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EPIGRAPH

“Rabbit’s clever,” said Pooh thoughtfully.

“Yes,” said Piglet, ”Rabbit’s clever.”

“And he has Brain.”

“Yes,” said Piglet, “Rabbit has Brain.”

There was a long silence.

“I suppose,” said Pooh, “that that’s why he never understands anything.”

—A.A. Milne, Winnie-the-Pooh
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ABSTRACT OF THE DISSERTATION

Collisional relaxation of an isotopic, strongly magnetized pure ion plasma
and topics in resonant wave-particle interaction of plasmas

by

Chi Yung Chim

Doctor of Philosphy in Physics

University of California, San Diego, 2016

Professor Thomas O’Neil, Chair

First in Chapter 2, we discuss the collisional relaxation of a strongly magne-

tized pure ion plasma that is composed of two species with slightly different masses,

but both with singly-ionized atoms. In a limit of high cyclotron frequencies Ωj,

the total cyclotron action Ij for the two species are adiabatic invariants. In a

few collisions, maximizing entropy yields a modified Gibbs distribution of the form

exp[−H/T∥ − α1I1 − α2I2]. Here, H is the total Hamiltonian and αj’s are related

to parallel and perpendicular temperatures through T⊥j = (1/T∥ + αj/Ωj)
−1. On a

longer timescale, the two species share action so that α1 and α2 relax to a common

xvi



value α. On an even longer timescale, the total action ceases to be a constant of the

motion and α relaxes to zero.

Next, weak transport produces a low density halo of electrons moving radially

outward from the pure electron plasma core, and the m = 1 mode begins to damp

algebraically when the halo reaches the wall. The damping rate is proportional to the

particle flux through the resonant layer at the wall. Chapter 3 explains analytically

the new algebraic damping due to both mobility and diffusion transport. Electrons

swept around the resonant “cat’s eye” orbits form a dipole (m = 1) density distribu-

tion, setting up a field that produces E×B-drift of the core back to the axis, that is,

damps the mode.

Finally, Chapter 4 provides a simple mechanistic interpretation of the resonant

wave-particle interaction of Landau. For the simple case of a Vlasov plasma oscillation,

the non-resonant electrons are driven resonantly by the bare electric field from the

resonant electrons, and this complex driver field is of a phase to reduce the oscillation

amplitude. The wave-particle resonant interaction also occurs in 2D E × B-drift

waves, such as a diocotron wave. In this case, the bare electric field from the resonant

electrons causes E×B-drift motion back in the core plasma, thus damping the wave.

xvii



Chapter 1

General introduction

My dissertation research is documented in 5 publications[1, 2, 3, 4, 5], as listed

in the reference section and publication section. In the publication section, paper 2

discusses the theory of collisional relaxation for a strongly magnetized two species

pure ion plasma, reprinted in Chapter 2. Papers 3 through 5 describe the flux-driven

algebraic damping of diocotron modes. This novel damping is a close cousin of,

but distinct from, the Landau damping of diocotron modes. Paper 4 describes the

experimental observation of the damping as well as a short theoretical explanation.

This explanation is described in more detail in paper 5. The explanation has the

advantage of brevity, but leaves questions unanswered and raises conceptual issues.

Paper 4 resolves these issues and provides a more rigorous treatment. Chapter 3

is a reprint of paper 5. Paper 6, which is reprinted in Chapter 4, provides a new

and simple physical interpretation of Landau damping generally, including traditional

Landau damping as well as the new flux-driven algebraic damping of papers 3 through

5. Chapter 2, 3 and 4 are taken from papers on which I was the first author. The

following sections provide overviews of the three research topics.

1



2

1.1 Collisional relaxation of a strongly magnetized

two-species pure ion plasma

There is good agreement between theory and experiment for the collisional re-

laxation of strongly magnetized single species plasmas[6, 7, 8, 9, 10]. The relaxation

is novel because the collisional dynamics is constrained by adiabatic invariants asso-

ciated with the cyclotron motion. In Chapter 2 we extend the theory to the case of a

two-species plasma, where the charges of the two species are the same (e1 = e2) and

the masses differ only slightly (i.e., |m1 −m2| ≪ m1,m2). We have in mind a pure

ion plasma that is composed of two isotopes. Such isotopically impure ion plasmas

are often used in experiments[11, 12].

In Section 2.3, we begin with an analysis of a collision between two isotopically

different ions that move in the uniform magnetic field B = Bẑ. For sufficiently strong

magnetic field, the collision looks very different from Rutherford scattering; the two

ions approach and move away from one another in tight helical orbits that follow

magnetic field lines.

We will find that the sum of the cyclotron actions for the two ions, I1 + I2 =

m1v
2
⊥1/(2Ω1) + m2v

2
⊥2/(2Ω2), is an adiabatic invariant that is nearly conserved in

the collision. Here, mjv
2
⊥j/2 and Ωj = eB/(mjc) are the cyclotron kinetic energy

and cyclotron frequency for the two ions (j = 1, 2). More specifically, the change

in the total action is of order ∆(I1 + I2) ∼ exp[−Ωcτ ], where Ω1 ≃ Ω2 ≡ Ωc and τ

is a time that characterizes the duration of the collision. The time is shortest, and

the change ∆(I1 + I2) largest, for nearly head-on collisions, where τ ≃ (π/2)(b/v∥).

Here v∥ is the initial relative velocity of the ions parallel to the magnetic field, b =



3

2e2/(µv2∥) is the minimum separation between the ions allowed on energetic grounds,

and µ ≡ m1m2/(m1 + m2) is the reduced mass. This estimate of τ uses guiding

center drift dynamics as a zeroth order approximation to the orbits and so assumes

that the cyclotron radii for the two ions are small compared to the ion separation

[i.e., v⊥j/Ωj ≪ b]. For sufficiently large B, the product Ωcτ = (π/2)(Ωcb/v∥) is large

compared to unity and the change ∆(I1+ I2) ∼ exp[−(π/2)(Ωcb/v∥)] is exponentially

small.

The same analysis shows that the change in the individual actions is of or-

der ∆I1 ≃ −∆I2 ∼ exp[−|Ω1 − Ω2|τ ], which also is exponentially small if |Ω1 −

Ω2|[πb/(2v∥)] is large. By assumption, the ion masses, and therefore the ion cyclotron

frequencies, differ only slightly, so we have the ordering Ω1,Ω2 ≫ |Ω1 − Ω2| ≫ v∥/b,

which implies the conclusion

I1, I2 ≫ |∆I1| ≃ |∆I2| ≫ |∆(I1 + I2)|. (1.1)

The individual actions are well conserved, and the sum of the two actions is conserved

even better.

In Section 2.4, we determine how these adiabatic invariants constrain the col-

lisional relaxation of a strongly magnetized plasma composed of such ions. We say

that the plasma is strongly magnetized when

b̄≫ v̄⊥,jk
Ωj

and |Ω1 − Ω2| ≫
v̄jk
b̄
, (1.2)

where v̄ij =
√
T∥/µij is the relative parallel thermal velocity, b̄ = 2e2/(µjkv̄

2
jk) =

2e2/T∥ is the distance of closest approach, v̄⊥j =
√
2T⊥j/mj is the perpendicular



4

thermal velocity for species j, and µjk is the reduced mass of two interacting particles

from species j and k. As we will see, the temperatures T∥, T⊥1 and T⊥2 need not be

equal during the evolution to thermal equilibrium. The condition Ω1,Ω2 ≫ |Ω1−Ω2|

plus inequalities (1.2) imply that all collisions between unlike ions are in the strongly

magnetized parameter regime.

Note that this definition of strong magnetization is more restrictive than that

used previously for the case of single-species plasmas[8, 9]. The requirement |Ω1 −

Ω2| ≫ v̄jk/b̄ has replaced the less restrictive requirement Ω1,Ω2 ≫ v̄jk/b̄.

As a first step in determining the influence of the adiabatic invariants on the

evolution, we note that the difference between the cyclotron frequencies of like ions

is zero, so the change in the individual actions is not exponentially small. Of course,

the change in the sum of the two actions for the like ions is exponentially small.

Thus, on the timescale of a few collisions, one expects that like ions will inter-

change cyclotron action with each other, but not with unlike ions. On this timescale,

the total cyclotron action of species 1 (i.e., I1 =
∑N1

j=1 I1j) and the total cyclotron

action of species 2 (i.e., I2 =
∑N2

j=1 I2j) along with the total Hamiltonian H are con-

stants of the motion, and a modified Gibbs distribution, exp[−H/T∥−α1I1−α2I2] is

established[13]. Here T∥, α1 and α2 are thermodynamic variables. From the velocity

dependence in H, I1 and I2, one can see that T∥ is the temperature that characterizes

velocity components parallel to the magnetic field and that T⊥1 = [1/T∥ + α1/Ω1]
−1

and T⊥2 = [1/T∥+α2/Ω2]
−1 are the temperatures that characterize the perpendicular

velocity components for species 1 and 2.

Inequalities (2.2) imply that on a longer timescale particles of the two species

interchange action with each other conserving the sum I1+I2. On this timescale, the
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variables α1 and α2 evolve to a common value, yielding the distribution exp[−H/T∥−

α(I1 + I2)], where α is that common value. On a still longer timescale, I1 + I2 is not

conserved, and α evolves to zero, yielding the usual Gibbs distribution exp[−H/T∥].

The purpose of Chapter 2 is to calculate the rate at which α1 and α2 evolve

to the common value α and the much slower rate at which α evolves to zero. We will

find that α1 − α2 satisfies the equation

d

dt
(α1 − α2) = −νa(α1 − α2) (1.3)

and that α satisfies the equation

d

dt
α = −νbα, (1.4)

where νa is of the order O[nb̄20v̄11,0Λ2(b̄|Ω1−Ω2|/v̄12)(v̄11/(b̄Ω1))
2] and νb is of the order

O[nb̄20v̄11,0Λ1(b̄Ω1/v̄11)], and subscript 0 refers to initial values before equilibration.

Λ1(κ̄) and Λ2(κ̄) decrease exponentially with increasing κ̄. In the limit of κ̄ ≫ 1,

Λ1(κ̄) and Λ2(κ̄) are approximated by the asymptotic expressions

Λ1(κ̄) ≃ 3.10κ̄−7/15e−5(3πκ̄)2/5/6, (1.5)

Λ2(κ̄) ≃ 3.87κ̄13/15e−5(3πκ̄)2/5/6. (1.6)

In Λ1(κ̄), κ̄ is the magnetization κ̄ij = b̄Ωi/v̄ij, whereas in Λ2(κ̄), κ̄ is the magnetiza-

tion difference |κ̄12 − κ̄21|.
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1.2 Theory of flux-driven algebraic damping of dio-

cotron modes

1.2.1 Azimuthal mode number m = 1

Diocotron modes are dominant features in the low frequency dynamics of non-

neutral plasmas confined in Malmberg-Penning traps[14, 15, 16, 17]. In an ideal limit,

these modes involve only cross magnetic field E ×B drift motion and are described

by the drift-Poisson equations[14]. These equations are isomorphic to Euler’s equa-

tions for the ideal (i.e., incompressible and inviscid) flow of a neutral fluid, and the

diocotron modes are analogues of a Kelvin modes on a fluid vortex[18, 19].

There has been much previous work on diocotron mode instabilities[15, 20, 21,

22] and on diocotron mode damping[18, 19, 23, 24, 25, 26]. This paper focuses on

damping.

Previously identified damping mechanisms include a spatial version of the Lan-

dau resonance[18, 23], the rotational pumping of bulk viscosity[24, 25], axial velocity

dissipation on a separatrix for plasma columns with trapped and passing particles[27],

and a strong damping mechanism when the radial magnetron field from end cylinders

dominates over the radial space charge field[26]. The Landau mechanism fits into

the ideal 2D E×B drift framework, but others, such as rotational pumping, involve

physics beyond the ideal model.

Chapter 3 discusses a damping mechanism that is a close cousin of Landau

damping, so we begin with a review of the spatial Landau resonance.

The nonneutral plasma column is immersed in a uniform axial magnetic field

Bẑ, has a radial space charge electric field E(r)r̂, and consequently undergoes an
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azimuthal E×B drift rotation. Here, (r, θ, z) is a cylindrical coordinate system with

the z-axis coincident with the axis of the trap. We consider the plasma column to be

a pure electron plasma in this paper.

A diocotron mode of azimuthal mode number m can experience a resonant

interaction with the rotating plasma flow at a critical plasma radius Rres(m), where

ωm = mωE[Rres(m)]. Here, m is the azimuthal mode number, ωm is the mode fre-

quency, and ωE(r) = −cE(r)/Br is the local rotation frequency of the plasma.

Linear mode theory[18, 19, 23] predicts that this spatial Landau resonance

produces exponential mode damping when the slope of the radial density distribution

is small and negative at the critical radius, and this damping has been observed

experimentally for low order azimuthal modes with m > 1[23].

The m = 1 mode is special in that the resonant radius is at the wall where

typically there are no particles. It was long thought that an m = 1 mode would not

experience damping due to a Landau resonance[18].

However, recent experiments[2, i.e. paper 3 in publication list] have observed

a novel algebraic damping of the m = 1 mode, which we believe is a close cousin

of Landau damping. In these experiments, transport produces a low density halo of

particles that gradually extends out from the plasma core until it reaches the wall.

The algebraic damping begins when the halo reaches the resonant region (the wall

for m = 1), and the damping rate is proportional to the flux of particles through the

resonance.

Fig. (1.1), taken from Ref. 2 (paper 3 in publication list), shows the normalized

amplitudes of an m = 1 mode versus time for several values of the transport flux.

The amplitudes of an m = 1 mode is characterized by the displacement D (D1 in the
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Figure 1.1: Normalized amplitude of m = 1 mode vs time for several values
of transport flux. The flux is controlled by quadrupole wall voltage ϵv in
Volts and magnetic field tilt angle ϵB in radians. This figure is taken from
Ref. 2 (paper 3 in publication list).

figure) of the plasma column off the trap axis, and in Fig. (1.1), this displacement

is normalized to the radius Rw of the conducting wall that bounds the confinement

region. In the experiments the transport flux can be varied in a controlled way. The

algebraic damping begins when the radially expanding halo reaches the wall. Fig.

(1.2), also taken and edited from Ref. 2 (paper 3 in the publication list), shows that

the algebraic damping rate γ1 = Ḋ/Rw is proportional to the normalized rate |Ṅ |/N

at which particles are lost to the wall. |Ṅ | (|ṄL| in the figure) is the number of

particles per unit length lost to the wall per unit time. N (NL in the figure) is the

number of core particles per unit length.

The theoretical picture that we envision for this flux driven algebraic damping

is similar to, but distinct from, spatial Landau damping. In both cases, the damping

results from an interaction of the mode field with resonant particles, but the particu-
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Figure 1.2: Damping rate of m = 1 mode vs normalized rate at which
particles are lost to the wall. This figure is taken and edited from Ref. 2
(paper 3 in publication list).

lars of the interactions are very different in the two cases. In spatial Landau damping,

the resonant particles are present before the mode is excited, and the damping results

from a mode-driven rearrangement of particles near the resonant radius. The analysis

is linear and leads to exponential damping.

In contrast, for the new flux-driven algebraic damping, there are no particles

initially at the resonant radius. The transport gradually brings particles to the reso-

nant radius, and the mode field then sweeps the particles around the nonlinear cat’s

eye orbits to a scrape-off layer, causing the damping.

As will be discussed later, the scrape-off layer is a thin region adjacent to

the wall where guiding center drift theory breaks down and particles (electrons) are

rapidly absorbed by the wall. The scrape-off layer is at least as thick as a cyclotron

radius. We will assume that the thickness of the layer is much smaller than the mode
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amplitude.

While the new theory can be described within a 2D flow framework, the trans-

port and the truncation of particle orbits by the wall are non-ideal elements beyond

the E×B drift description.

The paper that reported the experimental results on the new damping also

included a short theoretical explanation[2, 3, i.e. papers 3 and 4 in publication list].

To help understand this theory consider Fig. 1.3, which shows the cross section of

an electron plasma column that has been displaced off the trap axis through the

excitation of an m = 1 diocotron mode. The displacement is of magnitude D and

direction θ̄ = 0. The gray lines are equipotential contours as seen in the mode frame.

In this frame the E × B drift flow is along the equipotential contours. The orange

shaded region represents the relatively high density plasma core. In this region, the

mode potential can be described by linear theory, and the equipotential curves are

simply displaced circles. The resonant region is near the wall, and there nonlinear

effects distort the circles. Near the left side of the figure are the “cat’s eye” orbits,

which describe the motion of particles that are trapped in the wave trough. In order

to make the “cat’s eye” orbits easier to see in Fig. 1.3, the ratio of the displacement

to the wall radius (i.e. D/Rw) was taken to be the largest of experiment values at

0.1.

In addition to the E×B drift flow, there is a slow transport flow. The transport

produces a low density halo that gradually extends out from the plasma core. A given

particle slowly spirals out, moving successively from one contour to another of larger

radius.

The green dot-dashed equipotential contours in Fig. 3.1 is the critical contour
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that just misses the blue dashed scrape-off layer at θ̄ = 0. When transport moves

an electron through this critical contour, the electron hits the scrape-off layer and is

absorbed by the wall before returning to θ̄ = 0. The red solid curve in Fig. 1.3 shows

the trajectory of such an electron.

�B

Ω1D

2D Θ = 0Θ = Π

Figure 1.3: Cross section of the electron plasma column in a m = 1 mode.
The orange shaded region is the plasma core. The gray lines are equipotential
contours in the mode frame. The blue dashed curve is the scrape-off layer.
The green dot-dashed curve is the critical contour. The red solid curve is a
particle trajectory.

The previous theory focuses on the transfer of canonical angular momenta

from the plasma core to such electrons. In the guiding center drift approximation,

the canonical angular momentum for an electron in the uniform magnetic field of the

trap is simply Pθ = eBr2/2c, where the radial position r is measured from the center

of the trap, B is the magnetic field strength and e = −|e| is the electron charge[28, 29].

When an m = 1 diocotron mode is excited, the plasma core is displaced off the trap
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axis by a small amount D, and the core canonical angular momentum per unit length

is changed by N(eB/2c)D2[23]. This change in angular momentum is called the

canonical angular momentum of the mode.

When an individual electron E × B drifts in a nearly circular orbit around

the displaced center of the plasma core, the radius of the electron measured from

the center of the trap oscillates by order ∆r ∼ D cos[θ̄(t)]. Thus, the electron con-

tinually trades angular momentum back and forth with the core, or equivalently

with mode. However, the orbit for an electron that crosses the critical contour is

truncated by the wall, so there is a net change in angular momentum. Since the

thickness of the “cat’s eye” orbit is of order D, the net change in angular momentum

is of order ∆Pθ ∼ (eB/2c)[R2
w − (Rw − D)2] ∼ (eB/c)RwD. More precisely, the

previous derivation[2] obtained the average change in canonical angular momentum

⟨∆Pθ⟩ = (2/π)(eB/c)RwD.

Balancing the rate of change of the mode angular momentum against the rate

of change of halo particle angular momentum yields the equation

d

dt
N
eB

2c
D2 +

∣∣∣∣dNdt
∣∣∣∣⟨∆Pθ⟩ = 0. (1.7)

Substituting for ⟨∆Pθ⟩ yields the damping rate equation

dD

dt
= − 2

π

1

N

∣∣∣∣dNdt
∣∣∣∣Rw = −γ, (1.8)

with a solution of linear algebraic damping D(t) = D(0)− γt.

This simple result captures the experimental observations that the mode am-

plitude decays as a linear function of time and that the magnitude of the damping
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rate is proportional to the flux of halo particles through the resonant layer. The

predicted magnitude of the damping rate is about half the measured rate.

Although this simple derivation has the advantage of brevity, it leaves ques-

tions unanswered. For example, given that the resonant particles cause mode damp-

ing, do they also cause a mode frequency shift? Also, why focus exclusively on the

thin ribbon of electrons beyond the critical contour, when there are many more res-

onant electrons? Is it really true that the mode transfers zero net angular angular

momentum to these other resonant electrons?

A conceptual issue is the use of angular momentum balance. In fact, the

total angular momentum for the plasma core and halo is not conserved. Transport

continually changes the angular momentum of the halo particles as these electrons

move out radially.

Also, the simple theory is implicitly based on a zero-diffusion model; the trans-

port is assumed to be due exclusively to mobility. Unfortunately, the zero-diffusion

model leads to an infinite density gradient at the leading edge of the halo, and such

a gradient cannot be maintained in the presence of even a small diffusion coefficient.

For the experimental conditions, diffusion affects the orbits of all the particles deemed

responsible for damping in the simple theory. Indeed the whole idea of well-defined

orbits looses meaning in the face of such diffusion. The orbits are diffusively broad-

ened.

What is needed is a new, more rigorous theory based on a solution of the

coupled Poisson and transport equations. Such a theory talks about an evolving

density, rather the particle orbits, and makes no assumption about conservation of

angular momentum.
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We note at the outset, however, that despite the problems listed above, the

damping rate given in Eq. (1.8) will survive in the new theory, provided that the

diffusion coefficient is sufficiently small, as defined by inequalities given later. The

simple theory needs a more rigorous backup, indeed is wrong in detail, but captures

the essence of the physics. The new theory does predict a frequency shift

∆ω =
32

3

ecD

BRw

n(0)(R1), (1.9)

where n(0)(R1) is the unperturbed density in the resonant region of the halo.

The new theory preserves an important simplification of the traditional linear

theory for an m = 1 diocotron mode[21]. For any unperturbed density perturbation

n(0)(r) that is monotonically decreasing in r and goes to zero for some r > Rw, the

mode perturbation results from a uniform displacement D of the plasma column off

the trap axis. The displaced column produces an image in the conducting wall, and

in the linear limit (i.e. D/Rw ≪ 1), the electric field from the image is uniform over

the whole column, producing a uniform E ×B drift of the whole column transverse

to the displacement D. This uniform motion of the column around the trap axis is

the mode.

In the traditional theory, there are no resonant particles near the wall, but the

theory presented here must include such particles. Moreover, the perturbed charge

density of the resonant particles produces an electric field that acts back on the

plasma core, and one might worry that this field would spoil the picture of uniform

core displacement. However, that is not the case.

The resonant particles are well outside the plasma core, so the field from the

resonant particles is a vacuum field in the region of the core. The dipole portion of
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this field is the portion that drives the mode resonantly, and a dipole vacuum field is

uniform. Recall that a dipole vacuum potential can be written in the form

δϕ(r, θ, t) = −δEx(t)r cos θ̄ − δEy(t)r sin θ̄, (1.10)

where δEx(t) is the uniform field along the direction θ̄ = 0 and δEy(t) is the uniform

field along θ̄ = π/2. We assume that the halo density is small, so the uniform field

δEx(t)x̂ + δEyŷ is a small increment to the uniform field from the image in the wall

and produces only a small increment in the uniform drift velocity of the core. Thus,

the core perturbation is still a uniform displacement.

In Section 3.3, the damping rate Ḋ and the frequency shift ∆ω are obtained

as Green’s function integrals over the perturbed charge density in the resonant region.

To obtain these integral expressions, the perturbed charge density of the core is taken

to be of the form arising from a uniform displacement.

The integral expressions can be rewritten in the form

Ḋ =
c

B
δEy(t), D∆ω = − c

B
δEx(t), (1.11)

which yields a simple physical interpretation. The component of the uniform field

from the resonant particles that is transverse to the displacement (δEy) cause an

E ×B drift motion of the core back toward the trap axis, that is, a damping of the

mode. Likewise, the component of the field along the displacement (δEx) causes an

increment to the E×B drift velocity around the trap axis, that is, a mode frequency

shift.

A second re-writing of the integral expression for Ḋ clarifies the issue of angular
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momentum conservation. The equation can be re-written as a statement that the

torque exerted by the core on the resonant particles is equal and opposite to the

torque exerted by the resonant particles back on the core. Two opposing torques

are equal and opposite even if a third torque (say, due to the transport) acts. The

treatment based on Poisson’s equation correctly, and automatically, focuses on torque

balance, rather than angular momentum balance.

For the conditions of the experiment, we will see that the transport caused

change in angular momentum of electrons being swept to the wall is small compared

to the change caused by the mode field, so the angular momentum balance is approx-

imately correct. Nevertheless, the calculation of the damping rate should at least

start from a rigorous foundation based on torque balance.

To obtain explicit expressions for the damping rate and frequency shift, the

transport equation must be solved for the halo density distribution in the resonant

region and the result substituted into the Green’s function integrals. As a first step,

the transport equation is discussed and simplified in Section 3.4.

Note that the halo evolution takes place in two stages. First the halo extends

radially outward until it reaches to the wall. At the wall, the electrons are continuously

absorbed, and a quasi-steady state density distribution is established. We calculate

the damping rate and frequency shift for this density distribution.

Section 3.5 obtains simple analytic expressions for the density distribution,

damping rate and frequency shift by using an idealized transport model: zero diffusion

coefficient and constant coefficient of mobility. The E×B drift flow and mobility flow

are then both incompressible and can be incorporated in a Hamiltonian description of

the electron orbits. This idealized model implicitly underlies the simple theory[2, 3],
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but leads to an infinite density gradient at the leading edge of the halo, which is

untenable.

Section 3.6 includes the effect of diffusive broadening at the leading edge gra-

dient. For the conditions of the experiments, the broadening substantially modifies

the density distribution and the orbits in the region that determines the damping

rate, so one might expect that the answer for the damping rate would be substan-

tially changed. However, the Green’s function integral for the damping rate can be

rewritten in an approximate form that involves only the flux entering the broadening

layer, and this form again yields the zero-diffusion damping rate in Eq. (3.2). The

approximation requires that the diffusion coefficient be sufficiently small, as will be

specified by inequalities in Section 3.6. Subject to these inequalities the frequency

shift is also relatively unchanged.

Numerical solutions for the diffusively broadened density distribution are ob-

tained in Appendix B and are used in the Green’s function integral to obtain numerical

results for the damping rate. The numerical results are in good agreement with the

approximate analytic result of Section 3.6.

Section 3.7 obtains a perturbative correction to the damping rate to account

for the slow time dependence inD(t). This time dependence causes the contours them-

selves to move, and the corrected damping rate is proportional to the flux through

the moving contour. For the conditions of the experiment the correction is small.

At the end of Chapter 3, Section 3.8 is a discussion on the general applicability

of this flux-driven damping mechanism.
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1.2.2 Azimuthal mode number m = 2

Subsequent to the experimental discovery of the damping for an m = 1 dio-

cotron mode, similar damping was observed for an m = 2 mode[2, i.e. paper 3 in

publication list]. Again, algebraic damping began when the halo particles reached

the resonant layer, which for the m = 2 mode is well separated from the wall. The

resonant radius[3, i.e. paper 4 in publication list] for an m = 2 mode is Rc2 =
√
2Rp,

where Rp is the core radius.

Figure 1.4: Normalized amplitude of m = 2 mode vs time for several values
of transport flux. The flux is controlled by quadrupole wall voltage ϵv in
Volts and magnetic field tilt angle ϵB in radians. This figure is taken from
Ref. 2 (paper 3 in publication list).

