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Abstract

Background: Vaccine-serotype (VT) invasive pneumococcal disease (IPD) rates declined substantially following introduction
of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs. Increases in non-vaccine-
serotype (NVT) IPD rates occurred in some sites, presumably representing serotype replacement. We used a standardized
approach to describe serotype-specific IPD changes among multiple sites after PCV7 introduction.

Methods and Findings: Of 32 IPD surveillance datasets received, we identified 21 eligible databases with rate data $2 years
before and $1 year after PCV7 introduction. Expected annual rates of IPD absent PCV7 introduction were estimated by
extrapolation using either Poisson regression modeling of pre-PCV7 rates or averaging pre-PCV7 rates. To estimate whether
changes in rates had occurred following PCV7 introduction, we calculated site specific rate ratios by dividing observed by
expected IPD rates for each post-PCV7 year. We calculated summary rate ratios (RRs) using random effects meta-analysis.
For children ,5 years old, overall IPD decreased by year 1 post-PCV7 (RR 0?55, 95% CI 0?46–0?65) and remained relatively
stable through year 7 (RR 0?49, 95% CI 0?35–0?68). Point estimates for VT IPD decreased annually through year 7 (RR 0?03,
95% CI 0?01–0?10), while NVT IPD increased (year 7 RR 2?81, 95% CI 2?12–3?71). Among adults, decreases in overall IPD also
occurred but were smaller and more variable by site than among children. At year 7 after introduction, significant
reductions were observed (18–49 year-olds [RR 0?52, 95% CI 0?29–0?91], 50–64 year-olds [RR 0?84, 95% CI 0?77–0?93], and
$65 year-olds [RR 0?74, 95% CI 0?58–0?95]).

Conclusions: Consistent and significant decreases in both overall and VT IPD in children occurred quickly and were
sustained for 7 years after PCV7 introduction, supporting use of PCVs. Increases in NVT IPD occurred in most sites, with
variable magnitude. These findings may not represent the experience in low-income countries or the effects after
introduction of higher valency PCVs. High-quality, population-based surveillance of serotype-specific IPD rates is needed to
monitor vaccine impact as more countries, including low-income countries, introduce PCVs and as higher valency PCVs are
used.
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Introduction

In 2008, Streptococcus pneumoniae was estimated to have caused

540,000 deaths among children less than 5 years old worldwide

[1]. Seven-valent pneumococcal conjugate vaccine (PCV7) was

licensed and introduced in 2000 into the routine infant immuni-

zation schedule in the United States. Significant reductions in the

incidence of invasive pneumococcal disease (IPD) were observed

not only among children, but also among adults, reflecting

reduced transmission and herd protection [2].

Several high- and middle-income countries introduced PCV7 in

the several years after 2000. While IPD caused by vaccine

serotypes (VTs) declined in virtually all settings, reported increases

in IPD rates due to non-vaccine serotypes (NVTs) were negligible

in some [3] and substantial in others [4]. Increases in NVT IPD

following routine introduction of PCV7 were presumed to

represent serotype replacement of VT by NVT, a phenomenon

well-documented in pneumococcal nasopharyngeal colonization

from randomized controlled trials [5] and observational studies

[6,7]. Direct comparison between settings, however, is complicat-

ed by variability in vaccine schedule and coverage and surveillance

system characteristics.

Understanding serotype replacement is even more critical in

low-income countries where most pneumococcal deaths occur

[1,8], a more diverse distribution of serotypes causes disease, and

nasopharyngeal colonization occurs earlier in infancy [9]. At the

request of its Strategic Advisory Group of Experts (SAGE) on

Immunizations, the World Health Organization (WHO) convened

an expert consultation on serotype replacement in July 2010. A

key recommendation of the consultation was that a comprehensive

analysis be undertaken to provide an estimate of the magnitude

and variability of pneumococcal serotype replacement following

PCV7 use to inform the expected experience of low-income

countries currently introducing PCVs [10]. The key findings of

that analysis are described here.

Methods

Search Strategy
We identified datasets from IPD surveillance systems that report

rates through two approaches. First, we identified datasets

gathered from a comprehensive systematic literature review on

PCV dosing schedules [11]. In that systematic literature review, a

search for English language publications on the immunogenicity,

and direct and indirect effects of various PCV schedules on

nasopharyngeal (NP) carriage, IPD, and pneumonia among

children was performed using 14 databases (i.e., African Index

Medicus; BioAbst/Reports, Reviews, Meetings; Biological Ab-

stracts; Cochrane Library; EMBASE; Global Health; Index

Medicus for Eastern Med. Region; Index Medicus for South-East

Asia Region; IndiaMed; Latin America and Caribbean Health

Sciences Information; Pan-American Health Organization; Pascal

Biomed; PubMed; and Western Region Index Medicus) as well as

meeting abstracts of the International Symposium on Pneumo-

cocci and Pneumococcal Disease (ISPPD) and the Interscience

Conference on Antimicrobial Agents and Chemotherapy

(ICAAC). The search included studies published between 1994

and 2010. The complete list of database-specific and Medical

Subject Headings (MeSH) search terms used in the literature

search is detailed by the authors. We reviewed those publications

with IPD as an outcome; these publications needed to include at

least one ‘‘narrow vaccine’’ search term as well as an IPD related

search term, i.e., (‘‘Invasive disease’’ [all fields]), (‘‘invasive

pneumococcal disease’’ [all fields]), and/or (‘‘invasive bacterial

disease’’ [all fields]).

Second, we solicited potential datasets from experts in

pneumococcal disease, WHO headquarters and regional offices,

and by reviewing references from publications.

Data Collection
We solicited datasets from investigators using a standardized

format, requesting IPD case counts for up to 5 years before and 10

years after PCV7 introduction, stratified by age groups (0–1, 2–4,

5–17, 18–49, 50–64, and $65 years old), clinical syndrome

(overall IPD and meningitis specifically), hospitalization status, and

serotype (Text S1). Meningitis was defined as isolation of

pneumococcus from cerebrospinal fluid by culture. We requested

age- and year-specific catchment population denominators to

estimate rates, and we solicited descriptions of the PCV7

vaccination program, IPD surveillance system, changes to

surveillance methodology or clinical practices, and potential IPD

outbreaks.

Data Quality Review
Two coordinators conducted a quality check of datasets

included in the analysis using a checklist (Box 1). Any requests

for data clarification were emailed to the contributing investigator

and the data were updated as applicable.

Data Analysis
The inclusion criteria of the datasets for collection and analysis

are given in Figure 1.

In datasets where serotypes 6A and 6C were not differentiated,

we distributed these serotypes according to the known distribu-

tion of 6A and 6C in the same geographic region or globally in

the pre- and post-PCV7 periods [12]. First, we calculated the

percentage of 6A isolates out of all 6A and 6C isolates, using

datasets where 6A and 6C isolates were distinguished. The

percentage of true 6A isolates was calculated for all datasets, as

well as by region for datasets from Europe and North America.

Estimates of the percentage of true 6A isolates were weighted by

the size of the site and calculated in four different time periods:

pre-PCV introduction; 1–2 years post-; 3–4 years post-; and 5+
years post-PCV introduction. In sites that did not differentiate 6A

and 6C serotypes, 6A/6C isolates were then redistributed

according to the estimated regional (for North America and

Europe datasets) or using all datasets’ (for datasets from sites

outside of Europe or North America) distribution of differentiated

6A and 6C isolates.

After redistributing serotype 6A with VT (serotypes 4, 6B, 9V,

14, 18C, 19F, and 23F) and 6C with NVT (all other serotypes),

remaining isolates with unknown serotype were redistributed.

