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Abstract of the Dissertation

Non-Invasive Evaluation of Diet:

Devices and Algorithms

by

Haik Kalantarian

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Majid Sarrafzadeh, Chair

In 2008, medical costs associated with obesity were estimated to be over $147 billion

[cdd14], and over one-third of adults in the United States are considered obese. The av-

erage BMI (body mass index) has consistently increased over the last two decades, which

has been shown to be a contributor to risk of stroke, diabetes, certain cancers, heart

disease, and other conditions [cdd14]. Though many activity-monitoring systems have

been proposed [FMS98, FLK11, PPB12], little research has been conducted on quanti-

fying the volume of food consumption, which has been shown to correlate with weight

gain [SS85]. Though countless manual data collections have been proposed such as food

records and 24-hour recall, these approaches suffer from poor accuracy, high user burden,

and low compliance. Wireless health-monitoring technologies have the potential to pro-

mote healthy lifestyle behavior and address the ultimate goal of enabling better lifestyle

choices. This thesis explores the application of hardware, software, and algorithms to the

domain of food intake monitoring and medication adherence. Moreover, we propose sev-

eral new methods to improve the processing and segmentation of time-series data based

on our nutrition monitoring dataset.
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CHAPTER 1

A Survey of Nutrition Monitoring Technologies

In this chapter, we present a survey of different techniques for evaluating eating habits,

with applications to weight loss and preventative healthcare. We emphasize recent sensor-

based approaches to monitoring diet using techniques such as audio signal processing,

inertial sensing, image processing, and gesture recognition, while describing the major

advantages and disadvantages of each. We primarily emphasize non-invasive technologies

that could be developed into real-time wearable devices, rather than techniques whose

use is limited to laboratory settings. We then present the results of an online survey, in

which respondents rate and describe their impressions of various approaches.

1.1 Introduction

Billions of dollars have been invested worldwide to improve medical treatments, develop

pharmaceutical drugs, and mitigate the effects of various diseases. By comparison, rela-

tively little emphasis is placed on preventative healthcare. By ensuring that individuals

exercise regularly and eat a balanced diet, we can reduce their risk of various health risks

such as cancer, diabetes, and heart disease. Though public health measures have been

taken to encourage individuals to lead healthy lifestyles, quantifying diet and exercise has

generally remained an unaddressed challenge. Only very recently has accurate evaluation

of physical activity become a reality, as numerous non-invasive activity monitoring sys-

tems have entering the market such as FitBit, MisFit, and Jawbone. However, resources

for evaluating diet are trivial by comparison, as most techniques outside of academic

literature focus on manual record keeping. These methods are notoriously inaccurate,

inefficient, and present high levels of burden to individuals who simply fail to adhere to

the record keeping procedure for extended periods of time.
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Figure 1.1: Overview of techniques to monitor eating behavior.

In this chapter, we evaluate the potential of various approaches to dietary monitor-

ing, with respect to convenience, accuracy, and applicability to real-world environments.

We emphasize the application of technology and sensor-based solutions to the domain of

health monitoring, and evaluate various form factors including necklaces, watches, and

cameras, to provide a comprehensive survey of the prior art in the field. Though it

is not possible to cover every approach, we review most major techniques with an em-

phasis on works that can be applied to real-world environments rather than constrained

to laboratory settings. Several of these approaches are illustrated briefly in Figure 1.1.

Furthermore, we present the results of an online survey which evaluates individual per-

ceptions of some of the most promising techniques for nutrition monitoring in non-clinical

settings, including histograms of interest in various devices, and comments from individ-

uals with respect to the proposed ideas. Lastly, we summarize the different approaches

and directly compare them on various criteria.

The structure of this chapter is as follows. In Section II, we describe manual record-

keeping techniques for evaluation of eating behavior. In Section III, we provide an

overview of several promising audio-based approaches in which microphones are used

to capture eating sounds. In Section IV, we describe gesture-recognition approaches in-

cluding sensor-nodes and smartwatches. Section V presents some alternative approaches

using custom devices. In Section VI, we describe two approaches that monitor chew-
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ing and swallowing behavior using piezoelectric sensors. In Section VI, we describe the

methodology of our online survey, presenting results in Section VII followed by concluding

remarks in Section VIII.

1.2 Manual Record Keeping

Wearable nutrition monitoring devices are becoming a subject of interest in the research

community. However, the most pervasive techniques today are still manual record-keeping

approaches. While these techniques are simple and affordable, they are associated with

user burden and poor accuracy. We describe the major techniques below.

1.2.1 24-Hour Recall

One of the most simple and yet pervasive methods of monitoring dietary intake is the

multi-pass 24-hour dietary recall method, which is based on the data patients provide

at the end of a randomly selected day. Each individual gives an oral or written report

including the amount and type of food they have eaten during the day, which is used to

calculate total food intake. This approach measures food intake in a reasonably quan-

titative manner but with significant error because people don’t recall the exact amount

of food they have eaten [HOK88]. Experimental data shows that food intake is usually

reported with error and measurement variance also depends on the patient’s experience

with the system [BWS05].

1.2.2 Food Records

Food records generally are not impacted by the accuracy of a subject’s memory; they

typically require individual to make note of their eating habits during or immediately

after a meal. However, there are several problems with this approach. In cases where

assessment of a typical diet is the goal, this technique is not feasible because it has

been found that the necessity of completing a food record affects dietary choices. Other

concerns include patient compliance, and the difficulty that untrained individuals face

when accurately assessing portion size. For example, caloric density may vary based
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on cooking method and other factors that are not necessarily visually apparent [CB08].

Moreover, recording each meal manually can be tedious, and many individuals will be

unwilling to complete food records for extended periods of time.

1.2.3 Food-Frequency Questionnaire

A third method for manually assessing dietary intake is to use a food frequency question-

naire (FFQ), in which individuals specify their rate of consumption for various food items

over the long-term. Nutritional intake can subsequently be assessed by summing various

food types provided within the list [CB08]. This technique is inexpensive to administer

and insensitive to recent changes in diet. Furthermore, it is less time-consuming than food

records because it is not intended to be completed on a daily basis. However, FFQs are

typically inaccurate in comparison with other techniques. This is often a result of several

factors including incomplete lists of food, poor user compliance, errors in frequency, and

errors in serving size [PMH11].

1.2.4 Summary

Despite the pervasiveness of the previously outlined techniques, as well as the relative

simplicity, affordability, and ease of use, manual methods for assessing dietary intake

suffer from several drawbacks. These include extensive user burden, poor compliance,

low precision, and a lack of real-time user guidance [SSL09]. Below, we summarize the

advantages and disadvantages of these techniques.

Advantages:

• Simplicity: Users do not require training on the operation of custom hardware.

• Initial Cost: Manual record keeping methods do not require the purchase of any

expensive devices.

Disadvantages:

• Burden: Manual record-keeping can be tedious, and long-term compliance rates

are low.
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Figure 1.2: BodyScope: detecting swallow sounds using a headset.

• Accuracy: Individuals often do not accurately remember what they have eaten.

Moreover, they may deliberately misreport their eating habits.

1.3 Acoustic Methods

Audio-based methods are perhaps the most popular approaches for monitoring eating

habits. They general rely on the placement of microphones near the throat, which can

record chewing and swallowing sounds. Classifiers such as Support Vector Machines

are then used to distinguish between eating related activities such as chewing, drinking,

and swallowing food. Generally speaking, there are two primary challenges associated

with this approach. First, relatively robust classification techniques are necessary for

distinguishing between eating sounds and unrelated background sounds. Second, most

swallow sounds are contained within 400 Hz and 1000 Hz frequency bands [TK12]. This

frequency range was shown by Dr. Taniwaki et al. to be essential for distinguishing

between liquids, semiliquids, and solid foods citetaniwaki2012fast. The work by Dr.

Santamato et al. in [SPS09] analyzed the acoustic properties of swallow sounds for

semi-solids, semi-liquids, solids, and liquids, and found that the maximum frequencies

were associated with liquids, which ranged from 2281.3 Hz to 4244.0 Hz. Thus, effective

characterization of swallow sounds may require sample rates of at least 8.4 kHz based on

Shannon-Nyquist sampling theory. Very high speed data acquisition and transmission is

associated with significant power overhead, as shown by our prior work in [KAP15]. In

this section, we describe several of the most promising techniques.
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1.3.1 Headset Microphone

In 2011, Professor Koji Yatani described a system called BodyScope: a wearable solution

for activity recognition using audio signals [YT12]. This device consists of a Bluetooth

headset with an embedded microphone for recording throat noises, and the chestpiece of

a stethoscope for amplifying body signals to improve classification accuracy. The device

is worn such that it rests on the lower neck, with an earpiece pointed inward towards

the skin. A simplified visual of the scheme is shown in Figure 1.2. The microphone

was attached to a stethoscope chestpiece to filter external sounds that do not originate

from the neck. The system is capable of analyzing eating, drinking, speaking, coughing,

and eight other activities in a laboratory environment with 78.5% classification accu-

racy. In a real-time evaluation, a subset of four activities were recognized with 71.5%

accuracy. Classification was achieved using Support Vector Machines (SVM), using a

Radial Basis Function (RBF) kernel. Features were extracted from audio spectrograms,

which consist of a series of overlapping short-time Fourier transforms. These features in-

cluded Zero Crossing Rate, Total Spectrum Power, Subband Power, Brightness, Spectral

Rolloff, Spectral Flux, and Mel-Frequency Cepstral Coefficients (MFCCs). Results for

leave-one-sample-out cross validation are promising, given the large number of classes of

data. However, Leave-one-subject-out cross validations significantly reduces classification

accuracy, suggesting then need for individual calibration.

1.3.2 Integrated Ear-Canal Microphone

Several works have analyzed eating sounds using in-ear microphones [NK08][P12]. In

2012, Dr. Pabler et al. presented an audio-based approach for audio signals analysis

in order to detect swallowing sounds [P12]. The hardware device presents a hearing-aid

package with two integrated microphones acquiring data at approximately 11 kHz, along

with associated amplification and filtering. The operation is not purely real-time, but the

wearable device was used for data collection and a MATLAB model was used to perform

the classification among several different food types. Classification results were quite

promising; 8 classes of food were detected with an overall accuracy of 79% using Hidden

Markov Models, which were used to analyze both chewing and swallowing sounds. A
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significant novelty of this system was their use of a reference microphone placed outside

of the ear, in addition to the in-ear microphone. The ratio of signal energy from both

microphones is used to differentiate between external environmental sounds and those

related to eating.

1.3.3 Throat Microphone

In 2010, Professor Sazonov et al. proposed a technique for predicting food intake based on

audio signals acquired from a throat microphone with a frequency range of 20 Hz - 8000

Hz [SMS10]. The dataset used in experimental evaluation was substantial, containing a

total of 9966 swallows from 20 subjects. The IASUS throat microphone employed in the

study was placed over the laryngopharynx, in order to minimize the distance between

the microphone and the source of the swallow sound compared to microphones placed

in the ear. Using techniques based on the Mel Scale Fourier Spectrum, Wavelet-Packet

Decomposition, and Support Vector Machines, swallow events were identified with 84.7%

weighted accuracy despite the presence of various artifacts including respiration, speech,

and head movements.

1.3.4 Summary

Advantages:

• Scope: Audio-based techniques are often able to identify specific foods, rather than

eating events, with relatively high accuracy.

• Versatility: Many activities can be detected by analyzing audio signals, which

renders this system useful for a variety of applications such as exercise monitoring.

Disadvantages:

• Comfort: Many individuals would object to wearing a headset or custom earpiece

throughout the day.

• Battery Life: Higher sample rates are required for audio signal processing, com-

pared to inertial sensing.
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Figure 1.3: Sensor nodes used to identify gestures associated with eating behavior.

1.4 Gesture Recognition

Individuals generally make distinct and recognizable gestures with their arms as they

eat. Examples include: picking up a sandwich, raising a glass of water to their mouth,

scooping up food with a fork, or cutting a steak with a knife. Hardware devices mounted

on the arm or wrist with embedded inertial sensors such as accelerometers and gyroscopes

can recognize these gestures and infer eating activity. Unlike audio signals that must be

acquired using sample rates of up to 8 kHz, activity-recognition techniques use much lower

sample rates such as 100 Hz or below [AT08]. The power savings of this approach can be

significant, as transparency in wearables necessitates long-intervals between recharges, as

well as miniature designs with small batteries.

1.4.1 Custom Sensor Nodes

The work by Professor Amft et al. in [AT08] explored different methods for monitoring

food intake, among which was gesture recognition. In their experiments, they used sen-

sor modules including tri-axial gyroscopes, accelerometers, and compass-sensors to detect

four food-related gestures: cutting lasagna with a fork and knife, drinking from a glass,

eating soup with a spoon, and eating sliced bread with one hand. The sensors were at-

tached on a jacket in the lower and upper arm, as shown in Figure 1.3. In order to present

a realistic experimental procedure, subjects periodically performed other motions such

as reading a newspaper and making telephone calls. Most activities, with the exception
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of eating bread, were detected with high accuracy: 94% classification accuracy was ob-

tained based on 1020 recorded intake gestures. Despite the high results, the multitude of

sensors may be somewhat unwieldy for real-world situations; more practical realizations

of these schemes would probably have sensors in a single location. An example of such

an approach was presented by Dong et al. in [DHM09], in which the authors present a

bite-counter device shown to have a sensitivity of 91% by analyzing the rolling movement

of the wrist to detect biting behavior.

1.4.2 Smartwatch Platform

In [KS15b], Kalantarian et al. described a technique in which the smartwatch platform

is used for detection of medication intake, using the tri-axial accelerometers and gyro-

scopes embedded in the Samsung Galaxy Gear device. However, the proposed technique

addressed the issue of gesture recognition applied to the domain of medication adherence.

Nevertheless, it likely that many activity monitoring and gesture-recognition schemes will

use smartwatches in the coming years, rather than sensor nodes.

1.4.3 Smart Utensils

A third inertial-sensing approach for nutrition monitoring is the HapiFork [Lep15]: a

commercial product that incorporates inertial sensors into a “smart-fork” package. The

device can detect the movement of the hand to the mouth, and vibrates after detecting

that eating pace is too fast. Eating at the wrong pace has been associated with weight

gain, digestive problems, and gastric reflux. However, it is clear that the scope of this

technique is limited, because appropriate eating pace is dependent on the texture of the

food. Moreover, many foods are not eaten with a fork such as a sandwich or chips.

However, clearly the device is simple, unobtrusive, and is reported to have a battery life

of up to two weeks.

1.4.4 Summary

Advantages:
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• Comfort: A smart utensil or lightweight sensor mounted on the arm may be

sufficient for detection of many eating gestures, which is quite practical for day-

to-day use. This is particularly true of algorithms that operate on a smartwatch

device.

• Battery Life: Activity-recognition techniques do not require the high sample rates

that audio-based solutions require; they can potentially be powered for days using

a small coincell battery.

Disadvantages:

• Scope: Gesture recognition can provide only high-level information about eating

habits, with respect to general meal consumption and timing. Furthermore, it is

unclear if snacking with one hand, and eating “on the go” can be accurate detected

with a single sensor node.

1.5 Other Notable Approaches

1.5.1 Smart Tablecloth

A “smart tablecloth” was presented in 2015 by Bo Zhou et al. in [ZCS15]. The system

detects eating behavior on solid surfaces (such as tables), based on changes in the pressure

distribution of these tables during the eating process. The tablecloth was a matrix of

pressure sensors based on a carbon polymer sheet, which changes its electrical resistance

in response to electrical force. At the corners of the table cloth, force-sensitive resistors

(FSRs) are installed with the primary purpose of determining weight, rather than spatial

density. Features extracted from the FSRs, as well as the pressure-sensitive tablecloth,

are analyzed using classifiers such as decision trees to distinguish between various eating-

related actions such as stirring, scooping, and cutting.

Based on the ratio of different actions performed, the authors were able to distinguish

between four different meal types with high accuracy. Furthermore, changes in the average

pressure values from the data stream were associated with a decrease in the remaining

amount of food on the table, which was used to estimate food weight with an error of
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Figure 1.4: eButton: Using a camera to take snapshots of food and estimate composition,

mass, and calories.

approximately 16.62%.

Advantages:

• Convenience: The proposed technique can estimate food composition and weight

without requiring a cumbersome wearable device.

Disadvantages:

• Scope: Most individuals do not eat at the same surface throughout the day. More-

over, intermittent snacking and hand-held foods may not be detected using the

proposed technique as they are often not consumed while seated at a table. There-

fore, only a limited subset of eating activities can be detected using this approach.

1.5.2 E-Button

The E-Button, shown in Figure 1.4, was presented in 2014 by Professor Mingui Sun at

the University of Pittsburgh [SBM14]. In this work, Sun et al. propose a chest-mounted

button with an embedded camera that among other applications, can be applied to the

domain of dietary monitoring. The button is attached to a shirt using a pin or pair of disk

magnets, and contains an ARM Cortex processor, two wide-angle cameras, a UV sensor

for distinguishing between indoor and outdoor environments, inertial sensors, proximity

sensors, a barometer, and a GPS. The acquired data is transmitted to a smartphone using

Bluetooth or WiFi.
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The E-Button operates by taking photos at a preset rate, thereby recording the entire

eating process. Using image processing techniques, the utensils (such as a plate or bowl)

are detected. Subsequently, the food items are identified based on color, texture, and

other heuristics. Using this information and additional DSP techniques, volume figures

can be calculated for each food, which are converted to a Calorie count using a public

domain database that equates volume and food type to Calories. Evaluation of 100 foods

was conducted, and the error was approximately 30% for 85% of the foods, which were

regularly shaped. However, irregularly shaped food was not detected with high accuracy.

Advantages:

• Comfort: The E-Button is a small pin worn on a shirt, whose dimensions are

limited by the battery size.

• Scope: The E-Button can identify specific foods, rather than report meal events.

• Versatility: The E-Button can do much more than monitor meals. The device

can assist the visually impaired, monitor adults with dementia, and study sedentary

behavior using a multitude of sensors.

Disadvantages:

• Battery Life: The battery life is not described in the work, though it is quite likely

to be poor given the high rate of data capture and frequent wireless transmission.

Constant recharging may be an impediment to the user.

• Accuracy: 30% error for the majority of foods is not particularly impressive, as

the standard deviation of an individual’s daily caloric intake is generally not that

high.

1.6 Chewing and Swallowing Motion

Several works attempt to characterize eating habits based on the motion of the skin during

chewing and swallowing events, which we describe in this section. The primary challenge

in the implementation of these techniques is comfort, as an inertial sensor (usually a

piezoelectric sensor) is required to be contact with the skin during the meal.
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Figure 1.5: Wearsens necklace

1.6.1 WearSens

The WearSens necklace, shown in Figure 1.5, was first presented by Kalantarian et al. in

[KAS14a], and later by Alshurafa et al. in [AKP15]. The device consists of a pendant-

style necklace, with the pendant resting in the lower part of the neck. While an individual

eats various foods, chews and swallows produce vibrations in the skin of the lower neck.

Different foods can produce different vibrations, based on the unique properties of each

food. A piezoelectric sensor, mounted upon the pendant, is attached such that it is in

contact with the skin of the neck while the subject eats. This sensor produces a voltage

in response to mechanical stress, and is thus able to represent the food being consumed

in the output signal, which is sampled at a rate of 20 Hz by a Bluetooth LE-enabled

microcontroller. A mobile aggregator extracts various mathematical and statistical fea-

tures from these signals, and applies classifiers such as Support Vector Machines and

RandomForest to distinguish between a variety of different foods. The system is able to

distinguish between water, a sandwich, and chips with an F-Measure of over 90%, while

running for several days using a simple CR2032 coin-cell battery. The system includes an

Android application that aggregates sensor data and informs the user of deficiencies in

their diet based on quantity consumed, timing, eating pace, and skipped meals. The lim-

itations of this proposed scheme are user acceptance: impressions of device comfort and

social acceptance have not been reported. This is particularly important as the necklace

must be sufficiently tight to maintain skin contact during meals.
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1.6.2 Jaw-Mounted Strain Sensor

In 2012, Professor Sazonov et al. proposed a method for monitoring chewing using a

piezoelectric strain gauge placed on the lower jaw, right below the ear [SF12]. The

strain gauge is similar to that of the previously described WearSens device [KAS14a],

but the placement is different; the sensor is used to detect chewing rather than swallows.

As the user chews, vibrations cause voltage fluctuations at the terminals of the strain

gauge, which are then processed and amplified using a custom circuit. Support vector

machines are subsequently used to identify meal events, successfully distinguishing them

from rest events and talking using a linear kernel function. However, as in the case of

other devices that use inertial sensors to detect chewing and swallowing, the comfort and

social acceptance aspects of this approach must be more thoroughly investigated.

1.6.3 Summary

Advantages:

• Battery Life: The piezoelectric sensor is passive and does not need to be powered.

It can be sampled at rates of 20 Hz or less, which is a small fraction of the rates

required by audio-based techniques.

Disadvantages:

• Comfort: The placement of the device must ensure that the sensor is in contact

with the skin at all times.

• Practicality: Further work is needed to validate the accuracy, social acceptance,

and comfort in real-world conditions; experiments were conducted in a laboratory

setting.

1.7 A Survey of Individual Preferences: Methodology

What makes a device or technique successful in real-world applications, rather than an

academic exercise? There are many factors, ranging from objective to subjective. An
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example of an objective factor is accuracy: the ability of the device to measure or charac-

terize eating behavior. Scope is can also be significant: can the device detect individual

chews, classify between individual foods, or simply reports meal timing or eating pace?

Issues such as reliability and battery life are also significant for long-term user adherence.

However, even the most reliable and accurate techniques will fail to produce meaning-

ful health outcomes if user adherence is low. Thus, effective wearables must be sleek,

comfortable, and attractive without drawing unwanted attention. However, quantifying

these factors is challenging, particularly because many of the proposed devices do not

have publically available working prototypes. Therefore, in an attempt to analyze sub-

jective factors such as comfort, convenience, and real-world feasibility, we conducted an

online survey to evaluate user interest in various devices based on a brief description of

major techniques.

Nine devices were presented to the survey subjects, which represented the most

promising techniques across all the different categories described in this survey. Each

device was accompanied by an image and a brief description of how it is worn and used.

The system outcomes were also clearly defined in each case (ie. what the device was

specifically reporting to the user). After the description and photo of each device, sub-

jects were asked the following questions:

• Describe your overall impression of the device.

Where “1” represents “I would never wear this device” and “5” represents “I would

be eager to use this device.”

• Describe your willingness to use this device on public.

Where “1” represents “I would never wear this or use this around others.” and “5”

represents “I would have no problem wearing / using this around others.”

• How useful are the device outputs?

Where “1” represents “Not useful at all” and “5” represents “Very useful.”

Finally, users were given an opportunity to provide comments on their overall impres-

sions of these devices, though this field was not required to complete the survey. Lastly,

basic demographic information was provided. Subjects provided their age range, gender,
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Figure 1.6: The age ranges of survey respondents.

and the approximate location that they live in, as these factors could influence their

preferences.

1.8 Survey Results

1.8.1 Demographic Information

A total of 63 subjects participated in the online survey. 57.1% of respondents identified

as female, 39.7% identified as male, and the remainder did not disclose. 17.5% of subjects

were under the age of 18, with the majority (55.6%) between the ages of 18 and 25. An

additional 22.2% of subjects were between 26-35, with only 4.8% of participants reporting

their age as over 35. The age ranges of the respondents are shown in Figure 1.6. Overall,

73% of respondents claimed to be residents of the United States or Canada, with the next

predominant demographic being Europe (20.6%).

1.8.2 Detailed Results

Detailed survey results are shown in Figure 1.7. 9 devices are compared on the basis of

the respondent’s overall impressions, their comfort levels wearing or using the device in

public, and their assessment of the usefulness of the system outputs. These attributes

were rated on a scale of 1 to 5. The highest rated overall device was the smartwatch,

which received a rating of 3.13 out of 5. The next highest-scoring devices were the smart
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table and smart utensil, at 2.67 and 2.27, respectively. On the other end of the spectrum,

the audio headset received the lowest overall score at 1.75, with the smart necklace and

jaw-mounted sensor receiving ratings of 1.83 and 1.87, respectively.

The social acceptance of each device appeared to be strongly correlated with the

respondent’s overall impressions, as the rankings of both criteria produced the same

order of devices. The smartwatch was the device respondents were most comfortable

wearing by a considerable margin, receiving a score of 3.86 out of 5, with the smart-

utensil receiving the next highest rating at 2.65 out of 5. The least accepted devices were

the audio headset and smart necklace, at 1.46 and 1.52, respectively.

The last evaluation criteria was system outputs, which were described in the survey

alongside photos of each device. The motivation behind this rating is that some devices

claim to count calories, others aim to identify foods, and others simply recognize eating

behavior. Though it possible that some survey respondents may not assess the utility of

system outputs independently of their overall impressions of the device, the results were

nevertheless interesting. In this category, the smartwatch only received the 4th highest

score (2.46 out of 5) due to the described limitations of this platform. The highest-rated

devices were the wearable camera, smart utensil, and audio headset, with ratings of 2.94,

2.65, and 2.49, respectively. The lowest ratings were received by the jaw-mounted sensor

and audio earpiece, at 2.21 and 2.27 respectively.

1.8.3 Analysis

A few general conclusions can be drawn from the survey results. First, several survey

comments expressed privacy concerns with respect to the mounted camera. One respon-

dent stated, “Privacy and being self-conscious could be an issue” while another said “I

have zero desire to wear a camera due to overall greater personal privacy concerns”. With

respect to the audio earpiece, one respondent stated, “ Could easily be hacked to use as

recording devices for surveillance purposes”.

Furthermore, it seems custom devices are generally less preferred to established hard-

ware solutions, as the smartwatch was the overwhelmingly favorite choice in most cate-

gories. Though custom devices have a novelty factor that may appeal to some, it appears
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Figure 1.7: Detailed survey results.
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that inconspicuous approaches were preferred by most respondents. The smartwatch plat-

form has both inertial sensors and a microphone, and may therefore be a viable platform

for recognition of eating behavior as a sensor fusion model can be applied to gestures

and swallow sounds for improved accuracy. However, very few works employ the use of

smartwatches for dietary-monitoring.

Another observation is that user interest in these devices appears to be more closely

associated with the comfort and appearance of the devices, rather than the nutrition-

monitoring capabilities.