Fig. (1.1), taken from Ref. 2 (paper 3 in publication list), shows the normalized

amplitudes of an m = 2 mode versus time for several values of the transport flux. The

amplitudes of an m = 2 mode is characterized by the surface ripple ∆ (D2 in the

figure) of the core from the core radius Rp, and in Fig. (1.4), this surface ripple is

normalized to the core radius Rp. In the experiments, the algebraic damping begins
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when the radially expanding halo reaches the resonant radius Rc2. Fig. (1.5), using

data taken from Fig. 5 of Ref. 2 (paper 3 in the publication list), shows that the

algebraic damping rate γ2 = ∆̇/Rp is proportional to the normalized rate |Ṅ |/N at

which particles are crossing the resonant radius. |Ṅ | is the number of particles per

unit length crossing the resonant radius per unit time for the m = 2 mode.
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Figure 1.5: Damping rate of m = 2 mode vs normalized rate at which
particles cross r = Rc2. The data used in this figure is taken from Fig. 5 of
Ref. 2 (paper 3 in publication list).

Because the resonant layer for the m = 2 mode is well separated from the wall,

one may ask what plays the role of the wall in truncating particle orbits? Put another

way, what prevents the resonant particles from giving back angular momentum that

they have received from the mode? We believe that the answer is simply passage

of the particles through the “cat’s-eye” orbits in the resonant layer. Because of

transport, the particles cannot come back through these structures, and in the one-

way passage, the particles pick up significant angular momentum from the mode,

causing the damping. In principle, this mechanism also would apply for m = 3 and
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higher, but the resonant layer is closer to and even inside the core for higher m modes,

and such modes typically suffer large ordinary Landau damping.

Ref. 3 (paper 4 in the publication list) provides parallel calculations of the

damping rate for both the m = 1 and m = 2 modes using the simple, but heuristic,

argument of angular momentum balance in the zero-diffusion limit. A complication

for the case of the m = 2 mode is that the slow damping of the mode is not negligible

and must be included in an ad hoc manner. For the m = 2 mode, this calculation

yields an implicit expression for the mode amplitude

2

3

[
∆(t)

Rp

]3/2
+ 4

n(0)(R1)

n(0)(0)

[
∆(t)

Rp

]1/2
=

2

3

[
∆(0)

Rp

]3/2
+ 4

n(0)(R1)

n(0)(0)

[
∆(0)

Rp

]1/2
− 4

√
2|Ṅ |t
πN

,

(1.12)

where ∆(t) is the displacement of the surface ripple characterizing the mode ampli-

tude.
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Figure 1.6: Damping curve of the m = 2 mode amplitude ∆(t)/Rp. The
solid curve is the theoretical curve following Eq. (1.12), and the dashed curve
is the curve following the experimental damping rate.
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Fig. (1.6) shows the time-dependence of the m = 2 mode amplitude ∆(t)/Rp,

using the values n(0)(R1)/n
(0)(0) = 10−2 and |Ṅ |/N = 10−3. The solid curve is the

theoretical curve that follows Eq. (1.12), and the dashed curve is the linear curve

that follows the experimentally observed value of damping rate in Ref. 2 (paper 3 in

the publication list). The figure shows that this simple theory in Eq. (1.12) gives a

damping time of the same order of magnitude as, but shorter than, in the experiment.

In Chapter 3 we do not provide a more rigorous treatment of the damping of

the m = 2 mode in parallel with the damping of the m = 1 mode, because there

are technical differences between the m = 1 and m = 2 cases. The m = 1 mode

admits an analytic solution for a general monotonically decreasing density profile,

while the m = 2 mode does not. The structure of the “cat’s-eye” orbits differ, since

the potential goes to zero at the resonant radius for an m = 1 mode (i.e. at the

wall), but not for the m = 2 mode. Also, the truncation of the orbits by the wall

is different than simply passing through the “cats eye orbits. In the case of m = 2

mode, as the halo particles are swept and pushed to the other side of the separatrix,

and continue to deviate outward from the E × B-drift orbits, filamentation occurs

and the evolution of the halo is complex. The theory for the m = 2 mode must wait

for a later paper.

1.3 A mechanistic interpretation of the resonant

wave-particle interaction

Chapter 4 provides a re-interpretation of the resonant wave-particle interaction

of Landau[30]. There are two halves to this interaction: first there is the influence of
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the wave on the resonant particles and second the influence of the resonant particles

back on the wave. The mechanisms for the two halves of the interaction are usually de-

scribed differently. For the first half, the mechanism is obvious; the wave electric field

acts on the resonant particles and produces a perturbation in the resonant particle

charge density. The mechanism for the second half of the interaction is usually de-

scribed through Poisson’s equation, or equivalently, a dispersion relation that follows

from Poisson’s equation; the perturbed charge density from the resonant particles

makes a small correction to the dispersion relation, and this correction yields a small

imaginary frequency shift, which is the damping decrement for the wave. In contrast,

here we provide a mechanical interpretation of the second half of the interaction that

is similar to the interpretation of the first half.

Consider the simple case of a Langmuir wave that is excited in a collisionless,

Maxwellian plasma, with the wave phase velocity well out on the tail of the velocity

distribution. We will see that the wave induced displacement of the non-resonant elec-

trons, that is, the electrons in the main part of the Maxwellian, satisfies an oscillator

equation that is driven by the bare electric field from the perturbed charge density of

the resonant electrons. This field drives the oscillator resonantly, since the resonant

electrons travel at the phase velocity of the wave. From this perspective, the wave

damping simply results from the action of the driver field from the resonant electrons

back on the oscillator.

The interpretation does not specify the perturbed charge density of the reso-

nant particles, so the interpretation applies equally well to the cases of linear Landau

damping and growth and to the case of a large amplitude wave with nonlinear, trapped

particle orbits. In general, the portion of the drive field that is 90◦ out of phase with
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the oscillator produces damping or growth and the portion that is in phase produces

a frequency shift.

Because Landau’s analysis of the damping was rather formal and did not offer

a physical interpretation, other authors have provided physical interpretations[31, 32,

33, 34]. Here, we find a particularly simple interpretation by focusing on only half of

the wave-particle interaction: namely, the influence of the resonant particles back on

the wave.

One usually thinks of Landau resonances in connection with waves in a col-

lisionless plasma, that is, waves that are described by Vlasov dynamics, but such

resonances also occur for waves that are described by 2D E × B drift dynamics. A

simple example is a diocotron wave that is excited on a nonneutral plasma column

in a Penning-Malmberg trap[14, 15, 35, 23]. The analysis is simplest for the case

where the plasma column consists of a high-density core surrounded by a relatively

low-density halo. The diocotron wave can be thought of as a surface wave that propa-

gates azimuthally around the core. At some critical radius in the halo, the azimuthal

E × B drift rotation velocity of the halo fluid elements matches the phase velocity

of the wave potential, and the resonant interaction of the wave potential and fluid

elements gives rise to Landau damping.

In the standard analysis, the linearized continuity equation for the E × B

drift flow is combined with Poisson’s equation to obtain a dispersion relation. When

the resonant region is in the low density halo, the perturbed charge density of the

resonant electrons makes a small correction to the dispersion relation, yielding a small

imaginary frequency shift, which is the wave damping decrement. To understand more

clearly how the resonant particles act back on the wave, we focus on the equation of
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motion for the surface ripple on the plasma core. As we will see, the bare electric field

from the perturbed charge density of the resonant electrons acts back on the core,

causing E × B drifts that reduce the amplitude of the surface ripple, that is, damp

the wave. Again, we find a simple mechanistic description of the manner in which

the resonant electrons act back on the wave.

Chapter 1, in parts, is taken from the papers appearing in Physics of Plasmas

as C.Y. Chim, T.M. O’Neil, D.H.E. Dubin, Physics of Plasmas 21, 042115 (2014),

C.Y. Chim, T.M. O’Neil, Physics of Plasmas 23, 072113 (2016), and C.Y. Chim,

T.M. O’Neil, Physics of Plasmas 23, 050801 (2016). The dissertation author was the

primary investigator and author of these papers.



Chapter 2

Collisional relaxation of a strongly

magnetized two-species pure ion

plasma

2.1 Abstract

The collisional relaxation of a strongly magnetized pure ion plasma that is

composed of two species with slightly different masses is discussed. We have in mind

two isotopes of the same singly ionized atom. Parameters are assumed to be ordered

as Ω1,Ω2 ≫ |Ω1 − Ω2| ≫ v̄ij/b̄ and v̄⊥j/Ωj ≪ b̄, where Ω1 and Ω2 are two cyclotron

frequencies, v̄ij =
√
T∥/µij is the relative parallel thermal velocity characterizing

collisions between particles of species i and j, and b̄ = 2e2/T∥ is the classical distance of

closest approach for such collisions, and v̄⊥j/Ωj =
√
2T⊥j/mj/Ωj is the characteristic

cyclotron radius for particles of species j. Here, µij is the reduced mass for the two

particles, and T∥ and T⊥j are temperatures that characterize velocity components
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parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron

action for the two species, I1 =
∑

i∈1m1v
2
⊥i/(2Ω1) and I2 =

∑
i∈2m2v

2
⊥i/(2Ω2) are

adiabatic invariants that constrain the collisional dynamics. On the timescale of a

few collisions, entropy is maximized subject to the constancy of the total Hamiltonian

H and the two actions I1 and I2, yielding a modified Gibbs distribution of the form

exp[−H/T∥ − α1I1 − α2I2]. Here, the αj’s are related to T∥ and T⊥j through T⊥j =

(1/T∥+αj/Ωj)
−1. Collisional relaxation to the usual Gibbs distribution, exp[−H/T∥],

takes place on two timescales. On a timescale longer than the collisional timescale by

a factor of (b̄2Ω2
1/v̄

2
11) exp{5[3π(b̄|Ω1−Ω2|/v̄12)]2/5/6}, the two species share action so

that α1 and α2 relax to a common value α. On an even longer timescale, longer than

the collisional timescale by a factor of the order exp{5[3π(b̄Ω1/v̄11)]
2/5/6}, the total

action ceases to be a good constant of the motion and α relaxes to zero.

2.2 Introduction

There is good agreement between theory and experiment for the collisional

relaxation of strongly magnetized single species plasmas[6, 7, 8, 9, 10]. The relax-

ation is novel because the collisional dynamics is constrained by adiabatic invariants

associated with the cyclotron motion. Here we extend the theory to the case of a

two-species plasma, where the charges of the two species are the same (e1 = e2) and

the masses differ only slightly (i.e., |m1 −m2| ≪ m1,m2). We have in mind a pure

ion plasma that is composed of two isotopes. Such isotopically impure ion plasmas

are often used in experiments[11, 12].

In Section 2.3, we begin with an analysis of a collision between two isotopically

different ions that move in the uniform magnetic field B = Bẑ. For sufficiently strong
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magnetic field, the collision looks very different from Rutherford scattering; the two

ions approach and move away from one another in tight helical orbits that follow

magnetic field lines.

We will find that the sum of the cyclotron actions for the two ions, I1 + I2 =

m1v
2
⊥1/(2Ω1) + m2v

2
⊥2/(2Ω2), is an adiabatic invariant that is nearly conserved in

the collision. Here, mjv
2
⊥j/2 and Ωj = eB/(mjc) are the cyclotron kinetic energy

and cyclotron frequency for the two ions (j = 1, 2). More specifically, the change

in the total action is of order ∆(I1 + I2) ∼ exp[−Ωcτ ], where Ω1 ≃ Ω2 ≡ Ωc and τ

is a time that characterizes the duration of the collision. The time is shortest, and

the change ∆(I1 + I2) largest, for nearly head-on collisions, where τ ≃ (π/2)(b/v∥).

Here v∥ is the initial relative velocity of the ions parallel to the magnetic field, b =

2e2/(µv2∥) is the minimum separation between the ions allowed on energetic grounds,

and µ ≡ m1m2/(m1 + m2) is the reduced mass. This estimate of τ uses guiding

center drift dynamics as a zeroth order approximation to the orbits and so assumes

that the cyclotron radii for the two ions are small compared to the ion separation

[i.e., v⊥j/Ωj ≪ b]. For sufficiently large B, the product Ωcτ = (π/2)(Ωcb/v∥) is large

compared to unity and the change ∆(I1+ I2) ∼ exp[−(π/2)(Ωcb/v∥)] is exponentially

small.

The same analysis shows that the change in the individual actions is of or-

der ∆I1 ≃ −∆I2 ∼ exp[−|Ω1 − Ω2|τ ], which also is exponentially small if |Ω1 −

Ω2|[πb/(2v∥)] is large. By assumption, the ion masses, and therefore the ion cyclotron

frequencies, differ only slightly, so we have the ordering Ω1,Ω2 ≫ |Ω1 − Ω2| ≫ v∥/b,
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which implies the conclusion

I1, I2 ≫ |∆I1| ≃ |∆I2| ≫ |∆(I1 + I2)|. (2.1)

The individual actions are well conserved, and the sum of the two actions is conserved

even better.

In Section 2.4, we determine how these adiabatic invariants constrain the col-

lisional relaxation of a strongly magnetized plasma composed of such ions. We say

that the plasma is strongly magnetized when

b̄≫ v̄⊥,jk
Ωj

and |Ω1 − Ω2| ≫
v̄jk
b̄
, (2.2)

where v̄ij =
√
T∥/µij is the relative parallel thermal velocity, b̄ = 2e2/(µjkv̄

2
jk) =

2e2/T∥ is the distance of closest approach, v̄⊥j =
√
2T⊥j/mj is the perpendicular

thermal velocity for species j, and µjk is the reduced mass of two interacting particles

from species j and k. As we will see, the temperatures T∥, T⊥1 and T⊥2 need not be

equal during the evolution to thermal equilibrium. The condition Ω1,Ω2 ≫ |Ω1−Ω2|

plus inequalities (2.2) imply that all collisions between unlike ions are in the strongly

magnetized parameter regime.

Note that this definition of strong magnetization is more restrictive than that

used previously for the case of single-species plasmas[8, 9]. The requirement |Ω1 −

Ω2| ≫ v̄jk/b̄ has replaced the less restrictive requirement Ω1,Ω2 ≫ v̄jk/b̄.

As a first step in determining the influence of the adiabatic invariants on the

evolution, we note that the difference between the cyclotron frequencies of like ions

is zero, so the change in the individual actions is not exponentially small. Of course,
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the change in the sum of the two actions for the like ions is exponentially small.

Thus, on the timescale of a few collisions, one expects that like ions will inter-

change cyclotron action with each other, but not with unlike ions. On this timescale,

the total cyclotron action of species 1 (i.e., I1 =
∑N1

j=1 I1j) and the total cyclotron

action of species 2 (i.e., I2 =
∑N2

j=1 I2j) along with the total Hamiltonian H are con-

stants of the motion, and a modified Gibbs distribution, exp[−H/T∥−α1I1−α2I2] is

established[13]. Here T∥, α1 and α2 are thermodynamic variables. From the velocity

dependence in H, I1 and I2, one can see that T∥ is the temperature that characterizes

velocity components parallel to the magnetic field and that T⊥1 = [1/T∥ + α1/Ω1]
−1

and T⊥2 = [1/T∥+α2/Ω2]
−1 are the temperatures that characterize the perpendicular

velocity components for species 1 and 2.

Inequalities (2.2) imply that on a longer timescale particles of the two species

interchange action with each other conserving the sum I1+I2. On this timescale, the

variables α1 and α2 evolve to a common value, yielding the distribution exp[−H/T∥−

α(I1 + I2)], where α is that common value. On a still longer timescale, I1 + I2 is not

conserved, and α evolves to zero, yielding the usual Gibbs distribution exp[−H/T∥].

The purpose of this chapter is to calculate the rate at which α1 and α2 evolve

to the common value α and the much slower rate at which α evolves to zero. We will

find that α1 − α2 satisfies the equation

d

dt
(α1 − α2) = −νa(α1 − α2) (2.3)

and that α satisfies the equation

d

dt
α = −νbα, (2.4)
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where νa is of the order O[nb̄20v̄11,0Λ2(b̄|Ω1−Ω2|/v̄12)(v̄11/(b̄Ω1))
2] and νb is of the order

O[nb̄20v̄11,0Λ1(b̄Ω1/v̄11)], and subscript 0 refers to initial values before equilibration.

Λ1(κ̄) and Λ2(κ̄) decrease exponentially with increasing κ̄. In the limit of κ̄ ≫ 1,

Λ1(κ̄) and Λ2(κ̄) are approximated by the asymptotic expressions

Λ1(κ̄) ≃ 3.10κ̄−7/15e−5(3πκ̄)2/5/6, (2.5)

Λ2(κ̄) ≃ 3.87κ̄13/15e−5(3πκ̄)2/5/6. (2.6)

In Λ1(κ̄), κ̄ is the magnetization κ̄ij = b̄Ωi/v̄ij, whereas in Λ2(κ̄), κ̄ is the magneti-

zation difference |κ̄12 − κ̄21|, when Λ1 and Λ2 are used to describe the equipartition

rates.

2.3 Two-particle collision

In this section, we consider the isolated collision of two ions that have equal

charges (e1 = e2 ≡ e), slightly different masses (|m1 −m2| ≪ m1,m2), and move in

the uniform magnetic field B = Bẑ. The Hamiltonian for the two interacting charges

can be written as

H =
2∑

k=1

[
p2zk
2mk

+
p2xk
2mk

+
(pyk − eBx/c)2

2mk

] +
e2

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]1/2
,

(2.7)

where we have used the vector potential A = Bxŷ, and the quantities (xk, pxk),

(yk, pyk), (zk, pzk) are canonically conjugate coordinates and momenta[36].

We assume that the magnetic field strength and initial velocities satisfy the

conditions for strong magnetization as defined in Section I (i.e., v⊥j/Ωj ≪ b and
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|Ω1 − Ω2| ≫ v∥/b). In this limit, the following transformation[37] is useful:

Yk = yk −
c

eB
pxk, (2.8)

Xk =
c

eB
pyk, (2.9)

ψk = − tan−1(
yk − Yk
xk −Xk

), (2.10)

Ik =
p2xk + (pyk − eBxk/c)

2

2mkΩk

. (2.11)

One can check that (zk, pzk), (Yk, PYk ≡ eB
c
Xk) and (ψk, Ik) satisfy the usual Poisson

brackets required of canonically conjugate coordinates and momenta, i.e. {qi, pj} =

δij. Here (Xk, Yk) are the coordinates of the guiding center for the k-th particle, and

(ψk, Ik) are the gyro-angle and cyclotron action for the k-th particle. In terms of these

new canonical variables, the Hamiltonian takes the form

H =
2∑

k=1

(
p2zk
2mk

+ ΩkIk) +
e2

|r1 − r2|
, (2.12)

where

|r1 − r2|2 = (z1 − z2)
2 + (X1 + ρ1 cosψ1 −X2 − ρ2 cosψ2)

2

+(Y1 − ρ1 sinψ1 − Y2 + ρ2 sinψ2)
2. (2.13)

Here ρk =
√
2Ik/(mkΩk) is the cyclotron radius of the k-th particle.

Since |r1 − r2| is periodic in ψ1 and ψ2, the Hamiltonian can be written in the

form

H =
2∑

k=1

(
p2zk
2mk

+ ΩkIk) +
∑
µ,ν

gµνe
i(µψ1+νψ2), (2.14)
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where gµν = gµν(I1, I2, z1 − z2, X1 − X2, Y1 − Y2), and µ and ν run over all integer

values from −∞ to +∞.

We will find it instructive to calculate the change over the course of the col-

lision in the sum and difference of the cyclotron actions, ∆(I1 + I2) and ∆(I1 − I2).

Hamilton’s equations yield the time derivatives

d

dt
(I1 + I2) = −(

∂

∂ψ1

+
∂

∂ψ2

)H = −
∑
µν

i(µ+ ν)gµνe
i(µψ1+νψ2) (2.15)

and

d

dt
(I1 − I2) = −(

∂

∂ψ1

− ∂

∂ψ2

)H = −
∑
µν

i(µ− ν)gµνe
i(µψ1+νψ2) (2.16)

For strong magnetization, one expects guiding center drift theory to provide a

good zeroth order approximation to the particle orbits. Moreover, the guiding center

variables are slowly varying in time compared to the rapidly varying gyro-angles ψ1

and ψ2. In this approximation, the arguments of gµν = gµν(I1, I2, z1−z2, X1−X2, Y1−

Y2) are slowly varying and the exponentials ei(µψ1+νψ2) are rapidly oscillating, and the

time integral of such a product phase mixes to a small value. We will find that the

value is exponentially small in the ratio of the rapid to the slow timescales.

At this point, we can anticipate the main result of the calculation. The smallest

frequency for the exponentials is |Ω1 − Ω2|, corresponding to the choice µ = −ν =

±1. Since the coefficient for this term vanishes identically in Eq. (2.15) but not in

Eq. (2.16), the change |∆(I1 + I2)| is much smaller than the change |∆(I1 − I2)|.

Equivalently, one may say that the total action is conserved to much better accuracy

than either of the two actions independently, i.e. |∆(I1 + I2)| ≪ |∆I1|, |∆I2|.

The guiding center Hamiltonian[38, 39] is obtained simply by setting ρ1 =
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ρ2 = 0 in Eq. (2.13), yielding

HGC =
2∑

k=1

(
p2zk
2mk

+ ΩkIk) +
e2

[(z1 − z2)2 + (X1 −X2)2 + (Y1 − Y2)2]1/2
, (2.17)

where PYk = c
eB
Xk. Making the canonical transformation to center-of-mass and

relative coordinates

z = z1 − z2, (2.18)

Z =
m1z1 +m2z2
m1 +m2

, (2.19)

pz =
m2pz1 −m1pz2
m1 +m2

, (2.20)

PZ = pz1 + pz2 (2.21)

yields the Hamiltonian

HGC =
P 2
Z

2M
+
p2z
2µ

+ I1Ω1 + I2Ω2 +
e2

[(z1 − z2)2 + (X1 −X2)2 + (Y1 − Y2)2]1/2
, (2.22)

where M = m1 +m2 and µ = m1m2/(m1 +m2).

Thus, with guiding center dynamics, the quantities HGC, PZ , I1, I2, and (X1−

X2)
2 + (Y1 − Y2)

2 ≡ |∆R⊥|2 are constants of the motion, and the relative coordinate

z(t) is governed by the equation

µż2(t)

2
+

e2

(|∆R⊥|2 + z2(t))1/2
=
µv2∥
2
, (2.23)

where v∥ ≡ ż(t = −∞) is the initial relative velocity. From this equation, one

sees that the minimum allowed separation between the guiding centers is given by
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b =
√

|∆R⊥|2 + z2|min = 2e2/(µv2∥). We choose t = 0 so that z2(t) is an even function

of t. For the case where |∆R⊥| < b, there is no reflection and we choose z(0) = 0,

and for the case where |∆R⊥| > b, we choose t = 0 to be at the point of reflection,

that is, z2(0) = b2 − (∆R2
⊥).

In the guiding center drift approximation, the most rapidly varying variable

in the argument of gµν(I1, I2, z1 − z2, X1 − X2, Y1 − Y2) is the relative coordinate

z(t) = z1(t) − z2(t), and the timescale associated with this variation is of order b/v∥

or larger. By comparison, the timescale for the oscillatory variation of the exponential

exp(iµψ1 + iνψ2) is |µΩ1 + νΩ2|−1 < |Ω1 − Ω2|−1. Thus, the strong magnetization

ordering v∥/b ≪ |Ω1 − Ω2| ≪ Ω1,Ω2 is simply a statement of the needed separation

of timescales.

We Taylor expand gµν in powers of ρk/
√
|∆R⊥|2 + z2 ≤ ρk/b ≪ 1. As one

would expect, each term in the expansion of gµν is of order (ρ/b)|µ|+|ν|, and for sim-

plicity we retain only the lowest order term. An equivalent way to do so is to expand

H in powers of ρk and collect terms of the right Fourier dependence exp(iµψ1+ iνψ2),

so as to obtain the Taylor-approximated gµν . Expressions of gµν that are used in the

calculation are the following:

g10 = −e
i(Ω1t+ϕ1)

2

e2v⊥1/Ω1

|∆R⊥|2 + z2
= g∗−1,0, (2.24)

g01 =
ei(Ω2t+ϕ2)

2

e2v⊥2/Ω2

|∆R⊥|2 + z2
= g∗0,−1, (2.25)

g1,−1 = −e
i(Ω1−Ω2)t+i(ϕ1−ϕ2)

2

e2

(|∆R|2 + z2)3/2
(1− 3|∆R⊥|2

2(|∆R⊥|2 + z2)
)
v⊥1v⊥2

Ω1Ω2

= g∗−1,1,

(2.26)

where v⊥k = ρkΩk is the cyclotron velocity, ϕk = ψk(t = 0) is the gyroangle at t = 0,
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and as mentioned earlier we choose t = 0 so that z2(t) is an even function of time.

Also we note that |g10| and |g01| are of the order ρk ∝ Ω−1
k ∝ B−1, but |g1,−1| is of

the order ρ2k ∝ Ω−2
k ∝ B−2.

Since the time integrals
∫∞
−∞ dtgµν exp(iµψ1+iνψ2) turn out to be exponentially

small in the ratio of the slow to rapid timescales we need only to retain the lowest

frequency terms in the sum over µ and ν. Specifically, we retain the terms with

frequencies |Ω1 − Ω2|, Ω1, and Ω2, using Eqns. (2.24) to (2.26) to obtain the results

∆(I1 − I2)

= −
∫ ∞

−∞
e2
v⊥2

Ω2

sinϕ2
|∆R⊥|

(|∆R⊥|2 + z2)3/2
cos(Ω2t)dt

−
∫ ∞

−∞
e2
v⊥1

Ω1

sinϕ1
|∆R⊥|

(|∆R⊥|2 + z2)3/2
cos(Ω1t)dt

+

∫ ∞

−∞

e2v⊥1v⊥2

(|∆R⊥|2 + z2)3/2
2

Ω1Ω2

cos[(Ω1 − Ω2)t]

· sin(ϕ1 − ϕ2)(1−
3|∆R⊥|2

2(|∆R⊥|2 + z2)
)dt, (2.27)

and

∆(I1 + I2)

=

∫ ∞

−∞
e2
v⊥2

Ω2

sinϕ2
|∆R⊥|

(|∆R⊥|2 + z2)3/2
cos(Ω2t)dt

−
∫ ∞

−∞
e2
v⊥1

Ω1

sinϕ1
|∆R⊥|

(|∆R⊥|2 + z2)3/2
cos(Ω1t)dt. (2.28)

The integrals carrying cos(Ωit) are proportional to

f1(κi, η) =

∫ ∞

−∞

dξ cos(κiξ)

(η2 + ζ2(ξ))3/2
, (2.29)
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while the integral carrying cos[(Ω1 − Ω2)t] is proportional to

f2(κ1 − κ2, η) =

∫ ∞

−∞

dξ cos[(κ1 − κ2)ξ]

(η2 + ζ2(ξ))3/2
(1− 3η2

2[η2 + ζ2(ξ)]
), (2.30)

where ξ = v∥t/b, κi = bΩi/v∥, η = |∆R⊥|/b and ζ = z/b. In terms of these variables,

differential equation (2.23) takes the form

(
dζ

dξ
)2 +

1√
η2 + ζ2(ξ)

= 1, (2.31)

where ζ2(0) = max(0, 1− η2). In the next section, we will need the results

∆(I1 + I2) = − e2

bΩ1

(
v⊥1

v∥
sinϕ1)ηf1(κ1, η) +

e2

bΩ2

(
v⊥2

v∥
sinϕ2)ηf1(κ2, η), (2.32)

∆I1 = − e2

bΩ1

(
v⊥1

v∥
sinϕ1)ηf1(κ1, η)

+
e2

bΩ1Ω2

v⊥1v⊥2

v∥b
f2(κ1 − κ2, η) sin(ϕ1 − ϕ2), (2.33)

∆I2 =
e2

bΩ2

(
v⊥2

v∥
sinϕ2)ηf1(κ2, η) +

e2

bΩ1Ω2

v⊥1v⊥2

v∥b
f2(κ1 − κ2, η) sin(ϕ2 − ϕ1).