Specifically, isolates with known serotype were classified into four

Serotype Replacement after PCV7 Introduction
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groups: VT serotypes (PCV7 serotypes and 6A); serotypes 1 and 5;

serotypes 3, 7F, and 19A; and all other NVT serotypes. Serotypes

1 and 5 were grouped together to allow for modeling expected

rates absent the potential influence of outbreaks of these two

serotypes. The remaining additional serotypes included in higher

valency PCVs–3, 7F, and 19A—were grouped together for

analyses of changes over time as they, along with serotypes 1

and 5, are likely to be prevented by introduction of the higher

valency PCVs. Non-typeable isolates were added to the category of

all other NVT serotypes. We calculated the percentage of each of

the four groups of known serotypes out of all known serotypes.

Unknown isolates that were not serotyped were then redistributed

into the four serotype groups per the calculated proportional

distribution. Redistribution was performed by site, age group,

year, and syndrome.

To minimize the effect of temporal and geographic differences

in blood culturing practice among children in the outpatient

setting, we restricted our analysis to hospitalized cases for children

,5 years [13,14]. Since IPD among adults is almost always a

severe illness among inpatients, we assumed all cases among older

persons were hospitalized. This assumption was confirmed in the

few sites that did capture data on hospitalization status among

adults with IPD [59,60]. We excluded persons aged 5–17 years

because case counts were too small for meaningful analysis.

Because IPD rates were changing before PCV7 introduction in

some sites, we used the pre-PCV7 IPD trends (excluding the year

of introduction) to predict future years’ IPD rates, absent PCV7

use [15,16]. We used Poisson regression to model expected rates of

VT, NVT, and overall IPD absent PCV7 introduction. We

assumed that overall IPD was a more stable indicator of pre-PCV7

trends than either VT or NVT, which could be affected by

outbreaks of a single serotype [16]. Therefore, we used the

regression intercept and slope of the pre-PCV7 annual rates of

overall IPD to estimate future rates, absent PCV7, for overall, VT,

and NVT IPD. Because serotypes 1 and 5 rates can fluctuate

annually owing to outbreaks, we excluded them from the

regression estimation of pre-PCV7 trends, but included them in

the actual rate estimates on the basis of the trends. Separately, we

calculated the pre-PCV7 average proportions of IPD caused by

VT and NVT and applied each to the expected overall IPD rate to

generate the expected VT and NVT IPD rates. The annual

surveillance population denominator was included as an offset

variable, and the slope of the modeled expected rates was assigned

a value of zero from 4 years post-PCV7 onwards, assuming

stabilization of any pre-PCV7 IPD surveillance trends by then.

For children aged ,5 years, expected rates for 11 of 19 sites

(58%) were modeled. Among the 15 sites included in the IPD

analysis for adults aged 18–49 years, 50–64 years, and $65 years,

expected rates were generated using modeling for 10 (67%), 5

(33%), and 7(47%) sites, respectively. For age strata with an annual

pre-PCV7 average of ,20 IPD cases or ,3 years of pre-PCV7

data, we felt that pre-PCV7 rates were unreliable to define

surveillance trends because of small sample size or too few years.

For these strata, expected IPD rates absent PCV7 introduction

were estimated by averaging annual IPD rates before PCV7

introduction.

We estimated the change in IPD rates following PCV7

introduction by calculating rate ratios (RRs), dividing the observed

Box 1. Dataset quality checks performed

Review of Case Counts by Year and Age Group

Checklist Item Follow-up Action

A. Are there dramatic changes in overall case counts from year to year that might not
be explained by vaccine introduction?

If yes: Clarify with co-investigator. Exclude if indicates changes in
surveillance or bias that would affect the analysis.

B. What is happening with counts of VT cases? If counts are stable or increase: Clarify with co-investigator. Exclude
stratum from further analysis if indicates changes in surveillance or bias
that would affect the analysis.

C. Verify that VT plus NVTs plus unknowns equals the total number of cases provided. If no: Clarify case numbers with co-investigator.

D. Are there dramatic changes from year to year in serotypes 8 or 12F, suggesting a
potential outbreak?

If yes: Exclude those cases and re-analyze the data without them.

E. Calculate the percentage of all cases for which serotype is known. Exclude strata with ,50% serotyped from further analysis.

F. Does the site distinguish between 6A and 6C cases? If yes: Do the numbers of cases of each seem plausible?

If no: Redistribute the undistributed 6A/6C cases according to the
distribution of known 6A and 6C cases, by age (probably ,5 versus .5
years) in the same region (e.g., North America, Europe, rest of world).

G. Review the numbers of cases for each syndrome. Are they plausible, i.e., are the
meningitis cases uniformly fewer than the other cases? Are the hospitalized cases ,5
fewer than all cases ,5?

If no: Clarify case numbers with co-investigator.

H. Look at the variables related to year. Is year zero the correct year? Pay special
attention to sites that had multi-stage introductions. Use the survey to define these
variables.

If no: Clarify with co-investigator

Review of Denominators

Checklist Item Follow-up Action

A. Do the denominators in each age group change over time? If no: Clarify with co-investigator. If annual population denominator not
available rates may be an underestimate.

B. Do the denominators in each age group make sense relative to each other?
For example, are the denominators for the adult groups substantially larger than
for the child age groups?

If no: Clarify with co-investigator.

Serotype Replacement after PCV7 Introduction
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IPD rate by the expected IPD rate for each post-PCV7 year. We

calculated 95% confidence intervals around RRs through simu-

lation of observed and expected case counts and the delta method

[17]. The delta method can be used to approximate the variance

of a ratio and has previously been applied to estimate the variance

of the log RR [17,18]. To estimate the variance of the log RR, we

simulated 200 observed and expected case counts using the

Poisson distribution with the actual observed and calculated

expected number of cases as the mean. We converted these

simulated observed and expected case counts to rates. From these

simulated rates we calculated the variance of the observed and

expected rate, as well as the covariance between these rates using

STATA Version 12.1 (StataCorp.).

Using the delta method formula below, we combined the

variance of the observed and expected rate to estimate the

variance of the log RR.

Figure 1. Flow diagram of datasets included in the analysis.
doi:10.1371/journal.pmed.1001517.g001
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s2( log½RR�)~ s2(Y )

Y 2
z

s2(X )

X 2
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)

Where s2 is the variance; Y is the observed rate; X is the

expected rate; and COV (X,Y) is the covariance between the

observed and expected rate.

We included the covariance in the calculation of the variance of

the log RR because for a few strata the covariance was greater than

zero and so we were unable to assume independence between the

observed and expected rates. The square-root of the variance of the

log RR was used to estimate the standard error of the log RR. The

standard error of the log RR was calculated separately for each site,

age group, serotype combination, and post-PCV7 year.

A value of 0?5 cases was assigned as a continuity correction to

each stratum (i.e., site-age group-serotype group) with zero cases

reported [19] so as to avoid undefined RRs (when zero cases of

IPD were expected in a year) or undefined variances (as Poisson

simulation would generate missing values for zero cells).

Because the impact of PCV7 was expected to be heterogeneous

across sites, we used random effects meta-analysis to pool the site-

specific RRs [20]. Meta-analysis was performed for each age and

serotype group for each of the 7 years after PCV7 introduction,

generating a summary RR with 95% confidence intervals. Meta-

analysis of RRs was performed both including all datasets

available for each year post-PCV7, as well as including only those

datasets with at least 7 years of post-PCV7 data, which was the last

year with enough datasets for robust meta-analysis (i.e., five

datasets). The same analysis comparing observed and expected

rates was performed limited to meningitis cases.

We performed several sensitivity analyses for IPD. First, we used

a continuity correction of 0?1. Second, we performed an analysis

completely excluding serotypes 1 and 5 from both pre- and post-

PCV7 IPD rates. Third, we performed the analyses with the

expected IPD rate as the observed average pre-PCV7 introduction

IPD rate for all site-age group-serotype group strata (i.e., no

modeling of expected IPD rates).

