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Abstract 

DETECTING AND PREDICTING HOT MOMENTS OF METHANE 

EMISSIONS FROM COASTAL WETLANDS  

2024 

by 

Grace Pearsall 

Coastal wetlands are highly productive ecosystems and can store large 

amounts of carbon (C). However, decomposition processes in coastal wetlands also 

produce and emit greenhouse gasses (GHG), such as methane (CH4) - a potent 

greenhouse gas that could offset C storage in the wetland soil. Often a patchwork of 

vegetation and open water, coastal wetlands exhibit strong biogeochemical 

heterogeneity, resulting in elevated CH4 flux (FCH4) at certain times and locations. 

These points of elevated FCH4, termed “hot spots and hot moments" (HSHM), 

experience biogeochemical rates so high they can disproportionally contribute to 

annual flux rates. Despite the broad utilization of the term HSHM, there is no 

standardized, statistically rigorous method for identifying HSHM and quantifying 

their impact on ecosystem processes. Furthermore, the conditions that trigger HSHM 

of FCH4 are poorly understood, and hot moments are often excluded from wetland 

FCH4 upscaling and predictive modeling. This study presents a comparative analysis 

of standard HM identification techniques to find the best HM detection method for 

coastal wetlands and formalize HM identification best practices. We found that using 

a rolling Z-score threshold to identify hot moments from eddy covariance (EC) flux 



 
 

x 
 

data was most suitable for coastal wetlands. Using this approach, we flagged hot 

moments at nine wetlands in the San Francisco Bay-San Joaquin River Delta (Bay-

Delta). We then used the identified HMs to train several data-driven Random Forest 

(RF) models that leverage EC data to predict the occurrence of HMs. The best 

performing RF accurately (79%) captured HM absence/presence in the Bay-Delta 

region, and the relative importance of predictive environment parameters in the model 

shed light on the best predictors for HM. The method comparison in this study 

provides a best practices workflow for researchers when defining HSHM, and the RF 

HM model provides an upscaling methodology that could be used to predict the 

occurrence of HM FCH4 at sites without EC towers. Thus, the HM identification 

methodology and the predictive model present a valuable tool for wetland managers 

and restoration planners who can use the information to prioritize time and resources 

for mitigating and preventing these rare but high-impact emission events.   
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Chapter 1: Identifying Hot Moments of FCH4 at Coastal Wetlands 

Introduction and Background 

In the 20 years since McClain and other’s seminal 2003 paper formalized the 

hot spots and hot moments (HSHM) concept, the HSHM framework has become 

ubiquitous in biogeochemical and ecological studies seeking to understand 

spatiotemporal extremes in ecosystem components and processes (Walter et al., 

2023). The rise in recognition of the HSHM paradigm has brought attention to the 

problem that rare locations and events that have highly disproportionate impacts on 

overall biogeochemical processes in an ecosystem are often missed during sampling 

or discounted as outliers (Iglewicz and Hoaglin 1993; Rousseeuw and Hubert 2011). 

McClain et al. 2003 defined hot spots as locations that experience disproportionately 

high reaction rates relative to surrounding areas and hot moments (HMs) as brief 

points in time that show disproportionately high reaction rates relative to intervening 

periods. Identifying and quantifying HSHM ensures that the spatiotemporal 

dimensions of extreme measurements that often have an undue influence on overall 

ecosystem functioning and are critical for accurate modeling and upscaling 

approaches are not lost (Walter et al., 2023; Bernhardt et al., 2017)  

Many authors have built upon McClain et al.’s original conception of HSHM, 

most notably Bernhardt et al. in 2017, who proposed a reframing of HSHM as 

Ecosystem Control Points, which moves away from the “hot or not” dichotomy and 
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implies there is a gradient in biogeochemical activity. Bernhardt et al. (2017) also 

took stock of the impact and usage of HSHM biogeochemistry and ecosystem. They 

found that the HSHM concept fostered a large volume of work examining the 

spatiotemporal aspects of rare biogeochemical activity, providing new insights into 

their impact on overall ecosystem functioning. However, despite the broad utilization 

of the term HSHM, Bernhardt et al. (2017) discovered no standardized, statistically 

rigorous method for identifying HSHM and quantifying their impact on ecosystem 

processes. Surveying the literature, Bernhardt et al. 2017 noted that the term HSHM 

is often invoked without any mathematical or statistical definition of what makes 

these times and locations “hot.” Even as recently as 2023, researchers such as Walter 

et al. 2023 still note that a standard method for quantifying HSHM does not exist.  

A standardized, statistically rigorous HSHM identification methodology is 

needed to allow full utilization of the HSHM framework in biogeochemistry and 

ecosystem science.  The absence of a standard HSHM identification methodology 

also presents a barrier to comparative HSHM studies across ecosystems and 

incorporating HSHM into predictive and mechanistic models. Invoking the HSHM 

language without any mathematical demonstration that the points are “hot” dilutes the 

meaning of HSHM as instances and locations that experience extreme reaction rates 

and exert a disproportionate impact on overall ecosystem functioning to just another 

descriptive word for peaks in a dataset (Bernhardt et al., 2017). Without a best 
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practice approach for identifying HSHM, it is challenging to compare HSHM 

identified at different sites or by different researchers, which limits our ability to 

study the drivers and triggers of HSHM systematically and comparatively and 

incorporate them into predictive models. With no standard HSHM identification 

scheme. One’s HSHM identification methodology choice introduces subjectivity into 

the HSHM identification, which complicates HSHM comparative analysis because 

the measurements flagged as HSHM by one method might not be considered HSHM 

by other metrics.  

Ultimately, the HSHM identification method holds much weight in 

understanding hot phenomena, their contribution to flux, and their drivers. While 

studies have outlined the need for a standard, statistically rigorous definition of 

HSHM or presented specific methods for HSHM identification, a comprehensive 

comparison of the most common HSHM identification methods, to our knowledge, 

has not been done yet. In this study, we aim to highlight 1) the need for HSHM 

identification best practice methods, 2) the different results obtained with common 

HSHM identification methods, and 3) the importance of choosing a statistically 

appropriate metric.  

To that end, we tested six common HSHM detection strategies with two high-

resolution eddy covariance flux tower (EC) datasets recording methane flux from two 

wetlands in the San Francisco Bay-Sacramento-San Joaquin River Delta (Bay-Delta) 
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in California, USA to demonstrate the impact a given HSHM identification method 

can have on the final flagged HSHM. We also utilized statistical metrics to explicitly 

test for the presence of HM in any data distribution (Walter et al., 2023; Darrouzet-

Nardi et al., 2011) and quantified the contribution to the annual flux of the HMs 

identified by each method. HSHM of CH4 emissions have been documented at 

numerous wetlands around the globe, and the stochastic nature of wetland CH4 

emissions is widely appreciated (Waldo et al., 2020; Savage et al., 2014; Obregon et 

al., 2023; Tupek et al., 2015; Rey-Sanchez et al., 2022; Anthony & Silver, 2023). For 

this study, we focus solely on HMs of CH4 flux (FCH4) since our dataset has hourly 

temporal resolution and spans over ten years of data, making it perfectly suited for 

HM detection. Additionally, the statistical methods typically used to identify HSHM 

are usually spatiotemporally agnostic, meaning that statistical indices applied to flag 

HMs from intervening periods can also be applied to flag HS in an intervening 

matrix.  

 

Data Source and Site Descriptions 

2.1 Data Source and Pre-processing 

The FCH4 data utilized in this study was collected using the EC flux method 

at MYB Wetland and EDN and accessed through the AmeriFlux network (Novick et 
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al., 2018). EC is a micro-meteorological method that directly observes gas, energy, 

and momentum exchanges between ecosystems and the atmosphere (Baldocchi, 

2003).  The MYB Wetland and EDN flux towers were installed in October 2010 and 

February 2018 and operated by the Biometeorology lab at UC Berkeley and the 

Oikawa lab at Cal State East Bay, respectively. All data published in the AmeriFlux 

network undergoes processing, which includes quality control and assurance (Chu et 

al., 2023).  Since the AmeriFlux data from MYB and EDN have already undergone 

rigorous processing, we assume that any extreme values present in the dataset are not 

outliers caused by analytical or instrument errors but are real, extreme FCH4 

measurements. All data were downloaded at the half-hour resolution, and to reduce 

noise, we aggregated half-hourly measurements into hourly measurements.  

 

2.2 Site Descriptions 

For this method comparison, we set up a case study using EC data from two 

hydrologically distinct wetland sites in the SF Bay-Delta, MYB Wetland and EDN 

Marsh. We chose these two sites to determine if and how the HM identification 

methods might perform differently when applied to the same flux at different sites. 

Because of their distinct hydrologies, restoration histories, and vegetation cover, 

MYB and EDN have very different greenhouse gas budgets and CH4 emission 

spatiotemporal patterns. Comparing the various HM identification methods’ 
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proficiency at flagging FCH4 HM at two sites with different emission patterns will 

reveal discrepancies in the identification methodologies. 

MYB wetland was restored from a livestock pasture into a freshwater wetland 

in 2010, and the current land cover is 50% open water and 50% vegetation. Managed 

by the California Department of Water Resources, water from the nearby river is 

piped in during dry summers to maintain water levels (Arias-Ortiz et al., 2022). MYB 

is a high-emission site with a mean FCH4 of 116.72 nmol m-2 hr-1 and a large range of 

FCH4 values. At varying seasons, MYB can act as a net sink of carbon (-223 ± 79 g 

C m-2 yr -1) or a net source of methane (50 ± 5 g C-CH4 g m-2 yr-1) (Hemes et al., 

2019). Figure 1 illustrates a pronounced seasonal cycle in FCH4, with emissions 

peaking during the growing season around August each year, correlating with 

heightened plant and microbial activity associated with CH4 production.  

EDN is a tidally influenced, restored polyhaline marsh in in the San Francisco 

Bay. Restored from salt ponds in 2008, it consists of 80% mudflats and 20% 

vegetated areas. Managed by the California Department of Water Resources, EDN is 

tidally connected to the Bay with a tidal range of 1.34 m (Arias-Ortiz et al., 2023). 

EDN is a lower-emission site than MYB, with a mean FCH4 of 1.80 nmol m-2 hr-1. 

The site is also an efficient annual net sink for CO2 storing −387 g C-CO2 m−2 yr−1 

(Shahan et al., 2022). As seen in Figure 1, the EDN FCH4 time series does not exhibit 

the same sinusoidal cycle in FCH4 that is seen in the MYB data. There is variability 
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in the FCH4 over time, but FCH4 is not consistently higher during the growing 

season than in the non-growing season, as seen in the MYB data. 

 

Figure 1: FCH4 time series for MYB from 2010 - 2020 (A) and EDN from 2018 - 

2021 (B). Fluxes are reported on an hourly time scale. 
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Methods 

In this systematic method comparison and review, we first assess three 

techniques for detecting for the presence of HM in a dataset: a skewness and kurtosis 

test, calculating the Control Point Influence metric, and creating Lorenz Curves for 

FCH4. Next, we compared six thresholds for identifying and flagging HM in a 

timeseries: the Z-score, Empirical Percentile, Boxplot Outlier, Reference Distribution 

Percentile, Rolling Z-score, and Order of Magnitude. Each of the HM identification 

methods use statistics indices to set a cutoff value above which, all measurements are 

flagged as HM. All methods tested in this study are listed in Table 1 along with the 

most relevant associated references. The following sections outline the methodology 

behind the HM presence tests, six identification methodologies we applied to the 

FCH4 data at MYB and EDN, and each identification method’s grounding in the 

existing literature. We also briefly outline the methodology for and motivation behind 

detrending the data at MYB before applying HM identification techniques.   
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Table 1: HM Detection and Identification Method Summary 

3.1 Detrending MYB Data 

Since HM are defined as events that are disproportionately offset from the 

mean if there are trends in the data set such as diurnal, tidal, or seasonal variability or 

long-term changes over the record (for example, due to climate change), calculating 

offsets from annual or decadal averages would result in classifying some data as HM 

where they should not.  For example, in our data, CH4 pathways and emissions in 

wetlands can vary seasonally or over time since restoration since CH4 emissions are 

 

 
Method Name References 

HM Presence 

Detection 

Skewness and Kurtosis Test Walter et al., 2023 

Control Point Influence Arora et al., 2022 

Lorenz Curves Saha et al. 2017 

HM 

Identification 

Z-Score Threshold Kannenburg et al., 2020 

Empirical Percentile 

Threshold 
Anthony and Silver et al., 2023 

Boxplot Outlier Threshold 
Molodosky et al., 2012; 

Johnson et al., 2010 

Reference Distribution 

Percentile Threshold 

Darrouzet-Nardi et al., 2011; 

Walter et al., 2023 

Rolling Z-Score Threshold 

Waldo et al., 2021; Hagedorn 

& Bellamy, 2011; Woodrow et 

al., 2022 

Order of Magnitude 

Threshold 
Vidon et al., 2010 
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closely linked with plant activity, primary production, microbial activity, and air and 

soil temperature. MYB wetland exhibits a strong seasonal signal in FCH4, where 

emissions are higher during the growing season when plant productivity is high, and 

CH4-producing microbes are most active. With higher FCH4 during the growing 

season (June to August), most data in that season fall above the mean FCH4. 

Therefore, when metrics that assess each measurement of FCH4 as the distance above 

the mean are used, there is a tendency to over-identify HMs in the growing season 

and miss elevated fluxes during the non-growing season.  

For example, when we define HMs as three standard deviations (SD) away 

from the FCH4 mean, we almost exclusively flag HMs during the growing season 

when fluxes are elevated above the dataset's mean (Figure 2). After removing the 

seasonal signal, the HMs flagged with three SD from the de-trended mean are more 

consistently spread throughout the year between growing and non-growing seasons. It 

bears noting that there will likely always be slightly more HMs during the growing 

season when CH4 pathways are more active because, with increased activity, 

anomalously high emissions are statistically more probable. We found over-

identification of HM when using the data without detrending regardless of the 

statistical method used to detect HM (Z-score, percentile, boxplot outlier, reference 

distribution cutoffs; see Supplementary Materials) and used stationary MYB data 

with each of these methods.  
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Figure 2: HM of FCH4 at MYB detected in the unaltered data (A) and in the de-

trended data (B). HMs are shown denoted by blue cross marks. 

 

 

In the MYB data, we used seasonal differencing, a method employed to assess 

the drift of statistical properties in non-stationary data that can be used to remove 

seasonal signals, yielding a stationary time series to detrend the record (Birkel et al., 
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2014). We removed the seasonal cycle by computing the monthly mean FCH4 at 

MYB and subtracted the corresponding monthly mean from each FCH4 

measurement. For example, we subtracted the January mean FCH4 from all January 

FCH4 measurements and repeated the procedure for all other months, yielding a 

stationary FCH4 time series. Detrending the FHC4 time series at MYB allowed us to 

use distribution-based HM identification methods without over-identifying HMs in 

the growing season when FCH4 measurements are higher than the dataset’s mean. 

Following the detrending of the dataset, we explored approaches for testing for the 

presence of HM in a dataset.  

 

3.2 Hot Moment Prescence Detection Tests 

As noted by Walter et al. 2023, one of the significant limitations in current 

HM identification approaches is that most workflows do not explicitly test for the 

presence of outliers in a distribution before trying to identify HSHM.  Instead, studies 

have historically relied on a qualitative definition of HMs and assumed that there are 

HMs in a dataset as long as there are distinct peaks or outliers in the timeseries 

(Molodsky et al., 2014; Carpenter et al., 2015; Hagedorn et al., 2011; Waldo et al., 

2021; Mander et al., 2021; Obregon et al., 2023; Woodrow et al., 2022; Harms & 

Grimm, 2008). We present three techniques for detecting HM presence in a dataset: a 

skewness and kurtosis test, calculating a system’s Control Point Influence, and 
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creating a Lorenz Curve for a system.     

3.1.1 Skewness and Kurtosis Test  

To detect HM presence, we can quantify the degree of ‘tailedness’ of the data 

distribution (Batt et al., 2017). Tails of the distribution describe the frequency of 

measurements that significantly deviate from the mean (extremes). We utilized an 

HM presence detection method outlined by Walter et al. (2023) that employs 

skewness and kurtosis statistics, which can quantify the degree and direction of 

tailedness in a dataset. Kurtosis measures whether the data is light-tailed or heavy-

tailed compared to a normal distribution and quantifies how many measurements 

reside in the tails of a distribution. Skewness measures the asymmetry of a 

distribution and reflects whether a distribution is skewed to the left or right. Walter et 

al. 2023’s approach utilizing both skewness and kurtosis to test for the presence of 

HMs presents a distinct advantage for ecosystem processes because considering 

kurtosis and right and left skewness allows us to search for the presence of HMs in 

data like FCH4 that has both negative and positive values and could have extreme 

observations in both tails. 