(2.34)

In the regime of strong magnetization (i.e., 1 ≪ |κ1 − κ2| ≪ κ1, κ2), the

integrals f1 and f2 are exponentially small, since the integrands are the product of a

rapidly oscillating cosine and a slowly varying function. The rapid oscillation makes

a direct evaluation of such integrals difficult.

In Appendix A, we analytically continue the integrals into the complex ξ-plane,

making the exponentially small value of the integrals manifest in the integrands them-

selves. This facilitates numerical evaluation of the integrals and yields the asymptotic
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forms

f1(κj, η) = h1(κj, η) exp[−g(η)κj], (2.35)

f2(|κ1 − κ2|, η) = h2(|κ1 − κ2|, η) exp[−g(η)|κ1 − κ2|], (2.36)

where

g(η) = |
∫ η

1

x3/2dx√
(x− 1)(η2 − x2)

| (2.37)

is shown in Fig. (2.1). From the numerical evaluations one can see that the quantities

hj(κ, η) are neither exponentially small nor large. Also for η = 0, one can show

that hj(κ, 0) = h2(κ, 0) ≃ 8πκ/9. In the next section, we will need the asymptotic

forms only for small η. Fig. (2.2) shows a comparison of the numerical solution for

f1(κ, 0) = f2(κ, 0) ≡ f(κ) (solid curve) with the asymptotic solution (dashed curve).

0 2 4 6 8 10
0

2

4

6

8

10

Η

gH
Η
L

Figure 2.1: Graph of g(η).

As expected, the asymptotic forms are exponentially small in the ratio of the

slow to fast timescales. For example, for f1 the fast timescale is τf = Ω−1
j and the

slow timescale is τs ≃ (π/2)(b/v∥) for η = |R⊥|/b < 1 and τs ≃ |R⊥|/v∥ for η > 1.

Note from Fig. (2.1) that g(0) = π/2 and that g(η) ≈ η for η ≫ 1. For f2, the only
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Figure 2.2: Values of f(κ). Solid line: numerical integration of f(κ).
Dashed line: asymptotic expression for large κ.

difference is that the fast timescale is |Ω1 − Ω2|−1.

For strong magnetization (i.e., 1 ≪ |κ1 − κ2| ≪ κ1, κ2), the asymptotic forms

verify the expected ordering for the changes in the actions (i.e., |∆(I1 + I2)| ≪

|∆I1|, |∆I2| ≪ 1).

As a check on the accuracy of Eqs. (2.32), (2.33) and (2.34), we compare

the predictions for ∆(I1 − I2) and ∆(I1 + I2) with results obtained by direction

numerical integrations of the equations of motion for some sample collisions. For

these comparisons, we choose m2 = m1 + 0.1m1 and v⊥1 = v⊥2 = 0.01v∥. The

two particles are initially separated by the distance d = 100b and given the initial

relative velocity vz = v∥

√
1− b/

√
|∆R|2 + d2. The collision ends when the particles

are again separated in the z-direction by the distance d. The motion is followed with

a sixth-order Runge-Kutta algorithm[40], using a timestep that is sufficiently small

for the error in the total energy to be small compared to the change ∆(E⊥1 + E⊥2).

The phase angles ϕj are varied to obtain the peak-to-peak variation in ∆(I1 − I2)

and ∆(I1 + I2). The solid curves in Figs. (2.3) and (2.4) are the predictions of Eqs.

(2.32), (2.33) and (2.34), with numerical evaluation of integrals (2.29) and (2.30), for
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the scaled changes ∆(I1 − I2)/(m1v
2
⊥1/Ω1) and ∆(I1 + I2)/(m1v

2
⊥1/Ω1), respectively.

The points result from integrating the particle equations of motion. For the collisions

in these figures, η is near zero, and κ2 is varied over a range of values. Of course,

κ1 = 1.1κ2 and |κ2 − κ1| = 0.1κ2. In Fig. (2.5), κ1 is fixed at the value 21.0, and η

is varied. We can see from the figures that our theory matches with the simulation

results as long as magnetization is strong, i.e. κ1 ≫ 1. Particularly from Fig. (2.4),

it is evident that the theory breaks down when κ1 goes lower than around 2.
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2.4 Collisional evolution of a plasma

This section discusses the collisional evolution of a two species, strongly mag-

netized, pure ion plasma. Species 1 consists of N1 singly ionized atoms of mass m1

and species 2 of N2 singly ionized atoms of mass m2, where |m1−m2| ≪ m1,m2. For

simplicity, the plasma is assumed to be uniform and immersed in a continuous neu-

tralizing background charge. A laboratory realization of such a plasma is a thermal

equilibrium, pure ion plasma that is confined in a Malmberg-Penning trap. Plasma

rotation in the uniform axial magnetic field of the trap is equivalent to neutralization

by a continuous background charge.

The plasma is assumed to be in the weakly correlated parameter regime,

e2n1/3/T∥ ≪ 1, where n is the density[41, 42]. The inequality can be written as

b̄ ≪ n−1/3, so close collisions, which are primarily responsible for changes in the cy-

clotron actions, are well separated binary interactions of the kind considered in the

previous section. Furthermore, the plasma is assumed to satisfy the strong magne-

tization ordering in Eq. (2.2), so all collisions between unlike ions are of the kind

considered in the previous section.
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To understand the final assumption, first recall from Eqs. (2.32)-(2.34) of the

previous section that the change in actions during a collision depends sinusoidally on

the initial gyroangles ϕkj = ϕkj(t = 0). The time between close collisions is much

larger than a cyclotron period, so we assume that the particles enter each collision

with random gyroangles.

Thus, the N -particle dynamics consists of many statistically independent, bi-

nary interactions of the kind considered in the previous section. In this section, we

simply establish a statistical framework to understand the cumulative effect of these

collisions. The derivation follows an approach similar to the Green-Kubo relations[43].

For a collision between unlike particles, we found in the previous section

that the changes in the individual actions are exponentially small, |∆I1| ≃ |∆I2| ∼

O(exp[−π|κ1 − κ2|/2]), and that the change in the sum of the actions is even smaller

|∆(I1 + I2)| ∼ O(exp[−πκ/2]). However, for a collision between like particles, the

change in the individual actions is not exponentially small since Ω1 = Ω2 and exp[−π/2|κ1−

κ2|] = 1. Of course, the change in the sum of the actions is exponentially small since

κ = κ1 ≃ κ2 ≫ 1.

Thus, on the timescale of a few collisions, one expects the like particles to

interchange action with each other nearly preserving the sums I1 =
∑N1

j=1 I(j1) and

I2 =
∑N2

j=2 I(j2), where I(jk) is the action of the j-th particle of species k (k = 1, 2).

Maximizing entropy subject to the constancy of the total Hamiltonian H and the

total actions I1 and I2 yields a modified Gibbs distribution of the form[13]

D0 =
1

Z
exp[−H

T∥
− α1I1 − α2I2], (2.38)

where Z and the thermodynamic variables T∥, α1 and α2 are determined by the



42

normalization 1 =
∫
dΓD0(Γ) and the expectation values

⟨Ik⟩ =

∫
dΓD0(Γ)Ik =

Nk

αk + Ωk/T∥
, (2.39)

⟨H⟩ =

∫
dΓD0(Γ)H = (N1 +N2)T∥ + ⟨I1⟩Ω1 + ⟨I2⟩Ω2 + Ucorr. (2.40)

Here, dΓ is a volume element in the N -particle phase space (N = N1 + N2). The

first three terms in the expression for ⟨H⟩ are kinetic energy terms, whose form

can be understood from the velocity dependence in H [i.e.,
∑N1

j=1m1(v
2
∥j + v2⊥j)/2 +∑N2

j=1m2(v
2
∥j+v

2
⊥j)/2] and in Ik [i.e.,

∑Nk

j=1mkv
2
⊥j/(2Ωk)]. The last term, Ucorr, is the

correlation energy due to the interaction potentials in H. For a weakly correlated and

neutralized plasma, this latter term is small compared to the kinetic energy terms[41],

so we drop this term and use

⟨H⟩ ≃
(N1 +N2)T∥

2
+ ⟨I1⟩Ω1 + ⟨I2⟩Ω2. (2.41)

Because the Ik’s are not exact constants of the motion, the Liouville distri-

bution, D, is not given exactly by D0. We set D = D0 + D1, where D1 is a small

correction due to the time variation of the Ik. Also, the thermodynamic variables, T∥,

α1 and α2 vary slowly in time, and the purpose of this section is to determine that

variation.

To that end, we must evaluate the rates of change

d⟨Ik⟩
dt

=

∫
dΓ
∂D

∂t
Ik =

∫
dΓD{Ik,H}, (2.42)

d⟨H⟩
dt

=

∫
dΓ
∂D

∂t
H=

∫
dΓD{H,H} = 0, (2.43)
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where {, } is the Poisson bracket, and use has been made of the Liouville equation,

0 = dD
dt

= ∂D
∂t

+ {D,H}, and of integration by parts.

There is a subtle point in the evaluation of the Right Hand Side of Eq. (2.42).

If one were to approximate D by D0, the resulting integral would be zero

∫
dΓD0{Ik,H} =

∫
dΓ

Nk∑
j=1

(−T∥
∂D0

∂ψkj
) = 0, (2.44)

where ψkj is the gyroangle conjugate to Ikj and use has been made of the facts that

the only dependence on ψkj is in H and that dependence is periodic. The non-zero

contribution to the Right Hand Side of Eq. (2.42) comes exclusively from D1, and to

know D1 one must solve the Liouville equation.

We suppose that at some time t − τ , the correction D1 is zero and let D1

develop through the collisional dynamics. From the Liouville equation, dD/dt = 0,

one finds that D(t,Γ) = D0[t − τ,Γ′(Γ,−τ)] where the phase point Γ′ = Γ′(Γ, t′ − t)

evolves to the phase point Γ as the time evolves from t′ to t. In evaluating D0[t−τ,Γ′],

we use H(Γ′) = H(Γ) and Ik(Γ′) = Ik(Γ)− δIk, where

δIk =
∫ t

t−τ
dt′{Ik,H}|Γ′(Γ,t′−t). (2.45)

By hypothesis, Ik changes through a sequence of close collisions entered with

randomly phased initial gyroangles. Thus, one can think of Ik(t) as a stochastic

variable that suffers a sequence of many small and random changes. The correlation

time for İk(t) is about the duration of a close collision, and the change in Ik(t) during

that time is small. We choose the time interval τ to be longer than the correlation

time but still small enough that δIk is a small change.



44

Taylor expanding D0[t− τ,Γ′] with respect to the δIk’s yields the distribution

D(t,Γ) ≃ D0(t− τ,Γ) +
2∑

h=1

αhD0(t− τ,Γ)

∫ t

t−τ
dt′{Ih,H}|Γ′(Γ,t′−t). (2.46)

When this distribution is substituted into integrand (2.42), the first term integrates

to zero according to Eq.(2.44). Since the thermodynamic variables change only by a

small amount during the time τ , D0(t− τ,Γ) may be approximated by D0(t,Γ) in the

second term yielding the result

d⟨Ik⟩
dt

=
2∑

h=1

αh

∫ t

t−τ
dt′

∫
dΓD0(t,Γ){Ik,H}|Γ{Ih,H}|Γ′(Γ,t′−t). (2.47)

The Poisson brackets in Eq. (2.47) are non-zero only in regions of Γ-space

corresponding to close, well-separated, binary collisions. In those regions the Poisson

brackets depend primarily on the coordinates and velocities of the two colliding parti-

cles. Thus, the coordinates of all the other particles may be integrated out, reducing

Eq. (2.47) to the form

d⟨Ik⟩
dt

= αk
Nk(Nk − 1)

2

∫ t

t−τ
dt′

∫
dγF(1k, 2k){I(1k) + I(2k), H(1k, 2k)}|γ

·{I(1k) + I(2k), H(1k, 2k)}|γ′=γ′(γ,t′−t)

+αkNkNk′

∫ t

t−τ
dt′

∫
dγF(1k, 1k′){I(1k), H(1k, 1k′)}|γ

·{I(1k), H(1k, 1k′)}|γ′=γ′(γ,t′−t)

+αk′NkNk′

∫ t

t−τ
dt′

∫
dγF(1k, 1k′){I(1k), H(1k, 1k′)}|γ

·{I(1k′), H(1k, 1k′)}|γ′=γ′(γ,t′−t). (2.48)
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Here k′ = 2 if k = 1 and k′ = 1 if k = 2. The two-particle function F(ik, jq) is obtained

by integrating D(Γ) over coordinates and velocities for all particles except ik and jq,

and H(ik, jq) is the two-particle Hamiltonian governing the collisions between ik and

jq (see Eq.(2.12) of the previous section). The first term in Eq.(2.48) describes a

collision between particles 1 and 2 of species k, and there are Nk(Nk − 1)/2 such

collisions. The next two terms describe a collision between particle 1 of species k and

particle 1 of species k′, and there are NkNk′ such collisions. If for brevity we refer to

particles ik and jq as particles 1 and 2, the two-particle phase-space volume element

dγ is given by

dγ = dz1dp1dz2dp2dψ1dI1dψ2dI2dY1dPY1dY2dPY2

= (mkmq)
3dzdvzdZdVzdψ1dψ2v⊥1dv⊥1v⊥2dv⊥2 · dX1dY1dX2dY2, (2.49)

where use has been made of the definitions Ij = mjv
2
⊥j/(2Ωj) and PYj = mjΩjXj,

and where (z, vz) are the relative position and velocity in z and (Z, Vz) are the center

of mass position and velocity. These latter two variables do not enter the Poisson

brackets.

Next we argue that the t′ − t dependence in the dγ-integrals of Eq.(2.48) is

even in t′− t. From Hamiltonian (2.14), we see that the Poisson brackets in Eq.(2.48)

involve terms of the form gµν exp[iµψ1 + iνψ2]. The dependence on t′ − t enters

because the second bracket in each product of brackets is evaluated at the primed

phase point Γ′ = Γ′(Γ, t′ − t). When the products of brackets are averaged over

the random initial phases of the gyroangles, the resulting time dependence from the

gygroangles is of the form cos[µ(ψ′
1 − ψ1) + ν(ψ′

2 − ψ2)] = cos[(µΩ1 + νΩ2)(t
′ − t)],
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which is even in (t′ − t). The remaining time dependence comes from the relative

coordinate z′ = z′(z, t′ − t), which enters gµν(γ
′). From Eq.(2.23), one can see that

z′ is unchanged for (t′ − t) → −(t′ − t) and v∥ → −v∥, where v∥ is the value of the

relative velocity vz before the interaction. This is seen most simply for the simple

case where the particles stream without interaction and z′ = z+ vz(t
′− t). Of course,

f(γ) is invariant under the interchange vz → −vz, so the dγ-integrals are even in

(t′ − t).

Thus, the integral
∫ t
t−τ dt

′ in Eq.(2.48), can be replaced by the integral 1
2

∫ t+τ
t−τ dt

′.

The dt′ integral then extends over the full duration of a collision, and Eq.(2.48) can

be rewritten as

d⟨Ik⟩
dt

=
1

2
{αk

Nk(Nk − 1)

2

∫
dγF(1k, 2k){I(1k) + I(2k), H(1k, 2k)}∆(I(1k) + I(2k))(1k,2k)

+αkNkNk′

∫
dγF(1k, 1k′){I(1k), H((1k, 1k′))}∆(I(1k))(1k,1k′ )

+αk′NkNk′

∫
dγF(1k, 1k′){I(1k), H((1k, 1k′))}∆(I(1k′))(1k,1k′ )}, (2.50)

where

∆(I(1k) + I(2k))(1k,2k) ≡
∫ t+τ

t−τ
dt′{I(1k) + I(2k), H(1k, 2k)}|γ′=γ′(γ,t′−t), (2.51)

is the change in (I(1k) + I(2k)) during a collision between particles 1k and 2k. The

quantities ∆(I(1k))(1k,1k′ ) and ∆(I(1k′))(1k,1k′ ) follow the same notation. These changes

were evaluated in Section II.

Next we note that one coordinate in the dγ-integral can be written as a time
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Figure 2.6: A typical trajectory for a collision in the (z, vz) plane. Here b
is the distance of closest approach, and v∥ is the velocity at t = ±∞.

integral. Figure (2.6) shows the (z, vz) phase space with a typical trajectory for a

collision. Such a trajectory is described by Eq.(2.23). The dγ-integral includes an

integral over the dzdvz plane, and we propose to carry out the integral by arranging

area elements in a sequence along each phase in the trajectory using the incompressible

nature of the flow, dz′dv′z = dzdvz. Along the trajectory, the two-particle distribution

F is a constant, so it may be evaluated at some starting area element before the

interaction, say at dzdvz. At this starting element we set dz = |vz|dt, where |vz|

is the initial relative velocity defined in Eq.(2.23). Thus for each element along the

trajectory, we have the integration element dz′dv′z = |vz|dtdvz. The time integral dt is

an integral of the Poisson bracket along the trajectory, that is, over the course of the

collision, and yields the change in the actions during the collision. Thus, Eq. (2.50)
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reduces to the form

d⟨Ik⟩
dt

=
1

2
{αk

Nk(Nk − 1)

2

∫
dγ̃F (0)[∆(I(1k) + I(2k))(1k,2k)]

2

+αkNkNk′

∫
dγ̃F (0)[∆(I(1k))(1k,1k′ )]

2

+αk′NkNk′

∫
dγ̃F (0)[∆(I(1k))(1k,1k′ )][∆(I(1k′))(1k,1k′ )]}. (2.52)

where F (0) is the distribution evaluated at a phase point before the interaction and

dγ̃ =
dγ

dt

= (mkmq)
3|vz|dvzdZdVzdψ1dψ2v⊥1dv⊥1v⊥2dv⊥2 · dX1dY1dX2dY2. (2.53)

Here the subscripts 1 and 2 stand for ik and jq as in Eq. (2.48).

In this same notation, the distribution before the interaction is given by

F (0) = C exp[−H(1, 2)

T∥
− α1I1 − α2I2], (2.54)

where C is a normalization constant and

H(1, 2) =
mk

2
(v2z1 + v2⊥1) +

mq

2
(v2z2 + v2⊥2)

=
µkqv

2
z

2
+
MkqV

2
z

2
+
mkv

2
⊥1

2
+
mqv

2
⊥2

2
. (2.55)

Here µkq = mkmq/(mk+mq) is the reduced mass andMkq = mk+mq is the total mass
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of the two particles. From the normalization
∫
dγF (0) = 1, we find the distribution

F (0) =
1

L6(mkmq)3(2π)2

√
mkmq

2πT∥

mkmq

T⊥kT⊥q

· exp(−µkqv
2
z

2T∥
− MkqV

2
z

2T∥
− mkv

2
⊥1

2T⊥k
− mqv

2
⊥2

2T⊥q
), (2.56)

where L3 is the volume of the plasma and T⊥k = T∥/(1 + αkT∥/Ωk).

It is convenient to define the relative, parallel thermal velocity of a species i

particle and a species j particle as

v̄ij =

√
T∥
µij

, (2.57)

and the magnetization of a species-i particle in interaction with a species-j particle

as

κ̄ij =
b̄Ωi

v̄ij
, (2.58)

where the distance of closest approach is b̄ = 2e2/T∥.

Note that because of this definition the κ̄ij’s are related to κ̄11 by ratios of

masses:

κ̄ij = κ̄11
m1

mi

√
2mi/m1

(1 +mi/mj)
. (2.59)
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Specifically,

κ̄22 = κ̄11(
m1

m2

)1/2, (2.60)

κ̄12 = κ̄11

√
2

(1 +m1/m2)
, (2.61)

and κ̄21 = κ̄11
m1

m2

√
2

(1 +m1/m2)
. (2.62)

According to Eq. (2.32)-(2.34), the change in actions depend on the initial

gyroangles ϕ1 and ϕ2. Along any trajectory of the kind shown in Fig. (2.6), the

gyroangle ϕj differs from the ψj in the differential for dγ̃ only by a constant, so we

can replace dψ1dψ2 in the differential with dϕ1dϕ2. Also, the change in actions depend

on X1, Y1, X2, Y2 only through η = |∆R⊥|/b, where |∆R⊥|2 = (X1 − X2)
2 + (Y1 −

Y2)
2, so in the differential dγ̃ we set dX1dY1dX2dY2 = 2πb2ηdηdX2dY2. The integral

over dZdX2dY2 then trivially gives a factor of L3. The change in actions does not

depend on Vz, so the Vz integral yields
√
2πTz/Mkq. When substituting Eq.(2.56) for

F (0)(1, 2), one must be careful to identify the species of particles 1 and 2. For example,

in the first term of Eq. (2.52) both 1 and 2 are of species k, and in the second and

third terms, particles 1 and 2 are of species k and k′. Making these substitutions and

using the relations Ik = NkT⊥k/Ωk and αk/Ωk = (1/T⊥k − 1/T∥) yields the result

dT⊥k
dt

= (T∥ − T⊥k)[nkb̄
2v̄kk ·

√
2π

8
Λ1(κ̄kk) + nk′ b̄

2v̄kk′ ·
√
2π

4

µkk′

mk

Λ1(κ̄kk′)]

+
(αk − αk′)T⊥kT⊥k′

Ωk′
· µ2

kk′

mkmk′
· nk

′ b̄2v̄kk′

κ̄kk′κ̄k′k

√
2π

2
Λ2(|κ̄kk′ − κ̄k′k|), (2.63)
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where

Λ1(κ̄) =

∫ ∞

0

dσ

σ

∫ ∞

0

η3dηf 2
1 (
κ̄

σ3
, η)e−σ

2/2 (2.64)

Λ2(κ̄) =

∫ ∞

0

dσσ3

∫ ∞

0

ηdηf 2
2 (
κ̄

σ3
, η)e−σ

2/2. (2.65)

In Appendix A, we obtain the large κ̄ asymptotic limits

Λ1(κ̄) = 3.10κ̄−7/15e−5(3πκ̄)2/5/6, (2.66)

Λ2(κ̄) = 3.87κ̄13/15e−5(3πκ̄)2/5/6. (2.67)

For the strong magnetization ordering κ̄ij ≫ |κ̄12 − κ̄21| ≫ 1, we note that Λ1(κ̄ij) ≪

Λ2(|κ̄12 − κ̄21|).

Here, the last term on the Right Hand Side of Eq. (2.63) describes the rapid

relaxation where particles of species k collide with particles of species k′ and exchange

cyclotron actions. As one would expect, this term is proportional to (αk − αk′) and

vanishes when αk = αk′ . The first term describes the slow relaxation where the total

cyclotron action is broken and liberated (or absorbed) cyclotron energy is exchanged

with parallel energy. As one would expect, this term is proportional to T∥ −T⊥k, and

vanishes when T∥ = T⊥k. Note here that (T∥ − T⊥k) is proportional to αk, so one

may equally say that the term vanishes when αk = 0. Also, note that when the two

species are the same (i.e. when k = k′) and when αk = αk′ , the rate equation reduces

to that obtained in the work of O’Neil and Hjorth[9]. Finally, we will argue in the

next section that Eq. (2.63) is an easy place to generalize the treatment to more than

two species. One simply sums k′ over all species except k′ = k.

Next we introduce scaled variables. The thermodynamic variables T∥, α1 and
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α2 are the three unknowns, which we scale as T̂∥ = T∥/T∥0 and α̂k = αkT∥0/Ω1, where

T∥0 = T∥(0) is the initial value of T∥. An equivalent set of thermodynamic variables is

the three temperatures T∥, T⊥1 and T⊥2; we scale the perpendicular temperatures as

T̂⊥k = T⊥k/T∥0. α̂k and T̂⊥k are related by α̂k = (m1/mk)(1/T̂⊥k−1/T̂∥). The actions

are scaled as ⟨Îk⟩ = ⟨Ik⟩(Ω1/T∥0). We introduce a scaled time t̂ = tnb̄20v̄11,0, where

again subscripts zero refer to initial values and nb̄2v̄11 = nb̄20v̄11,0(T∥0/T∥)
3/2. The

magnetization parameter κ̄ij is already dimensionless, but does have a temperature

dependence κ̄ij = κ̄ij,0(T∥0/T∥)
3/2. Following the same notation, we write density

ratios as n̂k = nk/n The scaling removes dependence on the total density n, and

dependence on B enters only in the combination with T∥0 through the magnetization

parameter κ̄11,0. As we will see, the solution depends only on the initial values of the

scaled thermodynamic variables, the initial magnetization strength κ̄11,0 = Ω1b̄0/v̄11,0,

the mass ratio m1/m2, and the density ratios n̂k = nk/n.

In terms of these scaled variables Eq.(2.63) takes the form

dT̂⊥k

dt̂
= [α̂k

Ĝk

n̂k
+ (α̂k − α̂k′)

K̂k

n̂k
]
m1

mk

, (2.68)

where

Ĝk =
T̂⊥k

T̂
1/2
∥

· (mk

m1

)3/2
√
2π

8
[n̂2
kΛ1(κ̄kk) + n̂kn̂k′

√
2

1 +mk/mk′
Λ1(κ̄kk′)] (2.69)

regulates equipartition of T̂⊥k with T̂∥ on the slower timescale, and

K̂k =
T̂⊥kT̂k′

T̂∥
3/2

· n̂kn̂k′
√
2π

8
·
√
(
mk

m1

mk′

m1

)3
2m1

mk +mk′
· Λ2(|κ̄kk′ − κ̄k′k|)

κ̄211
(2.70)



53

regulates equipartition of αk with αk′ on the faster timescale. The statement of

conservation of energy in Eq.(2.41) can be rewritten as the relation

T̂∥(t) = 1 + 2{n̂1[T̂⊥1(0)− T̂⊥1(t)] + n̂2[T̂⊥2(0)− T̂⊥2(t)]}. (2.71)

This equation plus Eq.(2.68) for k = 1 and 2 and the relation α̂k = (m1/mk)(1/T̂⊥k−

1/T̂∥) determine the evolution of the three unknowns T∥, T⊥1 and T⊥2 (or equivalently

T∥, α1 and α2).

To obtain equations for α̂1(t) and α̂2(t) alone, we combine Eq. (2.68) with the

relations

dα̂k

dt̂
=

m1

mk

(
1

T̂ 2
∥

dT̂∥

dt̂
− 1

T̂ 2
⊥k

dT̂⊥k

dt̂
), (2.72)

0 =
1

2

dT̂∥

dt̂
+ n̂1

dT̂⊥1

dt̂
+ n̂2

dT̂⊥2

dt̂
. (2.73)

The result is

dα̂1

dt̂
= −ν̂11α̂1 − ν̂12α̂2 − Γ̂1(α̂1 − α̂2), (2.74)

dα̂2

dt̂
= −ν̂21α̂1 − ν̂22α̂2 − Γ̂2(α̂2 − α̂1), (2.75)

where the ν̂ij’s and the Γ̂k’s are given by

ν̂ij = (
δijm

2
1

T̂ 2
⊥in̂im

2
i

+
2m2

1

T̂ 2
∥mimj

)Ĝj, (2.76)

Γ̂k = [
m2

1

T̂ 2
⊥kn̂km

2
k

+
2(1−mk/mk′)

T̂ 2
∥m

2
k/m

2
1

]K̂k, (2.77)
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and T̂⊥k = T̂∥/(1+α̂kT̂∥mk/m1). In these coefficients, T̂∥(t) and T̂⊥k(t) are determined

by Eq. (2.71) and the relation T̂⊥k = T̂∥/(1 + α̂kT̂∥mk/m1).

