, which generates normal

individual parameters from the standard normal distribution [6] and then transform the

parameter density distributions by scaling and shifting with latent parameter means µuk

and µθk
,

uncpk ∼ N(0, 1) uk = µu + δuu
ncp
k ,

θncpk ∼ N(0, 1) θk = µθ + δθθ
ncp
k ,

Those non-centered variables can be regarded as the deviations of the individual behaviors

relative to the latent parameter means. Non-centered parameterization improves MCMC

exploration with weakly informed datasets by removing explicit hierarchical correlations to

change the geometry of density distributions of hierarchical models and thus drastically

increase the performance of Euclidean Hamiltonian Monte Carlo in the HMC algorithm.
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The posterior density function under the non-center parameterization can now be written as

Pr(θncp,µncp,µu,µθ, δu, δθ|y) ∝

Likelihood Function︷ ︸︸ ︷
M∏
k=1

p(yk|µuk
+ δuk

uncp
k ,µθk + δθkθ

ncp
k )

Prior Density Function︷ ︸︸ ︷
M∏
k=1

p(uncp
k |0, 1)p(θ

ncp
k |0, 1)π(µu)π(δuk

)π(µθk
)π(δθk

)

Let the total number of data be M , then in general, centered parameterization achieves

better performance with respect to MCMC mixing and enjoys larger effective sample sizes

when one has a large and informative dataset with limited data heterogeneity (large M

relative to δu and δθ). Non-center parameterization gets better performance when one has a

weak informative dataset and large variability among data (small M relative to δu and δθ).

Parameter Symbol CI 2.5% CI 50% CI 97.5%
Chemical Reaction Model

HSC Self-Renewal Rate v1 0.2114 0.401 0.7605
HSC Asym. Div. Rate v2 0.0639 0.336 1.7671
MPP Lumped Decay Rate u3 0.0405 0.2008 0.9946
MPP Feedback on HSC (e-4) r1 0.1466 0.35 0.8354

Hill Equation Model
HSC Self-Renewal Prob. p0 0.5965 0.8194 0.9645
HSC Total Div. Rate η1 0.3623 0.737 1.4994
MPP Lumped Decay Rate η2 0.0405 0.2008 0.9946
MPP Feedback on HSC (e-5) γ1 2.0764 4.54 9.9121

Shared Parameters
Biological std δb 0.156 0.2 0.2564
Technical std δt 0.078 0.1 0.1282
HSC Initial µHSC 6309 10300 16814
MPP Initial µMPP 3712 6000 9696

Table A.1: Priors parameter value ranges for non-hierarchical chemical reaction and Hill
equation models
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Parameter Symbol CI 2.5% CI 50% CI 97.5%
Chemical Reaction Model

HSC Self-Renewal Rate v1 0.2201 0.401 0.7307
HSC Asym. Div. Rate v2 0.1635 0.336 0.6903
MPP Lumped Decay Rate u3 0.1102 0.2008 0.3659
MPP Feedback on HSC (e-4) r1 0.0449 0.0818 0.149

Hill Equation Model
HSC Self-Renewal Prob. p0 0.6947 0.8171 0.9125
HSC Total Div. Rate η1 0.494 0.737 1.0995
MPP Lumped Decay Rate η2 0.1102 0.2008 0.3659
MPP Feedback on HSC (e-5) γ1 0.6771 1.6702 4.12

Shared Parameters
Biological std δb 0.156 0.2 0.2564
Technical std δt 0.078 0.1 0.1282
HSC Initial µHSC 5652 10300 18767
MPP Initial µMPP 3293 6000 10932

Table A.2: Priors parameter value ranges for non-hierarchical chemical reaction and Hill
equation models

A.0.3 Comparison between Hill Equation and Chemical Reaction

Model

By generating synthetic datasets similar to the experimental dataset from both chemical

reaction and Hill equation models and fitting by both models with similar prior distributions.

