
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Specification and Runtime Verification of Distributed Multiprocessor Systems: Languages, 
Tools and Architectures

Permalink
https://escholarship.org/uc/item/2f63n8px

Author
Nassar, Ahmed

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2f63n8px
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Specification and Runtime Verification of Distributed Multiprocessor Systems:
Languages, Tools and Architectures

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Ahmed Mohamed Ahmed Mohamed Nassar

Dissertation Committee:
Professor Fadi J. Kurdahi, Chair

Professor Rainer Doemer
Professor Ahmed Eltawil

2016



c© 2016 Ahmed Mohamed Ahmed Mohamed Nassar



DEDICATION

To The Memory of My Father,
To The Sincerest Love of My Mother,

To My Wife and My Son

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES x

ACKNOWLEDGMENTS xi

CURRICULUM VITAE xii

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Dimensions of Runtime Verification . . . . . . . . . . . . . . . . . . . 5
1.2.2 Formalism Crisis: Rise of Parametric Specifications . . . . . . . . . . 6
1.2.3 Performance Crisis: Architectural Support to the Rescue . . . . . . . 10
1.2.4 Specification Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I Formalism 17

2 Self-Replicating Automata 18
2.1 Self-Replicating DFAs at a Glance . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 First-Order Logic of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Constant Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 State Transition Systems. . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Linear-Time Parametric Properties. . . . . . . . . . . . . . . . . . . . 26

2.4 Self-Replicating DFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Ensemble State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Runtime Verification with SR-DFAs . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 The Semi-Lattice of Partial Variable Valuations . . . . . . . . . . . . 30

iii



2.5.2 Graphical Representation of Ensemble State. . . . . . . . . . . . . . . 31
2.5.3 Graphical Representation of SR-DFA Transition Function. . . . . . . 32
2.5.4 Interpretation of the Transition LBFG . . . . . . . . . . . . . . . . . 34

3 Lattice-Based Function Graphs 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Lattice Functions into Finite Sets . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 LBFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Symbolic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Co-Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Structure of Equivalence Classes . . . . . . . . . . . . . . . . . . . . . 51

3.5 Function Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.1 Disjoint-Union Composition . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.2 Product (or Concatenation) Composition . . . . . . . . . . . . . . . . 55
3.5.3 Union Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Local (Pointwise) Transformations . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.1 Composition of Local Transformations . . . . . . . . . . . . . . . . . 57

3.7 Real-Valued Lattice Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7.1 Graphical Representations . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Multi-Variable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8.1 The Semi-Lattice of Partial Variable Valuations . . . . . . . . . . . . 59

3.9 The Boolean Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.9.1 Intrinsic Representation . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.10 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

II Architectures and Tools 71

4 Nonuniform Verification Architecture 72
4.1 Architectural Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Observation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 Object Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.3 RV Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.4 Automata Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.5 Automata Transactional Memory . . . . . . . . . . . . . . . . . . . . 76

4.2 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.1 Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Bug Detection Capability. . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.4 Synthesis Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.5 Optimum APE Number . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Conclusion, Limitations and Future Work . . . . . . . . . . . . . . . . . . . 86

iv



5 Specification Mining 90
5.1 Specification Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.2 Mining SR-NFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 ParaMiner Specification Mining Flow . . . . . . . . . . . . . . . . . . . . . . 98

5.3.1 A Bio-Inspired Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.2 API Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.3 Trace Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.4 Trace Slicing, Segmentation and Folding . . . . . . . . . . . . . . . . 101

5.4 Role of Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.1 Initial State Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.2 Multiple Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Ensemble States from MSAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5.1 Initial State Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 From Ensemble States to SR-NFA States. . . . . . . . . . . . . . . . . . . . 111
5.6.1 Data-Flow Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 MSA Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.7.1 Pairwise Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . 117
5.7.2 Distance Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.7.3 Guide Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.7.4 Scalability - Trace Clustering . . . . . . . . . . . . . . . . . . . . . . 120
5.7.5 Profile Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.7.6 The Scoring Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7.7 Language-Based Alignment . . . . . . . . . . . . . . . . . . . . . . . 124
5.7.8 Iterative Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.7.9 Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8 State-Space Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.8.1 State Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.8.2 SR-NFA Determinization . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.8.3 SR-DFA Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.8.4 SR-DFA Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.8.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.9 Variable Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.9.1 PFSA Variable Matching . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.9.2 MSA Variable Matching . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.9.3 MSA Variable Matching: An Alternative . . . . . . . . . . . . . . . . 135
5.9.4 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.10 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.10.1 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.10.2 Quality of Results (QoR) Metrics . . . . . . . . . . . . . . . . . . . . 140
5.10.3 Statistical Significance . . . . . . . . . . . . . . . . . . . . . . . . . . 142

v



III Applications and Future Research 147

6 Mining Specifications for Digital Logic Designs 148
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.1 The Need for Abstraction . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5 Specification Mining Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.6 Amber Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7 Epilogue 169

Bibliography 171

vi



LIST OF FIGURES

Page

1.1 Specification-based runtime verification . . . . . . . . . . . . . . . . . . . . . 5
1.2 Runtime verification of parametric event traces. . . . . . . . . . . . . . . . . 6
1.3 Percentage performance overhead for NUVA compared to selected RV tools

and architectures. Logarithmic scale is used. . . . . . . . . . . . . . . . . . . 7

2.1 Parametric FSM checker for BH locking discipline. We use these abbreviations
p(•) ≡ ∀x.p(x) and p(¬x) ≡ ∀x′.p(x′) ∧ (x′ 6= x). . . . . . . . . . . . . . . . . 21

2.2 Parametric FSM checker for the Canneal element-swapping property (q3 is the
failure state). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 An example of the emergence of guard expressions. . . . . . . . . . . . . . . 33
2.4 An example of the emergence of guard expressions. . . . . . . . . . . . . . . 33

3.1 Comparison of generality of various representations of finite-valued functions
over Boolean variables. ROBDDs, LVBDDs, and MTBDDs are decision dia-
grams, whereas LBFGs and LBBDs are not decision-based. . . . . . . . . . 40

3.2 Positive and negative restriction of the 4-variable even-parity LBBD over x4. 46
3.3 BDDs and LBBDs for some primitive Boolean functions. A gray node v has

L (v) = 0 and a white node v has L (v) = 1. . . . . . . . . . . . . . . . . . . 64
3.4 Histogram (y-axis is number of instances) of LBBD efficiency (x-axis) with

respect to BDDs (top row) and ZDDs (bottom row) for randomly generated
monotonic Boolean functions. Depth refers to the maximum syntax-tree
depth of random formulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Histogram of LBBD efficiency with respect to BDDs (top row) and ZDDs
(bottom row) for randomly generated Boolean functions (Depth refers to the
maximum syntax-tree depth of random formulas). . . . . . . . . . . . . . . 66

3.6 BDD and LBBD for the Boolean functions of even parity and (x1∨x2)∧ (x3∨
x4) ∧ (x5 ∨ x6), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Histogram of LBBD efficiency with respect to BDDs (top row) and ZDDs
(bottom row) for MCNC and ITC99 benchmarks. Blue indicates the instances
where LBBDs are more concise, and red indicates the converse. . . . . . . . 69

3.8 BDD vs. ZDD vs. LBBD sizes. For each 0 ≤ P ≤ 1, we generate many SOP
formulas with 200 variables, 10 cubes, 100 literals each containing negative
literals with probability P and positive literals with probability (1− P ). . . 70

vii



3.9 BDD vs. ZDD vs. LBBD sizes. As in [132], for each K, we generate 50 SOP
formulas with 50 variables, 10 minterms containing only K positive literals
and 50−K negative literals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 RV elements in a single-chip multiprocessor (NI = Network Interface). . . . . 73
4.2 States of an automata directory entry (left) and states of an automaton replica

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 ATM event processing pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Simulation platform and parameters . . . . . . . . . . . . . . . . . . . . . . . 80
4.5 CPI adders stack and NoC (data + control) traffic for monitored Barnes-Hut

(BH) and Canneal (CN) benchmarks vs. the number of CPU cores. . . . . . 82
4.6 Checker population size (= replications − recombinations), size-histogram

(log-scale) of various transaction sets, and auto-/cross-correlation of transac-
tion working sets (T = 40) for a 16-core/16-ATM system. . . . . . . . . . . . 88

4.7 Frequency-scaled RV overhead w.r.to quad-core Intel processors, CPU energy
efficiency vs. event density, as well as normalized energy per RV operation vs.
number of RAM read ports (and for SRAM size = 1kB, 4kB, 16kB). In both
the desktop and mobile categories, we use a family of Intel processors covering
a narrow range of models, microarchitectures, and applications in the CMOS
technology (Intel 45nm) closest to ours (TSMC 40nm). . . . . . . . . . . . . 88

4.8 Synthesis results of various RV object-layer components, ATM and automata
directories at 250MHz (UPS CAM stands for the unified population-structure
CAM where the population DAG edges are stored as an adjacency list. S
stands for UPS CAM size). Leakage power is generally 3-5%. . . . . . . . . . 89

5.1 ParaMiner specification mining flow. ParaMiner is part of a multi-purpose
specification mining Java application with 80,000+ lines of code, that also
supports mining DFAs from digital logic simulation traces [137]. . . . . . . . 99

5.2 Examples of super-state structure: distinguishable program phases with time
as captured by the largest two principal components (displayed as color hue
and saturation, respectively) of method-name histograms within a sliding win-
dow of size 200 events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Foldable trace segments are used isolate and extract superstates of a program
by conducting MSAs independently within each phase. . . . . . . . . . . . . 105

5.4 A section of an example MSA of 10 syscall trace slices from the proftp bench-
mark. Each row is a slice, gaps are gray and every event is depicted by a
different color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 A MSA viewed as a PFSA. Each state corresponds to one MSA column. Each
edge is annotated with σ of the MSA column associated with its sink PFSA
state. Edge line width is proportional to transition probability. . . . . . . . 111

5.6 Ensemble-to-automata states. . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.7 Needleman-Wunsch recursion step. . . . . . . . . . . . . . . . . . . . . . . . 118
5.8 The score-to-distance function. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

viii



5.9 Using agglomerative clustering to partition large sets of trace slices into sim-
ilar groups that are aligned with NW algorithm within each group and the
resulting profiles are then aligned. N is a user-specified parameter. . . . . . . 121

5.10 Benchmark traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.11 Example of a SR-DFA extracted by ParaMiner from proftpd traces. . . . . 141
5.12 Statistical significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.13 Alignment score distribution generated by conducting 5000 MSAs of 20 se-

quences of length 50/75/100 sampled randomly (with replacement) from
20 trace slices, and shuffled randomly each time. Benchmark is Dropbox (in
indexing/uploading state) and the monitored data type is Thread. Doublet-
preserving permutation is used. Blue bars depict the empirical PDF and the
red bars depict the MLE-fitted PDF. . . . . . . . . . . . . . . . . . . . . . . 146

5.14 Alignment score distribution generated by conducting 5000 MSAs of 20 se-
quences of length 50 sampled randomly (with replacement) from 100 trace
slices, and shuffled randomly each time. Benchmark is Dropbox (in indexing
state) and the monitored data type is Thread. Effect of doublet-preserving
permutation on score distribution is clearly demonstrated. . . . . . . . . . . 146

6.1 Mining FSMs infers a set of abstract states that capture the essence of design
behavior, rather than duplicate its implementation internals. . . . . . . . . 158

6.2 Topaz specification mining flow. Topaz is a Java application with 55,000 lines
of code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.3 Testcase alphabet profiles. The x-axis is a set of 66 testcases from the Amber
test suite. The y-axis is a set of 5 alphabet sets used in Section 6.6. . . . . . 160

6.4 Examples of distinct design operation phases vs. cycle time as captured by
the largest two principal components (displayed as color hue and saturation,
resp.) of the feature-vector histogram of the design bit-vector (DBV) within
a moving window of size 100 clock cycles. The DBV combines values of all
logic signals in one giant bit vector. DBV features are counts of (overlapping)
binary strings from “0” to “111”. . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5 A section of an example MSA of 20 trace slices from the Amber stm stream

testcase. Gaps are gray and every logic event is depicted by a different color. 162
6.6 A MSA viewed as a PFSA. Each state corresponds to one MSA column. Each

edge is annotated with σ of the MSA column associated with its sink PFSA
state. Edge line width is proportional to transition probability. . . . . . . . 164

ix



LIST OF TABLES

Page

1.1 Capabilities of runtime verification proposals . . . . . . . . . . . . . . . . . . 7

4.1 RV architectural and technology parameters . . . . . . . . . . . . . . . . . . 85

5.1 Definitions of a positive (negative) universal (existential) prefix w with respect
to an ω-regular language L. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Classification of specification mining tools. . . . . . . . . . . . . . . . . . . . 154
6.2 Amber specification mining parameters and results for 5 different alphabet

sets associated with 5 instruction types. . . . . . . . . . . . . . . . . . . . . . 167

x



ACKNOWLEDGMENTS

You think acknowledgments are boring and no one reads them? It is because they are modest
expressions of gratitude towards many people dedicating their lives to whom they love, or
going out of their way to help someone they may not even know, or feeling excited to share
lessons they learned the hard way. My gratitude to my parents, who literally breathe life into
every line of this dissertation, cannot be expressed in words. Special thanks to my advisor,
Professor Fadi J. Kurdahi, not only for all his guidance and support, but also for nurturing
and believing in the worth of this research especially during the many difficult times we have
been through.

Thank you my friends and colleagues for making all those years at UC Irvine a matchless
learning experience. I would like to thank authors of all books and papers I had the chance
to read for the maturity and sophistication I accumulated along the way.

Finally, this work would not have been possible without the constant support of my loving
wife and the overwhelming joy of playing with my beloved four-years old son.

xi



CURRICULUM VITAE

Ahmed Mohamed Ahmed Mohamed Nassar

EDUCATION

Doctor of Philosophy in Electrical and Computer Engineering 2016
University of California Irvine, CA

Master of Science in Electrical Engineering 2009
Cairo University Cairo, Egypt

Bachelor of Science in Electrical Engineering 2002
Alexandria University Alexandria, Egypt

INDUSTRY EXPERIENCE

Engineering Intern 2011–2013
Qualcomm, Inc. San Diego, CA

VLSI Design Engineer 2008–2010
Newport Media, Inc. Cairo, Egypt

FPGA Design Engineer 2006–2008
QuickTel Cairo, Egypt

R&D Military Engineer 2003–2005
Egyptian Armed Forces Cairo, Egypt

RESEARCH EXPERIENCE

Graduate Research Assistant 2010–2016
University of California Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2011–2016
University of California Irvine, CA

EECS40 Object-oriented systems and programming. Spring 2015
EECS229 Low-Power SoC Design (Graduate level). Winters 2015-2016
EECS221 Advanced SoC Design (Graduate level). Winters 2013-2014
EECS181 Senior Design Projects. Summer and Fall 2014
CSE112 Electronic Devices and Circuits. Falls 2012-2013
EECS113 Processor Hardware/Software Interface. Springs 2012, 2016
CSE151 Introduction to Digital VLSI Design. Fall 2011

xii



REFEREED CONFERENCE PUBLICATIONS

Ahmed Nassar, Fadi J. Kurdahi, “Lattice-Based
Boolean Diagrams: Canonical, Order-Independent
Graphical Representations of Boolean Functions”

Jan 2016

In Proceedings of Asia and South Pacific Design Automation Conference (ASP-DAC)
[Best Paper Award]

Ahmed Nassar, Fadi J. Kurdahi and Salam Zantout,
“Topaz: Mining High-Level Safety Properties from
Logic Simulation Traces”

Mar 2016

In Proceedings of Design, Automation and Test in Europe Conference (DATE)

Ahmed Nassar, Fadi J. Kurdahi, Wael Elsharkasy,
“NUVA: Architectural Support for Runtime Verifica-
tion of Parametric Specifications over Multicores”

Oct 2015

In proceedings of the International Conference on Compilers, Architecture, and Synthe-
sis for Embedded Systems (CASES)

Ahmed Nassar, Fadi J. Kurdahi, “Architectural support
for runtime verification on ccNUMA multiprocessors”

Apr 2013

Proceedings of the international design and test symposium (IDT)

Ahmed Nassar, Fadi J. Kurdahi “ParaMiner: Interac-
tive Parametric Specification Mining for Runtime Ver-
ification”

June 2017

To be submitted to Programming Language Design and Implementation Conference
(PLDI)

Ahmed Nassar, Fadi J. Kurdahi “Connecting The Dots:
Detection of Sparse Anomalies Using Self-Replicating
Automata”

May 2017

To be submitted to IEEE Symposium on Security and Privacy (S&P)

REFEREED JOURNAL PUBLICATIONS

Ahmed Nassar, A. Emira, A.N. Mohieldin, and A.
Hussien, “Multichannel Clock and Data Recovery: A
Synchronous Approach”

May 2010

IEEE Transactions on Circuits and Systems II: Express Briefs

xiii



Ahmed Nassar, Fadi J. Kurdahi, “Lattice-Based Func-
tion Graphs”

Oct 2016

To be submitted to IEEE Transactions on Computer-Aided Design (TCAD)

Ahmed Nassar, Fadi J. Kurdahi, “SuperNUVA: Run-
time Verification for the Masses”

Dec 2016

To be submitted to ACM Transactions on Embedded Computing Systems (TECS)

Ahmed Nassar, Fadi J. Kurdahi, “TransMon: Speci-
fication and Runtime Verification of Transaction-Level
Models”

Mar 2017

To be submitted to IEEE Transactions on Computer-Aided Design (TCAD)

Ahmed Nassar, Fadi J. Kurdahi, “Trace Origami:
Mining Abstract Specifications from Logic Simulation
Traces”

Mar 2017

To be submitted to IEEE Transactions on Computer-Aided Design (TCAD)

SOFTWARE

NUVA, LBFGs, Topaz, ParaMiner, and others https://github.com/anassar

Tools, simulation models, Raspberry Pi projects in C++, Java, Perl and Python.

xiv

https://github.com/anassar


ABSTRACT OF THE DISSERTATION

Specification and Runtime Verification of Distributed Multiprocessor Systems:
Languages, Tools and Architectures

By

Ahmed Mohamed Ahmed Mohamed Nassar

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2016

Professor Fadi J. Kurdahi, Chair

Post-Deployment runtime verification (RV) has recently emerged as a complementary tech-

nology to extend coverage of conventional software verification and testing methods. This

thesis is an attempt to tackle three major barriers that need to be surmounted before RV

technologies become in widespread use:

• Barrier-1: Lack of an expressive, yet efficiently monitorable, specification language.

Distributed software behavior is projected onto an observation interface consisting of

data-carrying (or parameterized) events, such as Linux system calls including argument

values, and self-replicating deterministic finite automata (SR-DFAs) are introduced for

RV purposes as well as anomaly-based intrusion detection in embedded and general-

purpose software systems based on these parametric traces.

• Barrier-2: The substantial performance and power overhead of pure software RV

frameworks. NUVA, which stands for nonuniform verification architecture, a dis-

tributed automata-based RV architecture for software specifications in the form of

SR-DFAs. NUVA has been implemented over a cache-coherent nonuniform-memory-

access (ccNUMA) multiprocessor and can be deployed on the FPGA fabric that will

reside on all next-generation processor chips. The core of NUVA is a coherent dis-

xv



tributed automata transactional memory (ATM) that efficiently maintains states of a

dynamic population of automata checkers organized into a rooted dynamic directed

acyclic graph (DAG) concurrently shared among all processor nodes.

• Barrier-3: Formal specifications are hard to formulate and maintain for evolving com-

plex embedded and general-purpose software systems. Therefore, specification mining

has long ago been envisioned to play a key role in software verification, modification

and documentation. However, in order to scale beyond simple, library/API-level prop-

erties having short temporal spans, specification mining tools need to support more ex-

pressive specification languages that can capture complex, application-level properties.

This thesis introduces a bio-inspired complete specification mining methodology for

SR-DFAs using an iterative and interactive mining tool, called ParaMiner. ParaMiner

relies on novel mining algorithms invoking multiple-sequence alignment (MSA) tech-

niques to enable learning specifications from temporal slices of software behavior while

overcoming the initial-state uncertainty problem.

SR-DFAs and ParaMiner have been leveraged in a new specification-based intrusion detection

(ID) framework that protects distributed, reactive computing systems against cyberattacks

having very sparse signatures, arbitrarily long time spans and wide attack fronts. Such

attacks lie outside the scope of conventional anomaly-based ID methods which typically work

with short event windows and ignore manipulated data objects, such as files and sockets. We

demonstrate the effectiveness of the constructed SR-DFAs at classifying as well as resolving

subtle behaviors typical of cyberattacks with varying evasion parameter values.

xvi



Chapter 1

Introduction

1.1 Motivation

Prominence of Runtime Verification. Cyber-physical systems (CPS) harbor strongly

interacting physical and computational processes that must usually operate within stringent

safety and security constraints. Malfunction due to hardware or software failures, or compro-

mise by an adversary (including insiders) can be unacceptable when lives, large investments

(e.g., critical infrastructure) or valuable assets (e.g., environment and natural resources) are

at stake. Due to their immense complexity and tight coupling to stochastic (and intrin-

sically concurrent/distributed) environments, complete verification coverage meant to find

all bugs and vulnerabilities of CPS designs is unattainable with conventional testing pro-

cedures. Moreover, when a software failure occurs, a difficult blame (or credit) assignment

problem arises to correlate the erroneous behavior with its root cause. This is further com-

plicated by the phenomenal proliferation of multiprocessor systems which brought to the

forefront elusive concurrency bugs that can insidiously build up latent momentum over time

until they manifest themselves catastrophically and inexplicably. Conventional debugging

1



machinery (e.g., breakpoints, watchpoints, etc.), which cannot properly handle distributed

state [124], fall short of the needs of concurrent application developers. Worse yet, with the

nondeterminism inherent in the execution of concurrent code and due to the so-called probe

effect, faulty executions cannot be reliably reproduced. Even abstract model checking [89]

may trade off precision of the analysis for efficiency. Hence, formal reasoning with abstract

models of concurrent systems (e.g., SPIN [94]) is in jeopardy of overlooking subtle behaviors

that will manifest only in a concrete, detailed model of the system. All this draws attention

to the power of runtime verification (RV) [6, 22, 38, 48, 112] where systems are continuously

monitored and verdicts (or anomaly scores) about correctness and/or integrity of their be-

haviors are issued accordingly at appropriate instants of time. These verdicts indicate the

minimal bad prefixes of violating traces and, hence, are precise (i.e., localized exactly at

fault locations in program executions) and can be easily used to trace failures back to their

root causes. These verdicts can also trigger reactive (corrective or preventive) procedures

before serious damage is inflicted upon the system.

The interplay between pre-deployment verification (e.g., testing and formal verification) and

post-deployment RV is important to delineate. If RV is coupled with recovery mechanisms

(which are typically slower than normal execution [124]), then performance of RV starts to

depend heavily on the average error rate. Pre-deployment verification helps to reduce the

average error rate and, hence, boost post-deployment RV performance.

Dark Silicon. With the emergence of dark silicon phenomena [68, 166] in power-constrained

systems-on-chip (SoCs) and/or limited-parallelism systems, the trend of increasing the num-

ber of identical general-purpose cores on a chip (called multicore scaling) became untenable,

since they cannot all be powered up at the same time anyway.1 As a result, the case for

a more energy-efficient computing zoo of asymmetric, heterogeneous and specialized cores

1Unless special arrangements are taken, such as near-threshold voltage (NTV) operation, larger caches, or
turbo boosting. However, all these techniques come with many thorny issues, e.g., susceptibility to process
variations, assumptions about application level of parallelism, etc.

2



became stronger. The impetus and room for that specialization on the chip real-estate,

dubbed the dark-silicon gap, is even growing with every new technology generation. CPS

dependability and security has long ago been identified as a major beneficiary of growing

specialization on SoCs.

Goals. Motivated by the dependability and accountability benefits brought about by RV,

our goal is to bring post-deployment RV into widespread use by many computing systems

(general-purpose, data centers, cyber-physical, etc.) through built-in architectural supporting

mechanisms. The first, and most difficult, step is to find a specification formalism that can

serve as an ideal substrate for hardware-assisted RV and possess the following characteristics:

• Durability : It must be able to stand the test of time, to justify investment of hardware

support by chip vendors and learning time by developers. Due to their wide scope and

vast expressive power, we bet on parametric specifications [6, 20, 21, 39, 81, 83, 87, 164]

to survive multiple technology generations.

• Efficiency : It must be efficiently monitorable in terms of performance overhead, on-

chip area and consumed power.

• Usability : Specifications are hard to formulate and maintain for complex systems.

Specification languages must not make a hard job even harder. That is why, in this

thesis, we work with parametric FSMs since they are intuitive and mining algorithms

can be developed for them [10, 110]. As shown in Figure 1.1, we envision specification

mining to play a key role in RV. Many specification languages in literature do not

only have complex notation, but also complex (and, in many cases, counter-intuitive)

semantics. In this thesis, we adopt what we call ensemble semantics of parametric

specifications which we think are more intuitive to reason about.

Parametric events are envisaged to serve as the primary abstraction of program executions.

Events can be explicit in the programming model. For example, event-driven program-

ming is one of the most widely used programming models for CPS. Alternatively, events

3



can be implicitly associated with significant changes of program state, or extracted from

raw unstructured data streams (e.g., sensory data, text, video, etc.) or exchanged mes-

sages. Many anomaly-based intrusion detection (ID) systems [16] operate on system-call

traces [92]. In [169], the author laments the absence of syscall arguments from ID systems,

which grants attackers the much needed freedom in crafting attacks while avoiding detec-

tion. That inspired the use of syscall arguments to increase immunity of ID systems against

a wide array of evasion techniques [123]. Representing execution traces with data-carrying

events [87], as opposed to event names only, coupled with an expressive specification language

of SR-DFAs (capable of dynamic variables binding) enables use of contextual information

and yields a spatio-temporal characterization of correct behavior, since objects, users and

threads identifiers are now part of temporal specifications. This promises an increase in

model precision which translates to more discriminative (or explanatory) power. Monitor-

ing of parametric and first-order specifications recently received ample attention in literature

[6, 20, 21, 39, 81, 83, 87, 164]. Proposed systems have (often subtly different) custom-tailored

logics spanning a wide spectrum of expressive power [20] and having different monitoring

efficiency levels. Very expressive logics tend to have an undecidable RV problem [21]. More-

over, most proposals lack a naturally distributed structure or representation that scales RV

to arbitrarily large multiprocessor systems, which seems to remain as an open problem (to

the best of our knowledge). Therefore, we set out to investigate a highly expressive and effi-

ciently monitorable parametric specification formalism that can be supported by hardware.

The RV hardware architecture for parametric specifications must also satisfy the following

requirements: (I) It must be intrinsically distributed in order to be scalable. (II) It must

minimize conflicts among concurrent RV transactions over shared RV data. (III) It must be

loosely coupled and minimally invasive to current CPU architectures.

4



CompilerCompiler

Trace Recorder

Specification Miner

API Spec.

objects, methods,
and threads

Source Code

Executable

Traces

Parametric
Automata

NUVA
Annotations

Executable

Specification Mining

Figure 1.1: Specification-based runtime verification

1.2 Background and Related Work

1.2.1 Dimensions of Runtime Verification

Dependability of computing systems hinges equally on hardware and software, both of which

are prone to failures, design flaws as well as attacks and many tools have been devised to

verify various aspects at runtime. In Table 1.1, we list a sample of all published tools deemed

sufficient to reveal the most significant dimensions of the RV tool design space and the cate-

gories such tools fall in and to help position NUVA with respect to prior works.2 According

to [112], executions (defined as finite traces or prefixes of possibly infinite runs) of a program

under verification (PUV) are the primary objects in RV and are checked for correctness

by monitors which yield a verdict whether the trace thus far observed satisfies, violates or

not yet decides a given property. The RV monitor shown in Figure 1.2, therefore, adopts

a three-valued truth domain for property satisfaction along finite traces, namely {>,⊥, ?}

or {true, false, inconclusive}, respectively. It can also assign anomaly labels (or numerical

scores) to observed events while the verdict on correctness of the monitored property is still

out. This is useful in intrusion detection applications. Monitoring can be classified as online

2Dynamic analysis tools intended for pre-deployment testing only are excluded. RV tools that make use
of non-standard hardware features (e.g., LogTM used by TxMon [36]) are assumed to be implemented in
hardware. A RV tool is labeled as “multicore” if it is implemented with multicore or multiprocessor systems
in mind. Tools that use thread-level techniques (such as TLS) do not qualify as multicore-aware.

5



(examining executions incrementally at runtime) or offline (examining recorded executions).

In [69], monitors are further classified into inline (inserted within the monitored program)

or outline (running in a thread or process different from the monitored program). The

monitors designed in this thesis are intended primarily to make online monitoring more ef-

ficient. Moreover, only outline monitoring is supported by virtue of the parallelism inherent

in hardware. The checks performed by a monitor can be classified according to [48] as either

precise, that indicate actual errors in the observed execution trace, or predictive, indicating

errors that have not occurred in the observed execution but could possibly occur in other

executions of the program. In this thesis, runs are considered as sequences of instantaneous

parameterized (or data-carrying [87]) events emitted by concurrent threads or processes of

a running program. Those events are represented by first-order logic (FOL) predicates and

can be associated, for example, with calls of a given API (e.g., system calls, library calls,

etc.) or any more elementary operations on primitive values. Moreover, NUVA discovers

only bugs that actually occur during program execution, rather than potential bugs lurking

in the code, as in the lockset algorithm [156].

1.2.2 Formalism Crisis: Rise of Parametric Specifications

In most specification-based verification applications, precise specifications of program behav-

ior are highly desirable. By precise we mean a tight characterization of program behavior

RV Monitor

Satisfied

Violated

Not yet decided

Normal

Anomalous

P
ar

a
m

et
ri

c
E

ve
n

ts
S

tr
ea

m

Figure 1.2: Runtime verification of parametric event traces.

6



Tool
Verifies Impl.

Multicore Real-time Sampling Faults Specification
Errors Action

Predictive
HW SW HW SW FPa FNb Report BERc

NUVA 6 4 4 6 4 6 6 Functional bugs Parametric FSMs 6 6 4 6 6

P2V [120] 6 4 4 6 6 6 6 Functional bugs sPSL properties 6 6 4 6 6

iWatcher [178] 6 4 4 6 6 6 6 Functional bugs Procedural checker code 6 6 4 4 6

TxMon [36] 6 4 4 6 4 6 6 Data structure misuse Checker callbacks 6 6 4 6 6

ReEnact [143] 6 4 4 6 6 6 6 Data races None 6 6 4 6 6

SecMon [13] 6 4 4 6 6 6 6 Security vulnerabilities None 6 6 4 6 6

HARD [177] 6 4 4 6 4 6 6 Data races None 4 4 4 6 4

AVIO-H [121] 6 4 4 6 4 6 6 Atomicity violations None 4 4 4 6 6

AVIO-S [121] 6 4 6 4 4 6 6 Atomicity violations None 4 4 4 6 6

SVD [174] 6 4 6 4 4 6 6 Serializability violations None 4 4 4 4 6

StackGhost [74] 6 4 6 4 6 6 6 Stack overflow None 6 6 4 6 6

CORD [142] 6 4 6 4 4 6 6 Data races None 6 6 4 6 6

CoPilot [141] 6 4 6 4 6 4 4 Violations in value streams Stream eqns. + ptLTL 4 6 4 6 6

TraceMatches [6] 6 4 6 4 6 6 6 Functional bugs Parametric regular patterns 6 6 4 6 6

JavaMOP [38] 6 4 6 4 6 6 6 Functional bugs Parametric properties 6 6 4 6 6

QEAs [20] 6 4 6 4 6 6 6 Functional bugs Quantified event automata 6 6 4 6 6

SAs [21] 6 4 6 4 6 6 6 Functional bugs FOLTL properties 6 6 4 6 6

DAs [87] 6 4 6 4 6 6 6 Functional bugs Data automata 6 6 4 6 6

Eraser [156] 6 4 6 4 4 6 6 Data races None 4 6 4 6 4

DVMC [130] 4 6 4 6 4 6 6 Memory consistency (MC) MC model 6 6 4 6 6

Phoenix [155] 4 6 4 6 6 6 6 Logic design defects Defect bit-level patterns 6 6 4 6 6

FRCL [170] 4 6 4 6 6 6 6 Logic design defects Defect bit-level patterns 6 6 4 6 6

ReVive [144] 4 6 4 6 4 6 6 HW failures Availability 6 6 4 4 6

SafetyNet [162] 4 6 4 6 4 6 6 HW failures Availability 6 6 4 4 6

DIVA [15] 4 6 4 6 6 6 6 HW transient faults Availability 6 6 4 6 6

Argus [129] 4 6 4 6 6 6 6 HW transient faults Availability 6 4 4 4 6

SWIFT [147] 4 6 6 4 6 6 6 HW transient faults Availability 6 6 4 6 6

RSUH [146] 4 6 6 4 6 6 6 HW transient faults Availability 6 6 4 6 6

iSWAT [151] 4 6 6 4 4 6 6 HW permanent faults Availability 4 6 4 4 6
a: FP=False positives.
b: FN=False negatives.
c: BER=Backward Error Recovery.