The first step in this methodology is to calculate the skewness and kurtosis of 

the observed data and compare the empirical skewness and kurtosis to those of a 

reference normal distribution with the same mean and variance as the observed 

dataset using a parametric bootstrapping procedure. Comparing the observed 
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distribution to a normal reference distribution allows us to evaluate the ‘statistical 

rarity’ of the observed data’s skewness and compare it to a normal distribution with 

well-behaved tails. We used the <hotspomoments> R package (Walter et al., 2023) to 

perform the skewness and kurtosis tests on MYB and EDN’s FCH4 measurements 

(n=73,021 for MYB and n=13,681 for EDN). The reference distribution for this test 

was normal, with a skewness of 0 and an excess kurtosis of 0. This approach 

quantifies the observed data’s skewness or kurtosis relative to the skewness and 

kurtosis of the reference distribution as an indicator of statistically significant 

skewness and kurtosis. For example, a quantile value >0.95 corresponds to a kurtosis 

or skewness value significantly greater than expected by chance using a 1-tailed test 

at a type-1 error rate of 0.05, thus indicating a likely presence of HMs in the dataset.  

 

3.1.2 Control Point Influence Metric  

When dealing with ecological datasets of the scale required to identify HMs 

(many thousands of observations), statistically, there will always be a small number 

of extremes far from the mean by nature of probability in a large sample size. But, 

these extremes may not contribute disproportionately to an ecosystem's total flux or 

reaction rates. Therefore, identifying the presence of outliers in a dataset is 

insufficient evidence for the presence of HMs. Assuming that the presence of outliers 

or extreme values inherently means that a time series contains HMs fails to consider 
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the disproportionality component of HMs - that HMs are both statistically distinct 

from normal flux and contribute an outsize impact to total flux. We used the Control 

Point Influence (CPI) metric proposed by Arora et al. (2022) to characterize HMs' 

disproportionality and influence on total flux at MYB and EDN. CPI expands the 

ecosystem control points framework proposed by Bernhardt et al. (2017) to a new 

quantitative approach that compares HMs' contribution to an ecosystem's net flux by 

quantifying the fraction of the cumulative flux contributed by rates above the 

distribution’s median. 

 

𝐶𝑃𝐼 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 >  𝑚𝑒𝑑𝑖𝑎𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 
 

 

Arora et al. (2022) assert that CPI can be conceptualized as a biogeochemical trait 

that indicates the extent to which the overall biogeochemical function of an 

ecosystem is affected by HMs. Since CPI is characteristic of the unique system for 

which it was calculated, CPI can easily be compared across sites and time scales. In a 

system with no HMs, we would expect CPI to be around 0.5. High CPI values 

indicate the presence of extreme values that disproportionately influence 

biogeochemical function, and low CPI values indicate that extreme values are less 

common and less influential.  
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3.1.3 Lorenz Curves 

Next, we used the Lorenz inequality curve (Lorenz, 1905) and the associated 

Gini coefficient (G) to examine the disproportionality graphically and quantitatively 

in FCH4 contributions. Lorenz Curves and the Gini coefficient are typically used in 

economics to represent a population's income distribution by plotting the cumulative 

income for each quantile of a population against the cumulative total income. 

However, several studies have employed the Lorenz-Curve and Gini coefficient in 

biogeochemistry to assess HSHM (Saha et al., 2017; Darrouzet-Nardi et al., 2011) 

and demonstrate the unequal distribution of total flux percentage across the quantiles 

in the data. In HSHM analysis, one can use the Lorenz Curve to graphically represent 

the cumulative proportion of total flux against the cumulative proportion of all flux 

observations. A Lorenz Curve would be a y=x line in a perfectly equal distribution 

(the line of equality), where each observation contributes an equal amount to the total 

flux. The degree of inequality in flux increases as the Lorenz Curve becomes more 

concave, and the gap between the Lorenz Curve and the line of equality increases. 

This gap between the curve and line of equality is quantified by the Gini coefficient 

(𝐺).  
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Figure 3: Example of a Lorenz Curve and Gini Coefficient equation. Figure adapted 

from Saha et al. (2017). G is the ratio of the area between the line of equality and the 

Lorenz curve (A) to the total area under the line of equality (A + B). 

 

To give an unbiased index estimator, we multiplied 𝐺 by 
𝑛

𝑛−1
 where, 𝑛 is the 

total number of observations (Pan et al., 2003; Weiner & Solbrig, 1984). The upper 

limit of 𝐺 is one, and generally, for datasets with only positive data, the lower limit is 

zero. When a dataset includes negative data, obtaining a 𝐺 greater than one is possible 

(Battisti et al., 2019), which makes 𝐺 difficult to interpret. In cases with negative 

values, these values are typically dropped or replaced with zero before computing 𝐺. 

Since there were negative FCH4 at MYB Wetland and EDN, we excluded negative 

flux per best practice protocol (Battisti et al., 2020). Since this paper is interested in 

only HMs of emission and not storage, we determined that excluding negative values 

for Lorenz analysis is reasonable. 
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3.3 Hot Moment Identification Methods   

After mathematically detecting the presence of HMs in the FCH4 data at 

MYB and EDN, we tested six common techniques for identifying and flagging HMs 

in a time series. We compared using Z-score, Percentile, Boxplot Outlier, Reference 

Distribution Percentile, Rolling Z-score, and Order of Magnitude thresholds for 

identifying HMs at MYB and EDN. For each method, we identified a set of HMs and 

assessed the contribution of the HMs to overall FHC4 at each site. For each of the six 

methods, we present the method’s statistical foundation, previous usage of the 

method in HSHM studies, and how we applied the method to our data. 

 

3.3.1 Z-Score Cutoff 

HMs are inherently extreme values in a dataset. Thus, some of the most 

common methods for identifying HMs rely on statistical definitions and tests for the 

presence of outliers. Inference and analysis in ecological and biogeochemical studies 

typically rely on statistical testing to measure normalcy and SD to indicate variation 

in the processes of interest. Therefore, a measurement’s distance from the mean value 

in a dataset can strongly indicate that the measurement is extreme or an outlier 

(Benhadi-Marin, 2017). One way to measure the distance of a value from the data 

population mean is by calculating a Z-score as  
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𝑍𝑖 =  
𝑥𝑖 − 𝑥

𝑠
 

where  𝑥𝑖 is the measurement value, 𝑥 is the sample's mean, and 𝑠 is the standard 

deviation of the sample. Z-score reports the number of SDs away from the sample 

mean, and each data point can be used to quantify the ‘rarity’ of a measurement 

relative to a normal distribution. Positive Measurements with Z-scores higher than ±2 

or ±3 is considered outliers in a sample (Benhadi-Marin, 2017).  Kannenburg et al. 

(2020) used Z-scores and EC data to identify HMs of Gross Primary Production 

(GPP) across different biomes by calculating the Z-score for each measurement of 

GPP relative to the growing season daytime mean. In this study, Kannenburg et al. set 

a threshold of 2 SD as an HM cutoff and flagged all GPP measurements with Z-

scores > 2SD as HMs. The 2 SD cutoff has a strong grounding in literature as a 

threshold for climatic extremes (Anderegg et al., 2015; Huang et al., 2018; Wu et al., 

2018; Kannenburg et al., 2019 & 2020; Kolus et al., 2019). A 2 SD threshold also 

maintains a middle ground between having a cutoff high enough to ensure the HMs 

flagged are extreme values and low enough that the sample size of HMs flagged is 

not limited. To apply the Z-score cutoff method to the FCH4 from MYB and EDN, 

we calculated a Z-score for every measurement at each site using Equation 3. We 

followed Kannenburg et al.’s (2020) precedent and defined HMs as any FCH4 

measurement with a Z-score greater than 2 SD.  
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3.3.2 Percentile Cutoff 

SD measures a sample's dispersion relative to the mean. In a distribution, SD 

is associated with the cumulative percentage of the data and the distribution’s 

quantiles and percentiles. For example, in a normal distribution, the values between -

2 SD and +2D comprise 95% of the data, and data above and below -2 SD and +2D 

comprise 2.5% of the data, respectively. Percentiles and quantiles are statistical 

measures that show data distribution and summarize the relative position of data 

within a dataset based on their magnitude, irrespective of any specific underlying 

probability distribution (Ialongo et al., 2019). Percentiles are quantiles that divide a 

distribution into 100 equal parts, and the percentile rank of a score is the percentage 

of scores in the distribution that are lower than that score (Everitt & Skrondal, 2010). 

Therefore, percentiles are another way to conceptualize the rarity of measurement in a 

dataset and can be used as cutoffs to define outliers and HMs. 

 

Anthony and Silver (2021) utilize this relationship between percentile and 

rarity to define HMs of Nitrous Oxide and CH4 in EC data from agricultural peatland. 

Anthony and Silver (2021) set a higher threshold than Kannenburg et al. (2020) and 

defined HMs as 4 SD away from the mean or higher than the 99.9% percentile. 

Percentile cutoffs have also been used to define other climatic extremes, such as 

marine heatwaves (MHW) (Hobday et al., 2018; Giamalaki et al., 2021), where heat 
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waves were flagged when sea surface temperature anomalies were above the 90th 

percentile. In this study, we calculated empirical percentiles for the data from MYB 

and END using, 

𝑃 =  
𝑛

𝑁
 ∗  100  

where 𝑛 is the number of data points below the data point of interest and 𝑁 is the total 

number of data points in the data set. We tested the 90th, 95th, 97.5th, and 99.9th 

percentiles as HM cutoffs, and we determined that the 97.5th percentile cutoff was 

most appropriate for this study as it corresponds to the typical 2 SD HSHM threshold 

(see Supplementary Materials for other percentile test results). 

 

3.3.3 Boxplot Outlier Cutoff 

Like percentiles, quartiles divide observations in a sample into four distinct, 

equal intervals determined by the values of the data relative to the entire dataset. 

These quartiles are categorized into lower (Q1), median (Q2), and upper (Q3) 

quartiles, where 25%, 50%, and 75% of the data fall below the quartiles, respectively 

(Langford, 2006). Quartiles can be visualized with box and whisker plots that display 

the median, lower, and upper quartiles, and minimum and maximum values in a 

dataset. Quartiles summarize the central tendency and variability in a dataset, and 

because they represent the spread of data, quartiles are often used in methods for 
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outlier detection (Benhadi-Marin, 2017). A common technique is the Tukey Method, 

which uses the quartiles and interquartile range (IQR) to filter high and low outliers 

(Tukey, 1977) with the following formulas: 

 

𝐿𝑜𝑤 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 =  𝑄1  − 1.5 × 𝐼𝑄𝑅 

𝐻𝑖𝑔ℎ 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 = 𝑄3  + 1.5 × 𝐼𝑄𝑅  

 

Where 𝑄1is the first quartile, 𝑄3 is the third quartile, and the interquartile range 

(𝐼𝑄𝑅), calculated by 𝑄3 −  𝑄1 . This method is also called the box plot outlier method 

and has been utilized in several studies to identify HMs (Li et al., 2015; Molodosky et 

al., 2012; Johnson et al., 2010; Barnes et al., 2023; Philippe & Karume, 2019). The 

Tukey method relates the magnitude of each measurement to the median rather than 

the mean and, as such, can be used even when data is not normally distributed 

(Molodosky et al., 2012). The studies that use the box plot outlier method to detect 

HMs typically use the formula for 𝐻𝑖𝑔ℎ 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 and refer to the result of that 

formula as the 𝑈𝑝𝑝𝑒𝑟 𝐹𝑒𝑛𝑐𝑒 (UF) that acts as the numerical cutoff for HMs. The 

𝐻𝑖𝑔ℎ 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 formula can be modified to differentiate degrees of outliers (mild, 

severe, extreme) by setting the fence a fixed distance from the IQR. Molodosky et al. 

(2012) and Johnson et al. (2010) calculated a mild and extreme UF to identify HMs 
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and asses which UF is most suitable using the following: 

𝑈𝐹𝑚𝑖𝑙𝑑  =  𝑄3 + 1.5(𝐼𝑄𝑅)  

𝑈𝐹𝑒𝑥𝑡𝑟𝑒𝑚𝑒  =  𝑄3 + 3(𝐼𝑄𝑅)  

We calculated the quartiles for each site to apply the box plot outlier method 

to the FCH4 data at MYB and EDN. Then, we calculated the mild and extreme UFs 

and flagged all measurements that fell above the mild UF and below the extreme UF 

as mild HMs and measurements that fell above the extreme UF as extreme HMs. We 

determined that the extreme UF was a more conservative and discerning HM 

threshold and presented the results of the extreme UF HM test here (Mild UF results 

can be found in Supplementary Materials).  

 

3.3.4 Reference Distribution Cutoff 

The methods mentioned above all compared flux measurements to the 

empirical distribution of the data and identified outliers and HMs relative to the 

median, mean, or quartile values calculated from the data. The following approach 

compared the empirical flux data to a reference distribution and flagged 

measurements as HMs if they were more extreme than we would expect to occur in a 

reference distribution (Batt et al., 2017). Two examples of this approach can be found 

in Walter et al. 2023 and Darrouzet-Nardi et al. 2011, who used a Normal distribution 
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and Student’s T distribution as references to identify HMs, respectively. For this 

study, we opted to test Walter et al.’s (2023) normal distribution reference 

methodology as a case study of this reference distribution approach. This normal 

distribution reference approach extends the same logic as the skewness and kurtosis 

HM presence test proposed by Walter et al. (2023), assuming that since HMs are 

inherently extreme and datasets including HMs will have higher skewness or kurtosis 

than datasets without HMs. Therefore, when we compare a dataset that includes HMs 

to an analogous reference distribution, the HMs will stand out as exceptionally more 

extreme than in a reference distribution. In a normal distribution, <4.6% of 

observations are more than 2 SD away from the mean, and <0.3% of measurements 

are more than 3 SD away from the mean. As noted by Walter et al. 2023, since 

extremes in a normal distribution are so rare, we can assume that extremes in a 

normal distribution are proportionally too rare to impact overall ecosystem 

functioning disproportionately and are not HMs (Walter et al., 2023). This 

assumption allows us to compare a reference normal distribution to our empirical 

dataset with high skewness and kurtosis, which proportionally has more extreme 

values that we can classify as HMs. To use the reference distribution to flag HMs, 

one must designate a percentile cutoff for the reference distribution and flag all 

measurements from the empirical dataset above that percentile as an HM (Walter et 

al., 2023).   
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We applied this normal distribution reference method to our FCH4 using 

Walter et al.’s 2023 R package <hotspomoments>. The reference distribution for both 

sites was normally distributed, and we determined the Normal distribution's 

percentiles and flagged any measurements in the empirical data whose percentile is 

greater than the Normal distribution’s cutoff.  We found that using the 97.5th 

percentile rather than the 95th percentile that Walter et al. 2023 employed provided a 

more conservative HM threshold. This approach differs from the percentile cutoff 

method mentioned in section 3.3 because the cutoff measurement corresponds to the 

97.5th percentile in the normal reference distribution and not the measurement 

corresponding to the 97.5th percentile in the empirical data.  

 

 

Figure 4: Empirical and normal distribution of FCH4 for MYB (A) and EDN (B). 

Empirical and reference normal distribution 97.5th percentile HM cutoffs are shown 



 

 

 

 

 

26 

as dotted lines. 

 

3.3.5 Rolling Z-Score Cutoff 

The most basic definition of HMs frames them as short flux events distinct 

from a given system's baseline, average flux. Many studies use this concept to 

qualitatively define HMs as any time fluxes are ‘elevated’ from baseline rates (Waldo 

et al., 2021; Hagedorn & Bellamy, 2011; Woodrow et al., 2022), describing HMs as 

‘flux peaks’ (Obregon et al., 2023) or ‘remarkably high flux values’ (Mander et al., 

2021). In this study, we synthesize this baseline flux concept into a quantitative 

approach, calculating a baseline flux time series and comparing each FCH4 

measurement to its corresponding measurement in the baseline flux. We then flagged 

all statistically distinct measurements (see below) from baseline flux as HMs. For this 

methodology, we borrowed concepts of extreme climatological event identification 

techniques that compare events to seasonal and climatic means and the Hampel Filter 

outlier identification strategy. Constructing baseline timeseries or temperature, sea 

surface anomalies, and precipitation has been used to identify extreme temperature 

events, marine heat waves, and extreme precipitation events by comparing 

anomalously high events to the constructed baseline (Hobday et al., 2018). The 

Hampel Filter uses the median absolute deviation and a moving window to detect 

outliers (Hampel, 1971) by comparing each measurement to its neighbors in the 
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moving window and is often employed in ecological studies. 