1.9 Conclusion

In this chapter, we provide a survey of the most promising technologies for non-invasive

detection of eating behavior. The devices cover a broad spectrum of techniques ranging

from smart table surfaces, wearable cameras, jaw motion sensors, and wearable micro-

phones. We then present results from an online survey, which suggest that a smartwatch

or smart-utensil are the preferred platforms for monitoring diet, while the smart necklace

and audio-headset are the least-preferred approaches.
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CHAPTER 2

Necklace

Prior research has shown a correlation between poor dietary habits and countless negative

health outcomes such as heart disease, diabetes, and certain cancers. Automatic monitor-

ing of food intake in an unobtrusive, wearable form-factor can encourage healthy dietary

choices by enabling individuals to regulate their eating habits. This chapter presents an

objective comparison of two methods for digital dietary intake monitoring: piezoelectric

swallow sensing by means of a smart necklace which monitors vibrations in the neck, and

audio-based detection using a throat microphone.

2.1 Introduction

Healthy eating can reduce the risk of heart disease, stroke, diabetes, and several can-

cers. In 2008, medical costs associated with obesity were estimated at $147 billion, and

the Centers for Disease Control (CDC) believes that the best areas for treatment and

prevention are monitoring behavior and environment settings [cdd14]. Wireless technolo-

gies and health-related wearable devices have the potential to enable healthier lifestyle

choices. These devices and systems are designed to encourage behavior modifications

needed to reduce the risk of obesity and obesity-related diseases [DYN10].

Studies have shown that the number of swallows recorded during a day strongly

correlate with weight gain on the following day [SS85]. This provides motivation for

the analysis of food intake patterns based on volume. Though many wearable devices

have been designed for monitoring activity [FMS98][FLK11][PPB12], automatically and

accurately inferring eating durations and patterns in a non-intrusive manner has been for

the most part an unaddressed challenge.

Prior works have attempted to characterize eating habits through various means.
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Though many methods have been proposed, two of the more promising techniques include

inertial-systems using piezoelectric sensors, as well as audio-based detection using throat

microphones. In piezoelectric-based techniques, piezoelectric sensors, which produce a

voltage in response to mechanical stress, can be used to detect movement in the skin

on the lower-neck associated with swallowing. This approach differs from microphones

based on piezoelectric technology: our system does not detect sound waves, instead

assessing motion in the skin that results from swallows and chewing. Alternatively, audio-

based techniques typically place a small microphone near the jaw or neck, and record

eating noises such as chewing and swallowing. These sounds can be disambiguated from

other background noises using classifiers and other signal-processing techniques. These

approaches differ significantly from a perspective of comfort, practicality, convenience,

power usage, and detection accuracy.

The primary novelties of our work are the description of a system in which a piezo-

electric sensor is placed in the lower part of the neck for detecting swallow motions, and

a comparison of this technique with audio-based monitoring using datasets derived from

the same experiments. This provides a much more objective comparison of these two

technologies than otherwise possible by comparing results from separate works using dif-

ferent datasets and methodologies. Furthermore, we provide an evaluation of the power

overhead of these techniques as a function of sample rate, computational overhead, and

Bluetooth connection interval.

2.2 Hardware Architecture

2.2.1 Audio-based Approach

In order to analyze the volume and consistency of a meal, audio samples are acquired

while an individual is eating, using a commercial throat microphone placed freely in the

lower part of the neck. A primary advantage of this method is comfort, as unlike the

piezoelectric sensor, it is not necessary to have skin contact at all times using this ap-

proach. The microphone was resting loosely around the throat near the lower collarbone.

The particular microphone used in this study is the Hypario Flexible Throat Mic Micro-

phone Covert Acoustic Tube Earpiece Headset, which is connected directly to the mobile
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phone’s audio input port using a 3.5mm male audio cable, and picks up audio signals

from swallows, through the air. Commercially available audio-recording technology was

used to acquire the audio recordings from the microphone.

2.2.2 Piezo-Based Approach
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Figure 2.1: Systems architecture of the piezoelectric sensor-based necklace.

A piezoelectric sensor, sometimes known as a vibration sensor, produces a voltage when

subjected to physical strain. By placing a piezoelectric sensor against the throat, the

motion of the skin during a swallow is represented in the output of the sensor, when

sampled at frequencies as low as 5 Hz. The NIMON necklace, presented by Kalantarian et

al. in [KAS14b], describes a non-invasive, wearable device capable of detecting swallows

by placement of a vibration sensor near the lower trachea. During a swallow event,

muscular contractions cause skin motion, which pushes the vibration sensor away from the

body and towards the fabric of the necklace, generating a unique output voltage pattern.

The skin motion during a swallow is quite small and requires very high sensitivity to

detect. Therefore, the long and thin design of a piezoelectric strip very well suited for

this application, in which the necklace clamps the sensor to the skin and causes it to bend

slightly during a swallow.

Raw data is sampled from the vibration sensor at a rate of 20 Hz, and a windowing

algorithm computes the standard deviation of the values in each window (typically sized

20). Subsequently, the peaks are identified using on a thresholding technique, which

typically correspond with swallows. The various steps in data processing are shown in

Figure 2.2, with the raw value visible at the top. The noticeable dips in the waveform
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generally correspond with swallows. After initial data acquisition, the data is smoothed

using a moving-average low-pass filter with a span of 5, to reduce the impact of noise.

Subsequently, a sliding window of length 9, corresponding with .45 seconds of data, is

applied with a maximum overlap (shifted one point at a time). These numbers were

experimentally determined to be optimal for preserving the critical features of the wave-

form based on simulations. The original implementation of the NIMON necklace used

Bluetooth LE to transmit all raw data to an Android phone for processing; the algorithm

does not run on the embedded hardware, which is powered by a small lithium-polymer

battery.

The piezoelectric sensors can be used for more advanced classification activities, be-

yond counting swallows. Because the piezoelectric sensor is capable of detecting motions

beyond swallows, the detection of consistent chewing between swallows is a reliable in-

dicator that a solid food is being consumed, while several swallows, with no chewing

between them, may indicate that a liquid is being consumed. Generally speaking, the

foods with different textures produce different patterns of vibrations in the neck, as a

result of the varying amounts of jaw strength necessary for chewing, as well as varying

speeds at which foods are eaten, chewed, and swallowed. Analysis of the statistical fea-

tures associated with the raw data sampled from the piezoelectric sensor can reveal the

food being consumed, within a limited subset.

2.3 Algorithms

2.3.1 Audio Feature Extraction and Classification

The Munich open Speech and Music Interpretation by Large Space Extraction toolkit,

known as openSMILE [EWS10], is a feature extraction tool intended for producing large

audio feature sets. This tool is capable of various audio signal processing operations such

as applying window functions, FFT, FIR filterbanks, autocorrelation, and cepstrum. In

addition to these techniques, openSMILE is capable of extracting various speech related

features and statistical features. A partial list of extracted features is shown in Table

3.1 and 3.2, respectively. Other audio-based features include frame energy, intensity,

auditory spectra, zero crossing rate, and voice quality. After data is collected from a
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Table 2.1: Partial List of openSMILE Speech Features.

Speech-Related Features

Signal Energy Loudness Mel/Bark/Octave Spectra

MFCC PLP-CC Pitch

Voice Quality Formants LPC

Line Spectral Pairs Spectral Shape CENS and CHROMA

Table 2.2: Partial List of openSMILE Statistical Features.

Speech-Related Features

Means Extremes Moments

Segments Samples Peaks

Zero Crossings Quadratic Regression Percentiles

Duration Onset DCT Coefficient

variety of subjects eating several foods, feature selection tools can be used to identify

strong features that are accurate predictors of swallows and bites for various foods, while

reducing the dimensionality by eliminating redundant or weakly correlated features.

A custom script concatenates all recorded audio clips from throat microphone experi-

ments into one large audio file, and splits them into smaller clips of length n, based on the

input parameters. This allows the extraction of eating clips without a-priori knowledge of

when the swallows take place, for experimental variety. The feature extraction tool then

extracts a large feature set of over 6500 attributes per clip, which provides the classifier

with enough information to distinguish between the different categories. The Informa-

tionGain Attribute Evaluation tool then reduces the feature sets by selecting those which

have minimum redundancy and maximum correlation to the defined classifier outcomes.
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IV. ALGORITHMS

A. Spectrogram Generation 
An algorithm was developed to classify the four types of 

collected audio recordings. This was achieved by generating a 
spectrogram corresponding with each audio clip. A 
spectrogram is a visual representation of the frequency 
spectrum over time, and the spectrograms of most sounds have 
several distinguishing features. A spectrogram is typically 
generated using a short-time Fourier transform (STFT) with a 
fixed window size, the squared magnitude of which yields the 
spectrogram. 

For spectrogram generation, a Hamming window was 
applied of length 1024, and an FFT length of 4ms (64 
samples) based on extracted half-second audio samples 
centered on the swallow. No overlap was used between 
neighboring segments. Figure 3 shows spectrograms for audio 
clips corresponding with sandwich swallows, sandwich chews, 
water swallows, and no action. The distinguishing attributes of 
these audio recordings are clearly visible. For example, water 
swallows contain more high frequency components than 
sandwich swallows and are shorter in duration. Sandwich 
chewing features primarily low-frequency components, while 
the state of neither chewing nor swallowing reveals relatively 
unchanging frequency distributions over time, with few high 
frequency components.  

B. Feature Extraction 

�

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21  𝑎22 𝑎23 𝑎2𝑛
⋮ 𝑎32 𝑎33 𝑎3𝑛

𝑎𝑚1  𝑎𝑚2 𝑎𝑚3 𝑎𝑚𝑛

� 

Figure 4 – The spectrogram of each window can be represented by a matrix 
with dimensions m x n, where each column represents the frequency range 
and each row represents the duration of the FFT window. The magnitude of 
each element corresponds with the amplitude of the frequency bin at that 
particular time. The spectrogram enables analysis of changes in frequency 
distribution over time.  

Figure 4 shows a matrix representation of a spectrogram, 
which is used to extract distinguishing features for each audio 
clip, to be used for classification. By extracting features across 
all frequency bands, the classification tool is able to determine 
which frequencies are most characteristic of different types of 
swallows. Based on this notation, Table 1 shows a list of some 
of the most important features.  

C. Classification 
Several machine learning algorithms were applied to the 

extracted feature set to classify between the four categories of: 
chewing (sandwich), swallow (sandwich), swallow (water), 
and nothing. These algorithms include Rotation Forest, 
Random Forest, Bayesian Network Classifier, and K-Star. 

TABLE I – EXTRACTED FEATURES 

Extracted Feature Description 

∑ ∑ 𝑎𝑥𝑦𝑛
𝑦=1

𝑚
𝑥=1

𝑚 ∗ 𝑛
The average value of amplitude within a sample 
window. 

�
∑ ∑ (𝑎𝑥𝑦 − µ)𝑛

𝑦=1
𝑚
𝑥=1

𝑚 ∗ 𝑛

The standard deviation of amplitude within a 
sample window.  

∑ 𝑎𝑧𝑥𝑛
𝑥=1

𝑛
𝑓𝑜𝑟 {𝑧 | 1 ≤ 𝑧 ≤ 𝑚} 

Average of the various frequency bins. Each 
frequency range is extracted separately as an 
independent feature.  

�∑ (𝑎𝑧𝑥 − µ)𝑛
𝑥=1

𝑛
 

𝑓𝑜𝑟 {𝑧 | 1 ≤ 𝑧 ≤ 𝑚} 

The standard deviation of a frequency range over 
a period of time, for every frequency bin.  

Table 1 – This table shows a list of the most important features extracted from 
the spectrogram as well as their accompanying descriptions.  

TABLE II – EXPERIMENTAL RESULTS 

Predicted Class 

Chew Nothing Sandwich 
Swallow 

Water 
Swallow 

  A
ct

ua
l C

la
ss

 

Chew 39 3 2 0 
Nothing 6 44 0 0 

Sandwich 
Swallow 

4 0 34 7 

Water 
Swallow 

0 5 4 41 

V. RESULTS 

A. Classification Accuracy 
Table II shows the accuracy of swallow detection for all 

four scenarios. The average recall and precision are both 
0.836, using the Bayesian Network Classifier. The resulting F-
Measure is therefore 0.836.  

Figure 5 – This figure provides a comparison of the accuracies of various 
classifiers, based on their precision, recall, and f-measure.  
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Table 2.3: Selected features extracted from the audio spectrogram.

2.3.2 Piezoelectric Feature Extraction and Classification
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Figure 2.2: Signal processing flow used by the WearSens necklace to identify swallows.

A spectrogram is a visual representation of the frequency spectrum over time, and is an

ideal representation for extracting distinguishing features in many classification problems.

A spectrogram is typically generated using a short-time Fourier transform (STFT) with

a fixed window size, the squared magnitude of which yields the spectrogram. Funda-

mentally, a spectrogram allows easy identification of changes in the frequency spectrum

of a signal, over time. This is significant because eating certain foods produce vibra-

tions in different frequency ranges, based on the texture of the food and the amount of

chewing involved. A spectrogram can provide a relatively straightforward representation

of changes in the frequency distribution over time as subjects eat, which can reveal the

distinguishing characteristics of various foods.

25



Table 2.4: Feature Table for Piezoelectric Sensor Feature Extraction

Mean Geometric Mean Std. Dev.

Skewness Mean of Standardized Z-Scores IQR

Kurtosis Harmonic Mean Rank Corr.

Range Median Absolute Deviation Partial Corr.

The spectrogram is calculated from the time signal x(t), as shown in Equation 2.1

using the short-time Fourier transform (STFT).

STFT{x(t)} ≡ X(n, ω) =
∞∑

t=−∞

x[t]ω[t− n]e−jωt. (2.1)

x(t) is multiplied by a window function for a short period of time. The data is divided

into frames Fi, which overlap. Each frame is Fourier transformed, and the result is added

to a matrix that records the magnitude and phase of each point in time and frequency.

A Hamming window was used of varying lengths of w = 32, 64, and 128, with an FFT

length of nfft = 32, 64, and 128, and an of overlap of 25%, 50%, 75%, and no overlap.

We set the dynamics range to 50dB. Each spectrogram is defined by a matrix P ∈ Rm×k,

where m is the number of bins in the time domain, and k is the number of bins in the

frequency domain. P represents the power spectral density.

Once a spectrogram is generated for each swallow, we found an optimal division of

the spectrogram images into 14 bins along the frequency domain and another 16 bins

along the time domain, for a total of 30 bins. We then calculate statistical features

on each bin, to generate a feature vector Vi for each swallow. Table 2.4 lists the main

features that were calculated for each bin, which generates a total of s = 360 features per

spectrogram swallow. The motivation for the use of these features is based on the work

by Alshurafa et al. in [AKP15], which demonstrated the superiority of the spectrogram-

based statistical approach over alternatives such as matching pursuit, and scalogram-

based Gabor wavelets.
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2.4 Experimental Procedure

2.4.1 Piezoelectric Sensor Data Collection

Two experiments were performed to validate the efficacy of our algorithm in accurately

detecting swallows and recognizing eating patterns using statistical features collected

from a spectrogram. To prevent bias in the classification results between each class label

in the training set, we randomly select an equal number of swallows across categories.

We also perform leave-one-out cross validation and report the results.

In the first experiment data was collected on ten subjects, two female and eight male

with ages ranging between 20 and 40 years of age. We placed the necklace around their

neck so that the sensor was loosely touching the skin. The necklace tightness was adjusted

such that each subject was comfortable wearing the device. We placed the necklace

centered between their right and left clavicle right above the sternum and asked the

subject to eat the following foods, one at a time: a chicken salad or tuna salad sandwich,

a small handful of Pringles potato chips, and a cup of 9oz water. No specific instructions

were given about the manner in which the food was consumed, though subjects were

under observation during the data collection process which may have increased the pace

of eating beyond what would otherwise be typical.

In the second experiment we increased the number of subjects to twenty, eight female

and twelve male, ages 20 to 40 years. The subjects each consumed a meat-like veggie

patty, a handful of mixed nuts, and two small Snickers chocolate bars. We ensured that

the portion sizes were identical from one subject to another. The subjects were asked

to push a button every time they swallowed; this helped us further annotate the data in

order to provide truth labels for the dataset.

2.4.2 Audio Data Collection

Our data collection includes data from 20 individuals using a throat microphone placed

near the bottom of the neck. The moments at which food was swallowed were indicated

by pressing a push button which added an annotation to the associated log file. In

the original data collection, ten subjects were instructed to eat two identical sandwiches
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(3-inch and 6-inch), and drink two cups of water (9 fl. oz and 18 fl. oz), and eat a

small handful (approximately 3) of Pringles chips. They were also instructed not to eat,

swallow, or speak for a brief period in order to acquire signals corresponding to silence, or

background noise. Subsequently, 189 audio samples were extracted from the recordings.

The next phase of experimentation employed twenty subjects, who were given a small

portion of nuts, chocolate, a vegetarian meat-substitute patty. The foods were consumed

sequentially, in that order. Over 50 additional samples were manually extracted from

this experiment, though some data was corrupted. These recordings formed the basis of

the algorithm design and experimental evaluation. For evaluation of classification results,

leave-one-out cross validation was used.

The data collection took place in a lab environment; people can be faintly heard

speaking in the background, and the microphone occasionally recorded doors closing and

nearby footsteps. In most audio classification works, ambient noises can interfere with the

signal and decrease classification accuracy. This issue is partially rectified by placing the

throat microphone in the lower part of the neck. This microphone placement emphasizes

swallow sounds, as they are in much closer proximity to the device than ambient noises.

Furthermore, most commercial throat microphones contain active circuitry for filtering

out these ambient signals. These factors make throat microphones particularly well-

suited for the task of recognizing eating behavior from chew and swallow sounds. Our

approach for detecting ingestion, despite the presence of background noises, is similar to

the evaluation conducted by Kalantarian et al. in [KS15a]. The experiments presented in

this chapter suggested that spectrogram-based feature extraction techniques are relatively

resilient against the ambient noises, as the frequency bands associated with external

sounds are typically not selected features by the classifier models and therefore do not

significantly affect the classification results.
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TABLE II – EXPERIMENTAL RESULTS 

 

 Predicted Class 

 
Chew Nothing 

Sandwich 

Swallow 

Water 

Swallow 

  
A

ct
u

al
 C

la
ss

 

Chew 39 3 2 0 

Nothing 6 44 0 0 

Sandwich 

Swallow 
4 0 34 7 

Water 

Swallow 
0 5 4 41 

I. RESULTS 

A. Classification Accuracy 

Table II shows the accuracy of swallow detection for all four scenarios. The average recall and precision are both 

0.836, using the Bayesian Network Classifier. The resulting F-Measure is therefore 0.836.  

 

 
Figure 1 – This figure provides a comparison of the accuracies of various classifiers, based on their precision, recall, and f-measure.  
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Figure 2.3: Comparison of the accuracies of various classifiers for the throat microphone.

2.5 Evaluation

Table 2.5: Audio: Confusion Matrix (Random Forest) using a 1-second window

Predicted Outcome

Swallow Type Water Sandwich Chips Recall

Water 43 7 0 86%

Sandwich 6 44 0 88%

Chips 0 0 50 100%

Precision 87.7% 86.3% 100%

Table 2.6: Audio: Confusion Matrix (Random Forest) using a 1-second window.

Predicted Outcome

Swallow Type Nuts Chocolate Patty Recall

Nuts 39 6 5 78.0%

Chocolate 0 49 1 98.0%

Patty 4 1 45 90.0%

Precision 90.6% 87.5% 88.2%
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Table 2.7: Piezoelectric Sensor: Confusion Matrix (Random Forest).

Predicted Outcome

Swallow Type Water Sandwich Chips Recall

Water 43 3 4 86.0%

Sandwich 2 37 11 74.0%

Chips 5 12 33 66.0%

Precision 86.0% 71.1% 68.7%

Table 2.8: Piezoelectric Sensor: Confusion Matrix (Random Forest).

Predicted Outcome

Swallow Type Nuts Chocolate Patty Recall

Nuts 35 11 4 70.0%

Chocolate 5 40 5 80.0%

Patty 2 4 44 88.0%

Precision 83.3% 72.7% 83.0%

2.5.1 Audio-Based Classification Results

Table 2.5 shows the accuracy of acoustic swallow detection for three food types: water,

sandwich, and chips using 1-second samples. Chips in particular had the highest classifi-

cation accuracy, with a recall and precision of 100%, based on 50 samples. The precision

and recall of water was lower, at 87.7% and 86%, respectively. This is partially because

of the automated method of dividing the water sample clips. Because drinking water has

no chewing, and very little information between swallows, it can be difficult to classify an

audio clip that happens to be taken between swallows. Table 3.3 shows the classification

accuracy of nuts, chocolate, and the veggie-patty. Of note are the poor results for nuts,

with a recall of 78.0%.

Because classification was among four foods, rather than binary classification, results

are quite promising. However, it is clear that the algorithm may not scale well if tested on

a larger number of food types (ie. 50-100). Therefore, it is desirable for future systems

to create very broad categories based on highly generalizable features. For example,
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the work by Amft et al. in [Amf10] describes a scheme which generalizes food into three

significant clusters of food: “wet and loud,” “dry and loud,” and “soft and quiet.” Further

research is necessary to determine typical nutritional qualities associated with these types

of foods.

2.5.2 Piezoelectric-Based Classification Results

According to our classification results, using spectrogram-based features on a signal from

a piezoelectric sensor can distinguish between liquid and solid swallows with high accu-

racy using the Random Forest Classifier (with n=100 trees), which yielded the optimal

results for all three experiments. Best results were achieved using a window size of 32,

an FFT length of 32, and an overlap of 50%. Generally, it was observed that the Ran-

dom Forest Classifier consistently outperforms other well-known classifiers, even when

distinguishing between solids, achieving an F-measure of 75.29% in the first experiment

(water, sandwich, chips) and 79.44% in the second (nuts, chocolate, patty).

The RandomForest classifier [LW02] is an ensemble-learning decision tree classifier

that, unlike most other tree-based classifiers which split each node based on the best

subset of features, instead uses the best subset of predictors randomly chosen at that

node. This unique property of the RandomForest classifier has been shown to make it

relatively robust to overfitting, and has compared favorably against other classifiers such

as support vector machines and neural-network classifiers. A more detailed investigation

of the properties of this classifier can be found in the work by Leo Breiman in [Bre01].

The Bayesian Network and kNN classifier resulted in a 72.6% and 65.4% F-measure,

respectively. Table 2.8 provides the confusion matrix for the Random Forest Classifier for

the first experiment, while Table 2.7 shows results for the second. Though results using

the piezoelectric sensor were generally strong, especially in light of the very low sample

rate of 20Hz (compared to 44000 Hz for the microphone), audio-based classification has

higher accuracy. However, approach this comes at the expense of computational and

power overhead.
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2.6 Energy Modeling Methods

Table 2.9: A List of System Components Used in Evaluation

Hardware Components (NIMON Necklace) Description

Nordic nRF8002 Bluetooth 4.0 Module

LIS3DH Accelerometer Accelerometer

MSP430G2744 Microcontroller

CR2032 Coin-Cell Battery for powering device

To realize the intended goal of minimizing burden, it is desirable for wearable devices to

remain powered for weeks, or months, without interruption. Required nightly charging or

frequent coin-cell battery replacement can be considered an addition burden to the user,

which is likely to lower long-term compliance rates. Therefore, modern wearable devices

are carefully designed to minimize power usage, and run for days or even months. For

example, the Misfit Shine activity monitor claims a battery life of four months [misa].

Other wearables devices such as the Jawbone UP24 claim their devices can sustain seven

days of continuous use [Jaw]. Another important drawback of wearable devices with high

power requirements are their reliance on large batteries, which may impact the comfort,

convenience, and aesthetic appearance of the device. Therefore, it is necessary for wear-

able devices to carefully factor energy efficiency in their design. This is particularly true

in the case of nutrition monitoring devices which are typically mounted in the throat or

jaw area.

We now discuss a comparison of power consumption for both schemes. Table 2.9

presents the hardware components used for power evaluation of the devices. Note that

the original microcontroller board, the Arduino-based RFDuino, has been substituted for

an MSP430 variant for the superior simulation environment and embedded low-power

architecture. The MSP430 has 5 different power modes: Active Mode, and Low Power

mode (LP) 1-4. Active mode is used when executing algorithms, while the low power

modes supply a clock signal to various peripherals. LP3 disables the CPU, MCLK, and

SMCLK. Note that MCLK is the main system clock of the MSP430, used by the CPU.

SMCLK is the sub-main clock used by other peripherals such as timers. To conserve
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energy, the device is configured to alternate between Active Mode and LP3. This can be

seen in Figure 2.8; the device briefly enters Active Mode to acquire, process, and transmit

data, returning to LPM3 immediately thereafter to conserve energy and maximize battery

life.

The selected Bluetooth transceiver is the Nordic nRF8002, commonly used in sev-

eral commercial wearables including the Misfit Shine. Power evaluation of the Bluetooth

Transceiver was provided by Nordic Semiconductor’s nRFGo Studio software (version

1.17), which simulates power demands and battery lifetime based on many different pa-

rameters such as data size, encryption, connection intervals, advertising intervals, and

transmit strength. Real-time power debugging of the MSP430 microcontroller was pro-

vided by the EnergyTrace++ technology in Texas Instruments Code Composer Studio

(CCS) Version 6.0, which provides real-time information about processor state and power

consumption. The data in the following sections corresponds with the piezoelectric-based

designs unless otherwise specified. However, most of the results can be generalized to draw

conclusions between these two schemes. For example, both techniques require sampling,

buffering, and transmission. Specific to the audio-based approach is the FFT algorithm,

for which we provide an analysis.

2.7 Power Evaluation

Equation 2.2 shows a representation of the energy needed to acquire a sample from the

piezoelectric sensor via the on-chip ADC, process the data, and transmit via Bluetooth 4.0

to mobile phone. Equation 2.3 shows the power consumption of the system (P) in terms

of the sample rate and the energy required to acquire, process, and transmit a sample,

which are the major sources of power loss in both the audio-based and piezoelectric-based

systems.

En = Eadc + Eproc + Etx (2.2)

P =

f∑
a=1

[Eadc + Eproc + Etx] =

f∑
a=1

En (2.3)

33



2.7.1 Sample Rate, Window Size, and Power

 
 
 
1 second LOO 
 
Random forest of 10 trees, each constructed while considering 13 random features. 
 