Analytic progress in solving Eqs. (2.74) and (2.75) is possible in two separate

limits. We first discuss the solutions in these limits and then solve the equations

numerically for various values of the parameters, verifying the limiting behaviors

expected from the analytic solutions.

For sufficiently strong magnetization, the K̂k and Ĝj integrals satisfy the in-

equality K̂1, K̂2 ≫ Ĝ1, Ĝ2, and the collisional relaxation takes place on two timescales.

By subtracting Eq. (2.75) from Eq. (2.74) and neglecting Ĝ1 and Ĝ2 compared to

K̂1, K̂2, we obtain the equation

d

dt̂
(α̂1 − α̂2) = −ν̂a(α̂1 − α̂2), (2.78)

where

ν̂a = Γ̂1 + Γ̂2

= K̂1 · [
1

T̂ 2
⊥1n̂1

+
1

T̂ 2
⊥2n̂2

m2
1

m2
2

+
2(1−m1/m2)

2

T̂ 2
∥

] (2.79)

is the rate at which α̂1 and α̂2 relax to a common value α̂.

At a slower rate, α̂ relaxes to zero. To obtain this rate, we multiply Eq. (2.74)

by Γ̂2 and Eq. (2.75) by Γ̂1 and add to obtain the result

Γ̂2
dα̂1

dt̂
+ Γ̂1

dα̂2

dt̂
= −Γ̂2(ν̂11α̂1 + ν̂12α̂2)− Γ̂1(ν̂21α̂1 + ν̂22α̂2). (2.80)

The large quantity K̂1 enters the Γ̂j on both sides of this equation and cancels, leaving
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a slow rate of order Ĝj. Setting α̂1 = α̂2 = α̂ then yields the equation

dα̂

dt̂
= −ν̂bα̂, (2.81)

where

ν̂b =
Γ̂2(ν̂11 + ν̂12)

Γ̂1 + Γ̂2

+
Γ̂1(ν̂21 + ν̂22)

Γ̂1 + Γ̂2

= {
2∑

k=1

[
m2

1/m
2
k′

T̂ 2
⊥k′n̂k′

+
2m1/mk′(m1/mk′ − 1)

T̂ 2
∥

] · [2m1/mk(1 +m1/mk)

T̂ 2
∥

+
m2

1/m
2
k

T̂ 2
⊥kn̂k

]Ĝk}

·[ 1

T̂ 2
⊥1n̂1

+
m2

1/m
2
2

T̂ 2
⊥2n̂2

+
2(1−m1/m2)

2

T̂ 2
∥

]−1 (2.82)

is the rate at which α̂ decays to zero, and hence from the relation α̂k = (m1/mk)(1/T̂⊥k−

1/T̂∥), the rate at which T̂⊥1 and T̂⊥2 approaches T̂∥.

Of course, this approximate solution is only accurate to order |Ĝj/K̂k| ≪ 1.

For example, α̂1(t)− α̂2(t) does not decay to exactly zero during the first phase of the

evolution but rather to the small value (α̂1−α̂2) ≃ [(ν̂22+ν̂21−ν̂11−ν̂12)/(Γ̂1+Γ̂2)]α̂ ∼

O(Ĝj/K̂k)α̂ ≪ α̂. One can understand this by setting dα̂1/dt̂, dα̂2/dt̂ ≈ 0 in Eqs.

(2.74) and (2.75) and solving for α̂1 − α̂2.

Another analytic solution is possible when α̂1 and α̂2 are small, and Eqs. (2.74)

and (2.75) may be treated as linear coupled equations with constant coefficients ν̂ij

and Γ̂j. In these coefficients, one must set T̂∥ = T̂⊥1 = T̂⊥2 = T̂ . A normal mode

analysis[36] then yields the solution

α̂1(t)

α̂2(t)

 = C+

α̂1+

α̂2+

 eŜ+ t̂ + C−

α̂1−

α̂2−

 eŜ− t̂, (2.83)
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where C+ and C− are constants determined by the initial values α̂1(0) and α̂2(0), the

damping decrements Ŝ+ and Ŝ− are given by

Ŝ± =
1

2
{−(ν̂22 + ν̂11 + Γ̂1 + Γ̂2)± [(ν̂22 + ν̂11 + Γ̂1 + Γ̂2)

2

−4[(ν̂11ν̂22 − ν̂12ν̂21 + (ν̂11 + ν̂12)Γ̂2 + (ν̂22 + ν̂21)Γ̂1)]]
1/2}, (2.84)

and the eigenvectors by

α̂1+

α̂2+

 =

 Γ̂1 − ν̂12

Ŝ+ + ν̂11 + Γ̂1

 ,

α̂1−

α̂2−

 =

 Γ̂1 − ν̂12

Ŝ− + ν̂11 + Γ̂1

 . (2.85)

In the strongly magnetized limit where Γ̂j ≫ ν̂ij, we recover the previous

solution. The damping decrements are approximately

Ŝ− ≃ −(Γ̂1 + Γ̂2), Ŝ+ ≃ −(ν̂11 + ν̂12)Γ̂2 + (ν̂22 + ν̂21)Γ̂1

Γ̂1 + Γ̂2

, (2.86)

in agreement with Eqs. (2.79) and (2.82). In this limit, the |+⟩ eigenvector is propor-

tional to α̂1+

α̂2+

 =

 1

1 + (ν̂11+ν̂12−ν̂21−ν̂22)
Γ̂1+Γ̂2

 , (2.87)

and [α̂1(t) − α̂2(t)] evolves to near zero on the timescale S−1
− ≃ 1/(Γ1 + Γ2). As

mentioned earlier, the correction is of order (ν̂11 + ν̂12 − ν̂21 − ν̂22)/(Γ̂1 + Γ̂2) ∼

O(Ĝj/K̂k) ≪ 1.

When the Γ̂k’s are comparable to the ν̂ij, the separation in timescales between

Ŝ+ and Ŝ− no longer exists. This is the case when magnetization is low or the ion

mass difference between the two species is large. However, we note again that our
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rates only apply to the strong magnetization regime |κ̄12− κ̄21| ≫ 1. If magnetization

is low and |κ̄12−κ̄21| . 1, the timescale in which particles of different species exchange

cyclotron action is comparable to the timescale of a few collisions. Over this timescale,

the distribution would not be cast into the modified Maxwellian in Eq. (2.38) as

assumed.

We convert the rate equations back to unscaled version for easier reference,

using the definitions of the scaled physical quantities. The unscaled version of Eqn.

(2.74) and (2.75) is

dαk
dt

= −νkkαk − νkk′αk′ − Γk(αk − αk′), (2.88)

where

νkl = (
2ΩkΩl

nT 2
∥

+
Ω2
kδkl

nkT 2
⊥k

)Gk, (2.89)

Γk = [
Ω2
k

nkT 2
⊥k

+
2Ωk(Ωk − Ωk′)

nT 2
∥

]Kk, (2.90)

and

Gk =
T∥T⊥k
Ω2
k

[n2
kb̄v̄kk

√
2π

8
Λ1(κ̄kk) + nknk′ b̄v̄kk′

√
2π

4

µkk′

mk

Λ1(κ̄kk′)], (2.91)

Kk =
T⊥kT⊥k′

ΩkΩk′

µ2
kk′

mkmk′

nknk′ b̄
2v̄kk′

κ̄kk′κ̄k′k

√
2π

2
Λ2(|κ̄kk′ − κ̄k′k|). (2.92)

Then in the first stage of equilibration,

d

dt
(α1 − α2) = −νa(α1 − α2), (2.93)
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where

νa = [
Ω2

1

n1T 2
⊥1

+
Ω2

2

n2T 2
⊥2

+
2(Ω1 − Ω2)

2

nT 2
∥

]K1. (2.94)

And then in the next stage of equilibration, where α1 = α = α2,

dα

dt
= −νbα, (2.95)

where

νb =
Γ2(ν11 + ν12) + Γ1(ν21 + ν22)

Γ1 + Γ2

= [
2∑

k=1

(
2Ωk′(Ωk′ − Ωk)

nT 2
∥

+
Ω2
k′

nk′T 2
⊥k′

)(
2Ωk(Ωk + Ωk′)

nT 2
∥

+
Ω2
k

nkT 2
⊥k

)Gk]

·[ Ω2
1

n1T 2
⊥1

+
Ω2

2

n2T 2
⊥2

+
2(Ω1 − Ω2)

2

nT∥
]−1. (2.96)

Next we consider three numerical integrations of (2.74) and (2.75). For both

the first and the second integrations, we choose n̂1 = n̂2 = 1/2 for convenience, and

m2/m1 = 25/24, as that is the mass ratio of two common constituent ions in a pure

ion plasma, namely Mg+25 and Mg+24[11, 12]. For all the cases, the lighter ion has a

mass of m1 = 24mp, where mp is the proton mass. We choose the total density to

be n = 105 cm−3. The parallel temperature T∥ is assumed to be in the range where

the plasma is weakly correlated, i.e., Γcorr < 1, where Γcorr = (4πn/3)1/3e2/T∥ is

the coupling parameter[41]. This requires T∥ > 1.1 × 10−5 eV. We also choose the

magnetic field to be B = 60 kG, a value that was realized in past experiments[7, 6].

The first integration is for a case of strong magnetization κ̄11,0 = 80.0 and

correspondingly κ̄12,0 − κ̄21,0 = 3.2. The initial parallel temperature T∥0 under this

value of κ̄11,0 is 4.5 × 10−5 eV. With this temperature, the system has a weak cor-
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relation of Γcorr = 0.24. For such a density and temperature, the collision rate is

nb̄20v̄11,0 = 7.7 × 103 s−1. Also, the initial scaled perpendicular temperatures are

taken to be T̂⊥1,0 = 0.5 and T̂⊥2,0 = 0.25. The evolution of α̂1 and α̂2 is shown

in Fig. (2.7) and of T̂⊥1, T̂⊥1 and T̂∥ in Fig. (2.8). In this case, the separation of

timescales is clearly apparent. α̂1 and α̂2 evolve to a common value in a time of

10 s and then evolve to zero in the longer time of 1000 s, or 17 minutes. Note in

both figures that the abscissa is a logarithmic scale. As T∥ decreases during the final

relaxation, the magnetization κ̄11 ∝ T
−3/2
∥ rises and the equipartition rate, which has

the exp[−5(3πκ̄
2/5
11 )/6] dependence, is exponentially suppressed. This accounts for

the fact that the final equipartition takes place over a long three decades of time. In

Fig. (2.8), the temperatures T̂⊥1 and T̂⊥2 have slightly different values even after α̂1

and α̂2 have reached common value because of the mass dependence in the relation

T̂⊥k = T̂∥(1 + α̂kT̂∥mk/m1). Note that the correction in Eq. (2.87) is not visible on

the scale of the figures.

The second case, as shown in Fig. (2.9) and (2.10), is for a case where the

initial parallel temperature is lower than the perpendicular temperatures, but the

magnetization and ion masses stay the same as in the first case. The first equipartition,

when α̂1 and α̂2 are approaching to the same value, has similar duration as in the

previous case, but the final equipartition occurs over an exponentially much shorter

duration of 20 s than in that previous case, as the increase in parallel temperature

speeds up equipartition exponentially.

The third integration is for a case of strong magnetization, but large ion mass

difference between the two species. κ̄11,0 = 80.0 and κ̄12,0 − κ̄21,0 = 24.7, with a

choice of m2/m1 = 1.4. The values of n and T∥,0 are the same as in the previous
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cases. In this case, the rate ν̂a ∼ O(exp[−5(3π|κ̄12 − κ̄21|2/5)/6]/κ̄211) of the first

equipartition is comparable to the rate ν̂b ∼ O(exp[−5(3πκ̄
2/5
11 )/6]) of the second

stage. The thermodynamic variables α̂1 and α̂2 decay to zero without equilibrating

first to a common value, and the temperatures T̂∥, T̂⊥1 and T̂⊥2 converge to the same

value, as in Fig. (2.11) and (2.12).
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Figure 2.7: The time evolution of α̂1 and α̂2 for the case of κ̄11,0 = 80.0,
m2/m1 = 25/24 and n̂1 = n̂2 = .5. Here nb̄20v̄11,0 = 7.7 × 103 s−1 and
T∥0 = 4.5× 10−5 eV.
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Figure 2.8: The time evolution of T̂⊥1, T̂⊥2 and T̂∥ for the case of κ̄11,0 = 80.0,
m2/m1 = 25/24 and n̂1 = n̂2 = .5. Here nb̄20v̄11,0 = 7.7 × 103 s−1 and
T∥0 = 4.5× 10−5 eV.
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Figure 2.9: The time evolution of α̂1 and α̂2 for the case of κ̄11,0 = 80.0,
m2/m1 = 25/24 and n̂1 = n̂2 = .5. Here nb̄20v̄11,0 = 7.7 × 103 s−1 and
T∥0 = 4.5× 10−5 eV.
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Figure 2.10: The time evolution of T̂⊥1, T̂⊥2 and T̂∥ for the case of κ̄11,0 =
80.0, m2/m1 = 25/24, and n̂1 = n̂2 = .5. Here nb̄20v̄11,0 = 7.7 × 103 s−1 and
T∥0 = 4.5× 10−5 eV.
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Figure 2.11: The time evolution of α̂1 and α̂2 for the case of κ̄11,0 = 80.0 and
|κ̄21,0−κ̄12,0| = 24.7. Herem2/m1 = 1.4, n̂1 = n̂2 = .5, nb̄20v̄11,0 = 7.7×103 s−1

and T∥0 = 4.5× 10−5 eV.
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Figure 2.12: The time evolution of T̂⊥1, T̂⊥2 and T̂∥ for the case of κ̄11,0 =
80.0 and |κ̄21,0 − κ̄12,0| = 24.7. Here m2/m1 = 1.4, n̂1 = n̂2 = .5, nb̄20v̄11,0 =
7.7× 103 s−1 and T∥0 = 4.5× 10−5 eV.

2.5 Discussion

The analysis of Section III assumes that the ion plasma is immersed in a

uniform neutralizing background charge. For the case of a single species ion plasma,

a laboratory realization of this simple theoretical model is a pure ion plasma in a
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Malmberg-Penning trap[44]. Rotation of the plasma in the uniform axial magnetic

field of the trap induces a radial electric field and a radial centrifugal force that can be

thought of as arising from an imaginary cylinder of uniform neutralizing background

charge[41, 45]. The Gibb’s distribution for the magnetically confined single-species

plasma differs only by rigid rotation from that for a plasma confined by a cylinder of

neutralizing charge[41, 45].

However, there is a caveat to this equivalence for the case of a pure ion plasma

with different mass species. The rotation can give rise to centrifugal separation of

the species[11, 46, 47]. A parameter that determines the degree of separation is

the quantity ω2|m2 −m1|r2p/T∥, where ω is the plasma rotation frequency and rp is

the radius of the cylindrical plasma column. We assume that this quantity is small

compared to unity so that centrifugal separation is negligible and the equivalence

is preserved. Note that ω varies inversely with magnetic field strength[41], so small

ω2|m2 −m1|r2p/T∥ can be consistent with strong magnetization.

For a plasma in a Malmberg-Penning trap, the Hamiltonian H and the actions

Ik are to be interpreted as the Hamiltonian and actions in the rotating frame of the

plasma. To be precise, the actions are defined in the local drift frame[48], but for

the plasmas of interest, the difference between the local drift velocity and the local

plasma velocity (i.e. rω) is negligibly small, that is, small compared to the thermal

velocity.

Another caveat concerns the statement of conservation of kinetic energy in Eq.

(2.63). In some experiments heating processes have rates that are comparable to the

rate at which the αk’s relax. If the heating process is understood and the rate can

be quantified in a formula, the heating rate should replace the zero on the Left Hand
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Side of Eq. (2.73). Alternatively, one can proceed empirically and measure T∥(t),

say using Laser Induced Fluorescence[44], and then use Eq. (2.63) to determine the

evolution of T⊥1(t) and T⊥2(t), or equivalently of α1(t) and α2(t). Of course, the

relaxation of the α’s can occur on two timescales, and it may be that the heating is

negligible for the relatively rapid relaxation of α1(t) and α2(t) to a common value,

but not negligible on the longer timescale where that common value relaxes to zero.

Finally, there is the question of how the theory should be generalized for the

case of three or more isotopic ions. In the discussion following Eq. (2.63), we noted

that this can accomplished by summing the Right Hand Side over k′ for k′ ̸= k. In

terms of scaled variables, one can sum over k′ for subscript k′ ̸= k on the Right Hand

Side of Eq. (2.68). Note that subscript k′ is also implicitly hidden in the expressions

(2.69) and (2.70) for Gk and Kk. Eq. (2.68) then provides k equations for the T⊥k.

Also, Eq. (2.73) for conservation of energy must be modified by summing over terms

for each T⊥k. This generalization is valid because we keep the assumption of the

dominance of uncorrelated binary collisions, among particles of all the k species.

Chapter 2, in full, is a reprint of the material as it appears in Physics of

Plasmas. C.Y. Chim, T.M. O’Neil, D.H.E. Dubin, Physics of Plasmas 21, 042115

(2014). The dissertation author was the primary investigator and author of this paper.



Chapter 3

Flux-driven algebraic damping of

m = 1 diocotron mode

3.1 Abstract

Recent experiments with pure electron plasmas in a Malmberg-Penning trap

have observed the algebraic damping of m = 1 diocotron modes. Transport due to

small field asymmetries produces a low density halo of electrons moving radially out-

ward from the plasma core, and the mode damping begins when the halo reaches the

resonant radius r = Rw at the wall of the trap. The damping rate is proportional

to the flux of halo particles through the resonant layer. The damping is related to,

but distinct from spatial Landau damping, in which a linear wave-particle resonance

produces exponential damping. This paper explains with analytic theory the new alge-

braic damping due to particle transport by both mobility and diffusion. As electrons

are swept around the “cat’s eye” orbits of the resonant wave-particle interaction, they

form a dipole (m = 1) density distribution. From this distribution, the electric field

66
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component perpendicular to the core displacement produces E ×B-drift of the core

back to the axis, that is, damps the m = 1 mode. The parallel component produces

drift in the azimuthal direction, that is, causes a shift in the mode frequency.

3.2 Introduction

Diocotron modes are dominant features in the low frequency dynamics of non-

neutral plasmas confined in Malmberg-Penning traps[14, 15, 16, 17]. In an ideal limit,

these modes involve only cross magnetic field E ×B drift motion and are described

by the drift-Poisson equations[14]. These equations are isomorphic to Euler’s equa-

tions for the ideal (i.e., incompressible and inviscid) flow of a neutral fluid, and the

diocotron modes are analogues of a Kelvin modes on a fluid vortex[18, 19].

There has been much previous work on diocotron mode instabilities[15, 20, 21,

22] and on diocotron mode damping[18, 19, 23, 24, 25, 26]. This paper focuses on

damping.

Previously identified damping mechanisms include a spatial version of the Lan-

dau resonance[18, 23], the rotational pumping of bulk viscosity[24, 25], axial velocity

dissipation on a separatrix for plasma columns with trapped and passing particles[27],

and a strong damping mechanism when the radial magnetron field from end cylinders

dominates over the radial space charge field[26]. The Landau mechanism fits into

the ideal 2D E×B drift framework, but others, such as rotational pumping, involve

physics beyond the ideal model.

This chapter discusses a damping mechanism that is a close cousin of Landau

damping, so we begin with a review of the spatial Landau resonance.

The nonneutral plasma column is immersed in a uniform axial magnetic field
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Bẑ, has a radial space charge electric field E(r)r̂, and consequently undergoes an

azimuthal E×B drift rotation. Here, (r, θ, z) is a cylindrical coordinate system with

the z-axis coincident with the axis of the trap. We consider the plasma column to be

a pure electron plasma in this paper.

A diocotron mode of azimuthal mode number m can experience a resonant

interaction with the rotating plasma flow at a critical plasma radius Rres(m), where

ωm = mωE[Rres(m)]. Here, m is the azimuthal mode number, ωm is the mode fre-

quency, and ωE(r) = −cE(r)/Br is the local rotation frequency of the plasma.

Linear mode theory[18, 19, 23] predicts that this spatial Landau resonance

produces exponential mode damping when the slope of the radial density distribution

is negative at the critical radius, and this damping has been observed experimentally

for low order azimuthal modes with m > 1[23].

The m = 1 mode is special in that the resonant radius is at the wall where

typically there are no particles. It was long thought that an m = 1 mode would not

experience damping due to a Landau resonance[18].

However, recent experiments[2] have observed a novel algebraic damping of

the m = 1 mode, which we believe is a close cousin of Landau damping. In these

experiments, transport produces a low density halo of particles that gradually extends

out from the plasma core until it reaches the wall. The algebraic damping begins when

the halo reaches the resonant region (the wall for m = 1), and the damping rate is

proportional to the flux of particles through the resonance.

The theoretical picture that we envision for this flux driven algebraic damping

is similar to, but distinct from, spatial Landau damping. In both cases, the damping

results from an interaction of the mode field with resonant particles, but the particu-
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lars of the interactions are very different in the two cases. In spatial Landau damping,

the resonant particles are present before the mode is excited, and the damping results

from a mode-driven rearrangement of particles near the resonant radius. The analysis

is linear and leads to exponential damping.

In contrast, for the new flux-driven algebraic damping, there are no particles

initially at the resonant radius. The transport gradually brings particles to the reso-

nant radius, and the mode field then sweeps the particles around the nonlinear cat’s

eye orbits to a scrape-off layer, causing the damping.

As will be discussed later, the scrape-off layer is a thin region adjacent to

the wall where guiding center drift theory breaks down and particles (electrons) are

rapidly absorbed by the wall. The scrape-off layer is at least as thick as a cyclotron

radius. We will assume that the thickness of the layer is much smaller than the mode

amplitude.

While the new theory can be described within a 2D flow framework, the trans-

port and the truncation of particle orbits by the wall are non-ideal elements beyond

the E×B drift description.

The paper that reported the experimental results on the new damping also

included a short theoretical explanation[2, 3]. To help understand this theory consider

Fig. 3.1, which shows the cross section of an electron plasma column that has been

displaced off the trap axis through the excitation of an m = 1 diocotron mode. The

displacement is of magnitude D and direction θ̄ = 0. The gray lines are equipotential

contours as seen in the mode frame. In this frame the E × B drift flow is along

the equipotential contours. The orange shaded region represents the relatively high

density plasma core. In this region, the mode potential can be described by linear
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theory, and the equipotential curves are simply displaced circles. The resonant region

is near the wall, and there nonlinear effects distort the circles. Near the left side of

the figure are the “cat’s eye” orbits, which describe the motion of particles that are

trapped in the wave trough. In order to make the “cat’s eye” orbits easier to see in

Fig. 3.1, the ratio of the displacement to the wall radius (i.e. D/Rw) was taken to

be the largest of experiment values at 0.1.

In addition to the E×B drift flow, there is a slow transport flow. The transport

produces a low density halo that gradually extends out from the plasma core. A given

particle slowly spirals out, moving successively from one contour to another of larger

radius.

The green dot-dashed equipotential contours in Fig. 3.1 is the critical contour

that just misses the blue dashed scrape-off layer at θ̄ = 0. When transport moves

an electron through this critical contour, the electron hits the scrape-off layer and is

absorbed by the wall before returning to θ̄ = 0. The red solid curve in Fig. 3.1 shows

the trajectory of such an electron.

The previous theory focuses on the transfer of canonical angular momenta

from the plasma core to such electrons. In the guiding center drift approximation,

the canonical angular momentum for an electron in the uniform magnetic field of

the trap is simply Pθ = eBr2/2c, where the radial position r is measured from the

center of the trap, B is the magnetic field strength and e = −|e| is the electron

charge[28, 29]. When anm = 1 diocotron mode is excited, the plasma core is displaced

off the trap axis by a small amount D, and the core canonical angular momentum per

unit length is changed by N(eB/2c)D2, where N is the number of core particles per

unit length[23]. This change in angular momentum is called the canonical angular



71

�B

Ω1D

2D Θ = 0Θ = Π

Figure 3.1: Cross section of the electron plasma column in a m = 1 mode.
The orange shaded region is the plasma core. The gray lines are equipotential
contours in the mode frame. The blue dashed curve is the scrape-off layer.
The green dot-dashed curve is the critical contour. The red solid curve is a
particle trajectory.

momentum of the mode.

When an individual electron E × B drifts in a nearly circular orbit around

the displaced center of the plasma core, the radius of the electron measured from

the center of the trap oscillates by order ∆r ∼ D cos[θ̄(t)]. Thus, the electron con-

tinually trades angular momentum back and forth with the core, or equivalently

with mode. However, the orbit for an electron that crosses the critical contour is

truncated by the wall, so there is a net change in angular momentum. Since the

thickness of the “cat’s eye” orbit is of order D, the net change in angular momentum

is of order ∆Pθ ∼ (eB/2c)[R2
w − (Rw − D)2] ∼ (eB/c)RwD. More precisely, the

previous derivation[2] obtained the average change in canonical angular momentum
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⟨∆Pθ⟩ = (2/π)(eB/c)RwD.

Balancing the rate of change of the mode angular momentum against the rate

of change of halo particle angular momentum yields the equation

d

dt
N
eB

2c
D2 +

∣∣∣∣dNdt
∣∣∣∣⟨∆Pθ⟩ = 0, (3.1)

where |dN/dt| is the rate per unit length at which halo particles pass through the

resonance to the wall. Substituting for ⟨∆Pθ⟩ yields the damping rate equation

dD

dt
= − 2

π

1

N

∣∣∣∣dNdt
∣∣∣∣Rw = −γ, (3.2)

with a solution of linear algebraic damping D(t) = D(0)− γt.

This simple result captures the experimental observations that the mode am-

plitude decays as a linear function of time and that the magnitude of the damping

rate is proportional to the flux of halo particles through the resonant layer. The

predicted magnitude of the damping rate is about half the measured rate.

Although this simple derivation has the advantage of brevity, it leaves ques-

tions unanswered. For example, given that the resonant particles cause mode damp-

ing, do they also cause a mode frequency shift? Also, why focus exclusively on the

thin ribbon of electrons beyond the critical contour, when there are many more res-

onant electrons? Is it really true that the mode transfers zero net angular angular

momentum to these other resonant electrons?

A conceptual issue is the use of angular momentum balance. In fact, the

total angular momentum for the plasma core and halo is not conserved. Transport

continually changes the angular momentum of the halo particles as these electrons
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move out radially.

Also, the simple theory is implicitly based on a zero-diffusion model; the trans-

port is assumed to be due exclusively to mobility. Unfortunately, the zero-diffusion

model leads to an infinite density gradient at the leading edge of the halo, and such

a gradient cannot be maintained in the presence of even a small diffusion coefficient.

For the experimental conditions, diffusion affects the orbits of all the particles deemed

responsible for damping in the simple theory. Indeed the whole idea of well-defined

orbits looses meaning in the face of such diffusion. The orbits are diffusively broad-

ened.

What is needed is a new, more rigorous theory based on a solution of the

coupled Poisson and transport equations. Such a theory talks about an evolving

density, rather the particle orbits, and makes no assumption about conservation of

angular momentum.