In the methodology described here, we defined baseline flux using a moving 

window to smooth the hourly FCH4 time series into a seasonal time series 

(experiments with weekly and monthly rolling averages shown in Supplementary 

Material). We then used another moving window of the same size, informed by the 

Hampel filter, to calculate the moving Z-score for each measurement and flagged 

every measurement with a moving Z-score above three SD as an HM. Applying a 

moving average to a time series yields a smoothed curve that displays the dominant 

signal in a time series - which we can conceptualize as the baseline FCH4. The 

moving average is calculated for a given window of time using the following 

Equation 5:  

 𝑥𝑖 =  
1

𝑤
∑

𝑖−1

𝑗=𝑖−𝑤

𝑥𝑗 

where 
1

𝑤
 is the window period and 𝑥𝑗 is the measurement. Then, we calculated the 

moving standard deviation for each window using Equation 6, 

 

𝑆𝑖  = √
1

𝑤
∑

𝑖−1

𝑗=𝑖−𝑤

(𝑥𝑗 −  𝑥𝑖)2 
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where 
1

𝑤
 is the window period, 𝑥𝑗 is the measurement, and  𝑥𝑖 is the moving average. 

Determining the SD for each measurement relative to the associated moving average 

allowed us to calculate a rolling Z-score. The rolling Z-score applies the same logic 

as a standard Z-score and assesses the difference between each measurement and the 

mean of the same window. We can calculate the moving Z score for each FCH4 

measurement with Equation 7, 

𝑍(𝑥𝑖)  =  
𝑥𝑗  −   𝑥𝑖

𝑆𝑖
 

 

where 𝑥𝑗 is the current measurement,   𝑥𝑖 is the current window’s moving average, 

and 𝑆𝑖   is the current window’s standard deviation. This calculation transforms the 

distance from the moving average to a Z-score with SDs as the unit. We can then take 

the Z score for each FCH4 measurement, set a threshold, and say that any 

measurement X number of standard deviations above the moving average is an HM. 

The moving Z-score methodology is often used in finance and stock trading (Mare & 

Moreira, 2017; IBM DocumentationI). The most common application of rolling Z-

scores in stock trading is where analysts use Z-scores to identify points anomalously 

above or below a rolling average of stock prices and thus determine when a stock 
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might be overbought or oversold. The application of the rolling Z-score methodology 

to HMs is analogous to the trading application, and we can use the rolling Z-score to 

identify FCH4 measurements that are anomalously high above the rolling average of 

FCH4. Our seasonal smoothing window period was three months or 2220 hours, and 

we computed the moving Z-score for each measurement in the timeseries using the 

same window size. The rolling averages and Z-scores were computed in Python. 

Following statistical best practices and experimental HM threshold testing, we set our 

Z-score threshold for HM identification at 3 SD above the rolling average.  

 

3.3.6 Order of Magnitude Cutoff 

Vidon et al. (2010) presented another quantitative conceptualization of 

defining HM as measurements distinct from baseline flux, proposing that HSHM are 

any site or time period where rates are one order of magnitude greater than the 

surrounding area or time interval. For this study, we interpreted Vidon et al.’s (2010) 

definition to mean that any measurement one order of magnitude greater than its 

corresponding seasonal flux measurement was an HM. We used the rolling seasonal 

baseline we created at MYB and EDN to apply this technique to our data and set the 

threshold as one order of magnitude away from this baseline flux. We calculated the 

equation below, where 𝐹𝐶𝐻4𝑖 is each measurement and  𝑥𝑖  is the seasonal mean of 

FCH4.  
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𝐹𝐶𝐻4𝑖  ≥   𝑥𝑖  ∗  10 , 

 

Results  

4.1 Hot Moment Presence Detection Tests  

Using Walter et al.’s (2023) skewness and kurtosis HM presence test, we 

found that the MYB FCH4 dataset had a skewness of 1.40, a kurtosis of 2.55, and a 

quantile comparison statistic of 0.99 for both metrics. The EDN FCH4 data had a 

skewness of 5.23, a kurtosis of 71.97, and a quantile comparison statistic of 0.99 for 

the skewness and kurtosis test. With a comparison quantile of 0.99 for FCH4 at MYB 

and EDN, we can conclude there is statistical evidence for HMs at these sites.   

 

Figure 5: Histograms for FCH4 at MYB and EDN. Displays the distribution and 

tailedness of each dataset. The high skewness and kurtosis can be seen in MYB and 
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EDN. HMs fall in the right tails of each distribution. 

 

We calculated the CPI and created Lorenz Curves for each site to test if the 

extreme values disproportionately impact overall FCH4.  We found that at MYB, the 

CPI was 0.868; at EDN, the CPI was 2.65. The > 0.5 CPIs for MYB and EDN 

indicate that the flux at the sites is characterized by a significant number of 

measurements above the dataset’s median that drive total flux, confirming the 

presence of HMs in the data. The Lorenz Curves and 𝐺 generated for MYB and EDN 

also confirmed the presence of HMs in the data that disproportionately contribute to 

overall flux rates. The Gini Index for MYB was 0.47, and the Lorenz Curve was 

concave relative to the line of equality, which both indicate that a small portion of the 

fluxes in this dataset contribute a significant portion of the total FCH4 at MYB. The 

Lorenz Curve for EDN bows away from the line of equality even more than the MYB 

Curve and had a 𝐺 of 0.64. These characteristics of the Lorenz Curve indicate 

substantial temporal inequality in measurements at MYB and EDN, where a small 

fraction of fluxes have an outsize influence on overall FCH4. The Lorenz Curves for 

EDN and MYB further indicate the presence of HMs of FCH4. 
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Figure 6: Lorenz Curves and Gini Coefficients for MYB (A) and END (B). 

    

4.2 Hot Moment Identification Methods Results 

4.2.1 Z-Score Thresholds 

At MYB, we found 267 HMs with the Z-score cutoff. Note that the HMs were 

flagged with the de-trended time series but plotted on the unaltered time series in 

Figure 7. These HMs comprised 0.365% of total measurements but contributed 

1.637% of total FCH4 from 2010-2020. We further examined the influence of 

stationary and non-stationary HMs on overall flux by computing the annual and total 

FCH4 with and without HMs and evaluating the percent change between the means 

with and without HMs. We found at MYB the cumulative FCH4 from 2010-2020 

with HM was 8.523 x 106 nmol CH4 m-2 hr-1 and without HM was 8.383 x 106 nmol 
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CH4 m-2 hr-1. The annual mean FCH4 at MYB with HM was 116.72 nmol CH4 m-2 hr-

1, and the annual mean without HM was 115.23 nmol CH4 m-2 hr-1.  

Using the two Z-score cutoff at EDN, we flagged 298 HMs of FCH4. Looking 

at the distribution of HMs in the timeseries, they occur throughout the year with no 

apparent bias for the growing or non-growing seasons. We found that the 298 HMs at 

EDN comprised 2.17% of the total measurements but 91.53% of the total FCH4, a 

strikingly high disproportionality between HM occurrence and flux influence. The 

cumulative FCH4 at EDN with HMs was 2.4639 × 104 nmol CH4 m-2 hr-1, and without 

HM was 0.3746 x 104 nmol CH4 m-2 hr-1 without HMs. The annual mean FCH4 with 

HMs was 1.80 nmol CH4 m-2 hr-1, and the annual mean without HMs at EDN was 

0.156 nmol CH4 m-2 hr-1. Further analysis of mean FCH4 with and without HM 

broken down by year for MYB and EDN is available in Supplementary Materials.  
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Figure 7: HMs identified with classic Z-score technique for MYB (A) and EDN (B). 

Z-Score cutoff was 2 SD. 

 

4.2.2 Percentile Cutoffs  

With the 97.5th percentile HM threshold, we flagged 1826 HMs at MYB. 

Notably, with the percentile cutoff method, the raw and de-trended timeseries at 
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MYB yielded the same number of HMs as their non-stationary counterparts because 

percentiles describe how many observations in a dataset fall below a given 

measurement. Therefore, since the same number of measurements are made in the 

stationary and non-stationary datasets, when we flag the 97.5th percentile as a cutoff, 

for example, we will always flag 2.5% of the total observations as HMs (although 

these will not always be the same measurements flagged - see Supplementary 

Materials). With the 97.5th percentile, we found that HMs comprised 2.5% of all 

measurements and contributed 8.45% of total FCH4. The cumulative FCH4 at MYB 

with and without these HMs were 8.52 x 106 nmol CH4 m-2 hr-1 and 7.62 x 106 nmol 

CH4 m-2 hr-1. The mean annual FCH4 at MYB with HMs was 116.72 nmol CH4 m-2 

hr-1, and the annual mean without HMs is 109.60 nmol CH4 m-2 hr-1. 

With the 97.5th percentile HM threshold, we flagged 343 HMs of FCH4 at 

EDN. The cumulative FCH4 at EDN with these HMs was 2.46 × 104 nmol CH4 m-2 

hr-1, and without the cumulative FCH4 was 0.1168 × 104 nmol CH4 m-2 hr-1. The 

annual mean FCH4 at EDN with the percentile cutoff HMs was 1.801 nmol CH4 m-2 

hr-1, and the annual mean FCH4 was 0.044 nmol CH4 m-2 hr-1. The HMs flagged with 

the 97.5th percentile cutoff were 2.5% of the measurements and 97.6% of the total 

FCH4.  
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Figure 8: HMs identified using the 97.5th percentile cutoff at MYB (A) and EDN 

(B). 
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4.2.3 Boxplot Outlier Threshold 

The boxplot distributions of FCH4 for MYB and EDN are shown in Figure 9, 

along with the extreme and mild UF HM thresholds for each site. At MYB, using the 

extreme UF, we flagged 1006 HMs, which comprised 1.377% of total measurements 

and 5.09% of total FCH4. The cumulative FCH4 at MYB with the extreme UF HMs 

was 8.52 x 106 nmol CH4 m-2 hr-1 and without these HMs was 7.25 x 106 nmol CH4 m-

2 hr-1. The mean annual FCH4 at MYB with HMs was 116.72 nmol CH4 m-2 hr-1  and 

the annual mean without HMs is 96.29 nmol CH4 m-2 hr-1. When we applied the 

extreme UF at EDN, we detected 436 HMs of FCH4. These 436 HMs flagged by the 

extreme UF comprised 3.19% of the total measurements and 108.6% of the total 

FCH4. The cumulative FCH4 at EDN with these HMs was 2.46 × 104 nmol CH4 m-2 

hr-1, and without the cumulative FCH4 was 0.1043 × 104 nmol CH4 m-2 hr-1. The 

annual mean FCH4 at EDN with the extreme UF HMs was 1.801 nmol CH4 m-2 hr-1, 

and the annual mean FCH4 was -0.1605 nmol CH4 m-2 hr-1. Notably, the annual mean 

FCH4 without extreme UF HMs is negative because of the prevalence of negative 

FCH4 values in the EDN timeseries. Therefore, when we calculate the cumulative 

emissions from EDN, the total without HMs can be negative if the HMs make up 

most or all the emission events at the site. 
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Figure 9: Boxplot distributions for MYB (A) and EDN (B). Lower whiskers denote 

Q1, upper whiskers denote Q3, the orange lines denote the median, and the dotted 

lines denote the mild and extreme UFs for HM identification. 
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Figure 10: HMs identified at MYB (A) and EDN (B) using the boxplot outlier 

technique with the extreme UF cutoff. 

4.2.4 Reference Distribution Percentile Threshold  

For the reference distribution percentile threshold, we used a normal 

distribution as the surrogate distribution and set the percentile threshold at the 97.5th 



 

 

 

 

 

40 

percentile. At MYB, we flagged 2406 HM using the reference distribution 

comparison method. These HM comprised 3.29% of the total 10.35% of the total 

FCH4 at MYB. The cumulative FCH4 at MYB with the extreme UF HMs was 8.52 x 

106 nmol CH4 m-2 hr-1, and without these HMs, cumulative FHC4 was 6.93 x 106 nmol 

CH4 m-2 hr-1. The mean annual FCH4 at MYB with HMs was 116.72 nmol CH4 m-2 

hr-1, and the annual mean without HMs was 87.89 nmol CH4 m-2 hr-1.  
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Figure 11: HMs identified using the 97.5th percentile cutoff from reference normal 

distributions at MYB and EDN. 

 

Using the 97.5th reference percentile cutoff at EDN, we flagged 329 HMs of 

FCH4. The HMs flagged with the 97.5th reference distribution cutoff comprised 
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2.26% of the total measurements and 93.08% of the total FCH4. The cumulative 

FCH4 at EDN with these HMs was 2.46 × 104 nmol CH4 m-2 hr-1, and without the 

cumulative FCH4 was 0.1704 × 104 nmol CH4 m-2 hr-1. The annual mean FCH4 at 

EDN with the extreme UF HMs was 1.801 nmol CH4 m-2 hr-1, and the annual mean 

FCH4 was 0.1274 nmol CH4 m-2 hr-1. 

 

4.2.5 Rolling Z-Score Threshold 

When we applied the seasonal rolling average as a baseline and a three Z-

score cutoff, we flagged 502 HMs at MYB. It is apparent in the seasonal time series 

that the three standard deviation rolling Z-score was more conservative in flagging 

HMs than the two Z-score thresholds. When we computed the influence of the 

seasonal HMs flagged with a three Z-score cutoff, we found that the HMs comprised 

0.9% of total measurements and 2.23% of total FCH4 at MYB. The cumulative FCH4 

at MYB with the extreme UF HMs was 8.52 x 106 nmol CH4 m-2 hr-1, and without 

these HMs was 8.35 x 106 nmol CH4 m-2 hr-1. The mean annual FCH4 at MYB with 

HMs was 116.72 nmol CH4 m-2 hr-1 and the annual mean without HMs is 112 nmol 

CH4 m-2 hr-1.  
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Figure 12: HMs identified with the rolling Z-score technique at MYB (A) and EDN 

(B). The seasonal moving average is shown in blue and the moving 3 SD cutoff is 

shown in orange. 

 

Because there is no strong seasonal signal at EDN, the smoothed FCH4 time 

series at EDN does not exhibit seasonal cycling like the smooth time series at MYB. 
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Rather than smoothing the FCH4 time series and drawing out the seasonal curves, the 

rolling time series at EDN smooth out the extreme variability in FCH4 and yield a 

baseline flux that hovers around zero. When we used the seasonal rolling average as a 

baseline at EDN, we flagged 171 HMs using the three Z-score thresholds. 

Quantifying the influence of the monthly and seasonal HMs on total flux, we found 

that the seasonal HMs identified with a three Z-score cutoff comprised 1.25% of all 

measurements and 67.54% of total FCH4 at EDN. The cumulative FCH4 at EDN 

with these HMs was 2.46 × 104 nmol CH4 m-2 hr-1, and without the cumulative FCH4 

was 0.0846 × 104 nmol CH4 m-2 hr-1. The annual mean FCH4 at EDN with the 

extreme UF HMs was 1.801 nmol CH4 m-2 hr-1, and the annual mean FCH4 was 

0.1155 nmol CH4 m-2 hr-1. 

 

4.2.6 Order of Magnitude Threshold 

Unlike the previous five methods, the order of magnitude cutoff approach had 

vastly different results at each site. As seen in Figure 13, at MYB, the cutoff was very 

high and only flagged 23 hot moments, which comprised 0.03% of total measurement 

and 0.1% of cumulative FCH4. The cumulative FCH4 at MYB with the order of 

magnitude HMs was 8.52 x 106 nmol CH4 m-2 hr-1, and without these HMs was 8.51 

x 106 nmol CH4 m-2 hr-1. The mean annual FCH4 at MYB with HMs was 116.72 

nmol CH4 m-2 hr-1, and the annual mean without HMs was 116.66 nmol CH4 m-2 hr-1. 
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Looking at the shape of the moving cutoff values in Figure 13, we can see that ten-

times-the seasonal mean produces a curve that dramatically exaggerates the seasonal 

signal. As a result, no measurements during the growing season come close to 

crossing this threshold, and HM was only flagged in the non-growing season, where 

the cutoff curve is lower, and some measurements can cross it.   
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Figure 13: HMs identified with the one order of magnitude cutoff at MYB (A) and 

EDN (B). The seasonal moving average is shown in blue, and the cutoff is ten times 

the seasonal average cutoff, which is shown in pink. 

 

The order of magnitude approach at EDN showed the opposite results of 

MYB. At MYB, the order of magnitude threshold was far too high, but at EDN, 
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because the seasonal signal is so muted and there are negative values, the order of 

magnitude cutoff proved to be far too low. At the beginning of the time series at EDN 

in May of 2015, the seasonal baseline was around -0.9 nmol CH4 m-2 hr-1. This 

negative portion of the time series strongly interferes with the order of magnitude 

threshold because ten times the negative flux makes the cutoff value around -9 nmol 

CH4 m-2 hr-1nmol, and with a cutoff this low, all emissions are flagged as HM. Even 

when the seasonal baseline becomes positive again, the FCH4 values are so small that 

when multiplied by 10 to create the cutoff curve, the cutoff thresholds are still too 

low. This method flagged many hot moments that appear to be part of baseline flux. 