Table 1.1: Capabilities of runtime verification proposals

that can be used to accurately detect anomalies while minimizing the likelihood of missing

subtle, but significant, deviations from correct behavior. More precise specifications usually

require more expressive specification languages that can describe more complex behaviors.

This increased precision may come at the price of reduced usability, undecidability or harder

decision procedures.

Many RV frameworks [112] followed the conventional wisdom of model checking [19] and

revolved only around propositional temporal logic (PTL) and some RV algorithms even

AVIO
-H
TxMon

HARD
CORD

NUVA
Argus

ReE
nact

DVMC
ReV

ive

iSWAT

DataRaceO
OP

TraceM
atch

es

iW
atch

er

Java
MOP

AVIO
-S

DataRace

1

10

100

1,000

10,000

%
P

e
rf

o
rm

a
n
ce

O
v
e
rh

e
a
d

Figure 1.3: Percentage performance overhead for NUVA compared to selected RV tools and
architectures. Logarithmic scale is used.

7



made use of the established theory of ω-automata and ω-regular languages underlying PTL to

construct RV monitors [48]. PTL proved to be adequate for the purposes of verifying digital

circuit designs of moderate size. However, with everything encoded into propositions, PTL

soon becomes impractical for software verification, especially in view of the dynamic nature

and complexity of software objects. PTL collapses the programming model primitives (e.g.,

threads and objects) so that the program state is abstracted into a set of atomic propositions

that hold in that state [48]. This spurred a recent interest in the use of first-order linear

temporal logic (FOLTL) [105] and parametric specification languages [6, 21, 110, 122] to

write concise specifications at a level higher than individual memory accesses. First-order

logic (FOL), by virtue of its use of sorts, predicates, functions and quantification, offers more

abstract representations closer to the language of the program domain. Programmers can

specify the granularity of data accesses (e.g., using an object abstraction) and the events of

interest to monitor and possibly record for subsequent replay.

The tracematches framework [6] enables programmers to invoke code based on matches be-

tween regular patterns and event traces. Free variables are allowed in matching patterns and,

hence, event matching depends on the values of these free variables. As pointed out in [20],

tracematches, like JavaMOP [38], suffers from the limitation that each event name is associ-

ated with a unique list of variables. This thesis proposes a distributed representation of what

tracematches calls binding constraints. This yields a RV solution that will be shown to scale

well to large concurrent and distributed systems. Binding constraints will also arise here,

but as compile-time constructs, when techniques are investigated to reduce the conflict rate

between concurrent RV transactions in a distributed automata transactional memory (ATM).

A more precise notion of multiple matches is given in terms of self-replicating automata and

partial variable bindings are allowed and matching subtraces are allowed to overlap (not just

interleave). Moreover, a logical framework is used instead of regular expressions. Quantified

event automata (QEAs) [20] are strictly more expressive than JavaMOP [38], since QEAs

allow event names to accept multiple distinct variable lists and allow quantification. How-

8



ever, the domain of each quantified variable is derived from the observed trace. Transition

relations of QEAs allow overriding previous bindings during the course of RV. In this thesis,

overriding does not happen; only self-replication and bindings augmentation. We believe that

this furnishes more intuitive semantics than QEAs. Guard conditions used by QEAs can be

expressed in FOLe. For example, start(x)x6=y can be expressed as start(x)∧¬start(y) in FOLe.

In [87], data automata (DAs) are introduced to monitor sequences of data-carrying events.

DAs are an explicit approach (where states are named and have formal parameters bound

when an event with the same name as the state occurs) different from automata-based RV

(where states summarize, but do not completely characterize, an arbitrarily long history of

past events). In [83], interactions between client applications and Web services are ensured

to proceed as intended given a well-defined and enforceable interface contract in the form of

LTL-FO+ formulas. The logic LTL-FO+ extends LTL with first-order quantification over

XML message elements. LTL-FO+ runtime monitoring uses an on-the-fly algorithm to only

create the states corresponding to values that have actually been observed. The number of

states grows logarithmically with trace length. Although log(x) is a very slowly increasing

function, it is not clear from [83] whether logarithmic growth is a general phenomenon or

only peculiar to the LTL-FO+ properties examined in that thesis. In [21], a logic called

LTLFO is used as a specification language for automata-based RV and two important condi-

tions for proper monitors are elucidated, namely trace-length independence (i.e., consistency

of RV efficiency as observations keep unfolding) and monotonicity (i.e., persistence of satis-

fied/violated verdicts once issued). Monotonicity is the main requirement distinguishing RV

(i.e., the prefix problem) from the word problem (i.e., satisfaction over finite words). While

the word problem for LTLFO is decidable, the prefix problem for LTLFO is not. Hence, the

constructed (spawning) automata checkers are sound, but necessarily incomplete. In [21], a

pair (p,d) of predicate p and a tuple of values d is called an action, whereas an event is a

finite set of actions. In this thesis, we basically restrict the number of actions per event to

one. Moreover, we preclude the use of rigid functions and predicates altogether. That comes

9



at the price of expressiveness, but ensures decidability of the RV problem (i.e., monitoring

completeness). Quantification is restricted in [21] to actual values observed in traces (called

domain independence), which is a severe restriction the limits expressiveness of LTLFO in

important ways, but is necessitated by allowing rigid functions and predicates (which would

need to be evaluated for all possible tuples of domain values). Spawning automata (SAs) [21]

may spawn a positive Boolean combination of child SAs, because spawning is intended to

reflect the syntactic structure of LTLFO formulas and is not triggered by dynamic variable

binding. In this thesis, semantics of self-replicating automata are different from spawning

automata, and self-replication does not involve Boolean combinations. Rather, replicas are

organized into a genealogical DAG only to make discovery of recombination opportunities

more efficient.

1.2.3 Performance Crisis: Architectural Support to the Rescue

Most of the prior work on RV of parametric and FOLTL specifications was focused on inline

(intrusive) monitoring frameworks implemented in software and usually relied on aspect-

oriented programming (AOP) facilities (e.g., AspectJ as in [165, 38, 6]) or dynamic binary

instrumentation or rewriting [17, 156] to automatically weave the checker code into the PUV.

However, an unaffordable performance and power penalty is usually incurred. In Figure 1.3,

performance overhead of RV is peaked by software tools such as DataRace [17], JavaMop [38]

and TraceMatches [28]. This evokes architectural support for RV to mitigate these costs and

enable post-deployment RV. A reasonable maximum overhead for RV architectures is 5%, as

recommended in [124]. The probe effect becomes less of a concern if the deployed program

execution can be constantly monitored with such reasonably low performance and power

penalties so that most bugs eventually show up over practically long executions. Specifica-

tions can be compiled with (and unobtrusively bound to) the PUV (and even shipped with

it to the field) and can be disabled without any performance penalty whatsoever.

10



Architectural support for RV has been gaining more interest both in industry and academia.

However, many of the attempted approaches to architectural support for RV depend on

automatic inference of functional intent from the program execution [178, 143, 177, 121].

Being limited to specific synchronization primitives (e.g., locks), these approaches are neither

general nor extensible, and take a considerable toll on the design silicon area and power

consumption. Explicit description of the functional intent enables the RV hardware to be

more goal-directed rather than striving to automatically infer the implicit intent of the

programmer. This also: (1) reduces the number of false positives usually resulting from

inferences inconsistent with the implicit functional intent, (2) reduces the RV hardware cost,

and (3) abstracts away any dependence of the hardware mechanisms on the synchronization

primitives used to implement the programmer’s intent. Although the above inference-based

approach affords a significant automation advantage over a specification-based approach

(where a designer needs to manually write specifications as shown in Figure 1.1), we bet

on two technologies that can aid programmers automatically discover and write elaborate

specifications: (1) Specification patterns [60], and (2) specification mining techniques [10].

An exception to the inference-based architectural support is [120] where a simple subset

(called sPSL) of the standard property specification language (PSL) is extended to the ver-

ification of C programs. PSL assertions about properties of a program are compiled into

hardware checkers that can be loaded into a dynamically extensible processor to be executed

concurrently and nonintrusively with the program. However, sPSL assertions are static

compile-time entities, rather than being instantiable at run-time according to program ex-

ecution. Moreover, the claim of zero monitoring overhead results from the tight coupling

between the monitor and the processor pipeline. This premise is easily invalidated even on

a single-chip multiprocessor (CMP) where monitoring must introduce CPU stalls to enforce

a globally consistent order of events emitted by distributed processor nodes (more on that

later). Finally, the atomic propositions are restricted to Boolean-typed C expressions, which

limits the scope of application of this scheme. In [178], iWatcher associates program-specified

11



monitoring functions with particular memory locations. When any such location is accessed,

the monitoring function is automatically invoked. iWatcher can be used to detect buffer over-

flow, accessing freed locations, memory leaks, stack smashing and value-invariant violations.

In [124], the major challenge in RV over multiprocessors is identified to be observing and

managing distributed state. Problems of distributed state management, such as consistency

and communications, are addressed in this thesis with the help of an automata transactional

memory (ATM) that takes advantage of all characteristics of the RV problem of FOLe-based

parametric specifications to maximize efficiency.

1.2.4 Specification Mining

Automated software verification and testing techniques decide correctness of a design against

an explicit or implicit notion of a formal specification that describes what a computing sys-

tem does or does not do (in the form of properties, assertions, etc.) independently of how

the system will be implemented, and in a formal language with well-defined semantics. A

good specification [107] must be complete (i.e., cover all aspects of system behavior), in-

ternally consistent (i.e., free from contradictions and, hence, satisfiable or implementable)

and unambiguous (i.e., uniquely determining design intent without unduly restricting im-

plementations). Unfortunately, formal specifications are not frequently used mainly because

of their high development and maintenance cost and complexity, since they require sub-

stantial expertise in formal specification languages and their decision procedures, as well as

abstraction techniques. Formal specification languages usually present different paradigms

(declarative, logical, etc.) than the more familiar imperative development languages. Most

programmers could understand and appreciate the meaning of a given specification, but

only a few can compose or come up with specifications from scratch.3 This difficulty hin-

3This is reminiscent of the widely held belief that P 6=NP in complexity theory, where many problems in
the NP class are hard to solve but their solutions can be efficiently verified. This correspondence is apt,
since the automata learning problem is indeed NP-hard [79].

12



ders formal specifications from coping with agile, fast-paced development environments that

foster rapidly evolving systems. Additionally, specifications of existing software systems are

needed to verify new systems built on top of them [176]. Software maintenance cost ranges

from 50% to 90% of the total cost [117, Chapter 1] mainly due to difficulty of understanding

existing code. In that regard, a distinction can be made [10] between the (typically sim-

ple) language-specific or library/API-specific properties (e.g., properties of standard library

classes) whose development cost is amortized over a large number of projects, and program-

specific properties relevant only to one particular design. Unless the prohibitive specification

development cost is reduced, program-specific properties will remain unjustified except for

costly safety-critical systems.

A key insight is that specification of a software module can be implicit or hidden in how

it is being used by, and reacting to, high-quality client code [176]. Therefore, specification

mining [10, 117] emerged as an automated technique used to discover/infer/learn formal

specifications of programs/systems from examples or samples of their executions, source code,

change logs or any associated artifact. Inferred properties can take many forms [117, Chapter

1], such as value invariants [66], FSMs [5, 8, 10, 43, 47, 88, 116], patterns and temporal

properties [63, 64, 115, 118], or sequence diagrams [31]. A specification mining tool [10, 110,

117] helps programmers understand programs and iteratively develop specifications for them,

where the behavior of a program is projected onto an observation interface in order to reduce

specification complexity (at the cost of precision) by isolating or decoupling different aspects

of a system. Specification mining is premised on the availability of fairly high-quality (but

not necessarily bug-free) software that can be exercised to reveal the most relevant aspects

of behavior without triggering bugs. Another premise is that observed behavior of a program

exhibits distinctive or characteristic statistical regularities that can be expressed in a concise

formal specification (e.g., state machines [10]). Inferred specifications can then be examined,

refined, abstracted or corrected by designers and verification specialists. Once validated,

these specifications will drive verification, regression testing, or serve as invariants to be

13



preserved as the design evolves, or can be published as part of documentation. Specification

mining helps to alleviate the specification completeness problem by discovering specifications

a system designer never thought about. Traces can be obtained from executed test cases

or symbolic execution [117, Chapter 1]. Due to the wide scope and vast expressive power

afforded by parametric and first-order logic (FOL)-based specifications [6, 10, 20, 21, 39,

117, 81, 83, 87, 110, 136, 164], we present a tool, called ParaMiner, that discovers software

properties of arbitrary, tunable complexity and precision from large execution traces. The

target specification formalism of ParaMiner is self-replicating deterministic finite automata

(SR-DFAs) [136] that detect violations of automatically learned program properties at run-

time.

1.3 Contributions

This thesis makes the following contributions:

• Specification and RV of distributed programs using the highly expressive specification

language of finite automata based on a first-order logic of events (FOLe).

• A representation of these automata in terms of a hypothetical countably infinite ensem-

ble of automaton replicas (checkers) as well as a novel finite, dynamic graph represen-

tation of that ensemble in terms of self-replicating automata. It is through the medium

of dynamic checker population that the behavior of the entire system is verified.

• A scalable distributed RV architecture, NUVA, that enables low-overhead RV for para-

metric specifications over distributed multiprocessor systems.

• A novel specification mining, and language learning, technique that is the first (to the

best of our knowledge) to introduce and use parametric multiple sequence alignment

(pMSA) that extends classical MSA [59] to handle parameterized (i.e., data-carrying)

14



alphabets.4 Sound theoretical underpinnings of using MSA as a language learning

tool are presented here. The use of MSA obviates many limiting assumptions made

by prior methods and resolves the long-standing initial-state uncertainty problem in

offline specification mining [154]. MSA naturally adopts a scoring scheme that can be

used to quantify the statistical significance of inferred formal specifications and reject

spurious properties (i.e., those properties scoring too low to be significant).

• An automated specification mining tool flow, called ParaMiner, for for specifications in

the form of SR-DFAs that detect potential violations, not only of API usage patterns,

but also of object manipulations by a given thread as well as thread interleavings on a

given object. ParaMiner also enables controlling abstraction levels of mined properties

by taking advantage of user-defined alphabet of data-carrying events or API, which

enables extraction of high-level specifications. Finally, ParaMiner automates and visu-

alizes trace segmentation, folding or alignment of trace slices, SR-DFA construction and

validation and exposes control knobs for programmers to tune specification complexity

and precision.

The graph representation is crucial for the efficiency of RV in FOLe for two reasons: (1) It

is used to detect when two checkers can recombine and, hence, keep the checker population

size small. (2) It is used to prune the set of checkers that need to be updated by a given

RV event and, hence, make the state-update procedure of the checker population almost

independent of the population size. The effectiveness of the proposed graph representation

is demonstrated by the very low conflict rate between concurrent RV transactions and will be

justified based on a locality of reference property confirmed by simulation of real benchmarks.

To the best of our knowledge, this thesis is the first to investigate architectural support for

RV of parametric specifications. Using MSA, ParaMiner can reconstruct properties with

abstract state spaces which do not merely duplicate the hidden program state space and

whose sizes are dictated solely by the complexity of observed execution traces. Each abstract

4Classical MSA was recently used in specification mining from digital logic simulation traces [137].

15



state of the constructed SR-DFA may stand for many concrete design states and can capture

unbounded temporal relations among widely separated events.

1.4 Organization

After this brief account of RV and review of prior work, the rest of the thesis is organized

as follows. Chapter 2 develops terminology and notation for subsequent discussions by ex-

pounding first-order logic of events (FOLe), which is the principal formalism underlying

self-replicating automata and ensemble semantics. Also, examples of parametric properties

are used to motivate subsequent discussions. Next, Chapter 3 develops the theory of graph-

ical representations of functions over (downward directed) partially ordered sets, which is

crucial to representing the (potentially infinite) ensemble of replicas semantically equivalent

to a given SR-DFA. Then in Chapter 4, we explain NUVA, the set of architectural elements

needed to accelerate RV with self-replicating automata for workloads having high event den-

sities. If the set of workload programs possess moderate event densities with respect to the

monitored interface (e.g., Linux system calls), the architectural implementation may become

unnecessary and can be replaced by a distributed network of pure software agents. Chapter 5

is the main chapter on mining specifications from parametric event traces. The entire flow

is becoming increasingly more important in the domain of anomaly-based intrusion detec-

tion, exploiting the enhanced precision of SR-DFA specifications as well as the automation

afforded by ParaMiner. Finally, Chapter 7 concludes the thesis with a summary of results

and starts a discussion on open problems as venues for future investigations.

16



Part I

Formalism

17



Chapter 2

Self-Replicating Automata

In this chapter, we develop the terminology and notation used throughout the thesis. A

formal specification consists of one or more properties, where each property establishes a

relation between events in temporal sequences. The most widely used specification formalism

is propositional linear temporal logic (PTL) [19]. The specification formalism of ParaMiner

is SR-DFAs. This chapter develops a rigorous mathematical basis for SR-DFAs and their

semantics.

2.1 Self-Replicating DFAs at a Glance

Intuitively, a SR-DFA is like an ordinary DFA, but with each transition labeled with a FOL

formula that may contain free variables, such as open(t, x1) ∧ ¬open(t, x2). The motivation

behind this is that many program properties are described in natural language in terms of

events involving one or more unspecified program objects and/or values. These unspecified

objects are intended to refer to every possible program object of a given type. For example,

a property of a program may dictate that if objects x1 and x2 are swapped at any instant of

18



time, they cannot be swapped with each other again until at least one of them is swapped

with a different object x3 (i.e., x3 6= x1 and x3 6= x2). SR-DFAs are able to directly

capture these natural-language specifications where each transition formula encodes a set

of parametric events which trigger that transition. A SR-DFA has one failure (trap) state

that is visited when the associated property is violated. In that sense, a SR-DFA accepts

(i.e., detects) minimal bad prefixes of violating traces. In general, such parametric properties

cannot be efficiently captured in PTL [19] because the domains of abstract program objects

(e.g., files, sockets, database records, threads, users, etc.) are unbounded, determined only at

runtime or, at best, too large to be exhaustively encoded into Boolean propositions. Hence,

conventional automata used to statically or dynamically verify PTL properties cannot be

used.

In general, the above properties cannot be efficiently captured in propositional temporal logic

(PTL) [19] because the object domains (e.g., graph nodes, threads, etc.) are unbounded and

determined only at runtime or, at best, too large to be exhaustively encoded into Boolean

propositions. Hence, classical automata [19] used to statically or dynamically verify PTL

properties cannot be used directly. Therefore, to check for parametric property violations

in parametric event traces at runtime, we introduce, in this thesis, SR-DFAs that accept,

in some sense, minimal bad prefixes of violating traces. That is, once an accepting state

of SR-DFA Aϕ of parametric property ϕ is reached, then ϕ cannot be satisfied along any

extension of the trace thus far observed.

A SR-DFA A stands for an infinite ensemble |A| of virtual replicas of itself, each correspond-

ing to a particular valuation of the free variables of A. A finite graph representation GA was

presented in [136] to capture states of all SR-DFA replicas at any finite time. Intuitively, GA

is a subgraph of a partially-ordered set (poset) structure PV ⊆ 2|A| induced by the set PV of

partial variable valuations (or bindings). When the monitored program starts, GA begins as

a single vertex with no variable bindings and, hence, stands for all replicas in |A|. When an

19



event σ occurs, it results in state transitions for a subset Rσ ⊆ |A| of replicas. The set Rσ

can itself be represented in terms of partial variable bindings with the help of a lattice-based

function graph (LBFG) representation.1 As a result, new vertices of GA are created while

others become redundant and may be annihilated (or garbage-collected). Vertices of GA

comprise a dynamic population of automata checkers.

To get a flavor of SR-DFAs and to illustrate the expressive power of parametric specifica-

tions,2 consider the following examples, which also illustrate the need for dynamic variable

binding and self-replication in checker automata. In the Barnes-Hut (BH) benchmark (based

on Lonestar BH implementation [106]), the BH tree construction phase was parallelized and

each builder thread is assigned a set of bodies to insert into a BH tree. To enhance per-

formance, a fine-grained locking scheme is used in which every tree node is protected by a

lock and the fairly complex locking discipline used is checked by the SR-DFA in Figure 2.1,

where state q6 is a failure state or a trap state for which the locking discipline is violated.

In a state diagram of a SR-DFA, an initial state is indicated by an incoming arrow and

accepting (failure) states are designated by double circles. The variables {t, n1, n2} range

over BH-tree builder threads and nodes, respectively. In the Canneal benchmark [23], the

netlist is a lock-free concurrent graph and multiple annealer threads independently conduct

random walks through the netlist and swap elements according to an annealing schedule.

A rather contrived, but interesting, property verified by the SR-DFA in Figure 2.2 requires

that whenever two elements are swapped, they cannot be swapped again until one of them

is swapped with a different element. Note that Swap(t, n1, n2) is the same as Swap(t, n2, n1),

since Swap is symmetric.

1Lattice-based Boolean diagrams (LBBD) were first introduced in [136] and then elaborated in [135].
2The full power of SR-DFAs manifests itself in using them as a behavioral modeling tools with properties

automatically extracted from program executions. In that case, extracted properties are complex and are
not intended for program understanding. Rather, the main purpose is anomaly detection.

20



q1start q2

q3

q4

q5q6

L1

¬L1 U1

L2

N2

¬U1 ∧ ¬L2 ∧ ¬N2

U
1

U2 ∨ L∗

¬U
1
∧
¬U

2
∧
¬L
∗ L

2

¬L∗ ∧ ¬U1

L
∗
2

U1

U
2

L∗

¬
U

2 ∧
¬

L
∗

true

• L1 : lock(t, n1)
• U1 : unlock(t, n1)
• L2 : lock(t, n2)
• U2 : unlock(t, n2)
• L∗ : lock(t, •)
• N2 : new(t, n2)
• L∗2 : lock(t,¬n2)

Figure 2.1: Parametric FSM checker for BH locking discipline. We use these abbreviations
p(•) ≡ ∀x.p(x) and p(¬x) ≡ ∀x′.p(x′) ∧ (x′ 6= x).

q1start q2 q3
S12

¬S∗ S12 ∨ S12 ∨ S21 ∨ S21

S12 ∨ S21

¬S12 ∧ ¬S21 ∧ ¬S12∧
¬S12 ∧ ¬S21 ∧ ¬S21

true • S∗ : Swap(•, •, •)
• S12 : Swap(•, n1, n2)
• S21 : Swap(•, n2, n1)
• S12 : Swap(•,¬n1, n2)
• S12 : Swap(•, n1,¬n2)
• S21 : Swap(•,¬n2, n1)
• S21 : Swap(•, n2,¬n1)

Figure 2.2: Parametric FSM checker for the Canneal element-swapping property (q3 is the
failure state).

2.2 First-Order Logic of Events

To define parametric events and traces, we employ the language of FOLe [136], which is FOL

without function symbols3, with restricted quantifier usage, and with predicates endowed

with instantaneous asynchronous event semantics by axiomatically restricting the set of pos-

sible interpretations, as detailed next. This allows the expression of more complex properties

than other formalisms such as regular expressions [6] and patterns [39] and naturally sup-

ports an unlimited number of parameters. Events taking part in a property specification are

formally represented by a set P of FOL predicates. Temporal relations among predicate val-

ues can be expressed using temporal operators (such as next, eventually, always, until,

before, etc.) [105] or finite automata (such as SR-DFAs). Predicates from P may stand

for explicit program events (e.g., method-call events) or derived from changes in program

state. For example, every object class may have a set of methods that can be called on any

3Except for zero-arity functions used, by convention, to represent constants.

21



instance of that class. To maximize concurrency, most specifications need to allow method

calls by different threads to overlap (rather than treat them as serialized atomic events) and

to describe nested method calls by the same thread. That is why each method func has two

predicates associated with it, a method-start predicate func.start and method-end predicate

func.end. A predicate can have any number of arguments, with the first always being the

calling thread or process. The return value of a call to method func can be considered as an

argument to func.end.

We borrow the logical notation from [105]. Let S∗ (resp. Sω) be the set of finite (resp.

infinite) strings over an arbitrary set S and let ε be the empty string. A many-sorted FOLe

signature SIG = (S,P,C) consists of:

• A set S of sorts or data types (e.g., primitive types, object classes, and thread function

types).

• A nonempty set of predicate symbols P =
⋃
s∈S∗ P(s) where P(s), for every s ∈ S∗, is

a (possibly empty) set of predicate symbols and s is a predicate prototype giving the

tuple of data types accepted as arguments by elements of P(s). The first element of s

is always the calling thread or process type.

• A set of constant symbols C =
⋃
s∈S Cs where Cs, for every s ∈ S, is a (possibly

empty) set of constant symbols of sort s.

Also, let the set X =
⋃
s∈SXs be a countable set of variables of various sorts. Variables

can be used as predicate arguments and by quantifiers ∃ and ∀. Let F(SIG) be the set of

well-formed formulas [105] in SIG defined by the following syntactic rules:

formula := atom | formula ∧ formula | formula ∨ formula | ¬formula | (formula) (2.1)

atom := p(x1, . . . , xn) | ∃xk.atom | ∃x′k.atom ∧ (x′k 6= xk) (2.2)

22



Let Atoms be the set of all atoms defined above. By way of syntactic sugaring, we have:

∃xk.p(. . . , xk, . . .) ≡ p(. . . , •, . . .)

∃x′k.p(. . . , x′k, . . .) ∧(x′k 6= xk) ≡ p(. . . ,¬xk, . . .)
(2.3)

2.2.1 Constant Arguments

Some events may have a finite-valued argument, such as a Boolean or enumeration. In that

case, using variables during MSA to abstract the values of these arguments in the observation

traces is undesirable, since each individual value may indicate or trigger a characteristically

different behavior and distinction needs to be preserved. Therefore, we use a FOL constant

for each possible value of a finite-valued argument type to prevent alignment of distinct

values. Hence, the use of constants increases the resolving power (or precision) of extracted

specifications.

2.3 Semantics

The set P of predicates represents instantaneous, asynchronous parameterized events that,

at any time, involve a particular tuple of values (e.g., objects and threads) and where events

can only interleave and are impossible to occur simultaneously. Software systems that fulfill

this condition are termed asynchronous systems [19]. This requirement can be axiomatized

as follows:

q1 6= q2 ⇒ ¬q1(x) ∨ ¬q2(y), (2.4)

x 6= x′ ⇒ ¬q(x) ∨ ¬q(x′) (2.5)

23



where x = (x1, .., xm) and y = (y1, .., yn) are vectors of argument variables and constants,

and x 6= x′ means that (x1 6= x′1)∨ . . .∨ (xn 6= x′n). Formulas in F(SIG) are interpreted (i.e.,

assigned truth values) given a structure and a variable valuation. A first-order structure S

consists of:

• A data component, or universe, |S| =
⋃
s∈S |S|s, where |S|s is a nonempty set, called

domain, for every sort s ∈ S.

• A set of mappings pS : |S|s1 × . . . × |S|sn → {false, true} for every predicate symbol

p ∈ P(s1,...,sn).

• A mapping CS : C → |S| such that for every s ∈ S and every c ∈ Cs, we have

CS(c) ∈ |S|s.

Moreover, to interpret formulas containing free (i.e., unquantified) variables, a variable val-

uation ξ : X → |S| with respect to data component |S| is used to assign to each variable a

value compatible with its data type (i.e., x ∈ Xs ⇒ ξ(x) ∈ |S|s). Let ΞS be the set of all

such variable valuations.

Models of FOLe Formulas - The Alphabet Set. For all subsequent discussions, we

consider structures with a fixed data component |S| and fixed constant values CS. We will

also use a predicate symbol p ∈ P and its interpretation pS interchangeably. Axioms 2.4, 2.5

restrict the possible structures (i.e., models) of a FOLe signature SIG to sets of mappings

pS : |S|s1 × . . . × |S|sn → {false, true} such that there is at most one (s1, . . . , sn) ∈ S∗ and

at most one p ∈ P(s1,...,sn) and at most one tuple of values (v1, . . . , vn) ∈ |S|s1 × . . . × |S|sn

with pS(v1, . . . , vn) = true. Let ΣSIG (or simply Σ, since SIG is fixed) be the set of all possible

models of a FOLe signature SIG. Intuitively, Σ ⊆ P × |S|∗ is the (infinite) alphabet set

(i.e., the set of all parametric events) obtained from each p ∈ P as its arguments range

over their respective domains. A structure S and a variable valuation ξ with respect to S

inductively assign a truth value S(ξ)(f) to every FOLe f ∈ F(SIG). We say σ ∈ Σ is a model

of f ∈ F(SIG), denoted by σ |= f , if there is a variable valuation ξ such that S(ξ)(f) = true.

24



The FOLe restrictions on the use of quantifiers ensure that the set of variable valuations

that make any FOLe formula true in a given model is described by an equality-logic formula.

Theorem 2.1. Given a FOLe formula f ∈ F(SIG) and a model σ ∈ Σ, the set of variable

valuations that make f true in σ is described by an equality-logic formula.

Proof. Let � be a binary operator with the left operand given by a FOLe model (i.e., a

parametric event), the right operand given by a FOLe formula and the result given by a

logical description of the set of all variable valuations that render the right operand formula

true in the model given by the left operand. This theorem follows directly from the following

unification rules :

p(x1, . . . , xn) � (f1 ∨ f2) = (p(x1, . . . , xn)� f1) ∨ (p(x1, . . . , xn)� f2)

p(x1, . . . , xn) � (f1 ∧ f2) = (p(x1, . . . , xn)� f1) ∧ (p(x1, . . . , xn)� f2)

p(x1, . . . , xn) � (¬f) = ¬(p(x1, . . . , xn)� f)

p(x1, . . . , xn) � p(y1, . . . , yn) = (x1 = y1) ∧ . . . ∧ (xn = yn)

p(x1, . . . , xn) � p(y1, . . . ,¬yn) = (x1 = y1) ∧ . . . ∧ (xn 6= yn)

p(x1, . . . , xn) � p(y1, . . . , •) = (x1 = y1) ∧ . . . ∧ (xn−1 = yn−1)

In fact, Theorem 2.1 is a characterization of FOLe as the fragment of FOL for which every

member logical formula has models consistent only with variable valuations described by

equality-logic formulas. FOLe is the fragment of FOL whose models imply equality-logic

constraints over variable valuations. For every FOLe formula f ∈ F(SIG), let M(f) ⊆ Σ be

the set of models of f .

Parametric traces. A parametric trace is an infinite sequence σ : N→ Σ = (σ0, σ1, σ2, . . .)

of parametric events. Given a variable valuation ξ with respect to |S| and a parametric trace

σ, we can assign a truth value K
(ξ)
σt (f) for every formula f ∈ F(SIG) at every time instant

25



t ∈ N in consistence with the familiar semantics of logical operators. Since every parametric

event takes the form p(c1, . . . , cn) where p ∈ P(s) for some s ∈ S∗ and ci ∈ |S|si for all i, it

follows that the base cases are given by:

K
(ξ)
σt (p(x1, . . . , xn)) = true iff σt = p(c1, . . . , cn) and ξ(xi) = ci for i = 1, . . . , n

K
(ξ)
σt (p(x1, . . . ,¬xn)) = true iff σt = p(c1, . . . , cn) and ξ(xn) 6= cn, ξ(xi) = ci for i 6= n

K
(ξ)
σt (p(x1, . . . , •)) = true iff σt = p(c1, . . . , cn) and ξ(xi) = ci, for all i 6= n

2.3.1 State Transition Systems.

The set of all observable parametric event traces of the program under verification (PUV)

can be described by a state transition system TS [105], given by a tuple (S,→, I,Σ, L),

where S is the set of states, → ⊆ S×S is a (possibly nondeterministic) total transition

relation, I ⊆ S is a set of initial states, Σ is the FOLe alphabet set, and L : S → Σ is a

labeling function.4 Nondeterminism of → might be due to abstraction, concurrency or lack

of constraints on external program inputs. The set P is chosen depending on the properties

to be verified, and summarizes the observable events of interest emitted by TS. A path in TS

is a (possibly infinite) sequence of states s0, s1, s2, . . . such that s0∈I and si→si+1 for i ≥ 0.

For every path s0, s1, s2, . . ., there is a trace L(s0), L(s1), L(s2), . . .. The set Traces(TS) is

the set of all traces of TS starting from an initial state.

2.3.2 Linear-Time Parametric Properties.

Let Σω be the set of infinite words over Σ. A linear-time (LT) property ϕ over Σ is a subset of

Σω. Transition system TS satisfies LT property ϕ, written as TS |= ϕ, iff Traces(TS) ⊆ ϕ.