We note at the outset, however, despite the problems listed above, the damping

rate given in Eq. (3.2) will survive in the new theory, provided that the diffusion

coefficient is sufficiently small, as defined by inequalities given later. The simple

theory needs a more rigorous backup, indeed is wrong in detail, but captures the

essence of the physics. The new theory does predict a frequency shift

∆ω =
32

3

ecD

BRw

n(0)(R1), (3.3)

where n(0)(R1) is the unperturbed density in the resonant region of the halo.

The new theory preserves an important simplification of the traditional linear

theory for an m = 1 diocotron mode[21]. For any unperturbed density perturbation

n(0)(r) that is monotonically decreasing in r and goes to zero for some r > Rw, the
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mode perturbation results from a uniform displacement D of the plasma column off

the trap axis. The displaced column produces an image in the conducting wall, and

in the linear limit (i.e. D/Rw ≪ 1), the electric field from the image is uniform over

the whole column, producing a uniform E ×B drift of the whole column transverse

to the displacement D. This uniform motion of the column around the trap axis is

the mode.

In the traditional theory, there are no resonant particles near the wall, but the

theory presented here must include such particles. Moreover, the perturbed charge

density of the resonant particles produces an electric field that acts back on the

plasma core, and one might worry that this field would spoil the picture of uniform

core displacement. However, that is not the case.

The resonant particles are well outside the plasma core, so the field from the

resonant particles is a vacuum field in the region of the core. The dipole portion of

this field is the portion that drives the mode resonantly, and a dipole vacuum field is

uniform. Recall that a dipole vacuum potential can be written in the form

δϕ(r, θ, t) = −δEx(t)r cos θ̄ − δEy(t)r sin θ̄, (3.4)

where δEx(t) is the uniform field along the direction θ̄ = 0 and δEy(t) is the uniform

field along θ̄ = π/2. We assume that the halo density is small, so the uniform field

δEx(t)x̂ + δEyŷ is a small increment to the uniform field from the image in the wall

and produces only a small increment in the uniform drift velocity of the core. Thus,

the core perturbation is still a uniform displacement.

In Section 3.3, the damping rate Ḋ and the frequency shift ∆ω are obtained

as Green’s function integrals over the perturbed charge density in the resonant region.
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To obtain these integral expressions, the perturbed charge density of the core is taken

to be of the form arising from a uniform displacement.

The integral expressions can be rewritten in the form

Ḋ =
c

B
δEy(t), D∆ω = − c

B
δEx(t), (3.5)

which yields a simple physical interpretation. The component of the uniform field

from the resonant particles that is transverse to the displacement (δEy) cause an

E ×B drift motion of the core back toward the trap axis, that is, a damping of the

mode. Likewise, the component of the field along the displacement (δEx) causes an

increment to the E×B drift velocity around the trap axis, that is, a mode frequency

shift.

A second re-writing of the integral expression for Ḋ clarifies the issue of angular

momentum conservation. The equation can be re-written as a statement that the

torque exerted by the core on the resonant particles is equal and opposite to the

torque exerted by the resonant particles back on the core. Two opposing torques

are equal and opposite even if a third torque (say, due to the transport) acts. The

treatment based on Poisson’s equation correctly, and automatically, focuses on torque

balance, rather than angular momentum balance.

For the conditions of the experiment, we will see that the transport caused

change in angular momentum of electrons being swept to the wall is small compared

to the change caused by the mode field, so the angular momentum balance is approx-

imately correct. Nevertheless, the calculation of the damping rate should at least

start from a rigorous foundation based on torque balance.

To obtain explicit expressions for the damping rate and frequency shift, the
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transport equation must be solved for the halo density distribution in the resonant

region and the result substituted into the Green’s function integrals. As a first step,

the transport equation is discussed and simplified in Section 3.4.

Note that the halo evolution takes place in two stages. First the halo extends

radially outward until it reaches to the wall. At the wall, the electrons are continuously

absorbed, and a quasi-steady state density distribution is established. We calculate

the damping rate and frequency shift for this density distribution.

Section 3.5 obtains simple analytic expressions for the density distribution,

damping rate and frequency shift by using an idealized transport model: zero diffusion

coefficient and constant coefficient of mobility. The E×B drift flow and mobility flow

are then both incompressible and can be incorporated in a Hamiltonian description of

the electron orbits. This idealized model implicitly underlies the simple theory[2, 3],

but leads to an infinite density gradient at the leading edge of the halo, which is

untenable.

Section 3.6 includes the effect of diffusive broadening at the leading edge gra-

dient. For the conditions of the experiments, the broadening substantially modifies

the density distribution and the orbits in the region that determines the damping

rate, so one might expect that the answer for the damping rate would be substan-

tially changed. However, the Green’s function integral for the damping rate can be

rewritten in an approximate form that involves only the flux entering the broadening

layer, and this form again yields the zero-diffusion damping rate in Eq. (3.2). The

approximation requires that the diffusion coefficient be sufficiently small, as will be

specified by inequalities in Section 3.6. Subject to these inequalities the frequency

shift is also relatively unchanged.
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Numerical solutions for the diffusively broadened density distribution are ob-

tained in Appendix B and are used in the Green’s function integral to obtain numerical

results for the damping rate. The numerical results are in good agreement with the

approximate analytic result of Section 3.6.

Section 3.7 obtains a perturbative correction to the damping rate to account

for the slow time dependence inD(t). This time dependence causes the contours them-

selves to move, and the corrected damping rate is proportional to the flux through

the moving contour. For the conditions of the experiment the correction is small.

Finally, Section 3.8 is a discussion on the general applicability of this flux-

driven damping mechanism.

3.3 Green’s function solution for the mode damp-

ing rate and frequency shift

In this section, we obtain expressions for the mode damping rate and frequency

shift as Green’s function integrals over the perturbed charge density in the resonant

region of the halo. To complete the calculation and obtain explicit expressions for the

damping rate and frequency shift, one must solve for the perturbed charge density in

the resonant region and substitute into the Green’s function integrals. This second

part of the calculation is deferred to later sections.

The linear m = 1 diocotron mode has the happy property[14, 49, 21] that the

self-consistent density perturbation, mode potential and mode frequency are known

analytically for any unperturbed density profile n(0)(r) that is monotonically decreas-

ing in r and goes to zero for some r < Rw. The self-consistent density perturbation
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and mode potential are given by the expressions

δn(r, θ, t) = −∂n
(0)

∂r
D cos(θ − ω1t− α), (3.6)

δϕ(r, θ, t) = −rB
c
[−ω1 + ωE(r)]D cos[θ − ω1t− α], (3.7)

where ω1 ≡ ωE(Rw) is the mode frequency. As mentioned above, the mode can

be understood as a uniform displacement of the plasma column off the trap axis.

From Eq. (3.6), one can see that the displacement is of magnitude D and in the

instantaneous direction θ = ω1t+α, where α is a phase shift. In Fig. (3.1), the angle

in the wave frame is simply θ̄ = θ − ω1t− α.

The term (rB/c)ω1D cos(θ − ω1t − α) in the potential represents a uniform

electric field due to the image of the displaced plasma in the conducting wall. Recall

that the image is located far outside the wall in the linear theory limit where D ≪ Rw.

The uniform field produces a uniform E×B drift of the plasma as a whole. The direc-

tion of the image field is always along the direction of the instantaneous displacement,

so the uniform drift velocity moves the plasma around the trap axis. The other term

in the mode potential, (−rB/c)ωE(r)D cos(θ − ω1t − α), simply accounts for a shift

in the origin of the radial space charge field of the plasma column itself.

In this theory, there are no particles in the resonant region near the wall.

However, here such particles must be included. As we will see, the mode potential

acting on the resonant particles produces a perturbed resonant particle charge density,

and this charge density produces a correction to the mode potential. This correction

acts back on the particles in the non-resonant region causing a correction to the E×B

drift motion. Nevertheless, we will postulate that the perturbed charge density in the
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non-resonant region continues to be of the form given by Eq. (3.6). Physically, the

perturbation in the non-resonant region is still a uniform displacement.

Why is this the case? The resonant particles near the wall are all outside

the non-resonant region, so the correction potential is a vacuum potential in the

non-resonant region. Moreover, the dipole component of such potential represents

a uniform electric field. Thus, the E × B drift velocity from this field is uniform

over the whole non-resonant region and provides a small correction to the uniform

drift velocity produced by the linear mode potential in Eq. (3.7). As we will see,

the correction can be accounted for simply by allowing D and α in Eq. (3.6) to be

time-dependent.

What is omitted in this description? First, the nonlinear orbits in the resonant

region create density perturbations with azimuthal mode number greater than 1, and

these harmonic perturbations produce fields in the non-resonant region that are not

uniform. However, these harmonic fields do not drive the m = 1 diocotron mode

resonantly, and the density perturbations produced are negligibly small.

Also neglected is an even smaller correction to the perturbed density in the

non-resonant region that is caused by the transport. This correction is linear in mode

amplitude and can lead to the kind of exponential damping or growth discussed

earlier by Davidson and Chao[21]. We neglect this effect and focus on the interaction

of the mode with resonant particles. This choice is motivated by the experimental

observation that the damping begins only when the halo particles reach the resonant

region. The present theory is complementary to the earlier theory of Davidson and

Chao[21].

Them = 1 Fourier components of the potential and density are related through
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the Green’s function solution[23]

δϕ1(r, t) = −4πe

∫ Rw

0

2πr′dr′G1(r|r′)δn1(r
′, t), (3.8)

where

G1(r|r′) =
1

4π


r

r′

(
r′2

R2
w

− 1

)
r < r′

r′

r

(
r2

R2
w

− 1

)
r′ < r

(3.9)

is the Green’s function and

δϕ1(r, t) =

∫ 2π

0

dθ

2π
e−iθδϕ(r, θ, t) (3.10)

δn1(r, t) =

∫ 2π

0

dθ

2π
e−iθδn(r, θ, t) (3.11)

are the Fourier components of the perturbed potential and density. Note that the

Green’s function satisfies the required boundary condition G1(Rw|r′) = 0. Also, note

that Eq. (3.8) is valid whether or not linear theory can be used to find the density

perturbation.

We postulate that the perturbed density can be written as

δn(r, θ, t) = −D cos(θ − ω1t− α)
∂n(0)

∂r
U(R1 − r) + δn′(r, θ, t), (3.12)

where U(R1 − r) is a step-function and R1 is the outer limit of the non-resonant

region, that is, the region where linear theory may be used. The quantity δn′(r, θ, t)

is the perturbed charge density in the resonant region (i.e., for R1 < r < Rw). The

postulated functional form for the non-resonant region (r < R1) assumes that the

perturbation is still a uniform displacement, even when the field from the resonant
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particles is taken into account, as explained in earlier.

Substituting Eq. (3.12) into Eq. (3.8) yields the relation

δϕ1(r, t) = 4πe
D

2
e−iω1t−iα

∫ R1

0

2πr′dr′G1(r|r′)
∂n(0)

∂r′

−4πe

∫ Rw

R1

2πr′dr′G1(r|r′)δn′
1(r, t), (3.13)

where

δn′
1(r, t) =

∫ 2π

0

dθ

2π
δn′(r′, θ, t)e−iθ (3.14)

is the Fourier component of δn′(r, θ, t). In evaluating the Green’s function integrals,

one must be careful to use the correct form of G1(r|r′) depending on whether r > r′

or r < r′.

For the non-resonant region r < R1, the Green’s function integral in the first

term yields the result

4πe

∫ R1

0

2πr′dr′G1(r|r′)
∂n(0)

∂r′
= 4πe

[ ∫ r

0

2πr′dr′G1(r|r′)
∂n(0)

∂r′

+

∫ R1

r

2πr′dr′G1(r|r′)
∂n(0)

∂r′

]
= 2er

[
N(r)

r2
− N(R1) + πn(0)(R1)(R

2
w −R2

1)

R2
w

]
,

(3.15)

where both integrals on the Right Hand Side have been integrated by parts and

N(r) ≡
∫ r
0
2πr′dr′n(0)(r′). For the resonant region R1 < r < Rw, the Green’s function
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integral in the first term yields the result

4πe

∫ R1

0

2πr′dr′G1(r|r′)
∂n(0)

∂r′
= −2er

(
1

R2
w

− 1

r2

)
[N(R1)− πR2

1n
(0)(R1)], (3.16)

where again integration by parts has been used.

We will need the potential in the resonant region later; here we focus on the

potential in the non-resonant region, where Eq. (3.13) reduces to the form

c

B
δϕ1(r, t)e

iω1t+iα = [ω1 − ωE(r)]
D

2
r − 4πec

B

∫ Rw

R1

2πr′dr′G1(r|r′)δn′
1(r

′, t)eiω1t+iα.

(3.17)

Here, ωE(r) = −2ecN(r)/Br2 is the rotation frequency, and ω1 is given by ωE(Rw),

assuming that the density takes the constant value n(0)(R1) in the resonant region

R1 < r < Rw. Note that the first term on the Right Hand Side of Eq. (3.17) has the

same form as the coefficient of cos(θ − ω1t− α) in Eq. (3.7) for the linear diocotron

mode.

We will see that the density is not in fact constant in the resonant region;

particles are excluded from the closed cat’s eye orbits, and the frequency shift ∆ω

accounts for this fact.

The linearized continuity equation[14] in the non-resonant region takes the

form [
∂

∂t
+ iωE(r)

]
δn1(r, t) =

ic

Br
δϕ1(r, t)

∂n(0)

∂r
, (3.18)

where a small correction to δn1(r, t) due to transport has been neglected.

Solving for δϕ1(r, t) in Eq. (3.17) and substituting into Eq. (3.18) yields the
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relation

reiω1t+iα

[
1

i

∂

∂t
+ ωE(r)

]
δn1(r, t)

∂n(0)/∂r

= −[ωE(r)− ω1]
D

2
r − 4πec

B

∫ Rw

0

2πr′dr′G1(r|r′)δn′
1(r

′, t)eiω1t+iα. (3.19)

For a self-consistent solution, this equation must be satisfied when the non-resonant

density perturbation postulated as the first term in Eq. (3.12) is substituted for

δn(r, t). Substituting and carrying out the time derivatives yield the equation

−r
2

{
1

i

∂D

∂t
− ∂α

∂t
D + [ωE(r)− ω1]D

}
= −[ωE(r)− ω1]

D

2
r − 4πec

B

∫ Rw

0

2πr′dr′G1(r|r′)δn′
1(r

′, t)eiω1t+iα.

(3.20)

The two terms in square brackets cancel, leaving the result

−i∂D
∂t

− ∂α

∂t
D =

8πec

Br

∫ Rw

R1

2πr′dr′G1(r|r′)δn′
1(r

′, t)eiω1t+iα. (3.21)

In the non-resonant region (r < R1), the upper form for the Green’s function

in Eq. (3.9) must be used, and this form is proportional to r. Thus, the r-dependence

on the Right Hand Side of Eq. (3.21) cancels. When D∂α/∂t and i∂D/∂t are chosen

to match the real and imaginary time-dependence of the Right Hand Side, we have a

self-consistent solution.

Using Eq. (3.14) and taking the real and imaginary parts of Eq. (3.21) yields
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the desired integral expressions for the damping rate and frequency shift

∂D

∂t
=

8πec

Br

∫ Rw

R1

r′dr′
∫ 2π

0

dθG1(r|r′)δn′(r′, θ, t) sin[θ − ωt− α], (3.22)

D
∂α

∂t
= D∆ω = −8πec

Br

∫ Rw

R1

r′dr′
∫ 2π

0

dθG1(r|r′)δn′(r′, θ, t) cos[θ − ωt− α],

(3.23)

where ∆ω ≡ ∂α/∂t is the frequency shift.

The argument of the sine and cosine functions in Eqs. (3.22) and (3.23) [i.e.,

θ̄ = θ−ω1t−α] is the angle measured in the instantaneous rotating frame of the wave,

and the θ̄-integrals in these equations are simply the dipole Fourier components of

δn′(r, θ, t) evaluated in the rotating frame. In subsequent sections, we will evaluate

δn′ in this rotating frame.

A simple interpretation of Eqs. (3.22) and (3.23) provides a more mechanistic

explanation of the damping and frequency shift. The interpretation starts from the

observation that the Left Hand Side of the equations [i.e., ∂D/∂t and ∆ωD] both

have the dimensions of velocity. As mentioned above, the charge density eδn′(r, θ, t) is

zero for r < R1, so the corresponding dipole potential produced in the region r < R1

is of the vacuum form

δϕ′(r, θ̄, t) = −rδEx cos θ̄ − rδEy sin θ̄, (3.24)

where δEx and δEy are independent of θ̄ and r. The Right Hand Sides of Eqs.

(3.22) and (3.23) are simply expressions for (c/B)δEy and −(c/B)δEx respectively.

Thus, Eq. (3.22) is simply a statement that the field δEy, from the resonant particle

charge density, produces an E × B drift motion of the plasma along the direction
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of instantaneous displacement D, that is, a growth or damping of the displacement

depending on the sign of δEy. Likewise, Eqs. (3.23) is a statement that δEx causes

an E×B drift increment to the velocity of the plasma transverse to D, and such an

increment causes a frequency shift in the rate of rotation of the plasma around the

trap axis, that is, an increment in the mode frequency.

Finally, how does the Green’s function solution clarify the issues associated

with the angular momentum balance argument[2, 3]? Let eδna(r, θ̄) and eδnb(r, θ̄) be

two perturbed charge densities in a Penning trap. The torque exerted on eδna(r, θ̄)

by the field from eδnb(r, θ̄) is given by the integral

τa,b = −e2
∫ Rw

0

r′dr′
∫ 2π

0

dθ̄′
∫ Rw

0

rdr

∫ 2π

0

dθ̄

·
{
1

r

[
∂

∂θ̄
G(r, θ̄, r′, θ̄′)

]
· rδna(r, θ̄)δnb(r′, θ̄′)

}
. (3.25)

Because the trap has cylindrical symmetry, the Green’s function has the functional

form G(r, θ̄, r′, θ̄′) = G(r, r′, θ̄− θ̄′). Thus the opposing torques are equal and opposite

[i.e., τa,b + τb,a = 0], even if a third torque, such as that due to transport, acts.

Eq. (3.22) for the damping rate is equivalent to such a statement of torque

balance. Let δna(r, θ̄) be the perturbed charge density of the non-resonant region [i.e.,

−D∂n(0)/∂r cos θ̄], and let δnb(r, θ̄) be the dipole component of the perturbed charge

density of the resonant region [i.e., the dipole component of δn′(r, θ̄)]. The torque τa,b

is given by the integral

τa,b =

∫ R1

0

rdr

∫ 2π

0

dθ̄(−D∂n
(0)

∂r
cos θ̄)

(
− e

r

∂δϕb
∂θ̄

)
r. (3.26)

Using orthogonality of the sinusoidal functions in the harmonic expansion of δϕb(r, θ̄),
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the θ̄-integral in Eq. (3.26) picks out the term −rEy sin θ̄ in the dipole portion of

δϕb(r, θ̄), as given by Eq. (3.24), yielding the result

τa,b = −πDeEy
∫ R1

0

r2dr
∂n(0)

∂r
= −πD∂D

∂t

eB

c

∫ R1

0

r2dr
∂n(0)

∂r
. (3.27)

Multiplying Eq. (3.22) by −πD(eB/c)r2∂n(0)/∂r and integrating over dr from

r = 0 to r = R1 yields the equation

τa,b = −8π2e2
∫ Rw

R1

r′dr′
∫ 2π

0

dθ̄δnb(r
′, θ̄)

∫ R1

0

rdrG1(r|r′)
∂n(0)

∂r
D sin θ̄, (3.28)

where δnb(r
′, θ̄) has been substituted for δn′(r′, θ̄). The potential δϕa(r

′, θ̄) is given

by the expression

δϕa(r
′, θ̄) = −4πe

∫ R1

0

2πrdrG1(r
′, r)[−D∂n

(0)

∂r
cos θ̄], (3.29)

where r′ > R1 ≥ r. Using the relation G1(r
′, r) = G1(r, r

′) for r′ > r yields the result

δϕa(r
′, θ̄) = 8π2eD

∫ R1

0

rdrG1(r, r
′)
∂n(0)

∂r
cos θ̄, (3.30)

so Eq. (3.26) can be rewritten as the result

τa,b = −
∫ Rw

R1

r′dr′
∫ 2π

0

dθ̄δnb(r
′, θ̄)

(
− e

r

∂δϕa
∂θ̄

)
r = −τb,a. (3.31)
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3.4 Transport equation

The particles move under the combined influence of an E × B drift flow and

a radial transport flow, so the density evolves according to the equation

∂n

∂t
+
c

B
ẑ ×∇⊥ϕ · ∇⊥n+

1

r

∂

∂r
rΓr(r) = 0, (3.32)

where ϕ(r, θ, t) is the electric potential and Γr(r) is the radial transport flux.

We employ a Hamiltonian description of the drift dynamics, whereH(θ, Pθ, t) =

eϕ[r(Pθ), θ, t] is the drift Hamiltonian and (θ, Pθ = eBr2/2c) are a canonically con-

jugate coordinate and momentum pair[50, 29, 51]. One can easily check that the

Hamilton’s equations of motion[52] are the same as the E × B drift equations in a

uniform magnetic field B = Bẑ. The Left Hand Side of Eq. (3.32) then can be

written in the form

∂n

∂t
+
c

B
ẑ ×∇⊥ϕ · ∇⊥n =

∂n

∂t
+ [n,H], (3.33)

where [n,H] is a Poisson bracket[53].

The transport is understood to be due to small static field asymmetries[54],

which exert an azimuthal drag force on the rotating plasma, causing a radially outward

drift motion. In the experiments[2], the transport flux is varied (i.e., increased) by

applying additional field asymmetries.

On general grounds, the flux is expected to be of the Fick’s law form[55]

Γr = −µ∂ϕ0

∂r
n−D∂n

∂r
, (3.34)
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where the coefficient of mobility µ and the diffusion coefficient D satisfy the Einstein

relation, µ = eD/T < 0. Here, −∂ϕ0/∂r is the unperturbed radial electric field

and T is the temperature in the halo region. The Fick’s law form follows from the

requirement that the flux vanish for a thermal equilibrium density profile, n(r) =

n0 exp[−eϕ0(r)/T ].

By changing variables from (r, θ, t) to (θ, Pθ, t), Eq. (3.32) takes the form

∂n

∂t
+ [n,H] =

∂

∂Pθ

[
− Ṗθ|Tn+ D̃ ∂n

∂Pθ

]
, (3.35)

where

Ṗθ|T = −µeB
c
r
∂ϕ0

∂r
, D̃ = − Ṗθ|TPθ · 2T

re∂ϕ0/∂r
. (3.36)

Here Ṗθ|T is the rate at which mobility changes the value of Pθ of a particle. Note that

D̃ is proportional to Ṗθ|T and that Ṗθ|T < 0 and D̃ > 0 since e∂ϕ/∂r is negative. We

will need the transport equation in the resonant region where to a good approximation

er∂ϕ0/∂r is approximately −2e2N and Pθ is approximately Pw ≡ eBR2
w/2c, where N

is the number of particles per unit length. Thus the transport coefficients takes the

simple form

Ṗθ|T = µ
B

c
· 2e2N, D̃ = Ṗθ|TPw

T

Ne2
. (3.37)

For the experimental conditions, the factor T/Ne2 in the diffusion coefficient

is small (i.e., T/Ne2 ∼ 10−2), so the transport is dominated by mobility everywhere

except at the leading edge of the halo where a large density gradient enhances the

effect of diffusion.

As noted in the last section, it is convenient to work in the rotating frame of
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the wave. The generating function[53]

F (θ, P̄θ, t) = P̄θ[θ − ω1 − α(t)] (3.38)

yields a canonical transformation to this frame, with the new coordinate and momen-

tum

θ̄ = θ − ω1t− α(t), P̄θ = Pθ (3.39)

and the new Hamiltonian

H̄ = H +
∂F

∂t
= H − (ω1 +∆ω)Pθ, (3.40)

where ∆ω = α̇. Since P̄θ and Pθ are equal, we continue to use Pθ in the new Hamilto-

nian. To work in the rotating frame, one only needs to replace H by H̄ in Eq. (3.35);

the Right Hand Side of the equation need not be changed since the radial flux is the

same in both frames.

Since the transport flow is slow compared to the E×B drift flow, the halo par-

ticles very nearly follow curves of constant H̄. Thus, changing independent variables

from (θ̄, Pθ, t) to (θ̄, H̄, t) in Eq. (3.35) is useful. The result is the transport equation

∂n

∂t

∣∣∣∣
θ̄,H̄

+
∂n

∂H̄

∣∣∣∣
θ̄,t

∂H̄

∂t

∣∣∣∣
θ̄,Pθ

+
∂n

∂θ̄

∣∣∣∣
H̄,t

∂H̄

∂Pθ

∣∣∣∣
θ̄,t

=
∂H̄

∂Pθ

∣∣∣∣
θ̄,t

∂

∂H̄
[−Ṗθ|Tn+ D̃ ∂H̄

∂Pθ

∣∣∣∣
θ̄,t

∂n

∂H̄

∣∣∣∣
θ̄,t

].

(3.41)

To complete the description of the transport equation, the Hamiltonian H̄(θ̄, Pθ, t)

is needed. Formally, the Hamiltonian is given by the expression

H̄ = eϕ0[r(Pθ)] + eδϕ[r(Pθ), θ̄]− (ω1 +∆ω)Pθ, (3.42)
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where ϕ0(r) is the unperturbed potential and δϕ(r, θ̄) is the perturbation caused by

the mode.

As mentioned in the introduction, the transport equation can be simplified

by using the smallness of the halo density nh in the resonant region. Our goal is to

calculate the damping rate and frequency shift to first order in this small quantity.

From Eqs. (3.22) and (3.23) one can see that the integral expressions for the damping

rate and frequency shift are already first order small in nh. Thus, the functional form

of the perturbed halo density in the resonant region need only be accurate to zero

order in nh. Likewise, the transport equation, which determines the functional form,

need only be accurate to zero order in the halo density.

Of course, nh is not a dimensionless parameter on which to base a proper

ordering scheme. The dimensionless ordering parameter is Nh/N ≡ (nhπR
2
w)/N ,

which has the value 0.1 for typical experimental conditions. As we will see, even the

largest of the neglected terms is down by this dimensionless factor.

Let us start by simplifying the Hamiltonian. In the resonant region, where

the transport equation and Hamiltonian are needed, the dipole contribution to the

perturbed potential is given by the expression

δϕ1(r, t) = −erD[N(R1)− πR2
1n

(0)(R1)]

(
1

R2
w

− 1

r2

)
e−iω1t−iα

−4πe

∫ Rw

R1

2πr′dr′G1(r|r′)δn′
1(r

′, t), (3.43)

where use has been made of Eqs. (3.13) and (3.16). The first term is the contribution

to the dipole potential from the non-resonant region, and the second is the contribu-

tion from the resonant region. Simple estimates show that the second term is smaller
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than the first term by a factor of Nh/N , so we neglect the second term. The higher

harmonic contributions to the perturbed potential are comparably small and also are

neglected. The constant square bracket in the first term can be replaced by N with a

relative error that is down by a factor Nh/N . Finally, there is a small θ̄-independent

contribution to the perturbed potential, which we also neglect. The radial electric

field from this potential is smaller than that from the unperturbed potential ϕ0(r) by

a factor that is much smaller than Nh/N . Thus, the perturbed potential reduces to

the simple form

δϕ(r, θ̄) = −2eNDr

(
1

R2
w

− 1

r2

)
cos θ̄. (3.44)

In the resonant region, the Hamiltonian can be simplified further by Tay-

lor expansion with respect to Pθ about Pθ = Pw. Setting ϕ0(Rw) = 0, using

∂ϕ0/∂r ≃ −2Ne/r near the wall and using the resonance condition ω1 = ωE(Rw) =

(c/BRw)(∂ϕ0/∂r)|Rw yield the expansion

H̄ =
Ne2

2

{(
Pθ − Pw
Pw

)2

− 4D

Rw

(
Pθ − Pw
Pw

)[
cos θ̄ +

RwPw∆ω

2DNe2

]}
, (3.45)

where higher than second order terms in the small quantity |Pθ − Pw|/Pw ∼ 4D/Rw

have been dropped and the purely time-dependent term ∆ωPw has been added.