We find the ground truth parameter can be correctly identified b both models in reasonable

posterior distributions.
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Figure A.2: Fit both chemical reaction (CR) and Hill equation (HE) model to the synthetic
dataset generated by CR model (CRSD). Blue areas: prior distributions. Orange areas:
posterior distributions. Green verticle line: ground truth parameter values. Dynamic uncer-
tainty plots (DUP): the grey shaded areas refer to the 95% credible intervals of time evolution
differential equation solutions without technical measurement error; black dot marks refer
to partially observed data, each dot related to a certain mouse; black trajectory refers to the
median of time evolution differential equation solutions; Line plots refer to the 95% posterior
predictive intervals at the experimental observation day; (a-h) prior posterior plots for fitting
the CR model to CRSD. (i-j) DUP for CRSD fitted by CR model. (k-r) prior posterior plots
for fitting the HE model to CRSD. (s-t) DUP for CRSD fitted by HE model
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Figure A.3: Fit both chemical reaction (CR) and Hill equation (HE) model to the synthetic
dataset generated by HE model (HESD). Blue areas: prior distributions. Orange areas:
posterior distributions. Green verticle line: ground truth parameter values. Dynamic uncer-
tainty plots (DUP): the grey shaded areas refer to the 95% credible intervals of time evolution
differential equation solutions without technical measurement error; black dot marks refer
to partially observed data, each dot related to a certain mouse; black trajectory refers to the
median of time evolution differential equation solutions; Line plots refer to the 95% posterior
predictive intervals at the experimental observation day; (a-h) prior posterior plots for fitting
the HE model to HESD. (i-j) DUP for HESD fitted by HE model. (k-r) prior posterior plots
for fitting the CR model to HESD. (s-t) DUP for HESD fitted by CR model
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A.0.4 Comparison between Non-hierarchical Chemical Reaction

ODEModel and Hierarchical Chemical Reaction ODEModel

By generating synthetic datasets which mimic the real experimental dataset from both

the non-hierarchical chemical reaction ODE Model and hierarchical chemical reaction ODE

Model and fitting the synthetic data by both models with similar prior distributions. We

found that both models can identify the ground truth parameter in reasonable posterior

distributions using their synthetic data. Then, we get an insight into uncertainty classifica-

tion by fitting a non-hierarchical chemical reaction ODE model with a hierarchical synthetic

dataset and fitting a hierarchical model with a non-hierarchical synthetic dataset.
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Figure A.4: Fit non-hierarchical chemical reaction (NHCR) model to the synthetic data gen-
erated by NHCR model (NHCRSD). Blue areas: prior distributions. Orange areas: posterior
distributions. Green verticle line: ground truth parameter values. Dynamic uncertainty plots
(DUP): the grey shaded areas refer to the 95% credible intervals of time evolution differential
equation solutions without technical measurement error; black dot marks refer to partially
observed data, each dot related to a certain mouse; black trajectory refers to the median of
time evolution differential equation solutions; Line plots refer to the 95% posterior predic-
tive intervals at the experimental observation day; (a-h) prior posterior plots for fitting the
NHCR model to NHCRSD. (i-j) DUP for NHCRSD fitted by NHCR model.
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Figure A.5: Fit hierarchical chemical reaction (HCR) model to the synthetic data generated
by non-hierarchical chemical reaction (NHCR) model (NHCRSD). Blue areas: prior distri-
butions. Orange areas: posterior distributions. Green verticle line: ground truth parameter
values. Dynamic uncertainty plots (DUP): the grey shaded areas refer to the 95% credible
intervals of time evolution differential equation solutions without technical measurement er-
ror; black dot marks refer to partially observed data, each dot related to a certain mouse;
black trajectory refers to the median of time evolution differential equation solutions; Line
plots refer to the 95% posterior predictive intervals at the experimental observation day;
(a-n) prior posterior plots for fitting the HCR model to NHCRSD. (o-p) DUP for NHCRSD
fitted by HCR model.
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Figure A.6: Fit non-hierarchical chemical reaction (NHCR) model to the synthetic data gen-
erated by hierarchical chemical reaction (HCR) model (HCRSD). Blue areas: prior distri-
butions. Orange areas: posterior distributions. Green verticle line: ground truth parameter
values. Dynamic uncertainty plots (DUP): the grey shaded areas refer to the 95% credible
intervals of time evolution differential equation solutions without technical measurement er-
ror; black dot marks refer to partially observed data, each dot related to a certain mouse;
black trajectory refers to the median of time evolution differential equation solutions; Line
plots refer to the 95% posterior predictive intervals at the experimental observation day;
(a-h) prior posterior plots for fitting the NHCR model to HCRSD. (i-j) DUP for NHCRSD
fitted by NHCR model.
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Figure A.7: Fit hierarchical chemical reaction (HCR) model to the synthetic data generated
HCR model (HCRSD). Blue areas: prior distributions. Orange areas: posterior distributions.
Green verticle line: ground truth parameter values. Dynamic uncertainty plots (DUP): the
grey shaded areas refer to the 95% credible intervals of time evolution differential equation
solutions without technical measurement error; black dot marks refer to partially observed
data, each dot related to a certain mouse; black trajectory refers to the median of time
evolution differential equation solutions; Line plots refer to the 95% posterior predictive
intervals at the experimental observation day; (a-n) prior posterior plots for fitting the HCR
model to HCRSD. (o-p) DUP for HCRSD fitted by HCR model.