Correctly Classified Instances         236               78.6667 % 
Incorrectly Classified Instances        64               21.3333 % 
Total Number of Instances              300      
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.7       0.072      0.66      0.7       0.68       0.873    celery 
                 0.9       0.036      0.833     0.9       0.865      0.988    chocolate 
                 0.68      0.048      0.739     0.68      0.708      0.93     nuts 
                 0.7       0.048      0.745     0.7       0.722      0.94     patty 
                 0.94      0.036      0.839     0.94      0.887      0.989    sandwich 
                 0.8       0.016      0.909     0.8       0.851      0.984    water 
Weighted Avg.    0.787     0.043      0.788     0.787     0.785      0.95  
 
  a  b  c  d  e  f   <-- classified as 
 35  2  6  6  0  1 |  a = celery 
  4 45  1  0  0  0 |  b = chocolate 
  6  5 34  5  0  0 |  c = nuts 
  8  2  5 35  0  0 |  d = patty 
  0  0  0  0 47  3 |  e = sandwich 
  0  0  0  1  9 40 |  f = water 
 
10 seconds 
Random forest of 10 trees, each constructed while considering 13 random features. 
Correctly Classified Instances         224               74.6667 % 
Incorrectly Classified Instances        76               25.3333 % 
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.52      0.072      0.591     0.52      0.553      0.877    celery 
                 0.74      0.08       0.649     0.74      0.692      0.932    chocolate 
                 0.54      0.068      0.614     0.54      0.574      0.887    nuts 
                 0.7       0.084      0.625     0.7       0.66       0.938    patty 
                 1         0          1         1         1          1        sandwich 

68.00% 70.00% 72.00% 74.00% 76.00% 78.00% 80.00%

1 Second

10 Seconds

30 Seconds

F-Measure Recall Precision

Figure 2.4: Effect of window size on classification accuracy (audio).

Table 2.9 shows the relationship between sample rate and power, at several different

window sizes. Note that the window size refers to how many samples a given value

acquired from the piezoelectric sensor is compared against, to calculate the variance of

the data. Recall that the sample rate is associated with the frequency at which samples

are acquired from the piezoelectric sensor, buffered locally, and processed. Therefore, a

high sample rate not only incurs local processing overhead based on the implementation

of the swallow detection algorithm, but also directly relates to the usage of the on-

chip Analog-Digital converter of the MSP430. Table 2.10 shows similar numbers for the

case when data processing is offloaded to the mobile phone. In this case, the device

simply acquires raw data and transmits it immediately, and the contributions to the

reported power are AD conversion and transmission. This table shows that increasing

the sample rate between 1 Hz to 32 Hz has a quite limited effect on power usage, since

the AD converter is in fact designed for significantly higher sample rates. In comparison

with Table 2.9, we conclude that the high sample rate consumes more power largely by

increasing the number of data points that must be processed.

Table 2.9 also shows the relationship between window size and power, at several

different sample rates. It should be noted that the window size is associated with the

piezoelectric-based algorithm only, in our evaluation. It refers to the size of the sliding

average window used in the peak detection algorithm. A key observation is that increasing

the window size does not have a substantial effect on power usage, for low sample rates
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[KAP15]. The NIMON necklace has been tested at sample rates of 10 Hz and 20 Hz,

with window sizes between 4 and 10 samples. The window size appears to be a significant

contributor to low device lifetime only at very high sample rates. Also, note that in Table

2.10, offloading the processing from the necklace to the smart phone decouples the window

size parameter from the current usage of the device.

2.7.2 Power vs. Connection Interval

Power results for various connection intervals are shown in Table 2.10. These numbers

assume a fixed bandwidth based on data acquisition at 20 Hz. Therefore, higher connec-

tion intervals also have higher payloads. Results show that average power ranges from 1.2

mW at a connection interval of 50ms, to 0.026mW at a connection interval of 3 seconds.

Compared to the extra .01 mW for performing swallow detection locally, it is clear this

is more optimal to run detection algorithms locally for anything responsive enough to

be considered real time user feedback (10 seconds or less). Clearly, the connection inter-

val is a significant contributor to overall power dissipation, and this should be increased

whenever possible.

2.7.3 Energy Evaluation of Fourier-Based Algorithms

0.00%
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90.00%
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1 FFT/sec 16 FFT/sec 64 FFT/sec 128 FFT/sec

Figure 2.5: Percentage of time the MSP430 spent in various modes, as a result of 16-point

FFT operations performed at different rates.
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FFT / Second Mean Power Min PowMax Power
1 0.02 0.01 0.03
16 0.13 0.12 0.23
64 0.50 0.48 0.52
128 0.64 0.52 0.68
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Figure 2.6: Power dissipation of the microcontroller when 16-point FFT operations are

performed at various rates.

In this section, we briefly cover the device lifetime challenges using acoustic sensors. In

[AKT09], Amft et al. were able to recognize chewing with high precision using a sample

rate of 44kHz, which is quite high for an embedded application. This is especially the

case when compared to the approach of the piezoelectric necklace in which sample rates

as low as 10 Hz have been validated. Though clearly, a 44 kHz audio signal will have

more information for classification than a much smaller sample rate, the implications

of battery life will be substantial. In another work by Amft et al. in [ASL05], audio

data was also acquired at 44 kHz and processed with a 512-point FFT. However, prior

works [BPB92][HDG88] have shown spectral energy from potato chips to be primarily

between 0-10kHz, with highest amplitude frequency ranges between 1 and 2 kHz. Based

on Nyquist-Shannon sampling theory, this conservative estimate would require a sample

rate of 4 kHz. Though this is well within the specifications of the MSP430 ADC unit, it

far exceeds the sample rate of 10-20Hz, as required by the vibration sensor. The overhead

of acquiring and transmitting up to 400x more data, not to mention the computational

overhead of the FFT in comparison to the simple windowing algorithm described in this

chapter, makes the vibration sensor a far better choice.

For evaluation, a 16-point FFT algorithm was implemented on the MSP430 microcon-

troller. The power debugging did not evaluate the impact of high-sample ADC units; we

instead measured the power usage of the FFT algorithm itself. The sampling, buffering

of results, and transmission would incur significant additional overhead. In a continuous
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signal processing application such as this, the FFT algorithm must be run periodically

to analyze frequency domain features of incoming data. Table 2.6 shows results for four

different FFT rates (1, 16, 64, and 128). For example, an FFT rate of 16 represents

an operating mode in which a 16-point FFT is evaluated 16 times per second (therefore

processing 256 samples per second). The system was designed such that the MSP430

microcontroller would immediately enter LPM3 (low power mode 3) to conserve energy

between FFT operations. The table shows that average power is quite high for high FFT

rates such as 128 (corresponding to 2048 samples/second, or a sample rate of 2kHz); mean

power approached 0.64 mW, without considering the additional overhead of sampling at

2 kHz, buffering the results, and transmitting to mobile phone. Table 2.5 shows that as

the frequency of FFT operations increases, the MSP430 microcontroller spends a higher

percentage of its time in Active Mode, in which power is not conserved. At the rate

of 128 FFTs/second, the device spends all of its time in Active Mode, and 55% of its

time performing a floating point add operation. This suggests that the microcontroller

is unable to perform FFT operations at the requested rate, since it should enter LPM3

after completion. At this rate, the power dissipation is over ten times greater than that

of a vibration-sensor based system with a sample rate of 8 Hz and a window size of 20,

as shown in Table 2.9.

2.8 Conclusion

In this chapter, we provide an analysis of two emerging techniques for monitoring eating

habits in consumer electronics applications: using piezoelectric sensors placed in the

bottom of the neck, and throat microphones for analysis of audio signals associated with

the ingestion of food. Results suggest that audio-based classification has somewhat higher

accuracy, particularly for dry foods such as chips and nuts. However, we show that the

audio-based approach incurs a power overhead approximately ten times greater than the

vibration-sensor system, which may have broad implications with respect to device form

factor, user acceptance and comfort.
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Figure 2.7: Major features for audio-based classification using the openSMILE toolkit,

for audio-based classification.

A. Power (mW) vs. Time (seconds) 

 

B. Power Mode Transitions in Algorithm Flow 

 

Figure 2.8: State transitions of the MSP430 microcontroller, which occur on an interrupt

callback. in LPM3, all clocks besides ACLK (necessary for the timer) are disabled.
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Figure 2.9: Relationship between window size, sample rate, and mean current drawn on

MSP430 mcu with on-board swallow detection.
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Figure 2.10: Relationship between window size, sample rate, and mean current drawn on

MSP430 mcu when swallow detection is offloaded to the mobile phone.

Table 2.10: Average Transmit Power for a Fixed Bandwidth (20 Hz) at 3.7V

Tconn (ms) Payload (bytes) Avg Current (µA) Avg Power (µW)

50 6 328.37 1214.97

100 12 260.70 964.59

200 24 195.66 723.94

300 36 99.98 369.92

500 60 41.98 155.32

1000 120 19.90 73.62

3000 360 7.18 26.56
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CHAPTER 3

Smartwatch

In recent years, smartwatches have emerged as a viable platform for a variety of medical

and health-related applications. In addition to the benefits of a stable hardware platform,

these devices have a significant advantage over other wrist-worn devices, in that user

acceptance of watches are higher than other custom hardware solutions. In this chapter,

we describe signal-processing techniques for identification of chews and swallows using

a smartwatch device’s built-in microphone. Moreover, we conduct a survey to evaluate

the potential of the smartwatch as a platform for monitoring nutrition. The focus of this

chapter is to analyze the overall applicability of a smartwatch-based system for food-

intake monitoring. Evaluation results confirm the efficacy of our technique; classification

was performed between apple and potato chip bites, water swallows, talking, and ambient

noise, with an F-Measure of 94.5% based on 250 collected samples.

3.1 Introduction

There is little doubt that obesity is associated with various negative health outcomes

such as an increased risk for stroke, diabetes, various cancers, heart disease, and other

conditions. In 2008, medical costs associated with obesity were estimated to exceed

$147 billion, with over one-third of adults in the United States estimated to be obese

[cdd14]. The two major contributors to weight gain are an inactive lifestyle and poor

diet. Though the former has been addressed by many wearable devices in recent years

both in research and the consumer electronics field, few works exist on automatic detec-

tion of dietary habits in an inconspicuous form-factor [FMS98][FLK11][PPB12]. Instead,

characterization of an individual’s eating habits is possible through manual record keeping

such as food diaries, 24-hour recalls, and food frequency questionnaires. However, these

approaches suffer from low accuracy, high user burden, and low rates of long-term com-

40



pliance. Wireless health-monitoring technologies have the potential to promote healthy

behavior and address the ultimate goal of enabling better lifestyle choices.

In recent years, several electronic devices have been proposed for monitoring dietary

habits. However, most works attempt to characterize eating from patterns in chewing

and swallow counts, and very few proposed attempt to identify the nutritive properties

of the foods themselves. Therefore, a fundamental question in the field of electronic

food monitoring is the validity of chew and swallow counts as a heuristic for estimation

of Caloric intake. A recent work by Fontana et al. [FHS14] addresses this issue by

comparing several different techniques for estimation of Caloric intake: weighed food

records (gold standard), diet diaries, and electronic sensor-based measurements of chews

and swallows. Though the study was conducted under constrained conditions, the results

suggest that chew and swallow counts may be a promising alternative to manual self-

reporting techniques.

While many audio-based nutrition monitors are novel from a perspective of algorith-

mic techniques, they generally propose custom hardware solutions or bulky non-standard

equipment which are of limited use outside of clinical environments. The primary chal-

lenge of monitoring a subject’s eating habits is creating a system that provides passive

monitoring of behavior, presenting a low level of user burden and providing no compro-

mises on comfort and appearance: even the most accurate techniques have very limited

scope if they do not encourage repeated use from users.

Many prior works address the problem of nutrition monitoring by processing audio

signals associated with ingestion. Typically, these systems use a throat microphone for

recognizing deglutition (swallows), or using time-frequency decomposition techniques,

such as Wavelet Packet Decomposition (WPD) or Spectrogram Analysis to extract dis-

tinctive features, and either classify between different food groups or recognize anomalies

in swallow patterns. While many of these works are novel from a perspective of algorith-

mic techniques, they generally propose custom hardware solutions or bulky non-standard

equipment which are of limited use outside of clinical environments. The primary chal-

lenge of monitoring a subject’s eating habits is creating a system that provides passive

monitoring of behavior, presenting a low level of user burden and providing no compro-

mises on comfort and appearance: even the most accurate techniques have very limited
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with cloud 
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Figure 3.1: High level architecture of the smartwatch system.

scope if they do not encourage repeated use from users.

Recently, smartwatches have emerged as a new platform that provide several promis-

ing applications such as wrist-worn activity monitoring, heart rate tracking, and even

stress measurement. Watch usage is well established and has a high level of social ac-

ceptance, as confirmed not only by our personal studies but by their ubiquity in day-

to-day life. Furthermore, the smartwatch platform provides many useful services that

can collectively improve user adherence rates, rather than specialized devices with just

one application that may fail to sustain a user’s interest. These devices contain a multi-

tude of sensors including but not limited to: a microphone, camera, accelerometer, and

gyroscope. Due to the ubiquity of watches, this technology can be used for various wire-

less health monitoring applications discretely, with low user burden. Furthermore, from a

user-acceptance standpoint, these systems have a clear advantage over other proposed so-

lutions based on custom hardware, which may require that these bulky and non-standard

devices be worn in unconventional ways. Clearly, the multitude of sensors available on the

smartwatch platform, wireless connectivity, as well as the comfort and social acceptance

of the form-factor warrant further study into their potential applications in the medical
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Figure 3.2: Samsung Galaxy Gear phone with Android 4.2.1.

and health-monitoring domain.

This chapter explores the idea of tracking eating habits using a custom Android

application on the smartwatch platform. Though identifying eating-related gestures using

wrist-worn devices is a viable application of the watch, the focus of our work is to explore

the idea of using audio to detect eating behavior based on bites, rather than swallows as

other works have done. A high-level system architecture is presented in Figure 3.1. The

first step is audio-based acquisition of eating-related sounds such as bites, acquired from

the microphone integrated within the smartwatch. After data acquisition, the audio is

processed using various classifiers to identify the sound and infer the associated activity.

In addition, we conducted two surveys in order to evaluate the potential of the smart-

watch platform for nutrition monitoring. The surveys were conducted online, with 221

respondents in the first and 55 in the second. In the first survey, we asked subjects various

questions about their general habits with respect to watches. For example, subjects were

asked which hand they prefer to wear a watch, and whether they were willing to wear

a watch on the opposite hand on which they were accustomed. In the second survey,

respondents provided information about their opinion of various wearable form factors.

55 subjects rated their receptiveness to smartwatches, necklace-based wearables, custom

wrist-worn hardware, and smart glasses.

3.2 System Architecture

Our proposed system does not require any custom hardware: the Android application

runs on Samsung Galaxy Gear smartwatch running Android 4.2.1. This device, shown in

Figure 3.2, features an 800 MHz ARM-based processor, 512 MB of RAM, and a 320x320
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Figure 3.3: Spectrogram for five swallows using a Hamming window.

pixel 1.6 inch display. The device also supports transfer of data using the Bluetooth

LE protocol, and can be configured to access the Internet using Bluetooth tethering with

compatible smartphones. Once the on-board algorithm detects that a bite has been taken,

a web-service call is made to store the data in a database for access by caregivers. In

the case of algorithm inaccuracies and errors, subjects are permitted to manually make

modifications and add annotations to the data.

Data was recorded using the Samsung Galaxy Gear microphone in MPEG-4 Part 14

(m4a) format at a rate of 96 kbps, as prior research has shown that the spectral energy

for many common foods is between 0-10 kHz, with highest amplitude ranges between 1

and 2 kHz for water [BPB92][HDG88]. Of note is the availability of additional sensors

on the Samsung Gear platform, including accelerometers and gyroscopes, which can be

used for improved classification accuracy in future work, based on hand and wrist motion

associated with eating behavior.

The Samsung Galaxy Gear has a 315 mAh capacity battery. This is significant be-

cause audio recording and transmission is a relatively energy-intensive task that may

compromise battery life. This is partially mitigated by the decision to acquire data at a

low sample rate. A more comprehensive evaluation is provided in Section 6.

3.3 Algorithm Design

3.3.1 Frequency-Domain Evaluation: Liquids

We begin our algorithm analysis with the objective of detecting liquid ingestion using a

smartwatch. Because we have a-priori knowledge about the kind of data we would like

to identify, we could pre-process the recorded data before classification, as we describe in
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Figure 3.5: Post-processing of the audio signal corresponding with water can dramatically

improve signal-to-noise ratio.

this section.

Figure 3.3 shows a spectrogram corresponding with an audio clip consisting of five

water swallows acquired from the smartwatch. A spectrogram is a visual representa-

tion of the frequency spectrum over time, and is an ideal representation for extracting

distinguishing features in many classification problems. A spectrogram is typically gener-

ated using a short-time Fourier transform (STFT) with a fixed window size, the squared

magnitude of which yields the spectrogram. Fundamentally, a spectrogram allows easy

identification of changes in the frequency spectrum of a signal, over time. Figure 3.4

shows a more detailed comparison between a brief interval of noise (1s) and a water swal-

low. Generally speaking, the data of interest is between 600 Hz and 1 kHz, as shown by

the deviation between the signals at this time, and confirmed by the spectrogram shown

in Figure 3.3. We conclude that analysis of this frequency range is critical for classifi-

cation of liquid swallows. This observation is confirmed by Figure 3.5, which shows the

transformation of an audio signal corresponding with ten swallows. The top waveform is
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the original, while the bottom is the post-processed filter output in which noise is sub-

stantially reduced. This is achieved by band-pass filtering the audio data with cutoffs of

600 Hz and 1 kHz and a rolloff of 48 dB- meaning the amplitude decreases by 48 dB for

each octave outside the filter threshold.

While the resulting signal clearly shows the swallows, marked by pronounced peaks,

this technique is not very generalizable to other foods besides water, because the data is

pre-processed. In the case of the frequency distribution of a one second window around

the initial bite of a potato chip, compared to an equal period of chewing, the amplitude of

the bite signal is greater from 600 Hz to 4 kHz. However, the pattern is not as distinctive

as for liquids, and may certainly vary between individuals with different eating styles.

Therefore, a simplistic filter-approach may not be sufficient for foods with less uniformity.

More significantly, removing a frequency band to simplify the recognition of one food

may also remove crucial information necessary for identifying another, in systems which

attempt to classify between very different food types. Therefore, a more generalizable

approach is described in the next subsection.

3.3.2 Generalizable Feature Extraction

Detection of eating habits differs significantly from that of liquid consumption, as the

smartwatch will not necessarily be near the throat during a swallow. When an individual

is drinking water, the swallows happen almost immediately after each sip. However,

chewing food takes a significant amount of time. Typically, the smartwatch would be

brought toward the mouth during the first bite, after which it would be lowered oncemore

during the chewing process. Once the individual swallows the food, it is difficult to predict

the location of the microphone. Therefore, in these cases we attempt to identify when

an individual bites into a food item rather than chewing. The smartwatch platform is

particularly well suited for this application because the microphone will be nearest to the

sound source during the times at which the signal is of interest. The proposed model

must be flexible to identify biting and swallowing for many different foods and drinks,

between individuals with varying eating styles.

The Munich open Speech and Music Interpretation by Large Space Extraction toolkit,

known as openSMILE [EWS10], is a feature extraction tool intended for producing large
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audio feature sets. This tool is capable of various audio signal processing operations such

as applying window functions, FFT, FIR filterbanks, autocorrelation, and cepstrum. In

addition to these techniques, openSMILE is capable of extracting various speech related

features and statistical features. A partial list of extracted features is shown in Table

3.1 and 3.2, respectively. More ”low-level” audio-based features include frame energy,

intensity, auditory spectra, zero crossing rate, and voice quality. Therefore, the capa-

bilities of this tool are significantly more extensive than that of the spectrogram based

approach described earlier, which relied only on statistical features from time-frequency

decomposition. After data is collected from a variety of subjects eating several foods,

feature selection tools can be used to identify strong features that are accurate predictors

of swallows and bites for various foods, while reducing the dimensionality by eliminating

redundant or weakly correlated features.

A microphone on a Smartwatch can either constantly record data, or be configured to

record audio based on motion-based triggers indicative of eating-related gestures, in order

to save battery life. The recorded audio is stored on a buffer in Smartwatch memory with

storage for 4096 samples, corresponding with 0.25 seconds of data. Once the buffer is

full, features are extracted using openSMILE (elaborated upon in subsequent sections),

and the audio clip is classified divided into several distinct categories corresponding with

the various foods the system has been trained to detect. A counter is incremented corre-

sponding with the food type detected, which is necessary for long-term record keeping. In

the event that eating behavior is detected, subsequent detection is disabled for a period

of two seconds to prevent duplicate records caused by the same event. The algorithm is

presented in Figure 1, with β = 4096 samples and τ = 2 seconds.

To minimize the overlap between neighboring segments for performance reasons, the

last 50ms of buffer data are cleared after each classification activity, and classification

resumes when the buffer is full once again (not shown).
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3.4 Experimental Procedure

3.4.1 Data Collection for Recognition

A total of ten subjects were used for data collection, with ages ranging from 22 to 35

in order to develop a model for identifying swallows. The subjects included 8 males and

two females. Each subject was asked to eat the following foods, in order: three apple

slices with at least two bites per slice, one 8 oz. glass of room-temperature water, and

one bag of potato chips. The moments at which the food was bitten into (or swallowed

as in the case of the water) were manually annotated by the subject, though these events

were clearly audible on the resulting waveform. The hand on which the smartwatch was

worn was used to pick up the food items and water, which happened to be the left hand

for all subjects.

Data collection took place in a laboratory environment which had a minimal level of

background noise including talking and doors opening, most of which is barely audible

in the recording. However, pre-recorded background noise from a public shopping square

was combined with the original data, to produce clips that more accurately reflect a

real-world use case. It was assumed that the background noise should be quieter than

the original waveforms because in our experiments, the watch was inches away from the

mouth at the time of the extracted audio clips. Regardless of the food or activity type,

each sample was exactly 0.25 seconds in length, and the peak of the wave amplitude was

not necessary centered in the window. In some cases, such as during the biting of an

apple, one quarter of a second was not sufficient to capture the entire bite. Therefore,

the relevant information was partially truncated. Subjects were then asked to read a

brief passage from a Wikipedia article, with no particular instruction about the rate at

which they should read. The data was then automatically split into 0.25 second audio

fragments using an audio processing program. Therefore, some samples were collected

between phrases, and were relatively silent. Other fragments had periods of silence as

well as vocalizations.

In order to evaluate if the classifier can distinguish between background noise and

other classes of data, we added a separate “noise” class that we present in our classification

results. However, the background noise used was relatively uniform: a 50 second clip of
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cafeteria noise consisting of movement, background chatter, and silverware noise. The

clip was divided into 50 quarter-second samples. The environment was busy, and the

noises were quite pronounced in comparison to the relatively quiet sounds associated

with the other classes.

3.4.2 Smartwatch Feedback: A Survey

Before the system development phase, we had several important questions about how

individuals feel about smartwatches. As described previously, a wearable device must

have both high accuracy, and high rates of user adherence for the subject to reach his

or her intended goals. Furthermore, we proposed several questions about which hand a

subject prefers to wear a watch. For example, our experimental evaluation requires that

subjects wear a watch on the same hand with which they typically eat food such as chips

or raise a glass of water. Though preliminary results suggest that data from individuals

who pick up food with the hand on which they do not wear the watch can still be useful

for classification, a thorough evaluation is left to a future work.

An online survey was conducted with a total of 221 responses in which various ques-

tions were posed with respect to how individuals feel about wearing a smartwatch. The

participants in the study were anonymous, but represented a diverse set of ages, cultures,

and genders. The study was originally conducted on January 28th for an internal data

collection on smartwatch usage applied to the domain of medication adherence, but we

found the majority of the questions were also applicable to food-intake monitoring as

most questions pertained to smartwatch usage in general. This survey consisted of a

total of 9 questions.

A separate online survey, with a total of 55 subjects, was later conducted to specif-

ically investigate the attitude of individuals towards wearables in various form-factors.

Specifically, subjects were asked to rate their receptiveness to smartwatch-based systems,

custom wrist worn devices such as FitBit, necklace-based wearables, and smart glasses.

Survey results and discussion can be found in Section 6.
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3.5 Results and Discussion

3.5.1 Audio Classification

Results for classification between apples, chips, water, speaking, and ambient noise are

shown in Table 3.3 based on 50 unprocessed samples collected from each of these foods,

using the Random Forest classifier with 6555 extracted features from each sample. The

Random Forest classifier consisted of 100 trees, each constructed using 13 random fea-

tures, and was validated using leave-one-subject-out cross validation. Classifiers are gen-

erally evaluated on the basis of precision, recall, and F-measure. These terms are defined

in Equation 3.1, where tp is the number of true positives, and fp is the number of false

positives. The weighted average precision, recall, and F-Measure from our experimental

results were 94.7%, 94.4%, and 94.4% respectively. In this case, the weighted average

refers to the accuracy of the classifier across all different food groups, weighted accord-

ing to the number of samples in each group. The majority of classification errors were

between apples and potato chips. It should also be noted that while the ambient noise

was disambiguated from the other classes in every sample, the ambient noise data was all

recorded at the same location and therefore quite similar. Therefore, further work must

be done to validate the ability of the proposed algorithm to recognize eating in real-world

environments.

Precision =
tp

tp + fp

Recall =
tp

tp + fn

F −Measure = 2 · Precision ·Recall
Precision+Recall

(3.1)

Several other classifiers were also evaluated, which many of which provided strong

results using leave-one-subject-out cross-validation. The full comparison of classifiers is

presented in Figure 3.6. Though the RandomForest classifier produced the best results,

the SimpleLogistic technique produced comparable results. The J48 decision tree classifier

also performed well, with a precision, recall, and F-measure of 91.56%, 91.6%, and 91.5%

respectively.
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RandomForest Leave one Out 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.9       0.053      0.849     0.9       0.874      0.986    apple 

                 0.86      0.033      0.896     0.86      0.878      0.985    chips 

                 0.98      0          1         0.98      0.99       0.999    water 

                 1         0          1         1         1          1        talk 

Weighted Avg.    0.935     0.022      0.936     0.935     0.935      0.993 

 

=== Confusion Matrix === 

 

  a  b  c  d   <-- classified as 

 45  5  0  0 |  a = apple 

  7 43  0  0 |  b = chips 

  1  0 49  0 |  c = water 

0 0  0 50 |  d = talk 

 

NaiveBayes 

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.9       0.053      0.849     0.9       0.874      0.986    apple 

                 0.86      0.033      0.896     0.86      0.878      0.985    chips 

                 0.98      0          1         0.98      0.99       0.999    water 

                 1         0          1         1         1          1        talk 

Weighted Avg.    0.935     0.022      0.936     0.935     0.935      0.993 

 

86.00% 87.00% 88.00% 89.00% 90.00% 91.00% 92.00% 93.00% 94.00% 95.00% 96.00%

RandomForest

SimpleLogistic

NaiveBayes

J48 Tree

F-Measure Recall Precision

Figure 3.6: Precision, recall, and F-measure are common measures of classification accu-

racy.