Additionally, we performed an analysis comparing observed

and expected IPD rates for two separate NVT serotype groups:

NVT serotypes in the higher valency pneumococcal conjugate

vaccines that are not in PCV7 (i.e., serotypes 1, 3, 5, 7F, and

19A) and NVT serotypes not in the higher valency vaccines.

The RR of the observed over the expected rates in the years

after PCV7 introduction and 95% CI were calculated for each

site, age, and year stratum for both of these categories of NVT.

A summary RR for both NVT categories was obtained for each

age group in each post-PCV7 year using random-effects meta-

analysis.

To compare the contribution of these two NVT categories to

the overall IPD incidence post-PCV7 introduction, we performed

a separate analysis restricted to the post-PCV7 period where we

Table 1. Datasets included.

Site IPD Analysis Meningitis Analysis

,5 y 18–49 y 50–64 y $65 y ,5 y 18–49 y 50–64 y $65 y

Active Bacterial Core
Surveillance (USA)

INCL INCL INCL INCL INCL INCL INCL INCL

Alaska (USA) INCL INCL INCL INCL INCL INCL INCL EXCLa

Australia Indigenous
(Northern Territories)

INCL INCL INCL INCL INCL No VT cases INCL No cases

Australia Non-Indigenous INCL INCL INCL INCL INCL EXCLa INCL INCL

Calgary (Canada) INCL INCL INCL INCL INCL INCL INCL INCL

Switzerland INCL INCL INCL INCL INCL INCL INCL INCL

Czech Republic INCL INCL INCL INCL Data not provided

Denmark INCL INCL INCL INCL INCL INCL INCL INCL

England and Wales INCL INCL INCL INCL INCL INCL INCL INCL

France EXCLa Data not provided INCL Data not provided

Greece (Crete) INCL INCL INCL INCL INCL No NVT cases INCL No VT cases

Ireland EXCLa INCL EXCLa EXCLa INCL

Israel INCL Data did not include all cases INCL Data did not include all cases

Navajo (USA) INCL INCL INCL INCL INCL INCL No VT cases No VT cases

Kaiser Permanente Northern
California (USA)

INCL Data not provided INCL Data not provided

The Netherlands INCL INCL INCL INCL INCL INCL INCL INCL

Norway INCL INCL INCL INCL EXCLa INCL INCL EXCLa

New Zealand INCL INCL INCL INCL INCL INCL INCL INCL

Scotland INCL INCL INCL INCL INCL INCL INCL INCL

Uruguay INCL EXCLb INCL EXCLb

Utah (USA) INCLc Data not provided INCL Data not provided

a,50% serotyped in some years.
bMajor changes or biases in surveillance that could affect estimates of serotype-specific rate and could not be adjusted for in the analysis.
cIncluded only in year +1; ,50% serotyped in year 2.
doi:10.1371/journal.pmed.1001517.t001
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defined the RR as the observed rate of IPD due to the NVT

included in the higher valency vaccines over the observed rate of

all other NVT not included in those vaccines. The 95% CI for this

RR was also calculated using the delta method for each site, age,

and post-PCV7 year. A summary RR for each age group and post-

PCV7 year was calculated using random-effects meta-analysis.

Figure 2. Pre-PCV7 introduction average annual invasive pneumococcal disease rates and percent vaccine serotype isolates. (A) IPD
rates as cases per 100,000. (B) Percent VT isolates as a proportion of all pre-PCV7 introduction isolates. *Only children aged ,5 years included. Site
abbreviations: ABCs, USA Active Bacterial Core Surveillance; AIP, USA Alaska; AUSI, Australian Indigenous Northern Territory; AUSN, Australian Non-
Indigenous; CAL, Canada Calgary; CHE, Switzerland; CZE, Czech Republic; DEN, Denmark; E&W, England and Wales; GRC, Greece; ISR, Israel; NAV, USA
Navajo; NCK, USA Kaiser Permanente Northern California; NLD, The Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA,
USA Utah.
doi:10.1371/journal.pmed.1001517.g002
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The analysis dataset was generated using SAS Version 9?2 (SAS

Institute Inc.). Meta-analyses were conducted using STATA

Version 12?1 (StataCorp).

Results

Description of Sites
We identified 72 potentially eligible datasets and requested

information from the investigators (Figure 1). Of 32 datasets

received, 21 from four geographic regions (six North America, 11

Europe, three Australasia, one South America) met the inclusion

criteria for analysis (Figure 1). For children, 19 datasets were

included in the IPD and meningitis analyses, although two sites

were included only for IPD and two different sites were included

only for meningitis. For adults, 15 and 11 datasets were included

in the analyses of IPD and meningitis, respectively. At least 19

datasets included in the analysis have previously published IPD

surveillance data, though not necessarily including the same data

used for this analysis (i.e., age group, case population, syndrome,

and years of surveillance) [3,4,16,21–36].

Specific reasons for exclusion from analysis for 11 datasets

received were the following: no denominator provided (one);

serogroup 19 not serotyped (one), ,70% coverage of the primary

PCV7 series by 12 months of age (four) [37]; ,2 years of

pre-PCV7 data (three); inability to define a proper denominator

population (one); and substantial changes over time in case

ascertainment of the surveillance system (one). The average annual

number of IPD cases pre-PCV7 introduction for the 11 datasets

excluded (six Europe, three North America, one Africa, and one

Western Pacific) ranged from 8–1,490. Furthermore, among

datasets included, two and six site-age group strata were excluded

from the IPD and meningitis analyses, respectively, because

,50% of isolates in those strata were serotyped (Table 1). In one

site, adult strata were excluded from the analysis due to an

increase in VT cases in the post-PCV7 introduction period,

indicating changes in surveillance or bias that would affect the

analysis (Table 1). No sites were excluded due to implausible

distributions of serotype 6A/6C isolates.

The PCV7 schedules used included two primary doses plus a

booster (nine sites), three primary doses without a booster (one

site), and three primary doses with a booster (11 sites); 16 sites had

catch-up campaigns (Table 2). All sites achieved $70% immuni-

zation coverage during the surveillance period and the range of

average immunization coverage estimates for all post-PCV7 years

was 55%–97% (Table S1).

Children ,5 Years Old
The annual number of IPD isolates at baseline for children

,5 years ranged from 2 to 690 and the median baseline rate

was 31?4 cases per 100,000 (range 4?7–280?3) (Figure 2; Table

2). Our meta-analysis showed that the rate of overall IPD

decreased significantly by 1 year after introduction (summary

Figure 3. Post-PCV7 introduction invasive pneumococcal disease summary rate ratios. Summary RRs from random effects meta-analysis.
Summary RRs estimated by dividing observed over expected rates and calculated for each age-serotype group. 95% confidence interval indicated by
error bars. Y-Axis on log scale.
doi:10.1371/journal.pmed.1001517.g003
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RR 0?55, 95% CI 0?46–0?65), which was then maintained out

to 7 years post-introduction (RR 0?49, 95% CI 0?35–0?68)

(Figure 3; Table 3). Although there was heterogeneity in the

effect across sites, as expressed by the I2 statistic, the point

estimates tended in the same direction with all 19 sites showing

a decrease (in 15, these reductions were statistically significant)

compared to baseline in overall IPD in at least one post-

introduction year (Figure 4). The rate of VT IPD declined

significantly by 1 year after introduction (summary RR 0?34,

95% CI 0?28–0?41) and continued to decrease through 7 years

(summary RR 0?03, 95% CI 0?01–0?10) (Figures 3 and 5; Table

3). The rate of NVT IPD increased significantly by 2 years after

introduction (summary RR 1?34, 95% CI 1?02–1?77) and

increased through 5 years, with little change thereafter through

year 7 (summary RR 2?81, 95% CI 2?12–3?71) (Figure 3; Table

3). Most sites (seven statistically significant) showed an increase

in NVT IPD rate in at least one post-introduction year (Figure

6). To account for the possible confounder of varying numbers

of datasets included by year after PCV introduction, we

repeated the meta-analysis including only the five sites with 7

years of post-PCV7 data. For VT, NVT, and all serotypes, the

summary RRs were similar to those when all sites were included

(Tables 3 and S2). The results were also similar when using a

continuity correction of 0?1 instead of 0?5 (Table S3) and when

excluding serotypes 1 and 5 (Table S4). In the analysis in which

all expected rates used the average pre-PCV7 rates (i.e., no

modeling of expected rates), the trends of post-PCV7 IPD

changes were similar to those from the modeling approach,

although NVT summary RRs tended to be slightly higher, as

would be expected with no adjustment for increasing surveil-

lance sensitivity over time (Table S5).