With the order of magnitude technique, we flagged 2126 HMs, which comprised 

15.5% of the total measurement and 128% of the total FCH4. The cumulative FCH4 

at EDN with these HMs was 2.46 × 104 nmol CH4 m-2 hr-1, and without the 

cumulative FCH4 was -7.49× 104 nmol CH4 m-2 hr-1. The annual mean FCH4 at EDN 

with the extreme UF HMs was 1.801 nmol CH4 m-2 hr-1, and the annual mean FCH4 

was -0.61 nmol CH4 m-2 hr-1 
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Table 2: HMs Percent Contribution to FCH4 vs Percent of Total Measurements  

 

4.3 Comparing Hot Moment Identification Technique Performance  

Each of the six HM identification techniques analyzed in this study presents a 

unique conceptualization of HMs and has benefits and drawbacks. Although these 

methods provide statistical metrics we can use to define HMs, they all include a 

degree of subjectivity because the user always needs to determine the appropriate 

cutoff value for HMs. Here we compare and rank the performance of six methods. 

For the data at MYB and EDN, there is no ‘true’ hot moment validation dataset that 

MYB (2010-2020) 

 HM Count % of Total 

Measurements 

% of Total 

FCH4 

2 Z-Score Cutoff 267 0.367 1.64 

97.5th Percentile Cutoff 1826 2.50 8.45 

Extreme UF Boxplot Cutoff 1006 1.38 5.09 

Rolling 3 Z-Score Cutoff 502 0.86 2.02 

Reference Distribution 97.5th Cutoff 2406 3.29 10.34 

Order of Magnitude Cutoff 23 0.033 0.100 

EDN (2018-2021) 

2 Z-Score Cutoff 265 1.94 84.76 

97.5th Percentile Cutoff 343 2.51 95.26 

Extreme UF Boxplot Cutoff 347 2.54 95.77 

Rolling 3 Z-Score Cutoff 171 1.37 65.66 

Reference Distribution 97.5th Cutoff 290 2.12 88.4 

Order of Magnitude Cutoff 2126 15.54 128.6 
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we can use to assess the accuracy of our flagged HMs. However, we can visually 

inspect a time series and manually note any anomalously high fluxes and peaks 

(Waldo et al., 2021; Hagedorn & Bellamy, 2011; Woodrow et al., 2022) as probable 

HM. For smaller data sets, this method can successfully catch all HM. However, with 

large, high-resolution datasets that are often required to capture HMs, visual 

inspection is time-intensive and unfeasible. The statistical detection methods analyzed 

here present an ‘automated’ alternative that can be used with big data applied 

systematically across different sites and eliminates “operator” subjectivity. We 

assessed the performance of each method by comparing the statistically detected HMs 

against the HMs we visually flagged and determining if the flagged HM 1) represents 

distinct elevated flux events relative to intervening periods and 2) contributes 

disproportionately to overall site flux, and thus consistent with the conceptual 

definition of HSHM.  To illustrate the differences between methods more clearly, we 

present in Figures 15 and 16 the HM flagged in one year of data that we felt best 

emphasized the differences between each detection method (2013 for MYB and 2020 

for EDN) rather than looking at all site years of data where it is visually difficult to 

see all the HM. A comparison of the HMs in the complete time series for MYB and 

EDN is shown in Supplementary Materials and our interactive web app hosted on 

Heroku: https://www.heroku.com/.  

 

https://www.heroku.com/
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Figure 14. Probable HM manually tagged at MYB and EDN. We tagged 35 probable 

HM at MYB and 46 probable HM at EDN. 

MYB 2013 

 % of total 

Measurements 

% of total FCH4 HM Count 

2 Z-Score Cutoff 0.73 2.50 52 

97.5th Percentile Cutoff 6.03 14.6 427 

Extreme UF Boxplot Cutoff 3.15 8.47 223 

Rolling 3 Z-Score Cutoff 0.40 1.47 30 

Reference 97.5th Cutoff 6.70 16.4 502 

Order of Magnitude Cutoff 0 0 0 

EDN 2020 

2 Z-Score Cutoff 2.62 88.0 121 

97.5th Percentile Cutoff 3.20 101.6 142 

Extreme UF Boxplot Cutoff 3.78 103.7 175 

Rolling 3 Z-Score Cutoff 1.49 65.7 69 

Reference 97.5th Cutoff 2.77 90.2 128 

Order of Magnitude Cutoff 5.99 122.7 277 
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Table 3: Single Year HM Flux Contribution vs Frequency. 
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Figure 14: Comparison of Z-score, percentile, and boxplot cutoff HMs for 2013 
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Figure 15: Comparison of reference distribution, rolling Z-score, and order of 

magnitude cutoff HMs for 2013 at MYB and 2020 at EDN. 

 



 

 

 

 

 

54 

4.3.1 Percentile, Boxplot Outlier, Reference Distribution Cutoffs 

We first considered the adherence to the definition of HM as a way to gauge 

whether or not the HMs flagged by each l method are truly HM. Figures 14 and 15 

show that the HM detected by the 97.5th percentile, the extreme UF, and the 

reference distribution 97.5th percentile cutoffs at MYB and EDN seem to over-

identify HMs, and Table 3 shows the HM count for these three methods, the 

percentage of total measurements the HMs comprise, and the percentage of total 

FCH4 contributed for a single site year.  While these methods flag distinct peaks in 

the time series as HMs, they also flag many measurements that may not be genuine 

hot moments and instead belong to the ‘intervening’ time periods of normal FCH4. 

These ‘intervening’ periods represent the times between the genuine hot moments 

where methane levels are within expected or typical ranges. Examining Figures 14 

and 15, we can see that the 97.5th percentile cutoff inadvertently identifies some 

measurements as hot moments when they are just part of the normal fluctuation of 

methane levels. Table 3 shows that at MYB, the three methods flag between 3-6% of 

the data from 2013, which contribute 8-16% of total flux, indicating that the methods 

are capable of flagging rare events that contribute disproportionately to overall flux. 

However, we determined that these thresholds incorrectly capture too many normal 

flux measurements as HM. Compared to the visually identified HM, we present in 

Figure 14, which shows what measurement we deem probable HMs, we can see that 
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these methods strongly over-identify HM. At MYB, we determined that 38 probable 

HMs were present in 2013, and these methods flagged between 200 and 500 HMs. At 

EDN, we noted 46 probable HMs, and these three methods detected 100-270 HMs. 

Based on these comparisons, we determined that the 97.5th percentile, the extreme 

UF, and the reference distribution 97.5th percentile approaches tend to over-identify 

HMs. Note that the performance of these methods would likely be improved by 

increasing the percentile and UF cutoffs. However, to highlight the common 

methodologies used in the literature, we present the typical 97.5th and extreme UF 

cutoffs (analyses with higher HM thresholds are shown in Supplementary Materials).  

The boxplot outlier method is the most common hot moment identification 

technique. Its benefits include its simplicity, low computation cost, and ability to 

handle any data distribution. However, when applied to the data from MYB and 

EDN, we found that even the extreme UF threshold incorrectly flagged many regular 

flux events as HM. This method’s utility depends on the factor by which the user 

multiplies the IQR (Equation 4), and elevating the UF to an even higher value than 

the commonly used extreme UF could improve this method’s performance 

(Molodosky et al., 2012; Johnson et al., 2010). Comparing empirical data distribution 

to an analogous reference distribution is conceptually straightforward and has a 

strong statistical grounding. However, we also found that the reference distribution 

percentile method tends to over-identify HM, even when we raised the HM threshold 
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from the default 95th percentile to the 97.5th percentile. Comparing the data to a 

normal distribution leads to the over-identification of HM because the 97.5th 

percentile of the normal distribution corresponds to a lower FCH4 value than the 

empirical 97.5th. The default configuration of this HM detection technique in the 

<hotspomoments> R package is to compare the empirical data to a normal 

distribution. However, perhaps when working with leptokurtic and skewed data, such 

as the MYB and EDN data, it would be more appropriate to use a reference 

distribution that is more similar to the empirical data. The empirical percentile cutoff 

approach also strongly over-identified HMs at MYB and EDN. The main limitation 

of the percentile cutoff method is that depending on the percentile threshold one 

chooses, it will always flag the same top percent of the data, regardless of whether all 

those measurements are truly distinct enough from baseline flux to be considered 

HMs. For example, when we set a 97.5th percentile cutoff in the raw MYB data, it 

returned 1826 measurements as HM, and when we set the same percentile cutoff in 

the de-trended MYB data, we also flagged 1826 measurements. The measurements 

flagged between these raw and de-trended MYB data differed (in the raw data, it was 

mainly the growing season fluxes), but the HM always corresponded to 2.5% of the 

data with the highest fluxes. Additionally, when working with big datasets, even 

setting a moderately conservative percentile threshold like 97.5th, will return a large 

number of data points because 2.5% of a dataset with >100,000 values will always 

yield a large number of data points that may not only include HM but rather fluxes in 
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the normal baseline range. In our opinion, these facets of the percentile cutoff HM 

detection approach make it fundamentally unreliable for HM identification.  

 

4.3.2 Order of Magnitude Cutoffs 

The order of magnitude cutoff method is distinct from the five other methods 

in that it does not calculate a cutoff based on the distribution of the datasets. Instead, 

it sets an HM cutoff as ten times higher than the seasonal mean, regardless of whether 

there are even measurements that high in the data. Because MYB has a strong 

seasonal signal and EDN does not, the order of magnitude cutoff approach had 

opposite results when applied to MYB and EDN. At MYB, setting the cutoff at ten 

times the seasonal rolling mean amplified the already strong seasonal signal, and very 

few HMs were flagged due to the excessively high threshold. At EDN, where the 

seasonal signal is between -0.9 and 3 nmol CH4 m-2 hr-1 and HMs that can reach up to 

300 nmol CH4 m-2 hr-1, ten times the seasonal rolling mean was not high enough to 

filter our regular CH4 emission events. As a result, nearly all CH4 emissions were 

flagged as HM. As shown in Figure 12, the order of magnitude approach yielded the 

most HM at END and the least (zero) HM at MYB in 2013. The results at each site 

fail to adhere to the HM definition for opposite reasons. The shortcomings of the 

order of magnitude threshold are also apparent when we compare the flagged HM to 

the visually detected HMs. For MYB, we manually tagged 35 HMs in 2013, and the 
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order of magnitude did not detect any HMs in 2013. At EDN, we manually tagged 46 

probably HMs, and the order of magnitude cutoff vastly over-identified HMs with 

277 in 2013 alone. The HM flagged at EDN comprised 5.5% of the tidal 

measurements from 2020 and contributed 122% of total measurements, indicating an 

extremely disproportionate influence on overall FCH4. The inconsistency in this 

approach is caused by the fact that when setting the order of magnitude cutoff, 

measurements are not considered in relation to each other, and the threshold is not 

calculated with the distribution of the actual data in mind.  

 

4.3.3 Z-score Cutoffs 

The Z-score hot moment identification method is a simple yet statistically 

robust way to identify hot moments. The classic and rolling Z-score methods provide 

a stricter cutoff, and the HMs flagged by these methods adhere more closely to the 

definition of HMs. Figures 14 and 15 illustrate that the HMs flagged by the Z-score 

methods are all distinct from the baseline FCH4 and do not accidentally flag many 

intervening, normal flux as HMs. The rolling three Z-score appears to be the 

approach most consistent with the visual assessment at both MYB and EDN, and each 

HM in 2013 is clearly anomalous from surrounding areas in the time series. Note that 

at EDN, since the range in FCH4 is smaller than at MYB, the Z-score methods may 

appear to over-identify HM. However, compared to the baseline flux that hovers 
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around zero, many mild HMs are in the 50-100 nmol CH4 m-2 hr-1 range, which is still 

quite distinct from regular intervening flux. The classic two Z-score method flagged 

more HMs than the rolling Z-score approach in MYB and EDN; however, if we refer 

back to the entire classic Z-score time series in Figure 7, it appears that this method 

does not flag enough HMs, capturing only 267 HMs out of the total measurements at 

MYB. We determined that rolling three Z-score was more appropriate for our sites 

and provided a more discerning look at HMs because comparing each measurement 

to its’ seasonal moving means more closely captures the idea that the HMs are 

disproportionately high compared to the intervening time periods. The rolling z-score 

HMs were also closest to the measurements we manually tagged as probable hot 

moments in 2013, which can be seen in the similar HM counts (30 flagged with Z-

score cutoff and 37 visually identified at MYB; 69 flagged with Z-score cutoff and 46  

identified visually at EDN) and the similarity in which measurements were flagged as 

HM - shown in Figures 14, 15 and 16. In the complete time series for MYB and EDN, 

the rolling z-score provides the most balanced approach and can flag mild and 

extreme HMs but does not flag intervening baseline flux measurements. At MYB, 

while the rolling z-score HMs only comprised 0.40% of the total measurements, they 

comprised 1.46% of the total FCH4. While seemingly less drastic than the 

disproportionality of other methods in Table 11, there is still an order of magnitude 

difference between the percent of total FCH4 contribution and the percent of total 

measurements.    
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We also found that the period one selects to create a rolling average timeseries 

dramatically affects which data points are flagged as HMs with a Z-score. Because 

we are using the rolling average as a conceptualization of ‘baseline’ normal flux from 

which we can compare HMs if the curve is too smooth, the rolling Z-score 

identification technique overidentified HMs in the growing season. If the rolling 

curve is too variable with many amplitude changes, we over-identify HMs throughout 

the year (Supplementary Materials). We identified that using a seasonal rolling 

average yielded a curve that was smooth enough to capture longer-term patterns in 

the data accurately but still variable enough to capture the fluctuations that 

characterize FCH4. When the seasonal rolling average was combined with a three 

rolling z-score threshold, we flagged the set of HM, and we feel most confident are 

the true HM at MYB and EDN.   

 

 

5.0 Discussion and Recommendations 

This paper aimed to systematically compare the most common HM 

identification methods highlight each method's pros and cons, identify the best-

performing detection methods, and make best practice recommendations for the 

HSHM community. The results in the section above report the HM detected by each 
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method and their contribution to overall flux. Table 3 shows the significant 

discrepancies in how many HM were flagged and how much flux they contributed to 

the overall FCH4 between each detection method. These inconsistencies highlight the 

need for standardized HM detection best practices. 

 

5.1 Towards an Ensemble HM Identification Approach  

To achieve a more quantitative comparison of HM detection method 

performance, we created an HM count metric for each measurement that compiled 

how many HM detection methods flagged a measurement as an HM (0 meaning no 

methods flagged the measurement as a hot moment and 5 meaning all five methods 

flagged the measurement as an HM). To make this count, we excluded HM flagged 

by the order of magnitude cutoff, as this method’s performance was weak and 

inconsistent. This metric dubbed the HM Count, can help conceptualize and visualize 

which measurements are consistently flagged as HMs. At MYB, very few hot 

moments were flagged by all five identification methods, and conversely, at EDN, 

HM flagged by all five ID methods was the most abundant. The timeseries and stems 

graphs in Figure 16 show the HM Count metric, and we can see that the more 

extreme the HM, the more likely it is to be tagged as ‘hot’ by all five ID methods.   

The HM Counts metric also provides a case for using multiple hot moment 

identification methods to flag HMs at a site. Using multiple methods in conjunction to 
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flag HMs is akin to an ensemble classification model where different models or 

decision trees independently determine what class a value belongs to and vote on a 

final classification based on the individual model’s prediction. For example, in this 

study, we could use the five HMID methods to assess every measurement in the 

FCH4 dataset and say that only if three or more of the methods flag a measurement as 

an HM will we conclusively assign that measurement a ‘hot’ label. Future work 

towards a robust, standardized HM identification method could explore creating an 

ensemble-style model that systematically applies different statistical criteria for HM 

detection and assigns a final ‘hot’ tag if the ensemble’s majority vote is ‘hot.’    
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Figure 16: HM counts are displayed for MYB (A) and EDN (B). HMID stands for 

HM identification method, and the numbers 1 - 5 in the legend indicate how many 

techniques flag each measurement as an HM. 