We will see that the second term in the square bracket is a constant of value

0.6(Nh/Nc). This term can be retained in the analysis, but for consistency (and

simplicity) is dropped here yielding the reduced Hamiltonian

H̄ =
Ne2

2

[(
Pθ − Pw
Pw

)2

−
(
Pθ − Pw
Pw

)
· 4D
Rw

cos θ̄

]
. (3.46)

The time dependence of the transport equation also can be simplified by using
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the smallness of Nh/N . In the introduction, we noted that the halo evolution can be

divided into two stages. First the halo extends radially out to the wall. At the wall,

particles are continuously absorbed and a quasi-steady state density distribution is

established. We calculate the damping rate and frequency shift for this quasi-steady

state density distribution.

The modifier “quasi” is used since the density continues to change slowly due

to the slow damping, that is, due to the time dependence in D(t), which enters

the Hamiltonian. In Sections 4 and 5, we neglect this slow time dependence, that

is, neglect the first two terms on the Left Hand Side of Eq. (3.41), to obtain the

simplified transport equation

∂n

∂θ̄

∣∣∣∣
H̄

=
∂

∂H̄
[−Ṗθ|Tn+ D̃ ∂H̄

∂Pθ

∣∣∣∣
θ̄

∂n

∂H̄

∣∣∣∣
θ̄

]. (3.47)

One expects the corrections due to the neglected time dependence to be small since

Ḋ(t) is first order small in nh. In Section 6, a perturbative treatment is used to show

that the relative correction to the damping rate is approximately ∆γ/γ ≃ 2Nh/N .

The relative correction to the frequency shift is even smaller.

For plotting purposes, it is useful to re-write the reduced Hamiltonian in the

scaled form

h = p2 − p cos θ̄, (3.48)

where

p =

(
Pθ − Pw
Pw

)(
Rw

4D

)
, (3.49)

h =
2H̄

Ne2

(
Rw

4D

)2

. (3.50)
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Likewise transport equation (3.47) takes the scaled form

∂n

∂θ̄

∣∣∣∣
h

=
∂

∂h
[βn− δ

∂h

∂p

∣∣∣∣
θ̄

∂n

∂h

∣∣∣∣
θ̄

]θ̄, (3.51)

where

β = −2Ṗθ|T
Ne2

(
Rw

4D

)2

, (3.52)

δ = β
T

Ne2

(
Rw

4D

)
. (3.53)

To lowest order in the Taylor expansion, β and δ are treated as constant in the

resonant region. Except for the smallest values of D accessed in the experiments,

these constants are ordered as δ ≪ β ≪ 1.

Fig. (3.2) shows a contour plot of h(θ̄, p) in the resonant region near the wall.

The ordinate of the plot ranges from p = 0, the location of the wall, to p = −2, which

is enough of the (θ̄, p) phase space to show the resonant region. Of course, the full

phase space extends to much lower values of p where the plasma core is located.

The contours of constant h(θ̄, p) are the trajectories that would be followed by

a particle moving only under the E × B drift flow, and the arrows on the contours

indicate the direction of the flow. There are open trajectories extending from θ̄ = 0

to θ̄ = 2π, closed trajectories, and a separatrix between the two. The value of h is

positive on the open trajectories, zero on the separatrix, and negative on the closed

trajectories. The closed trajectories are the m = 1 version of “cat’s eye” trajectories,

but they do not look like such trajectories since the resonance is at the wall where

the mode potential goes to zero.
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Figure 3.2: Contours of h(θ̄, p)

Solving Eq. (3.48) yields a solution for the trajectories

p± =
cos θ̄ ±

√
cos2 θ̄ + 4h

2
, (3.54)

where the minus sign is to be used for the open trajectories, on which p(θ̄) is a

single-valued function of θ̄. Both the plus and minus signs are needed for the closed

trajectories, where p(θ̄) is double-valued.

Adjacent to the wall, there is a thin scrape-off layer where guiding center drift

theory fails, and particles (electrons) are absorbed by the wall. The scrape-off layer is

at least as thick as a cyclotron radius, which is of order 10−4 cm for the experiments.

However, other effects, such as misalignment of and ripples in the magnetic field, likely

increase the thickness of the scrape-off layer. In this regard, note that the particles

undergo rapid axial bounce motion and azimuthal drift motion relative to the wall,

so any region of the wall where the scrape-off mechanism reaches out furthest sets

the overall thickness of the scrape-off layer.
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The scrape-off mechanism and the thickness of the scrape-off layer ∆r are

not known experimentally, but we believe that the thickness ∆r is small compared

to the mode amplitude D, for the range of amplitudes in the experiments. This

condition is necessary for the damping rate and the frequency shift to be independent

of thickness. Note that a physical thickness ∆r corresponds to a scaled momentum

thickness ∆p = ∆r/2D.

0.0 0.2 0.4 0.6 0.8 1.0
-0.012

-0.011

-0.010

-0.009

-0.008

Θ�H2ΠL

p

Figure 3.3: Contours of h = hc (blue solid), k = hc (red dot-dashed) and
the scrape-off layer (black dashed) in the (θ̄, p) plane.

Fig. (3.3) shows a blow up of the phase space near the scrape-off layer, which

for the sake of the figure is taken to have the thickness ∆p = 10−2. The lower edge

of the scrape-off layer is shown as the black dashed line at p = −∆p = −10−2. The

solid blue contour is the critical contour, h(θ̄, p) = hc, which just misses the scrape-off

layer at θ̄ = 0 and θ̄ = 2π. Eq. (3.48) implies that the value of h on the critical

contour is given by hc = (∆p)2 + ∆p ≃ ∆p = 10−2. Also shown is a red dot-dashed

curve that will be explained in the next section.
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Figure 3.4: Contours of h = hc (blue solid), k = hc (red dot-dashed) and
the scrape-off layer (black dashed) in the (θ̄, h) plane.

Fig. (3.4) shows the scrape-off layer and critical contour in (θ̄, h)-space. The

solid blue horizontal line is the critical contour h = hc ≃ 10−2, and the black dashed

curve is the lower edge of the scrape-off layer at h = h(θ̄,−∆p) ≃ ∆p(cos θ̄). Also

shown is the red dot-dashed curve of Fig. (3.3).

For orientation, note that p increases upward in Fig. (3.3) and that h increases

upward in Fig. (3.4). Thus, the core plasma is below the region shown in Fig. (3.3)

and above the region in Fig. (3.4).

In the region h > hc of Fig. (3.4), the contours of constant h extend from

θ̄ = 0 to θ̄ = 2π. Since the points (θ̄ = 0, h) and (θ̄ = 2π, h) are the same point

physically, we require that n(θ̄ = 0, h) = n(θ̄ = 2π, h) in the region h > hc. In the

region 0 < h < hc, the contours of constant h encounter the scrape-off layer before

reaching θ̄ = 0 or θ̄ = 2π. The particle density within the scrape-off layer is taken

to be zero. This implies that no particles emerge from the scrape-off layer and, when
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diffusion is taken into account, that the particle density at the surface of the scrape-off

layer be zero. Otherwise, there would be an infinite density gradient at the surface,

which is unsustainable in the face of diffusion.

3.5 Zero diffusion model

As was noted earlier, the scaled diffusion coefficient, δ, is small compared

to the scaled mobility coefficient β. Motivated by this observation, the previous

calculation[2, 3] of the damping rate assumed the limit of zero diffusion.

A review of this simple model is instructive since it admits a trivial analytic

solution for the steady state density profile. Happily, the model yields the same answer

for the damping rate and frequency shift as a more realistic model that includes small

but finite diffusion [see Section 5].

Setting δ = 0 and treating β as a constant reduces transport equation (3.51)

to the simple form

∂n

∂θ̄

∣∣∣∣
h

− β
∂n

∂h

∣∣∣∣
θ̄

= 0, (3.55)

which immediately yields the solution

n(θ̄, h) = g[h+ βθ̄]. (3.56)

The flow is incompressible along trajectories of constant k = h+ βθ̄.

To understand this result physically, note that constant β implies constant

Ṗθ|T , which in turn implies that the mobility flow is incompressible. The mobility

flow can then be incorporated along with the incompressible E × B drift flow in a
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Hamiltonian description. One can easily check that the Hamiltonian

K(θ̄, Pθ) = H(θ̄, Pθ)− Ṗθ|T θ̄ (3.57)

generates both the E × B drift flow and the mobility flow. Since we are neglecting

any explicit time dependence in this Hamiltonian, it is a constant of motion, that is,

particles flow along curves of constant K. The equation k = h(θ̄, p) + βθ̄ is simply

the scaled version of Eq. (3.57). Since the Hamiltonian flow is incompressible, the

density is constant along the contour of constant k.

The red dot-dashed curves in Figs. (3.3) and (3.4) are two views of the critical

trajectory k = hc, drawn for the value β = 2 × 10−4, which is characteristic of the

experimental conditions. This trajectory just misses the scrape-off layer at θ̄ = 0 but

enters the scrape-off layer just to the left of θ̄ = 2π.

For the region h > hc, the periodic boundary condition n(θ̄ = 0, h) = n(θ̄ =

2π, h) plus the solution in Eq. (3.56) implies the relation n(θ̄ = 0, h) = n(θ̄ =

2π, h+2πβ). Thus, n(θ̄ = 0, h) must be constant in the region h > hc. The possibility

of a periodic component with the very short periodicity scale δh ∼ 2πβ is ruled out

by even small diffusion. This conclusion will be clarified in the next section.

Every point above the red dot-dashed contour in Fig. (3.4), that is, above the

trajectory k = hc, lies on a trajectory that emerges from the line interval (θ̄ = 0,

h > hc), on which the density has a constant value. Thus, the density in the whole

region above the red dot-dashed trajectory has this constant value. The density below

the red dot-dashed trajectory is zero, because there the points lie on trajectories that



99

emerge from the scrape-off layer. Thus, the density is given by the expression

n(θ̄, h) = n(0)(R1)U [h− hc + βθ̄], (3.58)

where U(x) is a step-function, and we have identified the value of the constant density

as n0(R1), the density at the beginning of the resonant region.

Eqs. (3.22) and (3.23) for the damping rate and frequency shift can be re-

written in the form

∂D

∂t
=

ecRw

B

(
4D

Rw

)2 ∫ 2π

0

dθ̄ sin θ̄

∫ 0

p(R1)

pdp · n[θ̄, h(θ̄, p)], (3.59)

D∆ω = −ecRw

B

(
4D

Rw

)2 ∫ 2π

0

dθ̄ cos θ̄

∫ 0

p(R1)

pdp · n[θ̄, h(θ̄, p)], (3.60)

where the relations

r′dr′ = 2DRwdp (3.61)

G1(r|r′)
r

=
1

4πr′

(
r′2

R2
w

− 1

)
≃ Dp

πR2
w

(3.62)

have been used, and the Green’s function has been Taylor expanded about r′ = Rw

in the last step of Eq. (3.62).

Substituting Eq. (3.58) for the density and carrying out the p-integrals yields

the expressions

∂D

∂t
=

ecRw

B

(
4D

Rw

)2

n(0)(R1)

∫ 2π

0

dθ̄
sin θ̄

2
{p2−[θ̄, hc − βθ̄]− p2(R1)}, (3.63)

D∆ω = −ecRw

B

(
4D

Rw

)2

n(0)(R1)

∫ 2π

0

dθ̄
cos θ̄

2
{p2−[θ̄, hc − βθ̄]− p2(R1)},(3.64)
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where p−(θ̄, h) is given by Eq. (3.54) with the minus sign chosen.

In the curly brackets of both integrals, the constant term p2(R1) integrates to

zero. Using the smallness of β, the other term in the curly brackets may be Taylor

expanded yielding the expression

p2−[θ̄, hc − βθ̄] = p2−(θ̄, hc)− 2p−(θ̄, hc)

[
∂p−
∂h

(θ̄, hc)

]
βθ̄. (3.65)

The first term in this Taylor expansion does not integrate to zero when sub-

stituted into Eq. (3.64) for the frequency shift, so the smaller, second term may be

neglected, yielding the expression

D∆ω = −ecRw

B

(
4D

Rw

)2

n(0)(R1)

∫ 2π

0

dθ̄
cos θ̄

2
p2−(θ̄, hc). (3.66)

For hc ≪ 1, Eq. (3.54) implies that p2−(θ̄, hc) is approximately given by cos2 θ̄ in the

interval π/2 < θ̄ < 3π/2 and is nearly zero elsewhere. Thus, Eq. (3.66) reduces to

the result

∆ω = −ecRw

BD

(
4D

Rw

)2

n(0)(R1)

∫ 3π/2

π/2

dθ̄
cos3 θ̄

2

=
32

3

ecn(0)(R1)

B

D

Rw

. (3.67)

Eqs. (3.15) and (3.17) show that the frequency ω1 has the value ωE(Rw),

assuming that the density has the constant value n(0)(R1) in the resonant region

R1 < r < Rw. For the density solution given by Eq. (3.56), the density does not

extend at the constant value n(0)(R1) to the wall, but only to the dot-dashed trajectory

in Figs. (3.3) and (3.4). The particles are excluded from the closed cat’s eye orbits
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adjacent to the wall. The frequency shift accounts for this exclusion, yielding an

effective exclusion length of ∆r = (8/3π)D.

In progressing from Eq. (3.45) to Eq. (3.46), the quantity (RwPw∆ω)/(2DNe
2)

was dropped, anticipating that it would be small compared to unity. Substituting for

∆ω from Eq. (3.67) shows that the quantity is indeed small:

RwPw∆ω

2DNe2
=

8

3

R2
wn

(0)(R1)

N
≃ 0.06. (3.68)

In Eq. (3.63) for the damping rate, the first term in Taylor expansion (3.65)

integrates to zero, since p2−(θ̄, h) is even in θ̄ about θ̄ = π and sin θ̄ is odd. Thus, the

integral is determined solely by the second term in the Taylor expansion and reduces

to the form

∂D

∂t
= −ecRw

B

(
4D

Rw

)2

n(0)(R1)

∫ 2π

0

dθ̄ sin θ̄p−(θ̄, hc)

[
∂p−
∂h

(θ̄, hc)

]
βθ̄. (3.69)

Eqs. (3.48) and (3.54) imply the relation

p−(θ̄, hc)

[
∂p−
∂h

(θ̄, hc)

]
=

− cos θ̄ +
√
cos2 θ̄ + 4h

2
√
cos2 θ̄ + 4h

. (3.70)

For h = hc ≃ ∆p ≪ 1, the Right Hand Side has the approximate value 1 for π/2 <

θ̄ < 3π/2 and is nearly zero elsewhere. Thus, Eq. (3.69) yields the result

∂D

∂t
= −ecRw

B

(
4D

Rw

)2

n(0)(R1)

∫ 3π/2

π/2

dθ̄ sin θ̄βθ̄

= +
ecRw

B

(
4D

Rw

)2

n(0)(R1) · 2β. (3.71)
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By using Eq. (3.52) and the relation

n(0)(R1)Ṗθ|T =
eB

2πc

∣∣∣∣dNdt
∣∣∣∣, (3.72)

Eq. (3.71) reduces to the previous result for the damping rate[2, 3], as given by Eq.

(3.2).

The second term in Taylor expansion (3.65) represents the particle density

in the region between the solid and the dot-dashed curves of Figs. (3.3) and (3.4)

[i.e., between h = hc and k = hc], so the damping rate is determined exclusively by

particles in this region. From Fig. (3.3), one can see that these are particles that are

being swept around the cat’s eye orbits to the scrape-off layer and wall.

The previous calculation[2, 3] guessed that the wave torque is dominantly

applied to these particles, approximated that torque by the the rate of change of

angular momentum of the particles, and evaluated the change in angular momentum

using the zero diffusion orbits discussed in this section.

A particle enters the region between the solid and the dot-dashed curves when

mobility transports the particle through the contour h = hc. The rate at which

particles flow through this contour between θ̄ and θ̄+dθ̄ is proportional to βndθ̄. Since

βn is constant, the flux is uniform in θ̄. Since all of the particles enter the scrape-

off layer at p = −∆p, the average change in angular momentum for the particles is

simply

⟨∆Pθ⟩ =
∫ 2π

0

dθ̄

2π
Pw

4D

Rw

[−∆p− p−(θ̄, hc)]. (3.73)



103

Using the inequality hc ≃ ∆p≪ 1 and Eq. (3.54) yields the result

∆Pθ ≃ −eBRw

πc

∫ 3π/2

π/2

dθ̄ cos θ̄ =
2

π

eBRwD

c
, (3.74)

which is the result quoted in the introduction. The rate of change of angular momen-

tum was then written as |dN/dt|⟨∆Pθ⟩ and used as the torque in the torque balance

equation to obtain the damping rate in Eq. (3.2).

Since this previous calculation approximates the wave torque on the halo par-

ticles by the rate of change of halo particle angular momentum, omitting the torque

due to the transport, one may ask why the present and previous calculations agree.

The answer is that the torque exerted on a particle while it is being swept around the

cat’s eye orbit is small, of order β. Also, the quantity |dN/dt| is first order in β, so

the correction would be of order β2. Likewise in the Taylor expansion of Eq. (3.65)

only the term first order in β was retained. Thus, the two calculations are accurate

only to order β, and differences would appear in order β2.

3.6 Diffusive broadening

An obvious criticism of the zero-diffusion model is that it leads to an infinite

density gradient at the leading edge of the halo [i.e. at k = hc], and even a small

diffusion gradient must broaden such a gradient. This broadening is worrisome since

the damping rate in the zero diffusion model is determined by a thin ribbon of particles

at the leading edge of the halo. Moreover, for the conditions of the experiments, the

diffusively broadened layer is much wider than the ribbon. Nevertheless, we will

find that the answer for the damping rate is not changed significantly, provided the
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diffusive broadening is not too large, as will be specified by constraints on the size of

the diffusion coefficient.

Numerical solutions of transport equation (3.51) are obtained in Appendix B.

The boundary conditions imposed on the solution are that n(θ̄, h) approaches the

constant value n(0)(R1) for sufficiently large h, that n(θ̄ = 0, h) = n(θ̄ = 2π, h) for

h > hc and that n(θ̄, h) be zero at the surface of the scrape-off layer. The dynamics

itself will prevent particles from reaching the contour h = 0.
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Figure 3.5: Contour plot of the relative density n(θ̄, h)/n(0)(R1). The black
dashed line is the scrape-off layer. The solid blue line and the red dot-dashed
line are the critical contours h = hc and k = hc. The blue dotted line
represents the diffusive broadening layer (∆h)2.

Fig. (3.5) shows a contour plot of the relative density n(θ̄, h)/n(0)(R1) obtained
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for the transport coefficient values β = 10−5 and δ = 4×10−7, which are characteristic

values for the experiments. Only the relative density need be specified since the

transport equation is linear and the boundary conditions are homogeneous. The

critical contour h = hc is again drawn as a solid blue line. Likewise, the red dot-

dashed line is the trajectory k = hc, and the dashed black curves are the surface

of the scrape-off layer. Clearly the thin ribbon between the solid blue line and the

dot-dashed red line is very narrow compared to the width of the diffusive broadening.
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Figure 3.6: Contour plot of the relative density n(θ̄, h)/n(0)(R1). The black
dashed line is the scrape-off layer. The solid blue line and the red dot-dashed
line are the critical contours h = hc and k = hc. The upper and lower blue
dotted lines represent the diffusive broadening layer (∆h)1 and (∆h)2.

In order to show the full range of diffusive broadening, the range of h values
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shown in Fig. (3.6) is larger than that in Fig. (3.5). The upper dotted blue curve

in Fig. (3.6) shows the h-scale length for diffusive broadening in the region h > hc,

and the lower dotted blue curve shows the scale length in the region 0 < h < hc.

The diffusive broadening scales are different in the two regions, since the boundary

conditions of the transport equation (3.51) are different in the two regions.

To estimate the h-scale length for diffusive broadening in the region h > hc,

we use a perturbation expansion of Eq. (3.51) based on the smallness of β and

δ. Substituting the expansion n(θ̄, h) = n(0)(θ̄, h) + n(1)(θ̄, h), where n(1)/n(0) is first

order in β and δ, yields the zeroth-order equation ∂n(0)/∂θ̄ = 0 and its simple solution

n(0) = n(0)(h).

In first order, the expansion yields the equation

∂n(1)

∂θ̄
=

∂

∂h

[
βn(0)(h)− δ

∂h

∂p

∂n(0)

∂h

]
. (3.75)

Treating β and δ as constants and using the periodic boundary condition

required for n(θ̄, h) in the region h > hc yields the equation

0 =

∫ 2π

0

dθ̄

2π

∂n(1)

∂θ̄
=

∂

∂h

[
βn(0)(h)− δ

⟨
∂h

∂p

⟩
∂n(0)

∂h

]
, (3.76)

where ⟨
∂h

∂p

⟩
≡

∫ 2π

0

dθ̄

2π

∂h

∂p
= −

∫ 2π

0

dθ̄

2π

√
cos2 θ̄ + 4h. (3.77)

Here, the last expression follows from Eqs. (3.48) and (3.54).

Since the diffusion term will be significant only at the leading edge of the halo

where h ≪ 1, the last integral in Eq. (3.77) has the approximate value ⟨∂h/∂p⟩ ≃
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−2/π. Thus, Eq. (3.76) reduces to the simple form

0 =
∂

∂h

[
n(0)(h) + (∆h)1

∂n(0)

∂h

]
, (3.78)

where (∆h)1 = 2δ/πβ. The solution is given by the expression

n(0)(h) = C1 + (C2 − C1) exp

[
− h− hc

(∆h)1

]
, (3.79)

where C1 and C2 are constants. For h − hc ≫ (∆h)1, the density n(0)(h) has the

constant value C1, which we identify as the constant n(0)(R1). The constant C2 is

the value of the θ̄-averaged density at h = hc, n
(0)(hc). This latter constant must be

determined by matching onto the solution for h < hc.

One can continue with the perturbation analysis to determine the θ̄-dependent

part of the density, but the conclusion is that (∆h)1 sets the diffusive broadening scale.

The upper blue dotted curve in Fig. (3.6) is the line h = (∆h)1 = 2δ/πβ. Physically,

this broadening scale is determined by a competition between diffusion and mobility.

In the region 0 < h < hc, a given particle makes a single pass through the

(θ̄, h) space and then is lost to the scrape-off layer, so the diffusive broadening in this

region is determined by a competition between diffusion and E ×B drift streaming.

Neglecting the mobility term in Eq. (3.51) and using the small-h expansion ∂h/∂p ≃

−| cos θ̄| in the diffusion term yields the diffusive broadening scale

(∆h)2(θ̄) = [2δ

∫ θ̄

0

dθ̄′| cos θ̄′|]1/2. (3.80)

The lower dotted blue curve in Figs. (3.5) and (3.6) is a plot of (∆h)2(θ̄). For the
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conditions of the experiment, (∆h)1 is substantially larger than (∆h)2(θ̄).

If the diffusive broadening scales (∆h)1 and (∆h)2 satisfy appropriate con-

straints, the details of the density distribution are not needed to calculate the damp-

ing rate and frequency shift. First, we require that there exists a contour h = hb,

where hb − hc is a few times larger than (∆h)1 and yet hb ≪ 1. This is possible if

(∆h)1 ≪ 1. Recall that hc ≃ ∆p ≪ 1. The density then has the constant value

n(0)(R1) for h ≥ hb.

Second, we require that (∆h)2(θ̄ = 3π/2) be small compared to hc ≃ ∆p, so

that particles can’t reach the contour h = 0. Note here that the scrape-off layer on the

Right Hand Side of Fig. (3.5) intersects the contour h = 0 at θ̄ = 3π/2. Physically,

the particles must be swept to the scrape-off layer by the E×B drift flow before the

diffusive broadening can move the particles to h = 0.

In summary, the required inequalities are the following

(∆h)1 =
2δ

πβ
=

2

π

T

Ne2
Rw

4D
≪ 1 (3.81)

1 ≫ (∆p)2 ≃ h2c ≫ [(∆h)2(3π/2)]
2 = 6δ =

3

2

Tβ

Ne2
Rw

D
, (3.82)

which are consistent with the experimental conditions except for the smallest values

of D.

By using the constancy of n(θ̄, h) for h > hb, Eqs. (3.59) and (3.60) can be
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re-written in the form

∂D

∂t
=

ecRw

B

(
4D

Rw

)2 ∫ 2π

0

dθ̄ sin θ̄

{
n(0)(R1)

2
[p2−(θ̄, hb)− p2(R1)]

+

∫ 0

hb

dhp−(θ̄, h)
∂p−(θ̄, h)

∂h
n(θ̄, h)

}
, (3.83)

D∆ω = −ecRw

B

(
4D

Rw

)2 ∫ 2π

0

dθ̄ cos θ̄

{
n(0)(R1)

2
[p2−(θ̄, hb)− p2(R1)]

+

∫ 0

hb

dhp−(θ̄, h)
∂p−(θ̄, h)

∂h
n(θ̄, h)

}
, (3.84)

where the differential relation dp = dh(∂p/∂h)θ̄ has been used in the integrals.

In both square brackets, the constant term p2−(R1) integrates to zero. By even-

odd arguments, the term p2−(θ̄, hb) integrates to zero in Eq. (3.83), but not in Eq.

(3.84). The integral over h makes the only contribution in Eq. (3.83) and may be

neglected in Eq. (3.84). The integral is negligible there because hb ≪ 1. Thus, the

equations reduce to the form

∂D

∂t
=

ecRw

B

(
4D

Rw

)2 ∫ 2π

0

dθ̄ sin θ̄

∫ 0

hb

dhp−(θ̄, h)
∂p−(θ̄, h)

∂h
n(θ̄, h), (3.85)

D∆ω = −ecRw

B

(
4D

Rw

)2
n(0)(R1)

2

∫ 2π

0

dθ̄ cos θ̄p2−(θ̄, hb). (3.86)

The reason that the diffusive broadening makes only a negligible change in

the frequency shift is easy to understand. The leading edge of the halo has the

approximate θ̄-dependence p−(θ̄, 0), which varies by order unity as θ̄ varies over the

interval (0, 2π). On the other hand the diffusive broadening is small compared to

unity, (∆p−)broad ≃ (∂p−/∂h)(∆h)1 ∼ 2δ/πβ ≪ 1, so the change produced by the

broadening is negligible.