In the pre-PCV7 period, the percentage of IPD due to

meningitis ranged from 3%–34% by site (Table 2). The meta-

analysis results for meningitis were similar to overall IPD, with

sustained reductions in meningitis due to all serotypes through 7

years post-PCV7 introduction (RR 0?40, 95% CI 0?25–0?64)

(Figure 7; Tables 4 and S6). Due to smaller numbers of meningitis

cases, there was more variability by year and wider confidence

intervals for the RR point estimates (Figures 3 and 7; Tables 3 and

4).

Adults
For adults, the annual number of IPD isolates at baseline ranged

from 3 to 4,929 with a median IPD baseline rate of 14?2 cases per

100,000 (range 0?6–101?7) (Figure 2; Table 2). The summary RR

point estimates from the meta-analysis showed reductions in

Figure 4. All serotype invasive pneumococcal disease summary rate ratio forest plots by post-introduction year from random
effects meta-analysis for children aged ,5 years. Site abbreviations: ABCs, USA Active Bacterial Core Surveillance; AIP, USA Alaska; AUSI,
Australian Indigenous Northern Territory; AUSN, Australian Non-Indigenous; CAL, Canada Calgary; CHE, Switzerland; CZE, Czech Republic; DEN,
Denmark; E&W, England and Wales; GRC, Greece; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente Northern California; NLD, The
Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.
doi:10.1371/journal.pmed.1001517.g004
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overall IPD for most years, though not statistically significant in

years 1–6 post-introduction (Figures 3, 8, 11, and 14; Table 3).

Among the five sites with data 7 years post-introduction,

statistically significant reductions were seen in year 7 for persons

18–49 years (summary RR 0?52, 95% CI 0?29–0?91), for persons

50–64 years old (summary RR 0?84, 95% CI 0?77–0?93), and for

persons $65 years old (summary RR 0?74, 95% CI 0?58–0?95)

(Figures 8, 11, and 14; Table S2). VT IPD decreased significantly

for all adult age groups by the second year after PCV7

introduction (Figures 3, 9, 12, and 15; Table 3). In contrast to

children, this decrease in VT IPD rates occurred more gradually;

not until the fourth year after PCV7 introduction did adults have

decreases in VT IPD similar in magnitude to those seen among

children in the first post-PCV7 year (Figure 3; Table 3). In adults

aged 18–49 years old, there was no significant increase in NVT

IPD rates compared to baseline for any year, while for adults aged

50–64 years and $65 years, significant increases in NVT IPD

were observed from year 2 and year 1 post-introduction,

respectively (Figures 3, 10, 13, and 16; Table 3). There was

substantial variability in the magnitude of NVT IPD increase by

site (Figures 10, 13, and 16). For adults, the meta-analyses using a

0?1 continuity correction, excluding serotypes 1 and 5, limited to

the five sites with 7 years of data, and using only averaged pre-

PCV7 rates showed similar findings (Tables S2–S5).

Among all adults in the pre-PCV7 period, the percentage of

IPD due to meningitis ranged from 0%–8% by site (Table 2). The

findings for meningitis were similar to overall IPD for 18–49 year

olds, with statistically significant reductions at 7 years post-PCV7

introduction (RR 0?61, 95% CI 0?40–0?95) (Figure 7; Tables 3

and 4). For persons 50–64 years old, in most years the increase in

NVT meningitis tended to be higher than for NVT IPD, resulting

in some early years (i.e., years 2 and 3) when there was an increase

in overall pneumococcal (i.e., any serotype) meningitis, although

this significant increase was not sustained in subsequent years

(Figure 7; Tables 3 and 4). In contrast to 50–64 year olds, among

persons $65 years there was less of an increase in NVT meningitis

than NVT IPD in most years, resulting in relatively greater

reductions in overall meningitis due to all serotypes, although

never reaching a statistically significant decrease (Figure 7; Tables

3 and 4).

Figure 5. Vaccine serotype invasive pneumococcal disease summary rate ratio forest plots by post-introduction year from random
effects meta-analysis for children aged ,5 years. Site abbreviations: ABCs (USA Active Bacterial Core Surveillance); AIP (USA Alaska); Site
abbreviations: ABCs, USA Active Bacterial Core Surveillance; AIP, USA Alaska; AUSI, Australian Indigenous Northern Territory; AUSN, Australian Non-
Indigenous; CAL, Canada Calgary; CHE, Switzerland; CZE, Czech Republic; DEN, Denmark; E&W, England and Wales; GRC, Greece; ISR, Israel; NAV, USA
Navajo; NCK, USA Kaiser Permanente Northern California; NLD, The Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA,
USA Utah.
doi:10.1371/journal.pmed.1001517.g005
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NVT Serotypes Included in Higher Valency Conjugate
Vaccines

The magnitude of increases in IPD rates due to the subset of

NVT included in higher valency conjugate vaccines but not PCV7

(i.e., serotypes 1, 3, 5, 7F, 19A) was similar to the increases among

all the other NVT not in the higher valency vaccines (Table 5).

However, the rates due to IPD caused by the five NVT included in

higher valency vaccines were higher than rates of the NVT not in

the higher valency vaccines in most post-PCV7 years for children

(Table 6). In contrast, among adults aged 50–64 years and $65

years old, IPD rates of NVT not in the higher valency vaccines

were higher than rates caused by the NVT in the higher valency

vaccines for most years (Table 6).

Discussion

This study was unique in being able to collect, restrict, adjust,

and analyze multiple IPD surveillance datasets in a standardized

and systematic way, allowing summary estimates and cross-site

comparisons of PCV7 impact on IPD rates that are not possible

from individual site-specific publications [4,14,38]. The most

important public health implication of our analysis was that

decreases in overall IPD rates in children–the group targeted for

PCV7 vaccination–occurred quickly and were sustained after

vaccine introduction despite increases in NVT rates. The

summary reduction in the rate of overall IPD in children was

50%–60% compared with pre-introduction rates through 7 years

after PCV7 introduction. We found similar overall rate reductions

for pneumococcal meningitis as for overall IPD; meningitis might

be less susceptible to changes over time in clinical practice and

reporting compared to bacteremia. Over a half million children

still die annually from pneumococcal disease, mostly in low-

income countries [1], and WHO’s SAGE urges all countries to

implement routine immunization with PCVs [39], a recommen-

dation supported by this study’s finding that PCV introduction has

resulted in sustained, widespread reduction in overall IPD rates in

children despite the occurrence of some serotype replacement.

The relative stability in overall IPD reductions from years one to

seven after PCV7 introduction belies changes in both VT and

NVT IPD incidence that occurred over the years. Point estimates

of VT disease continued to decrease out to seven years when VT

IPD became uncommon in most sites. Point estimates of NVT, on

the other hand, increased out to at least 5 years after vaccine

introduction, albeit with variable magnitude across sites. This

Figure 6. Non-vaccine serotype invasive pneumococcal disease summary rate ratio forest plots by post-introduction year from
random effects meta-analysis for children aged ,5 years. Site abbreviations: ABCs, USA Active Bacterial Core Surveillance; AIP, USA Alaska;
AUSI, Australian Indigenous Northern Territory; AUSN, Australian Non-Indigenous; CAL, Canada Calgary; CHE, Switzerland; CZE, Czech Republic; DEN,
Denmark; E&W, England and Wales; GRC, Greece; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente Northern California; NLD, The
Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.
doi:10.1371/journal.pmed.1001517.g006
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increase in NVT IPD across sites is consistent with serotype

replacement, but the magnitude of those increases was smaller

than the reductions in VT disease, thereby resulting in a reduction

of overall IPD rates. The temporal association of the rise in NVT

IPD following PCV7 introduction suggests a causal relationship.

