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Abstract The air-bearing shear force in the head–disk

interface (HDI) of hard disk drives is a dominant factor

determining the motion and instability of the lubricant

layer, which plays an important role in drive reliability. In

this communication, an analytical formula, which is appli-

cable to the flow of an arbitrarily rarefied gas in the HDI and

is more general than that based on the first-order slip theory,

is presented based on the Boltzmann equation. When a hard

sphere model is used for the air molecules, the formula

reduces to that based on the first-order slip theory, and it

thus validates previous studies based on the latter formula.

Keywords Air bearings � Head-disk interface �
Shear force � HDD reliability

The head–disk interface (HDI), as shown in Fig. 1, is the

region between a slider and a disk in hard disk drives. The

slider, carrying a read–write transducer at the trailing edge,

flies over the disk which rotates and has a local speed U

around 10–30 m/s. A specifically designed pattern called

the air-bearing surface (ABS) exists on the slider’s surface

facing the disk. In the HDI, the flow of air, setup by the

moving disk and compressed by the ABS, creates pressure

that balances the suspension load on the slider, and it

serves as a cushion layer to stabilize the motion of the

slider and reduce contact between the slider and the disk.

To further reduce the possibility of the slider’s impact on

the disk, and mitigate its effect when contact occurs, a

layer of lubricant, with thickness of about 1 nm, is coated

on the disk. In modern hard disk drives, the minimum

flying height of the slider has been reduced to less than

5 nm. This leads to strong interactions between the slider,

the air flow, and the lubricant. Experiments have shown

that the lubricant, due to its mobility, deforms and creates

specific patterns due to these interactions [1, 2]. It has also

been experimentally observed that the lubricant in some

cases transfers from the disk to the slider [3], which

decreases the effect of the lubricant as a protecting layer

for the disk and may alter the performance of the slider.

Thus, despite its very small thickness, the lubricant layer

plays an important role in the reliability of hard disk drives

[4].

Although the thickness of the lubricant layer is often less

than 1 nm, experiments have shown that it can still be

modeled using continuum theory with a modification to its

viscosity [5]. Inspired by this finding, many papers, mostly

numerical analyses, have been published on the deforma-

tion and instability of the lubricant layer in the framework

of continuum theory [3, 4, 6–10]. It is generally agreed

[4, 8, 10] that the shear force induced by the air flow is a

dominant factor determining the lubricant dynamics.

However, in all of these studies, the shear force was rep-

resented by either an oversimplified model [4, 6] that

contains only the Couette flow component or a model

based on the first-order slip theory [8]. Wu [8] compared

results based on these two models and showed that the

approach to modeling the shear force is essential to the

analysis of lubricant dynamics. Since the gap spacing

between the slider and the disk, h, changes from several

nanometers at the trailing edge to near 1 lm, the Knudsen

number, defined as the ratio of h to the mean free path k,

covers a wide range of values from larger than 10 to less

than 0.1 based on the value k = 65 nm for air. In view of
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the fact that the first-order slip theory is only applicable for

Kn \ 0.1 [11], it can not be expected that a shear model

based on the first-order slip theory would be applicable in

the HDI.

Although Kang et al. [12] numerically studied the shear

stress in a HDI flow, their database for the shear force was

not widely available, and Wu [8] instead resorted to a model

based on the first-order slip theory. It has been demonstrated

that the shear force based on this model compares well with

numerical results from a Direct Simulation Monte Carlo

(DSMC) analysis for several ABS designs [13]. This,

however, does not guarantee that the model Wu used uni-

formly holds for all ABS designs. The underlying reason

why the numerical results and the results based on the first-

order slip theory are close to each other is therefore not yet

clear. Thus, given the importance of the shear force in

lubricant dynamics, a further study of it is needed. In this

communication, we present an analytical formula for the

shear force induced by the air flow in the HDI. This formula

reduces to that based on the first-order slip theory when the

hard sphere model for air molecules is used, and it thus

validates previous studies that rely on the latter formula.