144



1 2 3 4 5 6
 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

 

prior
posterior
Real

(a) HSC Self Re-
newal Rate (e-1)

1 2 3 4 5 6 7
 

0.0

0.5

1.0

1.5

2.0

2.5
 

(b) HSC Asym.
Div. Rate (e-1)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
 

0
2
4
6
8

10
12

 

(c) MPP Decay
Rate (e-1)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
 

0
2
4
6
8

10
12
14
16

 

(d) HSC Effective
Diff Rate (e-5)

0.45 0.75 1.05 1.35 1.65 1.95 2.25
 

0
1
2
3
4
5
6

 

(e) Log HSC Ini-
tial Count (e4)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
 

0
1
2
3
4
5
6

 

(f) Log MPP Ini-
tial Count (e4)

1.0 1.4 1.8 2.2 2.6 3.0
 

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

 

(g) Log Init.
Cond. std (e-1)

0.6 0.8 1.0 1.2 1.4
 

0

1

2

3

4

5
 

(h) Log Technical
std (e-1)

0.2 0.4 0.6 0.8 1.0 1.2
 

0
2
4
6
8

10
12

 

(i) Offset Parame-
ter Value

0 5 10 15 20 25 307

8

9

10

11

12

(j) DUP for ON-
HCRSD1 HSC

0 5 10 15 20 25 307

8

9

10

11

12

(k) DUP for ON-
HCRSD1 MPP

0 5 10 15 20 25 307

8

9

10

11

12

(l) DUP for ON-
HCRSD2 HSC

0 5 10 15 20 25 307

8

9

10

11

12

(m) DUP for ON-
HCRSD2 MPP

Figure A.8: Fit the non-hierarchical chemical reaction (NHCR) model to the two synthetic
datasets generated by the non-hierarchical chemical reaction (NHCR) model with an offset
parameter between the log-scale cell counts of two synthetic datasets (ONHCRSD). Blue
areas: prior distributions. Orange areas: posterior distributions. Green verticle line: ground
truth parameter values. Dynamic uncertainty plots (DUP): the grey shaded areas refer to
the 95% credible intervals of time evolution differential equation solutions without technical
measurement error; black dot marks refer to partially observed data, each dot related to a
certain mouse; black trajectory refers to the median of time evolution differential equation
solutions; Line plots refer to the 95% posterior predictive intervals at the experimental
observation day; (a-i) prior posterior plots for fitting the NHCR model to ONHCRSD. (j-m)
DUP for ONHCRSD fitted by ONHCR model.
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Figure A.9: Fit the hierarchical chemical reaction (HCR) model to the two synthetic datasets
generated by the non-hierarchical chemical reaction (NHCR) model with an offset parameter
between the log-scale cell counts of two synthetic datasets (ONHCRSD). Blue areas: prior
distributions. Orange areas: posterior distributions. Green verticle line: ground truth
parameter values. Dynamic uncertainty plots (DUP): the grey shaded areas refer to the
95% credible intervals of time evolution differential equation solutions without technical
measurement error; black dot marks refer to partially observed data, each dot related to a
certain mouse; black trajectory refers to the median of time evolution differential equation
solutions; Line plots refer to the 95% posterior predictive intervals at the experimental
observation day; (a-i) prior posterior plots for fitting the HCR model to ONHCRSD. (j-m)
DUP for OHCRSD fitted by HCR model.

146



1 2 3 4 5 6
 

0.0

0.5

1.0

1.5

2.0

 

prior
posterior
Real

(a) HSC Self Re-
newal Rate (e-1)

1 2 3 4 5 6 7
 

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

 

(b) HSC Asym Di-
vision Rate (e-1)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
 

0
1
2
3
4
5
6

 

(c) MPP Net De-
cay Rate (e-1)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
 

0
1
2
3
4
5
6
7
8

 

(d) HSC Effective
Diff. Rate (e-5)

0.25 0.65 1.05 1.45 1.85 2.25
 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

 

(e) Log HSC Init.
Cell Count (e4)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
 

0

1

2

3

4

 

(f) Log MPP Init.
Cell Count (e4)

1.5 2.0 2.5 3.0 3.5 4.0
 

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

 