 

4.3 Recommended Best Practices  

In this study, we reviewed several HM identification practices and assessed how 
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they perform when applied to FCH4 data from two wetlands in the SF Bay-Delta 

area. The comparative results of the study indicate that for our sites, the rolling three 

z-score detection technique was best suited for HM identification.  We also 

determined that the empirical percentile and order of magnitude cutoffs are 

fundamentally ill-suited for detecting true HMs. The question of where to set the HM 

threshold is relevant to all six methodologies discussed in this study. Designating an 

HM cutoff is a Goldilocks problem where one wants a threshold high enough to 

exclude regular flux measurements but also low enough that both milder HM can still 

be flagged and the search window for HM is not limited. We found that the rolling Z-

score approach with a three SD cutoff was our ‘just right’ detection threshold that 

allowed us to exclude baseline FCH4 variation and capture HMs that were distinctly 

elevated relative to baseline flux. Therefore, while we could find the best detection 

method for our sites, it is difficult to conclusively determine the ‘best’ hot moment 

identification technique that should be used in every study. Here, we recommend a 

best practice workflow that all hot moment studies should employ to ensure that hot 

moments are statistically sound and appropriate for the studies site/system: 

 

1) Perform Hot Moment Presence Tests: We recommend starting an HM 

identification study by testing for the presence of HMs in a dataset with 

Walter et al.’s (2023) skewness and kurtosis test to determine if extreme 
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values dominate one’s dataset. Next, one can calculate the CPI and create a 

Lorenz Curve and Gini Coefficient for their data to examine the degree of 

disproportionality in the extreme values. If these tests and visualizations 

indicate that extreme values contribute to an outsize effect on overall reaction 

rates, then one can assume they are hot moments and proceed to hot moment 

identification tests.  

2) Assess Data for Cyclical or Other Temporal Trends: Once one has 

statistically proven the existence of hot moments in a dataset, one should 

move on to time series analysis and determine if any trends in the data could 

influence hot moment identification. Trends can complicate hot moment 

identification using distribution-based detection approaches like Z-score and 

boxplot outliers. If any trends are found in the data, one can use a trend-

agnostic identification approach, such as the rolling Z-score technique, or 

steps should be taken to adjust or remove the trend before applying hot 

moment identification techniques that rely on overall data distribution.  

3) Apply Hot Moment Identification Techniques: After exploratory data 

analysis and removing cyclical signals, if applicable, one can start applying 

hot moment identification techniques to their data. We recommend choosing 

one of the statistically grounded methods tested in this study instead of 

qualitatively flagging hot moments. Using one technique over another might 
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be more appropriate depending on site dynamics. However, we recommend 

against using the percentile and order of magnitude cutoffs as they exhibited 

weak and inconsistent performance in this study. Instead, we suggest that 

researchers use the boxplot outlier, reference distribution percentile, and 

rolling and classic z-score approaches and experiment with the HM threshold 

in each approach to find the optimal technique and HM cutoff for one’s data. 

We argue it is best practice to try various hot moment identification methods 

to test for agreement between which measurements are flagged as hot 

moments and build confidence in your ‘hot’ assignments.  

 

Chapter 2: Predicting Hot Moments of FCH4  

 

Introduction 

1.1 Coastal Wetlands and the Carbon Cycle 

Coastal wetlands play a critical role in the global carbon (C) cycle and are 

incredibly efficient at capturing and sequestering C (Sutton-Grier et al., 2014), storing 

1 to 3 orders of magnitude more C in their sediments than freshwater wetlands and 

forests (McLeod et al., 2011; Rosentreter et al., 2021). Wetlands can influence 

Earth’s radiative forcing by removing atmospheric carbon dioxide and storing C in 
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the soil and vegetation. High plant productivity and low organic matter 

decomposition rates in these ecosystems make C accumulation in wetland soils very 

high. Because of their ability to sequester large amounts of C and promote radiative 

cooling, wetlands restoration projects have been proposed as a management strategy 

to draw down C and mitigate the effects of anthropogenic climate change (Callaway 

et al., 2012). 

Wetland restoration projects have become increasingly popular in the San 

Francisco Bay-San Joaquin River Delta (Bay-Delta) region in Northern California, 

USA, with more than 30,000 acres in the region in various stages of restoration 

(California Natural Resource Agency, 2018). In recent years, the state of California 

and other stakeholders have undertaken ambitious plans to restore more wetlands in 

the Delta (EcoAtlas, 2013). Farmland conversion to wetlands is particularly attractive 

in this region, where coastal wetlands can store lots of C compared to drained 

farmland, emitting around 44 Gt of C annually (Hemes et al., 2019). In the late 1850s, 

the Bay Delta’s dominant land cover was tidally influenced brackish and freshwater 

wetlands, covering about 1,300 km2, and about 87% of the region's total area was 

made of carbon-rich peat soil. However, over the last 150 years, 85% of the wetlands 

in the Delta have been drained or diked to support agriculture (Coastal Conservancy 

of California, 2010). This dramatic land use and land cover changes have led to a 

robust agricultural economy in the area, but also widespread soil subsidence and 
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increases in GHG emissions from drained peatland (Hatala et al., 2012; Ingebritsen et 

al., 2009).  Restoration projects in the Bay Delta typically involve flooding farmland, 

increasing water retention, and excavating or constructing berms (South Bay Salt 

Pond Restoration Project, 2007). In some cases, wetland managers plant native, 

historic vegetation in the newly flooded or filled wetlands to restore the farmland as 

close to each site-specific historical ecology as possible.  

 

1.2 The Methane Compromise 

Wetland restoration is an attractive and promising strategy for mitigating 

climate change; however, the same anaerobic soil conditions that allow coastal 

wetlands to store large amounts of C efficiently also make coastal wetlands ideal for 

methanogenesis (Neubauer & Megonigal, 2015; Poffenbarger et al., 2011). In fact, 

CH4 emissions from wetlands have been identified as the leading natural source of 

this highly potent greenhouse gas (GHG) in the atmosphere (Saunois et al., 2017). 

Therefore, wetland restoration is often accompanied by a “methane compromise” as 

these systems can produce and emit large amounts of CH4 (Hatala et al., 2012; 

Hemes et al., 2018; 2019). One way to conceptualize the balance between C storage 

and CH4 emissions in restored wetlands is by measuring or predicting the FCH4 for a 

wetland system. While wetlands commonly exhibit negative net radiative forcing on 

geologic timescales (Frokling & Roulet, 2007; Frokling et al., 2006; Mitsch et al., 
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2013), on shorter time scales more relevant to human activities, CH4 emissions can 

significantly impact radiative forcing, contribute to atmospheric warming, and 

potentially reduce the efficacy of these systems as C sequestration climate mitigation 

measures (Gedney et al., 2004; Holm et al., 2016). It would, therefore, be useful to 

understand better the factors or conditions that result in enhanced FCH4 and design 

restoration projects that strive to reduce the occurrence of such conditions. Indeed, the 

efficacy of wetland restoration for C sequestration is under investigation in many 

wetlands across the US (Hemes et al., 2019; Griscom et al., 2017).  

While there are thousands of acres of restored wetlands and many more 

planned in the Bay-Delta, studies that have examined the question of CH4 budget in 

restored wetland systems in the Bay-Delta have mixed results regarding the exact 

ways restoration alerts the CH4 emission patterns (Anderson et al., 2016). For 

example, Knox et al. (2015) found that newly restored wetlands in the San Francisco 

Bay were net sinks of CO2, sequestering up to 397 g C m-2 yr-1, but also a 

significant source of CH4, emitting 39-53 C m-2 yr-1. Using a simple model of 

radiative forcing and atmospheric lifetimes, Hemes et al. (2019) showed that restored 

peat soil-managed wetlands do not become net sinks of GHG until a century post-

restoration. However, other studies report low CH4 emissions in earlier inundation 

stages during wetland establishment (Hatala et al., 2012; Hahn-Schofl et al., 2011). 

The striking variability of emissions throughout the restoration timeline at any 
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specific wetland and between different restored wetlands is significant and may 

complicate including wetland restoration in carbon offset programs (Cook, 2016).  

 

1.3 Hot Spots and HMs of FCH4 

CH4 production and emission in the Bay-Delta and beyond are controlled by 

diverse biogeochemical conditions, many of which are affected by management at 

each wetland site. Such conditions include vegetation type, water table elevation, soil 

water content, air temperature, soil temperature, oxygen saturation, salinity, nutrient 

availability, and soil accumulation rate. CH4 emissions typically follow two pathways 

from the wetland to the atmosphere: plant-mediated transport and diffusion or 

ebullition from air/soil and air/water interfaces in a wetland. Coastal wetlands are 

often a patchwork of vegetation, mudflats, and open water and thus exhibit substantial 

biogeochemical heterogeneity and can transport CH4 through multiple pathways at 

once (Hunt et al., 1997; Alongi, 2020). These CH4 transport pathways operate on 

different time scales and respond to external forcing from biogeochemical conditions 

at different rates (Turner et al., 2020). 

The complex suite of controls on CH4 cycling in coastal wetlands leads to 

uneven emissions in a wetland across space and time and elevated CH4 flux (FCH4) 

at certain times and from specific locations. We can contextualize these extreme CH4 
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emission events and locations using as hot spots and hot moments (McClain et al., 

2003). HSHM of CH4 emission have been documented in numerous wetlands around 

the globe (Waldo et al., 2020; Obregon et al., 2023; Tupek et al., 2015) and in the 

Bay-Delta region (Rey-Sanchez et al., 2022; Anthony et al., 2023). While a large 

body of work has quantified wetland CH4 flux and identified drivers of emissions at 

the daily and annual scale (Liu et al., 2019; Jeffery et al., 2019), the way these drivers 

scale spatially and temporally is poorly understood (Saunois et al., 2017). Moving 

across scales to examine short-term CH4 emission events induced by accelerated 

biogeochemical process rates and honing into specific zones in coastal wetlands that 

experience heightened flux will allow for a deeper understanding of coastal wetland 

FCH4, more accurate estimates of flux and modeling future C cycling dynamics in 

these systems and could also inform restoration projects. 

 

1.4 Modeling and Predicting Extreme CH4 Flux 

The variability in CH4 budgets is not unique to the Delta, and quantifying 

global CH4 emissions from coastal wetlands has been characterized by significant 

uncertainties. Estimates of CH4 emissions from coastal wetlands were initially 

thought to range from 1-3 Tg CH4 yr−1 (Bange et al., 1994; Upstill-Goddard et al., 

2000; Middelburg et al., 2002). The 2017 Global CH4 Budget Report (Saunois et al., 

2017) did not include partitioned CH4 emissions from coastal wetlands. However, the 
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most recent iteration of the report synthesized global estimates and determined that 

coastal wetlands emit between 4 – 5 Tg CH4 yr−1 (Suanois et al., 2020). The high 

uncertainty present in coastal wetland emission estimation has been attributed to 

conflicting designations of coastal ecosystem types, which can lead to overcounting 

and undercounting of CH4 emissions, uncertain estimates/measurements of coastal 

wetland surface area, and poorly quantified CH4 emissions rates from the various 

coastal ecosystem types (Suanois et al., 2020).  

Additionally, the spatiotemporal heterogeneity that characterizes coastal 

wetlands makes it difficult to generalize and upscale measurements for other 

wetlands. HSHMs of FCH4 have been notably absent when estimating and modeling 

the C balance of coastal wetlands. Because stochastic HSHM often dominates coastal 

wetland CH4 dynamics, the notable absence of HSHM likely contributes to the 

uncertainty in coastal wetland CH4 budget estimates in the Delta and globally. 

Utilizing the HSHM framework and identifying and quantifying HSHM in an 

ecosystem ensures that the spatiotemporal dimensions of extreme values that often 

have a disproportionate influence on overall reaction rates and ecosystem functioning 

and are critical for accurate modeling and upscaling approaches are not lost (Walter et 

al., 2020; Bernhardt et al., 2017).   

 

Machine-learning algorithms have been used to upscale various EC data, 
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including CH4 flux, to estimate CH4 freshwater wetland emissions (Peltola et al., 

2019; Knox et al., 2019) and identify the dominant drivers of FCH4 in a mangrove 

forest (Liu et al., 2019). Data-driven models are a versatile tool that has been used to 

combine EC tower measurements with remote sensing observation and climate 

models to upscale fluxes (McNicol et al., 2023; Huang et al., 2021; Tramontana et al., 

2015). However, we have yet to encounter any data-driven models specifically 

focusing on predicting and upscaling HM of FCH4. HSHMs are generally 

underrepresented in predictive models that either omit or inadequately capture the 

interactions resulting in HSHM (Walter et al., 2023). Because HMs of FCH4 can 

occur on an hourly scale in coastal wetlands (Pearsall et al., 2024), monitoring HM of 

FCH4 requires high temporal resolution tools such as EC that can capture these rare 

occurrences. However, EC towers are expensive to install and logistically unfeasible 

in every wetland. In coastal wetlands, most CH4 monitoring is instead done with 

chamber measurements (Al-Haj & Fulweiler, 2020). Chamber measurements are 

typically taken at much lower frequency, making the temporal resolution of chamber 

measurements too low to capture the frequency of rare HMs accurately. Another 

benefit of EC towers is that they collect a suite of standard environmental variables, 

along with energy and GHG fluxes, and we can link/model the relationships of these 

variables to HMs of FCH4. Other, more common ecological monitoring, such as 

weather stations and remote sensing, also collect this suite of environmental 

parameters. Therefore, upscaling EC data is especially useful for HM of FCH4 in 
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coastal wetlands, and by extrapolating from widely available environmental 

parameters, an upscaled model enables the prediction of HM in diverse wetland 

settings, even in the absence of dedicated EC towers. 

Data-driven approaches excel at discovering and extracting patterns from data 

without prior knowledge of the system and can provide valuable insights into 

complicated natural systems (Montáns et al., 2019). The RF methodology has been 

employed to forecast other extreme events analogous to HSHM, such as marine heat 

waves, flooding, and extreme precipitation (Giamlacki et al., 2021; Schumacher et al., 

2021; Herman & Schumacher, 2018). The RF methodology is particularly 

advantageous for wetland FCH4 inquiry as the complicated relationships between 

biogeochemical parameters were learned rather than assumed. Our objective in this 

study was to assess the potential for upscaling and predictability of HM using a RF 

model. We built several differently parameterized RF classifiers that predicted HM 

absence or presence on the hourly scale and identified the best-performing model. We 

also determined the most important (measurable by less costly and more prevalent 

methods) predictors of HMs, which shed light on the potential for upscaling our 

model to wetlands without EC towers. We utilized open-access data from nine 

wetlands in the Bay Delta area to train the RFs and assess their performance and 

feature importance to determine their HM predictive utility.  
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Data and Methods 

 

We compiled data from nine wetland sites from the Bay-Delta region that are 

all part of the AmeriFlux network as training data for the RF model. The nine sites of 

interest in this study compose a network of varied hydrological and ecological 

wetlands, with four of the five sites being tidally influenced (Map 1). The sites in this 

study are also a mix of restored and undisturbed wetlands and marshes. Each site has 

a unique hydrological history and specialized management plan that influences each 

wetland's biogeochemical conditions and drivers of FCH4. Because of each wetland's 

varied biogeochemical and structural characteristics, this network of sites has a wide 

range of GHG emissions. Furthermore, since most of the wetlands in this study are 

restored, their emission and source/sink change dramatically over time as restoration 

projects progress. Differences in bathymetry and impounding techniques lead to 

differences in each site's open water vs. vegetation makeup - which also changes as 

restoration progresses and vegetation re-establishes itself at each restored site. 

Additionally, salinity, water level, and tidal influence can impact GHG emissions, 

explaining some of the variability in GHG emissions among wetlands in the Bay-

Delta regions. The network consists of one historic wetland in Suisun Ranch Reserve 

and eight restored and managed wetlands: three restored wetlands on Twitchell 

Island, a restored wetland near Mayberry Slough on Sherman Island, a restored marsh 
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and salt pond in Eden Landing, a restored peatland pasture on Sherman Island, a 

recently flooded tidal wetland at Hill Sough, and an impounded and flooded tidal 

wetland at Dutch Slough.   

 

Mayberry Wetland (MYB), a 121-hectare restored area on Sherman Island, 

was transformed from a livestock pasture dominated by pickleweed into a wetland in 

2010 through a restoration project managed by the Department of Water Resources. 

This site's landscape is 50% open water and 50% vegetation, with variable water 

depths and vegetation patterns reflecting the heterogeneous bathymetry. Managed by 

the California DWR, water from the nearby river is piped in during dry summers to 

maintain water levels (Arias-Ortiz et al., 2022). 

  Sherman Island Wetland (SNE), spanning 263 hectares on the southwestern 

side of Sherman Island, underwent restoration from a degraded peatland pasture in 

2016. Despite being inundated in November 2016, widespread vegetation 

establishment was slow, with tulle and cattail only covering the site by 2020 (Hemes 

et al., 2019). SNE’s water levels are managed through a pump system due to its lack 

of natural hydrologic connectivity.  

Twitchell Island’s East End Wetland (TW4), spanning 323 hectares, was 

restored from a cornfield in continuous agricultural use since the 1850s, with 
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construction starting in December 2013. The site now features a combination of open 

water and emergent vegetation, primarily tulles and cattails. It is managed by a water 

level regime utilizing pumps to maintain ideal inundation levels (Valach et al., 2020; 

Hemes et al., 2018).  