4Clearly, TS thus defined is infinite and each state may have infinitely many successors. So this represen-
tation is only conceptual and, for the purposes of runtime verification only, we will devise decision algorithms
that are guaranteed to terminate.

26



A LT property ϕ is a safety property if every violating trace τ ∈Σω (i.e., τ 6∈ϕ) has a finite

bad prefix (i.e., a prefix all of whose infinite extensions also violate ϕ). A regular safety

property is a safety property whose bad prefixes can be recognized by a SR-DFA.

2.4 Self-Replicating DFAs

Motivated by the intuitive nature of finite automata and the availability of automata min-

ing algorithms [110], we adopt SR-DFAs as the specification formalism. Unlike Büchi au-

tomata [19] which operate on infinite words, a SR-NFA operates only on finite words. A

SR-NFA is a tuple A = (Q, SIG, δ, Q0, F ), where Q is a finite nonempty set of states, Q0 ⊆ Q

is the set of initial states, SIG is a FOLe signature, F ⊆ Q is the set of final (or accepting)

states indicating violation of the monitored property. Finally, δ ⊆ Q×F(SIG)×Q is the

transition relation. The set F of final states is terminal (or a trap). That is:

∀(q1, f, q2) ∈ δ : q1 ∈ F =⇒ q2 ∈ F

Free variables in transition formulas of a SR-NFA A is intended to attach an instance of A

to every valuation ξ of those free variables. Thus, for every ξ, the transition relation δ yields

a concrete relation δ(ξ) ⊆ Q×Σ×Q where:5

(q1, σ, q2) ∈ δ(ξ) ⇐⇒ ∃(q1, f, q2) ∈ δ : K(ξ)
σ (f) = true

A SR-NFA A is deterministic (a SR-DFA) if |Q0| ≤ 1 and for every q ∈ Q, σ ∈ Σ and every

ξ, we have |δ(ξ)(q, σ, ·)| ≤ 1 or, equivalently:

∀(q, f1, q1), (q, f2, q2) ∈ δ : q1 6= q2 =⇒ ¬(f1 ∧ f2)modulo FOLe

5We will also use δ(ξ) as a function δ(ξ) : Q×Σ→ 2Q.

27



It is nondeterministic (a SR-NFA) otherwise. The extended transition function ∆(ξ) :Q×Σ∗→

2Q is inductively defined as:

w,w′ ∈ Σ∗, σ ∈ Σ, w = σw′ =⇒ ∆(ξ)(q, w) = ∆(ξ)(δ(ξ)(q, σ), w′)

In this thesis, we adopt ensemble semantics of SR-NFAs, as defined in [136]. Given a

parametric property ϕ, in the form of a SR-NFA Aϕ, a finite prefix w ∈ Σ∗ is accepted

by Aϕ and is called a bad prefix iff there is a variable valuation ξ : X → |S| such that

∆(ξ)(Q0, w) ∩ F 6= ∅.

The language L(A) of SR-NFA A is the set of all accepted finite words. For any q1, q2∈Q, if

q2∈δ(ξ)(q1, σ), this is abbreviated as q1
ξ,σ−→q2. If ∼ ⊆ Q×Q is an equivalence relation, then

each equivalence class is an abstract state [42] and A/∼ is the quotient automaton, which

can be nondeterministic even if A is deterministic. It then holds that L(A) ⊆ L(A/∼).6

Given a SR-DFA A = (Q, SIG, δ, Q0, F ), let θ : Q → Γ be an output function with output

alphabet Γ = {>,⊥, ?}, indicating satisfaction, violation or indecision of the monitored

property, respectively. We now define the finite-word semantics. A parametric property ϕ,

in the form of a SR-DFA Aϕ, implements, for every possible variable valuation ξ, a three-

valued semantic function [• |= ϕ]ξ = Fϕ|ξ : Σ∗ → {>,⊥, ?} that assigns to each finite prefix

u ∈ Σ∗ of an infinite trace one of three truth values (> or true, ⊥ or false, ? or inconclusive)

as follows:

Fϕ|ξ(u) = [u |= ϕ]ξ =


> if ∀σ ∈ Σω : u.σ |= ϕ|ξ

⊥ if ∀σ ∈ Σω : u.σ 6|= ϕ|ξ

? otherwise

where ϕ|ξ is the parametric property ϕ after substituting all free variables with their values

from ξ. The semantic function Fϕ|ξ extends the output function θ : Q → {>,⊥, ?} of

Aϕ to finite words. If Ξ is the set of all variable valuations, then a semantic function

6This holds if the quotienting operation uses existential abstraction [42], which over-approximates the
original automaton A.

28



[u |= ϕ] = Fϕ : Σ∗ → {>,⊥, ?} is defined as:

[u |= ϕ] =
∧
ξ∈Ξ

[u |= ϕ]ξ (2.6)

2.4.1 Ensemble State

Let Ξ be the set of all variable valuations. Then an ensemble state is given by a mapping

λ : Ξ → Q. The set of initial ensemble states for a SR-NFA A is given by the set Λ0 of all

ensemble states λ0 such that ∀ξ ∈ Ξ : λ0(ξ) ∈ Q0. Let Λ† be the set of all possible functions

λ : Ξ→ Q. SR-NFA A defines a transition structure →E⊆ Λ†×Σ×Λ† over Λ† where:

∀λ1, λ2 ∈ Λ†, σ ∈ Σ : λ1
σ−→E λ2 ⇔ ∀ξ ∈ Ξ : λ2(ξ) ∈ δ(ξ)(λ1(ξ), σ)

Let Λ be the set of all possible ensemble states reachable from an initial state λ0 ∈ Λ0 on a

finite word w ∈ Σ∗.

2.4.2 Formal Verification

Given a SR-NFA Aϕ = (Q, SIG, δ, Q0, F ), the product TS
⊗
Aϕ = (S ′,→′, I ′,Σ, L′) is de-

fined as:

S ′=S×Λ, (2.7)

I ′ ={(s0, λ)|s0∈I,∀ξ ∈ Ξ.∃q0∈Q0 : δ(ξ)(q0, L(s0)) = λ(ξ)} (2.8)

∀s1, s2 ∈ S,∀λ1, λ2 ∈ Λ
s1 → s2, λ1

L(s2)−−−→ λ2

(s1, λ1)→′ (s2, λ2)
(2.9)

To verify that a finite initial path s0, s1, . . . , sn in TS, with s0 ∈ I, models ϕ, it is sufficient

to check that for all (si, λi)∈ S ′, with 0 ≤ i ≤ n and (s0, λ0) ∈ I ′, there is no ξ ∈ Ξ such

that λi(ξ)∈F , since accepting states in F indicate violation of ϕ. To verify that TS |=ϕ,

it is sufficient to check that for all (s, λ)∈S ′ reachable from I ′, there is no ξ ∈ Ξ such that

29



λ(ξ)∈F .

2.5 Runtime Verification with SR-DFAs

The central question now is how to verify a parametric property given by a SR-DFA Aϕ. The

major problem is that the semantic function [u |= ϕ] in equation (2.6) is a conjunction over

an infinite ensemble |Aϕ| of virtual replicas of Aϕ, each corresponding to a particular variable

valuation ξ of the free variables of ϕ and using its own semantic map Kξt to follow a path

(qξ0, q
ξ
1, q

ξ
2, . . .) in Aϕ. A main contribution of this thesis is an efficient method for calculating

[u |= ϕ] at every instant of time using a finite DAG representation that captures states of

all SR-DFA replicas in |Aϕ| by using partial variable valuations. More technical details on

graph representations of functions over partially ordered sets are provided in Chapter 3 and

particular attention to multi-variable functions is in Section 3.8.1.

2.5.1 The Semi-Lattice of Partial Variable Valuations

Let Ξ∗ be the meet-semi-lattice of all (possibly partial) variable valuations ξ∗ : Y → |S| for

all Y ⊆ X . A partial valuation ξ∗1 : Y1 → |S| is less specific (i.e., binds less variables) than

another ξ∗2 : Y2 → |S|, denoted by ξ∗1 � ξ∗2 , iff for every y ∈ Y1, ξ∗1(y) = ξ∗2(y). It is also said

that ξ∗2 extends ξ∗1 . An ensemble state λ : Ξ→ Q can be recursively extended to a function

λ∗ : Ξ∗ → Q as follows:

• λ∗(ξ∗) = q if, for all ξ which is a complete extension of ξ∗ such that there is no extension

ξ∗ � ξ′ � ξ with λ∗(ξ′) 6= q, we have λ(ξ) = q.

The space of all extended ensemble states λ∗ : Ξ∗ → Q is denoted by Λ∗. Theorem 2.2

formally states that, for the purposes of RV, a finite directed acyclic graph Enst can be used

30



to represent the ensemble state defined over a (potentially infinite) infinite ensemble |Aϕ| of

SR-DFA replicas, where Enst = (Vt, Et, r, ρt, qt) with:

• Vt is the vertex set representing the replica population.

• Et ⊆ Vt × Vt is the set of directed edges.

• r is the distinguished root vertex of the graph.

• qt : Vt → Q assigns to each vertex v ∈ Vt a state qt(v).

• ρt : Vt × X → |S| ∪ {nil} associates with each vertex v ∈ Vt a (possibly partial) set of

variable bindings such that ρt(r, x) = nil for every x ∈ X and t ∈ N.

We will later study conditions under which that graph representation is not only finite, but

also bounded.

Theorem 2.2. At every time instant t ∈ N, there is a finite subset Ξ∗t ⊆ Ξ∗ such that the

ensemble state λt : Ξ −→ Q and the extended ensemble state λ∗t : Ξ∗ −→ Q satisfy the

relation:

∀ξ ∈ Ξ : ξ∗ l ξ in Ξ∗t ⇒ λt(ξ) = λ∗t (ξ
∗)

The proof of Theorem 2.2 is expounded in the following sections, which also explains how RV

with SR-DFAs works in practice, both at compile-time and at run-time. The ensemble graph

derives from (and owes its efficiency to) a novel graphical function representation (so-called

lattice-based function graph or LBFG), defined in Chapter 3, which has also been applied

in [135] to the representation of Boolean functions f : {0, 1}n → {0, 1}.

2.5.2 Graphical Representation of Ensemble State.

Initially, all replicas of Aϕ have the same state. Therefore, the initial ensemble state λ0 and

the extended ensemble state λ∗0 both satisfy the condition λ0(ξ) = λ∗0(ξ∗) = q0 for all ξ ∈ Ξ

and ξ∗ ∈ Ξ∗. Thus, Ξ∗0 starts as a single element, the bottom ⊥ of Ξ∗, that stands for the

31



entire ensemble Ξ, since ⊥ initially has no successors in Ξ∗0 and all SR-DFA free variables

are left unbound.

2.5.3 Graphical Representation of SR-DFA Transition Function.

Let FP , where X ∩ FP = ∅, be a set of formal parameters, which are variables used, at

compile-time, as uninterpreted placeholders for predicate arguments that materialize only at

run-time. Now, since we know how (Ξ∗0, λ
∗
0) looks like, let’s see how (Ξ∗t , λ

∗
t ) evolves from

(Ξ∗t−1, λ
∗
t−1) given the current event σt. The current event σ ∈ Σ is unified with every formula

f ∈ F(SIG) in the transition function δ of Aϕ to find which variable valuations may lead to

state transitions. The result of unifying an event σ = p(a1, . . . , an) with a formula f ∈ F(SIG)

is an equality-logic formula f |σ containing only literals of the form (xi = ai) and (xi 6= ai),

where xi ∈ X is a free variable or a symbolic constant used by Aϕ and ai is a particular

value from the domain of xi. At compile-time, ai is a formal parameter from FP to refer to

a particular parameter position of a predicate symbol. The actual value held by a predicate

argument is substituted at run-time. All variable values satisfying (resp. not satisfying)

f |σ stand for a subset of |Aϕ| that takes (resp. does not take) the transition enabled by

f . The equality-logic formula f |σ can be represented as a LBFG by transforming it into a

Boolean formula e(f |σ), called its propositional skeleton [104], by encoding every literal of

the form (x = a) with a propositional variable x̂a ∈ {0, 1} and encoding (x 6= a) with ¬x̂a

and adding constraints that prohibit a variable from having multiple binding values (e.g.,

(x 6= a) ∨ (x 6= b)).

For every SR-DFA state q and for every FOLe formula f labeling one of its outgoing transi-

tions, we construct a LBFG G1(q, f, p) for every FOLe predicate p. For example, if formula

f = swap(x,¬x), the corresponding replication graph is shown in Figure 2.3, where the

right-hand graph is obtained from the left-hand graph by using the equation (x = a1) to

32



{}

{x = a1}

{x = a1,
x = a2}

{}

{x = a1}

{x = a1,
a1 = a2}

Figure 2.3: An example of the emergence of guard expressions.

{}

{x = a1,
x = a2}

{}

{x = a1,
a1 = a2}

Figure 2.4: An example of the emergence of guard expressions.

substitute in the second equation (x = a2). Figure 2.4 also shows the replication graph

for f = swap(x, x) and event swap(a1, a2). Equation literals not involving variables (i.e.,

containing only event arguments, constants, or actual literals) can be thought of as guard

expressions.

Since, for a SR-DFA, formulas labeling all outgoing transitions {f1, . . . , fn} of any state q

are mutually exclusive (i.e., every replica with a complete set of variable bindings can only

take one transition at any time), all LBFGs G1(q, fi, p) associated with formulas {f1, . . . , fn}

and predicate symbol p ∈ P can be composed7 into one LBFG G2(q, p) associated with the

pair (p, q). Then all LBFGs G1(q, p) can be composed8 into one LBFG G(Aϕ, p) associated

with SR-DFA Aϕ and predicate p.

It follows that the effect of event σ on a LBFG Ξ∗t representation of ensemble state at time

t is given by the composition of local transformation G(Aϕ, pt) with Ξ∗t . As a result, some

elements of Ξ∗t disintegrate or shatter or self-replicate into multiple, more specific elements

(i.e., elements higher in the partial valuation order) with different states. On the other

7Using disjoint-union composition defined in Section 3.5.1.
8Using local transformation composition defined in Section 3.6.

33



hands, some elements of Ξ∗t become redundant and recombine with other elements of Ξ∗t into

less specific elements, which helps keep the size of Ξ∗t manageable. A crucial aspect to the

efficiency of SR-DFAs is the process of checker recombination or garbage collection [98] that

counters the self-replication process so as to keep the ensemble DAG reasonably small. A

single event can cause the collapse of the entire population.

Thus, LBFG representation of the SR-DFA transition relation offers a very concise and

efficient way of pre-computing ensemble LBFGs at compile time. This shifts most of the

heavy lifting to compile time which substantially reduces hardware area and power overhead.

2.5.4 Interpretation of the Transition LBFG

For a SR-DFA, the LBFGs G(Aϕ, p) represent the ensemble state transition function of a

SR-DFA Aϕ in response to various event predicates p. Important insights about SR-DFA

population growth can be obtained by studying the composition of these local transforma-

tions into an extended ensemble state transition function h(w) that maps an initial ensemble

state λ0 into a final ensemble state given a finite word w of FOLe events parameterized

with formal parameters from FP . The ensemble state LBFG is bounded if all trajectories

reachable from λ0, under sequences of local transformations G(Aϕ, p), are bounded.

Note that the LBFG representation of h(w) consists of nodes labeled with sets of equality-

logic atoms involving free variables and symbolic constants from the transition function of

Aϕ as well as formal parameters occurring at possibly different moments along w. This

points out a salient feature of SR-DFAs:

• Since a SR-DFA uses only a finite set of free variables and constants, these sets of

equality-logic atoms (called cubes) can be written as one equality between a free vari-

able and a formal parameter with every other atom being an equality between two for-

34



mal parameters possibly occurring at two different time moments along w. Thus, given

a finite word w, the failure state of a SR-DFA is reachable subject to an equality-logic

constraint on the formal parameters of events along w. Thus, a SR-DFA constrains

which objects or values can be manipulated by a program at different moments in time.

• A SR-DFA is characterized by two memory spans, a sequential memory span associated

with its set of states9 and a data memory span associated with its set of free variables.

The population size is bounded if the data memory span is bounded for all legal event

sequences (assuming the number of free variables is finite).

Given a LBFG representation (Ξ∗, λ∗) of a SR-DFA ensemble state, it is evident that if

ξ∗1 ∨ ξ∗2 does not exist, where (ξ∗1 , ξ
∗
2) ∈ Ξ′1 × Ξ′2, then ξ∗i ∨ ξ∗j also does not exist for all their

successors (ξ∗i , ξ
∗
j ) v (ξ∗1 , ξ

∗
2). This ensures that the semi-lattice Ξ∗ is a hereditary poset in

the sense of Section 3.3. This is the main reason that RV with SR-DFAs is efficient, since

state transitions induced every event (as represented by a local transformation) are localized

to specific subspaces of Ξ. Hence, in a distributed system, events tend to have minimal

conflicts.

Lemma 2.3. For every pair (ξ∗1 , ξ
∗
2) ∈ Ξ′1 × Ξ′2, if ξ∗1 ∨ ξ∗2 does not exist, then ξ∗3 ∨ ξ∗4 does

not exist for every pair (ξ∗3 , ξ
∗
4) ∈ Ξ′1 × Ξ′2 such that ξ∗1 � ξ∗3 and ξ∗2 � ξ∗4.

9By Myhill-Nerode theorem for DFAs, each state corresponds to a set of equivalent finite words that are
indistinguishable by any extension. Thus, each DFA state summarizes the history of all its words.

35



Chapter 3

Lattice-Based Function Graphs

This chapter presents lattice-based function graphs (LBFGs), a graphical representation of

discrete functions over partially ordered sets (posets, for short), as well as symbolic manip-

ulation algorithms. As will be shown in Chapter 4, LBFGs proved to be instrumental to

the efficient RV of SR-DFA software specifications over distributed multiprocessor systems

using NUVA. A special case of LBFGs is given by lattice-based Boolean diagrams (LBBDs)

introduced in [135], a graphical representation of Boolean functions that is not derived from

binary decision diagrams (BDDs). We later identify a class of Boolean functions where

LBBDs are demonstrably more efficient to construct, and reason with, when compared to

BDDs and zero-suppressed BDDs (or ZDDs, for short). The case studies include ITC99 and

MCNC benchmarks, randomly generated cube covers or sum-of-products (SOP) formulas as

well as multi-level Boolean formulas.

36



3.1 Introduction

Boolean functions constitute an important class of functions. NP-completeness of the Boolean

satisfiability problem [44] (K-SAT for K > 2) not only implies, on the dark side, that

most likely it is intractable in the worst case, but also that a large and important class

of decision problems (NP problems) can be reduced to it so efficiently that SAT solvers

and graphical representations of Boolean functions became mainstream tools in many ar-

eas [9, 24, 49, 76, 82, 126, 127]. Therefore, Boolean functions play the role of a universal (yet

primitive and sometimes cumbersome) language in which many interesting problems, from

formal verification [102] and logic synthesis [82] to knowledge representation [49] and com-

putational biology [76], could be cast and solved. Decision diagrams, such as BDDs [32], are

fundamental data structures used to represent Boolean functions. Much of their power de-

rives from their canonicity which helps in equivalency checking [30], compactness over a large

class of Boolean functions, efficient construction and symbolic manipulation procedures, in

addition to compositionality (which enables sharing common sub-functions). However, the

Boolean function space is vast and is not amenable to a single universally efficient represen-

tation. That gave rise to a plethora of other more specialized representations. For example,

zero-suppressed BDDs (ZDDs) [132] were introduced to represent families of sparse subsets

of a given large set (a common case in combinatorics) or, equivalently, to represent cube cov-

ers. BDDs have also spawned many other types of graphical representations [18, 33] for more

general finite-valued functions. Thus, as the unfettered scope of Boolean functions continues

to encompass new applications, the best strategy is to be equipped with an arsenal of dif-

ferent representations that can be efficiently converted among themselves and select the one

that best matches every particular task. Decision diagrams (DDs) model an n-ary Boolean

function f : {0, 1}n → {0, 1} by the set of sequences of binary decisions on the n Boolean

variables (traversed in a particular order) needed to evaluate that function. However, the

Boolean-lattice structure of the set {0, 1}n is not utilized and appears only implicitly in the

37



relation among BDD paths, obscured by the imposed variable ordering.

In [135], we started with a well-known lattice-based representation of monotonic Boolean

functions and illustrated its clear advantage over BDDs and ZDDs. We then generalized that

representation to arbitrary Boolean functions and empirically showed that substantial savings

can still be achieved especially as functions approach the monotonic regime. We concluded

with detailed benchmarking results using real as well as synthetic Boolean functions. In this

chapter, we generalize these lattice-based Boolean diagrams (LBBDs) to all discrete functions

defined over posets (not necessarily lattices or semi-lattices) with very general requirements.

We also develop symbolic algorithms implementing all the pointwise composition operations

(e.g., Boolean logic operations) directly on these lattice-based function graphs (LBFGs). A

main contribution of this thesis is an algorithm to construct LBFGs symbolically rather than

by direct reduction from the (exponentially large) partially-ordered domain (e.g., the Boolean

lattice {0, 1}n). LBFGs proved crucial for RV of SR-DFA specifications over distributed

multiprocessor systems [136], where they are central to the representation of both SR-DFA

transition functions as well as the time-varying states of a (potentially infinite) ensemble

of automaton replicas. This LBFG is a concurrent data structure that can be updated

incrementally and concurrently by multiple threads with low conflict rates. LBFGs also

enabled efficient processing of RV transactions by leveraging temporal and spatial locality

of monitored software programs and reducing conflicts among concurrent RV transactions.

Other prior work on DDs [77] improved over multi-terminal BDDs (MTBDDs) [75], used to

represent functions f :{0, 1}n→L with L being any finite set, by imposing lattice structure

over the range set L. This restricts their possible applications. They also still qualify as

decision diagrams, since they use a BDD to represent the Boolean-lattice structure of the

domain set {0, 1}n.

38



3.2 Prior Work

A discrete function f : X1× . . .×Xn −→ X, ranging over a finite set X, over a finite set of n

discrete variables can be represented by a multi-valued decision diagram (MDD) [163] where

the multiplicity of terminal nodes equals |X| and the branching factor of every nonterminal

node v labeled with a variable xi equals |Xi|. Binary decision diagrams (BDDs) are special

cases of MDDs where the range and all variable domains are binary.

LBFGs and LBBDs are not Decision Diagrams. As mentioned in [135], all decision

diagrams (DDs), including LVBDDs [77], ROBDDs [32] and MTBDDs [75], model an n-ary

Boolean function f : {0, 1}n → {0, 1} by the set of sequences of binary decisions on the n

Boolean variables (traversed in a particular order) needed to evaluate that function. However,

the Boolean-lattice structure of the set {0, 1}n is not utilized and appears only implicitly in

the relation among BDD paths, obscured by an imposed variable ordering. This is the origin

of the dependence of DD size on variable order. A main contribution of this thesis [135] is

that, by exploiting the Boolean lattice structure of the set {0, 1}n, we depart from the BDD

orthodoxy. Unlike LVBDDs [77], which are still binary decision diagrams, LBBDs [135] are

not decision-based. That is why LBBDs are independent of any variable ordering, whereas

LVBDDs rely on the existence of a good variable ordering (which implies the need for variable

ordering heuristics). In [77], efficiency of LVBDDs for representing finite-valued functions

f : {0, 1}n → L hinges on the range set L having a distributive lattice structure. On the

other hand, our work [135] demonstrated how the Boolean lattice structure of the domain

{0, 1}n may contribute to the efficiency of representation.

Scope of Applications. In [77], imposing a distributive lattice structure over the range

set L restricts its applicability to problems where this is the case, such as alternating finite-

state automata, multi-valued logics and abstract interpretation.1 In [135], for simplicity

1These are the specific applications listed in [77].

39



LBFGs

MTBDDs

LBBDs

LVBDDs ROBDDs

Most General Least General

Domain:

Range:

Poset with ⊥
Finite set

{0, 1}n

Finite set

{0, 1}n

Distributive lattice

{0, 1}n

{0, 1}

Figure 3.1: Comparison of generality of various representations of finite-valued functions
over Boolean variables. ROBDDs, LVBDDs, and MTBDDs are decision diagrams, whereas
LBFGs and LBBDs are not decision-based.

of presentation, we focused on binary-valued functions f : {0, 1}n → {0, 1} over Boolean

variables. However, the proposed LBBDs apply in a straightforward way to finite-valued

functions f : {0, 1}n → L, where L can be any finite set, not necessarily a lattice. The

lattice structure of the domain {0, 1}n, used by LBBDs [135], is universally common to all

functions of the form f : {0, 1}n → L which does not restrict its applicability in any way.

The relative generality of various graph representations is shown in Figure 3.1.

Reductions. LVBDDs [77], as their name implies, generalize BDDs by labeling BDD nodes

with values from the range lattice. The reductions used by LVBDDs still work over an

underlying BDD and refer only to the lattice structure of the range set L. Whereas reductions

used by LBBDs [135] are not constrained by any secondary structure on the range set L.

3.3 Lattice Functions into Finite Sets

Given a partially ordered set (poset) (X,�) with a minimum (and, hence, unique) element

⊥, let Y X be the space of functions f : X −→ Y where Y is some finite set. We now

40



focus on lattice-based function graph (LBFG) representations of functions in Y X which is

advantageous because it enables incremental updates in cases where the function changes

with time due to local transformations. In all LBFGs we study in the sequel to represent

functions, graph vertices are elements of a poset (X,�). Edges in those LBFGs are induced

by the partial order inherited from X through transitive reduction. Thus LBFGs edges

represent the covering relation (Hasse Diagram) of �. Therefore, edges will always remain

implicit (although they are essential in taming the computational complexity of all symbolic

algorithms) and our focus will be on constructing the set of vertices.

An element a1 ∈ X which is a maximal lower bound (MLB)2 of another a2 ∈ X is denoted

by a1 l a2. Also, an element a1 ∈ X which is a minimal upper bound (MUB) of another

a2 ∈ X is denoted by a1 m a2. A downward direct set is a poset where every pair of elements

have a (not necessarily unique) lower bound (but not necessarily a greatest lower bound as

in a meet semilattice) in the set. The set of minimal upper bounds (i.e., successors) of any

element a ∈ X is an antichain by the definition of minimal. For every a1, a2 ∈ X, if a1 < a2

and there is no a ∈ X such that a1 < a < a2, then a1 is said to cover a2, denoted by a1 l a2.

All posets X ′ we construct later to represent functions over X will satisfy the following

requirements:

• Requirement-1: X will always contain a unique bottom element ⊥ ∈ X and, hence,

will be a downward directed set. A subset X ′ ⊆ X of interest will always contain the

bottom element ⊥ and, hence, will also be a downward directed subset of X according

to the partial order � inherited from X.

• Requirement-2: For every pair of elements (a1, a2) ∈ X×X, a minimal upper bound

a1 ∨ a2 may not exist, but if it exists, it must be unique, yielding a least upper bound

which is a partial function over X×X.

• Requirement-3: If a1 ∨ a2 does not exist, then ai ∨ aj also does not exist for all

2In a general poset, a greatest lower bound need not exist. More generally, a set of MLBs may do.

41



successors ai � a1 and aj � a2.

In this thesis, any poset satisfying these three requirements is called a hereditary poset.

Requirement-3 is the main reason that RV with SR-DFAs is efficient on distributed sys-

tems, since state transitions induced every event (as represented by a local transformation)

are localized to specific subspaces of Ξ. Hence, in a distributed system, events tend to have

minimal conflicts. This requirement is also essential for efficiency of symbolic manipulation

of LBFGs.

The use of a hereditary posetX ′ supports the intuition that any two regions ofX (represented

by elements within X ′) are embedded in (or generalized by) a larger region (represented

by some other less specific element in X ′), and represent exceptions to the function value

prevailing in that larger region. Thus, a downward directed subset can be viewed as an

extensible function representation where any two patches can be embedded in a larger patch.

Evaluating a function at any particular point a ∈ X amounts to taking the limit of a

convergent sequence in X ′, where each element specializes (i.e., is more specific than) the

preceding one.

The join ∨ and meet ∧ operators can be generalized to subsets of X as follows:

X ′⊆X, a∈X : X ′ ∨ a = {a′ ∨ a|a′∈X ′ and a′ ∨ a exists}

X ′⊆X, a∈X : X ′ ∧ a = {a′ ∧ a|a′ ∈ X ′}

3.3.1 LBFGs

Theorem 3.1 formally states that a hereditary poset can be compressed or reduced to rep-

resent any function f : X → Y . If X ′ ⊆ X, then for every a ∈ X, it is said that b ∈ X ′ is

a maximal lower bound of a in X ′, denoted by blX′ a iff b � a and there is no c ∈ X ′ such

that b � c � a.

Theorem 3.1. If X is a countable hereditary poset, then for every function f : X → Y ,

42



ALGORITHM 1: Evaluate f(a)

Input: A function f : X −→ Y where Y is finite and a ∈ X.
Output: The value f(a).

1 return fX′(a,⊥);

ALGORITHM 2: Evaluate fX′(a, u)

Input: A node u ∈ X ′ of a LBFG X ′ and a variable valuation ξ.
Output: The value fX′(a, u).

1 foreach (v ∈ X ′ : v m u) do
2 if (v � a) then
3 return fX′(a, v);

4 return f(u);

there is a (possibly infinite) unique minimal subset X ′ ⊆ X such that f satisfies the

relation:

∀a ∈ X : b ∈ X ′, blX′ a⇒ f(a) = f(b)

From Theorem 3.1, for every function f : X → Y , there is a subset X ′ ⊆ X that uniquely

determines f . The transitive reduction of this poset is a unique DAG, called a lattice-based

function graph (LBFG), whose main purpose is to transform the calculation of a maximal

lower bound b ∈ X ′, b lX′ a for every a ∈ X to a straightforward graph traversal. In a

LBFG, parents of a vertex are the maximal lower bounds of that vertex and its children

are its minimal upper bounds. As in domain theory used by denotational semantics of

programming languages, a LBFG represents a hierarchy of knowledge where information

(i.e., function values) at lower-level elements is less specific than (and is overridden by)

information at higher-level elements, but are more widely applicable. Within the set X ′

of Theorem 3.1, if a � b, then f(b) overrides f(a) for all c ∈ X such that a � c � b.

Algorithm 1 explains how a LBFG representation of an arbitrary finite-valued function f

computes the value of f for any valuation of its variables.

Theorem 3.2. If a1 ∈ X ′ and, for every a2 ∈ X ′ with a2 � a1, we have f(a1) = f(a2), then

X ′ \ {a1} provides a more concise representation of f .

43



Theorem 3.2 furnishes a recipe for obtaining a reduced set X ′ ⊆ X that preserves all infor-

mation about f by starting with X and iteratively eliminating redundant elements a ∈ X ′.

This process eventually terminates (for finite X) at which point, for each a ∈ X ′, its succes-

sors (i.e., the minimal upper bounds of a in X ′) yield the minimal moves3 needed to alter

the value of f .

Theorem 3.2 essentially says that LBFGs achieve conciseness by grouping together all el-

ements that are successors of a given element4 in the partial order � and have the same

function value and storing that value at the shallowest level possible in the poset X ′.

Also, if two elements a1 and a2 such that a1 6� a2 and a2 6� a1 have different function values

and also have common extensions (i.e., a1 ∨ a2 exists), then a1 ∨ a2 is used a resolvent or

an arbiter that determines what function value those common extensions actually carry (it

could be identical to one of a1 and a2 or different from both).

Now, we present theorems stating the three main properties of LBFGs, namely correctness,

canonicity and consistency. When a X ′ ⊆ X is called a LBFG, it is implicitly assumed to

be minimal (i.e., reduced in the sense of Theorem 3.2).

Theorem 3.3 (Consistency). Let X ′ be a LBFG representing a function f : X → Y . Then

for every a ∈ X, if b, c ∈ X ′ are maximal lower bounds of a in X ′ and b 6= c, then f(b) = f(c).

Theorem 3.4 (Canonicity). Given a function f : X → Y , then any two different LBFGs

X ′1 ⊆ X and X ′2 ⊆ X compute two different functions. That is, every function f : X → Y

has precisely one LBFG representation.

Proof. Assume that the two (minimal) LBFGs X ′1 and X ′2 are different. If X ′1 = X ′2 = X ′,

then we must have f1(a) = f2(a) for every a ∈ X ′. This means the two LBFGs are identical.

3For example, the extra variable assignments, in the case of the semi-lattice of partial variable assignments.
4For example, all complete variable valuations that are extensions of the same partial variable valuation,

in the case of Ξ∗.