In the HDI, the shear forces on the slider and the disk are

each a linear combination of contributions from two parts

[14]: a Couette flow with one boundary fixed and the other

one moving at a speed U, and a Poiseuille flow driven by a

pressure gradient dp/dx. Since Couette flow has been thor-

oughly investigated, we restrict our attention to the Poiseu-

ille flow part and consider a Poiseuille flow of a rarefied gas

between two planes lying at y = -h/2 and y = h/2.

The motion of a rarefied gas is described by the Boltz-

mann equation, whose form is complex and difficult to

analyze. Since we are mainly interested in a macroscopic

quantity, i.e., the shear force, detailed information on the

velocity distribution function of the molecules moving

between the slider and the disk is not of concern. So we can

bypass the Boltzmann equation and instead work with the

conservation equations. The conservation equations can be

derived directly from the basic principle of the conservation

of mass, momentum, and energy, and they apply to any kind

of air flow rarefied or not [11]. These equations are not

closed since they involve several unknown quantities such

as the stress tensor, which needs to be determined through

other means. From another point of view, these conservation

equations are the first three moments of the Boltzmann

equation with respect to the molecular velocity. According

to the theory of partial differential equation, a partial dif-

ferential equation is equivalent to a full set of all its moment

equations, and, for the Boltzmann equation, these moment

equations form the so-called BBGKY hierarchy. Since the

conservation equations are the first three components of the

BBGKY hierarchy, they are not fully equivalent to the

Boltzmann equation and they are not closed. The Euler

equation and the Navier–Stokes equation are two special

cases of the conservation equations where the stress tensor is

related to the air flow velocity gradient through a constitu-

tive relation.

Since Fukui and Kaneko [14] have shown that the air

flow in the HDI is isothermal, we only need to deal here

with the conservation equations of mass and momentum to

get the shear force [11]. Under the same assumptions as

used by Fukui and Kaneko [14], i.e., the thickness of the air

gap in the HDI is much less than the length and the width

of the slider, and the air flow in the direction perpendicular

to the disk is negligible, the conservation equations for a

steady flow reduce to

o

ox
qvxð Þ ¼ 0 ð1Þ

o

ox
qv2

x þ rxx

� �
þ o

oy
rxy

� �
¼ 0 ð2Þ

where rxx and rxy are components of the stress tensor.

Again, we note that Eqs. 1 and 2 are not closed due to the

appearance of rxy and rxx which can only be determined by

some kind of constitutive relations. We next investigate the

order of each term in Eq. 2 and show that all the terms in

Eq. 2 are not of the same order. Through this approach,

Eq. 2 can be further reduced.

Since the Boltzmann equation is very complex, a

widely used model for the Boltzmann equation was pro-

posed by Bhatnagar et al. [15]. This model equation, the

so-called BGK–Boltzmann equation, gives results that

compare well with experiments for most problems [11].

Since the flow velocity in the present case is on the order

of the disk speed, and it is much less than the average

thermal speed of air molecules, which is comparable to

the speed of sound in air, the BGK–Boltzmann equation

can be linearized with respect to a reference ambient state

with temperature T0 and density q0. Its form, with only

linear terms retained, is:

ni

o/
oxi
¼ m �/� 1þ q

q0

þ nivi

RT0

� �
ð3Þ

where ni is the molecular velocity, / = (f/f0)-1, f is the

velocity distribution function of the air molecules, f0 is a

Maxwellian in a quiescent flow at the reference state, m is a

air bearing 
surface

lubricant layer
disk

slider

air

Fig. 1 The geometry of the HDI, composed of a slider and a moving

disk. A lubricant layer covering the disk serves to reduce impact

damage of the slider on the disk. This figure is not to scale
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collision frequency related to the mean free path, q is the

density of air, vi is the flow velocity, and R is the specific

gas constant. In plane Poiseuille flow, the air flow is setup

by the pressure gradient. The requirement that the air speed

is much less than the thermal speed of air molecules further

requires that the pressure gradient dp/dx is small as well.