The West Pond Wetland, a 3-hectare restored site on Twitchell Island 

managed by the California Department of Water Resources (CDWR), was restored 

from a degraded cornfield in 1997. Flooded to a depth of 25cm during restoration, 

pumps, inlets, and outlets still regulate the hydrology at this site. With shallow and 

uniform bathymetry, dense vegetation, primarily cattails and tulles, quickly 

established after restoration, covering 96% of the wetland area by 2012 (AmeriFlux).  

The 6.5-acre East Pond Wetland on Twitchell Island (TW5), restored from 

drained agricultural fields in 1997, is jointly managed by the CDWR and the U.S. 

Geological Survey (USGS). Initially flooded to approximately 55 cm, it is still 

hydrologically managed using pumps and inlets. After restoration, vegetation, mainly 

tulles and cattails, gradually established across the wetland. However, a disturbance 

occurred in 2013 when vegetation was harvested and relocated to facilitate the 

restoration of the East End wetland.  

Rush Ranch (SRR) is a 425-acre undisturbed wetland in Suisun Marsh in 

Suisun Bay, managed by CDWR as part of the San Francisco Bay National Estuarine 

Research Reserve. It stands out as the largest continuous brackish marsh complex in 
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California and features pickleweed, cordgrass, and tulles as the dominant vegetation. 

The site experiences tidal influence and has a complex hydrology (SF Final 

Management Plan, 2020).  

Mount Eden Landing Creek Marsh (EDN) is a 75-hectare tidal marsh in the 

Eden Landing Ecological Reserve, managed by the CDFW. Restored from salt ponds 

in 2008, it features mudflats and vegetated areas dominated by pickleweed and 

cordgrass. Despite lower vegetation, significant spatial and temporal variability in 

CH4 emissions is observed, with peaks exceeding 200 nmol CH4 m-2 hour-1, 

contrasting with the seasonality of emissions seen in Mayberry Wetland (Shahan et 

al., 2022; Arias-Ortiz et al., 2023).  

Dutch Slough Marsh (DMG), a 0.41-hectare restored tidal marsh in Suisun 

Bay, was previously used for agriculture and slated for urban development. In 2018, 

the CDWR leveled the slope, planted vegetation, and breached levees to reconnect it 

to the Delta. Data collection for this project began after flooding and tidal 

reconnection (AmeriFlux) 

Hill Slough Marsh (HSM), a 0.40-hectare restored tidal marsh in Suisun Bay's 

northern Suisun Marsh, was previously eight diked salt ponds managed for waterfowl 

habitat. Restoration, managed by Ducks Unlimited Inc. and the CDWR, began in 

2017, involving levee modifications and flooding in 2021 to reintroduce tidal action. 

Data used in the study was collected after the restoration's completion, and tidal 
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connectivity was restored at this site (AmeriFlux) 

 

 

 

 

 

 

 

 

 

 

Table 4: Bay-Delta Site Summary 
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2.1 Data Sources and Preparation 

The CH4 flux data utilized in this study was collected using the eddy 

covariance (EC) flux method. EC is a micro-meteorological method that directly 

observes gas, energy, and momentum exchanges between ecosystems and the 

atmosphere using a flux tower monitoring system deployed to field sites of interest 

(Baldocchi, 2003). EC has few theoretical assumptions and an extensive scope of 

application, and towers have been deployed in a wide range of ecosystems. The data 

 Site ID Location Data 

Years 

Salinity 

(PSU) 

HM 

Count 

HM% of total 

Measurements 

HM% of 

total 

FCH4 

 

Non

-

Tida

l 

US-MYB Sherman 

Island 

2010-

2021 

1.0-7 1691 2.32% 6.41% 

US-SNE Sherman 

Island,  

2016-

2020 

1-7 840 2.84% 9.3% 

US-TW1 Twitchell 

Island 

2011-

2020 

0.1 - 0.3 931 2.46% 7.43% 

US-TW4 Twitchell 

Island 

2013-

2020 

0.1 - 0.3 1243 2.43% 6.83% 

US-TW5 Twitchell 

Island 

2018-

2020 

0.1 - 0.3 212 2.47% 4.66% 

Tida

l 

US-SRR Suisun 

Bay, 

2014-

2017 

3-13 552 3.0% 20.1% 

US-EDN South San 

Francisco 

Bay 

2018-

2020 

30-35 326 2.38% 92.86% 

US-HSM Suisun 

Bay, 

2021-

2023 

3-13 290 3.26% 39.92% 

US-DMG Oakley, 

California 

2021-

2022 

0.1-0.6 303 3.1% 12.87% 
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used in this study was accessed through the AmeriFlux open-access database, a 

network of 110 active PI-managed sites measuring ecosystem CO2, CH4, water, and 

energy fluxes in North, Central, and South America. Each ecosystem-level site in the 

AmeriFlux network acquires continuous EC measurements and metadata describing 

biological, ecological, and management conditions at each site, such as climate zone 

and dominant vegetation type. All data published in the AmeriFlux network 

undergoes rigorous processing, which includes data quality control and transforming 

original measurements from individual sensors to ecologically or micro-

meteorologically significant quantities (Knox et al., 2019).  Since the AmeriFlux 

network data has already undergone quality control and assurance from each site's PI 

before uploading it to the database, pre-processing of the data was minimal in this 

study. All data was downloaded at the half-hour resolution, and to reduce noise, we 

aggregated half-hourly measurements into hourly measurements.  

To make the model relevant for upscaling across sites without EC towers, we 

only used HM predictors that could be collected by alternative means, such as 

weather stations or remote sensing. While we omitted FCH4 in our predictors, we 

used the FCH4 measurements to flag HMs, and all the data used was collected 

contemporaneously with FCH4 measurements. Therefore, with the HMs as our target 

variable, RFs can learn the relationships between elevated FCH4 and the other 

environmental parameters. We also limited the predictors to only those available at 
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each site, and the list of variables used in the modeling is presented below. The HM 

and tidal flags were assigned to each measurement at the nine sites, and they denote 

whether a measurement is an HM or a non-HM and if the measurement is from a tidal 

or non-tidal site. The HM flag was our target variable that the RF tried to predict. We 

included a tidal/non-tidal flag in the dataset to assess if tidal action at a site influenced 

HM prediction. For instance, if we ran the RF and found that the tidal flag was an 

essential feature in the model, we could infer that tidal action plays a prominent role 

in HM occurrence and that it might be more appropriate to have separate tidal and 

non-tidal RF models. We also transformed the wind direction parameter using a sine 

function because wind direction is a circular variable where extreme values have 

similar meanings. For example, winds coming from 360º and 1º in the same general 

direction, even though their numerical values are distinct.  

 

Table 5: EC Variables Included in RF as Predictors 

Variable Name Units 

WS Wind Speed m s-1 

WD Wind Direction (Transformed) Decimal 

degrees 

WTD Water Table Depth m 
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TA Air Temperature deg C 

PA Air Pressure kPa 

RH Relative Humidity % 

TS_AVG Soil Temperature deg C 

VPD Vapor Pressure Deficit hPa 

PPFD_IN Photosynthetic Photon Density, incoming µmolPhoton m-2 

s-1 

LE Latent Heat Flux W m-2 

H Sensible Heat Flux W m-2 

NETRAD Net Radiation W m-2 

H2O Water Vapor in mole fraction of wet air mmolH2O mol-1 

Tidal Flag Flag denoting if a measurement is from a 

tidal or a non-tidal site 

True (Tidal)/ 

False (Non-

Tidal) 

2.2 Identifying HMs of FCH4  

We identified HMs of FCH4 at the nine sites in this study using a rolling 

average and rolling z-score methodology described in Chapter 1. To that end, we 

established a baseline flux by employing a moving window technique to smooth the 

hourly FCH4 time series into a monthly moving average. Subsequently, another 
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moving window was utilized to compute the moving Z-score for each FCH4 

measurement relative to the seasonal rolling average for each measurement. We 

identified every FCH4 measurement with a moving Z-score greater than three as a 

HM. This approach was informed by the standard Z-score cutoff approach for 

identifying HMs (Kannenburg et al., 2021), moving Z-scores used to identify 

anomalously high stock prices in financial analysis (Velazques, 2019), and moving 

window outlier detection techniques often used in ecological studies like the Hampel 

filter (Hampel, 1971). We quantified the impact these HMs have on the overall FCH4 

at each site by comparing the contribution of total HMs attributed to FCH4 to total 

FCH4 at each site (% contribution) (see Pearsall et al., 2024 for details).  

 

At each site, we attached a ‘hot or not’ flag to each measurement, stored as a 

Boolean variable to denote the class to which each measurement belongs. We then 

compiled the data from each site into one dataset that will be used to train and test the 

RFs. This full Delta composite dataset did not include any site identification 

information, and the dataset was randomly sampled to ensure site-specific artifacts 

did not make their way into the final HM prediction RF. The final dataset included 

4,416 HMs and 177,256 non-HMs for 181,672 measurements. HMs comprised 2.28% 

of the HM dataset. We also created separate tidal and non-tidal versions of the HM 

dataset so that we could evaluate the role tidal action plays in driving HMs. The tidal 
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dataset included US-EDN, US-SRR, US-DMG, and US-HSM, and the non-tidal site 

included US-MYB, US-TW1, US-TW4, US-TW5, and US-SNE. There were 4,856 

HMs in the non-tidal dataset and 1,471 HMs in the tidal dataset.  

 

2.3 RF Training and Optimization 

A RF (Breiman, 2001) is a non-parametric, supervised learning technique that 

uses an ensemble of unpruned classification or regression trees to make predictions 

(Oshiro et al., 2012) based on predictor variables fed into the model. An RF makes 

predictions by aggregating the predictions of each tree in the ensemble, and in an RF 

classifier, a majority vote among the trees determines the final classification. In an 

RF, each tree is grown from a bootstrap sample, selected with replacement from the 

training data (Chen et al., 2004), in a process known as bagging that allows the forest 

to be made of unique, uncorrelated trees. At each decision tree node, a certain number 

of predictors are randomly selected, and the algorithm evaluates all potential 

thresholds for each chosen predictor and selects the predictor-threshold combination 

that yields the most effective split of the data (best split). In each tree, the resulting 

groups are split to maximize homogeneity within groups and the differences between 

groups (Rigatti et al., 2017). The randomization introduced during the bagging and 

tree seeding steps ensures trees are protected from overfitting and from individual 

errors in the trees. RF produces more accurate predictions than any singular decision 
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tree classifiers like CART and C4.5 (Prasad et al., 2006; Chen et al., 2004). Training 

data alone does not dictate RF performance, and model performance can be 

influenced by model specifications, called hyper-parameters, that determine the 

structure of individual decision trees and the size and randomness of the overall forest 

(Probst & Boulesteix, 2018). Hyperparameters are not learned from the data but are 

set by the user before model training. Hyperparameters can be experimentally tuned 

to optimize the performance of the RF model. The most effective approach to 

identifying the optimal settings is to try numerous combinations and assess the 

performance of each mode.   

To build the RFs in this study, we randomly split the HM dataset into a 

training and a testing subset, saving 20% of the data for testing. Testing the model on 

unseen data reduces the overfitting change and estimates how well the model 

generalizes to new, unseen instances. Test segments of data help assess whether the 

model has learned meaningful patterns from the training data or simply memorizes 

the training examples (overfitting). We tested different combinations of 

hyperparameters using a random grid search K-fold cross-validation algorithm. We 

searched for the optimal hyperparameters with this algorithm: 1) maximum depth of 

the tree, 2) minimum number of samples required to be at a leaf node, 3) The 

minimum number of samples required to split a leaf, 4) number of features to 

consider when looking for the best split, and 5) number of trees in the forest 6) 
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whether or not bootstrapping should be used to build the forest. With the random grid 

search, we first defined a grid of six hyperparameter values we wanted to test. Then, 

we randomly selected a predefined number of hyperparameter combinations to try 

instead of exhaustively searching through all possible combinations in the grid. For 

each selected combination of hyperparameters, we split the dataset into K folds, 

trained the model on the k-1 fold, and tested the model on the remaining fold. This 

process is repeated K times and yields K difference models, and the average 

performance metric across all folds is calculated for each hyperparameter 

combination. From the results of the K-fold search, we select the combination of 

hyperparameters that yielded the highest average performance metric. Our random 

search K-fold cross-validation evaluation was executed with three folds, and 300 

different fits of the RF were tested. We then used these optimal hyperparameters as 

determined by the cross-validation to build an RF trained with the balanced and 

unbalanced HM training dataset. To contextualize the results of the RF in this study 

against less sophisticated models, we trained a logistic regression, a C4.5 classifier, 

and a CART classifier. We compared the performance of our RF to each of these 

models.  

Since decision trees are susceptible to the data they are trained on, small 

changes in the training set can significantly change tree structures. This capability is 

exploited by the RF method, allows for the growth of wildly different trees, and 
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protects against overfitting and errors (Prasad et al., 2006). However, suppose there is 

a class imbalance in the training data where the ratio between the majority and 

minority classes is highly skewed toward the majority class. In that case, RF models 

can become biased against identifying minority class instances. RF is especially 

sensitive to imbalanced datasets because decision trees use a ‘divide and conquer’ 

approach that partitions training data into smaller and smaller pieces. Majority class 

prediction bias causes a problem when identifying rare patterns in a dataset because 

there is less and less data in each tree node from which to identify rare patterns (He 

and Ma, 2013). HMs are inherently rare in any ecosystem, and in our wetland HM 

dataset, HMs comprise less than 3% of the total dataset. The class imbalance between 

HMs and non-HMs severely skewed RF trained with imbalanced data, and we had to 

apply several techniques to balance our data and account for the class imbalance to 

develop an RF that accurately predicted both HMs and non-HMs.  

 

2.4 Dealing with Imbalanced Training Data 

Imbalanced data, datasets where one class significantly outnumbers another, 

has attracted significant attention in machine learning as many real-world datasets 

and ML applications are significantly skewed. Famous examples in the field include 

breast cancer prediction datasets (Zhang et al., 2019), where negative diagnoses 

significantly outnumber positive diagnoses, and financial fraud data (Panigrahi & 
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Borah, 2019), where legitimate transactions outnumber fraudulent transactions. Most 

ML practitioners agree that a dataset where the most common class is more than 

twice as common as the rarest class is unbalanced. There can be varying degrees of 

imbalance - a dataset with a class instance ratio of 10:1 would be marginally 

unbalanced. In contrast, a dataset with a class instance ratio of 1000:1 would be 

severely unbalanced (He & Ma, 2013).   

The problem with imbalanced data is that using highly skewed classes in data 

significantly compromises the performance of most standard ML algorithms because 

the sheer volume of the majority class pattern obscures the rarer class pattern. This 

imbalance makes it fundamentally more difficult for an algorithm to identify rare 

patterns than common patterns, and as the class imbalance in a training dataset 

increases, so does the model’s error rate (He & Ma, 2013). When decision trees, such 

as RFs, are trained with imbalanced data, they can become biased against accurately 

identifying rare class cases because trees are built top-down (Chen et al., 2004). If 

one branch has little or no training examples of the minority class, the tree will have 

no evidence to base a classification when it encounters a minority class example in 

the test data subset (He and Ma, 2013; Lin et al., 2017). Therefore, when trained on 

imbalanced data, most decision tree learners will predict the majority class more 

accurately and bias the results against rarer classes. As the dataset becomes larger, the 

problems associated with class imbalance become more significant, and with the HM 
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dataset of 100,000+ instances, addressing the imbalance is imperative for improved 

algorithm performance. To improve the RF’s ability to predict HMs correctly, we 

need to expose it to more HMs during model training so that it can effectively learn 

the decision boundary. Since each method changes the distribution of the dataset, how 

you balance the data will likely influence how the model learns to identify HM and 

feature importance in the model. There are three main approaches for dealing with 

imbalanced training data: 1) sampling methods solutions, 2) cost-sensitive models, 

and 3) algorithm-level solutions. We tested each approach in this study and 

determined that the best method for balancing the data was randomly undersampling 

non-hot moments in the training dataset so that there was an even number of HM and 

non-HM. Full results from our imbalanced data comparison are presented in 

Supplementary Materials. 

Randomly balancing the training data for RF has been used in many medical 

and statistical studies (Zhang et al., 2019) as well as in environmental studies such as 

Giamalaki et al. (2021). Class balance with random undersampling is achieved by 

randomly selecting majority class instances and removing them from the dataset until 

the desired ratio of minority and majority classes is reached. Random undersampling 

is a naive resampling method because it does not assume anything about the data 

when removing majority class samples (He and Ma 2013). The computational 

simplicity of random undersampling makes it easy to implement and fast to execute, 
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which is very beneficial when working with large datasets like our FCH4 dataset. We 

performed the random undersampling using the <Imblearn> package in Python. After 

randomly undersampling the dataset, the new balanced training dataset had HM 4,416 

and 4,416 non-HM.  