44



So we now assume X ′1 = X ′2 6= X ′ and we now find a value a ∈ X where the two LBFGs

return different values. Let a ∈ X ′1 \ X ′2. Also, let L ⊆ X ′2 be the set of maximal lower

bounds of a in X ′2. Then we either have:

• f1(a) 6= f2(L), in which case f2(a) = f2(L) 6= f1(a), or

• f1(a) = f2(L), in which case X ′2 is not reduced (a contradiction), since all elements of

L are less than a and carry the same value, or

• None of the above, in which case both arguments above apply.

Theorem 3.5 (Correctness). The LBFG X ′ for a function f : X → Y returns the correct

value of f for every input combination.

Proof. Assume a ∈ X is an element of X such that there is a maximal lower bound b ∈

X, b 6= a of a with f(a) 6= f(b). Moreover, if X ′ is correctly reduced, then there must be an

element b � c � a such that f(a) = f(c), which contradicts that b is a maximal lower bound

of a in X ′.

3.3.2 Restriction

Restricting a function f : X → Y by an element a ∈ X is equivalent to the function

associated with the set {a ∨ a1|a1 ∈ X ′ and a ∨ a1 exists}.

Restriction. Applied to Boolean functions, restriction (also called partial evaluation or

projection) tackles cases when a subset R ⊆ AP of the propositional variables have values

fixed by context. In that case, it is desired to restrict the Boolean function (and its LBBD) by

that partial valuation to obtain a new LBBD G|R. Positive restriction, where all variables

x ∈ R have value 1, is implemented by noting that a subset R ⊆ AP of true variables

45



Positive Restriction on x4 Negative Restriction on x4

{}

{x1} {x2} {x3}

{x1, x2} {x2, x3} {x1, x3}

{x1, x2, x3}

{}

{x1} {x2} {x3}

{x1, x2} {x2, x3} {x1, x3}

{x1, x2, x3}

Figure 3.2: Positive and negative restriction of the 4-variable even-parity LBBD over x4.

corresponds to the upper set U = {v ∈ V |R ⊆ L (v)} in G of all graph nodes containing R.

All minimal elements of U form an antichain that are then connected to a new root r′ of the

new LBBD G|R, having L |R(r′) = {}. Then for all v ∈ U , we have L |R(v) = L (v) \R.

Negative restriction, where all variables x ∈ R have value 0, is simply implemented by

computing the lower set of all LBBD nodes contained in AP \R, which always includes the

root of G. Fig. 3.2 shows the positive and negative restrictions of the even-parity LBBD in

Fig. 3.6 on R = {x4}.

3.4 Symbolic Algorithms

Now, we focus on how to construct LBFGs symbolically rather than by reductions applied

to the original (possibly exponentially large) poset, such as the Boolean lattice {0, 1}n. In

all the following arguments and algorithms, let (X ′1, f1) and (X ′2, f2) be two LBFGs and let

� be a binary symbolic operation, such as the ones in Section 3.5 for general functions or

such as conjunction and disjunction for Boolean-valued functions. Unary operations, such

as Boolean negation for Boolean-valued functions, is trivially implemented symbolically by

applying it to the value of f at each LBFG vertex a ∈ X ′1. We now study the structure of

(X ′, f) = (X ′1, f1)� (X ′2, f2).

46



3.4.1 Co-Stability

Given two functions f1, f2 : X → Y , with LBFGs X ′1 and X ′2, and any pointwise composition

operation �, how to calculate the LBFG X ′ corresponding to the composition f1 � f2? For

every a ∈ X, there are maximal a1 ∈ X ′1 and a2 ∈ X ′2 such that a1 � a and a2 � a.

Conversely, for every a1 ∈ X ′1 and a2 ∈ X ′2, there is a ∈ X such that a1 and a2 are maximal

lower bounds of a within X ′1 and X ′2, respectively, iff the pair (a1, a2) is co-stable. Let

J(X ′1, X
′
2) ⊆ X ′1×X ′2 be the set of all pairs (a1, a2) ∈ X ′1×X ′2 such that a1∨a2 exists. A pair

(a1, a2) ∈ J(X ′1, X
′
2) is co-stable iff a1 and a2 are maximal lower bounds of a1∨a2 within X ′1

and X ′2, respectively. Let CO(X ′1, X
′
2) ⊆ J(X ′1, X

′
2) be the set of all co-stable pairs.

A pair (a1, a2) ∈ X ′1 ×X ′2 is said to be co-stable iff a1 ∨ a2 exists and:

∀b1 m a1 : b1 6� a1 ∨ a2

∀b2 m a2 : b2 6� a1 ∨ a2

(3.1)

Co-stability of two LBFG nodes (a1, a2) ∈ X ′1×X ′2 means that every pair of maximal paths

(c1, . . . , cm) and (d1, . . . , dn) inX ′1 andX ′2 terminating at a1 and a2, resp., has a corresponding

maximal path5 ((c1, d1), . . . , (cm, dn)) in X ′1 ×X ′2 terminating at (a1, a2). Alternatively, lack

of co-stability of (a1, a2) means that there is no a ∈ X where the value of f1�f2 is determined

by the combination of f1(a1) and f2(a2). Hence, for any co-stable pair a = (a1, a2) ∈ X ′1×X ′2,

the value of f(a) can be calculated as f(a) = f1(a1)� f2(a2).

A partial order v can be defined over the Cartesian product J(X ′1, X
′
2) as follows: Given

two pairs (a1, a2), (a3, a4) ∈ J(X ′1, X
′
2), we have (a1, a2) v (a3, a4) iff a1 � a3 and a2 � a4.

Note that this includes the special cases a1 = a3 and a2 = a4. Note also that the covering

relation of that partial order is exactly the Cartesian product of the covering relations of the

two constituent partial orders. An order homomorphism h : J(X ′1, X
′
2) → X ′3 ⊆ X can be

5Repetitions are possible.

47



defined as follows:

∀(a1, a2) ∈ J(X ′1, X
′
2) : h(a1, a2) = a1∨a2

In general, the partial order on a homomorphic image h(X1) of a poset (X1,�1) into another

poset (X2,�2) can be stronger than �1, in the sense that it will contain the same orders as

the original poset (perhaps collapsing some), but may also contain more orderings not present

in the original poset (i.e., a homomorphism may linearize certain incomparable pairs). By

monotonicity of the join operator, we have:

(a1, a2) v (a3, a4)⇒ h(a1, a2) � h(a3, a4)

Two pairs (a1, a2), (a3, a4) ∈ J(X ′1, X
′
2) are equivalent, denoted by (a1, a2) ∼ (a3, a4), iff

a1 ∨ a2 = a3 ∨ a4. If a pair (a1, a2) ∈ J(X ′1, X
′
2) is co-stable, this basically means that

both a1 and a2 have joint complete extensions not subsumed by the children (offspring or

descendants) of either of them and, hence, the value of f for these complete extensions must

be made available at a1∨a2. As mentioned before, within the set X ′ of Theorem 3.1, if

a1 � a2, then f(a2) overrides f(a1) by virtue of the supremum. Thus, even if a1∨a2 contains

extensions that fall under any of the descendants of a1 or a2, the value f(a1∨a2) will be

overridden appropriately when descendant pairs of (a1, a2) are considered.

The quotient set (i.e., the set of all equivalence classes) is denoted by CO(X ′1, X
′
2)/∼. Let

[a] = {b ∈ CO(X ′1, X
′
2)|a ∼ b} denote an element of CO(X ′1, X

′
2)/∼ for some co-stable pair

a = (a1, a2) ∈ J(X ′1, X
′
2). Note that CO(X ′1, X

′
2) is nonempty, since the roots ⊥1 and ⊥2 are

co-stable.

Lemma 3.6. Every vertex of X ′ = X ′1�X ′2 is an equivalence class of co-stable pairs (a1, a2) ∈

CO(X ′1, X
′
2). That is, X ′ ⊆ CO(X ′1, X

′
2)/∼.

However, not every class in CO(X ′1, X
′
2)/∼ is a vertex in X ′ = X ′1�X ′2 because some classes

violate the LBFG alternation condition: am b in X ′ ⇒ f(a) 6= ¬f(b). Lemma 3.7 gives the

48



conditions for existence of covering edges in a LBFG X ′ = X ′1 �X ′2 in terms of alternations

between walkers over X ′1 and X ′2. It uses the following notation: given a DAG G = (V,E),

let x
(v1,...,vM )−−−−−−→ y denote a path in G with v1 = x and vM = y, where x, y ∈ V .

Lemma 3.7. Let [a], [b] ∈ CO(X ′1, X
′
2)/∼ be two vertices in X ′ = X ′1�X ′2 with a = (a1, a2)

and b = (b1, b2). Then there is a covering edge ([a], [b]) ∈ E in X ′ iff:

• f1(b1)� f2(b2) 6= f1(a1)� f2(a2)

• For all paths a1
(c1,...,cM )−−−−−→ b1 in X ′1 and a2

(d1,...,dN )−−−−−→ b2 in X ′2, there is no (ci, dj) which is

a co-stable pair with f1(xi)� f2(yj) 6= f1(a1)� f2(b2).

This condition is hard to check for every co-stable pair reachable from (⊥1,⊥2). Therefore,

we add a covering edge ([u], [v]) to X ′ if the following condition is satisfied:

• There is at least one pair of paths a1
(c1,...,cM )−−−−−→ b1 in X ′1 and a2

(d1,...,dN )−−−−−→ b2 in X ′2 such that

there is no (ci, dj) which is a co-stable pair with f1(ci)� f2(dj) 6= f1(a1)� f2(a2).

This condition results in redundant covering edges in X ′ that can then be removed using

transitive reduction of X ′ (i.e., removing edges without affecting the reachability relation of

a graph).6 The transitive reduction of a finite DAG is unique which preserves canonicity of

LBFGs.

Note that ⊥ must be a member of all subsets X ′ ⊆ X used to represent functions f : X → Y .

Note also that (⊥,⊥) is always a co-stable pair for all admissible sets X ′1, X
′
2 ⊆ X. However,

⊥ ∈ X ′1 is not necessarily co-stable with any other elements a2 ∈ X ′2, and vice versa. Thus,

there is no guarantee that X ′1 ⊆ (X ′1 � X ′2) or X ′2 ⊆ (X ′1 � X ′2) for any pointwise binary

operation �. If a1 ∈ X ′1 has a narrow gap to its minimal upper bounds, that will reduce

its chance to be co-stable with other elements a2 ∈ X ′2, and conversely, the wider the gap

between an element and its minimal upper bounds, the larger the territory it reigns over and

6For LBFGs, transitive reduction can be performed in time O(|X ′|B2), where B is the average branching
factor (number of outgoing edges) of a LBFG node.

49



the larger its co-stability domain will become.

Lemma 3.8. Every a∈X ′ corresponding to f1�f2 is generated by an equivalence class of

co-stable pairs (a1, a2) ∈ J(X ′1, X
′
2). That is, Xi′ is isomorphic to a subset of CO(X ′1, X

′
2)/∼.

Lemma 3.9 formally states that the function value of an equivalence class in CO(X ′1, X
′
2)/∼

is well-defined.

Lemma 3.9. For any two co-stable pairs (a1, a2) and (b1, b2), if a1 ∨ a2 = b1 ∨ b2, then

f1(a1)� f2(a2) = f1(b1)� f2(b2).

Proof. Let a = a1∨a2 = b1∨b2. By co-stability of the pairs (a1, a2) and (a1, a2), we have: both

a1 and b1 are maximal sets contained within a. Similarly, both a2 and b2 are maximal sets

contained within a. Then by Lemma 3.15, we have f1(a1) = f1(b1) and f2(a2) = f2(b2).

Co-stable pairs are the maximal elements within their equivalence classes in the product

partial order over J(X ′1, X
′
2). If (a1, a2) ∈ X ′1 ×X ′2 is not a co-stable pair (i.e., not maximal

within its equivalence class) and all its successors are in the same equivalence class, it is

called an interior pair. A co-stable pair is covered only by pairs outside its own equivalence

class. A non-co-stable pair may be simultaneously covered by pairs from its own equivalence

class and from other equivalence classes.

Lemma 3.10. Every equivalence class contains at least one co-stable pair.

Proof. The absence of co-stable pairs from an equivalence class would imply the existence

of a cycle inside that equivalence class which contradicts the fact that the operand graphs

are DAGs. Assume all pairs in an equivalence class are not co-stable. Then each vertex has

at least one transition into another pair of the same class. This implies that there is a cycle,

contradicting dag assumption.

50



Lemma 3.11. In a LBFG X ′, members of any co-stable pair (a1, a2) ∈ CO(X ′, X ′) must

have the same function value:

f(a1) = f(a2)

Proof. If a1 and a2 are co-stable, then there is a ∈ X such that they are both maximal

lower bounds of a within X ′, in which case the value must be the same due to consistency

of LBFGs.

3.4.2 Structure of Equivalence Classes

The main challenge of symbolic manipulation of LBFGs is efficient construction and repre-

sentation of the set J(X ′1, X
′
2)/∼. Profile size of the set J(X ′1, X

′
2) relative to size of the set

X ′1×X ′2.

The key to efficiency is representing equivalence classes of J(X ′1, X
′
2) in terms of Cartesian

products of subsets of X ′1 and X ′2 because, in that case, the size of the set J(X ′1, X
′
2) will

be on average equal to |X ′1|.|X ′2|, whereas a product decomposition of its equivalence classes

will result in a much smaller complexity
√
|X ′1|.|X ′2|.

Theorem 3.12 (Representing Equivalence Classes). Every equivalence class A ∈ J(X ′1, X
′
2)/∼

can be written as a union of Cartesian products of subsets of X ′1 and X ′2 as follows:

A =
⋃
ai

Aai×Bai

where ai = (ai,1, ai,2) runs over all minimal elements of A under the Cartesian product order,

and Aai ⊆ X ′1 and Bai ⊆ X ′2 are given by:

Aai = {a ∈ X ′1|ai,1 � a � (ai,1∨ai,2)}

Bai = {a ∈ X ′2|ai,2 � a � (ai,1∨ai,2)}

51



Proof. For any pairs (ai,1, ai,2), (a1, a2) ∈ X ′1×X ′2, which are not necessarily co-stable, we

have:

(ai,1, ai,2) v (a1, a2)⇒ (ai,1∨ai,2)�(a1∨a2)

a1�(ai,1∨ai,2)

a2�(ai,1∨ai,2)

⇒ (a1∨a2)�(ai,1∨ai,2)

So, together, both imply that (ai,1, ai,2) ∼ (a1, a2). This is the same as saying that Aai×Bai

is a subset of the coset (i.e., the equivalence class) of [[(ai,1, ai,2)]], where:

Aai = {a ∈ X ′1|ai,1 � a � (ai,1 ∨ ai,2)}

Bai = {a ∈ X ′2|ai,2 � a � (ai,1 ∨ ai,2)}

Thus, [[a]] is a union of rectangles Aai×Bai as ai ranges over [[ai]]. However, not all rectangles

are needed, since we have:

(ai,1, ai,2)v(aj,1, aj,2)

(ai,1, ai,2)∼(aj,1, aj,2)

⇒ Aaj×Baj ⊆ Aai×Bai

Thus, the union of rectangles Aai×Bai over minimal elements of an equivalence class are

sufficient to reconstruct it, since all non-minimal pairs are redundant.

Given a poset (X,�), the set of minimal upper bounds of a subset S ⊆ X is denoted by tS

and is defined by:

tS = {x ∈ X\S|x is a minimal upper bound of S}

Thus, by Theorem 3.12, starting from a minimal element within an equivalence class, the two-

dimensional search (which has quadratic complexity) may proceed as two independent one-

dimensional searches (which have linear complexities). The LBFG obtained from Algorithm 3

is not necessarily reduced, since there are orderings among classes in J(X ′1, X
′
2)/∼ not implied

by the Cartesian product order relation v, and also because two consecutive classes in

52



ALGORITHM 3: Apply( X ′1, X
′
2,� )

Input: ⊥1 ∈ X ′1 and ⊥2 ∈ X ′2 are the roots of X ′1 and X ′2, resp.
Output: LBFG X ′ = X ′1 �X ′2

1 X ′ ← {}, Visited← {(⊥1,⊥2)};
2 Advance( X ′1, X

′
2,�,⊥1,⊥2,Visited, {⊥1}, {⊥2} );

the Cartesian product order may possess the same composite function value. Therefore,

Algorithm 3 needs to be followed by two reductions: (1) valued-based reduction which

guarantees that adjacent vertices in the result LBFG have different function values, and (2)

transitive reduction.

Inspired by Theorem 3.12, Algorithm 3 and Subroutine 4 implement the symbolic manipu-

lation algorithm of LBFGs for all binary composition operations �. Advance is recursive

and is called on the roots of the operand LBFGs. Algorithm 3 has worst-case time com-

plexity O(NM) where N and M are the sizes of the operand LBFGs. LBFGs produced by

Algorithm 3, as its stands, need to go through reduction due to the unnecessary creation of

spurious vertices.

Given (ai, aj) ∈ X ′1 ×X ′2, define two operators ∂i,j1 and ∂i,j2 as follows:

∂i,j1 ai = tX′1{a ∈ X
′
1|ai � a � (ai∨aj)}

∂i,j2 aj = tX′2{a ∈ X
′
2|aj � a � (ai∨aj)}

Note that the set {a ∈ X ′1|ai � a � (ai∨aj)} is the closed interval [ai, ai∨aj].

Subroutine 4 makes two implicit assumptions about every pair of elements (a1, a2) ∈ X ×X

of the underlying poset X:

• A minimal upper bound a1 ∨ a2 may not exist, but if it exists, it must be unique,

yielding a least upper bound which is a partial function over X ×X.

• If a1 ∨ a2 does not exist, then ai ∨ aj also does not exist for all successors (ai, aj) v

53



Subroutine 4: Advance( X ′1, X
′
2,�, ai, aj ,Visited, Ai, Aj )

Input: ⊥1 ∈ X ′1 and ⊥2 ∈ X ′2 are the roots of X ′1 and X ′2, resp.
Output: LBFG X ′ = X ′1 �X ′2

1 if (ai ∨ aj 6∈ X ′) then
2 X ′ ← X ′ ∪ {ai ∨ aj};
3 f(ai ∨ aj) = f1(ai ∨ aj)� f2(ai ∨ aj);
4 A+

i = ∂i,j1 Ai;

5 A+
j = ∂i,j2 Aj ;

6 foreach (a ∈ A+
i ) do

7 if ((a∨aj) exists and (a, aj) 6∈ Visited) then
8 Visited← Visited ∪ {(a, aj)};
9 Advance( X ′1, X

′
2,�, a, aj ,Visited, {a}, A+

j );

10 foreach (a ∈ A+
j ) do

11 if ((ai∨a) exists and (ai, a) 6∈ Visited) then
12 Visited← Visited ∪ {(ai, a)};
13 Advance( X ′1, X

′
2,�, ai, a,Visited, A+

i , {a} );

(a1, a2).7

3.5 Function Composition

3.5.1 Disjoint-Union Composition

Composition of functions defined over disjoint sets is called disjoint-union composition, de-

noted by ]. Given a set {f1, . . . , fn} of functions fi : Xi → Y , where Xi ∩ Xj = ∅ for all

i 6= j, their disjoint union composition f1,...,n = f1 ] . . . ] fn is given by:

∀x ∈ ∪nk=1Xk : x ∈ Xi ⇒ f1,...,n(x) = fi(x)

Note that disjoint-union composition is both associative and commutative. The disjoint-

union composition is crucial to representing the transition relation of a SR-DFA. For each

predicate p, the set of all transitions outgoing from a given (complete) SR-DFA state is

7This is the main reason that RV with SR-DFAs is efficient on distributed systems, since state transitions
induced every event (as represented by a local transformation) are localized to specific subspaces of Ξ. Hence,
in a distributed system, events tend to have minimal conflicts.

54



described by a complete set of mutually exclusive equality-logic formulas. A set of equality-

logic formulas {f1, . . . , fn} is a partition of Ξ if and only if f1 ∨ . . . ∨ fn is identically true,

and fi ∧ fj is identically false for all 1 ≤ i < j ≤ n. Since each fi is a map fi : Ξ → {0, 1},

all members of a partition can be composed into a product function f : Ξ → Y , where

Y ⊂ {0, 1}n is the set of one-hot bit-vectors. Each one-hot bit vector is an indicator function

ι : Q → {0, 1} that represents a singleton subset of Q. Thus, we have proved the following

theorem:

Theorem 3.13. The disjoint-union composition of a set of elementary partial functions

associated with a complete set of mutually exclusive equality-logic formulas is a well-defined

total function.

In the representation of SR-DFA transition relation, these Xk’s are disjoint subsets of the

Boolean lattice 2EL(p) over the set of all equality-logic atoms consisting of equalities of a

variable symbol and an argument of a predicate p. These disjoint subsets are models of

mutually exclusive equality-logic formulas.

3.5.2 Product (or Concatenation) Composition

Given two functions f1 : X → Y1 and f2 : X → Y2 over the same domain X, the product (or

concatenation) composition f = f1 ⊗ f2 : X → Y1 × Y2 can be defined as follows:

∀x ∈ X : f(x) = (f1(x), f2(x))

A useful case of product composition is concatenating two word-valued functions over a

poset. This is used in converting ensemble states into automaton states during specification

mining.

55



3.5.3 Union Composition

Given two functions f1 : X → Y and f2 : X → Y over the same domain X, the union

composition f = f1 ∪ f2 : X → Y can be defined as follows:

∀x ∈ X : f(x) = {f1(x), f2(x)}

This is useful in constructing the language associated with an ensemble state by merging

languages associated with its preceding ensemble states (after concatenation with their re-

spective outgoing transition events).

3.6 Local (Pointwise) Transformations

Of particular importance is the representation of transformations δ : Y X
1 −→ Y X

2 . A trans-

formation is local iff it can be represented as a map δ′ : X → Y Y1
2 , where for every x ∈ X,

we have δ′(x) : Y1 → Y2 is called the fiber of δ′ at x. Such transformations are local in

nature, since the transformed value of a function at a given point x ∈ X depends only on

the value of the function at that point. If Y1 = Y2 = Y is a finite set of states, then each

fiber δ′(x) can be thought of as a deterministic transition function over Y . Moreover, the

action of a local transformation δ : Y X → Y X on a function f : X → Y is given by the

composition operation f ′ = δ(f) = δ � f , called the contraction or section of δ by f , where

f ′(x) = δ′(x)(f(x)).

For every y1 ∈ Y1, let cy1 ∈ Y X
1 be a constant function such that, for every x ∈ X, cy1(x) = y1.

Let {δy1 ∈ Y X
2 |y1 ∈ Y1, δy1 = δ(cy1)} be the set of transformations of all constant functions.

We now seek a representation of δ in terms of this basis. Each δy1 can be thought of as a

local transformation of the form δy1 : X → Y
{y1}

2 . Thus, given a finite set Y1 = {y1, . . . , yn},

δ′ is merely the composition given by δ′ = δy1 ⊗ . . .⊗ δyn , where the pointwise composition

56



operator is the disjoint-union composition of fibers.

3.6.1 Composition of Local Transformations

Let hi : X → Y Y , with 1 ≤ i ≤ n, be n local transformation over the space Y X of functions

f : X → Y . Let [1, n]∗ be the monoid of all words w = (i1, . . . , iL) of any finite length

L ≥ 0, where ik ∈ {1, . . . , n} for all 1 ≤ k ≤ L. Let hw : X → Y Y be the composition

hiL � . . . � hi1 where the pointwise composition operator is the usual function composition

of functions f1, f2 : Y → Y .

3.7 Real-Valued Lattice Functions

Let RX be the space of real-valued functions f : X −→ R over a poset X (with minimum

element ⊥). RX is a real vector space under pointwise addition and scalar multiplication. An

indicator function ι : X −→ {0, 1} is a special and useful real-valued function that will be

used to generate other functions in RX . Let BX ⊂ RX be the set of indicator functions over

X. An important application of such functions is Dempster-Shafer theory of belief functions

defined on Boolean algebras (power sets) of events.

3.7.1 Graphical Representations

Given a function f : X −→ R and a tolerance parameter ε > 0, it is desired to devise a graph

representation Gf of f that returns the value of f within accuracy ε for any a ∈ X. The

devised graph representation needs to satisfy the following criteria: (1) It is canonical, (2)

compositional (i.e., can be symbolically constructed from simpler functions by composition).

57



What symbolic operations to support? In addition to vector space addition and scalar multi-

plication, many pointwise operations and pointwise predicates over RX need to be supported.

A binary pointwise operation h is a mapping h : RX × RX −→ RX . On the other hand, a

pointwise binary predicate g is a mapping g : RX × RX −→ BX . Example pointwise binary

predicates are f1 > f2 and f1 = f2. Two important (nonlinear) operations are the binary

least upper bound (or pointwise maximum) f1 ∨ f2 and greatest lower bound (or pointwise

minimum) f1 ∧ f2 of any two functions f1, f2 ∈ RX . We use the symbols ∨ and ∧ to, re-

spectively, represent the maximum and minimum operations over RX , since RX becomes a

(vector) lattice with these operations as the lattice join and meet, respectively. This lattice

structure over RX is induced by the pointwise ordering:

f ≤ g ⇔ ∀a ∈ X : f(a) ≤ g(a)

By associativity, the maximum f1 ∨ . . . ∨ fN and minimum f1 ∧ . . . ∧ fN of N functions are

well-defined. To quantify degrees of approximation, the set RX can be turned into a normed

vector lattice using the supremum norm:

∀f ∈ RX :‖ f ‖= sup
a∈X
|f(a)|

The central idea in a lattice-based representation is that co-stability of operand graph nodes

is a necessary condition for the resulting graph nodes regardless of the actual operation being

implemented.

58



3.8 Multi-Variable Functions

3.8.1 The Semi-Lattice of Partial Variable Valuations

We now study the most important poset from the viewpoint of RV. Let X = {x1, . . . , xn} be

a finite set of variables ranging over (possibly different, finite or countably infinite) domains

{|S|1, . . . , |S|n}. Also, let Ξ be the product space |S|1×. . .×|S|n and let |S| =
⋃n
i=1 |S|i. Then,

every point ξ ∈ Ξ can alternatively be considered as a variable valuation ξ : X → |S| that

assigns to each variable a value compatible with its data type (i.e., x ∈ Xi ⇒ ξ(x) ∈ |S|i).

Let Ξ∗ be the poset of all partial functions ξ∗ : Y → |S| for all Y ⊆ X . A partial function

ξ∗ : Y → |S| represents a partial variable valuation with dimension |Y| and co-dimension

|X | − |Y|. A partial valuation ξ∗1 : Y1 → |S| is less specific (i.e., binds less variables) than

another ξ∗2 : Y2 → |S|, denoted by ξ∗1 � ξ∗2 , iff for every y ∈ Y1, ξ∗1(y) = ξ∗2(y). It is also said

that ξ∗2 extends ξ∗1 . Let ⊥ be the bottom (i.e., minimum or least) element of Ξ∗ corresponding

to Y = ∅. Then ⊥ � ξ∗ for every ξ∗ ∈ Ξ∗. There is no top or maximum element in Ξ∗.

However, all maximal chains in Ξ∗ starting at ⊥ have the same length equal to |X |.

Theorem 3.14. Ξ∗ is a meet (or lower) semilattice, but not a lattice.

Proof. If ξ∗i , with i = 1, 2, stand for fi : Yi → Y , then the join or supremum (∨) and meet

or infimum (∧) operators are defined as follows: ξ∗1 ∨ ξ∗2 is defined iff for all x ∈ Y1 ∩ Y2, we

have f1(x) = f2(x). In that case, ξ∗1 ∨ ξ∗2 stands for f : Y → Y where Y = Y1 ∪ Y2 and:

f(x) =

 f1(x) if x ∈ Y1

f2(x) otherwise

Thus, the join (∨) operator is not defined over all of Ξ∗ × Ξ∗. The meet ξ∗1 ∧ ξ∗2 of two

elements stands for f : Y → Y where Y ⊆ Y1 ∩ Y2 is the subset where f1(x) = f2(x). In

that case, f(x) = f1(x) for all x ∈ Y .

59



In a meet semilattice, we can always talk about greatest lower bounds (infima), but can only

have minimal upper bounds (a greatest lower bound or a supremum need not always exist).

Note that complete information about the partial order � is encoded in the meet operator

∧, since x � y ⇔ x ∧ y = x.

A function f : Ξ→ Y can be recursively extended to a function f ∗ : Ξ∗ → Y as follows:

• f ∗(ξ∗) = y if, for all ξ which is a complete extension of ξ∗ such that there is no extension

ξ∗ � ξ′ � ξ with λ∗(ξ′) 6= q, we have λ(ξ) = y.

For every ξ∗ ∈ Ξ∗, let [ξ∗] ⊆ Ξ be the set of all complete extensions of ξ∗:

[ξ∗] = {ξ ∈ Ξ|ξ∗ � ξ}

In a LBFG Ξ′ ⊆ Ξ∗, the region [[ξ∗]] ⊆ Ξ be the set of all complete extensions of ξ∗ excluding

all complete extensions of its children:

[[ξ∗]] = [ξ∗] \ ∪ξ′mξ∗ [ξ′]

Note that:

ξ∗1 � ξ∗1 =⇒ [ξ∗1 ] ⊇ [ξ∗1 ]

Canonicity and Variable Order. Unlike BDDs, LBFGs do not impose a variable ordering.

Yet, LBFGs are canonical representations. However, canonicity relies on the assumption that

the set Ξ′ ⊆ Ξ∗ is chosen in such a way that successors of every ξ∗ ∈ Ξ′ include all possible

ways to alter or mutate the value of f ∗(ξ∗). If we drop that requirement, we may be able get

a much more concise LBFG representation at the expense of losing canonicity, which can be

restored if we impose a variable ordering similar to BDDs.

60



3.9 The Boolean Lattice

An important example is the space Y {0,1}
n

of functions f : {0, 1}n −→ Y over a set Xn

of n Boolean variables, where Y is some finite set. The set {0, 1}n is a Boolean algebra of

bit-vectors partially ordered bitwise. It is isomorphic to the power set 2Xn ordered by set

inclusion. Therefore, it is also a downward directed set with a unique bottom element ⊥n

given by the all-zero bit-vector (or, equivalently, the empty subset of Xn). Thus, there are

two ways to represent a function f : {0, 1}n −→ Y :

• Working with the intrinsic partial order over the set {0, 1}n. In this case, f : {0, 1}n −→

Y can be represented by another simpler function f ∗ : Vn −→ Y , where Vn ⊆ {0, 1}n

is a downward directed set containing ⊥n.

• Working with the poset of partial Boolean variable valuations. This representation is

not discussed in this thesis.

3.9.1 Intrinsic Representation

An n-ary Boolean function g is a mapping g : {0, 1}n → {0, 1}. Let G = (V,E, r, L, T,AP)

be a rooted finite DAG with a vertex set V , a root vertex r ∈ V , an edge set E ⊆ V × V ,

and a finite set of atomic propositions AP. Unlike binary decision diagrams (BDDs) [32],

instead of terminal nodes for 0 and 1, a map T : V → {⊥,>} assigns to each vertex

v ∈ V a truth value T (v) such that (v1, v2) ∈ E ⇒ T (v1) = ¬T (v2). A labeling map

L : V → 2AP associates with every vertex v ∈ V a subset L(v) of AP such that L(r) = ∅

and (v1, v2) ∈ E ⇒ L(v1) ⊆ L(v2). Given a variable assignment κ : AP → {0, 1}, a vertex

v ∈ V satisfies κ, denoted by v v κ, iff ∀p ∈ L(v) : κ(p) = 1. Otherwise, v conflicts with

κ, denoted by v 6v κ. For a variable assignment κ, the value of a Boolean function g can be

computed as follows: start at the root and set v = r. If there is u ∈ V such that (v, u) ∈ E

61



and u v κ, then set v = u and repeat the test. Otherwise, the procedure completes and

returns T (v). Like BDDs, every Boolean function admits a LBBD representation (proofs

omitted for lack of space) and logical connectives (∨, ∧, ¬) correspond to graph operations.

A function f : {0, 1}n → {0, 1} is conceptually represented by a rooted finite DAG G =

(V,E, r,L , T ,AP) with a vertex set V = {0, 1}n, a root vertex r ∈ V corresponding to

the zero vector 0n, an edge set E ⊆ V × V encoding the covering relation of the Boolean

lattice {0, 1}n, and a finite set of atomic propositions AP. Unlike BDDs [32], instead of

terminal nodes for 0 and 1, a map T : V → {0, 1} assigns to each vertex v ∈ V a truth value

T (v) ∈ {0, 1}. A labeling map L : V → 2AP associates with every vertex v ∈ V a subset

L (v) of AP such that L (r) = ∅ and (v1, v2) ∈ E ⇒ L (v1) ⊆ L (v2). The size of the lattice

{0, 1}n grows exponentially with n. However, similarly to defining BDDs/ZDDs in terms of

reductions applied to exponentially large decision trees, reductions can be iteratively applied

to G to obtain a much smaller graph.8 The key insights are:

• The value of f(x) for any x ∈ {0, 1}n can be thought of as the final value f(ym) of f(y)

along an initial path (y0, . . . , ym) in {0, 1}n such that y0 = 0n, ym = x, and (yi, yi+1) ∈ E

for all 0 ≤ i < m.