(g) Log Init.
Cond. std (e-1)

0.5 1.0 1.5 2.0 2.5 3.0
 

0.0

0.5

1.0

1.5

2.0

2.5
 

(h) Log Technical
std (e-1)

0.2 0.4 0.6 0.8 1.0 1.2
 

0
1
2
3
4
5
6
7

 

(i) Offset Parame-
ter Value

0 5 10 15 20 25 307

8

9

10

11

12

(j) DUP for
OHCRSD1 HSC

0 5 10 15 20 25 307

8

9

10

11

12

(k) DUP for
OHCRSD1 MPP

0 5 10 15 20 25 307

8

9

10

11

12

(l) DUP for
OHCRSD2 HSC

0 5 10 15 20 25 307

8

9

10

11

12

(m) DUP for
OHCRSD2 MPP

Figure A.10: Fit the non-hierarchical chemical reaction (NHCR) model to the two syn-
thetic datasets generated by the hierarchical chemical reaction (HCR) model with an offset
parameter between the log-scale cell counts of two synthetic datasets (OHCRSD). Blue ar-
eas: prior distributions. Orange areas: posterior distributions. Green verticle line: ground
truth parameter values. Dynamic uncertainty plots (DUP): the grey shaded areas refer to
the 95% credible intervals of time evolution differential equation solutions without technical
measurement error; black dot marks refer to partially observed data, each dot related to a
certain mouse; black trajectory refers to the median of time evolution differential equation
solutions; Line plots refer to the 95% posterior predictive intervals at the experimental ob-
servation day; (a-i) prior posterior plots for fitting the NHCR model to OHCRSD. (j-m)
DUP for ONHCRSD fitted by NHCR model.
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Figure A.11: Fit the hierarchical chemical reaction (HCR) model to the two synthetic
datasets generated by the hierarchical chemical reaction (HCR) model with an offset pa-
rameter between the log-scale cell counts of two synthetic datasets (OHCRSD). Blue areas:
prior distributions. Orange areas: posterior distributions. Green verticle line: ground truth
parameter values. Dynamic uncertainty plots (DUP): the grey shaded areas refer to the 95%
credible intervals of time evolution differential equation solutions without technical measure-
ment error; black dot marks refer to partially observed data, each dot related to a certain
mouse; black trajectory refers to the median of time evolution differential equation solutions;
Line plots refer to the 95% posterior predictive intervals at the experimental observation day;
(a-i) prior posterior plots for fitting the HCR model to OHCRSD. (j-m) DUP for OHCRSD
fitted by HCR model.
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A.0.5 Fit Both Non-hierarchical and Hierarchical Chemical Re-

action Models to Experimental Dataset
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Figure A.12: Fit non-hierarchical chemical reaction model (NHCR) to experimental datasets
(ExpD). Blue areas: prior distributions. Orange areas: posterior distributions. Green verti-
cle line: ground truth parameter values. Dynamic uncertainty plots (DUP): the grey shaded
areas refer to the 95% credible intervals of time evolution differential equation solutions
without technical measurement error; black dot marks refer to partially observed data, each
dot related to a certain mouse; black trajectory refers to the median of time evolution dif-
ferential equation solutions; Line plots refer to the 95% posterior predictive intervals at the
experimental observation day; (a-i) prior posterior plots for fitting the NHCR model to the
experimental datasets. (j-m) DUP for ExpD fitted by NHCR model.
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Figure A.13: Fit non-hierarchical Hill equation (NHHE) model to experimental Datasets
(ExpD). Blue areas: prior distributions. Orange areas: posterior distributions. Green verti-
cle line: ground truth parameter values. Dynamic uncertainty plots (DUP): the grey shaded
areas refer to the 95% credible intervals of time evolution differential equation solutions
without technical measurement error; black dot marks refer to partially observed data, each
dot related to a certain mouse; black trajectory refers to the median of time evolution dif-
ferential equation solutions; Line plots refer to the 95% posterior predictive intervals at the
experimental observation day; (a-i) prior posterior plots for fitting the HECR model to the
ExpD. (j-m) DUP for ExpD fitted by NHHE model.
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Figure A.14: Fit the hierarchical chemical reaction (HCR) model to the experimental
datasets (ExpD). Blue areas: prior distributions. Orange areas: posterior distributions.
Green verticle line: ground truth parameter values. Dynamic uncertainty plots (DUP): the
grey shaded areas refer to the 95% credible intervals of time evolution differential equation
solutions without technical measurement error; black dot marks refer to partially observed
data, each dot related to a certain mouse; black trajectory refers to the median of time evolu-
tion differential equation solutions; Line plots refer to the 95% posterior predictive intervals
at the experimental observation day; (a-i) prior posterior plots for fitting the HCR model to
ExpD. (j-m) DUP for ExpD fitted by HCR model.
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Figure A.15: Fit the hierarchical Hill equation (HHE) model to the experimental datasets
(ExpD). Blue areas: prior distributions. Orange areas: posterior distributions. Green verti-
cle line: ground truth parameter values. Dynamic uncertainty plots (DUP): the grey shaded
areas refer to the 95% credible intervals of time evolution differential equation solutions
without technical measurement error; black dot marks refer to partially observed data, each
dot related to a certain mouse; black trajectory refers to the median of time evolution dif-
ferential equation solutions; Line plots refer to the 95% posterior predictive intervals at the
experimental observation day; (a-i) prior posterior plots for fitting the HHE model to ExpD.
(j-m) DUP for ExpD fitted by HHE model.
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A.0.6 10-fold Cross Validation Report for Both Non-hierarchical