In our analysis, increases in NVT among children under 5 years

were seen within 2–3 years of PCV7 introduction in all sites. The

lag between the decrease in VT IPD and rise in NVT IPD, as

shown here, has been pointed out previously [14].

Our data suggest that much of the NVT IPD occurring after

PCV7 introduction will likely be prevented by the current use of

higher valency conjugate vaccine formulations [40–42]. The NVT

pneumococci most frequently observed to increase in carriage in

areas using PCV7 are generally less likely to result in invasive

disease in children than those serotypes included in PCV7 [43–

46]. Nonetheless, our data show that serotypes other than those in

PCV13 also can cause serotype replacement. Whether the higher

valency vaccines will ultimately lead to further sustained reduc-

tions in overall IPD than those observed after PCV7 introduction

is not yet clear and should be carefully monitored in the years

ahead.

Our findings among adults showed a similar trend as in

children, with some notable differences. There was a lag of at least

2 years before significant decreases in VT IPD rates were

observed, an expected finding as the level of herd protection will

depend on the accumulated size of the vaccinated group [47].

Moreover, the relative reduction in VT IPD, although substantial,

was not of the same magnitude as in children. The variability of

the changes in NVT IPD rate was greater in adults, with some sites

having increases and others having decreases. Moreover, some

differences in adult age groups were noticeable, with 50–64 year

olds having the most modest decrease in overall IPD and

meningitis, which has been shown before; this perhaps reflects

the greater contribution of underlying illness to IPD in this age

group [48,49]. With increased susceptibility, this population might

be more likely to show increases in IPD from less invasive

replacing NVTs. These differences in VT and NVT IPD rate

changes post-PCV7 among adults resulted in the finding that

although overall IPD decreased in adults, there was more

variability in the magnitude of the decrease by site and age group.

Though the majority of sites showed a decrease in overall IPD

among adults, there were a few sites in which adults had an

increase in overall IPD in some post-PCV7 years, emphasizing the

need for ongoing, methodologically sound and consistent surveil-

lance among not just children but adults to document the full

population impact of PCVs.

Despite the evidence from both IPD and carriage studies that

PCV7 leads to some serotype replacement, other factors can also

contribute to the observed increases in NVT disease rates. First,

secular trends in serotype prevalence occur over time, absent

Figure 7. Post-PCV7 introduction pneumococcal meningitis summary rate ratios. Summary RRs from random effects meta-analysis.
Summary RRs esimated by dividing observed by expected rates and calculated for each age-serotype group. 95% confidence interval indicated by
error bars. Y-Axis on log scale.
doi:10.1371/journal.pmed.1001517.g007
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vaccine, as has been shown in Spain, Denmark, Chile, and the US

[38,50–53]. One cause of short-term fluctuations in IPD is

outbreaks, particularly due to serotypes 1, 5, 8, and 12F [54].

Removal of serotypes 1 and 5 from our analyses did not alter the

overall findings, suggesting outbreaks of these two serotypes did

not account for the increases in NVT incidence. Second, rapid

temporal changes in antibiotic use could lead to competitive

advantage of serotypes commonly resistant to antibiotics. This

mechanism, particularly increased macrolide use in some coun-

tries, has been postulated as contributing to the rapid rise of

serotype 19A [38,55,56]. Third, certain characteristics of surveil-

lance systems can significantly influence whether changes in NVT

IPD rates are identified. For example, if serotyping is performed

only on the most severe cases, or if the selection of isolates for

serotyping changes over time, then the observed distribution of

serotypes in any given year may not reflect the true distribution in

the population. Additionally, if sensitivity of case ascertainment

changes over time, then findings are likely biased. For example, if

clinical investigation of suspected cases, or reporting of known

pneumococcal cases increases because of publicity surrounding a

national vaccination program or if identification of cases decreases

because of changing clinical practices (e.g., blood culturing

frequency), then identification of NVT IPD cases over time will

increase or decrease, respectively. Lastly, if the susceptibility of the

population to pneumococcal diseases changes, for example by

increased use of antiretroviral therapy in persons with HIV

infection, then the rates of IPD in the population can change over

time. Similarly, if the prevalence of underlying or immunocom-

promising illness increases over time, the population might

become more susceptible to IPD from less invasive NVT

serotypes, leading to an apparent increase in serotype replace-

ment. Although these non-vaccine factors might have played a

part in the observed IPD rates post-vaccination, we attempted to

eliminate or adjust for them in multiple ways, leading us to believe

that their overall contribution to the observed serotype-specific

IPD changes, including serotype replacement, were secondary.

This analysis had certain limitations. First, as mentioned, this

review includes only data from programs using PCV7. PCV7 is no

longer produced and so it will be important to be cautious when

extrapolating to programs using the newer PCV10 and PCV13

formulations. Nonetheless, if PCV10 and PCV13 affect nasopha-

ryngeal colonization in a manner similar to that of PCV7, IPD

serotype replacement will likely occur to some degree following

immunization with the higher valency formulations; the epidemi-

ology and the policy implications of serotype replacement learned

from PCV7 will continue to be relevant. Second, we may not have

Figure 8. All serotype invasive pneumococcal disease summary rate ratio forest plots by post-introduction year from random
effects meta-analysis for adults aged 18–49 years. Site abbreviations: ABCs, USA Active Bacterial Core Surveillance; AIP, USA Alaska; AUSI,
Australian Indigenous Northern Territory; AUSN, Australian Non-Indigenous; CAL, Canada Calgary; CHE, Switzerland; CZE, Czech Republic; DEN,
Denmark; E&W, England and Wales; GRC, Greece; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente Northern California; NLD, The
Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.
doi:10.1371/journal.pmed.1001517.g008
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fully identified or controlled for temporal trends in IPD

surveillance or possible outbreaks of serotypes besides 1 and 5 in

some datasets. Third, these data represent the experience in high-

income countries. Findings from the two indigenous populations

(i.e., Navajo and Australian Indigenous), known to be at high risk

of IPD and to share pneumococcal epidemiologic characteristics

with lower-income settings, did not diverge substantially from the

findings of the overall analysis. Nonetheless, the results of this

analysis might differ in developing countries, where there are

differences in the pressure of pneumococcal carriage, serotype

distributions, prevalence of risk factors, and co-morbidities. To

assess the impact of pneumococcal conjugate vaccines in such

populations, longitudinal surveillance of serotype-specific disease

will be important. Fourth, only five sites had data out to 6 and 7

years post-introduction, which might have limited the represen-

tativeness of the findings for those years, although these five sites

showed similar results to all sites in years 1–5 post-introduction

(Table S8). Fifth, we could not control for inherent differences in

clinical practice across sites, such as the criteria for hospitalization

and performing lumbar punctures and blood cultures, which

might, in part, explain heterogeneity of findings across sites. The

focus of our analysis was to describe post-PCV IPD epidemiology

across many sites, rather than identify site-specific variables that

might predict serotype replacement. Finally, these conclusions

apply only to IPD and may not be fully representative of serotype

replacement in non-bacteremic pneumococcal pneumonia, the

most important cause of pneumococcal morbidity and mortality

worldwide [8,57].