More specifically, this requires that (h/p0)dp/dx� 1 where

p0 = q0RT0 is the ambient pressure. Since the flow is

induced by the pressure gradient, it can be shown that the

air speed is of the same order as the pressure gradient.

For a plane Poiseuille flow of a rarefied gas, a solution

satisfying Eq. 3 and compatible with the associated

boundary conditions in the HDI is [14]

/ ¼ 1

q0RT0

dp

dx
xþ nxffiffiffiffiffiffiffiffiffiffi

2RT0

p /1ðy; ny; niniÞ ð4Þ

with /1 determined by

ny

o/1

oy
þ 1

m
/1 ¼ �

ffiffiffiffiffiffiffiffiffiffi
2RT0

p

q0RT0

dp

dx
ð5Þ

where L is the length of the slider, x points to the flow

direction, and y points to the direction perpendicular to the

disk. In Eq. 4, the dependence of p on y is neglected given

that h�L.

From the definition of the shear stress in kinetic theory

[11] and Eq. 4

rxx ¼� p0 �
2

p3=2

p0

ð2RT0Þ5=2

Z
n2

x/ exp � nini

2RT0

� �
dn

¼� p0 �
2

p3=2

p0

ð2RT0Þ5=2

1

q0RT0

dp

dx
x

Z1

�1

Z1

�1

�
Z1

�1

n2
x exp �

n2
x þ n2

y þ n2
z

2RT0

 !

dnxdnydnz

� 2

p3=2

p0

ð2RT0Þ5=2

1
ffiffiffiffiffiffiffiffiffiffi
2RT0

p
Z1

�1

Z1

�1

�
Z1

�1

n3
x/1 exp �

n2
x þ n2

y þ n2
z

2RT0

 !

dnxdnydnz

¼� p0 �
dp

dx
x

where the integral involving /1 vanishes since the limits of

the integral for nx are symmetric and the associated

integrand is odd in nx, the latter of which is further due to

the oddness of nx
3 and the fact that /1 is functions of y, ny,

nx
2, ny

2, nz
2 but not nx itself. For rxy, we have

rxy ¼
2

p3=2

p0

ð2RT0Þ5=2

Z
nxny/ exp � nini

2RT0

� �
dn

6¼ 0

As discussed above, the linearized Boltzmann equation

is a reduced Boltzmann equation where we only retain

terms of an order lower than or equal to the order of the

flow speed which is the same as the order of the pressure

gradient (L/p0)dp/dx. In the framework of the linearized

Boltzmann equation, rxx and rxy are different from zero, so

they each have an order the same as or lower than (L/p0)dp/

dx. Then, in view of (L/p0)dp/dx � 1, we can neglect

terms of an order higher than (L/p0)dp/dx in Eq. 2 for the

analysis of rxy. The first term in Eq. 2, q(qvx
2)/qx, after

using Eq. 1 to eliminate qvx/qx, turns out to be -vx
2qq/qx,

which is of second order of U=
ffiffiffiffiffiffiffiffiffiffi
2RT0

p
: This term is

therefore negligible since the other terms in Eq. 2 are of

first order or lower. So Eq. 2 finally reduces to

�dp

dx
þ orxy

oy
¼ 0 ð6Þ

Since the accommodation coefficients of engineering

surfaces are close to each other, we here assume the

accommodation coefficients of the slider and the disk are

the same. Then, the Poiseuille flow is symmetric with

respect to the centerline y = 0 in our coordinate system.