and Hierarchical Models

The median absolute error (MAE) measures the typical difference between the observed Yi

and their posterior predictive means Y
′
i . The scaled median absolute error measures the

typical standard deviations that the observed Yi fall from their posterior predictive means

Y
′
i . The within50 statistic measures the proportion of observed values that fall within their

50% posterior prediction interval. The within 95% statistic is similar but for 95% posterior

prediction intervals.

MAE = median(|Y1 − Y
′

1 |, · · · , |YN − Y
′

N |),

where N is the total number of observation mice. The scalded version of MAE, MASE then

can be written as

MASE = median

(
|Y1 − Y

′
1 |

δ1
, · · · , |YN − Y

′
N |

δN

)
where δ1, · · · , δN are the stand deviation of posterior predictive intervals at observation times

for mice 1, · · · , N
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Hierarchical Model Posterior Predictive Summaries

Fold MAE MASE within 50 within 95
1 HSC 0.443 1.517 25% 75%
2 HSC 0.576 1.740 0% 50%
3 HSC 0.393 1.30 25% 75%
4 HSC 0.248 0.834 50% 100%
5 HSC 0.236 0.792 25% 100%
6 HSC 0.298 0.951 50% 100%
7 HSC 0.223 0.625 50% 100%
8 HSC 0.062 0.204 100% 100%
9 HSC 0.351 1.179 25% 100%
10 HSC 0.219 0.706 50% 100%
average HSC 0.304 0.983 40% 92.5%
1 MPP 0.329 1.14 25% 75%
2 MPP 0.245 0.843 50% 100%
3 MPP 0.254 0.891 25% 75%
4 MPP 0.214 0.658 50% 100%
5 MPP 0.164 0.598 50% 100%
6 MPP 0.258 0.949 0% 75%
7 MPP 0.164 0.576 75% 100%
8 MPP 0.275 0.990 25% 75%
9 MPP 0.325 1.10 25% 75%
10 MPP 0.123 0.483 50% 100%
average MPP 0.295 0.814 37.5% 87.5%
delete 5 HSC 0.387 1.512 25% 50%
delete 5 MPP 0.881 2.812 0% 25%
delete 7 HSC 0.387 1.282 25% 75%
delete 7 MPP 0.385 1.071 50% 75%

Table A.3: 10-Fold cross-validation with Hierarchical Model Posterior Predictive Summaries.
The median absolute error (MAE) measures the typical difference between the observed Yi
and their posterior predictive means Y

′
i . The scaled median absolute error measures the

typical number of standard deviations that the observed Yi fall from their posterior predictive
means Y

′
i . The within50 statistic measures the proportion of observed values that fall within

their 50% posterior prediction interval. The within95 statistic is similar but for 95% posterior
prediction intervals.
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Non-Hierarchical Model Posterior Predictive Summaries