3.5.2 Feature Extraction

From the 6555 extracted features, the Correlation Feature Selection (CFS) Subset Eval-

uator was used to evaluate 991,139 subsets of features. This is necessary to select the

features best associated with the desired classifier outcomes. This subset evaluator con-

siders both the individual predictive ability of features, as well as the redundancy between

them, and found the merit of the best subset to be 0.948. The search was stale after 5

node expansions. In other words, the subset evaluator aggregates the best features lin-

early beginning with those that show the highest correlation, and terminates after five

consecutive subsets show no improvement in classification accuracy.

The top ten features are listed in Table 6.1. The first feature is the skewness of the

logarithmic signal energy, in which skewness is defined as the asymmetry of the variable

in comparison with a normal probability distribution [PR11]. More formally, skewness is

defined in below, where µi is the ith central moment about the mean.

γ1 =
µ3

µ2
3/2

(3.2)

For a probability density function f(x), the first moment about the mean is always

zero (with s = 1), while the second moment is the variance. The third central moment is

defined as skewness such that a distribution skewed to the right has a positive value, while

one shifted towards the left has a negative skewness. The second most highly correlated
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Table 3.1: Partial List of openSMILE Speech Features from [smi]

Speech-Related Features

Signal Energy Loudness Mel/Bark/Octave Spectra

MFCC PLP-CC Pitch

Voice Quality Formants LPC

Line Spectral Pairs Spectral Shape CENS and CHROMA

Table 3.2: Partial List of openSMILE Statistical Features from [smi]

Speech-Related Features

Means Extremes Moments

Segments Samples Peaks

Zero Crossings Quadratic Regression Percentiles

Duration Onset DCT Coefficient

feature is the mean peak distribution, which is defined as the mean distance between

peaks for the logarithmic representation of the signal energy. The third feature is the

number of non-zero values of the normalized log-energy signal.

Features 4-10, preceded by MFCC, are Mel-Frequency Cepstral Coefficients, which

represent the spectral characteristics of the signal. A cepstrum is the result of the In-

verse Fourier Transform of the logarithm of a signal spectrum. Mel-Frequency Cepstral

Coefficients are based on the mel scale, which is a perpetual scale of pitches judged by

listeners to be equidistant from one another [OS87]. The relationship between the fre-

quency and mel scales is logarithmic, and can defined by the following formula (though

other variations exist) [OS87]:

MEL(f) = 2595 · log10(1 +
f

700
) (3.3)

However, the human ear can discern differences in frequency at low frequency ranges

with a much higher resolution than at higher ranges, due to the physical properties of

the cochlea. Therefore, a triangular Mel Filterbank is applied to the Discrete Fourier

Transform of the original signal. Next, a dot product is computed between the filterbank

and vector P(k), which yields N intermediary coefficients- one for each triangle window
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function in the filterbank. Because humans do not perceive loudness on a linear scale,

the logarithm is calculated for all N coefficients. Finally, the Discrete Cosine Transform

(DCT) of the log powers is applied in order to decorrelate the energies of the overlapping

filterbank energies. The resulting coefficients are used to extract statistical features as

shown in Table 6.1.

3.5.3 Battery Life Implications

To realize the intended goal of minimizing burden, it is desirable for wearable devices to

remain powered for weeks, or months, without interruption. Required nightly charging

can be considered a burden to the user, which is undesirable because high user burden

is typically associated with low compliance. Furthermore, energy-intensive applications

can drain the battery completely, long before the user has an opportunity to recharge the

device. Subsequently, the user will either uninstall the application or be unable to make

proper use of it. Therefore, many activity monitoring devices have carefully factored

power-efficiency into their design. Examples include the Misfit Shine activity monitor

claims a battery life of four months [misa]. Other wearables devices such as the Jawbone

UP24 claim their devices can sustain seven days of continuous use [Jaw].

Power-efficiency is a matter of particular concern in audio signal-processing applica-

tions such as the nutrition monitoring approach described in this chapter. Audio signal

processing typically requires that the signal be sampled at the Nyquist frequency, which

is rather high compared to approaches that rely on inertial sensors such as accelerometers

and gyroscopes. The Samsung Galaxy Gear has a 315 mAh capacity battery, which is

significantly smaller than that of most mobile phones. In this section, we briefly describe

our evaluations of the battery life implications of recording audio using the Samsung

Galaxy Gear.

We evaluated the battery life of the smartwatch in three different use cases. In the

first case, the screen of the phone was off and the watch was idle and unused. In the

second case, the watch was idle but the screen was on. In the third case, the screen was

on and the watch was recording audio at the same rate (96kbps) as required for our audio

analysis algorithms. Therefore, it can be inferred that the overhead of audio recording

is the difference between the screen on, and the screen on while recording. Our results
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Figure 3.7: A graph of battery life for three different use cases is shown above.

are shown in Figure 3.7. From these results, we can draw several conclusions. First, it is

evident that the Smartwatch in a static mode with no computation and the screen off,

consumes very little energy. Secondly, the overhead of recording audio is significant, and

has a substantial effect on battery life. As the graph shows, an hour of recording audio

with the screen on will consume 38% of the battery life, which amounts to approximately

119.7 mAh. Therefore, it can be assumed that the audio recording functionality consumes

10% of the watch’s battery life per hour, as a rough approximation. Figure 3.7 shows

that the power dissipation of the screen is significantly larger than that of the audio

recording and processing. Nevertheless, for long-term applications, the energy overhead

of consistent audio recording may be prohibitive.

Algorithm 1: Simplified Classification Scheme

RecordAudio(Buffer);

if Buffer.Utilization = β then

d = Buffer[1:β];

f = ExtractFeatures(d);

s = {Water, Talk, Apple, Chips, Other};

c = Classify(f, s);

Counterc++;

if c 6= Other then

PauseRecording(τ)
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Table 3.3: Audio: Confusion Matrix (Random Forest)

Predicted Class

True Class Apple Chips Noise Water Talk Recall

Apple 40 9 0 1 0 80%

Chips 3 47 0 0 0 94%

Noise 0 0 50 0 0 100%

Water 0 1 0 49 0 98%

Talk 0 0 0 0 50 100%

Precision 93.0% 82.5% 100% 98% 100%

Table 3.4: Partial List of Selected Features

Rank Feature Name

1 Log Energy: Skewness

2 Log Energy: Mean Distance Between Peaks

3 Log Energy: Zero Crossings

4 Mel-Freq: Simple Moving Average[0] Quartile 3

5 Mel-Freq: Simple Moving Average[0] Mean Distance Between Peaks

6 Mel-Freq: Simple Moving Average[0] Zero Crossings

7 Mel-Freq: Simple Moving Average[1] Quartile 2

8 Mel-Freq: Simple Moving Average[1] Mean Distance Between Peaks

9 Mel-Freq: Simple Moving Average[1] Arithmetic Mean of Peaks

10 Mel-Freq: Simple Moving Average[1] Arithmetic Mean
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How	do	you	feel	about	watches	in	general?	

On	what	hand	would	you	typically	wear	a	watch?	

Would	you	wear	a	watch	on	the	opposite	hand?	

Are	you	right	or	left	handed?	

Left	
(76%)	

Right	
(19%)	

Unsure	
or	N/A	
(5%)	

Always	wear	
(38%)	

Like	to	wear	a	
watch	(14%)	 Unsure	(<1%)

	
Would	not	
consider	(1%)	
	
Prefer	not	to	
wear	(23%)	

Wouldn’t	mind	
(24%)	

Maybe	(40%)

No	(28%)

Yes	(32%)	

Left	
(12%)	

Right	
(86%)	

Unsure	
or	N/A	
(2%)	

Figure 3.8: Partial survey results are shown above.

3.5.4 Smartwatch Feedback: A Survey

Figure 4.10 provides several of the most pertinent questions from the survey. From the

total sample of 221 respondents, 86% claimed to be right handed, 12% left-handed, and

the remaining responded that they were ’unsure’ or the question was ’not applicable’.

In the following question, a total of 76% of respondents stated that they generally

would wear a watch on their left hand, with an additional 19% who preferred to wear the

watch on their right hand. The remaining 5% of those surveyed expressed no preference.

The next question asked respondents how they felt about wearing watches in general.

Most individuals stated that they always wear a watch (38%). However, 23% claimed

that they preferred not to wear a watch, 24% stated that they would not mind, and 14%

stated that they like to wear a watch. Only 1% of individuals claimed that they would

not consider wearing a watch. The next survey question revealed that those who drank

water out of a glass would use their primary hand to lift the cup for their mouth (69%),
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Dear Reviewer, 

Thank you for your additional feedback and clarification with respect to our manuscript. 
Below, please find our responses. We hope we have addressed your major concerns. 

Sincerely, 
Haik Kalantarian 
PhD Student, Computer Science 
University of California, Los Angeles 

[1] The study has not been augmented to investigate user attitude to other hardware options. What you think is 
stigmatizing and what the user considers stigmatizing might not be the same. And if it indeed is the same, it would 
be very interesting to have this substantiated by empirical numbers. 

To evaluate the receptiveness of the public to the smartwatch platform, we conducted a separate survey to specifically 
investigate the attitude of individuals towards wearables in various form-factors. A total of 55 subjects participated in the 
online survey, of which 45.5\% were male and 50.9\% were female, and 3.6\% who did not identify. 25.5\% of subjects 
were 17 and younger, 27.3\% ranged from 18 to 23, 27.3\% were from 24 to 3, 12.7% were from 30 to 40, and 7.2\% 
were over 40 years of age. 

Subjects were asked to rate their willingness to wear health-monitoring wearable devices in four forms: glasses (such as 
Google Glass), smartwatches (such as the Galaxy Gear), custom wrist-worn hardware (such as FitBit), and necklaces (such 
as WearSens). The scale ranged from 1, “not at all interested”, to 5, “I would be completely comfortable wearing it”. The 
results can be found below, in Figure {\ref{fig: }. As the data suggests, “Smart Glasses” was the least favorable option, with 
an average score of 2.47. The “Necklace” and “Other Wristworn Hardware” options scored similarly, at 2.78 and 2.74, 
respectively. The highest score was associated with the smartwatch, with a rating of 3.25 / 5.  

With respect to the number of individuals who assigned a rating of 5, the highest possible score, the smartwatch was also 
the favorite. 25.5\% of individuals assigning the smartwatch a rating of 5, compared to 9.1\% with glasses, 10.9\% for the 
necklace, and 10.9\% for the “Other Wearables” option.  

[2] You still claim in the conclusion: “We conclude that the smartwatch platform is a strong choice for non-
invasive evaluation of eating habits“: you have no data to justify that your recognition results can be generalized 
to the real world. 

We believe that the claim that you mention is somewhat justifiable, as from our experimentation it seems that users are 
most receptive to the smartwatch compared to other wearable devices. Furthermore, despite the constraints in our 
experimental methodology, we believe that the smartwatch can be used to identify eating behavior at some granularity. 
For example, if efficacy is not verified at the specific bite / swallow level, we believe it can detect meal events. However, to 
ensure that we do not make any broad claims that are not carefully validated in the paper, we have removed this phrase 
from the conclusion. 

2.74

3.25

2.78

2.47

0 1 2 3 4

Other Wristworn Hardware

Smartwatch

Necklace

Smart Glasses

Receptiveness to Use

Figure 3.9: Survey results for the smartwatch-based scheme.

rather than the secondary hand on which the watch is worn (20%) with a remaining 10%

claiming to be unsure. The final question asked respondents if they would be willing to

wear a watch on the opposite hand to which they are accustomed. 40% of respondents

answered ’maybe’, 32% answering ’yes’, and 28% answering ’no’.

These results are generally promising: almost no individuals expressed an adamant

refusal to wear a watch. Furthermore, results suggest that most subjects show some

flexibility about which hand they wish to wear a watch. Consider foods that require both

hands to be raised towards the mouth, such as large sandwiches or hamburgers. In such

cases, the eating can be detected regardless of which hand the subject prefers to wear

the watch upon. This is the case because during the initial bite, the watch will be close

to the mouth and the microphone can detect the pertinent signals. However, failing to

use the hand on which the watch is worn to raise a glass of water or eat potato chips

may pose a challenge to detection, as the source is not as close to the microphone, and

it is possible that the signal-to-noise ratio may be lower. The feasibility of detecting the

ingestion of foods consumed with the secondary hand should be explored in future work.

It appears that enough individuals are willing to change which hand they wear their

watch, to make detection of most eating habits possible if the algorithm settings are

customized to their personal habits. However, generally speaking, the results suggest the

importance of an adaptive algorithm that can be used to detect eating habits regardless

of the hand on which the device is worn. This can potentially be achieved by detecting

the distance between the watch and the audio source, and performing amplification and

filtering accordingly. This will be explored in future works.

To evaluate the receptiveness of the public to the smartwatch platform, we conducted
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a separate survey to specifically investigate the attitude of individuals towards wearables

in various form-factors. A total of 55 subjects participated in the online survey, of which

45.5% were male and 50.9% were female, and 3.6% who did not identify. 25.5% of subjects

were 17 and younger, 27.3% ranged from 18 to 23, 27.3% were from 24 to 3, 12.7% were

from 30 to 40, and 7.2% were over 40 years of age.

Subjects were asked to rate their willingness to wear health-monitoring wearable de-

vices in four forms: glasses (such as Google Glass), smartwatches (such as the Galaxy

Gear), custom wrist-worn hardware (such as FitBit), and necklaces (such as WearSens

[KAL15a]). The scale ranged from 1, “not at all interested”, to 5, “I would be completely

comfortable wearing it”. The results can be found below, in Figure 3.9. As the data

suggests, “Smart Glasses” was the least favorable option, with an average score of 2.47.

The “Necklace” and “Other Wristworn Hardware” options scored similarly, at 2.78 and

2.74, respectively. The highest score was associated with the smartwatch, with a rating

of 3.25 out of 5.

With respect to the number of individuals who assigned a rating of 5, the highest

possible score, the smartwatch was also the favorite. 25.5% of individuals assigning the

smartwatch a rating of 5, compared to 9.1% with glasses, 10.9% for the necklace, and

10.9% for the “Other Wearables” option.

3.6 Conclusion

This chapter presents a novel approach to detecting ingestion of foods and liquids, using a

smartwatch for identification of bites and swallows from acoustic signals. We also present

a survey of users about smartwatch usage which confirms that a substantial portion of

individuals would be willing to wear a watch on the hand with which they primarily

eat. Future works will attempt to analyze eating behavior from the secondary hand, and

explore the integration of audio-based detection of eating with inertial sensors for gesture

recognition.
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CHAPTER 4

Gesture Recognition

Poor adherence to prescription medication can compromise treatment effectiveness and

cost the billions of dollars in unnecessary health care expenses. Though various inter-

ventions have been proposed for estimating adherence rates, few have been shown to

be effective. Digital systems are capable of estimating adherence without extensive user

involvement and can potentially provide higher accuracy with lower user burden than

manual methods. In this chapter, we propose a smartwatch-based system for detect-

ing several motions that may be predictors of medication adherence, using built-in tri-

axial accelerometers and gyroscopes. The efficacy of the proposed technique is confirmed

through a survey of medication ingestion habits and experimental results on movement

classification.

4.1 Introduction

It is well established that poor adherence to prescription medication can limit the benefits

of medical care and compromise assessments of treatment effectiveness [MGH02]. Poor

adherence is associated with increased hospital readmissions, medical complications, and

even death [GB11]. It has been estimated that lack of adherence causes approximately

125,000 deaths in the United States, and costs the health care system been $100 and $289

billion pear year [VGJ12].

A significant body of research has been conducted to improve adherence to prescrip-

tion medications through various interventions. These techniques vary tremendously

from reminder-based systems, simplified pill packaging, positive reinforcement, financial

incentives, and counseling. However, these systems typically suffer from high complexity,

user burden, and inaccurate estimations of adherence [HHA]. One survey of major in-
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Bottle Opened       Gesture  Pill Swallowed 

Caregiver Notified     Cloud Integration 

Figure 4.1: Illustration of methods in which a SmartWatch or similar wrist-worn device

can be employed to detect medication intake.

terventions concluded that less than half of evaluated interventions were associated with

statistically significant increases in adherence [BAK96].

In recent years, a greater emphasis has been placed on the role of technology in detect-

ing non-adherence to medications. Because patient behavior can be monitored passively,

user burden is potentially less than other methods that rely on patient record keeping,

phone calls, and self-reporting. Furthermore, these digital systems have a potential to

provide a better adherence assessment than self-reporting. However, these digital system

suffer from several substantial limitations. Though they employ sensors to perform activ-

ity recognition, it is not always possible to accurately estimate adherence by recognizing

a single action such as opening a pill bottle, or removing a capsule. For example, an

individual may remove a pill from a medicine bottle, receive a phone call immediately

thereafter, and neglect to return to swallow the pill. These factors suggest the need for

systems capable of identifying multiple motions or activities associated with medication

adherence, rather than relying on a single predictor.

Recently, smartwatches have become widely available on the commercial market.

From a user-acceptance standpoint, these systems have a clear advantage over other

proposed solutions based on custom hardware such as the wrist-worn accelerometry pro-

posed by Chen et al. in [CKJ14] or audio-based ingestion monitoring systems proposed

by Sazonov et al. and Amft et al. in [SMS10][AKT09]. Clearly, the multitude of sensors

available on the smartwatch platform, wireless connectivity, as well as the comfort and

social acceptance of the form-factor warrant further study into their potential applica-

tions in the medical domain. For example, several use cases of the smartwatch platform
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are shown in Figure 4.1; the watch can be used as an end-to-end system for character-

izing medication adherence by detecting gestures associated with ingestion and capsule

removal, relaying this information to caregivers through web services.

In this chapter, we propose a system that can detect several motions associated with

medication adherence using a custom Android application running on a Samsung smart-

watch. The activities that are detected are shown in Figure 4.2. Using a tri-axial

accelerometer and gyroscope, we can determine when a bottle is opened and a pill is

retrieved. Furthermore, the proposed system can be used with any standard twist-cap

prescription bottle, without requiring that each bottle to be equipped with sensors and

wireless connectivity as in the case of the Vitality Glowcap [vit14].

Many other works describe various approaches to classifying motion using accelerom-

eters and gyroscopes [ABM10][TCS08]. However, there are several novelties to our par-

ticular approach. First, we propose a method for tracking medication adherence using

a commercial hardware device, rather than cumbersome custom hardware solutions that

have limited applicability in real-world environments. Second, we are able to detect an

extremely subtle wrist motion that is significantly more challenging to identify than the

fitness-related activities that are emphasized in other works, such as walking, running,

and climbing stairs. This is achieved by increasing the recall of the first-stage of the

algorithm at the expense of precision, and filtering out the false-positives in the second

stage.

Furthermore, we achieve high classification accuracy of the wrist motion associated

with opening a pill bottle, using three simple features from each axis of the accelerometer.

The majority of other works related to activity recognition extract hundreds of mathemat-

ical features from each axis, and perform computationally complex feature selection and

classification. These techniques are more burdensome from the perspective of real-time

implementation, require more processing power, and can significantly impact battery life

as a result of their complexity. Lastly, our classification algorithm runs in real-time on

a commercial smartwatch device, while many other works on activity recognition simply

use the hardware for signal acquisition, and perform classification offline.
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A. 

B. 

Figure 4.2: (A) The wrist motion necessary to twist the bottle cap open is detected using

a tri-axial accelerometer. (B) The act of turning the palm upward to pour medicine from

the bottle is detected using a gyroscope.

4.2 Related Work

4.2.1 Mobile-Phone Solutions

Several SmartPhone applications such as MyMedSchedule, MyMeds, and RxmindMe,

provide advanced functionality for medication reminders. These applications issue re-

minders, allow users to manually enter their dosage information, and record when they

have taken their medication [DHA13]. In [SM06], Sterns et al. mounted a pill bottle onto

a personal digital assistant running the RxmindMe software, and successfully trained

elderly subjects with an average age of 72 to operate the software used to monitor adher-

ence. This work suggests that users from a variety of age groups and backgrounds have

the ability and motivation to use electronic monitoring devices if given adequate training.

4.2.2 Hardware Approaches

This proposed work is an extension of our prior work described in [KS15b]. However,

other hardware approaches have been proposed in recent literature. The work described

in [HHA] describes a portable, wireless-enabled pillbox suitable for elderly and those suf-

fering from dementia. Similar approaches for electronic detection and smart pill boxes

have also been proposed [VRR13]. These devices generally suffer from the same shortcom-
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ing: they cannot determine if the medication is ingested or simply removed and discarded

[BFK05]. In another work, Valin et al. successfully identified medication adherence using

a series of images and associated image processing algorithms [VMS06]. Very recent work

by Chen et al. in [CKJ14] describes a system in which inertial sensors worn on the wrist

are used for detection of gestures associated with medical intake, based on a Dynamic

Time Warping (DTW) algorithm. In [KAL15b] and [KAL15a], the WearSens necklace is

used to detect different kinds of swallows, including those that may be associated with

medication capsules and tablets.

The Vitality Glowcap is a wireless-enabled pill bottle that can report when medication

is removed [vit14] using a cellular network, while a recent product from Amiko [ami14]

is one of the few systems that can monitor the ingestion of medication directly, based on

a smart-inhaler technology. Other notable technologies include the Smart Blister from

Information Mediary Corporation [bli15], which can detect when medication is removed

from a blister-packet.

Several digital systems have been proposed for evaluation of swallow disorders and

monitoring eating habits using audio processing techniques. These techniques give cre-

dence to future smartwatch-based systems which can combine audio-based ingestion mon-

itoring with inertial detection of user activity. Analyzing wave shape in the time domain

or feature extraction and machine learning by Okazaki et al. [TOY10] resulted in an

86% swallow detection accuracy in an in-lab controlled environment. Similarly, the work

featured in [NS11] by Nagae et al. distinguishes between swallowing, coughing, and

vocalization using wavelet-transform analysis of audio data.

4.3 System Architecture

4.3.1 Hardware Description

The SmartWatch application is capable of predicting if a pill has been swallowed using

the on-board inertial sensors available on the Android SmartPhone. The application runs

as a background service: data is collected and processed even while the user is interacting

with other applications on the watch.
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The hardware platform used is the Samsung Galaxy Gear SmartWatch running An-

droid 4.2.1. This phone features an 800 MHz ARM-based processor, 512 MB of RAM,

and a 320x320 pixel 1.6 inch display. The device also supports transfer of data using

the Bluetooth LE protocol, and can be configured to access the Internet using Bluetooth

tethering with compatible Smartphones. Once the on-board algorithm detects that the

medicine has been ingested, a web-service call is made to store the data in a database

for access by caregivers. Though the sample rate of the on-board sensors can be config-

ured, a rate of 16.66 Hz was determined to be sufficient for activity recognition through

experimentation. Higher sample rates increase computation power and decrease battery

life with no significant effect on accuracy.

4.3.2 Android Application

The Android application works as follows. First, samples are acquired from the accelerom-

eter and gyroscope in the X, Y, and Z axis. These values are buffered in a vector-based

data structure in memory, which is of a fixed size and operates in a first-in-first-out for-

mat. That is, the oldest sample is removed from the structure to make room for each

new sample. After every new data point is acquired from the inertial sensors, the Detect-

Motion function is called. This function implements the feature extraction, processing,

and thresholding techniques described in Section IV. This function sets a flag when the

accelerometer data suggests that a bottle has been opened, and when the gyroscope data

suggests that the hand on which the watch is worn has been turned such that the palm

faces upward. A timestamp accompanies each of these flags, which can then be used to

detect the time interval between these two motions. If the time interval is less than the

set threshold (T=30 seconds), the application reports that the medicine has been taken.

Subsequently, a notification email can be transmitted, or a web service call can be made,

based on the users individual requirements.

4.4 Algorithm Design

In this section, we describe the algorithms running on the Android Service, which predict

if medication has been ingested based on the recognition of two activities: (1) The bottle
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Figure 4.3: Accelerometer data from opening the pill bottle nine times.

being opened while the SmartWatch is worn on the wrist by detecting the twisting motion

of the bottle cap, and (2) the wrist being rotated for the palm to face upwards, in order to

pour medicine capsules into the secondary hand. All results are based on data acquired

from tri-axial accelerometer and gyroscope samples acquired at 16 MHz. Figure 4.2 shows

the actions the proposed system was designed to identify.

In the following formulas, we refer to the window size as β, and the set of original

sensor data as D. D̄(j) refers to the transformed sensor data after being processed in

Equation 4.1, D́(k) after Equation 7.2, and D̃(n) referring to the output after Equation

7.4. Symbols j, k, and n refer to individual data points in the first, second, and third

phases of the algorithm respectively. The constant α refers to a predefined threshold for

separating the different peaks.

4.4.1 Bottle Opening: Data Transformation

Figure 4.3 shows the waveforms acquired from the SmartWatch accelerometer for each

axis which correspond with a bottle being opened nine times. Each bottle-opening event

corresponds with a different peak. Successful identification of the event is dependent on

analysis of the features of each peak in all three dimensions. Therefore, the data must

be transformed to decouple the perturbations of the signal from the offset, and limit

the effects of drift and noise. This new waveform, shown in Figure 4.5, provides a more

objective representation of the features of a bottle opening event.

This signal transform is first achieved by generating a new waveform using a sliding-

window average of the original data. The relevant equations for each axis are shown in

Equation 4.1. It was determined that 70 is an appropriate value of β, as significantly

smaller values are too sensitive to minor fluctuations.
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Figure 4.4: Data converted to a sliding window representation.

∀D ∈ {X, Y, Z} ,

∀j ∈ D,

D̄(j) =
1

β

j∑
i=j−β

D(j)

(4.1)

After the moving-average representation of the data is generated, each point is then

assigned a numerical value with respect to the average value in the previous window.