• In many cases, the value of f(x) does not change frequently when moving along an initial

path and f(x) may be determined well before reaching x.

The following conceptual reductions become apparent: Reduction(1). For every pair of

points x, y ∈ V such that (x, y) ∈ E, if f(x) = f(y), then the edge (x, y) is redundant and

E can be updated so that x bypasses y directly to its successors:

E ← E − {(x, y)}

E ← E ∪ {(x, z)|z ∈ V and (y, z) ∈ E}}
(3.2)

Reduction(2). After the first reduction can no longer be applied, a vertex y ∈ V might

8Later, we will see how to construct that smaller graph directly from Boolean formulas using symbolic
algorithms.

62



become dangling or orphaned and, hence, unreachable from the root. That is, there is no

x ∈ V such that (x, y) ∈ E. Then y can be safely dropped: V ← V − {y}.

The above reductions preserve information about values of f and the labeled DAG returned

is dubbed a lattice-based Boolean diagram (LBBD). Thus, evaluating a Boolean function f

on a LBBD for any x∈{0, 1}n amounts to following a maximizing initial path (y0, . . . , ym)

subject to the constraints y0 = 0n, yi ≤ x and there is no y ∈ V such that (ym, y) ∈ E

with y ≤ x. Example LBBDs along with the corresponding BDDs are shown in Fig. 3.3.

Note that no variable ordering is imposed a priori. At every step along any initial path in a

LBBD G, a minimal set of Boolean variables are assigned 1 to alternately flip the value of f

from 1 to 0 or vice versa. Thus, the value of f oscillates as we traverse G from the root 0n

along any path.9 More precisely, for all v1, v2∈V , if (v1, v2)∈E, then T (v1) = ¬T (v2). A

LBBD represents only the boundaries where a Boolean function f flips its value in the lattice

{0, 1}n. The zero-LBBD, representing the identically zero function or the empty collection

of sets, consists of a single node r with T (r) = 0 and L (r) = {}, whereas the one-LBBD

consists of a single node r with T (r) = 1 and L (r) = {}. Lemma 3.15 formally states that

LBBD representations are consistent.

Lemma 3.15. Let LBBD G represent a Boolean function f : {0, 1}n → {0, 1}. Then for

every subset A ⊆ AP, if u and v are maximal nodes of G such that L (u) ≤ A and L (v) ≤ A

and u 6= v, then we have T (u) = T (v).

Representation Efficiency. To gauge efficiency of LBBD representation of a given Boolean

function f versus BDDs and ZDDs, we use the BDD-to-LBBD and ZDD-to-LBBD size ratios

as a metric.10 The size of a graph G = (V,E) is given by |V |+ |E|.
9So basically every Boolean function appears as an alternating sequence of monotonically increasing and

monotonically decreasing segments in the Boolean cube {0, 1}n.
10This quantifies the gain in conciseness by switching to LBBDs. The reduction in time complexity is

typically the square of this gain, as symbolic operations have complexity O(NM) for BDDs and LBBDs,
with N and M being operand graph sizes.

63



f = ¬a f = a ∨ b f = a ∧ b f = a ∧ b f = a ∨ b
a

0 1

a

b

0 1

a

b

0 1

a

b

0 1

a

b

0 1

{}

{a}

{}

{a} {b}

{}

{a, b}

{}

{b}

{a, b}

{}

{b}

{a, b}

f = (a ∨ b) ∧ (c ∨ d)
a

b

c

d

0 1

{}

{b}

{a, b}

∧

{}

{d}

{c, d}

⇒

{}

{b} {d}

{a, b} {c, d}

{a, b, d} {b, c, d}

{a, b, c, d}

Figure 3.3: BDDs and LBBDs for some primitive Boolean functions. A gray node v has
L (v) = 0 and a white node v has L (v) = 1.

64



0 20 40 60 80
0

50

100

150

200

Depth = 4,
Variables = 50

0 20 40 60 80
0

20

40

60

80

100
Depth = 5,

Variables = 50

0 20 40 60 80
0

5

10

15
Depth = 6,

Variables = 50

0 20 40 60 80
0

50

100

150

200

Depth = 4,
Variables = 50

0 20 40 60 80
0

20

40

60

80

100
Depth = 5,

Variables = 50

0 20 40 60 80
0

5

10

15
Depth = 6,

Variables = 50

Figure 3.4: Histogram (y-axis is number of instances) of LBBD efficiency (x-axis) with
respect to BDDs (top row) and ZDDs (bottom row) for randomly generated monotonic
Boolean functions. Depth refers to the maximum syntax-tree depth of random formulas.

Antichains and Monotonic Boolean Functions. A Boolean function f : {0, 1}n →

{0, 1} is monotone (or order-preserving) if, for every bit vector x ∈ {0, 1}n, switching one of

the bits from 0 to 1 can only (but not necessarily does) flip the value of f from 0 to 1. Equiv-

alently, f is monotone, iff ∀x, y ∈ {0, 1}n : x ≤ y ⇒ f(x) ≤ f(y). The negation (¬) and

the implication (⇒) are notable examples of non-monotone Boolean functions. Monotonic

Boolean functions have many applications [128] such as sorting and matrix multiplication.

An antichain representation11 of monotonic Boolean functions has been known since the time

of Richard Dedekind [53]. If AP is a set of n Boolean variables, then a Boolean function f is

monotonic if, and only if, there is an antichain A ⊆ 2AP such that f(x) = 1 if there is some

y ∈ A with y ≤ x, and f(x) = 0 otherwise. Elements of A are, thus, the minimal subsets of

AP that can force the value of f to be true. A monotonic Boolean function f has a unique

minimum sum-of-products (SOP) representation equal to the disjunction of all of its prime

implicants [103] corresponding to the minimal points x ∈ {0, 1}n where f(x) = 1.

Beyond Monotonic Boolean Functions. LBBDs generalize the antichain representation

from monotonic to arbitrary Boolean functions in the following sense. Given an arbitrary

11Which is a special case of LBBDs.

65



0 0.5 1 1.5 2 2.5 3
0

50

100

150 Depth = 4,
Variables = 50

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200 Depth = 4,
Variables = 100

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250 Depth = 4,
Variables = 200

0 10 20 30 40 50
0

100

200

300

400
Depth = 4,

Variables = 50

0 10 20 30 40 50
0

100

200

300
Depth = 4,

Variables = 100

0 10 20 30 40 50
0

50

100

150

200

Depth = 4,
Variables = 200

Figure 3.5: Histogram of LBBD efficiency with respect to BDDs (top row) and ZDDs (bottom
row) for randomly generated Boolean functions (Depth refers to the maximum syntax-tree
depth of random formulas).

Boolean function f : {0, 1}n → {0, 1} represented by a LBBD G = (V,E, r,L ,T ,AP).

Then:

• For every x ∈ V , the set SUCC(x) = {y ∈ V |(x, y) ∈ E} is an antichain in G.

• For all x ∈ V and y ∈ SUCC(x) : f(y) = ¬f(x).

Like BDDs and ZDDs, LBBDs are canonical. However, LBBDs do not rely on any order over

AP. Histograms of LBBD efficiency for randomly generated monotone Boolean functions

are shown in Fig. 3.4. Clearly, antichain (or LBBD) representations of monotone Boolean

functions are much more efficient than BDDs and ZDDs.

Counter-Examples. In [32], it was proved that regardless of variables ordering, the Boolean

function representing either of the middle two output bits of an n-bit multiplier have BDDs

that grow exponentially with n. Similarly, in this section, we give examples of Boolean

functions which have exponentially large LBBDs, yet have BDDs of size linear in the number

of variables. This helps delimit the scope of applicability of LBBDs. In Fig. 3.6, both the

BDD and LBBD for the even-parity function of four Boolean variables is shown. Evidently,

the BDD requires only (2n+ 1) nodes, where n is the number of Boolean variables, whereas

66



BDD LBBD

x1

x2 x2

x3 x3

x4 x4

1 0

{}

{x1} {x2} {x3} {x4}

{x1, x2} {x1, x3} {x1, x4} {x2, x3} {x2, x4} {x3, x4}

{x1, x2, x3} {x1, x2, x4} {x1, x3, x4}{x2, x3, x4}

{x1, x2, x3, x4}

BDD LBBD

x1

x2

x3

x4

x5

x6

10

{}

{x1, x3, x5}

{x1, x3, x6}

{x1, x4, x5}

{x1, x4, x6} {x2, x3, x5}

{x2, x3, x6}

{x2, x4, x5}

{x2, x4, x6}

Figure 3.6: BDD and LBBD for the Boolean functions of even parity and (x1 ∨ x2) ∧ (x3 ∨
x4) ∧ (x5 ∨ x6), respectively.

the LBBD requires 2n nodes (the entire Boolean lattice). The (even or odd) parity function

f is exponential in the LBBD representation, since for all x, y ∈ {0, 1}n, we have (x, y) ∈ E

implies that f(x) = ¬f(y), which means that none of the above reductions is applicable.

Another exponential LBBD example is a monotone 2-CNF function shown in Fig. 3.6.

Boolean Function Decomposition. Shannon expansion gives rise to BDDs [32]. What

kind of expansion gives rise to LBBDs? Intuitively, each vertex x ∈ V of an LBBD represents

a Boolean function L(x) given recursively as follows. The generate and propagate functions,

G and P : V × {0, 1}n → {0, 1}, associate with every vertex x ∈ V two Boolean functions

defined as:12

P(x) = ∧
a∈L (x)

a, G(x) = P(x) ∧ ∨
y
P(y) (3.3)

L(x) =
(
∨
y
P(y) ∧ L(y)

)
∨
(
T (x) ∧G(x)

)
(3.4)

where y runs over SUCC(x) = {y ∈ V |(x, y) ∈ E}. Thus, LBBDs are recursive (or com-

positional) representations where common subfunctions/subgraphs can be shared among

12If L (x) = ∅, then P(x) = true.

67



different parts of a Boolean function or of multiple functions stored in the same base. This

capability is crucial to efficiency and is not peculiar only to BDDs and ZDDs. Rather, it

generalizes to all canonical compositional representations recursively defining the Boolean

function associated with each graph node in terms of the Boolean functions associated with

its child nodes.

3.10 Experimental Results

To evaluate the efficiency of LBBD representations and help position them with respect to

other well-known techniques, we use the MCNC [175] and ITC99 [45] benchmark suites of

multi-level combinational logic-circuit netlists (in BLIF format). All Boolean functions are

extracted from these netlists and converted into BDDs, ZDDs and LBBDs. Every primary

output or register/latch input of a MCNC block is handled as a function of all primary inputs

and register/latch outputs of that block.

Implementation. All LBBD procedures were implemented in a new Java package along

with BDD procedures (without variable reordering heuristics).13 The C++ interface to the

CUDD decision diagram package [160] is used to compute ZDDs for all Boolean functions

studied here. From Fig. 3.7, LBBDs can be smaller than the corresponding BDDs/ZDDs

for 20–30% of ITC99 and MCNC benchmarks. These results verify that LBBDs can serve

only a slice of the Boolean function space. To more clearly understand where LBBDs fit

in the Boolean representation toolkit, we consider SOP Boolean functions or cube covers

that occur in two-level logic minimization problems [46]. In Fig. 3.8, we randomly generate

cube covers and vary the probability of negative literals P . As it turns out, LBBDs become

more efficient than both BDDs and ZDDs for SOP representations as more positive literals

appear in the formulas, and become inefficient as negative literals prevail. As P tends to

13The current implementation uses the Java HashSet class to represent variable sets. An implementation
where all set manipulations employ the much more efficient bit-vector operations is underway.

68



0 0.5 1 1.5 2 2.5 3
0

20

40

60 MCNC

0 0.5 1 1.5 2 2.5 3
0

20

40
ITC99

0 0.5 1 1.5 2 2.5 3
0

10

20

30
MCNC

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40 ITC99

Figure 3.7: Histogram of LBBD efficiency with respect to BDDs (top row) and ZDDs (bottom
row) for MCNC and ITC99 benchmarks. Blue indicates the instances where LBBDs are more
concise, and red indicates the converse.

zero, the represented Boolean functions approach the monotonic regime where the antichain

representation [53] was shown to be superior to BDDs and ZDDs. It is worthwhile noting

that for P > 0.5, we can replace all negative literals with new positive literals to restore

the favorable condition of P < 0.5 where LBBDs are more efficient than BDDs/ZDDs. As

in [132], for each K, we generate 50 SOP formulas with 50 variables, 10 minterms containing

only K positive literals and 50−K negative literals. We vary the number of positive literals

K to control sparseness of the represented functions or families of subsets. It can be seen in

Fig. 3.9 too that LBBDs seem to dominate ZDDs for a wide range of sparseness levels, since

LBBDs need relatively few positive literals to break-even with ZDDs. Therefore, replacing

negative literals with positive ones enables LBBDs to be more efficient than ZDDs for all

sparseness levels.

3.11 Conclusions

A novel class of graphical representations of Boolean functions, LBBDs, was demonstrated.

Out of the vast Boolean function space, a particular subspace where LBBDs perform best

69



0.1 0.3 0.5 0.7 0.9

20
0

60
0

1,
00

0
1,

40
0

Negation Probability (P)

BDD Sizes

0.1 0.3 0.5 0.7 0.9

20
0

60
0

1,
00

0
1,

40
0

Negation Probability (P)

ZDD Sizes

0.1 0.3 0.5 0.7 0.9

20
0

60
0

1,
00

0
1,

40
0

Negation Probability (P)

LBBD Sizes

Figure 3.8: BDD vs. ZDD vs. LBBD sizes. For each 0 ≤ P ≤ 1, we generate many SOP
formulas with 200 variables, 10 cubes, 100 literals each containing negative literals with
probability P and positive literals with probability (1− P ).

10 20 30 40 50

10
0

20
0

30
0

40
0

50
0

K

BDD Sizes

10 20 30 40 50

10
0

20
0

30
0

40
0

50
0

K

ZDD Sizes

10 20 30 40 50
10

0
20

0
30

0
40

0
50

0

K

LBBD Sizes

Figure 3.9: BDD vs. ZDD vs. LBBD sizes. As in [132], for each K, we generate 50 SOP
formulas with 50 variables, 10 minterms containing only K positive literals and 50 − K
negative literals.

has been identified by providing both examples (attesting to LBBD superiority over BDDs

and ZDDs throughout that subspace) and counter-examples (establishing or delimiting its

boundaries). The Boolean function space will continue to defy attempts to subdue under

one overarching representation, and can only be conquered with a range of interoperable

techniques. That is why it is necessary to develop efficient algorithms to convert LBBDs to

and from BDDs/ZDDs so that they can coexist in one comprehensive toolkit.

70



Part II

Architectures and Tools

71



Chapter 4

Nonuniform Verification Architecture

This chapter introduces NUVA, which stands for nonuniform verification architecture, a

distributed automata-based RV architecture for SR-DFA specifications, with a case study

over a cache-coherent nonuniform-memory-access (ccNUMA) multiprocessor.

4.1 Architectural Elements

The core of NUVA is a coherent distributed automata transactional memory (ATM) that effi-

ciently maintains states of a dynamic population of automata checkers organized into a rooted

dynamic directed acyclic graph (DAG), representing the ensemble state LBFG, concurrently

shared among all processor nodes. A cycle-accurate model of a ccNUMA multiprocessor

confirms that performance slowdown is 1∼3% and NoC message traffic increases by 10∼15%

at parametric event density1 of 0.025 EPI for two compute-intensive scientific benchmarks

having irregular concurrent data structures. The detailed architecture and implementation

metrics in TSMC 40nm CMOS technology are presented. NUVA can be dimensioned to

1EPI stands for events-per-instruction.

72



CPU Core

L1 D-CacheL1 I-Cache

L2 Cache

RV Controller NI

ObjDir NI

ATM

NI

AutoDirNI

Memory Controller

Memory Controller

P
er

ip
er

a
ls

RAM

SW

Figure 4.1: RV elements in a single-chip multiprocessor (NI = Network Interface).

incur average total power overhead of less than 140mW and area overhead of 4mm2 for a

quad-core multiprocessor chip, at operating frequency of 250MHz. It is also estimated to

incur 1.9∼2.6% area overhead and 0.5∼1% power overhead when integrated with Intel’s

family of high-end desktop and mobile quad-core processors operating at 1.6∼3.2GHz. Our

silicon implementation achieves average performance2 of 1.5 MEPS/mW. For a processor

core with 5 MIPS/mW, this corresponds to a 3.2% drop in energy efficiency at parametric

event density of 0.01 EPI.

In this chapter, we identify a minimal set of architectural elements and techniques necessary

for efficient RV of SR-DFA specifications over a distributed multiprocessor system. A high-

level architecture is shown in Figure 4.1. The RV directories and controllers shown do not

have to exist at every processing node (or tile). The RV components are completely decoupled

and oblivious to the interconnection topology (regular, e.g., a mesh or torus, or irregular)

and extent (on-chip or off-chip). However, discussions in this paper focus on single-chip

multiprocessors (CMPs).

Components of NUVA can be implemented in software or hardware or both. For performance

2MEPS stands for million events per second.

73



reasons, these components will be tightly integrated with processing nodes, rather than being

stand-alone nodes.

4.1.1 Observation Unit

A new RV observation unit (OU), implemented as a resource in the CPU core for which

instructions in the CPU pipeline can be scheduled, watches for certain sparse event-carrying

instructions (i.e., instructions designated by the compiler to represent events of interest to

automata checkers) or to collect information (such as object and method IDs) needed by the

continuous event-building process to be packaged into event packets. Event packets are then

sent to RV controllers (described later) for verification against the system-wide population

of checkers. In Section 4.2, Intel Pin is used to intercept function calls and returns that are

used in property specifications of each benchmark.

4.1.2 Object Directories

A fundamental requirement of any distributed RV architecture is to guarantee that all au-

tomata checkers distributed throughout the system observe a consistent execution history for

each object. An object token is dynamically allocated for every new software object in the

system3 and object directories are used to manage the sharers set or exclusive owner of each

token. Each object token is assigned to a home object directory (depending on its unique

ID). Object tokens do not serialize access to objects and object access methods can still

overlap, thus, preserving the application level of parallelism. Rather, object tokens are used

to impose a consistent interleaving order on object-access start and end events. A limited

pointer scheme [161] was employed because the number of sharers of any object is usually

3Only data items with unique system-wide identity need to have object tokens. Copyable values will not
have tokens associated with them which reduces NUVA performance overhead.

74



small. When the number of sharers exceeds the number of pointers n, a directory entry

dynamically switches to a coarse bit-vector scheme [161], where each bit stands for a set of

K possible sharers to which coherence requests need to be directed. Since, most of the time,

only a fraction of all objects are shared among one or more nodes, a fully-associative object

directory cache [161] is used and objects that are not currently shared can be evicted from it.

A RV controller is designed to hold only a maximum of J object tokens, where J is selected

to cover a sufficient number of events that can occur within the pipeline instruction window

W of all hardware threads of a single core. If more than J events are observed within W

(which is a rarity by design), the thread causing this overflow is stalled until enough local

object tokens are released and can be evicted. Thus, object directory caches throughout the

system need only cater for J × C object entries, where C is the number of RV controllers

in the system. This is called inclusive directory cache organization [161]. Moreover, if the

number of object directories is made to scale linearly k×C with the RV controller count C,

with k < 1, the associativity J × C/k × C = J/k of object directory caches can be made

independent of C.

4.1.3 RV Controllers

A RV controller serves one or more processor nodes by receiving events from OUs embedded

in their pipelines, communicating with object directories to request Shared or Exclusive object

tokens according to each event type, submitting events to the automata memory controller

(see Section 4.1.5) for further processing, and finally relaying back responses to OUs to

remove the pipeline stalls inserted. If events involve multiple objects (each with possibly

different access type, i.e., READ or WRITE), RV controllers need to request object tokens in

a specific order (e.g., by their object IDs) to prevent deadlock.

75



Not

Present
start

Not

Shared

Wait

sACK

Shared
Wait

iACK
Exclusive

replicate

replicate

try
GetS

tryGetX

sACK

sACK

tryGetS

tryGetX

iACK

iACK

CommitAbort

recom
b.

Not

Present
start

Invalid

Shared

Exclusive

Modified
Wait

sAck

Wait

xAck

replicate

tryR
ead

tryW
rite in

va
lid

at
eup

date

Commit
Abort sACK

sN
A

C
K

in
va

lid
at

e

xACK invalidate

xN
A

C
K

Figure 4.2: States of an automata directory entry (left) and states of an automaton replica
(right).

4.1.4 Automata Directories

The population DAG is a concurrent data structure shared among all RV controllers and

events are applied to the checker population locally at every RV controller. Therefore, a

coherence protocol, implemented by a distributed set of automata directories, ensures that

all RV controllers have a consistent view of the checker population by keeping track of the

sharing state and the sharers set of each checker replica. Each replica is hashed to a fixed

home directory based solely on its variable binding values. Coherence states of automata

directory entries and automaton replicas at an ATM controller node (see Section 4.1.5) are

shown in Figure 4.2.4

4.1.5 Automata Transactional Memory

Every event must appear to update the states of the entire checker population atomically at

some point within the lifespan of the population-update transaction. To maximize concur-

4A copy of a SR-FSM replica has a sharing state, which can be Invalid, Shared, Exclusive, or Modified
and changes in response to coherence requests (tryGetS, tryGetX, Commit and Abort. It also has a current
SR-FSM state, which can be any of the states ofMϕ and changes in response to RV events. Invalid state (I)
means that the SR-FSM replica state and its offspring/parents lists are not up-to-date.

76



XACTOR SCAN

AMP

RECOMB ACQUIRE COMMIT

ABORT

Bus

Arbiter

REQ

RSP

Automata Processors

AMP=Automata Multiprocessor

APE

APE

APE

APE

APE

To memory

Incoming events

Incoming requests

Incoming responses

Outgoing requests

Outgoing responses

V ASIDTID SID C P S/D VS NSTATERID

Transaction sets CAM

V ASIDDID RID STATESHARINGADDR

Local checker repository CAM

V ASIDDID A/D/CPRID CRID

Unified population structure CAM

Figure 4.3: ATM event processing pipeline.

rency, state updates due to different events are allowed to overlap as long as they mutate

the states of disjoint sets of replicas. An automata transactional memory (ATM) is needed

on top of the coherence protocol substrate to implement an optimistic concurrency control

mechanism that guarantees serializability. A transaction T (σ,Mϕ) is associated with every

event σ and SR-FSMMϕ. Given an event σ and its associated transaction (T for short), the

set of replicas of Mϕ that will switch their states in response to σ (without recombination)

or have new offspring is called the write-set of T , or WS(T ). In order to determine WS(T ),

usually a small fraction of the checker population needs to be read and is called the read-set

of T , or RS(T ). Moreover, since SR-FSM replicas can be created and destroyed at runtime,

with every transaction T , we maintain a replicate-set (or create-set) CS(T ) and a recombine-

set (or destroy-set) DS(T ). The replicate-set is the set of all new SR-FSM replicas created

due to σ at a particular ATM node, and the recombine-set is the set of all replicas that

go out of existence by recombination. The internal organization of an ATM node shown in

Figure 4.3 illustrates that event processing in ATMs proceeds in a pipelined fashion.

Contention Management and Speculative Update. The state update procedure has

worst-case time and space complexity of O(N), where N is the checker population size.

The read sets of RV transactions can grow very large and cause intolerable RV coherence

77



traffic and conflicts among concurrent RV transactions. An event usually affects the state of

only a few replicas in the population (see Section 4.2.3). Therefore, a speculative approach

can be used to reduce coherence traffic and make the population update procedure almost

independent of population size. Every time an event σ arrives, the entire population DAG

is scanned in depth-first order starting at the root. For each visited replica ρ, all replication

graphs associated with the predicate symbol of σ and all states of Mϕ are elaborated. The

elaboration algorithm decides whether or not there is a possible state transition. It can

then decide whether or not to send a tryGetS RV coherence request for that replica (and

add it to RS(T )). During this scanning stage, a replica can be in the Invalid state, since its

bindings are always valid and do not change with time (unless the replica recombines with its

parent). Once in the Shared state, it can be decided whether or not a replica will indeed make

a state transition (and be added to WS(T )) and/or self-replicate (the new replicas, if any,

are added to CS(T )). Also, its offspring list is up-to-date and can be traversed. If bindings

of ρ and argument values of σ conflict, then ρ just remains in its current (unknown) state.

Thus, ignorable events are very cheap because they can be detected at the level of the entire

population (i.e., the root replica) even without issuing any RV coherence requests. Moreover,

population scanning does not have to visit children of ρ because they are guaranteed to

conflict too. This way, entire subgraphs from the population DAG can be pruned, leading to

an efficient population update procedure and reducing the probability of collision between

concurrent RV transactions. The scanning stage in Figure 4.3 internally utilizes K automata

processing elements (APEs) to parallelize the scan.

Recombination stage. The recombination stage resolves all recombination opportuni-

ties and updates the recombine set DS(T ) of the current transaction T . A recombination-

candidates set US(T ) is initialized with WS(T ). For every replica ρc ∈ US(T ), its current

or new SR-FSM state is compared to that of each ρp of its parents. In partial recombination,

both the parent ρp and child ρc are added to WS(T ), whereas in case of complete recombi-

nation, all parents of ρc are added to the WS(T ) and ρc itself is added to DS(T ). At the end

78



of every iteration, all replicas that acquired new parents (by adoption) are added to US(S)

and the process is repeated until no more adopted replicas are discovered.

Atomic Commit. To make all updates in the write-set visible atomically to all other events,

a two-phase commit protocol is used, in which the initiator node first sends commit requests

to the automata directories. To prevent deadlock, try-locks are used. A tryReplicate request

for every newborn replica in CS(T ) and a tryGetX request for every replica in WS(T )∪DS(T )

are sent to their respective home directories. Based on the acknowledgments received back

from the participant automata directories, the initiator node then decides whether to send a

commit or abort (roll-back) message to the participant automata directories. If a newborn

replica does not already exist, the tryReplicate request is acknowledged. Later the replicate

request will be committed. If the replica already exists, the tryReplicate request is negatively

acknowledged (NACK) leading to aborting and restarting the current transaction.

Details of access tracking, version management and recovery, as well as hardware represen-

tation of various sets using content addressable memories (CAMs), including local replica

identification, is standard and was omitted for lack of space.

4.2 Experimental Validation

Simulation Architecture. A cycle-accurate multiprocessor simulation model for x86 64

instruction set architecture was constructed to have a functional layer (based on Intel Pin

[17]) that is completely controlled by a timing layer based on GEM5 [26] translated into Sys-

temC. The two layers communicate via Linux sockets. The GEM5 timing layer features are

summarized in Figure 4.4. The NoC is used to support cache coherence controllers and direc-

tories, ATMs, RV controllers and object/automata directories on separate virtual nets. The

Intel Pin functional layer (PFL) executes the benchmark natively on the host multiprocessor

79



Host Multiprocessor Platform

SystemC Kernel

Timing Layer IPC

Intel Pin

Functional
Layer

Benchmark

IPC

CPU cores 4/16/64 in-order, 3-way SMT
Cache coherence MESI, directory-based
Interconnect Fixed-pipeline Garnet NoC
L1 Cache I/D$=32/64 kB, 2-way
L2 Cache 2MB, 8-way
Phys. Mem. 512MB
NoC Topology Torus
APEs 8 per node

Figure 4.4: Simulation platform and parameters

platform and has two functions: (1) It monitors execution of a multithreaded benchmark

program on the host machine and uses Linux sockets to send decoded instructions, executed

instructions, memory accesses, and RV events to the SystemC timing simulation layer. (2) It

controls thread execution on the host machine based on commands from the SystemC timing

layer to emulate running the program on the configured target multiprocessor platform.

4.2.1 Benchmarks.

Two benchmarks were completely rewritten to comply with the style expected by the Pin

functional layer. In the BH benchmark [106], the BH tree construction phase was parallelized

because it offers many opportunities for inter-thread contention and meaningful correctness

properties. In the Canneal benchmark [23], the netlist is a lock-free concurrent data structure

that was rewritten to use C++11 atomics. More work is ongoing on mining specifications

from the PARSEC benchmark suite [23] for more comprehensive evaluation of NUVA.

4.2.2 Bug Detection Capability.

By catching locking discipline violations in the BH benchmark, NUVA helped to refine BH

specification in early stages of evaluation. Moreover, the bug detection capability of NUVA

was evaluated using injected violations and NUVA managed to catch all these violations too.

80



For example, from Figure 2.1, having two consecutive Lock calls to acquire locks on BH tree

nodes n1 and n2, respectively, the first subsequent Unlock operation must release the lock

on n1 before releasing the lock on n2. Also, two consecutive Lock calls cannot be followed

by a third Lock call unless there is an intervening Unlock call. Finally, a new BH tree node

n2 can be created only while holding the lock on another node n1 and, then, either n1 is

unlocked or n2 is locked. In Figure 2.2, the property is violated only if two netlist elements

n1 and n2 are swapped twice with neither of them having been swapped with a different

element in between. Thus, we could craft the benchmark source code to produce violating

sub-traces, such as (Swap(t, n1, n2), Swap(t, n1, n2)) or (Swap(t, n1, n2), Swap(t, n2, n1)), and

NUVA could detect all.

4.2.3 Simulation Results.

Figure 4.5 shows the cycles-per-instruction (CPI) adders stack for both benchmarks. The

RV overhead is approximately 1∼3% of total execution time and the NoC traffic generated

by the RV components accounts for 10∼15% of total NoC traffic. This relatively low impact

on performance is due to temporal locality in the monitored programs (i.e., threads tend to

reuse the same objects) that reflects upon parametric event processing. In the ensemble state

LBFG representation, each automaton replica tends to be sensitized only to particular vari-

able values) that has been exploited to its maximum in the transactional RV implementation.

To quantify locality, we use the trace of RV read sets RS(t) and calculate the autocorrelation

function R(s, t) of its working-set trace RST (t) = ∪t+Ts=t RS(s) using the concept of Jaccard’s

coefficient, J(A,B) = |A ∩ B|/|A ∪ B|. That is, R(s, t) = J(RST (s), RST (t)). The high

autocorrelation of the read-set trace of a single ATM and the low cross-correlations among

read-set traces of different ATMs confirming our locality conjecture are shown in Figure 4.6.

The population size at every RV transaction point shown in Figure 4.6 proves that recom-

bination is very effective at reducing the population size that the RV infrastructure has to

81



4 Cores (BH)

4 Cores (CN)

16 Cores (BH)

16 Cores (CN)

64 Cores (BH)

64 Cores (CN)

0

20

40

60

80

100

%
o
f

E
x
e
c.

T
im

e

Instruction Fetch Memory Other
Object Fetch Event Processing

98
99
100

4 Cores (BH)

4 Cores (CN)

16 Cores (BH)

16 Cores (CN)

64 Cores (BH)

64 Cores (CN)

0

20

40

60

80

100

%
o
f

N
o
C

T
ra

ffi
c

CC Traffic NUVA Traffic

Figure 4.5: CPI adders stack and NoC (data + control) traffic for monitored Barnes-Hut
(BH) and Canneal (CN) benchmarks vs. the number of CPU cores.

accommodate and maintain. Sizes of various sets maintained by a RV transaction are shown

in Figure 4.6. By virtue of speculative checker update and temporal locality, the abort count

per RV transaction in Figure 4.6 is zero most of the time, an indication of low conflict rate

among concurrent RV transactions (conflict probability is 0.28). The read-set size and the

number of visited replicas during the scanning phase is typically 5-10 and almost all of them

are usually found in the Shared state, thus significantly reducing RV coherence traffic. The

only limitation apparent from Figure 4.6 is the number of visited replicas during the scanning

phase. This problem can be solved by using as many APEs as may be feasible. The APE

design implemented here consumes 0.024mm2 of area and 0.58mW of power at 200MHz in

TSMC 40nm technology which implies that we can use as many APEs as desired limited

only by number of memory ports.

Sensitivity and Scalability Analysis. To measure NUVA’s overhead sensitivity to prob-

lem size and scalability to larger multiprocessors, we vary the number of processor cores as

well as the benchmark workload (i.e., data set size and number of worker threads), which is

Gustafson’s scaling model. Figure 4.5 indicates tolerable sensitivity and substantial scala-

bility up to 64 cores.

82



4.2.4 Synthesis Results.

All the proposed RV components have been modeled at the RTL level using SystemVerilog

and synthesized in TSMC 40nm CMOS technology using Synopsys Design Compiler (SDC).