Based on our experience in reviewing many datasets for this

evaluation, we have several recommendations for the collection and

interpretation of IPD surveillance data (Table 7). In settings where

these recommendations cannot be implemented, introduction of

PCV should still occur as quickly as possible. However, attempts to

identify and characterize serotype replacement using surveillance

systems that do not meet these criteria could lead to erroneous

conclusions. With so many countries having introduced or about to

introduce PCV, and with the need for multiple years of stable and

complete pre- and post-IPD rate data, it may be too late to establish

many new surveillance sites to monitor serotype replacement. Many

countries have existing systems, however, which can be assessed and

enhanced to meet the rigorous, high-quality IPD surveillance

requirements to monitor the impact of PCVs. Optimizing

surveillance data that allows for valid interpretations of the vaccine

effect on disease is essential for sound policy decisions [58].

Figure 9. Vaccine serotype invasive pneumococcal disease summary rate ratio forest plots by post-introduction year from random
effects meta-analysis for adults aged 18–49 years. Site abbreviations: ABCs, USA Active Bacterial Core Surveillance; AIP, USA Alaska; AUSI,
Australian Indigenous Northern Territory; AUSN, Australian Non-Indigenous; CAL, Canada Calgary; CHE, Switzerland; CZE, Czech Republic; DEN,
Denmark; E&W, England and Wales; GRC, Greece; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente Northern California; NLD, The
Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.
doi:10.1371/journal.pmed.1001517.g009
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ratios from random effects meta-analysis for children
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Core Surveillance; AIP, USA Alaska; AUSI, Australian Indige-

nous Northern Territory; AUSN, Australian Non-Indigenous;
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E&W, England and Wales; FRA, France; GRC, Greece; IRL,

Ireland; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser

Permanente Northern California; NLD, The Netherlands; NOR,

Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay;

UTA, USA Utah.

(PDF)

Figure S2 Vaccine serotype meningitis summary rate
ratios from random effects meta-analysis for adults
aged 18–49 years. Site abbreviations: ABCs, USA Active

Bacterial Core Surveillance; AIP, USA Alaska; AUSI, Australian

Indigenous Northern Territory; AUSN, Australian Non-Indige-

nous; CAL, Canada Calgary; CHE, Switzerland; DEN, Denmark;

E&W, England and Wales; FRA, France; GRC, Greece; IRL,

Ireland; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser

Permanente Northern California; NLD, The Netherlands; NOR,

Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay;

UTA, USA Utah.

(PDF)

Figure S3 Vaccine serotype meningitis summary rate
ratios from random effects meta-analysis for adults
aged 50–64 years. Site abbreviations: ABCs, USA Active

Bacterial Core Surveillance; AIP, USA Alaska; AUSI, Australian

Indigenous Northern Territory; AUSN, Australian Non-Indige-

nous; CAL, Canada Calgary; CHE, Switzerland; DEN, Denmark;

E&W, England and Wales; FRA, France; GRC, Greece; IRL,

Ireland; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser

Permanente Northern California; NLD, The Netherlands; NOR,

Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay;

UTA, USA Utah.

(PDF)

Figure S4 Vaccine serotype meningitis summary rate
ratios from random effects meta-analysis for adults
aged $65 years. Site abbreviations: ABCs, USA Active

Bacterial Core Surveillance; AIP, USA Alaska; AUSI,

Australian Indigenous Northern Territory; AUSN, Australian

Figure 10. Non-vaccine serotype invasive pneumococcal disease summary rate ratio forest plots by post-introduction year from
random effects meta-analysis for adults aged 18–49 years. Site abbreviations: ABCs, USA Active Bacterial Core Surveillance; AIP, USA Alaska;
AUSI, Australian Indigenous Northern Territory; AUSN, Australian Non-Indigenous; CAL, Canada Calgary; CHE, Switzerland; CZE, Czech Republic; DEN,
Denmark; E&W, England and Wales; GRC, Greece; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente Northern California; NLD, The
Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.
doi:10.1371/journal.pmed.1001517.g010
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NCK, USA Kaiser Permanente Northern California; NLD, The

Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland;

URY, Uruguay; UTA, USA Utah.

(PDF)

Figure S5 Non-vaccine serotype summary rate ratios
from random effects meta-analysis for children aged ,5
years. Site abbreviations: ABCs, USA Active Bacterial Core

Surveillance; AIP, USA Alaska; AUSI, Australian Indigenous

Northern Territory; AUSN, Australian Non-Indigenous; CAL,

Canada Calgary; CHE, Switzerland; DEN, Denmark; E&W,

England and Wales; FRA, France; GRC, Greece; IRL, Ireland;

ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente

Northern California; NLD, The Netherlands; NOR, Norway;

NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA

Utah.

(PDF)

Figure S6 Non-vaccine serotype meningitis summary
rate ratios from random effects meta-analysis for adults

aged 18–49 years. Site abbreviations: ABCs, USA Active

Bacterial Core Surveillance; AIP, USA Alaska; AUSI, Australian

Indigenous Northern Territory; AUSN, Australian Non-Indige-

nous; CAL, Canada Calgary; CHE, Switzerland; DEN, Denmark;

E&W, England and Wales; FRA, France; GRC, Greece; IRL,

Ireland; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser

Permanente Northern California; NLD, The Netherlands; NOR,

Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay;

UTA, USA Utah.

(PDF)

Figure S7 Non-vaccine serotype meningitis summary
rate ratios from random effects meta-analysis for adults
aged 50–64 years. Site abbreviations: ABCs, USA Active Bacterial

Core Surveillance; AIP, USA Alaska; AUSI, Australian Indigenous

Northern Territory; AUSN, Australian Non-Indigenous; CAL,

Canada Calgary; CHE, Switzerland; DEN, Denmark; E&W,

England and Wales; FRA, France; GRC, Greece; IRL, Ireland;

ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente

Northern California; NLD, The Netherlands; NOR, Norway; NZL,

New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.

(PDF)

Figure 11. All serotype invasive pneumococcal disease summary rate ratio forest plots by post-introduction year from random
effects meta-analysis for adults aged 50–64 years. Site abbreviations: ABCs, USA Active Bacterial Core Surveillance; AIP, USA Alaska; AUSI,
Australian Indigenous Northern Territory; AUSN, Australian Non-Indigenous; CAL, Canada Calgary; CHE, Switzerland; CZE, Czech Republic; DEN,
Denmark; E&W, England and Wales; GRC, Greece; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente Northern California; NLD, The
Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.
doi:10.1371/journal.pmed.1001517.g011
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Figure S8 Non-vaccine serotype meningitis summary
rate ratios from random effects meta-analysis for adults
aged $65 years. Site abbreviations: ABCs, USA Active

Bacterial Core Surveillance; AIP, USA Alaska; AUSI, Australian

Indigenous Northern Territory; AUSN, Australian Non-Indige-

nous; CAL, Canada Calgary; CHE, Switzerland; DEN, Denmark;

E&W, England and Wales; FRA, France; GRC, Greece; IRL,

Ireland; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser

Permanente Northern California; NLD, The Netherlands; NOR,

Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay;

UTA, USA Utah.

(PDF)

Figure S9 All serotype meningitis summary rate ratios
from random effects meta-analysis for children aged ,5
years. Site abbreviations: ABCs, USA Active Bacterial Core

Surveillance; AIP, USA Alaska; AUSI, Australian Indigenous

Northern Territory; AUSN, Australian Non-Indigenous; CAL,

Canada Calgary; CHE, Switzerland; DEN, Denmark; E&W,

England and Wales; FRA, France; GRC, Greece; IRL, Ireland;

ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente

Northern California; NLD, The Netherlands; NOR, Norway;

NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA

Utah.

(PDF)

Figure S10 All serotype meningitis summary rate ratios
from random effects meta-analysis for adults aged 18–
49 years. Site abbreviations: ABCs, USA Active Bacterial Core

Surveillance; AIP, USA Alaska; AUSI, Australian Indigenous

Northern Territory; AUSN, Australian Non-Indigenous; CAL,

Canada Calgary; CHE, Switzerland; DEN, Denmark; E&W,

England and Wales; FRA, France; GRC, Greece; IRL, Ireland;

ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente

Northern California; NLD, The Netherlands; NOR, Norway;

NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA

Utah.