2.5 RF Performance Measures 

We used a suite of machine learning performance metrics to compare the 

prediction skills of the various RFs we built in this study. Some typical RF 

performance metrics, such as overall classification accuracy and the receiver operator 

curve (ROC), can be optimistic and overstate a model’s performance when there is a 

severe class imbalance. These metrics can be skewed by high majority class 

prediction accuracy because low overall error can be achieved even by a no-skill RF 

model that can only predict majority class instances. We still report the accuracy and 

ROC Curve metrics for the RFs in this study but also present the balanced accuracy 

and precision-recall curve (PRC), which are more suitable for imbalanced datasets. 

We also use confusion matrices, precision, recall, and the F1-Score to compare model 

performance.  

The confusion matrix reports the actual class labels vs. the predicted ones for 

MH and non-HMs. This matrix summarizes the True Negatives (TN) correctly 

labeled non-HMs, True Positives (TP) correctly labeled HMs, False Negatives (FN) 

incorrectly labeled non-HMs, and False Positives (FP) (incorrectly labeled HMs. We 
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also report the TN, TR, FP, and FN rates on the confusion matrix. 

 

𝑇𝑃𝑅 =  
𝑇𝑃

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑃

𝑇𝑃 +𝐹𝑁
       

𝐹𝑁𝑅 =
𝐹𝑃

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑁

𝑇𝑃 +𝐹𝑁
  

 

𝑇𝑁𝑅 =  
𝑇𝑁

𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=  

𝐹𝑃

 𝑇𝑁 + 𝐹𝑃
 

 

Accuracy is the ratio of the total number of correct predictions and the total 

number of predictions. Because accuracy includes the number of correct predictions 

and places more weight on common classes, we found that this metric severely 

exaggerated model performance with our imbalanced HM dataset.   

 

𝐴𝑐𝑐 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 =  

𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁
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Balanced accuracy calculates a model’s overall accuracy by computing the 

average percentage of correct positive class predictions and the percentage of correct 

negative class predictions. This metric assesses the performance of models trained 

with imbalanced datasets. Balanced Accuracy can also be calculated as the arithmetic 

means of sensitivity (TPR) and specificity (TNR -1 ).   

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐 =  
1

2 
 (

𝑇𝑃

𝑇𝑃 +𝐹𝑁
 + 

𝑇𝑁

𝑇𝑁 +𝐹𝑃
)  =  

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

 

The ROC Curve is a probability curve that plots the TPR (sensitivity) against 

FPR (1 -sensitivity) and shows the performance of a classifier across different 

classification thresholds (Nahm, 2022) and the trade-off between sensitivity and 

specificity (Saito & Rehmsmeier, 2015). The area under the ROC Curve (AUC) 

measures the ability of a binary classifier to distinguish between classes and is used as 

a summary of the ROC curve (Hoo et al., 2017). The AUC ranges from 0 to 1, where 

a perfect classifier would have a score of 0, and a no-skill classifier that cannot 

distinguish between classes would have an AUC = 0.5.  

ROC Curves and AUC can be too optimistic when dealing with imbalanced 

datasets and overstate a model’s ability to discern between classes. An alternative to 

the ROC Curve favored for imbalanced datasets is the precision-recall curve, which 
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focuses on the performance of the minority class (Brownlee, 2021; Saito & 

Rehmsmeier, 2015). Precision quantifies how many positive predictions a model 

makes are correct, and recall quantifies how many total positive class instances in a 

dataset were correctly predicted as positive by a model. With an imbalanced dataset, 

the goal is to improve recall without significantly hurting precision. When working 

with imbalanced data, it is more appropriate to try and maximize precision when 

minimizing false positives and to maximize recall when minimizing false negatives 

(He and Ma 2013). The F1 measure balances precision and recall by taking the 

harmonic mean of the two metrics and maximizing the F1-score, which allows us to 

maximize both precision and recall and is commonly used with imbalanced datasets. 

In this study, since we are more concerned with predicting as many HMs as possible 

and using the RF model to evaluate HM drivers, we are more interested in 

minimizing false negatives.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙  =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
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𝐹1 =  2(
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) 

 

The precision-recall curve (PRC) visually summarizes the trade-off between 

the TP rate and the positive predictive value for a model using different probability 

thresholds (Saito & Rehmsmeier, 2015). Neither precision nor recall utilizes the TN 

metric and is more focused on accurately predicting the minority class. Therefore, 

PRC curves are not influenced by how many majority class instances are correctly 

identified and will not be skewed by imbalanced classifiers' strong performance in 

predicting majority classes. In this case, the PRC curve will not be affected by the 

RF’s bias toward predicting non-HMs correctly and will instead hone in on the RF’s 

ability to correctly predict HMs (Saito & Rehmsmeier, 2015). A no-skill classifier (a 

classifier that cannot discriminate between classes) is represented on a PRC as a 

horizontal line whose position changes based on the class distribution of the data. 

This baseline is calculated as the ratio of positive cases to the whole dataset, and for a 

perfectly balanced class, would be 0.5. A perfect classifier would be two straight 

lines, and a robust model would be a curve whose convex hull is toward the (1,1) 

point. As a model’s performance weakens, the shape bows towards the no-skill line, 

with the convex hull pointing towards (0,0). The area under the PRC is also used as a 

metric for the model. The AUC-PR is calculated as the trapezoidal area under the 

curve, and in a perfect model, it will have a value of 1 (Davis & Goodrich, 2004). 
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2.6 RF Feature Importance 

For each RF in this study, we examined the importance of various potential 

environmental predictors to determine which variables were most impactful in HM 

classification. Features in machine learning refer to the variables fed into the model as 

input that it uses for predictions (Zvornicanin et al., 2023). The default technique for 

assessing the importance of each variable in an RF is impunity-based importance. In 

impunity-based approaches, the significance of a variable is determined by how much 

it can reduce impunity and improve prediction accuracy, quantified as the mean 

decrease in impunity (Par et al., 2018). Variables that can create clear, pure splits in a 

tree, leading to cleaner data segmentation, will be given higher importance in an 

impunity-based approach. However, the default impunity-based approach can often 

be misleading because the variable analysis is performed on training data and is 

vulnerable to effects from model overfitting. Impunity-based approaches are 

especially unsuitable for datasets with high cardinality (Stobhl et al., 2007; Parr et al., 

2018). The consensus is that it is most appropriate to calculate the importance of 

variables using a permutation algorithm, which is a more reliable, model-agnostic 

approach (Breiman, 2001; Stobhl et al., 2007; Parr et al., 2018). The importance of 

the permutation feature is incredibly insightful when relationships are non-linear 

(Breiman, 2001). Permutation feature importance computes the importance of each 
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variable by 1) calculating a baseline accuracy score for RF using the test dataset, 2) 

randomly shuffling measurements in a single feature and then re-testing the RF with 

the perturbed sample set and calculating the new accuracy score, 3) the importance of 

the shuffled feature is determined by the drop in accuracy between the baseline and 

perturbed RFs (Parr et al., 2018). The higher the drop in accuracy between the 

baseline and shuffled models, the higher the importance of the variable. This 

workflow is repeated for every variable selected in the RF. While this process is 

computationally intensive, it yields a more accurate representation of the importance 

of the different variables tested. 

Our initial logistic regression results for identifying HMs indicated non-linear 

relationships between the selected variables (Table 1) and HMs and CH4 emissions in 

general in this data. Because the wetland HM data exhibits high cardinality and non-

linear relationships, using permutation feature importance instead of standard feature 

importances is a more suitable choice for assessing the impact of the variables on RF 

model predictions. We used <Sklearn> in Python to rank the features in RF by 

importance score. 

 

3.0 Results 

We built four RFs in this study: an unbalanced RF trained with the original 
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ratio of HM to non-HM, a balanced RF trained with the randomly undersampled 

training data, a balanced RF with data only from tidal sites, and a balanced RF with 

data only from non-tidal sites. The unbalanced RF was built using default 

hyperparameters with bootstrap sampling, 100 trees, a minimum sample split of two, 

a minimum leaf side of one, and the square root of the total number of features 

determined no maximum tree depth and the number of features. Using the K-fold 

cross-validation algorithm, we found that the highest accuracy for our balanced RF 

was achieved when the number of features to consider for ‘best split’ was calculated 

as the square root of total samples and tree growth did not use bootstrap sampling in 

the combined RF, tidal RF, and the non-tidal RF. The tree and forest hyperparameters 

that yielded the highest accuracy model for the balanced RF were 600 trees, the 

minimum number of samples required to split an internal node was three, the minimal 

number of samples required to be a terminal leaf node was one, and the maximum 

tree depth was 100. For the balanced non-tidal RF, we identified the best number of 

500 trees, a minimum sample split of three, a minimum sample leaf of two, and a 

maximum tree depth of 70. The tidal RF achieved the highest accuracy with 1000 

trees, a minimum sample split of two, a minimum leaf size of one, and a maximum 

tree depth of 40.  
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3.1 Unbalanced Random Forest Performance 

To highlight the importance of addressing imbalanced training data when 

using RFs, we built an RF trained with the full unbalanced HM dataset. We used this 

model’s performance as a baseline to compare the performance of the balanced RFs. 

The unbalanced RF’s accuracy was exceedingly high at 99.7%, indicating very few 

prediction errors relative to the total number of predictions made. However, this 

accuracy metric is heavily skewed by correct non-HM predictions and obscures the 

model’s inability to predict HMs correctly. The balanced accuracy presented in Table 

3 provides a more authentic measure of the model’s ability to predict HM and non-

HMs. The unbalanced RF’s confusion matrix also illustrates this model’s ineptitude 

in predicting actual HMs - identifying only 3.24% of true HMs in the test dataset. 

Because HMs are exceedingly rare compared to non-HM in the unbalanced training 

dataset, this model did not have enough exposure to HM and could not correctly learn 

the decision boundary between the two classes.  

Table 6: RF Performance Comparison 

Metric Unbalanced RF Balanced RF 

Balanced RF Non-

Tidal 

Balanced RF 

Tidal 

Balanced Accuracy 51.6 77.18 78.2 71.32 

Precision 0.763 0.079 0.075 0.071 

Recall 0.032 0.77 0.765 0.694 

F1 0.062 0.144 0.136 0.129 
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Figure 17: Unbalanced RF Confusion Matrix. Displays true, false, positive, and 

negative rates in the respective quadrants.  

 

3.2 Optimized Combined Random Forest Results 

The optimized RF trained with the randomly undersampled, balanced HM 

dataset outperformed the unbalanced RF and could identify true HMs faster. A 

comparison of the out-of-box balanced RF and the optimized balanced RF is 

AUC-ROC 0.85 0.85 0.86 0.79 

AUC-PRC 0.26 0.19 0.19 0.14 
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presented in Supplementary Materials.  The performance metrics of the balanced RF 

are presented in Table 3. The balanced accuracy of the balanced RF improved to 

77.18% compared to the 51.6% balanced accuracy in the unbalanced RF. While the 

overall accuracy of the balanced RF is lower than the unbalanced RF, we found this 

model was more appropriate for our use case because it can more accurately identify 

HM, which is our class of interest. The confusion matrix highlights the balanced RF's 

improved ability to detect true HMs at 77.6% and true non-HMs at 77.2%. It is worth 

noting that the FPR in the balanced RF increased compared to the FPR unbalanced 

RF, indicating that the model predicts too many HM.  
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Figure 18: Balanced RF Confusion Matrix, ROC, and PR-Curve 

 

The trade-off between TPR and FPR is further illustrated in the ROC Curve in 

Figure 18, which shows the rates across different classification thresholds. The no-

skill classifier line is shown as the gray one-to-one dotted line, and the peak model 

performance region in the ROC plot is at (0,1), where TPR is 100%, and FPR is 0%. 

The shape of the ROC curve for the balanced RF indicates the model is performing 

well, and the AUC of 0.86 further establishes the model’s strong performance. The 

ROC Curve reflects that the balanced RF can identify true HMs 78% of the time and 

only mislabel non-HMs as HMs 22% of the time (also seen in the confusion matrix). 

However, as noted by Saito and Rehmsmeier (2015), when ROC Curves and AUC 

are used with highly imbalanced data, they can present an overly optimistic 

assessment of model performance, and we determined the ROC and AUC for the 

balanced RF presented here exhibit this overly optimistic assessment of model 
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performance. The optimistic bias in the balanced RF’s ROC results emerges because 

the FPR diminishes when the volume of actual negatives is present, as in our test 

dataset, where there are 33,490 non-HMs and 791 HMs. Consequently, the substantial 

number of false positives (8062) exerted minimal influence on the FPR, resulting in 

an elevated AUC value that failed to capture the false positive problem with the 

balanced RF model.  

To get a more straightforward look at the model assessment, we turned to the 

PR Curve presented in Figure 18, which focuses on the predictions of the minority 

class. The no-skill classifier (where all predictions would be for the positive class) 

line is shown as a dotted horizontal line. The shape of the PR Curve and the AUC of 

0.19 for the balanced RF denote a fair model performance. The balanced RF model 

has a high recall, which denotes that the model correctly predicted the majority of the 

HM instances in the test dataset. However, per the equation for precision presented 

above, a large number of false positives relative to the number of true positives will 

result in a low precision. While the balanced RF model correctly identified 77% of 

the true HMs in the test dataset, it also incorrectly flagged 22% of the non-HM as 

HM. These false positives dropped the precision score, and when the model was 

assessed across different classification thresholds to make the PR curve, it yielded a 

PR curve shape that indicates fair to poor performance. The maximization of recall vs 

precision scores seemingly flipped between the balanced and unbalanced RFs. In the 
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unbalanced RF, there was high precision and low recall, indicating that the model 

excelled at classification overall but did not perform well for minority class 

predictions. The balanced RF, on the other hand, had low precision and high recall 

scores, indicating that the model identifies most of the actual positive instances, but it 

is prone to false positives.  

We computed the permutation feature importances for the balanced RF to 

assess which EC variables are most valuable when predicting HM of FCH4, which 

are presented in Figure 19. Negative values in the balanced RF’s permutation feature 

importances indicate that permuting the values of a particular variable improved the 

model's accuracy, which implies that perturbing its values helps reduce noise or 

overfitting. The most valuable parameters for predicting HM were latent heat 

exchange, wind speed, wind direction, and photosynthetic photon flux density. 
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Figure 19: Feature Importances in Balanced RF, Non-Tidal RF, and Tidal RF. 

Based on the feature importances, we were curious if the class imbalance 

drove the sub-par performance of the balanced RF or if combining tidal and non-tidal 

sites into one model was complicating the RF’s ability to correctly identify HM 

because the hydrology and CH4 pathways and drivers are different between tidal and 

non-tidally influenced wetlands. To address this question, we created separate models 

for the tidal and non-tidal sites and generated a new set of predicted HM with the new 

tidal and non-tidal models.  

 

3.2 Non-Tidal Random Forest Results 

The non-tidal balanced RF was trained with US-TW1, US-TW4, US-TW5, 

US-MYB, and US-SNE data. We built a model with the combined non-tidal site data 

and optimized it using the K-fold cross-validation technique (comparison of base to 

optimized model can be found in Supplementary Materials). The standard and 

balanced accuracy of the non-tidal RF was similar to the combined RF’s, with both 

accuracies hovering around 78% for the non-tidal RF (Table 4). Looking at the 

confusion matrix for the non-tidal RF in Figure 20 we can see that the TPR is high, 

and the model can identify true HM 76.5% of the time. We also see the same high 

FPR rate in the non-tidal model, with 22% of non-HMs incorrectly classified as HMs.  
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Figure 20: Tidal and Non-Tidal Confusion Matrices, ROC, and PR-Curves 

 

The ROC and PR Curves display a similar model performance to the 

combined RF. Again, the ROC Curve likely gives an optimistic assessment of the 

non-tidal RF’s performance driven by the high TPR, high TNR, and the small number 

of false positive predictions relative to the total number of true negatives. The PR 

Curve for the non-tidal RF has only a marginally lower AUC than the combined RF, 

reflecting that this model also has high recall and low precision metrics. However, as 

shown in Table 1, the non-tidal RF has slightly higher precision and slightly lower 

recall than the combined RF, resulting in a slightly higher F1-Score, indicating a 

marginally more balanced tradeoff between precision and recall.  

Interestingly, the permutation feature importances for the non-tidal RF were 

similar to those of the combined RF. The three most important features in the 
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combined and non-tidal RF were wind speed, latent heat exchange, and sensible heat 

exchange. However, in the non-tidal RF, wind speed outranked latent heat flux. The 

fourth, fifth, and sixth most important features were photosynthetic photon density 

flux, wind direction, and net radiation, and in the combined RF, these features were 

also reasonably important to model accuracy. The feature importance of the non-tidal 

RF likely mirrors the combined RF so closely because there is more data from non-

tidal sites than tidal sites in the combined RF, so they exert more influence on model 

training and characteristics.   