Under these conditions, the shear forces on the two

boundaries are equal to each other, i.e., rxyny|y=-h/

2 = rxyny|y=h/2, and the normal directions of the two

boundaries are opposite to each other, i.e., ny|y=-h/2 =

ny|y=h/2. Thus, rxy|y=-h/2 = -rxy|y=h/2. Then, integrating

Eq. 6 from y = -h/2 to y = h/2, we get

rxyjy¼h=2 ¼
h

2

dp

dx
ð7Þ

This result is the same as would be obtained through

Valougeorgis’ force balance approach [17] where the shear

force is regarded as being balanced by the pressure gradient

alone. Our approach is, however, more rigorous since we

work with the Boltzmann equation and demonstrate that

the contribution from the momentum flux is of higher order

when the velocity of the flow is much less than the average

thermal velocity of the air molecules, and thus it is

negligible. We note that Eq. 7 can also be obtained from an

integral form of the momentum equation, i.e., by extending

Valougeorgis’ approach to include the momentum flux. But

the linearized Boltzmann equation and intrinsic symmetry

of Poiseuille flow are still needed for finally arriving at

Eq. 7. Equation 7 also agrees with the numerical results

from the DSMC method [13].

For the shear force contributed by the Couette flow part,

we adopt the formula obtained by Liu and Lees [18]

through the method of moments. The shear force calculated

through Liu and Lees’ formula compares well with

numerical results based on the linearized Boltzmann
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equation [19]. Then the total shear forces on the disk and

the slider are

swjdisk ¼ �qk

ffiffiffiffiffiffiffiffi
RT0

2p

r
U

2kþ h
� h

2

dp

dx
ð8Þ

swjslider ¼ qk

ffiffiffiffiffiffiffiffi
RT0

2p

r
U

2kþ h
� h

2

dp

dx
ð9Þ

Generally speaking, the pressure gradient dp/dx changes

with x, and the generalized Reynolds equation [14] needs

to be solved for dp/dx before Eqs. 8 and 9 can be used.

Let us now compare the present formula Eq. 8 with that

based on the first-order slip theory which, on the disk, has

the form [8]:

sw ¼ �l
U

2kþ h
� h

2

dp

dx
ð10Þ

Equations 8 and 10 are the same when a hard sphere model

is used for air molecules because in this case the viscosity

for a rarefied gas is l ¼ qk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RT0=ð2pÞ

p
[20]. Since l does

not change very much as the Knudsen number increases,

the shear force calculated through Eq. 10 with l taking its

value in a continuum flow does not deviate much from the

exact results calculated from Eq. 8. This underlies Wu’s

reasoning [8] that the shear force based on a first-order slip

model is a good approximation. We note that the correct

way to implement Eq. 10 is to use Eq. 8 where the vis-

cosity in a rarefied gas has been taken into account

explicitly. In Dai et al.’s model [4], only the shear force

contributed by the Couette flow part was considered.

Whereas, as argued by Wu [8] and shown by the numerical

results in Fig. 2, the second terms in Eqs. 8 and 9 produced

by the Poiseuille flow are not always negligible. Thus, the

use of the full form of Eqs. 8 and 9 is not only preferred but

it is required.

In summary, the shear force in the HDI in hard disk

drives is investigated in this communication. Based on

some results obtained from the linearized BGK–Boltzmann

equation, we make use of an order analysis to simplify the

conservation equations, and obtain an analytical formula

for the shear stress in plane Poiseuille flow. It is shown that

the shear forces on the two boundaries in plane Poiseuille

flow are the same and are equal to (-h/2)dp/dx. Making

use of Liu and Lees’ formula for the shear force in plane

Couette flow, we then present formulae for the total shear

force on the slider and on the disk in the HDI based on the

information obtained from the linearized Boltzmann

equation that the total shear force is a linear combination of

the contributions from Couette and Poiseuille flows. When

a hard sphere model is used for air molecules, our formula

reduces to that based on the first-order slip model, and it

thus validates the use of the latter formula for analyzing

lubricant dynamics on the slider and the disk, lubricant

transfer from the disk to the slider, or vice versa as well as

the dynamics and stability of the slider itself.
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