This essentially removes the offset from the data and combats the effect of drift, while

preserving the critical features of the original waveform. This is shown in Equation 7.2.

∀k ∈ D,

D́(k) =
∣∣D(k)− D̄(k)

∣∣ (4.2)

The next transformation simply separates the continuous data into different peaks

separated by spans in which the data is zero, based on a simple thresholding technique.

This allows different instances to be more easily identified. The relevant equation is shown

in Equation 7.4, and the corresponding waveform (with additional smoothing) is shown

in Figure 4.6. It was experimentally determined that an α value 0.5 g/m2 of visually

preserved the critical features of the waveform while removing noise during periods of

inactivity.
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∀n ∈ D́,

D̃(n) =


0, D́(n) < α

D́(n), D́(n) ≥ α

(4.3)

Subsequently, features from individual ’pulses’ can be extracted, which each corre-

spond with a different bottle opening episode. This is shown in Figure 4.7, which shows

one individual pulse in the X axis. By performing a summation of each pulse, which is

delimited by a value of zero as described in Equation 7.4 as a result of the thresholding

technique, a distinguishing feature can be extracted from each axis. The width of the

pulse, once again delimited by zero, is a secondary feature that can used to improve

classification accuracy.
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Figure 4.5: Phase (3) waveforms for processing smartwatch signals.

-2

-1

0

1

2

3 X-Axis 

-6

-3

0

3

6 Y-Axis  

6

8

10

12

0 500 1000 1500 2000

A
cl

 (
g/

m
2
)

Time (Sample Number) 

Z-Axis  

-4

-2

0

2

4

6

8

10

12

1 301 601 901 1201 1501 1801

A
cl

 (
g/

m
2
)

Time (Sample Number) 

Sliding Average 

XDEV_AVG

YDEV_AVG

ZDEV_AVG

0

1

2

3

4 AVGX

0

2

4

6
AVGY

0

1

2

3

1 301 601 901 1201 1501 1801

Time (Samples) 

AVGZ

0

2

4

6 DEVX

0

3

6

9
DEVY

0

3

6

9

A
cl

 (
g/

m
2
) 

Time (Samples) 

DEVZ

A
cl

 (
g/

m
2 ) 

0

Figure 4.6: Phase (4) waveforms for processing smartwatch signals.
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Figure 4.7: Output pulses from Phase (4).

4.4.2 Bottle Opening: Detection

Based on the previously collected features, we apply various constraints for the classi-

fication of each pulse, as shown in Equations 7.5. These constraints are formulated on

the basis of their efficacy in detecting the twisting motion required to remove the bottle

cap. Figure 4.8 shows the distribution of feature values such as pulse width for all three

axes, and well as the area under the curve of each pulse, as users twisted the bottle cap

during the initial phase of data collection. The observations that are made from the

feature distribution associated with this activity are used to formulate the constraints for

classifying an action as the opening of a bottle cap. Visually, it can be inferred that the

data from the Y-axis of the accelerometer is very weakly coupled with the act of twisting

the bottle. However, the standard deviation of the X and Z axis data appears to show

significantly less variation.

As Equation 7.5 shows, the first requirement is that the standard deviation of indices

of the first nonzero values of the accelerometer data in each axis to be less than three, to

reduce the effects of noise and drift. The remaining constraints are the widths of the X,

Y, and Z pulses, which correspond with the overall duration of the bottle cap opening

event. The bounds on the integral of acceleration (velocity) constrain the intensity of the

motion based on what is typical for the action. This is necessary to prevent motions of

similar durations but varying intensity from being misclassified.
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Figure 4.8: An analysis of the clustering patterns for different features.

30 < WidthX < 75, 0 < WidthY < 80

10 < WidthZ < 80, 60 < SumX < 1800

0 < SumY < 1200, 20 < SumZ < 1600

(4.4)

Once it has been determined that the bottle has been opened with a high probability,

the system makes a record of this event and begins detection of pill extraction. This is ob-

tained using gyroscope MEMS sensors available on the SmartPhone, which are processed

as described in the following section.

4.4.3 Medicine Removal: Data Transformation

In the case of most twist-cap medication bottles, it is not possible to reach inside to

retrieve the medication. Typically, once the bottle is opened, it is turned upside down

and a medication capsule is emptied on the secondary (non-dominant) hand. This requires

that the individual turns their hand upside-down with their palm facing upwards for a

brief period, as shown in Figure 4.2(B). If the SmartWatch is worn on the wrist of the

secondary hand, this motion can be detected. Data is acquired from the SmartWatch’s
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built-in triaxial gyroscope at a rate of 16 Hz, which represent angular speed around the

X, Y, and Z-axis in units of radians/second. The Android API provides output with

built-in drift compensation algorithms, though raw data is also available.

The gyroscope data can be integrated along each axis to provide an estimation of

rotation in a given unit of time. However, as in the case of the accelerometer processing

used to estimate if the bottle cap is removed, the gyroscope data must be transformed for

effective activity identification. However, the transformation is much simpler. Equation

7.6 shows the simple summation of the last β values acquired from the gyroscope. In this

equation, xn corresponds with the nth sample of acquired data, and the same convention

is used for the Y and Z axis. The chosen value of β is 12 samples, which corresponds with

750 ms of data at a 16 Hz sample rate. These values are selected based on the observation

that most individuals will perform the hand motion in significantly under one second;

longer sample rates would distort gyroscope data with extraneous movements and produce

false positives.

∀Samplei ∈ {Buffer} ,

xsum =
i∑

k=i−β

xk
(4.5)

Because the required sample rate for inertial-based activity recognition schemes can

be quite low (around 16 Hz in our case), a high computational complexity does not

necessarily preclude an algorithm from practical real-time application when the collected

data is in the range of several seconds. That being said, the complexity for this particular

algorithm is linear. Each acquired data point is another value that must be summed to

find the average value of a window. This point must then be subtracted from the window

average to find the magnitude difference (Phase III). The number of these operations,

along with those associated with the subsequent thresholding and peak detection, do not

grow exponentially with the size of the dataset.

70



4.4.4 Removing the Medicine: Detection

Detecting that an individual has poured the medicine into his secondary hand is relatively

simple, after the preprocessing shown in Equation 7.6. The detection of this movement

does not imply that any medication was removed- simply that the palm was turned to

face upward. Therefore, this is not a primary heuristic for medication adherence, and is

used as a supplement to the bottle cap detection mechanism. The constraints on which

this movement is detected are shown in Equation 7.7. First, some time interval ∆T must

have elapsed since the last recorded event, to prevent duplicate records of the same event.

The absolute value of the movement in the y and z directions must also be less than some

arbitrary threshold, to ensure that random hand movements are not considered. Lastly,

xsum, the movement around the x axis over the last 12 samples (16 Hz) in radians/second,

must be less than the threshold of -28, or greater than 28, depending on which arm the

watch is worn. Experimentally, it was determined that lower threshold values could not

differentiate relatively minor turns of the wrist to the full action of turning the palm

upward that is required to pour medication from the bottle into the hand.

∆T > 1s

|ysum| < 5, |zsum| < 5

xsum :


< −28, LeftHanded

> 28, Right Handed

(4.6)

4.5 Secondary Motions and Other Future Works

Figure 4.9 shows a illustration of different motions relating to medication ingestion. Start-

ing from an initial condition, the watch being worn on either the primary or secondary

hand, the bottle cap is twisted open and poured into either hand. The green markers

denote actions that our algorithm is capable of detecting using the previously outlined

techniques. The red markers are examples of motions that are not as pronounced. For

example, if the watch is being worn on the primary hand, the secondary hand will move
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Figure 4.9: Different motions observed during data collection and reported by users in

the survey.

very slightly if the primary hand is twisting the cap open. Furthermore, if the watch is

worn on the primary hand and the medication is poured into the secondary, the watch-

hand is tilted more subtly to allow the medication to slide out of the bottle. As the survey

of medication ingestion habits has determined that either hand can be used, detection of

these alternative motions warrants a closer look.

Another aspect of inertial sensing associated with medication intake is the act of

raising the pill to the mouth, which can be done with either hand. However, the secondary

hand will most likely not exhibit any identifying characteristics in this case. The detection

of this action can be explored in future work to reduce the false positive rate, but will

be less useful for reduction of false negatives as the absence of this motion does not

necessarily suggest that the medication has not been taken.

4.6 Experimental Procedure

Training data was collected from five subjects between the ages of 21 and 25, all of which

were right-handed. The subjects wore the watch on their left hand in their preferred

configuration, and were asked to open the pill bottle using the hand on which the watch
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is worn. The results were used to formulate the algorithm constraints, which were then

tested on the remaining subjects.

4.6.1 Gesture Recognition

Twelve subjects were asked to perform several activities while wearing the SmartWatch

including walking, opening a medicine bottle, and opening a bottle of water.

The data collection occurred in two separate sessions to increase the diversity in

motion patterns. The medicine bottle used was a standard prescription variety containing

empty gel capsules (Size 00). As in the case of most standard prescription bottles,

opening the lid requires the application of downward pressure while twisting the cap in

the counter-clockwise direction. However, the subjects used in the study were not given

any instruction on how the bottle was to be opened, in order to avoid influencing activity

patterns. After opening the pill cap, the subjects were asked to pause briefly for a period

of three seconds, before pouring the medicine out of the bottle.

4.6.2 Online Survey of Habits

In order to design an appropriate activity recognition scheme, it is necessary to validate

various assumptions about how people take their medication, as well as their opinion on

smartwatch devices. An online survey was conducted with a total of 221 responses, in

which various questions were posed with respect to how individuals feel about wearing a

smartwatch, on what hand they would typically wear it, and how they retrieve and ingest

a medication capsule. The participants in the study were anonymous, but represented

a diverse set of ages, cultures, and genders. The survey results were used as a basis for

algorithm design.

4.6.3 Observational Survey

To validate the results of the online survey, twenty subjects were asked to open a pill

bottle and consume an empty gel capsule while being observed. No instruction was

provided on how the medication should be taken, how the watch should be worn, or how

the bottle should be opened. Thus, individuals were allowed to take the medication in
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a relatively natural environment. This is necessary because anonymous online survey

results can be error prone. Online surveys can be particularly challenging because it may

be difficult for an individual to ascertain their medication habits without a pill bottle in

front of them.

4.7 Results

4.7.1 Online Survey

From the survey based on responses from 221 individuals, 86% claimed to be right handed.

A total of 76% of individuals claimed that they generally would wear a watch on their

left hand, with an additional 19% who preferred to wear the watch on their right hand.

The remaining 5% of those surveyed expressed no preference.

The next question in the survey asked subjects how they felt about watches in general.

72% of responses were positive, as 38% claimed they always wear a watch, 14% preferred

wearing a watch, and 53% stated that they would not mind. Subjects were then asked

to estimate what percentage of the time they would remove medicine from the bottle

and not consume the pill within the next minute. 12% answered that this would occur

occasionally, 6% often, and 1% always. 76% of individuals stated that this would happen

very rarely.

Figure 4.10 shows other relevant survey questions. The first question reveals that

though most individuals open a bottle by twisting the bottle with the primary hand,

a significant percentage (32%) preferred to steady the bottle with their primary hand,

and twist with the secondary hand. Therefore, the bottle cap would more frequently

be twisted by the opposite hand on which the watch is worn. This is confirmed by

another survey question, which established that only 11% of subjects opened the bottle

by twisting the bottle base, rather than the cap.

The next question evaluated what happens after individuals open the pill bottle.

As hypothesized, most individual’s poured the medicine into the palm of their hand,

as opposed to another surface such as a napkin or table. However, there was little

homogeneity in responses, with 57% who stated that they would pour the medicine into
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the hand that twisted the cap, and 36% that originally held the bottle.

Generally, the results suggest that some individuals will need to adapt their watch

usage in order to recognize the motions suggested in this chapter. This can be partially

mitigated by developing detection strategies for a broader range of motions and applying

template matching, though this is left to a future work. The remaining survey results

were promising, as only 28% of subjects claimed that they would not consider wearing

a watch on the opposite hand of what they are generally accustomed, compared to 40%

who claimed that they would consider it, and 32% who stated that they would be willing.

4.7.2 Observational Survey

Table 4.1: Observational Survey of medication ingestion habits

Hand used to twist bottle cap

Dominant 15

Secondary 5

SmartWatch Placement

Dominant 1

Secondary 19

Pill Extraction Method

Pour into dominant hand 5

Pour into secondary hand 15

Other 0

∆T Between Actions

0-5 seconds 16

5-12 seconds 4

Which End is Twisted

Cap 17

Bottle 3

Observational study results indicated that 75% of subjects used their dominant hand

to twist the bottle cap in the observed study, compared to 63% in the online survey.

Furthermore, 85% twisted the cap (rather than the bottle) in the observed study, com-
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pared to 91% in the online poll. Lastly, 57% of individuals stated that they would pour

the medicine into the hand that twisted the cap, compared to 75% who poured into the

secondary hand (which is the dominant hand in 95% of cases). Though there are some

discrepancies due to limited sample size, the online and observational study results are

generally in accord with one another. Full survey results are shown in Table 4.1.

4.7.3 Motion Classification Results

The classification results are shown in Table 4.2 and 4.3. The results indicate that while

accuracy of wrist rotation detection is good, the false-positive rate of pill cap opening

detection is very high. This design tradeoff is necessary to ensure that nearly all real pill

opening events are detected; false positives will be filtered out in the second stage of the

algorithm. Table 4.2 shows that despite very low precision across categories, the recall

for the action of ’medicine bottle opened’ is very high. The remaining false positives are

filtered out in the next stage of the algorithm shown in Table 4.3 in which the precision

of the ’other’ category, which comprises the other four listed actions, is 100%. Note

that, because no traditional classifier was used for activity recognition, there is no cross-

validation scheme to separate the test and training data. The algorithm was designed

and tested on one subject, who later did not participate in the final data collection in

order to avoid overfitting the data.

Table 4.2: Confusion Matrix using Accelerometer Data

Predicted

Actual Med. Bottle Opened Other Recall

Med. bottle 21 3 87.5%

Raise Arm 14 6 30%

Walk 1 23 4.1%

Open door 14 10 41.6%

Water bottle 20 4 16.6%

Precision 30% 6.5%
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Table 4.3: Confusion Matrix using Gyroscope Data

Predicted

Actual Palm Up Other Recall

Palm Up 24 0 100%

Raise Arm 2 22 91.6%

Walk 1 23 95.8%

Open door 2 22 91.6%

Water bottle 0 24 100%

Precision 82.7% 100%

4.8 Conclusion

In this chapter, a survey was conducted to understand how individuals take their medi-

cations from standard-sized twist-cap pill bottles in a normal environment. The results

suggest that it is possible to use the Smartwatch as a platform for detection of medication

adherence for many individuals. Using the tri-axial accelerometer and gyroscope on the

Samsung Smartwatch, we are able to detect (1) the act of twisting the cap of a medicine

bottle open, and (2) the removal of a tablet or pill by pouring the pill into the palm of

the hand. Though the proposed system imposes some restrictions on how subjects should

remove the pill bottle for successful recognition, the system nevertheless has much less

human involvement compared to manual record keeping or phone calls from nurses and

other forms of adherence detection.
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CHAPTER 5

Classification and Segmentation for Wearable

Activity-Monitoring Applications

Detecting short-duration events from continuous sensor signals is a significant challenge in

the domain of wearable devices and health monitoring systems. Time-series segmentation

refers to the challenge of subdividing a continuous stream of data into discrete windows,

which can be individually processed using statistical classifiers or other algorithms. In this

chapter, we propose an algorithm for segmenting time-series signals and detecting short-

duration data in the domain of lightweight embedded systems with real-time constraints.

First, we demonstrate an approach for signal segmentation using a simple binary classifier.

Next, we show how a novel two-stage classification algorithm can reduce computational

overhead compared to a single-stage approach. Our proposed scheme is benchmarked

using an audio-based nutrition-monitoring case-study..

5.1 Introduction

This chapter addresses the issue of efficient time-series segmentation and classification:

an important topic in real-time embedded systems such as those used in wearable health

and fitness monitoring devices which collect and process continuous sensor data. The

challenge of segmentation that we discuss in this chapter is particularly relevant in ap-

plications which detect short-duration events from relatively long data sets, such as brief

moments of coughing in a day-long audio recording.

To understand why time-series segmentation is important requires a basic understand-

ing of sensor systems and statistical classifiers. In this section, we begin with some of

these preliminaries.
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Figure 5.1: System architecture of the proposed two-stage segmentation and classification

scheme.

5.1.1 Overview of Real-Time Wearable Sensor Systems

Real-time wearable sensor systems have become very popular in recent years, and address

a variety of health needs ranging from fitness, health monitoring, and object tracking.

Examples of such systems are everywhere, and can range from a simple FitBit that mon-

itors physical activity, to more complex examples such as the wearable diet-monitoring

devices proposed by Kalantarian et al. in [KS15b] and [KAS14a]. These devices acquire

signals from sensors such as accelerometers, gyroscopes, and microphones, as individu-

als go about their normal daily activities. Subsequently, various algorithms are used to

identify actions of interest from the continuous stream of real-time data.

Some of the often conflicting challenges associated with processing these signals is to

improve the rate and accuracy of event detection, while optimizing computational and

energy-related costs. This is a matter of particular concern in wearable devices such as

the Misfit [misa], Jawbone [Jaw] and other similar devices which are often powered by

small coincell batteries and must last hours or days on a single charge.
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Figure 5.2: Potential problems when attempting to identify an action from a large discrete

signal.

5.1.2 Classifiers

Various statistical classification techniques have been proposed to identify activities of

interest from time-series sensor data. One example of such a system was proposed by

Alshurafa et al. in [AXL14], in which the authors extract statistical features from sensor

data, and determine the activity being performed using machine learning tools. However,

in the case of a 24 hour stream of data it is not practical to assign a single class label

to the whole dataset. Expectedly, the subject may be running for one hour, walking for

one hour, and sitting for the rest of the day. Therefore, the data must be segmented into

fixed or varying-length windows, each of which is assigned a separate class label.

A classifier may require dozens of features to accurately distinguish Activity A from

Activity B. However, this approach is not always practical in embedded systems as there

is a computational burden associated with deriving features from sensor data in real-time.

Equation 6.5 shows the amount of time (Cost) to extract features from a continuous signal

is a function of the number of features, N, as well as the cost of each feature, i, which is

fi, and the number of Windows that the signal has been divided into, W.
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Cost = W ·
N∑
i=1

fi (5.1)

As this equation suggests, a large feature set may be prohibitive for embedded hard-

ware applications with low power budgets. Furthermore, classifiers with large input-sets

may be slower to produce an output than simpler approaches with smaller sets of input

features. However, larger feature sets may also lead to higher classification accuracy in

some cases. This is particularly true for classifiers with many class labels. These design

tradeoffs are the basis for the development of our two-stage classification and segmenta-

tion algorithm.

5.1.3 Time-Series Segmentation

Time-series segmentation refers to the challenge of subdividing a continuous signal into

separate windows. A very simple example of segmentation would be dividing handwritten

text into separate letters for character recognition. In practice, the challenge of efficient

segmentation is applicable to numerous other domains. In this subsection, we describe

several ways in which an arbitrary time-series signal can be incorrectly segmented. Figure

7.4-A shows a correctly windowed signal- the bounds of the window are set such that the

window holistically contains the activity that we aim to recognize. In Figure 7.4-C, this

is not the case; the window bounds are much greater than the event to be recognized. An

example of such a case would be attempting to detect running in a 5-hour window of data:

most people would not run for this entire period of time, which suggests that assigning

a single class-label to this window is not meaningful. Furthermore, some approaches

average together statistical features of a window such as the works of Kalantarian et al.

[KAP14] and Alshurafa et al. [AKP14]. Therefore, even small portions of the window that

are not associated with the unique event could homogenize the distinguishing features of

the activity, severely reducing classification accuracy.

Another example of incorrect windowing is shown in Figure 7.4-B. In this case, the

window has been set such that it bisects the event of interest in half. In this case, there is

no single window that holistically represents the activity, which may lead to a reduction in

classifier performance. While overlapping windows is a potential workaround, increasing
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the W value in Equation 6.5 will increase the total cost of the algorithm.

5.1.4 A Novel Segmentation and Classifical Scheme

As we have discussed, a classifier that relies on a large input feature set may have higher

classification accuracy than a simple classifier that uses two or three features. However,

a less sophisticated classifier may result in faster performance. More specifically, the

classifier with the smaller feature set or simpler operating characteristics could produce

an output class label in less time than a more complex classifier with a larger feature

set. In this chapter, we propose an algorithm for segmenting a time-series signal using

an adaptive classifier scheme to reduce the computational load on an embedded device.

Our algorithm consists of two different phases:

In the first stage, we use a simple binary classifier Csmp to accurately segment the

time-series signal into varying window sizes. That is, our algorithm can assign a class

label to a given window W ⊂ {relevant, not relevant}. Through an interative process, we

can select window boundaries such that the data within may be relevant. As the classifier

does not require a large input feature set, computational overhead is reduced compared

to a more traditional approach.

In the second stage, upon locating a window that may be relevant to the current

analysis, we use a complex multiclass classifier Cadv, to assign a more specific label to

the window. This computationally intensive process is minimized, as the analysis is

conducted only for those windows that have not be filtered out by the first stage of the

algorithm.

The primary contributions of our chapter are:

• A novel approach for detecting short-duration events from a continuous time-series

signal.

• An efficient technique for time-series segmentation using an adaptive window-sizing

technique.

This chapter is organized as follows. In Section 5.2, we present several related chapters

that address the challenge of segmenting time-series data. In Section 5.3, we describe
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our proposed algorithms in greater depth. In Section 7.5, we describe our experimental

methods. Results and a discussion are provided in Section 7.6, followed by concluding

remarks in Section 7.7.

5.2 Related Work

A comprehensive survey of time-series segmentation was provided by Keogh et al. in

[KCH04]. The emphasis of existing work on segmentation is to develop a compact rep-

resentation of a large signal, with applications in data mining and compression. The

three primary methods in literature are sliding window approaches, similar to the base-

line used in this chapter, and recursive top-down or bottom-up techniques that are either

partition or merge signals until a stopping criteria is met. In [MOS12], Mithal et al.

propose a technique for land-cover identification from EVI (Enhanced Vegetation Index)

time-series data using a model difference segmentation score. However, their approach is

applied specifically to satellite imagery and is not a power-aware technique. In [XZK12],

Zu et al. propose an adaptive algorithm for online time-series segmentation. The authors

approach the challenge from the perspective of representing complex data using a series

of possible candidate functions as a form of data compression.

Lovri et al. provide a comprehensive overview of various time-series segmentation

techniques in [LMS]. The primary difference between our techniques and those discussed

in [LMS] is our application of a simple pre-trained binary classifier to identify relevant

windows of data, rather than a comprehensive approach using a classifier with an ex-

pensive input feature set applied to all data windows. Adaptive window sizing has been

explored in several other works. For example, in [OK92], Okutomi et al. present a

signal matching algorithm that can adapt window size based on the uncertainty of the

disparity between two signals. The issue of adaptive window sizing for image filtering

using local polynomial approximation is presented by Katkovnik et al. in [KEA02]. In

[KJ00], Klinkenberg et al. propose an approach for selection of window size to minimize

generalization error based on leave-one-out estimation error.

Lastly, our experimental use-case of audio-based detection of eating habits has been

explored in a variety of works [SSL08][RAZ14]. In [RAZ14], Rahman et al. present
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Figure 5.3: First stage of the algorithm, which adjusts the window boundaries and assigns

labels of Relevant or Not Relevant to each window.

BodyBeat: a robust system for detecting human sounds. A similar work is presented

by Yatani et al. in [YT12]. The BodyScope device can distinguish between twelve

kinds of activities including eating, drinking, laughing, and coughing. Other approaches

include that of Amft et al. in [AKT09], in which acoustic signals are used for bite-

weight prediction, or [AT06] in which muscle activation and sound are used together to

detect swallowing. Our objective is in this chapter is not to present a novel algorithm

for detecting eating behavior, but rather to validate our proposed scheme with a realistic

application.

5.3 Algorithms

5.3.1 Phase I - Window Selection

Our objective in the first stage of the algorithm is to subdivide a long-duration time-

series signal in order to minimize the potential problems shown in Figure 7.4. We begin

by subdividing the signal into fixed-length windows, as shown at the top of Figure 7.1.

Subsequently, the windows are resized based on various criteria. The final result is shown

at the bottom of Figure 7.1; some of the windows have been resized, and all of them

have been assigned a class label of Relevant or Not Relevant. Those which are assigned

a label of Not Relevant are discarded, while the remainder are processed in Phase II of

the algorithm.
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Figure 5.4: This figure shows how an individual window is resized several times. After

each resize, it is input into a classifier to determine its relevance.

Though the objective of both Phase I and Phase II is to classify window of data

that may be associated with events of interest, the emphasis in Phase I is to detect if a

particular window is worthy of a closer look. This is achieved using a high performance

classifier with a small input feature set, rather than an expensive and slow classifier. The

motivation behind this optimization is the observation that detecting if something has

taken place in a continuous signal is a much simpler problem than detecting exactly what.

Figure 6.3 shows a closeup of how one particular window would be processed. Each

window is resized up to α times, with the left boundary fixed. After each resize, features

are extracted from the signal and processed using a binary classifier. The boundary that

is selected is that which minimizes the window length, while satisfying the constraint

that the window is assigned a Relevant class label. If no boundary yields a window that

receives this label, it is discarded. A more detailed reproduction of this algorithm can be

found in Algorithm 6. From this algorithm, it is clear that a serious performance penalty

will be incurred in applications with a high value of α; it is in these cases that the use of

a simple, high-performance classifier is particularly important.

5.3.2 Phase II - Advanced Classification

In the second phase of the algorithm, we are given a series of windows derived from the

original continuous signal that have been identified as potentially relevant. The primary

challenge at this stage is to select an appropriate classifier to maximize the classification
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accuracy. This procedure is shown in Figure 6.4. Note that the input to the algorithm

is a series of windows that are of varying sizes; much of the signal has been discarded in

Phase I.

The remaining signals are binned according to their window length. The logic behind

this decision is simple: a large window is more likely to be associated with more complex

or long-duration events, while a very small window is more likely to contain short-duration

events. The process of binning is quite straightforward, as possible window sizes are mul-

tiples of a base length, l, and it is unlikely that this process is computationally demanding

as the number of window candidates should be kept low as we discuss later.