To evaluate the damping rate in Eq. (3.85) first recognize that p− sin θ̄ =
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∂h/∂θ̄, based on the form of h in Eq. (3.48). Such recognition, together with the

chain rule (∂h/∂θ̄|p−)(∂p−/∂h|θ̄) = −∂p−/∂θ̄|h, and an integration by parts over θ̄

since p−(θ̄, h) and n(θ̄, h) are periodic in θ̄, allows us to rewrite Eq. (3.85) as

∂D

∂t
=
ecRw

B

(
4D

Rw

)2 ∫ 2π

0

dθ̄

∫ 0

hb

dhp−(θ̄, h)
∂n

∂θ̄

∣∣∣∣
h

. (3.87)

Since hb ≪ 1, p−(θ̄, h) can be approximated by p−(θ̄, 0), which is given by

p−(θ̄, 0) = cos θ̄ from Eq. (3.54) for π/2 < θ̄ < 3π/2 and is zero elsewhere. Thus, Eq.

(3.87) reduces to the form

∂D

∂t
=
ecRw

B

(
4D

Rw

)2 ∫ 3π/2

π/2

dθ̄ cos θ̄

∫ 0

hb

dh
∂n

∂θ̄

∣∣∣∣
h

. (3.88)

Substituting for ∂n/∂θ̄|h from transport equation (3.51), carrying out the h-integral

and using the relations n(θ̄, hb) = n(0)(R1) and ∂n/∂h(θ̄, 0) = 0 yields the expression

∂D

∂t
= −ecRw

B

(
4D

Rw

)2 ∫ 3π/2

π/2

dθ̄ cos θ̄ · βn(0)(R1), (3.89)

which reduces to the result

dD

dt
=
ecRw

B

(
4D

Rw

)2

n(0)(R1) · 2β = − 2

π

|dN/dt|
N

Rw, (3.90)

This result is the same as the damping rate for zero-diffusion given in Eqs. (3.71) and

(3.2).

This analytic solution for the damping rate approximates the dθ̄dh integrals
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in Eq. (3.85), denoted as

J ≡
∫ 2π

0

dθ̄ sin θ̄

∫ 0

hb

dhp−
∂p

∂h

n(θ̄, h)

n(0)(R1)
, (3.91)

by the value 2β, which significantly is independent of δ, provided δ is not too large.

Fig. (3.7) shows a comparison of this analytical approximation for the integral J to a

direct numerical evaluation using the numerical solutions for the diffusively broadened

density found in Appendix B.
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Figure 3.7: Values of damping integral J . Numerical results are in squares
for T = 4× 10−2Ne2 and in circles for T = 1.6× 10−2Ne2, with D = 0.1Rw.
Red dashed line shows the approximate analytical result J ≃ 2β.

The numerical evaluations are obtained for many values of β, shown in the

figure, and for D = 0.1Rw and two distinct values of T , T = 1.6 × 10−2Ne2 and

T = 4× 10−2Ne2. These values are characteristic of the experiment. The value of hb

is taken to be large enough that n(θ̄, h)/n(0)(R1) is close to 1 and the integral J is

independent of hb.

Results for T = 1.6× 10−2Ne2 are shown as circles and for T = 4× 10−2Ne2
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as squares. The red dashed line is the analytic result 2β. Significantly, the circles and

squares lie close to the red line, with slightly larger values. The origin of the difference

lies in the approximation made in Eq. (3.88) in the analytic evaluation. We neglected

the small finite h in p−(θ̄, h). However, when the finite value of 0 < h < hb is retained

in the numerical evaluation, values slightly larger than the analytic approximation is

obtained.

That diffusive broadening does not change the damping rate significantly, even

when the broadening is much wider than the thin region responsible for damping in

the zero-diffusive model [i.e. (∆h)1 ≫ 2πβ] may be surprising. All that is needed is

that (∆h)1 and (∆h)2 satisfy inequalities (3.81) and (3.82).

To understand the near equality of the two damping rates, first note that the

scaled flow of particles through contour hb is simply 2πβn(0)(R1), which is the same as

the flow through contour hc in the zero diffusion model. Provided that (∆h)2 ≪ ∆p,

all of the particles that pass through contour h = hb ultimately enter the scrape-off

layer. To calculate the average change in angular momentum of the particles as they

move from h = hb to the scrape-off layer, one need only replace hc by hb in Eq. (3.73).

By inequality (3.82), hb is small compared to unity and the modified version of Eq.

(3.73) still reduces to the result in Eq. (3.74). Thus, the average rate of change of

angular momentum for the particles is the same in the two cases.

The question remains as to whether or not the average rate of change of angular

momentum is a good approximation to the torque exerted by the wave on the particles.

In the zero diffusion model, particles cross the contour h = hc and then enter the

scrape-off layer in a single pass through the (θ̄, h) space. In scaled variables, the

change in angular momentum of a particle caused by the transport during this period
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is of order δp ∼ β, which is much smaller than the average change δp ∼ 1.

In the finite diffusion case, particles cross the contour h = hb and then make

many passes through the (θ̄, h) space before reaching the scrape-off layer, so torque

due to transport has more time to act on the particle. The change in angular mo-

mentum due to the transport is of order δp ∼ hb, which is much larger than β, but

according to inequality (3.82) is still small compared to the average change in angular

momentum δp ∼ 1. Thus, the rate of change of angular momentum of the particles

still provides a good approximation to the torque exerted by the wave. Therefore, the

damping rates for the two cases are nearly the same.

3.7 Correction for time dependence in D(t)

Here, we obtain a perturbative correction to the damping rate due to the

explicit time dependence in the Hamiltonian, that is, due to the time dependence

in D(t). There are detailed calculations of other corrections of the same order of

magnitude in Appendix . Unscaled equations must be used to obtain this correction

since D(t) enters the scaling. The first two terms on the Left Hand Side of Eq. (3.41)

give rise to the correction.

To estimate the relative size of these two terms, we substitute the approxi-

mate zero-diffusion solution n(θ̄, H̄, t) = n(0)(R1)U [H̄ − H̄c(t)], obtaining the relation

∂n/∂t|θ̄,H̄ = (−∂H̄c/∂t)(∂n/∂H̄)θ̄,t. One can show that |∂H̄c/∂t| is small compared

to |∂H̄/∂t| for ∆p ≪ 1, so the first term may be neglected in comparison to the
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second. The equation then takes the form

∂n

∂θ̄

∣∣∣∣
H̄,t

=
∂

∂H̄

[
− Ṗθ|Tn+

∂H̄

∂Pθ

∣∣∣∣
θ̄,t

D̃ ∂n

∂H̄

∣∣∣∣
θ̄

]
+
∂Pθ
∂t

∣∣∣∣
H̄,t

∂n

∂H̄

∣∣∣∣
θ̄,t

, (3.92)

where

∂Pθ
∂t

∣∣∣∣
θ̄,H̄

= −
∂H̄/∂t|θ̄,Pθ

∂H̄/∂Pθ|θ̄,t
(3.93)

is the rate at which a contour H̄(θ̄, Pθ, t) = constant moves upward in the (θ̄, Pθ)

phase space.

Anticipating that we will need Eq. (3.92) only for θ̄ in the range π/2 < θ̄ <

3π/2 and only for small values of h, Eq. (3.54) implies that

Pθ − Pw
Pw

≃ 4D(t)

Rw

cos θ̄, (3.94)

which in turn implies the relation

∂Pθ
∂t

∣∣∣∣
θ̄,H̄

≃ 4Ḋ(t)

Rw

Pw cos θ̄. (3.95)

Changing to scaled variables, choosing an angle in the range π/2 < θ̄ < 3π/2

and integrating with respect to h from h = hb to h = 0 yields the result

∫ 0

hb

dh
∂n

∂θ̄

∣∣∣∣
h,t

= −βn(0)(R1)[1−
4ḊPw

RwṖθ|T
cos θ̄]. (3.96)

Comparing this result to Eqs. (3.88) and (3.89) shows that the square bracket is a

correction to the flux through the contour h = hb to account for the the fact that the

contour moves in time.
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Substituting this result into Eq. (3.88) and carrying out the θ̄-integration

yields the damping rate

dD

dt
= − γ

1 + 2Nh/N
≃ −γ(1− 2Nh/N), (3.97)

where γ is the zero-diffusion damping rate in Eq. (3.71) and Nh/N ≃ 0.1.

3.8 Discussion

How general is the flux-driven damping mechanism discussed here? First note

that the mechanism is not limited to the case of an m = 1 mode. Subsequent to the

experimental discovery of the damping for an m=1 diocotron mode, similar damping

was observed for an m = 2 mode[2]. Again, algebraic damping began when the halo

particles reached the resonant layer, which for the m = 2 mode is well separated from

the wall.

Because the resonant layer for the m = 2 mode is well separated from the wall,

one may ask what plays the role of the wall in truncating particle orbits? Put another

way, what prevents the resonant particles from giving back angular momentum that

they have received from the mode? We believe that the answer is simply passage

of the particles through the “cat’s-eye” orbits in the resonant layer. Because of

transport, the particles cannot come back through these structures, and in the one-

way passage, the particles pick up significant angular momentum from the mode,

causing the damping. In principle, this mechanism also would apply for m = 3 and

higher, but the resonant layer is closer to and even inside the core for higher m modes,

and such modes typically suffer large ordinary Landau damping.
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In this chapter we do not treat the damping of the m = 2 mode in parallel

with the damping of the m=1 mode, because there are technical differences between

m = 1 and m = 2 cases. The m = 1 mode admits an analytic solution for a

general monotonically decreasing density profile, while the m = 2 mode does not.

The structure of the “cat’s-eye” orbits differ, since the potential goes to zero at the

resonant radius for an m = 1 mode (i.e. at the wall), but not for the m = 2 mode.

Also, the truncation of the orbits by the wall is different than simply passing through

the “cats eye orbits. The theory for the higher order modes must wait for a later

paper.

Broader than the flux-driven damping mechanism itself is the idea that all

Landau-type damping (or growth), that is, damping (or growth) due to interaction

with resonant particles, can be thought of as resulting from the action of the bare

electric field from the resonant particles back on the mode. The resonant particles

travel at the mode phase velocity so the electric field from the resonant particles

drives the mode resonantly. The idea is not limited to the case where the azimuthal

mode number is unity and the field from the resonant particles is uniform, but applies

for arbitrary mode number. This general idea is elaborated in Chapter 4.

Chapter 3, in full, is a reprint of the material as it appears in Physics of

Plasmas. C.Y. Chim, T.M. O’Neil, Physics of Plasmas 23, 072113 (2016). The

dissertation author was the primary investigator and author of this paper.



Chapter 4

A mechanistic interpretation of the

resonant wave-particle interaction

4.1 Abstract

This chapter provides a simple mechanistic interpretation of the resonant wave-

particle interaction of Landau. For the simple case of a Langmuir wave in a Vlasov

plasma, the non-resonant electrons satisfy an oscillator equation that is driven reso-

nantly by the bare electric field from the resonant electrons, and in the case of wave

damping, this complex driver field is of a phase to reduce the oscillation amplitude.

The wave-particle resonant interaction also occurs in waves governed by 2D E × B

drift dynamics, such as a diocotron wave. In this case, the bare electric field from the

resonant electrons causes E × B drift motion back in the core plasma, reducing the

amplitude of the wave.

117
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4.2 Introduction

This chapter provides a re-interpretation of the resonant wave-particle interac-

tion of Landau[30]. There are two halves to this interaction: first there is the influence

of the wave on the resonant particles and second the influence of the resonant particles

back on the wave. The mechanisms for the two halves of the interaction are usually de-

scribed differently. For the first half, the mechanism is obvious; the wave electric field

acts on the resonant particles and produces a perturbation in the resonant particle

charge density. The mechanism for the second half of the interaction is usually de-

scribed through Poisson’s equation, or equivalently, a dispersion relation that follows

from Poisson’s equation; the perturbed charge density from the resonant particles

makes a small correction to the dispersion relation, and this correction yields a small

imaginary frequency shift, which is the damping decrement for the wave. In contrast,

here we provide a mechanical interpretation of the second half of the interaction that

is similar to the interpretation of the first half.

Consider the simple case of a Langmuir wave that is excited in a collisionless,

Maxwellian plasma, with the wave phase velocity well out on the tail of the velocity

distribution. We will see that the wave induced displacement of the non-resonant elec-

trons, that is, the electrons in the main part of the Maxwellian, satisfies an oscillator

equation that is driven by the bare electric field from the perturbed charge density of

the resonant electrons. This field drives the oscillator resonantly, since the resonant

electrons travel at the phase velocity of the wave. From this perspective, the wave

damping simply results from the action of the driver field from the resonant electrons

back on the oscillator.

The interpretation does not specify the perturbed charge density of the reso-
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nant particles, so the interpretation applies equally well to the cases of linear Landau

damping and growth and to the case of a large amplitude wave with nonlinear, trapped

particle orbits. In general, the portion of the drive field that is 90◦ out of phase with

the oscillator produces damping or growth and the portion that is in phase produces

a frequency shift.

Because Landau’s analysis of the damping was rather formal and did not offer

a physical interpretation, other authors have provided physical interpretations[31, 32,

33, 34]. Here, we find a particularly simple interpretation by focusing on only half of

the wave-particle interaction: namely, the influence of the resonant particles back on

the wave.

One usually thinks of Landau resonances in connection with waves in a col-

lisionless plasma, that is, waves that are described by Vlasov dynamics, but such

resonances also occur for waves that are described by 2D E × B drift dynamics. A

simple example is a diocotron wave that is excited on a nonneutral plasma column

in a Penning-Malmberg trap[14, 15, 35, 23]. The analysis is simplest for the case

where the plasma column consists of a high-density core surrounded by a relatively

low-density halo. The diocotron wave can be thought of as a surface wave that propa-

gates azimuthally around the core. At some critical radius in the halo, the azimuthal

E × B drift rotation velocity of the halo fluid elements matches the phase velocity

of the wave potential, and the resonant interaction of the wave potential and fluid

elements gives rise to Landau damping.

In the standard analysis, the linearized continuity equation for the E × B

drift flow is combined with Poisson’s equation to obtain a dispersion relation. When

the resonant region is in the low density halo, the perturbed charge density of the
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resonant electrons makes a small correction to the dispersion relation, yielding a small

imaginary frequency shift, which is the wave damping decrement. To understand more

clearly how the resonant particles act back on the wave, we focus on the equation of

motion for the surface ripple on the plasma core. As we will see, the bare electric field

from the perturbed charge density of the resonant electrons acts back on the core,

causing E × B drifts that reduce the amplitude of the surface ripple, that is, damp

the wave. Again, we find a simple mechanistic description of the manner in which

the resonant electrons act back on the wave.

4.3 Langmuir Wave

First, we consider the case of a Langmuir wave that propagates in the x-

direction, writing the perturbed electric field in the form

δE(x, t) = δEk(t) exp(ikx) + c.c., (4.1)

where c.c. stands for the complex conjugate. It is convenient to write the field as the

sum

δEk(t) = δEnon-res
k (t) + δEres

k (t), (4.2)

where

δEnon-res
k (t) = −4πeδnnon-res

k (t)

ik
(4.3)

and δEres
k (t) = −4πeδnres

k (t)

ik
(4.4)
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are the fields produced by the perturbed charge densities of the non-resonant and

resonant electrons, −eδnnon-res
k (t) and −eδnres

k (t), following Guass’s Law. The non-

resonant electrons are those in the bulk of the velocity distribution, and the resonant

electrons are assumed to be well out on the tail of the distribution.

For the non-resonant electrons, it is convenient to introduce a displacement

δx(x, t) defined through the relation ∂δx(x, t)/∂t = δv, where δv(x, t) is the velocity

perturbation. The spatial Fourier transform of this relation is the equation ∂δxk/∂t =

δvk(t), which allows the continuity equation to be written in the form

0 =
∂nnon-res

k

∂t
+ iknδvk =

∂

∂t
[δnnon-res

k + iknδxk], (4.5)

where n is the unperturbed density of the non-resonant electrons. The last form yields

the solutions

δnnon-res
k (t) = −iknδxk(t) (4.6)

and δEnon-res
k (t) = 4πenδxk(t). (4.7)

The linearized Euler equation for the non-resonant electrons governed by fluid

theory takes the form

nm
∂δvk
∂t

= −neδEk − ikγTδnnon-res
k , (4.8)

where m is the electron mass, T is the electron temperature and γ has the value 3 for

a one-dimensional adiabatic compression[56]. By using the definition ∂δxk/∂t = δvk

and Eqs. (4.1), (4.6) and (4.7), Eq. (4.8) can be rewritten as the driven oscillator
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equation (
∂2

∂t2
+ ω2

p + 3k2v̄2
)
δxk(t) = − e

m
δEres

k (t), (4.9)

where ω2
p = 4πne2/m is the square of the plasma frequency, v̄2 = T/m is the square of

the thermal velocity, and the quantity k2v̄2/ω2
p = k2λ2D is assumed to be small. Here

λD is the Debye length. Physically, Eq. (4.9) states that the non-resonant electrons

moving in the wave field may be thought as an oscillator that is driven by the bare

electric field from the resonant electrons. Of course, Eq. (4.9) also can be obtained

from the coupled Vlasov and Poisson equation.

To understand the effect of the driver field on the amplitude of the oscillations,

we look for a solution to Eq. (4.9) of the form δxk(t) = δx̃k(t) exp(−iω0t), where

ω2
0 = ω2

p + 3k2v̄2 is the original Langmuir wave frequency squared and δx̃k(t) is

a slowly varying complex amplitude. This solution yields the expected form for a

Langmuir wave traveling in the positive x-direction. Since the resonant particles

travel at the wave phase velocity ω0/k, the driving field due to these particles can

be written as δEres
k (t) = δẼres

k (t) exp(−iω0t), where δẼ
res
k (t) again is a slowly varying

complex amplitude. Substituting these forms into Eq. (4.9) and neglecting |δ ¨̃xk/δx̃k|

compared to ω2
0, yields the reduced equation

−2iω0
dδx̃k
dt

= − e

m
δẼres

k (t). (4.10)

Thus, when the ratio δẼres
k /δx̃ is imaginary, the driver produces damping or growth,

and when the ratio is real the driver produces a frequency shift.

As noted in the introduction, this paper focuses on only half of the wave-

particle interaction, namely, the influence of the resonant particles back on the wave,
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and Eq. (4.10) solves that problem for the case of a Langmuir wave. The other

half of the problem determines the influence of the wave on the resonant particles,

that is, determines the perturbed charge density of the resonant particles. As a

simple application of Eq. (4.10), we use the well-known perturbed charge density for

resonant particles in a weakly damped, linear Langmuir wave[31]

δñres
k (t) = n

∫
res

dv
e

m

δẼk
i(kv − ω0)

∂f0
∂v

≃ n

∫
res

dv
e

m
πδ(kv − ω0)δẼk

∂f0
∂v

=
πne

m

δẼk(t)

k

∂f0
∂v

∣∣∣∣
ω0/k

, (4.11)

where f0(v) is the unperturbed velocity distribution, and the Plemelj formula has

been used in the second step[57].

Since ∂f0/∂v|ω0/k is first order in the small number of resonant particles, δẼk(t)

need only be accurate ot zero order, and we can use Eq. (4.7) to obtain the relation

δẼk(t) ≃ δẼnon-res
k (t) = 4πneδx̃k(t). (4.12)

Eq. (4.4) then yields the equation

− e

m
δẼres

k (t) = −πi
ω4
p

k2
∂f0
∂v

∣∣∣∣
ω0/k

δx̃k(t). (4.13)
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Eq. (4.10) then implies the oscillator damping rate

γk =
dδx̃k/dt

δx̃k(t)
=

π

2ω0

ω4
p

k2
∂f0
∂v

∣∣∣∣
ω0/k

= −
√
π

8

ωp
k3λ3D

exp[− 1

2k2λ2D
(1 + 3k2λ2D)], (4.14)

where the last form is the well-known form of the damping rate for a Maxwellian

velocity distribution[31].

Of course, the use of Eq. (4.10) is not limited to the case where the reso-

nant particle density perturbation is determined by the linearized Vlasov equation.

For a large amplitude wave where trapping of resonant particles in wave troughs

is important[58, 59], Eq. (4.10) can still be used to determine the influence of the

resonant particles back on the wave.

4.4 Diocotron Wave

To illustrate the wave-particle interaction that can occur in 2D E×B dynamics,

we consider a diocotron wave that is excited on a pure electron plasma column in a

Malmberg-Penning trap[14, 60, 23]. An analytic treatment is possible for the case

where the electron column consists of a uniform density central core surrounded by a

relatively low-density halo. Such a density profile often is said to be of the “top hat”

form. We assume that the unperturbed density has the constant value n(r) = nc out

to the radius r = Rc, and there drops abruptly to the much lower density n(R+
c ) = nh,

where the subscripts c and h refer to the core and halo, respectively. Consistent with

the standard trap configuration, we assume that the electron column is immersed in

a uniform, axial magnetic field B = Bẑ, where (r, θ, z) is a cylindrical coordinate
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system with the z-axis coincident with the axis of the trap.

Since the 2D E × B drift flow is incompressible and since the unperturbed

density profile for the core is uniform with an abrupt fall off at the surface, the

diocotron wave can be characterized by specifying the ripple on the surface of the

core. For a diocotron wave of azimuthal wave number m, the θ- and t-dependent

radial position of the core surface can be written as

rs(θ, t) = Rc +D(t) exp[i(mθ − ωmt)] + c.c., (4.15)

where ωm is the still-to-be-determined wave frequency and D(t) is a complex wave am-

plitude. The slow time dependence in the complex amplitude is due to the interaction

with the resonant particles.

The total time derivative of rs(θ, t) is given by the equation

drs(θ, t)

dt
=

[
∂

∂t
+ ωE(Rc)

∂

∂θ

]
rs(θ, t)

= {Ḋ(t) + i[mωE(Rc)− ωm]D(t)} exp[i(mθ − ωmt)] + c.c., (4.16)

where ωE(r) is the E×B drift rotation frequency at radius r.

Since the motion of the surface is due to E × B drifts caused by the mode

potential, we also can write the time derivative as the drift velocity

drs(θ, t)

dt
= − c

BRc

∂δϕ(Rc, θ, t)

∂θ
, (4.17)

where δϕ = δϕ(r, θ, t) is the mode potential.

The m-th Fourier components of the potential and the density perturbation
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are related by the Green’s function integral[23]

δϕm(r, t) = 4πe

∫ Rw

0

2πr′dr′Gm(r, r
′)δnm(r

′, t), (4.18)

where

Gm(r, r
′) =

1

4πm


rm

r′m

(
r′2m

R2m
w

− 1

)
for r < r′

r′m

rm

(
r2m

R2m
w

− 1

)
for r′ < r

(4.19)

is the Green’s function and −e is the electron charge. Here, Rw is the radius of

a conducting wall that bounds the confinement region, and the Green’s function

vanishes at r = Rw in accord with the boundary condition on the wave potential.

It is convenient to write the perturbed density as the sum of a term from

the non-resonant region and a term from the resonant region, δnnon-res
m (r, t) and

δnres
m (r, t), and to write the potential as the sum of the corresponding terms δϕm(r, t) =

δϕnon-res
m (r, t)+ δϕres

m (r, t). Because the unperturbed core density is uniform out to the

core surface and because the halo density is relatively low, the dominant contribution

to δnnon-res(r, θ, t) comes from the surface of the core and is given by the expression

δnnon-res(r, θ, t) = −D(t) exp[i(mθ − ωmt)]
∂n

∂r
+ c.c.

= D(t) exp[i(mθ − ωmt)](nc − nh)δ(r −Rc) + c.c., (4.20)

where δ(r −Rc) is a delta function.
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The Green’s function integral then implies the non-resonant potential

δϕnon-res(Rc, θ, t) = 8π2eRc(nc − nh)Gm(Rc, Rc)D(t) exp[i(mθ − ωmt)] + c.c.

= −2πe

m
Rc(nc − nh)

(
1− R2m

c

R2m
w

)
D(t) exp[i(mθ − ωmt)] + c.c..

(4.21)

Combining Eqs. (4.16) and (4.17) and substituting Eq. (4.21) for the non-

resonant potential yields the relation

− c

BRc

∂δϕres(Rc, θ, t)

∂θ
+

2iπec(nc − nh)

B

(
1− R2m

c

R2m
w

)
D(t) exp[i(mθ − ωmt)] + c.c.

= {Ḋ(t) + i[mωE(Rc)− ωm]D(t)} exp[i(mθ − ωmt)] + c.c..

(4.22)

It is instructive to examine Eq. (4.22) in the limit where there is no resonance,

and δϕres and Ḋ(t) are zero. The equation then implies the dispersion relation for a

diocotron wave on a “top-hat” density profile

ωm −mωE(Rc) = −ωE(Rc)(1−
nh
nc

)(1− R2m
c

R2m
w

), (4.23)

using that fact that ωE(Rc) = 2πecnc/B at the surface of the core. This dispersion

relation is well-known in the limit nh = 0.[14, 15] By using this dispersion relation,

Eq. (4.22) reduces to the form

− c

BRc

∂δϕres

∂θ
= Ḋ(t) exp[i(mθ − ωmt)] + c.c.. (4.24)
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Thus, we obtain the rate of change of the complex wave amplitude

Ḋ(t) = −
∫ 2π

0

dθ

2π

c

BRc

∂δϕres(Rc, θ, t)

∂θ
exp[−i(mθ − ωmt)]

= − imc

BRc

δϕres
m (Rc, t) exp[iωmt]. (4.25)

Physically, the electric field from the resonant particles acts back on the core causing

E ×B drift motion, and this motion produces a slow rate of change of the complex

wave amplitude.

Since the resonant particles travel at the wave phase speed, the perturbed den-

sity δnres
m (Rc, t) can be written in the form δñres

m (Rc, t) exp[−iωmt], where δñres
m (Rc, t)

is slowly varying. Likewise, the perturbed potential δϕres
m (Rc, t) can be written in the

form δϕ̃res
m (Rc, t)e

−iωmt, where δϕ̃res
m (Rc, t) is slowly varying. Eqs. (4.18) and (4.19)

then imply the relationship

δϕ̃res
m (Rc, t) =

e

m

∫
res

2πr′dr′
Rm
c

r′m

(
r′2m

R2m
w

− 1

)
δñres

m (r′, t), (4.26)

and Eq. (4.25) reduces to the result

Ḋ(t) = − icm

BRc

δϕ̃res
m (Rc, t). (4.27)

To obtain Eq. (4.25), we projected out the m-th Fourier component of Eq.

(4.24), but one may worry about other Fourier components in the potential δϕres(r, θ, t).

When the perturbed resonant particle density, δnres(r, θ, t), is obtained by linear the-

ory, as is the case in linear Landau damping, there is only the m-th Fourier compo-

nent, so there is no issue. However, when the resonant particle dynamics is nonlinear,
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say, when particle trapping is involved, higher harmonics typically are present in

δnres(r, θ, t) and correspondingly in δϕres(r, θ, t). Why are these harmonic terms not

balanced by such terms on the Right Hand Side of Eq. (4.24)? The reason is that

we neglected small harmonic terms in the surface ripple of Eq. (4.15). These higher

harmonic ripples are indeed small because the higher harmonics in δϕres(r, θ, t) do

not drive the core surface resonantly. One can easily show that the harmonic ripple

amplitudes are smaller than D(t) by the factor nh/nc ≪ 1.

As a simple application of Eq. (4.27), we evaluate δϕ̃res
m (Rc, t) for the case

of a diocotron mode that experiences a linear Landau resonance in the low-density

halo[18, 23]. We work only to first order in the small quantity nh/nc ≪ 1. The reso-

nant radius then need only be calculated to zero order in nh/nc. To this order, the

E ×B-drift rotation frequency in the halo region (r > Rc) is ωE(r) = ωE(Rc)R
2
c/r

2.