(PDF)

Figure S11 All serotype meningitis summary rate ratios
from random effects meta-analysis for adults aged 50–64
years. Site abbreviations: ABCs, USA Active Bacterial Core

Surveillance; AIP, USA Alaska; AUSI, Australian Indigenous

Northern Territory; AUSN, Australian Non-Indigenous; CAL,

Canada Calgary; CHE, Switzerland; DEN, Denmark; E&W,

Figure 12. Vaccine serotype invasive pneumococcal disease summary rate ratio forest plots by post-introduction year from
random effects meta-analysis for adults aged 50–64 years. Site abbreviations: ABCs, USA Active Bacterial Core Surveillance; AIP, USA Alaska;
AUSI, Australian Indigenous Northern Territory; AUSN, Australian Non-Indigenous; CAL, Canada Calgary; CHE, Switzerland; CZE, Czech Republic; DEN,
Denmark; E&W, England and Wales; GRC, Greece; ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente Northern California; NLD, The
Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.
doi:10.1371/journal.pmed.1001517.g012
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Northern California; NLD, The Netherlands; NOR, Norway; NZL,

New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.

(PDF)

Figure S12 All serotype meningitis summary rate ratios
from random effects meta-analysis for adults aged $65
years. Site abbreviations: ABCs, USA Active Bacterial Core

Surveillance; AIP, USA Alaska; AUSI, Australian Indigenous

Northern Territory; AUSN, Australian Non-Indigenous; CAL,

Canada Calgary; CHE, Switzerland; DEN, Denmark; E&W,

England and Wales; FRA, France; GRC, Greece; IRL, Ireland;

ISR, Israel; NAV, USA Navajo; NCK, USA Kaiser Permanente

Northern California; NLD, The Netherlands; NOR, Norway; NZL,

New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.

(PDF)
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Figure 13. Non-vaccine serotype invasive pneumococcal disease summary rate ratio forest plots by post-introduction year from
random effects meta-analysis for adults aged 50–64 years. Site abbreviations: ABCs, USA Active Bacterial Core Surveillance; AIP, USA Alaska;
AUSI, Australian Indigenous Northern Territory; AUSN, Australian Non-Indigenous; CAL, Canada Calgary; CHE, Switzerland; CZE, Czech Republic; DEN,
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Netherlands; NOR, Norway; NZL, New Zealand; SCT, Scotland; URY, Uruguay; UTA, USA Utah.
doi:10.1371/journal.pmed.1001517.g013
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Table 5. Summary rate ratios from random effects meta-analysis, comparing observed over expected rates for
non-vaccine serotypes, divided into those in higher valency vaccines and those not, by age, serotype group, and
post-PCV7 introduction year for all sites.

Year Post-PCV7 Introduction RR (95% CI)

1 2 3 4 5 6 7

Number of sites 19 16 14 10 6 5 5

Children
,5 y

Types 1, 3, 5,
7F, and 19Aa

1?22 (0?97–1?54) 1?39 (0?98–1?97) 1?46 (0?99–2?15) 1?46 (0?72–2?99) 3?65 (2?50–5?34) 2?57 (1?21–5?44) 2?09 (0?81–5?37)

Other NVTa 1?23 (1?04–1?44) 1?23 (0?91–1?66) 1?64 (1?25–2?17) 1?10 (0?65–1?86) 2?07 (1?51–2?84) 1?57 (1?06–2?32) 2?03 (1?41–2?92)

Number of sites 15 14 13 9 6 5 5

Persons
18–49 y

Types 1, 3, 5,
7F, and 19A

1?10 (0?82–1?48) 1?12 (0?83–1?51) 1?08 (0?79–1?48) 1?27 (0?66–2?44) 1?36 (0?44–4?19) 0?94 (0?34–2?61) 0?81 (0?25–2?60)

Other NVT 0?93 (0?85–1?02) 1?03 (0?85–1?26) 1?26 (0?94–1?67) 1?27 (0?86–1?88) 1?28 (0?80–2?05) 1?04 (0?60–1?79) 0?87 (0?44–1?69)

Number of sites 15 14 13 9 6 5 5

Persons
50–64 y

Types 1, 3, 5,
7F, and 19A

1?07 (0?89–1?30) 1?35 (1?10–1?65) 1?46 (1?18–1?80) 1?55 (1?20–1?99) 2?01 (1?15–3?50) 1?69 (1?17–2?46) 1?82 (1?50–2?21)

Other NVT 1?09 (0?97–1?24) 1?39 (1?27–1?52) 1?65 (1?44–1?89) 1?62 (1?29–2?02) 2?00 (1?55–2?59) 1?69 (1?44–1?99) 1?67 (1?44–1?94)

Number of sites 15 14 13 9 6 5 5

Persons
$65 y

Types 1, 3, 5,
7F, and 19A

1?18 (0?99–1?40) 1?30 (1?11–1?52) 1?42 (1?15–1?75) 1?62 (1?05–2?48) 1?86 (1?30–2?66) 1?48 (1?22–1?80) 1?23 (0?60–2?51)

Other NVT 1?11 (1?00–1?23) 1?36 (1?15–1?60) 1?59 (1?37–1?84) 1?85 (1?30–2?65) 2?05 (1?25–3?38) 1?60 (1?24–2?07) 1?45 (1?26–1?67)

aSerotypes included in higher valency PCVs.
doi:10.1371/journal.pmed.1001517.t005

Table 6. Summary rate ratios comparing the rate of serotypes 1, 3, 5, 7F, and 19A over the rate of all other non-
vaccine types in each year post-PCV7 introduction, from random effects meta-analysis.

Year Post-PCV7 Introduction RR (95% CI)

Children ,5 y Persons 18–49 y Persons 50–64 y Persons $65 y

1 1?59 (1?27–1?98) 1?18 (0?80–1?74) 0?87 (0?72–1?06) 0?83 (0?69–1?00)

n 19 15 15 15

2 1?66 (1?28–2?16) 1?10 (0?80–1?51) 0?83 (0?68–1?02) 0?74 (0?66–0?84)

n 16 14 14 14

3 1?25 (0?97–1?62) 0?86 (0?59–1?27) 0?75 (0?61–0?93) 0?70 (0?62–0?79)

n 14 13 13 13

4 1?53 (1?01–2?31) 0?91 (0?55–1?49) 0?76 (0?60–0?98) 0?64 (0?53–0?77)

n 10 9 9 9

5 1?76 (1?18–2?63) 0?76 (0?38–1?51 0?79 (0?45–1?39) 0?65 (0?58–0?74)

n 6 6 6 6

6 1?75 (0?93–3?30) 0?71 (0?54–0?93) 0?68 (0?53–0?88) 0?54 (0?47–0?62)

n 5 5 5 5

7 1?01 (0?36–2?87) 0?73 (0?51–1?04) 0?69 (0?59–0?80) 0?53 (0?38–0?75)

n 5 5 5 5

Five Non-vaccine serotypes included in higher valency PCVs. Serotype 6A is not included as it was grouped with vaccine serotypes.
doi:10.1371/journal.pmed.1001517.t006
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Table 7. Recommendations for maximizing the interpretability of surveillance data on invasive pneumococcal
disease rates in the context of serotype replacement.