 

3.3 Tidal Random Forest Results 

There was a significant drop in model performance between the tidal, non-

tidal, and combined models. A caveat about the tidal RF’s performance is that it was 

trained with significantly fewer data (n= 33,480) than the combined (n=181,672) and 

non-tidal (n=148,192) RFs. The tidal RF’s accuracy and balanced accuracy were 

73.17% and 71.32%, respectively. The confusion matrix for the tidal RF in Figure 20 

shows that the TPR is lower than that of the combined and non-tidal RFs at 69.4%. 

The FPR rate for the tidal RF is also significantly higher than the other RFs at 26.7%. 

The FPR and TPR indicate a significant drop in performance relative to the combined 

and non-tidal RFs.  
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The poor performance of the tidal RF is reflected in the ROC and PR curves 

in Figure 20. The ROC Curve shape has bowed, and the AUROC has dropped to 0.79 

for the tidal curve. The ROC Curve’s shape is likely influenced by the fewer true 

negatives flagged by the tidal RF. The PR curve has a significantly lower AUC than 

the combined and non-tidal RFs, and the PR curve's shape hovers closer to the no-

skill line. This cure shape indicates that this model's ratio between precision and 

recall is even more skewed. The imbalance in precision and recall is seen in the F1 

score in Table 1, which is lower for the tidal RF than the score in the combined and 

non-tidal RFs. The feature importances for the tidal RF differ more substantially from 

those of the combined RF feature importances than those of the non-tidal 

importances. The most important feature was still wind speed, but the rest of the 

feature importances were shuffled around. Notably, latent heat, which was so 

valuable in the combined and non-tidal RFs, is the second to least important feature in 

the tidal RF. Relative humidity and water vapor flux were much more influential on 

model performance in the tidal RF than in the combined and non-tidal RFs. 

 

Discussion 

4.1 Benefits of Balancing Data in Biogeochemical Modeling 

In this study, we used several RF models to assess the predictability of HMs 
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of FCH4 in the SF Bay-Delta. The RF was envisioned as a model that could 

potentially predict the occurrence of HMs across the Bay-Delta at sites not monitored 

by EC towers. We evaluated the performance of an RF trained with unbalanced 

training data vs. an RF trained with balanced data. Balancing data is a critical first 

step when building an RF that can accurately predict HM, and we found that the 

balanced accuracy of the unbalanced RF improved from 51.6% to 77.18% when we 

balanced the RF training data. Exposing our RF to more HM during training removed 

the unbalanced RF’s bias towards only correctly identifying the majority class non-

HMs. With the balanced training data, we achieved a 78% TPR, a significant 

improvement from the unbalanced 3.24% TPR. Balancing datasets with severe class 

imbalance is commonplace in machine learning and medical fields, and class 

imbalance is becoming more well-researched in the context of biogeochemistry and 

ecology (Wilson et al., 2020; Salas-Eljatib et al., 2018; Bekendorf et al., 2023; Bourel 

et al., 2021). In biogeochemistry, numerous phenomena of interest are stochastic; 

thus, many datasets are imbalanced. As data-driven approaches become increasingly 

popular in the biogeochemical field, machine learning practitioners should ensure that 

class imbalance does not interfere with model performance. Addressing imbalance 

training data is especially important for researchers hoping to model HSHM, where 

the class imbalance is extreme. The results of our balanced RF compared to the 

unbalanced RF demonstrate the importance of balancing data before trying to model 

the minority class.  
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4.2 Balanced RF Interpretation and Limitations   

The RF fitted with balanced data from tidal and non-tidal sites was used to 

assess the potential for forecasting HM of FCH4 in the Bay-Delta region. The 

optimized RF could predict the absence or presence of HMs with an overall 77% 

accuracy. The balanced RF outperformed the balanced logistic regression, CART, 

and C4.5 classifiers we tested and correctly identified more HMs than the baseline 

suite of models. Compared to our baseline suite of models, this model's performance 

indicates that RFs and other ensemble-supervised learning models hold potential for 

predicting extreme events in biogeochemical and ecological studies. However, while 

the balanced model could correctly identify 78% of the true HMs and 77% of the true 

non-HMs, it also had a high false positive rate, which we identified as the most 

significant shortcoming in model performance. Overall, the balanced RF tended to 

overpredict HM at every site. We attribute this over-prediction to the class imbalance 

problem. In the Supplementary Materials, we show that out of the different 

resampling techniques and ratios we tested, a randomly undersampled 1:1 balanced 

dataset was ideal for training the RF and maximizing true HM identification. 

However, we suspect that even with the optimal balancing, the dataset removed too 

many useful measurements that would have helped the RF learn the decision 

boundary between HM and non-HM better. Therefore, when the balanced RF was 
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presented with the unseen test data, the model could not always distinguish between 

true HM and non-HMs.  We explored the possibility that underlying mechanistic 

differences between sites influence model performance while maintaining a big data 

approach by assessing the split tidal and non-tidal models. The lackluster results of 

these models allowed us to rule out the idea that the balanced RF was 

underperforming because we tried to predict tidal and non-tidal HM dynamics in one 

combined model. Instead, we determined that the underlying class imbalance was 

likely caused by the high FPR rate and not by an HM mechanistic-driven issue.   

The balanced RF could be improved by including EC flux variables in the 

model, such as FC and the Monin–Obukhov length, which relates to the EC tower 

flux footprint. However, we excluded any EC-specific variables in this study to assess 

the potential for scaling the RF to sites without EC monitoring. We limited the 

predictor variables to those measured by standard environmental monitoring systems 

or remote sensing. We posit that including ecosystem productivity measures, such as 

GPP, RECO, and NEE, might improve the predictive capability of the balanced RF 

since there is a close tie between plant productivity and methane production and 

emission. Here, we did not include these productivity metrics because they were 

unavailable at all nine sites. However, they hold potential for upscaling because GPP 

and NEE can be estimated from remote sensing and be used at wetlands that do not 

have EC towers. Results of the RF trained with all available EC data are presented in 
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Supplementary Materials. We also hypothesize that using Feature Forward Selection 

to build the RF might improve performance and training computation time. Forward 

Feature Selection enhances model accuracy by iteratively selecting informative 

features, thus improving model interpretability and reducing dimensionality. Feature 

Forward Selection has been used in EC data CH4 upscaling models and has proven 

useful (McNicol et al., 2023).    

We extensively tested different resampling and class weighting techniques to 

deal with imbalanced data classification, which can be found in Supplementary 

Material. Future work to improve the balanced RF presented here could include 

incorporating uncertainties or model-level classification threshold adjustments to 

create a more discerning model. RFs are non-parametric ensemble models, and 

prediction errors are not quantified directly because classification is based on tree 

majority voting. Computing uncertainty for the balanced RF predictions would help 

us understand the model’s confidence in each prediction and could shed light on why 

many non-HMs are flagged as HMs. Recent efforts in machine learning have sought 

to add an uncertainty component to RFs using probabilistic nodes, Monte Carlo 

techniques, confidence intervals, and hypothesis testing (Bauman et al., 2015; 

Coulston et al., 2016; Mentch & Hooker, 2016). RFs are not pattern recognition 

algorithms and cannot link model decision-making to physical and dynamic 

components in a system like certain deep learning algorithms can achieve (Giamalaki, 
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2021). Therefore, a more sophisticated machine learning algorithm capable of true 

pattern recognition, like a neural network or fuzzy model approach, could improve 

this study's HM predictions of the balanced RF.  

HSHMs are generally understudied and poorly understood across ecosystems. 

They are usually used as a framework to characterize dynamics in a system and not as 

an extreme value to model and predict. The results of the balanced RF represent a 

new effort to use data-driven models to model HM. While the relatively high FPR in 

the balanced RF is a drawback of the balanced RF, the overall model accuracy shows 

promise in predicting the occurrence of HM. Additionally, the feature importances in 

the balanced, tidal, and non-tidal RFs provide helpful information about FCH4 HM 

predictors and indicate a strong potential for upscaling across sites.  

 

4.3 Feature Importance and Model Applications 

While the balanced RF is not a perfect classifier, we can still use the 

importance of environmental variables to glean information about FCH4 HM 

predictors that wetland managers and future modelers could use. Note that variable 

importance does not reflect the intrinsic predictive value of a variable but rather how 

important this variable is for this specific model, and we cannot conclusively call the 

identified important variables in the RF FCH4 HM mechanistic drivers. However, we 

can compare the most essential variable identified by the model with known 
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biogeochemical and micrometeorological variables that influence and correlate with 

FCH4. The most important variables in the balanced RF, latent and sensible heat 

exchange, wind speed and direction, photosynthetically active photon flux (PPFD), 

net radiation, and water table depth align with our biogeochemical understanding of 

CH4 emission pathways. This alignment lends credibility to the importance of 

variable rankings and the model results, as we would expect the variables observed to 

drive CH4 emissions to be most beneficial to our RF when predicting HM of FCH4. 

Methanogenesis in wetlands occurs in the anaerobic subsurface as microbes in the 

soil break down organic matter and produce CH4. This microbially generated CH4 is 

stored in the soil, water, or vegetation roots. From these reservoirs, wetland CH4 can 

follow through three pathways to the atmosphere: gas bubble ebullition, diffusion 

from wetland soil and water, and plant-mediated transport (Turner et al., 2020). In 

ebullition, CH4 moves directly from the water columns into the atmosphere via gas 

bubbles rising to the surface. CH4 can escape from wetland soil and open water 

through diffusion at the air/water and air/soil interfaces. Plant-mediated CH4 

transport occurs when plants remove CH4 from the soil and move it to the 

atmosphere via the spongy aerenchyma tissue in their roots and stomata (Villa et al., 

2020). Wind speed and latent heat exchange impact the CH4 concentration gradient 

between soil or water and the atmosphere, impacting diffusive gas fluxes across these 

air-water-soil boundary layers.   
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Latent heat exchange in wetlands has been linked to methane emissions as an 

influencing factor in several studies (Li et al., 2023; Villa et al., 2020; Morin et al., 

2014). It is, therefore, unsurprising that latent heat was the most important variable in 

the balanced RF. Morin et al. 2014, make a crucial distinction that latent heat fluxes 

are more likely to be a coincident rather than a directly driving variable of FCH4. 

Latent heat fluxes can be conceptualized as water fluxes and are related to CH4 

emissions through plants and evaporation in a non-linear relationship (Morin et al., 

2014). Latent heat can increase plant productivity and accelerate the emission through 

plant-mediated methane pathways and the methane emission rate from unsaturated 

soil. The RFs are likely learning this non-linear relationship between latent heat flux 

and methane emissions and using it to help predict the occurrence of HM of FCH4.  

Wind speed was the second most important variable in the balanced RF and 

the most important variable in the tidal and non-tidal RFs and related to the diffusion 

and ebullition CH4 pathways. Wind speed is a physical micrometeorological 

measurement with strong influences on gas fluxes, including FCH4, and it has been 

shown that both diffusion and ebullition can increase with wind speed. 

Mechanistically, wind speed influences CH4 flux by moving air parcels at the air-

water and air-soil interface and changing the micrometeorological pressure conditions 

such that CH4 in the wetland soil or water can overcome the pressure differential and 

escape to the atmosphere and transmitting turbulent energy that perturbs sediment 
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structure and initiates bubble release (Keller & Stallard, 1994) as well as removing 

stagnant layers and increasing diffusive gradients. Ebullition is a distinctly episodic 

process and is likely a significant pathway for HMs of FCH4 at coast wetlands. 

Therefore, we would also expect it to be a valuable predictor for HM of FCH4 in our 

RFs.  

Incoming Photosynthetic Photon Flux Density (PPFD) was also a high-

ranking feature in the balanced, tidal, and non-tidal RFs. PPFD photon flux density of 

photosynthetically active radiation (PAR) measures the number of photons in the 

400- to 700-nm waveband per unit of time on a unit surface (Rabinowitz & Vogel, 

2009). PAR is required for photosynthesis and plant productivity, and higher PAR 

promotes plant growth. The RFs are likely learning the relationship between 

increased PAR and increased plant productivity and the relationship between plant 

productivity and CH4 emissions. Vegetated soils can exhibit elevated CH4 fluxes 

compared to non-vegetated soils because plants contribute accessible carbon substrate 

used by methanogens (Shahan et al., 2021; Bansal et al., 2020; Hatala et al., 2012; 

Reid et al., 2013; Rey-Sanchez et al., 2018). Seasonal variations in FCH4 at the 

highly vegetated sites in this study (MYB, TW1, TW4, TW5, SNE, DMG) move in 

concert with the growing season. Indeed, in the Delta, CH4 emissions are highest 

during the growing season when it is warm, the CH4-producing microbes are the 

most active, and plant productivity peaks as they deposit lots of organic matter into 
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the soil (Bhullar et al., 2013).  

Water table depth is firmly grounded in the literature as a control on FCH4, 

particularly at tidally influenced sites (Bhullar et al., 2013; Evans et al., 2021). The 

relationship between the water table depth and FCH4 is complicated and difficult to 

isolate, as many different factors in a wetland system can influence CH4 emissions. 

Several studies have found that CH4 ebullition can occur at tidal sites when 

hydrostatic pressure in the sediment is released during low tide (Keller & Stallard, 

1994; Schmid et al., 2017). Water table depth has also been shown to strongly shape 

the size and diversity of the CH4-producing microbe population at peatland (Tian et 

al., 2023).  Moore and Knowles (1989) found that CH4 evolution decreased 

logarithmically as the water table depth lowered, which is not unexpected as water-

table depth is linked to increased oxidizing conditions, resulting in reduced emissions 

from unsaturated soils (Grunfeld & Brix, 1999). Generally, when water table depth is 

high, wetland soils are saturated, anaerobic conditions ideal for methanogenesis 

persist, and more CH4 is available for emission (Evans et al., 2021; Peacock et al., 

2024). Fluctuations in water-table depth, therefore, can inhibit or promote FCH4 and 

influence the occurrence of HM.  For these reasons, we expected the water table 

depth parameter to be more beneficial for HM identification than it actually was. We 

hypothesized it would be particularly useful for the tidal RF. However, the water 

table depth was a mid-ranking feature in the balanced RF and tidal RF, which 
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suggests that while water table depth might influence overall FCH4 dynamics, it does 

not predict anomalously high CH4 emissions well.  

The valuable predictors identified by the balanced RF present an opportunity 

to examine further what drives HM of FCH4 and pose a question of whether or not 

the known influences on baseline FCH4 still apply to instances of extreme flux or if 

they are driven by different mechanisms entirely. Additionally, the predictors 

identified in this model present an opportunity for upscaling as they can be measured 

without EC towers. Therefore, if we were to compile data from weather stations and 

remote sensing for each of the predictors in the RF from a site without an EC tower, 

we could use a model with this new data to attempt to predict the occurrence of HM 

at a new site.  

 

RF classifiers provide a simple, data-driven approach to unraveling the 

complexities of what triggers HM of FCH4. The balanced RF presents a promising 

approach to HM prediction in wetland sites. HM predictability and a reliable near-

real-time predictive model would prove valuable to the SF Bay-Delta restoration 

projects and wetland managers. Identifying what causes these highly impactful but 

temporally rare emission events would allow managers to make decisions regarding 

wetland hydrology, such as flooding or replanting historic vegetation species to a 

wetland, with knowledge of how these actions would influence short-term CH4 
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balance at a site. Additionally, the upscaling potential of our model would be helpful 

for wetland managers who do not have EC data for their site, as they could use 

standard environmental parameters as model input and generate predictions for HM 

occurrence. Restored and managed wetlands are often considered significant C 

storage ecosystems within the year-to-decade timelines. Honing in on the HSHM of 

FCH4 and developing techniques to minimize these disproportionate emission 

instances provides a unique intervention method for managers on the timescale 

relevant to day-to-day human activities. Focusing on HSHM allows managers to 

prioritize their time and resources for high-impact CH4 emission prevention 

measures.  

The work presented here provides a strong case for the overall predictability 

of FCH4 HM presence/absence and upscaling using data-driven models. This study 

also illustrates the need for dataset balancing when working with inherently rare HM. 

Such FCH4 HM predictive models can also provide insight into what physical and 

biogeochemical characteristics of a wetland influence the occurrence of HM and 

provide valuable information for managers and future restoration work in the SF Bay-

Delta and beyond. Future work to improve upon the balanced RF presented in this 

study should focus on reducing the number of false positives flagged by the model, 

adjusting model thresholding for identifying minority classes in an imbalanced 

dataset, and extrapolating the HM prediction capabilities of RFs to more sophisticated 
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machine learning models that can handle the complicated pattern recognition needed 

to parse the many influences on CH4 cycling in wetlands. Future work could also 

include developing predictive HM models for different regions and types of wetlands 

using the best predictors identified here as upscaling input.   
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