The RV architecture and technology parameters are listed in Table 4.1 and synthesis results

are shown in Figure 4.8. We then compare the overhead of NUVA with the die size and

thermal design power (TDP) of commercial desktop and mobile processors based on publicly

available empirical data. NUVA still makes sense even in a single-core context because both

event-driven and multithreaded programs can be run on single-core CPUs. Since we are

using a standard-cell design flow, it is extremely hard to meet timing constraints at such high

frequencies as 2-3GHz unless an unrealistic pipelining depth is used everywhere throughout

the design. Such high frequencies as 2-3GHz can only be achieved with semi-custom design

flows. Therefore, for fair comparison, with commercial processors, we measure the area

and power scaling of the synthesized RV components in our standard-cell design flow as the

operating frequency is increased and linearly extrapolate (for simplicity) to 1GHz5, as shown

in Figure 4.7.6 In Figure 4.8, the area and power of all RV components are shown as estimated

by SDC. Evidently, CAMs dominate design area and power, and can be significantly reduced

using full-custom design instead of standard-cell design. The area and power of RTL CAM

designs can be modeled by:

ARTL = a1N + a2N log2N, PRTL = p1N + p2N log2N

where N is the number of CAM entries, a1 and a2 are constants depending on CAM width.

The a1N term is due to the CAM array and the c2N logN is due to iteration logic which

is a parallel-prefix tree (PPT). From Figure 4.8, these constants can be estimated to be

a1 ≈ 350µm2/entry and a2 ≈ 7µm2/entry, p1 ≈ 13µW/entry, p2 ≈ 0.4µW/entry for a

5RV components are assumed to work at 1
3 the CPU core clock rate. The maximum clock rate achieved

with TSMC standard-cell flow is 500MHz (without aggressive pipelining not to invalidate performance re-
sults).

6It should be noted that extrapolated scaling of standard-cell flow is somewhat pessimistic, since a semi-
custom flow can improve upon it [41].

83



52-bit entry. Comparing with [57, 96], a full-custom design of a CAM array can be 3× more

efficient than the RTL design in this paper, resulting in area and power given by:

AFC =
a1

3
N + a2N log2N, PFC =

p1

3
N + p2N log2N

Constants a1 ≈ 10µ2 and p1 ≈ 0.7µW/entry for a full-custom CAM design, whereas con-

stants a2 and p2 remain unchanged because the PPT will still be implemented in RTL. These

adjustments are applied to SDC area and power figures to obtain the area and power scaling

in Figure 4.7. It should also be noted that the reported power numbers are pessimistic, since

Synopsys Power Compiler tool uses a conservative activity propagation technique for power

estimation. Area and power of RV (automata and object) directories increase faster than

the area and power of RV and ATM controllers as the (object and automata) cache size

increases, because a directory entry maintains a sharers set for every object or automaton

whereas a RV or ATM controller does not maintain a sharers set per object or automaton.

From SystemC simulations, the average event processing throughput is 43.9 MEPS in a

simulated quad-core multiprocessor (with a RV load factor per core7 of 0.1) at operating

frequency of 500MHz. From Figure 4.7, our silicon implementation is estimated to consume

an average of 576mW at 1GHz at a load factor of 1. As a very rough measure of energy

efficiency,8 this results in RV energy efficiency of 1.5 MEPS/mW. For a processor core with 5

MIPS/mW, this corresponds roughly to 3.2% drop in energy efficiency at a parametric event

density of 0.01 EPI, as shown in Figure 4.7. Of course, as the parametric event density of a

program increases, energy efficiency will decrease faster due to NoC conjecstion.

7The RV load factor of a CPU core is the average number of concurrent RV transactions being processed
at any time.

8Since the SystemC model and SystemVerilog model are not cycle-equivalent, the NoC power is not
accounted for, and the default switching activity annotation and propagation mechanisms of SDC are used.

84



Argument width 3 bits (max 8 args/predicate) Replica ID width 16 bits
Variable width 4 bits (max 16 vars/property) Object ID width 32 bits
Number of CPU nodes Up to 64 (CPU ID = 6 bits) Supply voltage 0.99V
Directory max. sharers 4 (bits = 4× 6) Frequency 250MHz
Number of APEs 8 per ATM node Threshold voltage mixed LVt/HVt

Table 4.1: RV architectural and technology parameters

4.2.5 Optimum APE Number

To explore the optimum number of APEs per ATM node, CACTI5.3 [158] (which is a

modeling tool for dynamic and leakage power, access time, and area of caches and other

types of memories was used to model the effect of the combination of APEs count and the

number of SRAM ports on overall energy efficiency, where the SRAM is implemented using

a mixed-threshold-voltage 40nm technology. These SRAMs, shown in Figure 4.1, hold the

parametric SR-FSMs, replication graphs, etc. In this experiment, each APE is allowed access

to the SRAM through an independent port to maximize parallelism, since the elaboration of

each replication graph is an independent task. By increasing the number APEs, the total time

needed to update a checker population of certain size is reduced proportionately. However,

having more read ports to the SRAM substantially raises the memory access time, area,

and power consumption. Moreover, increasing the APEs count beyond a certain limit does

not reap much gains in execution time and only incurs the excessive area/power overhead of

extra read ports. This is illustrated in Figure 4.7, which shows that the total (leakage and

dynamic) energy exhibits a minimum at 6-8 SRAM ports.9 It is clear that, depending on

the size of the SRAM, there is an optimum number of read ports or APEs that minimizes

the energy per RV operation.

9Energy consumed in memory operations to process 1000 (randomly generated) replication graphs (nor-
malized to the maximum).

85



4.3 Conclusion, Limitations and Future Work

The feasibility of efficient RV of parametric specifications in hardware has been demon-

strated. However, a few limitations need to be pointed out. All the CAMs used in this

design were entirely modeled at the RTL level. Although that yields practical and param-

eterizable designs for < 1k locations, the area and power efficiency of NUVA leans heavily

on these special memory structures. Therefore, a full-custom implementation of all CAMs is

the next logical step. Moreover, mechanisms for spilling into main memory in case the spe-

cial memory structures also warrant careful consideration in terms of efficient replacement

algorithms that exploit locality of reference. Also, object directories can be piggybacked

on any contemporary directory-based cache coherence (CC) protocol with minimal changes

to the CC protocol. Replica IDs are wide (to support globally large population of check-

ers). However, any node is expected (as demonstrated in simulations) to host only a much

smaller number of replicas. Thus, using smaller local replica IDs will reduce the hardware

cost significantly. Therefore, a bidirectional translation look-aside buffer (BTLB) is needed

to translate back and forth between global and local IDs.

Communication among processing nodes is assumed secure and error-free and that nodes

cannot ignore RV messages or delay them indefinitely. Otherwise, node failures may have

occurred. Validating this assumption can be the responsibility of each node, for example, by

denying requests whenever there is no buffer space for new requests. Consensus about node

failures might be required to avoid those nodes completely.

Moreover, as already shown, NUVA owes its low performance overhead to temporal and

spatial locality in monitored programs. Locality is a natural property of most computations.

Programs that lack locality will suffer substantial performance hits, for example, due to

memory hierarchy and cache coherence latencies. Moreover, NUVA can only detect property

violations that manifest themselves at the monitored interface or API. That is why most

86



intrusion detection systems intercept system calls because it is an interface that cannot be

circumvented. Also, it is assumed that no invocations of the monitored interface can be

concealed from the checker population, and no extraneous invocations can be inserted. It is

also implicit that characteristics (average size, average longevity of a checker replica) of the

checker population is dictated both by the monitored property and observed system behavior.

Strong bounds on population size need to be developed. In this thesis, only information carried

by an event (or stored in the free variables or constants of a SR-DFA) can be used in RV.

No rigid predicates or functions [105] can be used in NUVA. Support for checker callbacks

implementing rigid predicates and functions may be added in the future. Rigid functions

and predicates can be implemented by associating them with program-specified functions

and allowing the RV hardware to automatically invoke them, as in iWatcher [178].

The current NUVA design inserts stalls into the processor pipeline to fulfill the condition

of precision (i.e., reporting violations where and when they occur). Although that does not

result in crippling performance slowdown, future implementations may give the option of

trading off precision (either by increasing latency of violation declaration or by increasing

false positives) for even lower performance overhead.

87



0 10 000 20 000

0
5

00
0

Event Count
R

e
p

li
ca

C
o
u

n
t

Replications
Recombinations

0 20 40 60 80
0

0.5

1

Shift

Auto-correlation
Cross-correlation

2 6 11 15 19

1
10

0
10
,0

00

Set Size

E
v
e
n
t

C
o
u

n
t

Visited Replicas Abort Count
Shared Replicas Read set

0 10 000 20 000

0
10

20
30

Event Count

P
o
p

u
la

ti
o
n

End of BH-tree building phase

Figure 4.6: Checker population size (= replications − recombinations), size-histogram (log-
scale) of various transaction sets, and auto-/cross-correlation of transaction working sets
(T = 40) for a 16-core/16-ATM system.

0.2 0.5 0.8

3

6

9

Frequency (GHz)

A
re

a
(m

m
2
)

200

400

600

800

1,000

P
o
w

e
r

(m
W

)Area
Power

Metric Desktop Mobile

Die size (mm2) 263 296

Technology 45nm 45nm

TDP (W) 130 45-55

Cores 4 4

Voltage (V) 0.8-1.375 0.65-1.4

Frequency (GHz) 2.67-3.33 1.6-2.13
Desktop

Mobile
0

100

200

300

D
ie

S
iz

e
(m

m
2
)

Original RV Overhead

3GHz 2GHz

2.6% 1.9%

Desktop
Mobile

0

50

100

T
D

P
(W

)

Original TDP RV Overhead

3GHz

2GHz

0.54% 1.0%

10−4 10−3 10−2 10−1 100

106

107

Event Density (EPI)

E
ffi

ci
e
n

cy
(M

IP
S

/
m

W
)

5MIPS/mW

10MIPS/mW

96.80%

93.75%

2 4 6 8 10 12 14 16

0.1

0.3

0.5

0.7

0.9

1.1

1.3

Number of Read Ports

N
o
rm

a
li

ze
d

E
n

e
rg

y

1kB
4kB
16kB

Figure 4.7: Frequency-scaled RV overhead w.r.to quad-core Intel processors, CPU energy
efficiency vs. event density, as well as normalized energy per RV operation vs. number
of RAM read ports (and for SRAM size = 1kB, 4kB, 16kB). In both the desktop and
mobile categories, we use a family of Intel processors covering a narrow range of models,
microarchitectures, and applications in the CMOS technology (Intel 45nm) closest to ours
(TSMC 40nm).

88



6412
8

25
6

51
20

0.2
0.3

0.5

Directory or Repository CAM Size

A
re

a
(m

m
2
) Object Directory

RV Controller

6412
8

25
6

51
20

0.2
0.3

0.5

ATM repository CAM Size

A
re

a
(m

m
2
) S=64 S=128

S=256 S=512

6412
8

25
6

51
20

0.2
0.3

0.5

Automata Directory CAM Size

A
re

a
(m

m
2
) S=64 S=128

S=256 S=512

6412
8

25
6

51
20

3

9

21

Directory or Repository CAM Size

P
o
w

e
r

(m
W

) Object Directory
RV Controller

6412
8

25
6

51
20

3

9

21

Automata repository CAM Size

P
o
w

e
r

(m
W

) S=64 S=128
S=256 S=512

6412
8

25
6

51
20

3

9

21

Automata Directory CAM Size

P
o
w

e
r

(m
W

) S=64 S=128
S=256 S=512

Figure 4.8: Synthesis results of various RV object-layer components, ATM and automata
directories at 250MHz (UPS CAM stands for the unified population-structure CAM where
the population DAG edges are stored as an adjacency list. S stands for UPS CAM size).
Leakage power is generally 3-5%.

89



Chapter 5

Specification Mining

5.1 Specification Mining

Formal specifications, like SR-DFAs, are notoriously hard to formulate and maintain for

evolving complex distributed systems, especially at the level of precision mandated by ID

applications. Specification mining [10] is an automated approach to extracting specifications

from the abundant execution (and operational) traces and audit trails. In this thesis, we

utilize a novel and rigorous mining methodology to extract SR-DFAs using an iterative and

interactive mining tool, called ParaMiner, from data-carrying event traces.

ParaMiner enables conducting multiple experiments to discover precise specifications that

capture salient behaviors of instrumented programs. ParaMiner adopts a SR-DFA formalism

intended for runtime verification of embedded and general-purpose software systems as well

as anomaly-based intrusion detection in system-call traces. The proposed mining techniques

can apply to all of parametric events streams regardless of their origin.

ParaMiner is able to construct properties that capture, and weave together, wildly different

90



(large-scale) behavioral phases.

With SR-DFAs, the training data is only implicitly memorized within the (limited) capacity

of the SR-DFA being mined. A SR-DFA can remember some (but not all) events arbitrarily

far in the past. Remembering the entire trace of events observed so far is neither feasible

(due to memory constraints) nor desirable or beneficial (due to limited generalization). The

goal is to build a SR-DFA that will predict (or generate) all the traces in the training set

with good generalization performance by allowing recurrent behavioral episodes (possibly

with many variants). As explained in [131], a single-state automaton with a self-loop is so

weak as to have no predictive power (i.e., it predicts every possible behavior), whereas the

prefix-tree acceptor automaton would only predict those traces in the training set.

The problem of identifying a finite-state automaton from samples of its behavior is sys-

tematically investigated in the discipline of Grammatical Induction [51]. The problem of

identifying an automaton from examples is NP-Hard [79, 11, 101], whereas teacher-based

identification runs in polynomial time [12]. However, it is empirically demonstrated in [108]

that random DFAs are approximately learnable from randomly selected sparse training data.

ParaMiner identifies a (not necessarily minimal) SR-DFA without pre-selecting or imposing

the form or size of its state space, which depends solely on the training set. In the automata

learning literature (e.g., [54]), both positive and negative training examples are required. In

this thesis, since a SR-DFA is of interest, the most important criterion is that the training

set be sufficiently diverse. The input to ParaMiner is a set of parametric event traces and

the output is a SR-DFA that expresses a temporal property satisfied by the training set.

91



5.1.1 Introduction

Nature of Specification Mining

Specification mining can be viewed as a special form of grammatical inference or induc-

tion [50], where a (partially automated or interactive) learning algorithm is given access to

structured-data sets (e.g., sequential execution traces, program source code in some program-

ming language, change logs, bug reports, etc.) and is expected to return a grammar (i.e., a

generative device) that explains or generalizes the training data sets.

The target formalism of ParaMiner is SR-DFAs, in contrast to other formalisms such as

value invariants [65] and rules or patterns [125, 172]. The use of finite-state automata

implies that behavior approximation is inevitable. Functions in a program may directly or

indirectly call each other recursively. Thus, even without taking argument data values into

account, API call traces of a program must generally be represented by context-free languages

(CFLs) [95]. In order to represent these traces with finite automata, an approximation of

CFLs with regular languages must be constructed. There are two basic types of behavioral

approximations, and mined specifications can be a hybrid of these two types:

• If a property over-approximates program behavior (i.e., accepts a superset of correct

behavior including impossible behaviors that cannot be exhibited by the program in a

correct run), verification of that property might miss latent program bugs (i.e., result

in false negatives).

• If a property under-approximates program behavior (i.e., accepts a subset of correct be-

havior and rejects legal behaviors that could be observed in a correct run), verification

of that property might result in false positives.

Typically, a specification mining tool strives to extract tight supersets of the set of system

behaviors. Every mined property captures only one aspect of system behavior and, if con-

92



sidered in isolation, may allow some illegal executions excluded by other properties. Two

conflicting requirements are needed in specification mining outcomes [176]:

• Precision, which measures how successful a property is at closely approximating correct

program behavior.

• Conciseness or efficiency, which measures how successful a property is at abstracting

away irrelevant behaviors and capturing the most essential (i.e., distinctive) ones.

A key to conciseness is using expressive domain-specific vocabulary or concepts [176], which

we achieve in this thesis by focusing on mining specifications based on program-specific API

interfaces. Different applications put different weights on precision and conciseness. For

example, in anomaly-based intrusion detection (ID) systems [16], model/property precision

is of paramount importance1, whereas conciseness acquires less weight. To mitigate the

insider threat (IT), host-based user profiling (e.g., using ParaMiner) is important [153].

However, maintaining and updating user profiles is a challenge to any host-based IDS.

5.1.2 Mining SR-NFAs

ParaMiner extracts SR-DFAs from execution traces to capture regular safety properties,

which can then be verified by RV. For a SR-DFA A, let L†(A) = L(A).Σω be the set of all

infinite extensions of words from the language of A. Then the complementary set L†(A) is

the set of all parametric event traces satisfying the regular safety property ϕ expressed by

A.2 An extracted SR-DFA A is intended to over-approximate the set Exec⊆ Traces(TS)

of execution traces used in the mining process. If Exec is adequate and A is not too

constrained,3 it is then hoped that A also over-approximates the set Traces(TS) of all

possible observable behaviors of TS. That is, Traces(TS)⊆L†(A). An extracted SR-DFA

1Since precision controls the balance between false positives (that can overwhelm system administrators
and render the IDS useless) with false negatives (missed attacks that can have catastrophic consequences).

2Since L(A) is the set of all bad prefixes of ϕ.
3ParaMiner has many parameters used to control the precision of A.

93



A might, however, be proven to be violated during RV of TS. This failure, in the form of

a counterexample, is a finite trace codifying a possible (but not necessarily correct) system

behavior rejected by A. Basically, what we are doing by formally verifying an extracted

specification is submitting equivalence queries [12] to an oracle that decides whether the

extracted specification is satisfied by the real system. Counterexamples can be used to filter

out spurious specifications [168], only if these counterexamples belong to Exec, behaviors

already explored by the test suite.4 Otherwise, if the counterexamples belong to behaviors

never explored by the test suite used in specification mining, then either a hole in that test

suite has been identified5 or a design bug has been found.6

5.2 Prior Work

Learning properties of software behavior has long history. Many tools [5, 8, 114, 157] rely on

static program analysis to construct approximate formal specifications of software behavior,

rather than utilize actual execution traces. These tools are, therefore, subject to limitations

of static analysis [138] including undecidability, imprecision and aliasing. On the other

hand, dynamic analysis tools, such as ParaMiner, can be unsound [139]. That is, they can

return specifications not satisfied by the analyzed programs in all situations. In [139], it was

empirically shown, with the help of a static checker, that most specifications generated from

program runs are satisfied by the implementations, a positive result that increases confidence

in adopting dynamic specification mining techniques.

Target Specifications. In many tools, such as DIDUCE [85] and Daikon [67], the focus is

on (state) invariants rather than temporal properties.

4This cannot happen with a sound specification miner, such as ParaMiner, that over-approximates the
set Exec.

5Only if the counterexamples represent correct (i.e., intended) design behavior, in which case, the mined
property should be rejected.

6Only if the counterexamples represent incorrect (i.e., unintended) design behavior.

94



Static Analysis Methods. An example static analysis tool, JIST [8], extracts the (un-

documented) correct sequencing of method calls that client code must invoke on a software

component. It employs predicate abstraction of the Java source code and then uses regular

language learning algorithms [12, 148] to synthesize a deterministic finite automaton (DFA)

that over-approximates the interface specification. In [157], only event sequences for individ-

ual objects are considered, which ignores or misses many interesting interactions involving

multiple objects and/or threads.

Dynamic Analysis Methods. An important and pioneering work on parametric specifica-

tion mining is [10], which discovers specifications that capture temporal and data-dependence

relations among invocations of an API made by a program. However, two assumptions are

made in [10] that a priori limit inferrable specifications. First, interaction scenarios that

manipulate no more than k objects are extracted, where k is a learning parameter. Second,

the user is allowed to control which scenarios to extract by supplying a set of scenario seeds

or skeletons. In this thesis, we do not limit the number of data objects or threads partic-

ipating in an interaction and we allow the salient design behaviors speak for themselves.

Parameters are provided to control the trade-off between precision and mining time/space

complexity, without constraining the forms of specifications inferred or capturing temporal

relations within a bounded time window.

Another parametric specification mining tool, JMiner [110], extracts parametric specifica-

tions7 from unit tests of Java packages. A trace slicer first extracts subsequences or slices

of related interactions from parametric execution traces. Then the resulting non-parametric

trace slices are processed by an off-the-shelf non-parametric property learner (e.g., a PFSA

learner [145]). However, JMiner implicitly assumes that all occurrences of a given base event

(i.e., method or function name) have the same set of variables used as parameters. This is a

serious limitation on the class of properties that can be inferred by JMiner. Many interesting

7Defined in [110] as specifications carrying parameters that are bound to concrete objects at runtime.

95



properties of programs constrain how those programs manipulate different objects at differ-

ent times with the same method or subroutine. For example, in a simple locking discipline,

if a program thread t calls Lock(x1) and then Lock(x2) on two different objects x1 and

x2, it may be required to release locks in the same (or opposite) order they were acquired.

In this thesis, ParaMiner does not impose any restrictions on how variables are used as event

parameters. Moreover, event parameters can be don’t-cares or negated as explained later.

One more serious limitation of JMiner is that by separating trace slicing and property learn-

ing, the interplay between the sequencing of API calls and choices of manipulated objects

by each call is lost, leading to less precise models.

In [119], the interplay between data values and interaction sequences are represented by

extended FSMs (or EFSMs), which are FSMs whose edges are annotated with constraints

on data values. EFSMs are extracted from interaction traces. However, EFSMs do not have

memory other than EFSM states, which means that EFSMs do not have a means to remember

values encountered at any transition edge and make subsequent transitions contingent on

seeing that value again. The authors in [119] make another limiting assumption, namely

that each interaction trace belongs to one thread. Therefore, mining EFSMs cannot capture

multithreaded interactions or collaborations over a shared set of objects, which has been

a major challenge (and thrust) to verification efforts, especially in today’s multiprocessor

systems. EFSMs are similar to parametric FSMs used by ParaMiner, but use rigid FOL

predicates over parameter data as well as a finite number of other program variables. In

RV tools, rigid predicates are implemented by providing callback functions that need to be

called on actual parameter data whenever an event occurs. This can significantly increase

RV impact on monitored program performance.

Applications. Specifications mined from correct as well as erroneous traces are used to

localize or diagnose errors [113].

Complexity. Learning an automaton from samples of its behavior is NP-hard [79]. Multiple

96



Universal Existential
Positive All extensions of w are in L. At least one extension of w is in L.
Negative All extensions of w are not in L. At least one extension of w is not in L.

Table 5.1: Definitions of a positive (negative) universal (existential) prefix w with respect to
an ω-regular language L.

smaller properties can be learned and then composed into more complex specifications. In

[90], it was proved that the class of ω-regular languages (i.e., those accepted by Büchi

automata) are not identifiable in the limit from samples of their (universal and existential)

prefixes, as defined in Table 5.1. However, the class of safety languages is identifiable in the

limit from positive existential and negative universal sample prefixes.

Multiple Sequence Alignment. In [116], it is mentioned that global sequence alignment,

when used to measure inter-trace distances for clustering purposes, will fail to recognize

closely related traces which differ only in the number of loop iterations. They, instead, input

regular expressions inferred from traces to the sequence alignment algorithm. However, in

this thesis, global sequence alignment proves to be a powerful tool to construct parametric

automata from such traces, because it can accommodate these kinds of divergences among

traces by inserting gap symbols.

Abstraction of State Space. Identifying the internal program state with interface API

calls completely ignores internal state producing FSMs that might have modest predictive

power (i.e., modest precision in constraining observable design behavior), which is unaccept-

able in many applications. In reality, two identical interface API calls might be produced by

different internal program states. So collapsing execution traces into sequences of interface

API calls incurs too much information loss. Alternatively, interface API calls should be used

as an alphabet set Σ annotating transitions (rather than states) of a SR-DFA whose states

abstract the program internal state space while preserving as much information as possible.8

FSMs mined based on explicit state vectors (i.e., bit-vectors that make selective transitions

8This is the typical usage model in formal verification where transitions of a Büchi automaton derived
from a LTL formula are triggered by the labels of the DUV transition system states.

97



among a limited set of values) may result only in reverse-engineering the program state space

(or parts thereof) and lacks any abstraction or generalization, and is thus not scalable and

may duplicate program bugs in the extracted specification. In this thesis, we construct SR-

DFAs based on an implicit or hidden state space whose size is dictated by the complexity

of execution traces. This is expected to abstract away many details pertinent only to the

implementation and, hence, hopefully extracts more understandable bug-free specifications.

Window-Based Methods. To reduce computational complexity, only relations among

episodes within a preset sliding window are considered by many tools. All window-based tools

have severely limited ability to discover long-range temporal relations among events9, which

are quite common in many environments. For example, in a web server, communications

with clients can introduce wild latency variations.

5.3 ParaMiner Specification Mining Flow

The specification formalism of ParaMiner is SR-DFAs introduced in [136]. In Chapter 2,

we developed a rigorous mathematical basis for SR-DFAs and their semantics. A formal

specification consists of one or more properties, where each property establishes a relation

between events in temporal sequences.

5.3.1 A Bio-Inspired Flow

The ParaMiner flow is inspired by protein folding [58], where a newly synthesized chain

of amino acids folds into a 3-d protein structure depending on the amino acid sequence

and environmental influences. Similarly, in the ParaMiner flow, traces of observations or

events extracted from program executions will self-assemble into varied finite automata ex-

9In order to reduce search space, the window size must be kept small.

98



ParaMiner GUI

PUV

Execution
Traces

Trace Profiling
& Slicing

MSA & Iterative
Refinement

PFSA Construction
& Reduction

SR-DFA
Construction

SR-DFA
Abstraction

Validation

SR-DFA
Checkers

API
Description

Testing Environment

Figure 5.1: ParaMiner specification mining flow. ParaMiner is part of a multi-purpose
specification mining Java application with 80,000+ lines of code, that also supports mining
DFAs from digital logic simulation traces [137].

pressing different behavioral properties or aspects of a program.10 There are more parallels

between protein folding and ParaMiner. For example, to work with long execution traces in

ParaMiner, closely related states will cluster into superstates or macrostates that can then

be used in a similar manner as building blocks for higher-level superstates until the overall

structure emerges. Similarly, large protein molecules fold in modules [58], since folding takes

place almost independently in different segments (or domains) of the long chain of amino-

acid residues. Moreover, folding nuclei form among a small number of residues and allow the

global topology of the protein structure to rapidly condense around them [58]. This modular

mechanism in proteins is also crucial for the assembly of ever larger molecules.

The specification mining flow is shown in Figure 6.2.

10The folding mechanisms used by ParaMiner are multiple sequence alignment (MSA) and PFSA state
merging.

99



5.3.2 API Description

The monitored API (e.g., Linux system calls, Java standard libraries, etc.) is described to

the ParaMiner in terms of function (or method) names, argument types, and return types.

Parametric events and traces naturally follow the language of FOLe.

ParaMiner accepts parametric traces from a variety of sources, from low-level syscall monitors

to high-level command-line calls or database accesses.

5.3.3 Trace Recording

ParaMiner is based on dynamic analysis of execution traces (e.g., system calls, Java API

method calls, etc.). Specification mining is premised on the availability of fairly high-quality

(but not necessarily bug-free) designs that can be exercised to reveal the most relevant aspects

of behavior without triggering bugs, which can then be captured in a formal specification.

ParaMiner needs a database of parametric execution traces providing sufficient coverage of

system behavior in various situations (e.g., during system start-up, during normal operation

and in response to various transactions) in order to increase model precision. The monitored

Linux applications are instrumented at the system-call interface using the strace utility that

intercepts system calls and records calling thread context, argument values (tracking down

struct and array pointers) as well as return values. Since we also use the DaCapo-9.12-bach

benchmark suite [27] of Java programs and because Java intrinsically supports reflection and

byte-code instrumentation, we created an instrumentation agent ParaTracer that, with the

help of Javassist-3.19 [40], instruments all (public) method calls on standard Java SE and

EE packages as used by any benchmark programs. A database of execution traces providing

sufficient coverage of system behavior in various situations (e.g., during system start-up,

during normal operation and in response to transient events) is needed to increase model

precision.

100



In this thesis, the data set is a collection of finite traces {u1, . . . , un} of events (e.g., database

queries or system calls) possibly resulting from interaction of the monitored system with

multiple agents exhibiting a sufficiently rich set of behaviors.

On Linux, ltrace can be used to intercept and record calls to dynamically linked libraries

and system calls made by an executed process and the signals it receives. It should be noted

that ltrace only traces calls from the instrumented to the dynamically linked libraries and

does not trace calls between or within those libraries. This should not be a problem, since

the goal is usually to monitor how an application interacts with a library. However, latrace

can be used to intercept intra-library calls.

5.3.4 Trace Slicing, Segmentation and Folding

It is important to simplify automata-based descriptions of complex systems by effectively

introducing hierarchy and concurrency [86]. Without hierarchy (modularity, state clustering

or abstraction) and concurrency (independence or orthogonality), those state-based descrip-

tions become unwieldy, unstructured and incomprehensible.

Untangling Concurrency - Trace Slicing. A single trace may interleave multiple unre-

lated, but concurrent, activities (or aspects) by the same thread or different threads. These

unrelated aspects should be isolated into different trace slices that derive separate specifica-

tions. Thus, to account for concurrency of many activities inherent in observed traces, trace

slicing [39, 110] extracts multiple subsequences (or slices) of an execution trace that satisfy

a slicing criterion.

Delimiting Hierarchy - Trace Segmentation. Moreover, a long observation trace of an

instrumented program typically exhibits (or cycles through) different phases11 or regions of

considerable statistical regularities, as shown in Figure 6.4 produced by ParaMiner for many

11Large-scale behavioral features.

101



of the benchmarks used in this thesis. Within each phase, a trace has a unique composition

of event types. Regions having relatively stable statistics, called phases, superstates or

macrostates, can be easily delineated when viewed at multiple scales. This implies a hierarchy

of states. To enable specification mining from very long trace slices without severely suffering

from the quadratic complexity of MSA, each phase designated by the user is assigned a weight

according to its length. With each phase, we keep only a subset of the folded trace segments

in direct proportion with the weight of each phase. The entry and exit segments are always

kept, since they carry information about transitions into and out of each phase. We need

a segmentation algorithm that identifies contiguous homogeneous intervals of a given trace,

where homogeneity is a parameter that controls the trade-off between the number of intervals

and their average size. An algorithm, such as k-means clustering, which does not take into

account contiguity of clustered events may not be suitable. Candidate algorithms include:

(1) A top-down split-and-merge segmentation using a binary tree with time complexity of

O(n log n) (2) A bottom-up unseeded region growing method. (3) Multiscale segmentation

based on a scale parameter that generates a hierarchy of segments or regions (e.g., by heat

diffusion with position-dependent, anisotropic conduction parameter). In [140], it is proved

that no new artificial features12 are introduced as the scale parameter t is varied from fine to

coarse scale (a principle of causality). The conduction parameter is chosen13 locally at each

position x along a trace as a monotonically decreasing function g(·) of the (discrete-space)

derivative of the feature vector c(x, t) = g(‖ F(x, t)− F(x− 1, t) ‖).

State Identification - Trace Folding. Once the lengths and boundaries of all phases

have been properly selected, MSA will then be used (as explained in Section 5.4) to fold the

given trace slice locally within each phase while preserving the transitions among consecutive

phases. So a superstate is formed by folding a single long strand or trace within each phase.

The instrumented program exhibits recurrent behaviors of possibly different characteristic

12Defined in [140] as “blobs” or extrema (i.e., maxima or minima).
13With adiabatic boundary conditions, i.e., the conduction coefficient is set to zero at both ends of the

trace.

102



Batik

Pmd

Jython-1

Jython-2

LuIndex

LuSearch

TradeBeans

TradeSoap

D
ro

p
b

ox

Indexing

Uploading

Up-to-date

Proftpd

Figure 5.2: Examples of super-state structure: distinguishable program phases with time as
captured by the largest two principal components (displayed as color hue and saturation,
respectively) of method-name histograms within a sliding window of size 200 events.

lengths within each phase and, hence, a different optimum folding length should be used

for each phase. Thus, the users of ParaMiner need to specify for each trace which regions

are considered foldable phases and what is the folding length inside each region, taking into

account that complexity of profile-based MSA grows rapidly with folding length and the

number of slices.

It is crucial to select slice lengths and boundaries properly so as to ensure that slices con-

tain complete episodes of the behaviors of interest. This helps to improve the quality of

subsequent MSA and the final outcome.14

Slicing Criteria. Users of ParaMiner may specify any combination of the following slicing

criteria:

• Given a user-defined threshold parameter T and a parametric trace W, then for every

14Slices that are too large are undesirable, since subsequent sequence alignment has time complexity that
is quadratic in slice length.

103



type s ∈ S, if any value v of type s is observed as an argument to at least T parametric

events in W, then the subsequence of all events containing v is extracted.