Topic Recommendations Purpose

Type of surveillance N Active or passive case detection acceptable N Minimizes serotype-specific IPD trends introduced by changes in
surveillance methodology

N Regularly collect data that can assess system for sensitivity
and consistency

N Allows for adjustment of disease rates for system changes in
sensitivity

Numerators N Do not attempt to analyze serotype replacement in settings
where small changes in numerators substantially alter estimates
of rates

N Prevent erroneous interpretation of replacement based on
unstable rates due to small sample size

N Collect information on hospitalization status and syndrome N Assists in interpretation of changes in healthcare seeking or
clinical care practices

Denominators N Rates should be calculable N IPD rates more reliable than case counts due to temporal changes
in catchment population and healthcare-utilization

N Obtain population denominators from the most reliable
source available

N Inaccurate denominators can lead to IPD trends independent of
PCV

Duration N $2 years of data pre-PCV N Prevent erroneous interpretation of replacement based from a
single atypical or inaccurate baseline year or insufficient time after
PCV introduction

N $3 years of data post-PCV

Serotyping N Serotype isolates from representative sample of $50% of cases N Reduce bias associated with serotyping a subset of systematically
selected cases (e.g., most severe)

N Apply serotype distribution of cases with known serotypes to
that of cases with unknown serotype for each year and age
group

N Avoid differential underestimation of serotype-specific rates by
year of surveillance

N Distinguish between serotypes 6A and 6C N Reduce misclassification of serotypes that have different post-PCV
epidemiology

Case definition N Hospitalized cases with pneumococcus isolated from normally
sterile sites (e.g., blood, CSF)

N Maximize comparability of rates between sites, countries, and
regions with different clinical practices

Minimum variables to collect N Age N Serotype distribution varies substantially across age, clinical
presentation, and comorbidities, so want to stratify or adjust for
these when possible

N Clinical syndrome

N Comorbidities, especially HIV

Vaccine coverage N Collect vaccine coverage over time in the surveillance
population

N Prevent erroneous identification of serotype replacement when
PCV coverage is low

N When coverage is ,70%, interpret increases in non-PCV serotypes
with caution

Supporting evidence N Evaluate other data sources (e.g., nasopharyngeal colonization
studies, observational studies of vaccine effectiveness,
evaluation of trends in pneumonia hospitalizations)

N Other sources of data can provide corroborating or contradictory
evidence of serotype replacement.

Collaboration N Collaborate with investigators experienced in the
development and interpretation of IPD surveillance systems

N Avoid potential biases in case ascertainment

N Consider alternative and potentially important modifications to
the analysis or interpretation

CSF, cerebrospinal fluid.
doi:10.1371/journal.pmed.1001517.t007
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Editors’ Summary

Background Pneumococcal disease–a major cause of
illness and death in children and adults worldwide–is caused
by Streptococcus pneumoniae, a bacterium that often
colonizes the nose and throat harmlessly. Unfortunately, S.
pneumoniae occasionally spreads into the lungs, blood-
stream, or covering of the brain, where it causes pneumonia,
septicemia, and meningitis, respectively. These invasive
pneumococcal diseases (IPDs) can usually be successfully
treated with antibiotics but can be fatal. Consequently, it is
better to avoid infection through vaccination. Vaccination
primes the immune system to recognize and attack disease-
causing organisms (pathogens) rapidly and effectively by
exposing it to weakened or dead pathogens or to pathogen
molecules that it recognizes as foreign (antigens). Because
there are more than 90 S. pneumoniae variants or
‘‘serotypes,’’ each characterized by a different antigenic
polysaccharide (complex sugar) coat, vaccines that protect
against S. pneumoniae have to include multiple serotypes.
Thus, the pneumococcal conjugate vaccine PCV7, which was
introduced into the US infant immunization regimen in 2000,
contains polysaccharides from the seven S. pneumoniae
serotypes mainly responsible for IPD in the US at that time.

Why Was This Study Done? Vaccination with PCV7 was
subsequently introduced in several other high- and middle-
income countries, and IPD caused by the serotypes included
in the vaccine declined substantially in children and in adults
(because of reduced bacterial transmission and herd protec-
tion) in the US and virtually all these countries. However,
increases in IPD caused by non-vaccine serotypes occurred in
some settings, presumably because of ‘‘serotype replace-
ment.’’ PCV7 prevents both IPD caused by the serotypes it
contains and carriage of these serotypes. Consequently, after
vaccination, previously less common, non-vaccine serotypes
can colonize the nose and throat, some of which can cause
IPD. In July 2010, a World Health Organization expert
consultation on serotype replacement called for a compre-
hensive analysis of the magnitude and variability of
pneumococcal serotype replacement following PCV7 use to
help guide the introduction of PCVs in low-income countries,
where most pneumococcal deaths occur. In this pooled
analysis of data from multiple surveillance sites, the
researchers investigate serotype-specific changes in IPD after
PCV7 introduction using a standardized approach.

What Did the Researchers Do and Find? The researchers
identified 21 databases that had data about the rate of IPD
for at least 2 years before and 1 year after PCV7 introduction.
They estimated whether changes in IPD rates had occurred
after PCV7 introduction by calculating site-specific rate
ratios–the observed IPD rate for each post-PCV7 year divided
by the expected IPD rate in the absence of PCV7 extrapo-
lated from the pre-PCV7 rate. Finally, they used a statistical
approach (random effects meta-analysis) to estimate sum-
mary (pooled) rate ratios. For children under 5 years old, the
overall number of observed cases of IPD in the first year after
the introduction of PCV7 was about half the expected
number; this reduction in IPD continued through year 7 after

PCV7 introduction. Notably, the rate of IPD caused by the
S. pneumonia serotypes in PCV7 decreased every year, but
the rate of IPD caused by non-vaccine serotypes increased
annually. By year 7, the number of cases of IPD caused by
non-vaccine serotypes was 3-fold higher than expected, but
was still smaller than the decrease in vaccine serotypes,
thereby leading to the decrease in overall IPD. Finally, smaller
decreases in overall IPD also occurred among adults but
occurred later than in children 2 years or more after PCV7
introduction.

What Do These Findings Mean? These findings show
that consistent, rapid, and sustained decreases in overall IPD
and in IPD caused by serotypes included in PCV7 occurred in
children and thus support the use of PCVs. The small
increases in IPD caused by non-vaccine serotypes that these
findings reveal are likely to be the result of serotype
replacement, but changes in antibiotic use and other factors
may also be involved. These findings have several important
limitations, however. For example, PCV7 is no longer made
and extrapolation of these results to newer PCV10 and
PCV13 formulations should be done cautiously. On the other
hand, many of the serotypes causing serotype replacement
after PCV7 are included in these higher valency vaccines.
Moreover, because the data analyzed in this study mainly
came from high-income countries, these findings may not be
generalizable to low-income countries. Nevertheless, based
on their analysis, the researchers make recommendations for
the collection and analysis of IPD surveillance data that
should allow valid interpretations of the effect of PCVs on
IPD to be made, an important requisite for making sound
policy decisions about vaccination against pneumococcal
disease.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001517.

N The US Centers for Disease Control and Prevention
provides information for patients and health professionals
on all aspects of pneumococcal disease and pneumococcal
vaccination, including personal stories

N Public Health England provides information on
pneumococcal disease and on pneumococcal vaccines

N The World Health Organization also provides information
on pneumococcal vaccines

N The not-for-profit Immunization Action Coalition has
information on pneumococcal disease, including personal
stories

N MedlinePlus has links to further information about
pneumococcal infections (in English and Spanish)

N The International Vaccine Access Center at Johns Hopkins
Bloomberg School of Public Health has more information
on introduction of pneumococcal conjugate vaccines in
low-income countries
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http://www.cdc.gov/vaccines/vpd/pneumo/default.htm
http://www.cdc.gov/vaccines/vpd/pneumo/default.htm
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Pneumococcal/GeneralInformationPneumococcal/pneumoBackground/
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Pneumococcal/GuidelinesPneumococcal/pneumoFAQs/
http://www.who.int/vaccines/en/pneumococcus.shtml
http://www.vaccineinformation.org/pneumococcal/
http://www.nlm.nih.gov/medlineplus/pneumococcalinfections.html
http://www.jhsph.edu/research/centersndnstitutes/ivac/resources/index.html
http://www.jhsph.edu/research/centersndnstitutes/ivac/resources/index.html