Fold MAE MASE scaled within 50 within 95
1 HSC 0.513 2.053 0% 50%
2 HSC 0.450 1.314 0% 75%
3 HSC 0.344 1.376 25% 75%
4 HSC 0.292 1.008 0% 100%
5 HSC 0.229 0.722 50% 100%
6 HSC 0.262 1.014 25% 100%
7 HSC 0.100 0.402 75% 100%
8 HSC 0.162 0.653 50% 100%
9 HSC 0.367 1.324 25% 75%
10 HSC 0.241 0.839 50% 100%
average HSC 0.243 1.070 30% 87.5%
1 MPP 0.374 1.358 25% 75%
2 MPP 0.287 0.809 50% 100%
3 MPP 0.284 1.012 25% 75%
4 MPP 0.189 0.587 75% 100%
5 MPP 0.155 0.521 75% 100%
6 MPP 0.299 1.199 25% 75%
7 MPP 0.175 0.629 50% 100%
8 MPP 0.366 0.265 25% 50%
9 MPP 0.311 0/976 25% 75%
10 MPP 0.179 0.668 50% 100%
average MPP 0.2277 0.822 37.5% 87.5%
delete 5 HSC 0.387 1.340 50% 50%
delete 5 MPP 0.894 2.697 0% 25%
delete 7 HSC 0.387 1.321 25% 75%
delete 7 MPP 0.602 1.667 25% 50%

Table A.4: 10-Fold cross validation with Hierarchical Model Posterior Predictive Summaries
the median absolute error (MAE) measures the typical difference between the observed Yi and
their posterior predictive means Y

′
i . The scaled median absolute error measures the typical

number of standard deviations that the observed Yi fall from their posterior predictive means
Y

′
i . The within50 statistic measures the proportion of observed values that fall within their