• API Groups: To reduce mining noise, we allow users to turn on related API method

groups in a given mining run; otherwise, unrelated API methods would clutter the

obtained SR-DFAs. ParaMiner organizes APIs (e.g., classes of Java standard library,

Linux system calls, etc.) into smaller subgroups so that specification mining may focus

on one or more aspects of a program at a time (e.g., file access, file manipulations,

memory management, networking, concurrency, access control, etc.).

• Constants: We also allow users to specify certain values to be used in trace slicing,

so that coherent cross-sections of system behavior are obtained. For example, in the

proftpd benchmark, there is a leader process that monitors FTP connection requests

and spawns processes that handle these connections. So it may be desired to separate

the specification of the leader process from that of its child processes. In that case,

the process ID (PID) of the leader process needs to be specified explicitly as a slicing

criterion.

• Data Types: The use of data types (by virtue of multi-sorted FOLe) increases the

resolving power of extracted specifications (i.e., their ability to resolve anomalous be-

havior from normal behavior), since objects of different types can be confused for one

another. For example, threads (or processes) can be assigned different types according

to which thread function (or executable, respectively) they invoke. Thus, behaviors

originating from different parts of program code are kept separate in the resulting

specification.

Because it is a main contribution of this thesis, ParaMiner’s stage following trace slicing is

discussed in Section 5.4.

104



Trace Slice

Trace Slice Segment Trace Slice Segment Trace Slice Segment

MSA Row MSA Row MSA Row

Figure 5.3: Foldable trace segments are used isolate and extract superstates of a program
by conducting MSAs independently within each phase.

5.4 Role of Sequence Alignment

5.4.1 Initial State Uncertainty.

Classical automata-learning algorithms [12, 25], that infer finite-state automata from their

observable input-output behavior, assume the existence of a means to reset the automaton

being learned to a fixed start state. This has been identified as a serious limitation in [148].15

To obviate the use of resets in Angluin’s learning algorithm and handle the initial-state

uncertainty problem [154], homing sequences, introduced in [134], can be inferred and

applied so that the learning algorithm homes in on a system state that can be uniquely

determined from the observable output [148]. But, unlike a reset, the final state reached

cannot be known beforehand, since it depends on the current unknown state. A synchronizing

sequence [154] is a sequence of inputs that leads to a unique final state independently of the

starting or initial state. But an automaton need not have a synchronizing sequence and, if

it does, homing sequences are usually shorter [154]. However, the use of resets or homing

15This reset can be used to simulate backtracking by restarting and stopping at the desired point.

105



sequences [148] is only meaningful for active learning of automata, where it is feasible to

proactively apply a reset or a homing sequence and execute queries. In this thesis, only

passive learning using nonintrusive observation to construct tentative automata is of interest.

Therefore, we do not impose any assumptions or special prior structure (such as seed methods

or a maximum number of manipulated objects as in [10]) on the software behavior yet to

be discovered. Moreover, since a superstate may start anywhere within a trace and may

have multiple entry points, it desired to learn the internal structure of a super state without

knowing the initial state.

Only a few manual interventions are occasionally required from a user, such as selection of

initial states which happens after a relatively small SR-NFA has already been mined. This

enables users to make more informed decisions about the form of inferred specifications.

5.4.2 Multiple Sequence Alignment

Now, we explain how multiple sequence alignment (MSA), widely used for biological sequence

analysis [59], holds the answer to the above initial-state uncertainty problem [154] in passive

learning contexts.16 For every sequence σ = (σ0, σ1, σ2, . . .) of parametric events, there is

an implicit unknown labeling or path L : N → S × Λ that maps each event to a hidden

state reached at that event in transition system TS ′=TS
⊗
A. Conceptually, a path L =

(s0, λ1), (s1, λ2), . . . represents two synchronous and parallel runs s0, s1, . . . and λ1, λ2, . . . of

TS and A, respectively, where there is λ0 ∈ Λ such that ∀i ≥ 0 : σi = L(si) and:

λ0
σ0−→ λ1

σ1−→ λ2
σ2−→ λ3 . . . ‖ s0 −→ s1 −→ s2 −→ s3 . . .

Given N sequences {σ1, . . . ,σN} of parametric events, assume, for the sake of argument, that

a corresponding set of hidden-state paths {L1, . . . ,LN} is also given. Then the (possibly

nondeterministic) transition structure of S×Λ (or a small part thereof) can be reconstructed

16As opposed to active learning algorithms [12, 25, 148].

106



Figure 5.4: A section of an example MSA of 10 syscall trace slices from the proftp bench-
mark. Each row is a slice, gaps are gray and every event is depicted by a different color.

from these paths by noting that for all 1 ≤ k ≤ N , we have:

Lk(σ
k
i−1) = (s, λ)

Lk(σ
k
i ) = (s′, λ′)

 =⇒

 s −→ s′, λ
σki−→ λ′

L(s′)= σki

An alternative viewpoint, that will later help to recover the set {L1, . . . ,LN} of paths

traversed by a set of (known or observable) event sequences {σ1, . . . ,σN} in an unknown

state space TS
⊗
A, posits that the set {L1, . . . ,LN} induces an alignment on these event

sequences, where any two events σki and σlj from σk and σl, respectively, can be aligned iff

Lk(σ
k
i ) = Ll(σ

l
j) even if σki 6= σlj. In a MSA, as shown in Figure 6.5 and Figure 5.5, two

or more event sequences are arranged as rows of a 2-dimensional matrix so that, in each

column, events from one or more sequences are aligned if they have identical labels in S×Λ.

Due to the intrinsic variability of program behaviors (which are represented by languages

over finite or countable alphabets), different event sequences cannot typically be perfectly

superimposed or aligned. Non-alignable positions are filled with gap symbols. Moreover,

there is not a unique MSA induced by every set of paths {L1, . . . ,LN}. It is only possible

to find a MSA that maximizes a given optimality criterion (or scoring scheme) that ranks

different MSAs.

The main premise of ParaMiner is that, conversely, hidden-state paths {L1, . . . ,LN} can

be recovered (up to an equivalence relation over S × Λ) if an appropriate MSA of the event

sequences can be established, which can then be used to reconstruct an abstract version of

TS or A or their product TS
⊗
A.

107



However, there will still be many variants or alternatives that are nearly as good or as likely as

an optimal alignment [59, Chapter 4]. This brings forth the ill-posed nature of the sequence

alignment problem in specification mining, which necessitates the use of incorporating prior

information (see Section 5.7.7) or regularization in the form of Occam’s razor, where we seek

the alignment that results in the smallest SR-NFA.

One complication not present in conventional MSA problems is that each parametric event

in a trace slice has concrete argument values. So many ensemble states that label events

in different trace slices will possess essentially the same structure except for the actual

values they memorize. To leverage the similarity among different trace slices (as well as

within a given trace slice), we need to factor out the dependence of ensemble states on

the exact argument values and focus on their structure by defining an equivalence relation

over the ensemble state space Λ. Two composite states (s1, λ1) and (s2, λ2) in S × Λ are

equivalent (denoted (s1, λ1) ≡E (s2, λ2)) only if 17 there is a set of bijections (rearrangements

or permutations) fs : |S|s → |S|s for all s ∈ S such that λ1 � fΞ = λ2 and fΣ(L(s1)) =

L(s2), where � denotes function composition. Also, fΞ : Ξ → Ξ and fΣ : Σ → Σ are the

automorphisms over Ξ and Σ, respectively, induced by the set of maps {fs1 , . . . , fsn}. This

symmetry under bijections formalizes the notion of abstracting away the concrete argument

values of event predicates and replacing them with formal parameters. This can be formalized

as follows. Let FP be a countable set of formal parameters. Also, let Ξ(FP) be the set of

all abstract variable valuations ξ : X → FP , let Λ(FP) be the set of all abstract ensemble

states λ : Ξ(FP) → Q, and finally let Σ(FP) be the set of all FOLe atoms of the form

p(x1, . . . , xn) with each xi ∈ FP . Then we have this theorem:

Theorem 5.1. For every v ∈ (S × Λ)/≡E, there is a FOLe atom σ′ ∈ Σ(FP) and there is

λ′ ∈ Λ(FP) such that for every (s, λ) ∈ v, there is a set of maps (not necessarily bijections)

fs : |S|s → FP for all s ∈ S with λ� fΞ = λ′ and fΣ(L(s)) = σ′

17Conversely, if those bijections exist, it is not necessary that (s1, λ1) ≡E (s2, λ2). Thus, if ≡E is such an
equivalence relation over S × Λ, any finer relation is also allowed.

108



Proof. This theorem follows directly from transitivity of the equivalence relation ≡E.

This way, events are abstracted into FOLe atoms of the form p(x1, . . . , xn) before MSA starts,

where xi belong to a set FP of formal parameters. In Section 5.9.2, we discuss how argument

values in different trace slices to be aligned are replaced with variable symbols or constant

symbols chosen in such a way that similarity among the trace slices is maximized so as to

minimize the automaton ultimately inferred from the resulting MSA without unnecessarily

losing any discriminative data patterns latent in those traces. Then MSA will be used to

construct a finite abstract version TS = (S,�, I,Σ(FP),L) of TS ′ = TS ⊗ A rather than

TS ′ itself, where S = (S × Λ)/≡E ⊆ 2S×Λ is a quotient space consistent with the observed

traces.

5.5 Ensemble States from MSAs.

Before discussing MSA algorithms, we first explain how to construct a probabilistic finite-

state automaton (PFSA) [52, 145] Gm = (Λ′,Σ(FP), P r) that represents Λ(FP) from a MSA

m, as shown in Figure 5.5, where Λ′ = Λ(FP) is a finite nonempty set of abstract ensemble

states, Σ(FP) is the set of FOLe atoms over FP , and Pr : Λ′×Σ(FP)×Λ′ → [0, 1] is the

transition probability function18 such that:19

∀v ∈ Λ′ :
∑
v′∈Λ′

∑
a∈Σ(FP)

Pr(v, a, v′) = 1

A PFSA state v ∈ Λ′ is connected by a directed edge to another state v′ if, for at least one

of the aligned trace slices, a letter in column mv directly follows a letter in column mv′ ,

18Transition edges having zero probability are not depicted.
19The standard definition of PFSA has:

∀v ∈ Λ′, ∀a ∈ Σ(FP) :
∑
v′∈Λ′

Pr(v, a, v′) = 1

This standard definition only replaces nondeterminism with probability.

109



possibly with intervening gap symbols only. Thus, every trace slice is a path in Gm. Every

PFSA edge is labeled with the alphabet symbol in the MSA column associated with its sink

PFSA state. This graph representation has been called a partial-order graph in [111]. An

edge in Gm is annotated with transition probability according to how many trace slices follow

that edge in m. For these transition probabilities to be accurate, it is desired to align as

many trace slices as possible (i.e., to have deep alignments).

It is typical in many PFSA construction algorithms [52, 145] to represent the set of input

traces as a prefix tree, which is then followed by state merging. On the other hand, a

MSA represented by a dag is much more compact than the corresponding prefix tree, since

all letters in the same column are identified. Thus, MSA improves the runtime of PFSA

inference algorithms.

A PFSA is constructed by noting that all identical atoms a ∈ Σ(FP) in the same column mi

of m stand for a single unknown (abstract) hidden state v ∈ (S×Λ)/≡E. Since the structure

of (S×Λ)/≡E is unknown, we use a unique label v for every column of m. In Section 5.8, we

will identify (i.e., merge) PFSA states that are approximately equivalent in a probabilistic

sense. The label a∈Σ(FP) of a PFSA edge (λ′1, a, λ
′
2)∈ Λ′×Σ(FP)×Λ′ in Gm can be inferred

from Equation 5.1:

∀v1, v2 ∈ S
v1 � v2, L(v2) = a

∃λ′1, λ′2 ∈ Λ(FP) : λ′1
a−→ λ′2

(5.1)

In Section 5.8, reductions are applied to a PFSA G to reduce its size and improve its gener-

alization performance.

Stated differently, v1, v2 ∈ S, v1 � v2 and L(v2) = a ∈ Σ(FP) implies that there is λ′1, λ
′
2 ∈

Λ(FP) such that for every λ1 ∈ Λ which is an instantiation of λ′1, there is λ2 ∈ Λ which is

an instantiation of λ′2 such that λ1
σ−→ λ2 with σ ∈ Σ being an instantiation of a.

110



5.5.1 Initial State Selection

As shown in Figure 5.5, a fictitious starting state is added as a source state for all the aligned

sequences. In our experiments, this state proved to be valuable, since it usually allows mon-

itoring to start anytime during execution and the extracted SR-NFA automatically detects

the appropriate next state or states. Thus, users of ParaMiner may not need to specify an

initial SR-NFA state.

5.6 From Ensemble States to SR-NFA States.

How to reconstruct a SR-NFA A consistent with the set of observed traces? MSA yields

an abstract ensemble state space Λ(FP), where each abstract state λ′1 ∈ Λ(FP) stands for

a set of possible ensemble states. There is not a unique SR-NFA consistent with a given

Λ(FP). For example, if we consider each λ′1 ∈ Λ(FP) to contain only one ensemble state

λ in which all replicas of A have the same state q ∈ Q (i.e., ∀ξ ∈ Ξ : λ(ξ) = q), we get a

SR-NFA which is a classical NFA with a state space Q identical to Λ(FP), since it responds

only according to event predicate symbols ignoring any data carried by event arguments. To

avoid this degenerate extreme, we now devise an iterative data-flow algorithm that constructs

−
σ1

σ1

σ1

σ1

σ2

σ2

σ2

σ2

−

−

−
σ3

σ3

σ3

σ4

σ4

−

−

−

σ5

σ5

σ5

σ5

σ5

q0
λ′1

λ′2

λ′3

λ′4

λ′5

σ1

σ2

σ2

σ3

σ3

σ4

σ5

σ5

Figure 5.5: A MSA viewed as a PFSA. Each state corresponds to one MSA column. Each
edge is annotated with σ of the MSA column associated with its sink PFSA state. Edge line
width is proportional to transition probability.

111



Lock(a) Lock(b) Unlock(a) Lock(c) Unlock(b) Unlock(c)

Unlock(a)

λ′1
{}

λ′2
{}

{x1 = a}

λ′3
{}

{x1 = a} {x1 = b}

{x1 = a, x2 = b}

λ′4
{}

{x1 = b}

λ′5
{}

{x1 = b} {x1 = c}

{x1 = b, x2 = c}

λ′6
{}

{x1 = c}

λ′7
{}

a is forgotten b is forgotten a is forgotten

c is forgotten

Figure 5.6: Ensemble-to-automata states.

the finest SR-NFA A consistent with a given Λ(FP). It can later be reduced in size at the

cost of less precision.

We now explain how a SR-NFA A can be recovered from a given MSA m.

MSA yields an abstract ensemble state space Λ(FP), as shown in Figure 5.6. Each abstract

ensemble state λ′ ∈ Λ(FP) is an unknown function λ′ : Ξ(FP)→ Q whose LBFG represen-

tation we now construct. Note that the set FP of formal parameters used during the MSA

phase to label PFSA edges are not the same as the set X of FOL variables used by SR-NFAs.

They are intended only to abstract the actual values observed among multiple traces so that

they can be aligned and recurrent behavior extracted. This becomes clear when we note

that one and the same event may cause bindings of different sets of variables according to

the current state of the spawning replica. For example, in Figure 2.1, if a lock(1, 1) event

is observed, a replica at state q1 will spawn a new replica binding (t = 1, n1 = 1), and a

replica (already having (t = 1)) at q2 will spawn a new replica binding (n2 = 1). Therefore,

a single edge in the abstract ensemble state space Λ(FP) might correspond to multiple edges

in an underlying SR-NFA. Therefore, it is desired to construct one or more FOLe formulas

f ∈ Atoms consistent with every edge label obtained from Equation 5.1.

To limit checker population size, it is necessary to note that an ensemble state is character-

ized by the set of data values (from the set FP) it remembers from past events and the set

of combinations of those values that are remembered as codified in their association with

112



variables. It is important to specify when a combination of values in an ensemble state

is forgotten in any of its successor ensemble states. Aligning two events in a MSA effec-

tively declares that, from this point on, their past histories are essentially equivalent or that

their differences are irrelevant.20 Hence, any data values that are not common among all

converging histories can be dropped from that point on.

5.6.1 Data-Flow Analysis.

The process used to convert ensemble states to automaton states needs to determine which

parts of the ensemble state space that each formal parameter value propagates to. This is

similar to optimizing compilers, where a control-flow graph (CFG) is used to represent the

set of all possible execution paths of a program where nodes represent basic blocks and edges

represent jumps.

For every λ′ ∈ Λ(FP), if a formal parameter a appears along some, but not all, paths λ′0 → λ′,

then this implicitly indicates that a is not an essential part of the history embodied by λ′

and, hence, can be removed from λ′ (forgotten by λ′). Moreover, an ensemble state needs

to remember a value if it is used to decide future transitions. Thus, the formal parameters

FPλ′ remembered by each ensemble state λ′ is the intersection of two sets:

• AVAIL(λ′): the set of formal parameters available at λ′.

• LIVE(λ′): the set of formal parameters live at λ′.

The computation of AVAIL(λ′) and LIVE(λ′) for all ensemble states λ′ combines the results

from a sequence of two separate unidirectional analyses:

• A forward-must analysis or an available-values analysis, which starts at the initial state

λ′0 and proceeds forward by intersecting, at each ensemble state, sets of values observed

20This is an informal statement of Myhill-Nerode theorem [95] which characterizes regular languages in
terms of such equivalence classes.

113



on all incoming paths.

• A backward-may analysis or liveness analysis, which starts at terminal states and

proceeds backwards by joining, at each ensemble state, sets of values observed on at

least one outgoing path. The liveness analysis ensures that a formal parameter a is

not stored in ensemble state λ′ if it is not live (i.e., if a is not used on any execution

path originating from λ′).

In this liveness analysis, using meaningful notions of a generate set GEN(λ′) and a kill

set KILL(λ′) at each ensemble state λ′ ∈ Λ(FP) may be effective in reducing the sets of

values that need to be remembered at each state. Moreover, the entry node required by the

backward liveness analysis can be the same as the exit node. So starting the forward and

backward data-flow analyses from the initial ensemble state λ′0, no formal parameters are

remembered at λ′0: AVAIL(λ′0) = LIVE(λ′0) = ∅.

The data-flow equations at each ensemble state s are given by:

AVAIL(λ′1) =
⋂{

AVAIL(λ′2) ∪ {a1, . . . , an}|λ′2
p(a1,...,an)−−−−−−→ λ′1 ∈ δG

}
LIVE(λ′1) =

⋃{
LIVE(λ′2) ∪ {a1, . . . , an}|λ′1

p(a1,...,an)−−−−−−→ λ′2 ∈ δG
}

where AVAIL(λ′0) = LIVE(λ′0) = ∅ is kept invariant. We iteratively solve these equations, as

shown in Algorithm 5, until a fixed point is reached (possibly using a work list to improve

efficiency). Note that convergence (i.e., reaching a fixed point) is guaranteed, since the par-

tially ordered set 2FP is finite and both set union and intersection are monotonic operations

over 2FP .

State Assignment

In order to flesh out the internal details of ensemble states, keep in mind that every transition

in the ensemble state space corresponds to multiple transitions in the associated automaton,

each possibly containing a different set of FOL variables. To minimize the number of variables

114



ALGORITHM 5: ReachingValuesAnalysis(G)

Input: A PFSA G = (Λ′, δG ⊆ Λ′×Σ(FP)×Λ′, λ′0), where Λ′ is the set of abstract ensemble
states, Σ(FP) is the alphabet set of FOLe events over formal parameters FP and λ′0 is
the initial ensemble state.

Output: A labeling R : Λ′ → 2FP that maps every λ′ ∈ Λ′ to the set of formal parameters
observed along all paths λ′0 → λ′.

1 foreach (λ′ ∈ Λ′) do
2 R(λ′)← {};
3 WL← Λ′;
4 while (WL 6= {}) do
5 λ′2 ← pop WL;
6 X ← FP;
7 foreach (λ′1, p(a1, . . . , an), λ′2) ∈ δG do
8 X ← X ∩ (R(λ′1) ∪ {a1, . . . , an});
9 if X 6= R(λ′2) then

10 R(λ′2) = X;
11 foreach (λ′2, p(a1, . . . , an), λ′3) ∈ δG do
12 WL←WL ∪ {λ′3};
13 return R;

(i.e., dimensionality) of the mined automata, we follow the principle that in each automaton

replica,21 a given value is bound only to at most one variable. Thus, only values that are

currently not part of a replica’s memory will be bound to more variables. As a result, vertices

of the LBFG representing each ensemble state λ′ stand for subsets of FP and do not encode

the order those formal parameters have been observed. Thus, each abstract ensemble state

stands for a function whose domain is the set 2FP .

Analogous to Myhill-Nerode theorem for regular languages [95], each ensemble state λ′ stands

for an equivalence class of finite words.22 In order to recover SR-NFA states, we consider

each unknown SR-NFA state to stand for a language to be constructed iteratively. Each

SR-NFA state stands for a set of subsequences of words in the languages associated with

ensemble states it cuts through.

Each ensemble state λ′ ∈ Λ(FP) stands for a function fλ′ : 2FP → 2P∗ , where P is the set

of predicates in the underlying FOLe signature SIG. That is, every LBFG vertex v inside an

21Which is a vertex in the LBFG representation of each abstract ensemble state λ′ ∈ Λ(FP).
22Namely, the set of all words obtained by following all possible paths from the initial state λ′0 to λ′.

115



ensemble state λ′ ∈ Λ(FP) is labeled with a language fλ′(v) ⊆ P∗. Note that automaton

states do not represent languages over Σ(FP), since each SR-NFA state is restricted to

having at most one outgoing transition labeled by each predicate p ∈ P. For example in

Figure 5.6, both Lock(a) and Lock(b) trigger the same transition out of SR-NFA states q0.

Moreover, every transition edge e = (λ′1, p(a1, . . . , an), λ′2) ∈ δG is represented by a binary-

valued function fe : 2FP → 2P∗ given by:

fe(x) =

 {p} if x = {a1, . . . , an}

{ε} otherwise

With abuse of notation, p stands both for a predicate and for a single-letter word over P.

The symbol ε stands for the empty string. Thus, the language at the output of a transition

edge e = (λ′1, σ, λ
′
2) ∈ δG is given by the product (or concatenation) composition fλ′1 ⊗ fe.

Moreover, the language of an ensemble state λ′ ∈ Λ(FP) is given in terms of the languages

of its predecessors as follows:

fλ′ =
[
(fλ′1 ⊗ fe1) ] . . . ] (fλ′n ⊗ fen)

]
∩ AVAIL(λ′) ∩ LIVE(λ′)

Note that given L ⊆ P∗, we have L⊗{ε} = L. Hence, if two nodes in the LBFG representa-

tion of fλ′1 and fλ′2 are labeled with the same language L ⊆ P∗, then they stand for the same

SR-NFA state. To simplify the test of language equality, all languages that are labeling nodes

at all ensemble states are represented as nodes in one graph having one unique initial state

with each language given by one terminal state in that graph, where concatenation appends

a new node (if necessary) to the terminal node of the source language and ε only extends the

same terminal state to the destination.

Variable Assignment

Once SR-NFA states are determined, transitions among these states are also easily deter-

mined from the ensemble state PFSA. It remains to assign variable labels to the arguments

116



of FOLe events that label these transitions. The baseline rule is that all transitions emanat-

ing from the same SR-NFA (but possibly in different ensemble states) labeled with the same

event predicate (possibly with different formal parameters) bind the same variables. So the

procedure goes as follows:

• Start a depth-first search (DFS) from the initial SR-NFA state q0 and apply the baseline

rule to all outgoing transitions at each state q.

• Assign new variable labels to arguments that do not yet have assigned variable names.

• Simultaneously propagate these assignments down to all successor LBFG vertices in

all ensemble states where SR-NFA state q cuts through.

5.7 MSA Algorithms

MSA is performed within each phase or superstate of the observation traces.

5.7.1 Pairwise Sequence Alignment

In the Needleman-Wunsch (NW) global pairwise alignment algorithm, all possible pairs

of abstract letters (or parametric events with concrete argument values substituted with

variables) are represented in a two-dimensional matrix. The set of all possible alignments is

in one-to-one correspondence with the set of all trajectories (consisting of horizontal, vertical

and diagonal elementary steps) or paths starting at the top-left corner of that matrix and

ending at the bottom-right corner of the same matrix. An optimal alignment of two sequence

prefixes is recursively constructed in terms of optimal alignments of smaller prefixes of the

same sequences. This recursive step is shown in Figure 5.7. Borrowing notation from [59,

Chapter 2], F (i, j) is the score of an optimal alignment of prefixes x[1 . . . i] and y[1 . . . j] of

sequences x and y, respectively. At the end of NW recursion (i.e., after calculating F (m,n)),

117



F(i, j−1)F(i−1, j−1)

F(i−1, j) F(i, j)

Figure 5.7: Needleman-Wunsch recursion step.

traceback reconstructs an optimal alignment starting at location (m,n) in the matrix and

winding back to (0, 0).

The NW global pairwise alignment algorithm can be easily generalized to MSA by con-

structing an n-dimensional distance matrix. The decision version of the MSA problem23 that

computes a globally optimum alignment of n sequences was shown to be NP-complete [171].

A widely used heuristic that does not guarantee a globally optimal alignment is the use of

progressive MSA [93, 70] based on a binary guide tree that directs a hierarchical pairwise

sequence alignment process [59, Chapter 7] until a final MSA is obtained. The progressive

alignment heuristic aligns the most similar (and, hence, most reliably aligned) sequence pairs

first. Leaves of the guide tree are the sequences and internal nodes are alignments of two or

more sequences. The guide tree is traversed bottom up until all sequences are included in

one MSA at the root. As we climb up the guide tree toward the root, the aligned sequence

groups begin to look less similar. A profile is a MSA where each column is regarded as an

alignable symbol [61].

5.7.2 Distance Matrix.

Given n sequences, a symmetric n × n distance matrix D is calculated by first scoring the

n(n− 1)/2 pairwise alignments constructed with NW algorithm and converting these scores

23Where the MSA score is computed as the sum-of-all-pairs of alphabet characters at all positions along
the alignment (SP score).

118



20 30 40 50 60 70

0

1

2

3

4

Score

D
is

ta
n

ce

smin = 20 smax = 70
smin = 25 smax = 70
smin = 30 smax = 70
smin = 20 smax = 50
smin = 25 smax = 50
smin = 30 smax = 50

Figure 5.8: The score-to-distance function.

into distance-like metrics using the equation:

dij = − log
sij − smin + ε

smax − smin + ε

where smax and smin are, respectively, the maximum and minimum scores in the score matrix.

This conversion is different from the one in [70] and in [59, Chapter 7]. This transformation

separates sequence pairs that score near smin much more than sequence pairs that score near

smax during pairwise alignment. For any desired dmax > 0 and assuming ε� (smax − smin),

we have ε = (smax − smin)e−dmax .

5.7.3 Guide Trees

Once we have a distance matrix dij summarizing the similarities between all pairs of the

individual sequences to be aligned, a guide tree is built to basically represent a hierarchical

clustering of these sequences. We can use either the UPGMA [159] method or neighbor

joining [152] to construct a guide tree.

Guide Tree Pruning. As we will see in Section 5.7.9, given K trace slices, it is highly

119



desirable to keep the guide tree balanced. That is, keep guide tree depth a constant multiple

of log2K. Very deep subtrees of a guide tree indicate slices that are too similar and can be

dropped from the MSA procedure, since they do not add much new information.

Guide Tree Subdivision. Even if the guide tree is balanced, the tree depth can still be so

large as to cause too much growth in MSA lengths as the guide tree is traversed bottom up.

Moreover, two subtrees of a guide tree can be very dissimilar which results in adding even

more gaps when those subtrees are aligned, which accelerates hitting the complexity wall.

Therefore, a large guide tree might be better subdivided into multiple more homogeneous

subtrees, each resulting in one mined automaton, rather than merging them in one mega

automaton.

5.7.4 Scalability - Trace Clustering

The most time consuming phase of specification mining is the construction of the distance

matrix used in profile-based MSA. The distance matrix is crucial for the construction of

a phylogenetic tree that captures pairwise similarity of trace slices and directs MSA in a

bottom-up fashion. An efficient trace clustering technique is first applied to partition the

entire training set of trace slices into more homogeneous disjoint subsets within which some

similarity measure is maximized. Then distance matrix and profile-based MSA are then used

within these groups and among them. As shown in Figure 5.9, an integer threshold N > 0

is used so that if the number of trace slices is greater than N , agglomerative hierarchical

clustering is employed to construct a dendrogram that partitions the entire training set of

trace slices into more homogeneous disjoint subsets of N traces each, within which some

similarity measure is maximized. Each trace slice subset is aligned using a distance matrix

(calculated with pairwise NW algorithm) and profile-based MSA. The process is repeated

until we end up with only one MSA. In agglomerative clustering, every trace slice (with all

120



P0

P1

P1

T1 T2 T3 TN

PN

T1 T2 T3 TN

PN

T1 T2 T3 TN
• • • • •

• • • • •

· · · · · ·

· · ·D
en

d
ro

gr
am

(F
ro

m
ag

gl
om

er
at

iv
e

cl
u
st

er
in

g)

N Trace slices
(NW Aligned)

N Trace slices
(NW Aligned)

N Trace slices
(NW Aligned)

Figure 5.9: Using agglomerative clustering to partition large sets of trace slices into similar
groups that are aligned with NW algorithm within each group and the resulting profiles are
then aligned. N is a user-specified parameter.

call argument information stripped out) is characterized by a vector profile that captures

first-order statistics (i.e., relative frequencies of all system calls) as well as second-order

statistics (i.e., transition probabilities among system calls).

5.7.5 Profile Alignment

Given a guide tree T , a profile Pt is associated with every node t of T . A profile [59, Chapter

6] is a MSA where each column is treated as a single indivisible symbol or letter [61]. If t is

a leaf, then Pt is a single sequence. If t is an internal node with child nodes r and s, then Pt

is given by the pairwise alignment Pr ‖ Ps. When two profiles x and y are aligned, the NW

pairwise alignment algorithm can still be used. At each cell Fij of the dynamic programming

matrix F , we have three cases:

• The ith column xi is aligned with the jth column yj.

• The ith column xi is aligned with a column of gaps inserted at the jth position of y.

• The jth column yj is aligned with a column of gaps inserted at the ith position of x.

121



In all cases, columns of x and y are used as indivisible units and cannot be altered.

5.7.6 The Scoring Scheme.

The scoring scheme is key to distinguish true alignments from spurious alignments [59,

Chapter 2]. As in [59, Chapter 7], a multiple sequence alignment m = x ‖ y is scored with

a scoring function S(m) given by:

S(m) =
∑
k

S(mk)

where mk is the kth column of m. This function assumes columns are statistically indepen-

dent. The column scoring function S(mk) is the sum-of-pairs (SP) function:

S(mk) =
∑
p<q

s(mp
k,m

q
k) (5.2)

where mp
k is the event in the kth column and pth trace slice. The scores s(a, b) are given by:

s(−,−) = 0 (5.3)

s(a,−) = s(−, b) = GOP or GEP (5.4)

s(a, b) = −∞ iff a 6= b (5.5)

s(a, a) = sa (5.6)

That is, a MSA column score is the sum of all pairwise-alignment scores in that column.

It is important to note that it is prohibited to align different events (i.e., events induced

by different FOLe predicates, or by the same FOLe predicate with different variables as

arguments) in the same column, since s(a, b) = −∞ iff a 6= b. The only degree of freedom

left by this is placement of gaps.24 As customary, an affine gap penalty model has been

used based on a gap opening penalty (GOP) (an initial penalty for opening a gap) and a

gap extension penalty (GEP) (incurred with each gap extension, so that the gap penalty

24This scheme is not susceptible to the problem observed in [59, Chapter 7] that the relative score difference
between a correct alignment and an incorrect alignment diminishes as more sequences are aligned.

122



increases linearly with its length), where GOP > GEP .

In the resultant alignment m = x ‖ y, the column scoring function S(mk) in Equation 5.2

can be rewritten as [59, Chapter 6]:

S(mk) =
∑

p<q≤M+N

s(mp
k,m

q
k) (5.7)

= S(xi) + S(yj) +
∑

p≤M,q≤N

s(xpi ,y
q
j) (5.8)

It is only the last cross-sum that needs to be optimized by NW algorithm, since the other

two sums are independent of the ongoing alignment. This is called the Profile Sum-of-Pairs

(PSP) function and is used by ClustalW [167] and MUSCLE [61]. In MSAs studied here,

it is prohibited to align different symbols. Thus, except for gaps, MSA columns will be

monochromatic, as shown in Figure 6.5. This makes profiles to take very simple and efficient

representation. Specifically, at each position i along a profile, we need to maintain only three

data items [61]:

• The alphabet symbol αi observed at that position in some of the sequences in the given

profile.