The algorithm for classification is shown in Algorithm 7. Note that in this particular

classifical scheme, the feature extraction algorithms and classifiers, extractComplex

and classifyComplex, are different from those described in Algorithm 6. At this stage,

the classifier must assign one of several class labels and therefore requires a more robust

set of features than the simple implementation in Phase I.

Thus, in Phase II of the algorithm, most of the original windows of data have already

been analyzed and discarded using a simple, lightweight classifier. For those data samples

that remain, a higher-dimension classifier can be used to assign a specific class label to

an event of interest. As we show in our case study on audio-based monitoring of eating

behavior, the first step of the algorithm is to determine if the subject is eating, and the

next (more challenging) step is to analyze what.

5.3.3 Cost Analysis

The last two subsections have discussed the general operation of the algorithm at a high

level, but we have not properly motivated the design decisions of this methodology. The

proposed algoriths, both Phase I and Phase II, make several hypotheses:

• Firstly, we assume that our first-stage classifier is able to properly discriminate

between data that is Relevant and Not Relevant to the current classification prob-

lem. This is despite the limitations of a small feature set on the performance of the

simple classifier used in Phase I.

• Secondly, we assume that we are able to better evaluate this decision by attempting
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Figure 5.5: Phase II: discarding irrelevant segments of the window are discarded. The re-

maining windows are binned according to their length, and a more robust (and expensive)

classifier produces the final class label.

a number of different window sizes.

• Thirdly, we assume that this approach is significantly less computationally intensive

than an approach in which a single multi-class classifier is used to analyze every

window of data.

The first two assumptions will be validated in the experimental methodology. The

third assumption can be discussed more analytically. The general principle of the algo-

rithm is to use the more expensive classifier and feature extraction algorithm on the most

relevant data, and use the inexpensive Phase I algorithm to discard a larger amount of

less relevant data. To preface this discussion, we use the term cost refer to the number

of operations associated with an an operation; it is an estimate rather than an empirical

measurement. The significant terms and symbols used in this discussion are presented in

Table 5.1.

First, we define the cost of the simple and advanced classifiers used in Phase I and

Phase II as Csmp and Cadv. Next, we define the number of features used by Csmp and

Cadv as N and M. These values are significant because as shown in Equation 6.5, a higher

number of features increases the cost of both the classifier and the feature extraction tool.

88



We can represent the total algorithm cost for processing a single window as the sum of

the costs of Phase 1 (Segmentation) and Phase 2 (Class Label Assignment).

Ctot = Cph1 + Cph2 (5.2)

We will now investigate Cph1 in more depth. For each original window, we define α

possible boundary candidates as shown in Figure 6.3. For each boundary candidate, we

must pay the penalty of extracting N features and classifying (Csmp). This formulation

is shown below in Equation 5.3.

Cph1 = α · Csmp ·
N∑
i=1

fi (5.3)

≈ α · Csmp ·
N · favg

2

The per-window cost of the next stage of the algorithm, Cph2, is similar to that of the

first page except we use a different number of features, and the α parameter plays no

role. This formulation can be found below, in Algorithm 5.4.

Cph2 = Cadv ·
M∑
i=1

fi (5.4)

≈ Cadv ·
M · favg

2

Thus, our final algorithm cost can be represented by substituting Equation 5.4 and

Equation 5.3 into Equation 5.5. Simplifying, this yields the following per-window cost:

Ctot =
favg

2
(α · Csmp ·N + Cadv ·M) (5.5)

Though the formula in Equation 5.5 represents the cost associated with one particular

window, we extend our analysis for a signal comprised of W windows of some arbitrary

size. To represent the total cost, we require a new parameter, β, which represents the

percentage of windows in Phase I that are assigned the label of not-relevant, and are
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therefore not processed by Phase II of the algorithm. Recall that all other windows are

discarded in order to reduce overhead; the number of windows processed in Phase II

should be significantly less than that of Phase I.

Ctot =
W · favg

2

(
α · Csmp ·N + Cadv ·M · (1− β)

)
(5.6)

5.3.4 Comparison to Baseline

We now compare the cost associated with the proposed algorithm to a 1-phase system

which essentially applies the Phase II algorithm to each window in the original signal.

Therefore, the cost of the baseline can be approximated as:

Ctot =
W · favg

2
(α · Cadv ·M) (5.7)

Thus, with α = 1, the following criteria must be met for the baseline to have a higher

cost than the optimized algorithm:

α · Cadv ·M > α · Csmp ·N + Cadv ·M · (1− β) (5.8)

In conclusion, the proposed scheme can outperform the baseline (on the basis of cost)

when the constraints specified in Equation 5.8 are satisfied. The practicality of this is

discussed further in subsequent sections as we solve for some of these coefficients through

an experimental case-study.

5.3.5 Feature Selection

Feature selection allows us to reduce the values of M or N in Equation 5.8, as well

as the classifier runtime Cadv and Csmp in some cases. Besides performance-minded

applications, feature selection can eliminate redundancy and remove weakly correlated

features, while reducing overfitting. The two general feature selection techniques are filter

and wrapper methods. Filter methods use a specific metric to score an individual feature

or subset of features, while wrapper methods use a classifier to evaluate features based
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on their predictive power. Typically, wrapper methods may be too slow for systems with

thousands of possible features; it is for this reason that we use the filter approach [LL06].

The specific algorithm we employed is the InformationGain feature extraction algorithm.

The attribute selection algorithm provides a sorted list of features, based on their

predictive power with respect to the desired classifier outcomes. This approach allows us

to train classifiers for Phase I and Phase II by modifying the thresholds for the attribute

selection algorithm. Therefore, the Phase I classifier can be trained to rely on a smaller

input set compared to the more robust, but computationally expensive classifier employed

in Phase II.

5.4 Experimental Methodology

The case study we use to evaluate our proposed scheme is a nutrition monitoring appli-

cation. In this study, we obtained audio recordings from 20 individuals who ate three

different foods. From this data, we extract features and use various classifiers in an at-

tempt to identify the correct food. The first challenge is to segment the original signal to

distinguish eating any food from ambient noise and silence. The second challenge (Phase

II) is to distinguish one food from another using a potentially more robust classifier. For

further details about nutrition monitoring challenges and applications, we refer the reader

to Alshurafa et al. [AKP15].

5.4.1 Data Collection

Data was collected from 20 individuals using a Hyperio Flexible Throat Microphone

Headset placed in the lower part of the neck near the collarbone, connected directly to

the mobile phones audio input port using a 3.5mm male audio cable. Among the subjects,

16 were male, and 4 were female. The ages ranged from 21 to 31 years old, with a median

age of 22. Commercially available audio-recording technology was used to acquire the

audio recordings from the microphone. Twenty subjects, who were given two miniature

chocolate bars, followed by ten Pringles potato chips and 2 small celery sticks. The foods

were consumed sequentially, in that order, and the subjects ate one potato chip at a time.

These recordings formed the basis of the algorithm design and experimental evaluation.
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The data collection took place in a lab environment; people can be faintly heard

speaking in the background, and the microphone occasionally recorded doors closing and

nearby footsteps. The collected data is a subset of the data collected in a previous trial

on audio-based detection of eating behavior based on identification of chews and swallows

[AKP14][KAL15a][AKP15].

5.4.2 Feature Extraction

The Munich open Speech and Music Interpretation by Large Space Extraction toolkit,

known as openSMILE [EWS10], is a feature extraction tool intended for producing large

audio feature sets. This tool is capable of various audio signal processing operations such

as applying window functions, FFT, FIR filterbanks, autocorrelation, and cepstrum. In

addition to these techniques, openSMILE is capable of extracting various speech related

features and statistical features. Audio-based features include frame energy, intensity,

auditory spectra, zero crossing rate, and voice quality. After data is collected from a

variety of subjects eating several foods, feature selection tools can be used to identify

strong features that are accurate predictors of swallows and bites for various foods, while

reducing the dimensionality by eliminating redundant or weakly correlated features.

5.4.3 Selected Features

Table 5.2 shows the 20 features ranked according to their correlation with the desired

classifier outcomes: their ability to distinguish between the two types of food. In this

table, sma represents the simple moving average of a signal characteristic, while melspec

refers to the mel-frequency cepstrum, which is a representation of the power spectrum of

a sound on a non-linear scale.

5.5 Results and Discussion

In this section, we provide results as we apply our segmentation and classification algo-

rithm to our audio-based nutrition monitoring dataset.
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Figure 5.6: SMO [Pla99a], Bayesian Networks [FGG97], and LogicalRegression [HL04]

classifiers are evaluated for speed as a function of feature set size.

5.5.1 Classifier performance vs. Input Size

Figure 5.6 shows the performance of three classifiers as input size is varied. The eval-

uated classifiers are: SMO (Sequential Minimal Optimization) [Pla99a], Bayesian Net-

works [FGG97], and LogicalRegression [HL04]. We do not evaluate the training time of

each classifier as we assume that this is done offline for real-time systems. In our ex-

periments, we used the WEKA implementation of these classifiers and used the WEKA

Experimenter environment to generate our results [HFH09a]. Figure 5.6 reveals that, as

expected, the amount of time to run a classification algorithm and produce a class label

varies significantly with the number of features. It is also important to note that the vari-

ation in performance between classifiers is substantial. Therefore, it is imperative that a

lightweight power-aware classifier select both an appropriate classification algorithm and

feature size.

The results suggest that the Bayesian Network classifier has more overhead for a given

number of features than the two alternatives; Logistic Regression and SMO. Though

experimental constraints make it difficult to evaluate classifier performance with very

low (single digit) feature sizes, there appears to be a roughly linear relationship be-

tween feature size and execution time in the case of the three evaluated classifiers. This,

compounded with the overhead of extracting high-dimensional feature sets in real time,

strongly biases performance-minded applications towards smaller feature sets.
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Figure 5.7: The ability of three classifiers to distinguish noise from relevant data (Phase

I) as a function of number of features.
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Figure 5.8: The ability of three classifiers to identify from three different classes (Phase

II) as a function of number of features.

5.5.2 Classifier Accuracy

Figure 5.7 and Figure 5.9 show the classification accuracy of the Phase I and Phase II

classifiers, respectively. As Figure 5.9 shows, a feature set of size nine is also a good

tradeoff between accuracy and set size for distinguishing between the three foods. With

nine features, the percentage of correctly classified instances between the three food types

is just under 80%, and increases only slightly as the feature set size is increased to twenty

before dropping off.

By comparison, Figure 5.7 shows that because of the simplicity of the classification

problem, four features is sufficient to clearly identify eating-related sounds from ambient

background noise and silence. Note that in the first case, in which noise is to be differen-
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tiated from eating behavior, we are able to correctly classify virtually all instances with

a feature set of size four. Through this observation, we can optimize computation time

without diminishing classification accuracy by identifying relevant signals with a classifier

with feature size four, and distinguish between various foods with a larger feature set.

5.5.3 Speed vs. Unoptimized Baseline

Let us assume that our baseline model classifies between all four classes of data (the three

foods as well as noise) all at once. With no apriori knowledge about whether the data

in the window was relevant, we would require nine or more features as shown in Figure

5.9. Referring back to Equation 5.8, we can calculate the ratio of the baseline execution

time and the proposed scheme using Equation 5.9 below, along with the addition of the

α parameter that reflects the number of boundary candidates.

Tratio =
α · Cadv ·M

α · Csmp ·N + Cadv ·M · (1− β)
(5.9)

As we have discussed previously, viable values for M and N (feature set sizes for

both classifiers) are nine and four, respectively. Furthermore, we can assume that with

assumptions of linearity (as shown in Figure 5.6), the ratio of Csmp

Cadv
also 4

9
. Therefore, the

final ratio of performance can be approximated using Equation 5.10 below:

Tratio =
α · 81

α · 16 + 81 · (1− β)
(5.10)

A plot of Equation 5.10 under various values for β and α is shown in Figure 5.9

in which we compare the execution time of both algorithms in relative terms. That is,

this equation does not consider the overall signal length or amount of time necessary to

extract a feature as these values would be approximately equal for both the baseline and

proposed scheme.

As Figure 5.9 shows, the proposed scheme vastly outperforms the baseline in cases

which have a high number of boundary candidates (α) per window. However, in the case

that boundary candidates are not evaluated and the size is fixed (α = 1), the baseline

outperforms the proposed scheme in some cases. Figure 5.9 also reveals the sensitivity of
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Figure 5.9: Comparison between the baseline and proposed scheme as we sweep across β

values and vary the α parameter.

the algorithm to the β parameter. Recall that this parameter prefers to the percentage

of original windows that are labelled as not relevant, and therefore are not processed

in the second stage of the algorithm. As expected, the baseline is not sensitive to the

β parameter as it is a one-stage algorithm. As β increases, the execution time of the

proposed algorithm decreases as unnecessary computation is avoided. However, with a β

value of close to zero, in which almost all windows of data must be processed using Cadv,

the baseline outperforms the proposed algorithm. It is clear from these results that the

proposed algorithm will outperform the baseline in cases in which a significant percentage

of data windows contain no meaningful information (ie. noise), with only intermittent

events which require class labels beyond (relevant, not relevant).

5.5.4 Boundary Selection

We now direct our attention to the boundary selection problem. In our previous study on

audio-based nutrition monitoring, we were able to classify between a variety of different

foods based on the characteristics of the swallow sounds associated with each food type.

However, the swallows were manually identified and segmented from a long audio-file

consisting of chewing, swallowing, silence, and background noises. In this experiment,

we apply our Phase I segmentation algorithm to the original audio datasets, to evaluate

if the time-series segmentation algorithm is capable of dividing the signal such that the

Phase II algorithm can accurately identify the food type. In order to do this, we evaluate
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Figure 5.10: Classification accuracy vs. α parameter.

classification accuracy as a function of α: the number of window boundaries attempted

for each signal.This experiment was conducted using the BayesNet classifier, with Phase

I and Phase II feature counts of four and nine, respectively. Results are shown in Figure

5.10.

As these results indicate, the classification accuracy improves by approximately 6%

as we consider two window candidates in comparison to one. However, there does not

appear to be any improvement in the percentage of correctly classified instances as the

boundary candidates (α) is increased beyond this number. This is most likely because

the proposed algorithm breaks out of the iteration process of testing different window

sizes as soon as the smallest available window size is given the relevant class label. As

the focus of our work is on mobile low-power devices, this performance optimization is

necessary for the practical realization of the proposed algorithm.

5.6 Conclusion

In conclusion, we demonstrate a new technique for segmenting and classifying time-

series signals using a hierarchical approach that attempts multiple window-sizes using a

small, efficient classifier, as well as a more robust classifier with a higher feature set for

those segments that are deemed relevant for further analysis. We show, compared to a

baseline approach, that our approach is capable of improving performance under various

conditions with minimal impact to overall system classification accuracy. Future research

will evaluate the efficacy of the proposed technique in more varied use-cases with different
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properties.
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Algorithm 2: Phase I - Segmentation Algorithm

/* We iterate through each window in the signal.

The identifier for each window is the left boundary. */

while LBoundary lb in Signal do

/* Iterate through α possible window lengths for each window. */

for i = 1:α do

/* Extract features from a window of a particular length and assign a class

label to it. */

Window cur = getWindow (lb, lengthIndex(α))

Features fts = extractSimple (cur);

ClassLabel = classifySimple (fts);

if ClassLabel == Relevant then

/* The shortest length that is classified as relevant is saved. Otherwise,

we discard. */

Save (LBoundary, lengthIndex(α));

/* Adjust starting index of next window. */

adjustBoundaries ();

break;

/* Otherwise, discard non-relevant windows. */
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Algorithm 3: Phase II - Final Classification

/* We iterate through each relevant window in the signal.

The identifier for each window is the left boundary. */

foreach Window win in Signal do

/* We retrieve a pre-trained classifier based on the length of the current

window. */

Classifier class = getClassifier (win.length());

/* We extract features from the window, and input these features into an

advanced (resource-heavy) classifier to receive a class label. */

Features fts = extractComplex (win);

ClassLabel cl = classifyComplex (class, fts);

/* Finally, we associate the returned label with the current window and proceed

to the next window. */

AssignLabel (win, cl);
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Table 5.1: Definition of Terms

Symbol Definition

C Cost: the amount of time necessary to execute an operation.

favg The average cost required to extract a feature

from a particular window.

M The number of input features required by the

Phase II Classifier.

N The number of input features required by the

Phase I Classifier.

Csmp Average cost associated with executing the simple

classifier for a particular feature set.

Cadv Average cost associated with executing the advanced

classifier for a particular feature set.

α The number of boundary candidates evaluated in Phase I.

β The average probability that the Phase I classifier

will classify a particular window as not relevant.

W The number of windows processed for a particular signal.
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Table 5.2: Top 20 Features Selected by the Feature Reduction Algorithm

Rank Attribute (FFTMag) Correlation

1 melspec sma[1] quartile1 0.951

2 melspec sma[0] nonzero geom. mean 0.885

3 melspec sma[1] nonzero geom. mean 0.877

4 melspec sma[1] quartile2 numeric 0.858

5 melspec sma[1] nonzero arith. mean 0.833

6 melspec sma[1] arithmetic mean 0.833

7 melspec sma[1] abs. value mean 0.833

8 melspec sma[0] quartile1 0.815

9 melspec sma[1] nonzero quadr. Mean 0.807

10 sma[1] qmean 0.807

11 sma[1] linregc2 0.807

12 sma[1] quartile3 0.807

13 sma[0] linregc2 0.794

14 sma quartile1 0.77

15 sma[1] qregc3 0.767

16 sma quartile2 0.761

17 sma[1] peakMean 0.758

18 sma[0] quartile2 0.747

19 sma[1] percentile98.0 0.726

20 sma[0] quartile3 0.718
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CHAPTER 6

Probabilistic Time-Series Segmentation for

Real-Time Classification Applications

To further bolster the quantified-self movement and provide timely user interventions,

sensor signals from body sensor networks need to be processed in real-time. Time subdi-

visions of the sensor signals are extracted and fed into a supervised learning algorithm,

such as Support Vector Machines (SVM), to learn a model capable of distinguishing dif-

ferent class labels. However, selecting a short-duration window from the continuous data

stream is a significant challenge, and the window may not be properly centered around

the activity of interest. In this work, we address the issue of window selection from a

continuous data stream, using an optimized SVM-based probability model. To measure

the effectiveness of our approach, we test our algorithm against audio signals from a wear-

able nutrition-monitoring necklace. We compare our optimized time-series segmentation

algorithm against a naive and exhaustive approach. Our optimized algorithm is capable

of correctly classifying 92.6% of instances, compared to a baseline of 73% which segments

the time-series data with fixed-size non-overlapping windows.

6.1 Introduction

Sensing and monitoring technologies have become increasingly popular in recent years,

motivated by advances in wearable technology and a rapidly aging global population

[LSS08]. The applications of wearable technologies range from monitoring cardiac activ-

ity, eating habits, blood pressure, physical activity, brain activity, speech patterns, and

more[misa][LKC10][TIH07]. These devices use integrated micro-sized wearable sensors,

which provide data that can be analyzed to track user activity. Recently, many works

have employed machine learning and data mining techniques to identify health-related
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Most audio-classification approaches extract windows that are manually centered on the action of interest. Thus, 
the system has a-priori knowledge about the action being performed. However, Figure 1 shows an approach in 
which the system has no a-priori knowledge about the signal, which is a more realistic scenario for real-world
environments. However, there are three potential problems associated with this approach. 

(1) First, we may select the wrong value of the window size, L. Consider an audio-based classification system 
intended to identify an action of very short duration such as a cough. If the system window size is three
minutes long, the audio features associated with the cough will be averaged with the rest of the data in the 
window. Thus, the classification accuracy will decrease significantly. Alternatively, picking a very small window 
size for an event of long duration will also lead to non-ideal classification outcomes.  

(2) Second, we must appropriately place the boundaries of the window. Consider the case in which the first half of
the cough is found in window W1, while the second is in window W2. Therefore, neither window may have
enough information for a correct classification. However, the classifier must still output a class label for the
data, and the accuracy of the system will decrease. A potential solution is to overlap the windows, as shown in 
Figure 2. However, we must then pick the appropriate overlap, p, and this approach is associated with
increasing system complexity, as well as computational overhead. 

(3) Third, our classification system is not probabilistic. A class label is assigned to each window, regardless of the
classifier confidence. A preferred approach would be to modify the feature extraction parameters and avoid the
assignment of a class label unless the classification confidence exceeds a predefined threshold. We elaborate on
this in section III. 

(4) Input  to a 
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(2) Extract a 
window of data 
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(1) Acquire 
data from a 
body mounted 
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W1   W2  W3        …  
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Figure 6.1: Typical system flow for classifying sensor data.

events from digital signals [PM07][SKC12][KLM13]. These devices and technologies have

the potential for significant impact in real-word environments, by enabling preventative

healthcare. However, the detection of finite events in a large stream of data is not without

its challenges. In many cases, sensor data analysis can be quite simple. For example, de-

termining heart rate from heart rate sensors could in some cases require little more than

amplification and thresholding[SBT02]. In other cases, such as continuous audio-based

monitoring of eating habits, sleep apnea, and coughing, much more advanced techniques

are required to discriminate between activities.

Machine learning tools based on classifiers such as Support Vector Machines (SVMs)

are often used to transform data to find an optimal boundary between class labels

[AKP14]. Such tools enable the development of models to identify the subtle and in-

terrelated conditions needed to distinguish between class labels. However, identifying the

intended activity and extracting data points for classification from a continuous time-

series signal is quite challenging. Some existing techniques identify peaks and troughs in

the signal to identify each data sample, while others perform fixed time subdivisions of

the data [PCC14]. The division of a large continuous signal into individually-processed

fragments is known as time-series segmentation, which is the focus of our work.

This chapter is organized as follows. In Section II, we describe the motivation for

our work. In Section III, we present a brief introduction to the challenges of time-series

segmentation. In Section IV, we present related work in this field. In Section V, we
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provide an overview of Support Vector Machines and the notion of classifier confidence.

In Section VI, we describe our proposed window selection algorithm. In Section VII, we

describe the experimental setup. In Section VIII, we present our results. We provide a

discussion of future work in Section IX, and concluding remarks in Section X.

6.2 Motivation

Consider a 24-hour stream of audio data from which we intend to identify eating behavior

that we must disambiguate from other sounds. A typical system flow is defined as fol-

lows. First, audio is recorded using a microphone that is placed somewhere on the body.

Examples include a smartwatch [KS15b], smartphone, or a custom hardware device such

as a neckband [KAS14a]. After audio is recorded, it is either buffered or transmitted to

an aggregator for analysis. However, assigning a single class label to an entire days worth

of data is impractical for many cases, which attempt to identify brief actions through-

out the day. Therefore, the large audio stream is divided into shorter windows, in order

to identify activities with a finer granularity and avoid averaging out unique statistical

features associated with finite-length events such as coughing, chewing, and swallowing.

After the audio signals are divided into shorter windows, statistical features can be

extracted from the window. Examples include mean, interquartile range, standard devi-

ation, variance, kurtosis, and skewness. These features are processed using a pre-trained

classifier, which can identify the action being performed based on the distinguishing char-

acteristics of the signal represented by the features selected by the training process. This

system flow is shown in Figure 7.1. At the top, we have an audio waveform that is several

minutes in duration. In order to identify multiple short-duration events from this signal,

we extract windows W1, W2, and W3 from the data. We then extract statistical features

from each window, and input these features to a trained classifier, which outputs a class

label corresponding with that window. In this case, our classifier reports that the user

is speaking at times τ = 0 through τ = 4, followed by four minutes of eating, and four

minutes of drinking.

Figure 7.1 presents an example of a working system with ideal segmentation, but

consider a case in which W1 contains both data corresponding with speaking and eating,
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with roughly the same proportion. In this case, no class label can holistically represent

the contained data. Rather than introducing a new class label corresponding with this

particular combination of events, the window size and boundaries could be adjusted to

properly contain the events of interest. In the next section, we describe the shortcomings

of arbitrary window selection in more detail.

6.3 System Challenges and Considerations

Most signal classification approaches in academic literature extract windows that are

manually centered on the action of interest, with a window size large enough to fully

contain the distinguishing features of the signal. Thus, the system has a-priori knowledge

about the action being performed. Figure 7.1 shows an approach in which the system

has no a-priori knowledge about the signal, which is a more realistic scenario for real-

world environments. However, there are several significant challenges associated with this

approach, which are shown in Figure 7.4. In this figure, the sinusoid represents the raw

signal, while the red star denotes the short-duration event that we wish to detect. The

dashed line represents the boundaries of the extracted window from the original signal.

The major challenges are described below:

6.3.0.1 Window Size Selection

First, we may fail to select an appropriate window size, as shown in Figure 7.4-C. Consider

an audio-based classification system designed to identify an activity of short duration such

as a cough. If the system window size is ten minutes long, the audio features associated

with the cough will be averaged together with the rest of the data in the window. There-

fore, certain statistical features, such as those which evaluate power spectral density at

different frequency ranges, may be rendered ineffective. Furthermore, a window of large

length will be assigned a single class label, while multiple actions of interest could have

taken place in this time period. Alternatively, a small window size may fail to holistically

represent the event in the extracted snippet.
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Figure 6.2: Incorrect segmentation scenarios.

6.3.0.2 Window Boundary Selection

We must appropriately place the boundaries of the window. Consider the case in which

the first half of the cough is found in window W1, while the second is in window W2. An

example can be seen in Figure 7.4-B, in which only a portion of the event of interest is

represented in the current window. Therefore, no window may have enough information

for a correct classification. However, the classifier must still output a class label for the

data, and the accuracy of the system will decrease. A potential solution is to overlap

the windows, as shown in Figure 6.3. However, this approach is associated with high

computational overhead; if we defineL as the window size, this approach requires a factor

of L more time to complete. An embedded application may not have the power budget

or processing power to justify this approach, considering some signals such as audio have

sample rates in the kHz range.
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In this paper, we propose a new architecture that can be used for real-time monitoring of health using continuous 
sensor signals including, but not limited to, piezoelectric sensors, audio sensors, and image streams, by optimizing 
window extraction based on a probabilistic SVM model. 
 
III. Related Works 
 
Several other works have been proposed for continuous monitoring of signals.  
 
BodyScope, BodyBeat, Amft, Passler, etc. 