50% posterior prediction interval. The within95 statistic is similar, but for 95% posterior
prediction intervals.
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Figure A.16: Dynamic uncertainty plots for hierarchical chemical reaction (HCR) model 10-
fold cross-validation (CV) using the experimental dataset (ExpD), page(156-157). CVi: the
ith fold training and validation dataset. Dynamic uncertainty plots (DUP): the grey shaded
areas refer to the 95% credible intervals of time evolution differential equation solutions
without technical measurement error; red dot marks refer to the validation dataset; black
dot marks refer to the partially observed training dataset; each dot related to a certain mouse;
black trajectory refers to the median of time evolution differential equation solutions; Line
plots refer to the 95% posterior predictive intervals at the experimental observation day;
(a-t) DUP for ExpD fitted by HCR model using 10-fold cross-validation.
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Figure A.17: Dynamic uncertainty plots for hierarchical chemical reaction (HCR) model 10-
fold cross-validation (CV) using the experimental dataset (ExpD). Page (158-159) CVi: the
ith fold training and validation dataset. Dynamic uncertainty plots (DUP): the grey shaded
areas refer to the 95% credible intervals of time evolution differential equation solutions
without technical measurement error; red dot marks refer to the validation dataset; black
dot marks refer to the partially observed training dataset; each dot related to a certain mouse;
black trajectory refers to the median of time evolution differential equation solutions; Line
plots refer to the 95% posterior predictive intervals at the experimental observation day;
(a-t) DUP for ExpD fitted by HCR model using 10-fold cross-validation.
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Figure A.18: Dynamic uncertainty plots for non-hierarchical chemical reaction (NHCR)
model 10-fold cross-validation (CV) using the experimental dataset (ExpD). Page (160-161)
CVi: the ith fold training and validation dataset. Dynamic uncertainty plots (DUP): the
grey shaded areas refer to the 95% credible intervals of time evolution differential equation
solutions without technical measurement error; red dot marks refer to the validation dataset;
black dot marks refer to the partially observed training dataset; each dot related to a certain
mouse; black trajectory refers to the median of time evolution differential equation solutions;
Line plots refer to the 95% posterior predictive intervals at the experimental observation day;
(a-t) DUP for ExpD fitted by NHCR model using 10-fold cross-validation.
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Figure A.19: Dynamic uncertainty plots for non-hierarchical chemical reaction (NHCR)
model 10-fold cross-validation (CV) using the experimental dataset (ExpD). Page(162-163)
CVi: the ith fold training and validation dataset. Dynamic uncertainty plots (DUP): the
grey shaded areas refer to the 95% credible intervals of time evolution differential equation
solutions without technical measurement error; red dot marks refer to the validation dataset;
black dot marks refer to the partially observed training dataset; each dot related to a certain
mouse; black trajectory refers to the median of time evolution differential equation solutions;
Line plots refer to the 95% posterior predictive intervals at the experimental observation day;
(a-t) DUP for ExpD fitted by NHCR model using 10-fold cross-validation.
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Figure A.20: Dynamic uncertainty plots for non-hierarchical/hierarchical chemical reaction
(NHCR/HCR) model leave-out one day cross-validation (CV) using the experimental dataset
(ExpD). Page (164-165). Di ExpD: training dataset is ExpD without data at dayi, and the
validation dataset is ExpD data at dayi. Dynamic uncertainty plots (DUP): the grey shaded
areas refer to the 95% credible intervals of time evolution differential equation solutions
without technical measurement error; red dot marks refer to the validation dataset; black
dot marks refer to the partially observed training dataset; each dot related to a certain mouse;
black trajectory refers to the median of time evolution differential equation solutions; Line
plots refer to the 95% posterior predictive intervals at the experimental observation day; (a-
h) DUP for ExpD fitted by the NHCR model. (i-p) fitted by the HCR model using leave-out
a day cross-validation.
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Figure B.1: Dynamic uncertainty plots (DUP) for fitting non-hierarchical/hierarchical ODE
(ODE/HODE) and LNA models to the synthetic dataset (SD) which is generated by Gille-
spie algorithm using the parameter values as MAP optimization point estimation on the
experimental data (ExpD). LT: LTHSCs; ST: STHSCs; In DUP (a-i), the grey shaded areas
refer to the 95% credible intervals of time evolution differential equation solutions without
technical measurement error; black dot marks refer to partially observed data, each dot re-
lated to a certain mouse; black trajectory refers to the median of time evolution differential
equation solutions; Line plots refer to the 95% posterior predictive intervals at the exper-
imental observation day; (a-c) DUP for LT data in SD2.; (d-f) DUP for ST data in SD2;
(g-i) DUP for MPP data in SD2.
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Figure B.2: Dynamic uncertainty plots (DUP) for fitting non-hierarchical/hierarchical ODE
(ODE/HODE) and LNA models to the experimental data (ExpD). LT: LTHSCs; ST: STH-
SCs; In DUP (a-i), the grey shaded areas refer to the 95% credible intervals of time evolution
differential equation solutions without technical measurement error; black dot marks refer
to partially observed data, each dot related to a certain mouse; black trajectory refers to the
median of time evolution differential equation solutions; Line plots refer to the 95% posterior
predictive intervals at the experimental observation day. (a-c) DUP for LT data in ExpD1;
(d-f) DUP for ST data in ExpD2; (g-i) DUP for MPP data in synthetic ExpD2.
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Figure B.3: Fit LNA model to time series synthetic dataset. Ground truth initial condition
and technical measurement standard deviations are δrealinit = 0.05, δrealtech = 0.1. Subfigures (a-k)
are prior posterior violin plots for parameters. Subfigures (l-n) are dynamic uncertainty plots
for LT, ST, MPP data fitted by the LNA model.
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Figure B.4: Fit LNA model to time series synthetic dataset. Ground truth initial condition
and technical measurement standard deviations are δrealinit = 0.1, δrealtech = 0.1. Subfigures (a-k)
are prior posterior violin plots for parameters. Subfigures (l-n) are dynamic uncertainty plots
for LT, ST, MPP data fitted by the LNA model.