Substituting this expression and dispersion relation (4.23) into the resonance condi-

tion ωm = mωE(rres) and dropping first order terms in nh/nc yields the expression

for the resonant radius

R2
c

r2res
= 1− 1

m

(
1− R2m

c

R2m
w

)
. (4.28)

Note that rres > Rc for all m.

From the linearized continuity equation and the Plemelj formula[57], one finds

the expression for the perturbed density at the resonance

δñres
m (r, t) =

mc

Br

∂n

∂r
δϕ̃non-res

m (r, t)iπδ[ωm −mωE(r)], (4.29)

where δϕ̃non-res
m (r, t) is the potential due to the perturbed charge density on the surface

of the core. Here we ignore δϕ̃res
m (r, t) set up by the fewer resonant particles, similar
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to the case in Section 4.3. For r > Rc, this latter potential can be written as

δϕ̃non-res
m (r, t) = δϕ̃non-res

m (Rc, t)
Gm(r, Rc)

Gm(Rc, Rc)
, (4.30)

where δϕ̃non-res
m (Rc, t) is easily extracted from Eq. (4.21). Substituting Eqs. (4.29)

and (4.30) into Eq. (4.26) and evaluating the Green’s function with Eq. (4.19) yields

the result

δϕ̃res
m (Rc, t) =

(2πe)2

m

cRc

B

R2m
c

r2mres

(
1− r2mres

R2m
w

)2
n′(rres)

m|ω′
E(rres)|

iπD(t)nc. (4.31)

Substituting into Eq. (4.27) then yields the well-known damping rate[18, 23]

Ḋ(t)

D(t)
= ωE(Rc)

n′(rres)Rc

nc

π

2m

(
Rc

rres

)2m−3(
1− r2mres

R2m
w

)2

. (4.32)

The case of an m = 1 diocotron wave provides a particularly clear illustration

of this mechanical approach to the wave-particle interaction[4]. First, note that the

m = 1 wave is special in that an analytic description of the wave is not limited ot

the case of a “top-hat” density profile, but also is possible for any monotonically

decreasing density profile, n(r), that vanishes at the conducting wall. For many years

it was thought that there can be no resonant wave-particle resonance for the m = 1

wave since the resonant radius is at the wall, and the unperturbed density is zero at

the wall. However, recent experiments have observed a novel algebraic damping of

the m = 1 wave when transport sweeps a low density halo of particles out from a

central core to the wall[2]. The damping begins when the halo reaches the wall and

is thought to be due to a nonlinear wave particle interaction in the region of the wall.
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In the absence of a wave-particle interaction, the self-consistent density per-

turbation and wave potential for the m = 1 wave are given by the expressions

δnnon-res(r, θ, t) = −∂n
∂r

[D exp[i(θ − ω1t)] + c.c.]

= −∂n
∂r
A cos(θ − ω1t− α) (4.33)

and

δϕnon-res(r, θ, t) = −rB
c
[−ω1 + ωE(r)]A cos(θ − ω1t− α). (4.34)

Here, we have set D = (A/2) exp(−iα), where A and α are real. By using the Green’s

function integral in Eq. (4.18) one can easily show that the density perturbation and

potential are self-consistent, that is, substituting the density perturbation into the

Green’s function integral yields potential. The wave frequency is given by ω1 =

ωE(Rw), so the wave potential vanishes at the conducting wall.

Physically, such a density perturbation results when the plasma column is

displaced off the trap axis by the amount A in the instantaneous direction θ = ω1t+

α. The displaced column produces an image in the conducting wall, and for small

displacement (i.e. A ≪ Rw) the image is well outside the wall, producing an image

electric field that is nearly uniform in the region of the column. The uniform field

produces a uniform E×B drift velocity of the column transverse to the instantaneous

displacement off axis, and in turn this produces a rotation of the column around the

trap axis at the mode frequency ω1. In the wave potential, the term proportional to

ω1 is the potential due to the uniform image electric field, and the term proportional

to ωE(r) is the correction to the radial space charge potential due the shift of the

column off axis.
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We postulate that the non-resonant density perturbation still can be described

as a displacement of the column off the trap axis even when the potential due to the

resonant electrons acts back on the column. The reason for this simplification is

easy to understand. The resonant particles are near the wall, so the field from these

particles in the non-resonant region is a vacuum field, and the dipole component of

such a field is uniform, as will be explained shortly. Thus, the field due to the resonant

particles simply produces an increment to the uniform E×B drift motion produced

by the non-resonant potential, and we will see that the increment can be accomodated

simply by allowing a slow time dependence in A(t) and α(t).

Formally, the condition that the postulate be satisfied is that continuity equa-

tion in the non-resonant region,

[
∂

∂t
+ iωE(r)

]
δnnon-res

1 (r, t) =
ic

Br
[δϕnon-res

1 (r, t) + δϕres
1 (r, t)]

∂n

∂r
, (4.35)

be satisfied when the Fourier components δϕnon-res
1 (r, t) and δnnon-res

1 (r, t) are evalu-

ated using the functional forms for the potential and density perturbation in Eqs.

(4.33) and (4.34), allowing only that D, or equivalently A and α, are time-dependent.

Substituting the Fourier components yields the equation

Ȧ(t)− iA(t)α̇(t) = 2Ḋ(t)eiα(t) =
−2ic

Br
δϕres

1 (r, t)eiω1t+iα(t). (4.36)

Since the Left Hand Side of the equation is independent of r it is necessary that the

Right Hand Side be independent of r, or equivalently that δϕres
1 (r, t) be proportional
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to r, and the Green’s function solution,

δϕres
1 (r, t) = −er

∫
res

2πr′dr′
(
1− r′2m

R2m
w

)
δnres

1 (r, t), (4.37)

does imply the required proportionality. In choosing the correct form of the Green’s

function from Eq. (4.18), we used the fact that r < r′ in the non-resonant region.

Proper choice of the time-dependence in A(t) and α(t) then allows both the real and

imaginary parts of the equation to be satisfied.

Since δϕres(r, θ, t) is a vacuum potential in the non-resonant region, the dipole

portion of the potential can be written in the form

δϕres(r, θ, t) = −δEres
x (t)r cos(θ − ω1t− α)− δEres

y (t)r sin(θ − ω1t− α), (4.38)

where a rotating (x, y) coordinate system has been introduced, with the x-axis di-

rected along the instantaneous displacement of the plasma column. The Fourier

component of this expression is simply

δϕres
1 (r, t) =

[
−δEres

x (t)r

2
+ i

δEres
y (t)r

2

]
exp[−i(ω1t+ α)], (4.39)

so the real and imaginary parts of Eq. (4.36) take the form

Ȧ(t) =
cδEres

y (t)

B
, (4.40)

α̇(t)A(t) = ∆ω1A(t) = −cδE
res
x (t)

B
. (4.41)

Here, we have identified α̇ ≡ ∆ω1 as a frequency shift. Physically, the uniform

field that is transverse to the instantaneous displacement of the column (i.e., δEres
y )
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produces an E × B drift motion of the plasma column parallel to the displacement,

that is a damping or growth of the wave amplitude, and the component that is parallel

to the displacement (i.e. δEres
x ) produces an increment to the rotation velocity of the

column around the trap-axis, that is, a wave frequency shift.

Chapter 4, in full, is a reprint of the material as it appears in Physics of

Plasmas. C.Y. Chim, T.M. O’Neil, Physics of Plasmas 23, 050801 (2016). The

dissertation author was the primary investigator and author of this paper.



Appendix A

Evaluation of integrals Λ1 and Λ2

In this appendix, we evaluate the integrals

Λ1(κ̄) =

∫ ∞

0

dσ

σ

∫ ∞

0

η3dηf 2
1 (
κ̄

σ3
, η)e−σ

2/2, (A.1)

Λ2(κ̄) =

∫ ∞

0

dσσ3

∫ ∞

0

ηdηf 2
2 (
κ̄

σ3
, η)e−σ

2/2, (A.2)

where

f1(κ, η) =

∫ ∞

−∞

cos(κξ)dξ

[η2 + ζ2(ξ)]3/2
, (A.3)

f2(κ, η) =

∫ ∞

−∞

cos(κξ)dξ

[η2 + ζ2(ξ)]3/2
(1− 3η2

2[η2 + ζ2(ξ)]
). (A.4)

Here, ζ(ξ) satisfies the differential equation

(
dζ

dξ
)2 +

1√
η2 + ζ2(ξ)

= 1, (A.5)
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where ξ = is chosen so that ζ2(ξ) is even in ξ. This is the case when ζ2(0) =

max(0, 1− η2). Also, note that in Eqs. (A.3) and (A.4) κ stands in for κ = κ̄/σ3.

For large κ̄, the integrands in Eqs. (A.3) and (A.4) involve the product of

a rapidly oscillating function and a slowly varying function, and efficient evaluation

of such integrals can be effected through analytic continuation. Following the ear-

lier work of O’Neil and Hjorth[9], we define x =
√
η2 + ζ2(ξ), which satisfies the

differential equation

dx

dξ
=
i
√
x− η

√
x+ η

√
x− 1

x
√
−x

, (A.6)

where x(ξ = 0) = max(η, 1). In the square roots of Eq. (A.6), the branch cut for any

function
√
w(x) is taken along argw(x) = 0. The Right Hand Side of Eq. (A.6) then

has branch cuts for x < −η, 0 < x < min(η, 1) and x > max(η, 1).

We first consider the case where η < 1, that is, where there is reflection. The

case of no reflection (η > 1) follows similarly. For η < 1, the branch cuts are indicated

by the thick solid lines in Fig. A.1(b). As ξ moves from −∞ to ∞ along the dashed

contour in Fig. A.1(a), x(ξ) moves along the dashed contour in Fig. A.1(b), reaching

the turning point x = 1 at ξ = 0, i.e. x(0) = 1. Because x(ξ) is even in ξ, the

integrals in Eqs. (A.3) and (A.4) can be rewritten as

f1(κ, η) =

∫
C

exp(iκξ)dξ

x3(ξ)
, (A.7)

f2(κ, η) =

∫
C

exp(iκξ)dξ

x3(ξ)
[1− η2

x2(ξ)
]. (A.8)

The goal here is to analytically continue the ξ-contour so that the integrands

themselves exhibit the exponentially small value of the integrands, so we push the
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Figure A.1: Path (dashed curve) of the original contour in ξ-plane (a) and
x-plane (b). Branch cuts are denoted by thick solid lines, and in this figure,
η = 0.5.

ξ-contour toward positive imaginary values. The deformation can continue until the

x(ξ) contour collides with the branch cut ending at x = η as shown in Figs. A.2(a)

and A.2(b).

During the deformation, the turning point moves from x = 1 to x = η, and

ξ-image of the turning point moves from ξ = 0 to

ξ = ig(η) = i

∫ 1

η

x2/3dx
√
1− x

√
x2 − η2

, (A.9)

where use has been made of Eq. (A.6). The two points around which the x-contour

loop are the images of x = 0 approached from opposite sides of the branch cut between

x = 0 and x = η. From Eq. (A.6), we see that the coordinates of these two points in

the complex ξ-plane are ξ = ig(η)± r(η), where

r(η) =

∫ η

0

x2/3dx
√
1− x

√
η2 − x2

. (A.10)
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Figure A.2: Path (dashed curve) of the deformed contour in ξ-plane (a)
and x-plane (b). Branch cuts are denoted by thick solid lines, and in this
figure, η = 0.5.

There is a branch cut between the two points in the function x(ξ).

Since the singularities of the integrands in Eqs. (A.7) and (A.8) involve more

than just isolated poles, the integrals cannot be expressed as the sum of residues.

Nevertheless, for sufficiently large κ, one can see that the integrals are of order

exp[−g(η)κ], that is, one obtains the asymptotic forms fj(κ, η) = hj(κ, η) exp[−g(η)κ]

quoted in Eqs. (2.35) and (2.36) of Section 2.3. Here, the quantities hj(κ, η) are nei-

ther exponentially small nor large, and for small η are given by[9] hj(κ, η) ≃ 8πκ/9.

The integrals also are evaluated by numerically carrying out the ξ-integral

along the deformed contour in Fig. A.2(a). Fig. (2.1) of Section 2.3 shows a compar-

ison of the numerical and asymptotic evaluations of f1(κ, η = 0) = f2(κ, η = 0).

Returning to an evaluation of integrals (A.3) and (A.4), we first note that

g(η) is an increasing function of η. Thus, for sufficiently large values of κ̄, only

small values of η contribute to the integrals, and we may use the approximation

hj(κ, η) ≃ hj(κ, 0) = 8πκ/9, or hj(κ̄/σ
3, η) ≃ hj(κ, 0) = 8πκ̄/(9σ3). Also, for small
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Figure A.3: Curve fitting of g(η) against η, showing that g(η) − g(0) ∼
O(η3/2).

values of η, one can see by curve fitting that g(η) ≃ π/2+λη3/2, where λ = 0.874 (see

Fig. A.3). The integrations over η can then be carried out in Eqs. (A.3) and (A.4)

yielding the integrals

Λ1(κ̄) = (
8π

9
)2

κ̄2

(2κ̄λ)8/3
· 2
3
Γ(

8

3
)

∫ ∞

0

dσσe−σ
2/2e−πκ̄/σ

3

, (A.11)

Λ2(κ̄) = (
8π

9
)2

κ̄2

(2κ̄λ)4/3
· 2
3
Γ(

4

3
)

∫ ∞

0

dσσe−σ
2/2e−πκ̄/σ

3

. (A.12)

The σ-integrals in these two equations are identical and involve the product

of an exponentially decreasing function, exp(−σ2/2), and an exponentially increasing

function, exp(−πκ̄/σ3). Evaluating the integrals by the saddle point method yields

the large κ̄ asymptotic formulae

Λ1(κ̄) = 3.10κ̄−7/15e−5(3πκ̄)2/5/6, (A.13)

Λ2(κ̄) = 3.87κ̄13/15e−5(3πκ̄)2/5/6. (A.14)

Numerical evaluations of Λ1(κ̄) and Λ2(κ̄) have been carried out for a series of
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κ̄ values. At each of these values, the quantities hj(κ̄/σ
3, η) are evaluated for an array

of (σ, η) values using the analytic continuation described earlier. The integrands are

peaked near some values (σ0, η0), and the (σ, η) integrands are evaluated by choosing

(σ, η) values near the peak and smoothly interpolating the integrand between these

points. The results of the integration are given for a series of κ̄ values in Table

(A.1) and (A.2). Also, Figs. (A.4) and (A.5) show a comparison of the numerical

evaluations (dots) and the asymptotic formulae (solid curves).

Table A.1: Numerically integrated values of Λ1(κ̄) for different values of κ̄

κ̄ Λ1(κ̄) κ̄ Λ1(κ̄)
5 0.222 200 5.06× 10−8

10 5.06× 10−2 300 6.92× 10−10

20 7.71× 10−3 500 1.29× 10−11

50 2.41× 10−4 700 2.89× 10−13

100 5.95× 10−6 1000 3.15× 10−15

Table A.2: Numerically integrated values of Λ2(κ̄) for different values of κ̄

κ̄ Λ2(κ̄) κ̄ Λ2(κ̄)
0.01 3.250 20 2.837× 10−1

0.05 3.230 50 3.074× 10−2

0.1 3.201 100 2.338× 10−3

0.7 2.850 200 4.989× 10−5

2 2.419 350 1.685× 10−6

6 1.251 500 4.195× 10−8

10 7.523× 10−1

We can compare our results with previous work. If we consider equiparti-

tion of a strongly magnetized single-species plasma, where n = n1 and n2 = 0, T⊥1

equilibrates with T∥ following the rate equation

dT⊥1

dt
= (T∥ − T⊥1)n̄1b̄

2v̄11I(κ̄11), (A.15)
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Figure A.4: Numerically integrated values of Λ1(κ̄) (dots) and its asymp-
totic graph (red line).

where I(κ̄11) =
√
2πΛ1(κ̄11)/8 from Eqn. (2.63). The function I(κ̄) was evaluated

in the work of O’Neil and Hjorth[9] and Glinksy et. al.[8]. In Fig. (A.6), numerical

values of I(κ̄) in our work are plotted as points together with values obtained by

Glinsky et. al. using Monte Carlo simulations. The different sets of values follow

very close trends. Furthermore, in the limit of large κ̄, O’Neil and Hjorth obtained

an asymptotic formula for I(κ̄)

I(κ̄) = 0.47κ̄−1/5 exp[−5

6
(3πκ̄)2/5], (A.16)

while the asymptotic formula from Glinsky et. al. is

I(κ̄) = (1.83κ̄−7/15 + 20.9κ̄−11/15 + 0.347κ̄−13/15 + 87.8κ̄−15/15 + 6.68κ̄−17/15)

· exp[−5

6
(3πκ̄)2/5]. (A.17)
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Figure A.5: Numerically integrated values of Λ2(κ̄) (dots) and its asymp-
totic graph (red line).

From Eqn. (A.13), our version is

I(κ̄) = 0.97κ̄−7/15 exp[−5

6
(3πκ̄)2/5]. (A.18)

Our asymptotic formula is an improved version of the work of O’Neil and Hjorth.

We approximate g(η) with η3/2 as the lowest-order non-constant term, which is more

accurate than η2 in the work of O’Neil and Hjorth. However, we believe the result

from Glinsky et. al. is even better, since their work investigated the cyclotron motion

in much greater detail. In the same Fig. (A.6), we plot the graphs of the three asymp-

totic expressions together with the points of numerically integrated values mentioned

above. All the plotted graphs and data points show the similar exponential decrease

of I(κ̄) with increasing κ̄.
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Figure A.6: Numerical values and asymptotic graphs of I(κ̄). Solid tri-
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values calculated by Glinsky et. al. using two different sets of Monte Carlo
simulations[8]. The solid line is the graph of our asymptotic expressions.
The dashed and dot-dashed curves corresponds to the asymptotic expres-
sions from O’Neil and Hjorth and Glinsky et. al. respectively.



Appendix B

Numerical solution for diffusive

broadening

This appendix describes a numerical solution of the transport equation (3.51)

using an eigenfunction expansion. This solution follows a similar approach in the

work of Dubin and Tsidulko[61].

h > hc

0 < h < hc

h < 0

0.0 0.2 0.4 0.6 0.8 1.0
-0.01

0.00
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0.03

Θ�H2ΠL

h

Figure B.1: Illustration of the region for which Eq. (3.51) is solved. The
black solid curve is the scrape-off layer. The blue dot-dashed curve is the
critical contour h = hc. The orange dotted curve is the contour h = 0.
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Fig. (B.1) illustrates the region of the solution of Eq. (3.51). In this figure,

we set p = ∆p = 10−2 to be the scrape-off layer. The scrape-off layer is the black

solid contour h = ∆p cos θ̄, with smaller term (∆p)2 dropped. The critical contour,

which is the blue dot-dashed curve, is h = hc = ∆p. The orange dotted curve is the

contour h = 0.

The region for which n(θ̄, h) is solved is bounded in the figure by the scrape-off

layer and the straight lines θ̄ = 0 and θ̄ = 2π. It can be divided into three region

of interests, which are h > hc, 0 < h < hc and h < 0. The three regions are to be

explained in the paragraphs that follow. Meanwhile three boundary conditions of Eq.

(3.51) will be introduced in the explanation.

The first region, h > hc, is taken to extend to infinite h, since we are interested

in the regime h < hb ≪ 1 and the non-resonant region is far from the wall. At large

h, the density is equal to that at the edge of the non-resonant region. Therefore

lim
h→∞

n(θ̄, h) = n(0)(R1), (B.1)

which is our first boundary condition.

Our second boundary condition is the periodic boundary condition f(θ̄ =

0, h) = f(θ̄ = 2π, h), as θ̄ = 0 and θ̄ = 2π refers to the same physical point. It only

applies in the region h > hc, which is the only region that can access θ̄ = 0 and

θ̄ = 2π.

The second region, 0 < h < hc, is the region of open orbits in contact with the

scrape-off layer, where the density must be zero, i.e.

n(θ̄, h = ∆p cos θ̄) = 0. (B.2)
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In this region, the range of θ̄ that a particle can access is bounded by the scrape-off

layer.

The third region, h < 0, differs from the first and second region in that the

contours are closed in this region. We continue to apply Eq. (3.51) in this region, and

use the same zero-density boundary h = ∆p cos θ̄ as in the second region. However

in Eq. (3.51), the factor ∂h/∂p takes p = p−(θ̄, h) from Eq. (3.54) when p(θ̄, h) is

expressed, and misses the p = p+(θ̄) part of the closed contour for h < 0. Fortunately,

the error is negligible because this region is dynamically inaccessible to the particles,

as discussed in the small-diffusion condition (3.82) in Section 3.6. There are literally

no particles for h < 0, and thus n is vanishingly small in this region.

Since Eq. (3.51) is linear and the boundary conditions are homogeneous, the

density may be normalized as f ≡ n/n(0)(R1) and the equation rewritten as

∂f

∂θ̄

∣∣∣∣
h

=
∂

∂h
[βf − δ

∂h

∂p

∣∣∣∣
θ̄

∂f

∂h

∣∣∣∣
θ̄

]. (B.3)

In order to fit the boundary condition more easily, we change variables from

(θ̄, h) to (θ̄, x), where x ≡ h−∆p cos θ̄. Fig. (B.2) shows the region of solution in the

(θ̄, x) space. The black solid line is the scrape-off layer. The blue dot-dashed curve is

the critical contour h = hc and the orange dotted curve is the contour h = 0. As we

see from the figure, the region of solution in Fig. (B.1) is reshaped to the semi-infinite

rectangular region in Fig. (B.2). The boundaries of the region of solution are lines

x = 0, θ̄ = 0, and θ̄ = 2π, and the region extends to infinite x. As discussed when

the region was described in (θ̄, h)-space, the solution is solved considering the three

subregions h > hc, 0 < h < hc and h < 0 as a whole, although we expect the value of

f in the dynamically inaccessible region h < 0 to be vanishingly small.
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Figure B.2: Illustration of the region of solution in (θ̄, x)-space. The black
solid line is the scrape-off layer. The blue dot-dashed curve is the critical
contour h = hc. The orange dotted curve is the contour h = 0.

In this new set of variables and the normalized density, the first boundary

condition, which is the large-h limit (B.1), is expressed as

lim
x→∞

f = 1. (B.4)

The second boundary condition, which is the periodic boundary condition, is rephrased

as f(θ̄ = 0, x) = f(θ̄ = 2π, x). It applies only to the region h > hc, the same as when

the region was described in terms of (θ̄, h). Since the region h > hc reaches all values

of x > 0, the periodic boundary condition applies for all x > 0.

More importantly, at the scrape-off layer, the third boundary condition (B.2)

is now expressed as

f(θ̄, x = 0) = 0, (B.5)

which is much easier to work with as the scrape-off layer is straightened to be the

horizontal line x = 0, and θ̄-dependence is avoided.
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By using the relations ∂h|θ̄ = (∂x/∂h)∂x|θ̄ and ∂θ̄|h = (∂x/∂θ̄)∂x|θ̄ + ∂θ̄|x Eq.

(B.3) is rewritten in the form

∂f

∂θ̄

∣∣∣∣
x

+∆p sin θ̄
∂f

∂x

∣∣∣∣
θ̄

=
∂

∂x
[βf − δ · η(x, θ̄)∂f

∂x

∣∣∣∣
θ̄

]. (B.6)

Here η(θ̄, x) ≡ ∂h/∂p is explicitly expressed as

η(θ̄, x) = −
√

cos2 θ̄ + 4h(θ̄, x) (B.7)

using the relations (3.48) and (3.54). The fact that we are interested in the region

0 < h < hb ≪ 1 permits us to remove the x-dependence in η by neglecting h and thus

approximating

η(θ̄, x) ≃ η(θ̄) ≡ −| cos θ̄|. (B.8)

Since f(θ̄, x) and η(θ̄) are both periodic in θ̄ for all values of x, they may be

expressed as the Fourier Series

f(θ̄, x) =
+∞∑

µ=−∞

fµ(x)e
iµθ̄, (B.9)

η(θ̄) =
+∞∑

ν=−∞

ηνe
iνθ̄, (B.10)

where ην = −
∫ 2π

0
dθ̄| cos(θ̄)|e−iνθ̄/(2π). Note that f−µ = f ∗

µ and η−ν = η∗ν as f and η

are real functions. In practice, both series must be truncated when solving numerically

for [i.e. fµ = 0 if |µ| > Nf , and ην = 0 if |ν| > Nη]. Nf and Nη are positive integers

chosen to be sufficiently large to resolve η(θ̄) and to obtain a converged solution of

f(θ̄, x).
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Substituting Fourier expansions (B.9) and (B.10) into Eq. (B.6), using the

relation sin θ̄ = (eiθ̄ − e−iθ̄)/(2i) and equating coefficients of eiµθ̄ on both sides yields

the differential equations

iµfµ(x) + i
∆p

2
[f ′
µ+1(x)− f ′

µ−1(x)] = βf ′
µ(x)− δ

Nη∑
ν=−Nη

η−νf
′′
µ+ν(x). (B.11)

This is a set of 2Nf +1 linear coupled ODEs, as the subscript µ counts from −Nf to

Nf . Since the coefficients are constants, we seek a solution of the form fµ(x) = Cµe
−sx.

Substituting this form of solution into Eq. (B.11) yields a set of eigenvalue equations

iµCµ − is
∆p

2
[Cµ+1 − Cµ−1] = −sβCµ + s2δ

Nη∑
ν=−Nη

η−νCµ+ν , (B.12)

with s as the eigenvalue and Cµ as the µ-th element of the eigenvector. By inspection,

there is an obvious eigenvalue s = 0 with the coefficient Cµ = δµ0 as the eigenvector.

This eigenvector corresponds to the a constant eigenfunction fµ(x) = δµ0, and we

set C0 to be 1 so as to satisfy Eq. (B.4) for large x. Other physically admissible

eigenvalues are the ones with positive real parts, denoted as {sr} with the eigenvector

{Cµ,r}, since the eigenfunctions die out in the form of e−Re[sr]xe−iIm[sr]x when x is

large. The subscript r refers to the r-th eigenvalue and eigenvector.

Both the eigenvalues and the eigenvectors are obtained numerically. It is

noteworthy that in the numerical solutions, the eigenvalue with the smallest positive

real part is equal to πβ/(2δ), which is the reciprocal of the diffusive broadening

scale (∆h)1 in Eq. (3.81). Its eigenfunction, which then has the form e−x/(∆h)1 , is

responsible for the change of density over that broadening region. Other eigenvalues

are not as recognizable though, and the respective eigenfunctions superpose, together
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with that for the scale (∆h)1, to produce the delicate density structure around h = hc

in Fig. (3.6).

The total solution is a superposition of all the eigenfunctions

f(θ̄, x) = 1 +
∑
r

Nf∑
µ=−Nf

ArCµ,re
−srxeiµθ̄, (B.13)

where Ar is the coefficient of the r-th eigenfunction.

We have to satisfy the boundary condition at the scrape-off layer, therefore by

following Eq. (B.5), we obtain the condition

0 = f(θ̄, x = 0) = 1 +
∑
r

Nf∑
µ=−Nf

ArCµ,re
iµθ̄. (B.14)

Collecting coefficients for every Fourier component yields the set of coupled equations

0 = δµ0 +
∑
r

ArCµ,r (B.15)

from which {Ar} is solved numerically.
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