 
 
 
 
 
 
 
 

IV. Algorithm Design 
 

A. Introduction to Support Vector Machines for Classification 
 

Support Vector Machines (SVMs) are supervised learning models commonly used for classification problems. Given 
a set of data, the SVM will attempt to separate the two classes using a hyperplane, which is a subspace one 
dimension less than the ambient space. Various mathematical techniques such as dual quadratic programming and 
non-linear kernel transformations can be used to maximize the margin between the two classes of data. A hard-
margin SVM will enforce the principle that the data must be separable.  However, it may not be possible to 
achiever perfect separation of the data in some cases. Therefore, a soft-margin SVM classifier can be used to 
maximize the hyperplane margin while allowing some misclassifications. Using the parameters s and c, 
representing the slack variable and penalty parameters, the SVM classifier can adjust the hyperplane’s average 
separation between classes, and overall classification accuracy. 
 
B.  Classifier Confidence 
 
Let us consider a system designed for distinguishing between two activities: A and B. Figure 3 shows how an SVM 
model can be used to linearly separate the two classes of data using a one dimensional hyperplane in a two-
dimensional space. Thus, all 18 instances are labelled as class A or class B with no distinction about their original 

Time (Minutes) 

0      1      2      3      4      5      6  .. 

W1                               

W2                            

W3                         

…   

L    

P   

Figure 1 - Overlapping Windows 

Figure 6.3: Window overlapping to avoid boundary issues.

6.3.0.3 Binary Output

Our classification system does not return a probabilistic output. A class label is assigned

to each window, regardless of the classifier confidence that this label is correct. In some

cases, it may be preferable to avoid assignment of a class label unless the classification

confidence exceeds a predefined threshold. The end user of the classification model can

subsequently choose to retain the class label or discard the sample, based on the specific

properties of their application.

The key question we aim to address is: How can we correctly window a continuous sig-

nal, in order to maximize classification accuracy of short-duration events? Fortunately,

various algorithms have been proposed for mapping a raw classifier output to a proba-

bility, or classification confidence [Pla99b][LLW07]. In this chapter, we propose a new

architecture that can be used for real-time monitoring of sensor signals such as audio,

by optimizing window selection based on the classification confidence for that particular

instance.

6.4 Related Work

A comprehensive survey of time-series segmentation was provided by Keogh et al. in

[KCH04]. The emphasis of existing work on segmentation is to develop a compact repre-

sentation of a large signal, with applications in data mining and compression. The three

primary methods in literature are sliding window approaches, similar to the baseline used
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location on the feature plane. Clearly, instance i4 has a very large SVM Score, m4 as seen by its distance from the 
hyperplane separating the two classes. 
 
An SVM Score for an instance i is the distance from i to the decision boundary. A positive SVM score will assign a 
different class label to i than a negative score.   It has been shown that the probability that a classification is correct 
is a function of the SVM score, m. 
 
 

 
 
From Figure 3, it can clearly be seen that the margin separating instance i3 from the hyperplane is very small. This 
suggests there is some ambiguity about the true class label of instance i3. This can be a result of several factors. For 
example, the window size may be too short to effectively characterize the action associated with the true class 
label. Secondly, the window size start and end points may be dividing the action of interest into two separate 
windows. Lastly, the data sample may not be associated with the activities represented by class A or class B, but 
the system constraints will assign a class label nevertheless.  
 
C. Proposed Model 
 
We now discuss how we can improve our classification accuracy by considering the distance between an instance 
and the hyperplane. That is, we are no longer exclusively concerned with the specific class an instance is associated 
with. Rather, we are interested in the probability that the instance belongs to a particular class. The motivation for 
this is the observation that window size and window boundaries can be adjusted until the instance margin 
increases beyond our desired threshold. 
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Figure 6.4: SVM hyperplane-based separation of instances.

in this chapter, and recursive top-down or bottom-up techniques that are either partition

or merge signals until a stopping criteria is met.

Analysis of digital signals, particularly audio signals, has been a subject of many recent

works [SSL08][RAZ14]. In [RAZ14], Rahman et al. present BodyBeat: a robust system

for detecting human sounds. A similar work is presented by Yatani et al. in [YT12]. The

BodyScope device can distinguish between twelve kinds of activities including eating,

drinking, laughing, and coughing. This device is based on a microphone worn on the

neck. By analyzing the magnitude of different frequency ranges over time, the authors

are able to recognize various activities using classifiers such as Support Vector Machines

[HDO98]. However, the window size from which they extract features is of fixed length,

at five seconds. This window size is arbitrary, as some actions are of significantly shorter

duration, while others are more protracted. Furthermore, the activities in question were

manually annotated, and the audio fragments were extracted by hand.

Adaptive window sizing has been explored in several other works. For example, in

[OK92], Okutomi et al. present a signal matching algorithm that can adapt window size

based on the uncertainty of the disparity between two signals. The issue of adaptive

window sizing for image filtering using local polynomial approximation is presented by

Katkovnik et al. in [KEA02]. In [KJ00], Klinkenberg et al. propose an approach for se-

lection of window size to minimize generalization error based on leave-one-out estimation

error. However, to the best of our knowledge, applying posterior probability of a classifier

to the issue of window selection has not been explored in academic literature.
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Figure 4 shows the proposed SVM classification outcome. In this case, we assign class labels to those instances 
which we consider very likely to be classified correctly. Those instances associated with lower probabilities, based 
on their distance from the hyperplane, are labelled as “not enough information”. In these cases, we refrain from 
assigning a classification output, and perform minor modifications to the associated window in order to steer the 
instance firmly into either class category. 
 
D. A Model for Classification Probability 
 
The distance of an instance from the hyperplane is not necessarily the most appropriate heuristic for classification 
accuracy. The work by Platt et al. in [X] explores the probabilistic outputs of Support Vector Machines.  
 
 
 
V. Appropriate Selection of Window Size 
 
 
 
VI. 3 
 
VII. Results 
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6.5 Posterior Probabilities for SVM

6.5.1 An Introduction to Support Vector Machines

Support Vector Machines (SVMs) are supervised learning models commonly used for

classification problems. Given a set of data, the SVM will attempt to separate the two

classes using a hyperplane, which is a subspace one dimension less than the ambient

space. Various mathematical techniques such as dual quadratic programming and non-

linear kernel transformations can be used to maximize the margin between the classes of

data. A hard-margin SVM will enforce the principle that the data must be separable.

However, it may not be possible to achieve perfect separation of the data in some cases.

Therefore, a soft-margin SVM classifier can be used to maximize the hyperplane margin

while allowing some misclassifications.

6.5.2 Motivation

Consider a system designed for distinguishing between two activities: A and B. Figure

6.4 illustrates a simple case in which an SVM model is used to linearly separate the two

classes of data using a one dimensional hyperplane in a two-dimensional space. Thus,

all 18 instances are labeled as class A or class B, with no distinction made about their

original location on the feature plane. An SVM Score for an instance i is defined as
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the distance from i to the decision boundary. Clearly, instance i4 has a very large SVM

Score, m4, as seen by its distance from the hyperplane separating the two classes. In

comparison, note that the margin separating instance i3 from the hyperplane is quite

small. It has been shown that the probability that a classification is correct is a function

of the SVM score for that particular instance, m [Pla99b]. Therefore, this observation

suggests some ambiguity about the true class label associated with i3. This can be a

result of several factors:

• The window size may be too small to effectively capture the distinguishing feature of

the activity.

• The window size may be too large, polluting the unique properties of the short-duration

activity with neighboring noise, or encompassing multiple events within the boundaries

of a single window.

• The window boundaries may be bisecting the activity of interest into two separate

windows, neither of which can definitively identify the event.

• The sample may not be associated with activities represented by either class. However,

a class label will be assigned regardless, because a real time activity monitoring device

cannot practically have thousands of class templates for each possible action a user

could take throughout the day.

• The window selection is optimal, but the activity has unique properties that are dis-

similar to other instances in that class.

We can potentially improve classification accuracy by considering the distance between

an instance and the hyperplane to adjust the window index and size. That is, we are no

longer exclusively concerned with the specific class an instance is associated with, but

with the probability that the instance belongs to that particular class. Our motivation is

the observation that window boundaries can be adjusted until the instance’s SVM score

increases beyond our desired threshold. As shown in Figure 6.5, we assign class labels to

those instances which are likely to be correct classifications. Those instances associated
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with lower probabilities, based on their distance from the hyperplane, are labeled as not

enough information. In these cases, we refrain from assigning a classification output, and

perform minor modifications to the associated window in order to disambiguate the class

label. In the event that we are unable to improve the classification confidence score, we

tag the data as ambiguous, leaving to the discretion of the user the decision of whether

to discard the sample or assign a label.

6.5.3 Probability Model

In the previous section, we referred to the probability that an instance is classified cor-

rectly as a function of the distance between the instance and the hyperplane. However,

the relationship between distance and probability is not necessarily linear [NC05]. The

work by Platt et al. in [Pla99b][LLW07] explored the probabilistic outputs of classifiers

and concluded that the relationship between SVM score and posterior probability as-

sumes a sigmoid distribution. Platt Calibration is a well-known method for transforming

classification model outputs to probability distributions. This technique, though gener-

alizable, is often used in the context of Support Vector Machines. Platt Calibration can

be used to compute the posterior probability of a class label given an instance x, using

the following formulation:

P (y = 1|x) =
1

1 + eα·f(x)+β
(6.1)

In this case, f(x) is the raw, uncalibrated classifier output, the sign of which is used for

binary class assignment. Constants α and β are coefficients obtained using a maximum

likelihood estimation. These values are obtained by fitting training data to a sigmoid

function, as the sigmoid model has been shown to be generally superior to other models

such as Gaussian distributions for probability estimation. Typically, the sigmoid is trained

using a subset of the training data (roughly 30%) [Pla99b] to ensure an unbiased training

set. Thus, the Platt Calibration algorithm returns a posterior probability of classification

accuracy for each instance, based on the signed distance between the instance and the

decision boundary. Therefore, we can use the Platt Calibration algorithm to produce a

classification confidence score for a particular instance, and adjust the window parameters
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to disambiguate the true label. This procedure is outlined in the following section. For

further details about Platt Calibration, please refer to Platt et al. [Pla99b].

6.6 Window Size Selection

Each window is a function of two parameters: the starting index at which the window

boundary is placed, as well as the length of the window. Thus, we define a window as a

function of these parameters, w = (I, L). Function f uses a trained SVM classifier as a

well as a calibrated Platt model to return a class label c and a classification confidence p,

based on an input window defined by the length and starting index, I and L, respectively.

[c, p] = f(I, L) (6.2)

The classification confidence is a number between 0 and 1, which reflects the estimated

probability that the instance is labeled correctly. Thus, in a binary classification problem,

p ranges from .50 to 1. Based on this formulation, we compare three algorithms for

window selection.

6.6.1 Naive Window Selection

Naive Window Selection is the simplest model that we use as a baseline. This is the

scheme shown in Figure 7.1, which is computationally simple, and does not use probability

in the assignment of class labels. In this model, we simply subdivide the signal into

non-overlapping windows and assign class labels to each window as described in the

introduction. We use a fixed window length, and the default starting index, both of

which are a function of the particular classification problem and cannot be generalized.

This very simple scheme is shown in Algorithm 4. Though classification accuracy is

likely to be quite low using this approach, the simplicity of this model is likely to execute

quickly because the algorithm is not iterative in the case of a particular window; the time

complexity is O(n
L

) where n is the number of samples and L is the window size.
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Algorithm 4: Naive Window Selection

/* We use the default window length and index*/

(c,p) = f (I, L);

/* Regardless of the probability of correct classification, we return the class label.

*/

return (c, p)

/* The next index will be Inew = I + L */

6.6.2 Exhaustive Search

In the Exhaustive Search approach, we emphasize classification accuracy over speed, by

attempting every combination of window index and size to maximize the Platt classifi-

cation probability. First, we define vectors W and S as the possible window sizes and

starting indices, respectively.

Parameters α and β represent the allowed variation of window length and starting index,

while parameters n and m represents the number of possible starting indexes and window

lengths to iterate over. These parameters are typically a function of the properties of the

particular event that we attempt to identify. The complete algorithm is shown in Algo-

rithm 7. Note that this algorithm performs an exhaustive search of all combinations of W

and S, and selects the window length and starting index based on the combination with

the maximum classification probability, using Platt’s probability model. The number of

iterations, T, is defined in Equation 6.3 as the product of the lengths of vectors W and

S.

There is no particular threshold at which the search concludes: the algorithm will

iterate through every combination of window length and index until arriving at the op-

timal solution. Therefore, even if the original classification decision is associated with

a posterior probability of over 99%, all other options will be considered. This ineffi-

ciency is addressed in the next subsection. The number of iterations necessary for the

Exhaustive Search algorithm to terminate is shown below, in Equation 6.3. Thus, the

exhaustive search will take approximately n*m more time to complete, compared to the

Naive Window Selection model.
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T = n ∗m (6.3)

Algorithm 5: Exhaustive Search Algorithm

/* Array W represents the possible window lengths. */

W = {α, 2·α, 3·α, 4·α ... n · α}

/* Array S represents starting indices from the window. i represents the final

window boundary index from the previous window. */

S = {i+β, i+2·β, i+3·β, ... i+m · β}

/* We iterate through all combinations. */

for i = 0; i < n; i++

for j = 0; j < m); j++

/* We receive a class label and class probability from function f, for this

particular combination of window length and index.*/

(c,p) = f (W[i], S[j]);

if p > maxProbability

/* This combination of window size and window length yields the best

estimated probability of correct classification. */

maxProbability = p

BestLength = W[i];

BestIndex = S[j];

end

end

end

/* The search is complete. We return the output class and the corresponding

probability. */

return (c, maxProbability)

6.6.3 Optimized Search

The Optimized Search algorithm selects window parameters based on classification prob-

ability, without performing an expensive search across the entire feature space <I, L>.
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Algorithm 6: Optimized Search Algorithm

/* Array W represents the possible window lengths. */

W = {α, 2·α, 3·α, 4·α ... n · α}

/* Array S represents starting indices from the window. i represents the final

window boundary index from the previous window. */

S = {i+β, i+2·β, i+3·β, ... i+m · β}

/* We define the initial conditions */

wi = W[1];

si = S[1];

/* We receive a class label and class probability from function f, for this particular

combination of window length and index. */

(c,p) = f (W[wi], S[si]);

if p > γ then

return (c, p);

maxProb = 0;

while maxProb < γ do

(c2, p2) = f (W[wi+1], S[si]);

(c3, p3) = f (W[wi], S[si+1]);

(c4, p4) = f (W[wi+1], S[si+1]);

(maxProb, bestI, bestL, bestClass) =

max([c2, p2], [c3, p3], [c4, p4]);

/* We evaluate the directional derivative of f using three vectors */

if maxProb < p then

/* If neither yielded an improvement, we return the original class and

probability value. */

return (c, p);

else

/* Otherwise, we continue iterating until we hit a local maximum or exceed

γ */

wi = bestL;

si = bestI;

return (bestClass, maxProb);
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This may be necessary due to system constraints, as an Exhaustive Search approach

could be impractical for wearable systems with battery constraints and basic low-power

processors. The Optimized Search algorithm pseudocode is presented in Algorithm 6.

We begin with line 2, in which we assume a large stream of audio data as a prerequisite

for the search. First, we define array W, which represents the possible window lengths,

where the value α represents the smallest possible window length. The value of α is

a function of the classification problem. In our particular application, we believed that

500ms was the smallest possible reasonable time window. Therefore, the range of possible

time windows varied between 500 ms and 2.5 seconds, as our n parameter was 5. Recall

that n represents the number of different window lengths to attempt before selecting the

length that yields the highest classification confidence.

In addition to length, the window is characterized by its start index: the time cor-

responding to the first sample of the window. Therefore, array S is required to present

possible starting times. The offset of each element index is i, which is the endpoint of the

previous window. The possible start indices range from i + β to i + m · β. Therefore,

β represents the range of possible start indices. As in the case of α, the value of β is

a function of the classification problem. The intention of this parameter is to shift the

window slightly, to prevent cases in which the window boundary is dividing the action

of interest into two separate windows. Given that the goal in our particular application

is to detect a chew or swallow, or perhaps a combination of both, any more than a few

seconds of offset is unnecessary. Therefore, the value of β in our experimentation was

fixed to 200ms with an m value of 5.

Lines 6 and 7 show that the algorithm selects default values of WindowLength and

StartingPoint as 2.5 seconds and τ = i + 200 ms, respectively. Subsequently, we extract

a window with those parameters for L and I, extract statistical features, and classify

using SVM. The classifier results, shown on line 9, are the predicted output class and

classifier confidence derived from the Platt model. In line 14, the classification confidence

is compared to a predefined threshold, γ. If the margin exceeds the threshold, set to

0.8 in our experimentation for its relative balance between accuracy and efficiency, the

classification result is retained and the search terminates. However, if the classification

confidence is low, we evaluate the sensitivity of the classifier probability to each dimension,
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and proceed along the direction of the maximum gradient in the positive direction. The

gradient of function f is shown below, in which the unit vectors in both dimensions,

length and index, are represented by x = <1,0> and y = <1,0>.

∇f =
∂f(x, y)

∂x
x +

∂f(x, y)

∂y
y

We then calculate the directional derivative ∀ u ∈ K, where K is defined as a set

consisting of the following vectors:

K = {<1, 0>,<0, 1>,<1, 1>}

The motivation for the selection of these particular vectors is the initial condition of

the algorithm, which begins at the smallest possible index and vector size. If this were

not the case, directional derivatives would be calculated in the positive and negative

directions. Also, note that these vector values are array indices, rather than absolute

values. Thus, applications which require a finer granularity of search could modify the

values of variables α, β, m and n, as defined in Algorithms 7 and 6.

After computing the directional derivatives, we select vector u with the highest value,

and continue iterating while two constraints are met:

α < x < n · α (6.4)

β < y < m · β (6.5)

These conditions ensure that parameters α and β remain within the valid range. How-

ever, if we find that the gradient value ∇f is negative for ∀u ∈ K, the search terminates,

as we have reached a local maximum. This case is shown in Equation 6.6.

6 ∃u ∈ K | ∇f · u > 0 (6.6)

Lastly, if we find x and y such that f(x,y) ≥ γ, the search will terminate even if

Equation 6.6 is satisfied, as the value of p is thought to have reached a point of diminishing
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Platt Calibration is a well-known method for transforming classification model outputs to probability distributions. 
This technique, though generalizable, is often used in the context of Support Vector Machines.  Platt Calibration can 
be used to compute the posterior probability of a class label given an instance x, using the following formulation: 
  
P(y = 1|x) = \frac{1}{1 + e^{\alpha \cdot f(x) + \beta}} 
 
In this case, \textit{f(x)} is the raw, uncalibrated classifier output, the magnitude of which is used for binary class 
assignment. Constants $\alpha$ and $\beta$ are coefficients obtained using a maximum likelihood method. These 
values are obtained by fitting the training data to a sigmoid function, as the sigmoid model has been shown to be 
generally superior to other models such as Gaussian distributions for probability estimation. Typically, the sigmoid 
is trained using a subset of the training data (roughly 30\%) \cite{Platt} to ensure an unbiased training set. 
Another alternative is to use n-fold cross validation, where the training set is split into \textit{n} sets, and each of 
the \textit{n} SVMs is trained on permutations of \textit{n}-1 sets. The latter is the technique used by the proposed 
algorithm. 
 
Thus, the Platt Calibration algorithm returns a posterior probability of classification accuracy for each instance, 
based on the signed distance between the instance and the decision boundary (the SVM score).  
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Figure 6.6: Relabeling instances original in the ambiguous region through parameter

adjustment.

returns at this threshold, if selected appropriately. After the algorithm is completed, we

have a final class label c and probability p. If p is low, it is likely that the instance is not

a complete representation of an activity.

A possible outcome is shown in Figure 6.6. Note that several instances that were

originally labeled as ambiguous are excluded from the list of false positives because ad-

justments to the window associated with these instances disambiguated their class label.

However, in the case of several other instances, no modifications to the window were able

to provide sufficient confidence of the node’s true class label. Note that it is possible for

a node to drift from one side of the hyperplane to another during the iterative process.

6.7 Experimental Setup

Data was collected from 20 individuals using a Hyperio Flexible Throat Microphone

Headset placed in the lower part of the neck near the collarbone, connected directly

to the mobile phones audio input port using a 3.5mm male audio cable. 16 of the

subects were male, and 4 were female. The ages ranged from 21 to 31 years old, with

a median age of 22. Commercially available audio-recording technology was used to

acquire the audio recordings from the microphone. Twenty subjects, who were given

two miniature chocolate bars, followed by ten Pringles potato chips. The foods were
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Table 6.1: Partial List of Selected Features

Rank Feature Name

1 Log Energy: Skewness

2 Log Energy: Mean Distance Between Peaks

3 Log Energy: Zero Crossings

4 Mel-Freq: Simple Moving Average[0] Quartile 3

5 Mel-Freq: Simple Moving Average[0] Mean Dist. Between Peaks

6 Mel-Freq: Simple Moving Average[1] Quartile 2

7 Mel-Freq: Simple Moving Average[1] Mean Dist. Between Peaks

8 Mel-Freq: Simple Moving Average[0] Zero Crossings

consumed sequentially, in that order, and the subjects ate one potato chip at a time.

These recordings formed the basis of the algorithm design and experimental evaluation.

The data collection took place in a lab environment; people can be faintly heard speaking

in the background, and the microphone occasionally recorded doors closing and nearby

footsteps.

6.7.1 Feature Extraction

The Munich open Speech and Music Interpretation by Large Space Extraction toolkit,

known as openSMILE [EWS10], is a feature extraction tool intended for producing large

audio feature sets. This tool is capable of various audio signal processing operations such

as applying window functions, FFT, FIR filterbanks, autocorrelation, and cepstrum. In

addition to these techniques, openSMILE is capable of extracting various speech related

features and statistical features. Audio-based features include frame energy, intensity,

auditory spectra, zero crossing rate, and voice quality. After data is collected from a

variety of subjects eating several foods, feature selection tools can be used to identify

strong features that are accurate predictors of swallows and bites for various foods, while

reducing the dimensionality by eliminating redundant or weakly correlated features.

From the 6555 extracted features, the Correlation Feature Selection (CFS) Subset

Evaluator was used to evaluate 991,139 subsets of features. This is necessary to select

the features best associated with the desired classifier outcomes. This subset evaluator
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considers both the individual predictive ability of features, as well as the redundancy

between them. The top ten features are listed in Table 6.1.

6.7.2 Model Development

A total of 1000 data samples were generated from a smaller subset of 40 audio clips from

the dataset containing information recorded from 20 subjects. The SVM kernel used

in our evaluation was a radial basis function (RBF), which is used to map the original

data to a higher dimension such that it is linearly separable by the hyperplane. The

optimization technique used for the quadratic programming analysis necessary to gener-

ate the best-fit hyperplane was Sequential Minimal Optimization (SMO), which divides

the original problem into smallest-subset problems that can be solved analytically. The

implementation of these algorithms was provided by the WEKA Data Mining software,

which was used for model development and evaluation[HFH09a].

In our experimentation, no labels were discarded; all instances were retained to allow

an objective comparison between the Optimized Search, Exhaustive Search, and Baseline

algorithms.

6.8 Results

6.8.1 Classification Results

Presented results were based on a total of 1000 data samples split evenly between each

class, with 500 samples of chocolate and 500 samples of chips. 10-fold cross validation

was used for algorithm evaluation. In other words, 90% samples were used for training

and 10% for test for ten iterations, with a different test subset used for each iteration.

The results were then averaged together for statistical convergence. The probabilistic

model was derived from the same data as the training class, and was not developed using

the full data set to prevent overfitting.

The classification results between the two food groups using the LibSVM classifier

library are shown in Figure 6.7. Three results are shown in this figure based on the three

evaluated algorithms: naive, exhaustive, and optimized. The naive approach was used
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Figure 6.7: Percentage of correctly classified instances using a baseline with no optimiza-

tions, an exhaustive search, and optimized search.

as a baseline to evaluate classification accuracy without optimizations. Note that the

relatively low classification accuracy is because the window selection was completely at

random, and it is likely that there was no eating in some samples at all. The samples

were generated at random from a larger data stream, in order to replicate a realistic use-

case. With no optimizations, only 73% of instances were classified correctly. Using the

optimized scheme, the percentage of correctly classified instances rose to 86.1%. However,

as expected, the highest performance was achieved using the exhaustive search technique,

in which 92.6% of instances were correctly classified.

In our experiments, the values of n and m were set to five. Recall that these values

correspond with the number of possible audio clips generated from each original clip, with

n different window lengths and m different starting indexes per length. The window sizes

ranged from 500ms to 2.5 seconds, in increments of 500ms. The starting indexes varied

by increments of 200ms, with a maximum of 1 second based on the m value of 5. The

values for n and m chosen in our evaluation are a function of our particular classification

problem; any more than a few seconds of window adjustment could re-center the window

around a different activity. In other applications with longer duration events, or larger

intervals of time between the activities of interest, these values may not apply.

6.8.2 Probability Model Validation

Figure 6.8 shows a comparison between predicted and measured classification accuracy.

Recall that the training set was used to create a sigmoid-based model for mapping the

SVM score to a probability. This model was then applied to the test set, to evaluate how
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Figure 6.8: Validation of the trained probability model.

the posterior probability correlated with the reported probability. This figure was gen-

erated by listing all the test instances, along with their predicted classification accuracy

using Platt Correlation. The predicted accuracy was then swept between 50%, the lowest

possible accuracy for a binary dataset, and 100%. For each predicted accuracy value

(x-axis), the y axis represents the percentage of instances with at least that high predic-

tion confidence, which were correctly classified. For example, consider the point (70,90).

This can be interpreted such that, for all instances which had a predicted classification

confidence of at least 70% based on the sigmoid model developed by the training set, 90%

were classified correctly. Generally speaking, there were some discrepancies between the

probability model and the observation, particularly at lower prediction accuracies. How-

ever, the correlation between predicted accuracy and measured accuracy is still sufficient

for window size selection.

6.9 Future Works

We have validated that adjustments to the data window as a function of classification

probability are capable of improving classification results. However, several relevant

issues remain to be addressed in future work. First, the generalizability to non-acoustic

signals should be explored. Second, the application of this technique to problems with

multiple possible class labels should be investigated. Lastly, a more advanced heuristic

for classification probability for other classifiers such as RandomForest and C4.5 decision

trees should be developed to further generalize this approach.
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6.10 Conclusion

In this work, we present a window-selection algorithm for identification of short-term

events in continuous data streams, which we validate in an audio-classification testcase.