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Figure B.5: Fit LNA model to time series synthetic dataset. Ground truth initial condition
and technical measurement standard deviations are δrealinit = 0.2, δrealtech = 0.1. Subfigures (a-k)
are prior posterior violin plots for parameters. Subfigures (l-n) are dynamic uncertainty plots
for LT, ST, MPP data fitted by the LNA model.
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Figure B.6: Fit LNA model to time series synthetic dataset. Ground truth initial condition
and technical measurement standard deviations are δrealinit = 0.3, δrealtech = 0.1. Subfigures (a-k)
are prior posterior violin plots for parameters. Subfigures (l-n) are dynamic uncertainty plots
for LT, ST, MPP data fitted by LNA model.
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Figure B.7: Fit LNA model to partially observed synthetic dataset. Ground truth initial
condition and technical measurement standard deviations are δrealinit = 0.05, δrealtech = 0.1. Fix
the initial condition standard deviation at ground truth and infer other parameters. Sub-
figures (a-j) are prior posterior violin plots for parameters. Subfigures (k,m,o) are dynamic
uncertainty plots for LT, ST, MPP data fitted by the ODE model. Subfigures (l,n,p) are
dynamic uncertainty plots for LT, ST, MPP data fitted by the LNA model.
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Figure B.8: Fit LNA model to partially observed synthetic dataset. Ground truth initial
condition and technical measurement standard deviations are δrealinit = 0.1, δrealtech = 0.1. Fix
the initial condition standard deviation at ground truth and infer other parameters. Sub-
figures (a-j) are prior posterior violin plots for parameters. Subfigures (k,m,o) are dynamic
uncertainty plots for LT, ST, MPP data fitted by the ODE model. Subfigures (l,n,p) are
dynamic uncertainty plots for LT, ST, MPP data fitted by the LNA model.
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Figure B.9: Fit LNA model to partially observed synthetic dataset. Ground truth initial
condition and technical measurement standard deviations are δrealinit = 0.2, δrealtech = 0.1. Fix
the initial condition standard deviation at ground truth and infer other parameters. Sub-
figures (a-j) are prior posterior violin plots for parameters. Subfigures (k,m,o) are dynamic
uncertainty plots for LT, ST, MPP data fitted by the ODE model. Subfigures (l,n,p) are
dynamic uncertainty plots for LT, ST, MPP data fitted by the LNA model.
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Figure B.10: Fit LNA model to partially observed synthetic dataset. Ground truth initial
condition and technical measurement standard deviations are δrealinit = 0.3, δrealtech = 0.1. Fix
the initial condition standard deviation at ground truth and infer other parameters. Sub-
figures (a-j) are prior posterior violin plots for parameters. Subfigures (k,m,o) are dynamic
uncertainty plots for LT, ST, MPP data fitted by the ODE model. Subfigures (l,n,p) are
dynamic uncertainty plots for LT, ST, MPP data fitted by the LNA model.
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Figure B.11: Prior and posterior violin plots for technical measurement standard deviation
term δtech for simulation study 4.3 that fix initial condition standard deviation δinit at ground
truth value and infer all other parameters when the ground truth for standard deviation terms
δrealinit and δrealtech are in relatively large scales.
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Figure B.12: Prior and posterior violin plots for technical measurement standard deviation
term δtech for simulation study 4.3 that fix initial condition standard deviation δinit at ground
truth value and infer all other parameters when the ground truth for standard deviation terms
δrealinit and δrealtech are in relatively small scales.
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Figure B.13: Fit LNA model to partially observed synthetic dataset. Ground truth initial
condition and technical measurement standard deviations are δrealinit = 0.05, δrealtech = 0.1. Fix
the technical measurement standard deviation at ground truth and infer other parameters.
Subfigures (a-j) are prior posterior violin plots for parameters. Subfigures (k,m,o) are dy-
namic uncertainty plots for LT, ST, MPP data fitted by the ODE model. Subfigures (l,n,p)
are dynamic uncertainty plots for LT, ST, MPP data fitted by the LNA model.
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Figure B.14: Fit LNA model to partially observed synthetic dataset. Ground truth initial
condition and technical measurement standard deviations are δrealinit = 0.1, δrealtech = 0.1. Fix
the technical measurement standard deviation at ground truth and infer other parameters.
Subfigures (a-j) are prior posterior violin plots for parameters. Subfigures (k,m,o) are dy-
namic uncertainty plots for LT, ST, MPP data fitted by the ODE model. Subfigures (l,n,p)
are dynamic uncertainty plots for LT, ST, MPP data fitted by the LNA model.
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Figure B.15: Fit LNA model to partially observed synthetic dataset. Ground truth initial
condition and technical measurement standard deviations are δrealinit = 0.2, δrealtech = 0.1. Fix
the technical measurement standard deviation at ground truth and infer other parameters.
Subfigures (a-j) are prior posterior violin plots for parameters. Subfigures (k,m,o) are dy-
namic uncertainty plots for LT, ST, MPP data fitted by the ODE model. Subfigures (l,n,p)
are dynamic uncertainty plots for LT, ST, MPP data fitted by the LNA model.
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Figure B.16: Fit LNA model to partially observed synthetic dataset. Ground truth initial
condition and technical measurement standard deviations are δrealinit = 0.3, δrealtech = 0.1. Fix
the technical measurement standard deviation at ground truth and infer other parameters.
Subfigures (a-j) are prior posterior violin plots for parameters. Subfigures (k,m,o) are dy-
namic uncertainty plots for LT, ST, MPP data fitted by the ODE model. Subfigures (l,n,p)
are dynamic uncertainty plots for LT, ST, MPP data fitted by the LNA model.
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Figure B.17: Prior and posterior violin plots for initial condition standard deviation term δinit
for simulation study 4.4 that fix technical measurement standard deviation δtech at ground
truth value and infer all other parameters when the ground truth for standard deviation
terms δrealinit and δrealtech are in relatively large scales.
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Figure B.18: Prior and posterior violin plots for initial condition standard deviation term δinit
for simulation study 4.4 that fix technical measurement standard deviation δtech at ground
truth value and infer all other parameters when the ground truth for standard deviation
terms δrealinit and δrealtech are in relatively small scales.
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