By applying Platt Calibration to a Support Vector Machines (SVM) classifier, we are

able to identify those instances most likely to be classified incorrectly. Through compu-

tationally efficient modifications of the data window, we are able to improve classification

accuracy by identifying those instances whose class labels are most uncertain.
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CHAPTER 7

Dynamic Computation Offloading for Low Power

Wearable Health Monitoring Systems

Motivated by lowering user burden and increasing long-term adherence rates, optimiza-

tion of battery life has emerged as one of the major challenges associated with the de-

velopment of real-time wearable health monitoring systems. One of the major technique

with which this objective can be achieved is computation offloading, in which portions of

computation can be partitioned between the device and other resources such as a server

or cloud. However, data offloading should only be used in specific situations as it is

associated with higher RF power overhead than local processing. In this chapter, we

describe a novel dynamic computation offloading scheme for real-time wearable health

monitoring devices that adjusts the partitioning of computation between the wearable

device and mobile application as a function of desired classification accuracy. By making

the correct offloading decision based on current system parameters, we show that we are

able to reduce system power by as much as 20%.

7.1 Introduction

7.1.1 Introduction to Wearables

As smartphones have entered ubiquity in recent years, various wearable wireless health

monitoring gadgets have been proposed. These devices have broad applications ranging

from physical activity monitoring [Misb, Jaw], to more experimental applications such

as diet tracking [KAL15a, JCY13, SSL09], mental stress detection [SKC12], smoking

[PCC14], and rehabilitation [PPB12]. Spurred by a rapidly aging global population

and the emergency of lightweight, affordable microelectronics, wearable devices will have

increasingly broad applications for consumers and clinicians [LSS08] in the years to come.
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Figure 7.1: Wearable devices must evaluate the performance penalty of RF transmission
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Figure 7.2: System flow of proposed computation offloading scheme.

One of the most significant challenges in medicine is non-adherence, as prior studies have

shown that non-compliance to treatments is associated with a host of negative health

outcomes [DM01, Bla76]. Wearables are not exempt from this challenge, as evidence

overwhelmingly shows a lack of sustained use associated with mobile health devices and

applications [MHK15]. Among other factors, battery life has been reported to be a

significant contributor to non-adherence [AEN14, MHK15], as frequent battery recharging

may present a repeated burden to the user. Moreover, the device cannot report user

activity when the battery has been depleted, resulting in a loss of data. For these reasons,

an increasing amount of attention has been directed towards improving the battery life

of wearable health monitoring devices is recent years.
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7.1.2 Energy Usage

Regardless of function or application, wearables have many fundamental architectural

similarities. The primary components typically consist of:

7.1.2.1 Sensors

One or more sensors, sampled at a particular frequency depending on the application.

Examples include accelerometers, gyroscopes, infrared sensors, and microphones. These

sensors are the foundation through which the device can detect user activity.

7.1.2.2 Microcontroller

A microcontroller that performs the sensor sampling, processes the data, and interfaces

with other peripherals. Generally, microcontrollers are designed for low power consump-

tion some, such as the TI MSP430, can operate for weeks on a coincell battery at supply

voltages such as 3.3v and 5.0v.

7.1.2.3 Transceiver

A wireless transceiver based on a technology such as Bluetooth, Zigbee, or Wifi, which

transmits data remotely to a mobile phone or cloud services for analysis, visualization,

and feedback. Bluetooth 4.0 LE appears to be one of the more predominant wireless tech-

nologies in modern wearable devices, and features several important power optimizations

in comparison with the earlier Bluetooth standards.

There are two predominate forms of power usage in a wearable device: wireless

transmission, and local computation. Wireless transmission overhead refers to the

power necessary to transmit data from the microcontroller to a mobile application using

a technology such as Bluetooth. Local computation overhead refers to the power re-

quirements of data processing performed on the wearable device’s microcontroller, before

transmission. Unfortunately, as Figure 7.1 illustrates, it is often the case that optimiz-

ing the energy of the microcontroller and wireless transceiver are diametrically opposing

goals. Assume there is some feature or property f, that we are interested in detecting
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from a continuous signal. An example of f could be a step (for a pedometer), a bite (for

a nutrition monitor), or a fall (for a gait monitor). There are two possible approaches

to detect such an event. The first option is to process the data locally on the wearable

device, and only transmit the minimal information: that we have detected f. This puts

a significant burden on the computation resources of the microcontroller, as processing

the sensor data can be expensive and resource intensive. However, in this approach it is

only necessary to transmit the final class label to the mobile phone, rather than the raw

data, which minimizes total Bluetooth overhead.

The second option is to perform no data processing on the local device, deferring

the processing to the smartphone. This approach saves local computation energy on the

microcontroller, as it is no longer required to do any expensive processing or classification;

the microcontroller can transmit the sensor data as soon as it is acquired. However,

this approach may result in higher wireless transmission overhead, which in many cases

can be even more than that of local computation. The decision on whether to process

data locally or remotely is a function of many parameters, such as Bluetooth connection

interval, sample rate, classifier choice, and more.

7.1.3 Computation Offloading

Computation offloading is a broad paradigm in which data is outsourced from local

computation to a server, cloud, or other form of aggregator. The primary objective of

computation offloading is to reduce the energy demands of a small microcontroller with

a low battery capacity, or to perform very resource-heavy operations on more powerful

hardware for performance reasons. The motivation behind this approach is that mobile

phones typically have much larger batteries than small wearable devices, just as servers

have more hardware resources than personal computers.

Computation offloading techniques typically falls under the categories of static and

dynamic schemes. In static schemes, the partitioning between the local and remote

node is made in advance. By contrast, dynamic schemes adjust the offloading based

on real-time conditions. In this chapter, we propose a novel algorithm for dynamic

computation offloading, targeted towards real-time wearable health monitoring applica-

tions. In [KLL13], Kumar et al. provide a survey of computation offloading strate-
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gies. Many other works have discussed different strategies for offloading computation

[KHR03, KL10, GNM03, LKL10]. However, our work focuses specifically on modern

cutting-edge wearable devices, emphasizing the tradeoffs between local computation and

Bluetooth transmission overhead as a function of the required classification accuracy.

This chapter is organized as follows:

• In Section II, we describe the components of a typical classification system flow.

• In Section III, we present our energy models.

• In Section IV, we describe our offloading strategy.

• In Section V, we describe our experimental setup.

• In Section VI, we present our experimental results.

• In Section VII, we provide concluding remarks.

7.2 Classification Flow

In this section, we begin with the preliminaries of a modern real-time health monitoring

system. An example architecture for such a system consists of the steps shown in Figure

7.3. The major components are: acquisition of data, segmentation, feature extraction,

and classification.

7.2.1 Acquisition

In this stage, the microcontroller on the wearable device acquires data from a sensor and

buffers it locally until the buffer is full. The choice of sample rate fs is critical at this

stage, and is dependent on the type of sensor used. For example, 100 Hz may be sufficient

for activity monitors, while microphones may require sampling rates of up to 44 kHz. The

choice of sample rate has substantial implications on total system battery life for a number

of reasons. First, more data samples may require more Bluetooth transmissions in cases

when computation is offloaded. In cases when computation is performed locally, there is

still additional overhead associated with processing more data.
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7.2.2 Segmentation

In the next stage, the signal is divided into shorter windows, each of which are typically

processed independently of one another. This is necessary, because it is often impractical

to assign a single class label to a very large dataset. In practice, the data must be divided

into fragments that are each assigned a class label. Windows that are not associated

with any particular activity are known as the null class, which can be discarded after

processing. The three primary methods in literature are sliding window approaches,

similar to the baseline used in this chapter, and recursive techniques that are either

partition the entire signal, or merge small denominations of the signal, until a stopping

criteria is met. Comprehensive surveys of time-series segmentation are provided by Keogh

et al. in [KCH04], and Lovri et al. in [LMS]. We refer the reader to these works for a

more detailed discussion of the topic [XZK12, OK92, KEA02, KJ00].

7.2.3 Extraction

From each window, a set of features are extracted. An example of a feature is to take

the Fourier transform of the signal, and extract the magnitude of a particular frequency

band. As expected, this extraction is associated with computational overhead. However,

not all features have the same cost; many features are simple lookups, while others require

complex transformations. The number of features that must be extracted at this phase

can also have a significant impact on total system power; larger feature sets may provide

higher classification accuracy in some cases. The features extracted during this step

are pre-selected during the classifier training process using various feature selection and

dimension reduction algorithms. However, the feature extraction must be performed in

real-time.
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Table 7.1: Definition of Terms

Term Description

Cx Cost (in terms of power) to execute operation x

F A set of features associated with a window.

fs Sample rate: the rate at which data is acquired

from the sensor.

M Function that maps feature set, classifier, and set

size to a cost.

K Variable that represents the classification algorithm

used (eg. RandomForest), BayesNet.

n Number of features extracted.

BW Bandwidth: the rate at which data is transmitted

wirelessly between device and phone.

λ Connection interval: how often a connection

is established between two Bluetooth devices.

7.2.4 Classification

The features are the inputs to a pre-trained classifier, which outputs a class label that

describes the actions represented by the window. Once again, the classifier may be trained

a priori. However, a real-time system would generally require that the classifier be run

periodically for user feedback. However, not all of these tasks can be offloaded. In almost

all cases, signal acquisition would take place on the wearable device. And while signal

segmentation can be a complex challenge depending on the heuristic used, we assume a

fixed-length segmentation for the purposes of this chapter. This leaves dynamic offloading

optimizations to feature extraction, and classification, both of which can be performed

locally or remotely.

7.3 Energy Modeling

In this section, we describe our model for power dissipation in a wearable health-monitoring

device. An explanation of terms and symbols is provided in Table 7.1.
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7.3.1 A General Model

A simplified model to represent power consumption in a system consisting of a wearable

device and a paired smartphone can be represented as the sum of the cost of extracting

features, running them through a classifier, and transmitting any necessary information

between the phone and device. Though there are other sources of power dissipation such

as sampling, segmentation, and leakage, we focus our analysis on the model shown in

Equation 7.1 in this chapter.

Ctotal = Cextraction + Cclassification + Ctransmission (7.1)

Assume we have a feature set F, consisting of a total of n features, f1 through fn.

Similarly, assume each feature fi has a cost, Cfi . Thus, the cost of the feature extraction

phase is:

Cextraction =
n∑
i=1

Cfi (7.2)

Modeling the cost of the classification is more challenging. Generally, however, it is a

function of the input feature set F, feature size n, and the classifier algorithm used. We

define function M as a function that maps these parameters to the total classifier cost.

Cclassification = M(F, K, n) (7.3)

If we perform both the feature extraction and classification locally, the local energy

can be modeled as the sum of the feature extraction and classification costs.

Clocal = M(F, K, n) +
n∑
i=1

Cfi (7.4)

We can also model the local cost of transmitting the raw data to the mobile device,

and performing both the feature extraction and classification remotely. We assume these

features are associated with a window of length L. Thus, the cost of transmitting a window

of length L is: Ctx(L). Note that this relationship may not be linear; very high sampling
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rates may change critical Bluetooth parameters such as the connection and advertisement

intervals. Combining these equations gives us the equilibrium point, in which it is roughly

equally costly to process the data locally and remotely:

M(F, K, n) +
n∑
i=1

Cfi = Ctx(L) (7.5)

An adaptive system could modify several parameters in real-time, to favor either local

or remote processing:

7.3.1.1 Algorithm choice

Different classifiers, such as RandomForest, Support Vector Machines, and k-Nearest

Neighbor, have different runtimes. Switching to a lighter classifier can swing the balance

in favor of local processing at the cost of classification accuracy.

7.3.1.2 Feature count

Choosing a different subset of features may have dramatic performance implications.

A higher number of input features may, in some cases, improve classification accuracy.

However, the relationship is not linear; very large feature sets may overfit the training

data and decrease total classification accuracy.

Each classifier M can be represented by its classifier choice and feature count, and is

associated with a particular classification accuracy and power budget. The subsequent

challenge is to identify the circumstances in which it is appropriate to vary the desired

classification accuracy to save power. However, the specific scenarios are out of scope for

this work; we refer the readers to [BP07, GJ13, SG08] for a discussion of these issues.

7.3.2 Connection Interval

The Bluetooth 4.0 LE standard, used in many wearable devices, allows peripherals to

suggest a connection interval which specifies how often the device sends data. The Blue-

tooth standard supports connection intervals ranging from 7.5 ms to four seconds; higher

connection intervals reduce system bandwidth, but significantly reduce power consump-
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tion as well. Typically, during each connection interval, several Bluetooth packets can be

transmitted. However, the Nordic nRF8001 used in our evaluation supports transmission

of just one packet [Ole14] per connection event. The payload of each packet is 20 Bytes.

According to [Ole14], the total Bluetooth connection bandwidth can be represented as a

function of connection interval γ, as shown below in Equation 7.6:

BWBT =
20 bytes

packet
· 1 packet

conn. event
· 1 conn. event

γ seconds
(7.6)

Generally, we would select a connection interval to satisfy a particular bandwidth

requirement. Simplifying Equation 7.6 gives us:

γ =
20 bytes

Bandwidth
(7.7)

Expectedly, higher sample rates (fs) are typically more expensive to process and

transmit. In accelerometer-based activity monitoring applications, a sample rate of be-

tween 25 Hz and 100 Hz is typical, with some studies claiming that 45 Hz is optimal

[YH10, KHM16]. Remote computation schemes will generally require that all sampled

data is transmitted to the mobile phone for processing. If we assume each data sample is

a 32-bit integer (four bytes), we can model the required connection interval as a function

of sample rate below:

γ =
20 bytes

4 · fs
(7.8)

By comparison, local processing schemes can have almost negligible wireless transmis-

sion overhead, as it is only necessary to transmit a class label once an event is detected.

7.4 Algorithm

7.4.1 Classifier Accuracy Adjustment

Many prior works have scaled down accuracy to save power, for various applications

including classification and health monitoring. For example, Benbasat et al. propose a
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power efficient sensor system in [BP07], in which a wearable gate monitor is optimized

by adjusting classification accuracy. In [GJ13], Ghasemzadeh et al. propose a two-tiered

classification scheme in which preliminary classification is achieved using lightweight,

low-power techniques. A similar two-stage scheme was proposed by Shih et al. in [SG08]

in which a power-efficient screening stage precedes a more computationally expensive

analysis stage. The key insight these works is that it is not always necessary to run the

classifier at its highest accuracy setting; often, a low-power detection strategy can be

used, which transitions into a more expensive recognition stage when various criteria are

met [Hua12, JC04, MS03].

Dynamic optimization of classification accuracy for power reduction is particularly

useful in scenarios with sparse, short duration events distributed across an entire day or

week of data. For example, a heart-rate monitor could be optimized to enter low-power

mode when a coupled accelerometer shows little physical activity. Moreover, adjusting

the sample rate of an accelerometer when a subject begins to move has been shown to

maintain high classification accuracy, while reducing power when more simple motions

are performed [BlN15]. Though these prior works are able to successfully reduce power

consumption, they generally do not evaluate the tradeoffs between wireless transmission

and local computation upon changes in classification accuracy.

7.4.2 Dynamic Offloading

The proposed computation offloading scheme is as follows. First, the system pre-trains

n classifiers, M1...Mn Each classifier has the objective of maximizing total classification

accuracy for a given power budget, and may have a different number of input features.

Based on the desired sample rate, we can predict the benefits of local and remote pro-

cessing using Equation 7.5 and select one of the two schemes. When the user program

specifies a need to improve the classification accuracy based on some external inputs, we

iterate through the n possible classifiers and select classifier Mi that which minimizes

power consumption based on the required accuracy threshold. Once this classifier is se-

lected, its predicted cost is computed using Equation 7.5, and a decision is made with

respect to local and remote processing overhead. This procedure is shown in Algorithm

7.
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Algorithm 7: Computation Offloading

/* This function is called whenever the system specifies that the classification

accuracy can be adjusted. pct represents the new accuracy requirement. */

function OnChangeAccuracyRequirement(int pct)

Begin

/* We select the optimal classifier which minimizes power but meets the

performance requirement. */

Classifier K = getClassifier (pct);

/* We estimate local power based on the classifier and feature count. */

Power LocalPower = EstimatePower(K.Classifier, K.FeatureCount);

/* We estimate wireless power based on the Bluetooth connection interval and

payload size. */

Power RemotePower = EstimateRFPower(L, λ);

if LocalPower > RemotePower then

/* We determine that local processing is optimal. */

RunLocally();

else

/* We determine that transmitting all the data is cheaper than processing it

locally. */

OffloadComputation();

End
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Specifically, once we have selected a potential classifier and feature set, we can compare

the power consumption of local data processing (in which the features are extracted

locally, and only class labels are transmitted) to remote data processing (in which no

features are extracted on the device, but all data is transmitted). This process continues

until the next classification accuracy adjustment. Figure 7.4 shows the proposed scheme,

which depicts both local processing regions, based on the desired classification accuracy.

The point denoted by the star represents the condition shown in Equation 7.5; equal

local and remote processing costs. The cost to process data locally is modeled as a

function of two parameters: α and β. Parameter α represents the cost to extract a

single feature, while β represents the cost to run a classifier on the local application. We

assume the classification cost on the mobile device is negligible as the battery life is an

order of magnitude larger, and the focus of our work is primarily in the optimization of

the wearable device.

7.5 Experimental Methodology

7.5.1 Dataset

Our experimental methodology was derived from an audio-based nutrition monitoring

dataset described in [KS15a]. Data was collected from 20 individuals using a Hyperio

Flexible Throat Microphone Headset. The microphone was placed in the lower part of the

neck near the collarbone, and connected directly to the mobile phones audio input port

using a 3.5mm male audio cable. 16 of the subects were male, and 4 were female. The ages

ranged from 21 to 31 years old, with a median age of 22. Commercially available audio-

recording technology was used to acquire the audio recordings from the microphone.The

primary challenges of nutrition monitoring is the identification of eating (such as chewing

or swallowing) from other ambient noises, and identifying the specific food using various

heuristics. The dataset used corresponded to eating of three foods: nuts, chocolate, and

a vegetarian patty. Each food category consisted of sixty quarter-second samples, for

a total of 180 samples. Evaluation was conducted using Leave-One-Subject-Out cross

validation to avoid biasing the dataset.
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Table 7.2: Top 10 Selected Features

Rank Attribute (FFTMag) Information Gain

1 mfcc sma[5] quartile2 1.292

2 fftMag melspec sma[5] quartile1 1.286

3 mfcc sma[5] amean numeric 1.239

4 fftMag melspec sma[8] quartile1 1.231

5 fftMag melspec sma[7] quartile1 1.21

6 fftMag fband250-650 sma quartile1 1.202

7 fftMag melspec sma[10] quartile1 1.194

8 fftMag fband0-650 sma quartile1 1.18

9 fftMag melspec sma[2] quartile1 1.17

10 fftMag melspec sma[6] quartile1 1.16

7.5.2 Feature Extraction

The feature extraction tool used on the audio dataset was provided by the OpenSMILE

framework [EWS10]. This tool is capable of various audio signal processing operations

such as applying window functions, FFT, FIR filterbanks, autocorrelation, and cepstrum.

In addition to these techniques, openSMILE is capable of extracting various speech related

features and statistical features. Audio-based features include frame energy, intensity, au-

ditory spectra, zero crossing rate, and voice quality. After data is collected from a variety

of subjects eating several foods, feature selection tools can be used to identify strong

features that are accurate predictors of swallows and bites for various foods. The top

ten selected features is shown in Table 7.2. These features are produced using an Infor-

mationGain attribute evaluation scheme provided by the WEKA data mining software

[HFH09b]. For a detailed explanation of these features and a more qualitive explanation

of what they represent, we refer the reader to the openSmile documentation [EWS10];

the specific setting used was the emo large configuration
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7.5.3 Bluetooth Modeling

Power simulations were conducted in the nRFgo Studio software, based on the nRF8002

integrated circuit by Nordic Semiconductor. The simulations assumed no advertisement

period, and a default connection interval of 1000 ms. We initially simulated two use cases:

one in which 20 bytes (payload) of data are transmitted at a rate of 100 Hz, and another

in which data is transmitted at a rate of 1 Hz. These two conditions correspond with

remote processing (sending all the data) and local processing (sending class labels) re-

spectively. Subsequently, we experimented with various sensor sample rates and adjusted

the connection interval accordingly based on the increase in bandwidth.

7.5.4 Computation Modeling

The WEKA data mining software is used to evaluate the performance of various classifiers

based on the input features extracted from the openSMILE toolkit from each audio

snippet from the nutrition monitoring dataset. The performance of all classifiers was

normalized based on our prior results on the MSP430 platform in [KAP15], in which

we measured the performance of various algorithms in real-time on a Texas Instruments

development board. Similarly, the cost of extracting a particular feature is derived based

on our prior work in [KAP15], with the simplifying assumption that each feature has the

same cost.

7.6 Results and Discussion

7.6.1 Classifier Performance

Figure 7.5 shows the classification accuracy among four classifiers, as a function of feature

set size. Note that the classification accuracy does not linearly increase with the number

of features extracted; in some cases, more features are detrimental to performance due

to overfitting. Moreover, some classifiers such the Naive Bayesian classifier, perform

well with small feature sets but fail to improve significantly with greater numbers of

attributes. Generally, this figure shows that approximately five features are sufficient for

classification accuracy of over 75% for most classifiers, approaching 83% in the case of
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Logistic Regression. The upper bound for feature count, beyond which there appears to

be no significant improvement, appears to be approximately twenty features with 87-88%

accuracy.

Figure 7.6 shows classifier runtime as a function of feature size and classifier choice.

Classifier runtime on an embedded microcontroller can be an approximate heuristic for

power consumption, as higher algorithm runtimes increase the percentage of time the

device is in active mode, rather than one of the low-power modes in which output current

is close to in the microamperes range [KAP15]. Simulations show that the Logistic

Regression classifier was associated with the lowest runtime, across the entire range of

features. Moreover, the runtime of the logistic regression classifier did not noticably

increase as a function of number of input features. By contrast, the Naive Bayesian

classifier was quick with a small number of features, but did not scale well with larger

feature sets, but runtime increased linearly with the feature count. The RandomForest

classifier had a somewhat high runtime, especially with small input feature sets. However,

the runtime did not increase when sweeping the feature size between 2 and 20.

The implications of these results are shown in Table 7.3: for each desired accuracy

level, we can select an optimal combination of classifier and classification feature size.

In this case, Logistic Regression was the optimal choice for almost every scenario except

accuracy of 85%, in which Sequential Minimal Optimization (SMO) was preferred by a

small margin. Though Logistic Regression has a lower runtime cost, the extraction cost

becomes much more significant for larger feature sets.

Table 7.3: Best Classifier and Feature Set Combinations For a Given Accuracy

Accuracy (%) Lowest-Cost Classifier Feature Set Size

70% Logistic 2

75% Logistic 2

80% Logistic 6

85% SMO 20

90% Logistic 20
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7.6.2 Comparison of Local and Remote Processing

Assuming a connection interval of 10 ms and a payload size of 20 bytes, simulator results

show average power as 964 µw. Figures 7.7 and 7.8 show the power overhead of both

techniques as a function of various values of α and β. More specifically, these graphs

show how much power would be spent in a remote processing scheme compared to a local

processing approach, at various desired accuracy levels. A power ratio of 1, shown in

black, represents the equilibrium case in which local and remote processing powers are

equal.

More specifically, we can observe that lower feature extraction costs, as well as lower

desired classification accuracies, are dramatically cheaper to execute locally rather than

remotely. However, as the required classification accuracy increases, it is often necessary

to use more expensive classifiers and larger feature sets. Thus, these schemes favor remote

processing, particularly in systems with more expensive features.

7.6.3 Variations in Sample Rate

Our previous experiment assumed a connection interval of 10 ms. This connection interval

represents one Bluetooth LE connection per second, at which time only one 20-Byte

payload can be transmitted based on the limitations of the nRF8001 integrated circuit.

Using Equation 7.8, we know that this connection interval corresponds with a maximum

bandwidth of 500 samples per second on our evaluation platform. Though there are

applications for which a high sampling rate is sufficient, smaller sample rates can suffice

for other uses cases such as environment monitors, dust particle detection, ambient light

detection, or smart-home applications. In this section, we analyze the effects of sample

rate on transmission power.

Figure 7.9 shows the Bluetooth power at a 3.3 V supply voltage as a function of

sample rate. Interestly, this figure shows that as bandwidth needs increase, wireless

power dissipation is less than linear. By comparison, Figure 7.10 shows the local power

dissipation as a function of sample rate and accuracy thresholds. Our model shows a more

linear relationship between power and sample rate, given parameters α = 0.1 and β =

0.5. This may suggest high sample rates favor offloading, rather than local computation.
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7.6.4 Variations in Sample Rate

For a baseline comparison, we consider a scenario in which the system attempts to detect

a short-duration event from a large signal in a scenario with the baseline configuration.

The system specifications are to operate at 90% accuracy for 10% of the time, and enter

low-power mode (70% accuracy) for the remainder of the time. For this experiment, we

assume parameters α of 0.1 and β of 0.5. This scenario is shown at the top of Figure 7.11.

As this figure shows, the local processing scheme is optimal at lower accuracies, while

remote offloading is favored at high accuracies. By adapting computation as a function

of classification accuracy, we are able to reduce power from an average of 0.52 mW to

0.41 mW; a decrease of 21.1% compared to the local processing scheme.

7.7 Conclusion

In summary, we have demonstrated a novel scheme for selective computation offloading

based on user-defined accuracy constraints. Our simulations show that with a baseline

classifier execution cost of 0.2 mW and feature extraction cost of 0.1 mW, making a

correct offloading decision can reduce power by over 20% in certain scenarios. Future

work will evaluate these algorithms in a system feature an implementation of real-time

classification accuracy adjustment to benchmark our proposed scheme.
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CHAPTER 8

Concluding Remarks

In this thesis, we have provided a survey of the major nutrition monitoring paradigms, as

well as our own techniques for non-invasive assessment of dietary habits. We have intro-

duced a necklace-based approach to detection of deglutition and classification between

different foods, called Wearsens, in which a piezoelectric sensor detects vibrations of the

neck that occur naturally during swallows. We have also described other techniques that

can be applied to detecting eating behavior and medication adherence using audio signal

processing and gesture recognition on the smartwatch platform. Lastly, we have intro-

duced several techniques to efficiently segment and process sensor data in real-time using

a stochastic segmentation approach as well as a computation offloading scheme to reduce

power.
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