• The frequency FOi of gap-open symbols.

• The frequency FEi of gap-extend symbols.

Given these frequencies, the frequency FMi of xi, or its occupancy, is given by Dx − FOi −

FEi. The quantity FRi = Dx − FEi = FMi + FOi is important and will be used later.

This makes profile size completely independent of Dx, the depth or number of sequences in

the profile x, as well as the alphabet size.25 Also, given two child MSAs x and y and the

NW traceback path of their profile alignment z, it is possible to compute these frequencies

for z [61] in time O(Lz), where Lz is the length of z. Thus, the final profile function is given

25Note that the number of sequences will still affect profile size indirectly because the profile length
increases as the number of aligned sequences increases.

123



by:

PSP (xi,yj) = FMx
i FM

y
j M (5.9)

+ (FMx
i FO

y
j + FMy

j FOx
i ) GOP (5.10)

+ (FMx
i FE

y
j + FMy

j FEx
i ) GEP (5.11)

Because this is the most critical part of profile alignment, its optimization will have the

highest payoff. The value of PSP (xi,yj) can be rewritten as:

PSP (xi,yj) = FMx
i FM

y
j M (5.12)

+ FMx
i (FOy

j GOP + FEy
j GEP ) (5.13)

+ FMy
j (FOx

i GOP + FEx
i GEP ) (5.14)

The quantities (FOy
j GOP+FEy

j GEP ) and (FOx
i GOP+FEx

i GEP ) can be pre-calculated

along each of the profiles x and y and reused throughout the profile alignment process.

Finally, to align the ith location xi of x with a gap following yj, we need to pre-calculate the

following gap penalties:

PSP (−i,yj) = FMy
j (FRx

i GOP + FEx
i GEP ) (5.15)

PSP (xi,−j) = FMx
i (FRy

j GOP + FEy
j GEP ) (5.16)

The best assignment of gap penalties is determined empirically by experimenting with dif-

ferent values for GEP and GOP .

5.7.7 Language-Based Alignment

During MSA, only identical symbols (event predicates and formal parameters) can be aligned.

Although different symbols may possess the same hidden ensemble-state label, this can

be handled later using PFSA state reduction (where state merging decisions are based on

outgoing transitions rather than incoming transitions as in MSA). However, not all identical

symbols should be alignable. Stipulating that symbols be identical to be alignable is not

124



sufficiently restrictive. MSA needs to be constrained in such a way that identical symbols

can be aligned only if their outgoing languages are approximately equivalent. A MSA can

be represented as a PFSA and, hence, the NW matrix used to align two MSAs needs to take

into account languages of symbols associated with each MSA column. Two MSA columns

are alignable iff they contain two identical symbols and their PFSA states are sk-equivalent

as determined by two parameters P > 0 and K > 1.

5.7.8 Iterative Refinement

To counteract the deficiency of profile alignment that freezes columns of its inputs, the

resultant progressive alignment outcome x = x1 ‖ x2 ‖ . . . ‖ xn can be iteratively refined.

Let x\xk be the profile obtained from x by removing xk and removing columns that become

entirely composed of gap symbols. The procedure goes by repeating the following step for

a fixed number of iterations or until the alignment score converges [59, Chapter 6]: For

every k in a permutation of the set {1, . . . , n}: extract a trace slice xk and realign it to

x \ xk. Alternatively, the profile x can be partitioned into two disjoint profiles xa and xb

and realigned. The result can be kept if a given scoring function is improved [91, 61].26

5.7.9 Complexity.

Pairwise profile alignment has time and space complexity O(ninj), where ni and nj are the

lengths of the two profiles.27,28 Therefore, it is desirable to keep slice length short enough to

keep MSA run-time within reasonable limits. This requirement conflicts with the desire to

make slice length as large as possible to ensure that every slice contains complete episodes

26The result can be kept with small nonzero probability if the scoring function is reduced to ameliorate
the problem of local maxima.

27Space complexity can be reduced to O(ni + nj) [59, Chapter 2].
28Note that profile lengths increase as the guide tree is traversed bottom-up.

125



of interesting behaviors. Another important contributor to overall complexity is guide tree

construction. If the guiding tree is constructed using a distance matrix based on pairwise

alignment scores, time and space complexity will also be O(k2n2), where k is the number of

trace slices and n is the slice length. To reduce the O(n2) factor, in Section 5.7.4, we use

agglomerative clustering of trace slices based on feature vectors comprising the first-order

and second-order statistics of each slice. Alternatively, distance can be based on the number

of common two-letter substrings.

5.8 State-Space Reduction

The PFSA constructed from a MSA obtained by folding and aligning multiple long traces

within multiple regions is acyclic (except for the back edges within each super-state) and,

hence, it does not possess any recurrent behavior29 and cannot generalize beyond the training

set of traces. When abstract ensemble states are converted to SR-NFA states, many short

cycles will form. However, large-scale recurrent behavior can be introduced into a SR-NFA

only by merging closely related states that are likely to stand for similar hidden system

state [19, Chapter 7]. Therefore, we now study state-space reduction methods that can be

applied to the PFSA representing abstract ensemble states or the SR-NFA obtained from it.

Conventionally, two states q1 and q2 of an automaton A are considered equivalent, denoted

q1 ∼ q2, if their languages L(q1) and L(q2) are equal. By merging all such language-equivalent

states, we obtain the quotient automaton A/∼, and it is guaranteed that L(A) = L(A/∼).

The sk-strings method [145], on the other hand, constructs an over-approximation A′ of

a SR-NFA A by associating a two-parameter set of languages LPK(q), parameterized by a

depth K > 0 and a probability 0 ≤ P ≤ 1, with every SR-NFA state q. LPK(q) is the set

of most likely length-K words whose total probability is P .30 LPK(q) is defined in terms

29Such PFSA becomes truly acyclic when each strongly connected component is collapsed.
30Words are of length up to K > 0, since we may have words of length less than K if a terminal state is

126



of LK(q) = {w∈Σ∗ such that |w|=K} and |w| is the length of w. The language LK(q) is

finite and, hence, K-words can be sorted in descending order according to their probabilities.

Then LPK(q)⊆LK(q) is the set of all words in that order with total probability ≥P .

A SR-NFA run π is an alternating sequence q0
σ0−→ q1

σ1−→ q2 . . .
σK−1−−−→ qK . Then the proba-

bility of a word w = (w1, w2, . . . , wK) ∈ LPK(q) starting from state q ∈ Q is equal to:

pK(w) =
∑
q

K

K∏
i=1

Pr(qi−1, wi, qi),

where q0 = q and q
K

is the set of paths of length K starting at q. Since a SR-NFA can be

nondeterministic, there can be many runs on the same word.

Two states q1 and q2 are sk-equivalent up to depth K and with probability P if LPK(q1)⊆

L1
∞(q2) and LPK(q2)⊆L1

∞(q1). By merging two states q1 and q2 that are sk-equivalent, it is

guaranteed that L(A)⊆L(A′).

Precision-Generalization Trade-off. The degree of over-approximation is controlled by

P and K which helps to control the trade off between SR-NFA precision and conciseness.

The use of large value for K and P helps sk-equivalence reach more precise (and, hence, more

predictive) SR-NFAs so that it develops a higher resolving power of anomalous behavior.

However, this comes with poor generalization beyond the training set, since the SR-NFA

effectively memorizes the training set. This increased model precision also comes at the

expense of a larger model size. The trade-off between model precision and generalization

implies a parallel trade-off between resistance to mimicry attacks and the false-positives rate.

encountered.

127



State Clustering

Since PFSA reduction is an iterative process where each iteration can be quadratic in the size

of the given PFSA, it is crucial to improve the average-case complexity in order to handle

large PFSAs. This is achieved by clustering (i.e., partitioning the PFSA state-space into sets

of similar states) and checking sk-equivalence within each cluster. Each PFSA is described

by the vector of its outgoing transition probabilities on each possible atom w ∈ Atoms. Then

we use k-means clustering to partition PFSA states into disjoint groups which are highly

likely to be sk-equivalent and merge. The value of k can be chosen to be approximately the

expected number of reduced PFSA states or to tune the run-time of the algorithm. Care is

taken to guide the k-means algorithm to produce clusters of almost equal sizes to reap the

benefits of clustering.

5.8.1 State Recurrence

A strongly connected component (SCC) of a graph is nontrivial if it contains two or more

vertices. A state q ∈ Q of a SR-NFA N is recurrent if it resides in a nontrivial SCC of N

or if a nontrivial SCC of N is reachable from q. Otherwise, q is nonrecurrent or transient.

A nonrecurrent state q can only generate a finite number of traces of finite length. A SR-

NFA N can be simplified before determinization by the following optimization: For every

recurrent state s, remove all nonrecurrent successors whose traces can be generated by other

(not necessarily recurrent) successors of s.

5.8.2 SR-NFA Determinization

Once a PFSA is reduced, it is turned into a SR-NFA simply by keeping any transition

with nonzero probability and eliminating all other zero-probability transitions. Since the

128



initial states are specified by the interactive user after a SR-NFA has been extracted, it is

important to understand the impact of user’s choices on performance. The user needs to

be frugal about which states are initial, since that tends to increase the number of current

states of the SR-NFA during the determinization procedure, and hence blows up the size of

the resulting SR-DFA and its transition structure.

The usual power-set construction [95] can be applied to a mined SR-NFA (with initial states

carefully selected) to obtain the corresponding SR-DFA. Before determinization, edges of

a SR-NFA are annotated with atomic FOLe formulas containing symbolic variables. After

determinization, a SR-DFA has its transitions labeled with FOLe formulas.

5.8.3 SR-DFA Completion

The SR-DFA resulting from determinizing a mined SR-NFA is complete. That is, every

state has a transition for every possible event. This is accomplished by adding a failure (or

accepting) state to the constructed SR-DFA and extending a failure edge to it from every

other SR-DFA state. A failure edge is annotated with a FOLe formula that is complementary

to all other edges of its source state.

5.8.4 SR-DFA Minimization

Parametric DFAs produced by ParaMiner usually contain redundant states that can be

reduced by using a DFA minimization procedure. In this thesis, we use Brzozowski’s algo-

rithm [34] because it easily generalizes to SR-DFAs. Brzozowski’s algorithm has exponential

worst-case complexity but typically works very well in practice.

129



5.8.5 Validation

Once a SR-DFA has been constructed, we can use the system whose behavior is being

modeled as a source of counterexamples, by running the system long enough under various

operating conditions to reveal any violations of the conjectured SR-DFA specification and

refine it.31 A set of traces deemed representative of all correct system behaviors is divided

into two sets: a training set, used in the specification mining process, and a validation set

used to validate the mined SR-DFA. After completely mining a SR-NFA, determinizing it

and adding the failure edges, there might still be spurious failures on the validation set of

traces. That might be indicative of inadequate training set coverage of program behavioral

space.

5.9 Variable Equivalence

A recurring problem, when dealing with parameterized specifications, is the problem of

identifying variable names between two parameterized objects (e.g., symbolic variables used

by two MSAs, symbolic variables used by a PFSA with the goal of making two PFSA states

equivalent, or symbolic variables used by two separate SR-DFAs with the goal of quantifying

the distance metric between them).

5.9.1 PFSA Variable Matching

Two states q1 and q2 of a PFSA32 A can have closely related languages L(q1) and L(q2) up

to an equivalence relation on the set of formal parameters FP used by the parametric events

31Using the terms of [12], only equivalence queries are allowed, whereas membership queries are not.
32We consider equivalencies over FP associated with a PFSA before converting abstract ensemble states

to SR-NFA states. The same arguments apply to SR-NFAs with equivalencies defined over X .

130



annotating edges of A. That is, there is an equivalence relation ∼ ⊆ FP×FP such that

q1 and q2 become equivalent in the quotient automaton A/∼. Thus, we can increase the

number of sk-equivalent states by identifying formal parameters as follows: We construct a

compatibility graph C = (V ,E ), where V = Q×Q. For every pair of states (q1, q2) ∈ Q×Q,

we construct an equality-logic (EL) formula33 B(q1, q2) that encodes all possible equivalence

relations on FP (i.e., all possible ways formal parameters can be identified) so that q1 and

q2 become equivalent. In the compatibility graph C , there is an edge from (q1, q2) to (q′1, q
′
2)

iff B(q1, q2)∧B(q′1, q
′
2) is satisfiable.34 We then find a maximum clique {(q1

1, q
1
2), . . . , (qn1 , q

n
2 )}

in C , which represents a maximally compatible set of identifiable state pairs. Then using a

SAT solver [109], we can find a truth assignment to the formula B(q1, q2) ∧ . . . ∧ B(qn1 , q
n
2 )

which can be easily turned into an equivalence relation ∼ ⊆ FP×FP that materializes all

the equivalences {(q1
1, q

1
2), . . . , (qn1 , q

n
2 )}.

Atoms of an EL formula B(q1, q2) are of the form (x1 = x2) where x1, x2 ∈ FP . Moreover,

an EL formula B(q1, q2) is a conjunction of two parts:

B(q1, q2) = B(q1|q2) ∧ B(q2|q1)

where B(q1|q2) is an EL formula for all equivalence relations on FP such that LPK(q1) ⊆

L1
∞(q2) and similarly B(q2|q1) is an EL formula for all equivalence relations on FP such that

LPK(q2)⊆L1
∞(q1). Also, B(q1|q2) is defined to be:

B(q1|q2) = ∧τ1∈LPK(q1)B(τ1|q2)

In general, B(τ |q) is an EL formula expressing the set of all equivalence relations on FP such

that τ ∈ L1
∞(q) where τ ∈ Σ(FP)∗. The set of all runs of a PFSA A on a trace τ ∈ Σ(FP)∗

starting at state q ∈ Q is a rooted tree with vertices Qτ ⊆ Q×N. With every vertex u ∈ Qτ ,

we associate an EL formula f : Qτ → EL defined recursively as:

f(q, 0) = true

33See [104, Chapter 3]. Equality logic is equivalent to Boolean logic.
34We use a SAT solver [109] to test for satisfiability.

131



Given two atoms p(x1, . . . , xn) and p(y1, . . . , yn), the corresponding EL formula is given by:

(xi1 = yj1) ∧ . . . ∧ (xik = yjk), xi1 , yj1 , . . . ∈ FP

Unless the equivalence depth parameter K is large enough, the number of state-pairs that

can be equivalent will be too large, in the sense that the graph of these state-pairs that will

go through the clique finding algorithm will be too large. Moreover, making K too large

hits another complexity wall, namely the size of state languages which grows exponentially

with K in the worst case. If the size of a PFSA is n, the number of state pairs is O(n2)

and, hence, the number of edges in the compatibility graph (that captures the compatibility

of state pairs) is O(n4), which is too large except for small n. A much faster, but less

precise, variable identification heuristic iteratively examines all state pairs one by one in

sequence. For each pair (q1, q2) ∈ Q×Q, it constructs B(q1, q2) and uses a SAT solver [109] to

find an equivalence relation ∼ ⊆ FP×FP and applies it immediately so that (q1, q2) become

equivalent and can be merged. This step is repeated until no more state pairs can be merged.

Note that equivalencies among states now depend upon the order in which (probabilistically)

equivalent states are merged.

5.9.2 MSA Variable Matching

One complication not present in conventional MSA problems is that each parametric event

in a trace slice has concrete argument values and they need to be abstracted (i.e., each argu-

ment value is substituted with a symbolic formal-parameter name) before use in MSA. This

way, we effectively determine which parametric events, possibly having different argument

values, correspond to equivalent ensemble states. Abstraction of argument values for mul-

tiple sequences needs to be chosen in such a way that similarity among the trace slices or

sequences is maximized so as to minimize the SR-NFA ultimately inferred from the resulting

MSA without blurring or obscuring the data usage patterns latent in those sequences.

132



Starting at the leaves of the guide tree before profile-based MSA starts, each unique or dis-

tinct argument value in a trace is either replaced with a constant symbol (from the execution

context) or with a unique formal-parameter symbol before use in MSA. For each program,

a set of user-defined constant symbols may be used to reserve special status for particular

data values (e.g., to distinguish the ID of the main process of proftpd). The same constant

may have different values (i.e., interpretations) in each execution trace of the same program

(e.g., the leader process ID may be different in each run of the program). The set of values

ascribed to constant symbols by a given trace form an execution context for that trace.

At every pairwise alignment step of the profile-based MSA guide tree, we first perform

variable matching between the two incoming profiles (where concrete argument values are

abstracted and identified) and then perform conventional NW alignment, since each FOL

atom can be encoded by a distinct integer. Given two sequences x = (x1, x2, . . . , xm) and

y = (y1, y2, . . . , yn), a weighted bipartite graph G = ((U, V ), E), where U ∩ V = ∅ and

E ⊆ U × V , is constructed as follows:

• For each pair (xi, yj), if xi = p(u1, u2, . . .) and yj = p(v1, v2, . . .) for some flexible

predicate p ∈ P, we add:

U ←− U∪{u1, u2, . . .}

V ←− V ∪{v1, v2, . . .}

E ←− E∪{(u1, v1), (u2, v2), . . .}

• For each new edge (uk, vk), we assign a weight w(uk, vk) equal to the score sij of aligning

xi with yj, as detailed in Section 5.7.6:

w(uk, vk) = w(uk, vk) + sij

The graph G can be completed by adding edges of zero weight.35 Then the Hungarian

35A bipartite graph G = ((U, V ), E) is complete if E = U × V .

133



algorithm [35] is used to find a maximal set of variable pairs (u, v) that can be consistently

identified between x and y to maximize similarity between the sequences.36 A matching in

G is a subset M ⊆ E such that ∀v ∈ U ∪ V , there is at most one edge in M incident on

v (i.e., ∃u ∈ U ∪ V such that either (u, v) ∈ M or (v, u) ∈ M). In a weighted bipartite

graph G, the weight of a matching M is the given by w(M) =
∑

(u, v)∈M w(u, v). Given a

matching M ⊆ E, every variable in one sequence can be identified with at most one variable

in the other sequence, thus missing many other identification opportunities. The weighted

bipartite graph constructed above contains more information about variable relations than

pairwise matchings can capture. Therefore, we instead use a higher-order generalization of

pairwise matchings, called bicliques [56]. A biclique of a bipartite graph G = ((U, V ), E) is a

complete bipartite subgraph ((A,B), A×B) of G such that A ⊆ U , B ⊆ V and A×B ⊆ E.

Basically, we want to construct a maximu-weight biclique partition of G which in a sense

generalizes what a maximum-weight matching is. A biclique has weight equal to the sum of

weights of all edges in that biclique. So first, we list all maximal bicliques in G. There are

many efficient algorithms to list all maximal bicliques in a bipartite graph. We use the one

in [55]. Some of these bicliques overlap. Therefore, to construct a biclique partition (i.e., a

set of disjoint bicliques), we construct another graph G = (V ,E ) whose vertices V are the

maximal bicliques of G. Two vertices in G are connected by an edge if their corresponding

bicliques in G are disjoint. Then every maximum-weight biclique partition of G corresponds

to a maximum-weight clique in G , which can be found by listing all cliques of G and selecting

the one with maximum weight. However, the clique decision problem is NP-complete [100].

It is not even efficiently approximable [14]. However, there are many heuristic algorithms

that find “good” solutions [29]. We use tabu search as described in [78] with parameterized

tabu list length. Since the tabu search metaheuristic may not be able to visit all vertices of

graph G before it stops with a (supposedly good) solution, that graph is only constructed

on the fly as tabu search demands or queries about edges from E .

36The Hungarian algorithm solves the assignment problem, or the matching problem in weighted bipartite
graphs.

134



5.9.3 MSA Variable Matching: An Alternative

The variable identification algorithm in Section 5.9.2 needs to discover and preserve interest-

ing data usage patterns. For example, the following trace segment is taken from the Tomcat

Java benchmark:

1 : java.io.PushbackInputStream.read(20, 56, 0, 30) = 30

1 : java.io.PushbackInputStream.read(20, 10, 0, 04) = 04

1 : java.io.PushbackInputStream.read(20, 56, 0, 30) = 30

1 : java.io.PushbackInputStream.read(20, 10, 0, 05) = 05

1 : java.io.PushbackInputStream.read(20, 56, 0, 30) = 30

1 : java.io.PushbackInputStream.read(20, 10, 0, 04) = 04

1 : java.io.PushbackInputStream.read(20, 56, 0, 30) = 30

In this trace slice, thread 1 of Tomcat reads from the same PushbackInputStream object

(with identifier 20) alternately into two different byte arrays (with identifiers 10 and 56).

If we try to align two MSA rows identical to the above trace, it is beneficial to assign

the two byte arrays different variable symbols in order to preserve this alternation. It is

noteworthy that even without this variable identification, both traces would perfectly align.

This suggests that variable identification opportunities should be evaluated based on the

gain they achieve in terms of alignment quality (measured by alignment score). A trade-off

between model precision and conciseness is controlled by a threshold on that gain.

Within the kth foldable trace segment, MSA constructs a score matrix sk = [skij] where skij is

the score of aligning the ith row and the jth row in the kth segment. The average pairwise

(inter-sequence) score ŝ is defined by:37

ŝ =
1∑
kN

2
k

∑
k

∑
i

∑
j

skij

The gain achieved by identifying variables is given by ŝ+ − ŝ−, where ŝ+ (and ŝ−, resp.) is

the average pairwise score after (before, resp.) variable identification.

Let EL(FP) be equality logic over the set FP of MSA formal parameters. EL(FP) consists

37The diameter Sk = maxk s
k
ij may not reflect the increase in alignment quality as variables are identified.

135



of Boolean combinations of atoms of the form (x = y) where x, y ∈ FP . Note that every

EL(FP) cube gives rise to a (reflexive, transitive and symmetric) relation R ⊆ FP×FP

over the set of formal parameters as follows: Each atom (x = y) can be visualized as an edge

in a graph with vertex set given by FP and, hence, every cube is logically equivalent to the

transitive closure of all of its edges. The set C of all such cubes is, thus, a lattice. Identifying

variables can only improve the score of aligning any pair of traces, since NW algorithm used

in pairwise alignment computes an optimal alignment. Therefore, the average MSA score is

a monotonic real-valued function ŝ : C → R over the lattice C and can be represented as a

LBFG constructed symbolically from more elementary LBFGs as follows:

Every entry sij of the NW matrix used in a pairwise alignment is itself a function sij : C → R

obtained from adjacent entries by two symbolic operations: maximum (∨) and addition (+):

sij = hij ∨ dij ∨ vij

where hij, dij and vij are, respectively, the horizontal, diagonal and vertical score functions

given by:

hij = si,j−1 +HGPij

dij = si−1,j−1 +Mij

vij = si−1,j +V GPij

Also, HGPij and V GPij are the horizontal and vertical gap penalties, respectively. The

horizontal gap penalty HGPij = GEP if si,j−1 also implies a horizontal gap, and HGPij =

GOP otherwise. Similarly, the vertical gap penalty V GPij = GEP if si−1,j also implies a

horizontal gap, and V GPij = GOP otherwise. Thus, HGPij and V GPij are given by:

HGPij = rijGEP + (1− rij)GOP

V GPij = cijGEP + (1− cij)GOP

where rij : C → R is an indicator function that indicates whether the symbol at position

(i, j−1) is a gap, and cij : C → R is an indicator function that indicates whether the symbol

136



at position (i− 1, j) is a gap. Thus, we have:

rij = Clip(1 + (hi,j−1 − si,j−1))

cij = Clip(1 + (vi−1,j − si−1,j))

The unary function Clip clips the negative part of its input function. Note that the expression

Clip(1 + (hi,j−1 − si,j−1)) will be 1 when hi,j−1 = si,j−1, since we always have hi,j−1 ≤ si,j−1,

and similarly for the expression Clip(1 + (vi−1,j − si−1,j)). Note that the graph for HGPij is

the same as the graph for rij where all nodes labeled with 1 are relabeled with GEP and all

nodes labeled with 0 are relabeled with GOP , and similarly for V GPij.

For each pair (xi, yj), if xi = p(u1, . . . , un) and yj = p(v1, . . . , vn), the function Mij : C → R,

for every c ∈ C , is given by:

Mij(c) =

 −∞ if xi and yj are not alignable

M if c = (u1 = v1) ∧ . . . ∧ (un = vn)

By considering ŝ as a function ŝ : C → R, the optimum MSA depends on which different

argument values in the input parametric traces are identified. Different groupings of ar-

gument values may result in structurally different SR-NFAs. We can now study the effect

of various groupings of argument values on the optimum MSA, quantified in terms of the

average pairwise alignment score ŝ as a function of these groupings of argument values. ŝ is

an indicator of the expected quality of the resulting MSA and assists in determining which

groupings of argument values result in appreciable gains in overall MSA quality and which

groupings cause negligible gains at the expense of considerable loss in precision. This is use-

ful in sensitivity analysis needed to assess the robustness of an optimum alignment against

perturbations in argument value groupings.

137



5.9.4 Abstraction

To allow users to trade off precision of a mined SR-DFA A = (Q, SIG, δ, Q0, F ) for more

conciseness, equivalence relations over Q with varying granularities are needed. Given an

equivalence relation ∼ ⊆ Q×Q, the state space Q can be reduced by taking the quotient

A/∼. A first step toward an equivalence relation is a simulation relation [19]. A simulation

preorder R ⊆ Q×Q is a relation such that for all (p, q) ∈ R and σ ∈ Σ, if p
σ−→ p′, then

there is q′ ∈ Q such that q
σ−→ q′ and (p′, q′) ∈ R. If a simulation relation R exists over A

and (p, q)∈R, it is said that state q simulates state p, denoted by p� q. ParaMiner uses

algorithms that compute simulation preorders in time O(|δ|.|Q|) [19]. A simulation relation

� over Q can give rise to equivalence relations, such as the symmetric closure ∼ = � ∪ �−1

and the symmetric kernel ∼= = � ∩ �−1. Between these two extremes, it is left to the

users of ParaMiner to identify genuine state equivalences that preserve classes of properties

important to them.

138



5.10 Experimental Validation

5.10.1 Benchmarking

To demonstrate the ability to extract specifications for different types of APIs and applica-

tions, we used both Java as well as Linux benchmarks, listed in Table 5.10. These include

the DaCapo-9.12-bach benchmark suite of Java apps [27], proftpd and dropbox running

on Linux. Because Java intrinsically supports reflection and byte-code instrumentation, we

created an instrumentation agent that, with the help of Javassist-3.19 [40], instruments all

(public, non-static) method calls on standard Java SE and EE packages made by DaCapo

programs. Instrumented packages include:

• Java SE:

– java.util

– java.net

– java.io

– java.nio

– java.rmi

– java.security

– java.util.concurrent

– java.sql

• Java EE:

– javax.mail

– javax.servlet.*

– javax.transaction

For every Java method call, the dumped traces include calling thread, method full name,

argument values (e.g., object references) and return values. In addition to this, we also

139



Benchmark File size (MB)
Avrora 659

Batik 12
Eclipse 112

Fop 58
H2 1292

Jython 4200
LuIndex 21

LuSearch 630
Pmd 310

Sunflow 0.5
Tomcat 3

TradeBeans 330
TradeSoap 330

Xalan 35
Proftpd 134

D
ro

p
b

ox Indexing 36
Uploading 301
Up-to-date 16

Figure 5.10: Benchmark traces.

used ParaMiner to mine properties of parametric system-call traces dumped by the Linux

strace utility. The proftpd is instrumented with strace while generating random 10000

ftp requests. An example SR-DFA extracted from proftpd traces is shown in Figure 5.11.

Experimentation is currently still ongoing will all benchmarks, including 3000 Linux malware

samples from VirusTotal and VirusShare.

5.10.2 Quality of Results (QoR) Metrics

Mined specifications are evaluated according to their utility/effectiveness in serving their

intended application [149, 157]. For example, unlike specifications intended for anomaly

detection, specifications intended for program understanding must be understandable by

humans. In the former application, specification precision almost always entails large com-

plex automata, whereas in the latter application understandability may come at the expense

140



FlatESR3DFAEforEClassEThread6EAgreementE=Ek75kk6EKE=E4
k:E_alarm7END_Vk6EV5cc
Q:E_time7END_Vk6EVQcc
2:E___Nrt_sigaction7END_Vk6EV9cccEANDE__Nopen7END_Vk6EV2cccEANDE__Nlstat647END_Vk6EV6cccEANDE__Nread7END_Vk6EV3cccEANDE__Nselect7END_Vk6EV76EV86EV8cccEANDE__Nkill7END_Vk6EV4cccEANDE__Nalarm7END_Vk6EV5cccEANDE__Ntime7END_Vk6EVQcccc
3:E_select7END_Vk6EV76EV86EV8cc
4:E_kill7END_Vk6EV4cc
5:E_lstat647END_Vk6EV6cc
6:E_read7END_Vk6EV3cc
7:E_rt_sigaction7END_Vk6EV9cc
8:E_open7END_Vk6EV2cc
9:E___Nlstat647END_Vk6EV6cccEANDE__Ntime7END_Vk6EVQcccEANDE__Nalarm7END_Vk6EV5cccc
Qk:E___Nopen7END_Vk6EV2cccEANDE__Ntime7END_Vk6EVQcccc
QQ:E___Nrt_sigaction7END_Vk6EV9cccEANDE__Nlstat647END_Vk6EV6cccEANDE__Nfcntl647END_Vk6EV3cccc
Q2:E_fcntl647END_Vk6EV3cc
Q3:E_Nread7END_Vk6EV3cc
Q4:E_Nselect7END_Vk6EV76EV86EV8cc
Q5:E___Nfcntl647END_Vk6EV3cccEANDE__Nread7END_Vk6EV3cccEANDE__Nkill7END_Vk6EV4cccc
Q6:E___Nlstat647END_Vk6EV6cccEANDE__Ntime7END_Vk6EVQcccc
Q7:E_Nfcntl647END_Vk6EV3cc
Q8:E___Ntime7END_Vk6EVQcccEANDE__Nalarm7END_Vk6EV5cccc
Q9:E___Nopen7END_Vk6EV2cccEANDE__Nalarm7END_Vk6EV5cccEANDE__Ntime7END_Vk6EVQcccc
2k:E_Nrt_sigaction7END_Vk6EV9cc
2Q:E___Nrt_sigaction7END_Vk6EV9cccEANDE__Nlstat647END_Vk6EV6cccc
22:E_Nclose7END_Vk6EV3cc
23:E_close7END_Vk6EV3cc
24:E___Nread7END_Vk6EV3cccEANDE__Nclose7END_Vk6EV3cccc
25:E_Nlstat647END_Vk6EV6cc
26:E_accept7END_Vk6EV3cc
27:E_Naccept7END_Vk6EV3cc
28:E___Nrt_sigaction7END_Vk6EV9cccEANDE__Nlstat647END_Vk6EV6cccEANDE__Ntime7END_Vk6EVQcccc
29:E_Ntime7END_Vk6EVQcc
3k:E___Nopen7END_Vk6EV2cccEANDE__Nlstat647END_Vk6EV6cccEANDE__Ntime7END_Vk6EVQcccc
3Q:E___Nfcntl647END_Vk6EV3cccEANDE__Nkill7END_Vk6EV4cccc
32:E___Nlstat647END_Vk6EV6cccEANDE__Nread7END_Vk6EV3cccEANDE__Nclose7END_Vk6EV3cccc
33:E___Nlstat647END_Vk6EV6cccEANDE__Nclose7END_Vk6EV3cccc

Qk

QQ

k

Q3

2

Q9

8

Q2

Q

Q4

3

Q5

4

Q6

5

Q7

6

Q8

7

QQk

Q

9

QQ2

5

QQQ

k

Q23

Q

Qk

8

Q24

k

Q8

Q34

Q

25

5

Q4

QQ7

3

2Q

5

QQ5

7

2k

Q27

7

28

Q

Q2Q

5

Q38

7

Q

Q8

k

Q4

Q3Q

3

2k

Q42

7

2k

Q49

7

2k

7

Q6

5

Q43

Q

Q8

Q36

Q

Q35

k

Q9

k

QQ3

Q

8

k

Q9

Q25

Q 8

Q8

Q

k

Q

9

5

k

Q7

Q22

Q2

24

Q32

23

Q33

6

3k

5

Q

8

3Q

Q44

Q2

QQ9

4

33

Q5k

23

Q48

5

3k

5

8

Q54

Q

Q8

k

Q57

Q

Q9

k

8

Q59

Q

Q9

k

8

Q6Q

Q

Q9

k

8

Q

Q4

Q53

3

29

Q56

Q

22

23

Q3

Q29

6

Q3

Q4k

6

Q3

Q47

6

3Q

4

Q52

Q2

32

6

23

5

Q

Q8

k

Qk

Q

8

QQ

5

7

QQ4

Q2

Q7

Q26

Q2

27

Q37

26

22

Q45

23

29

Q5Q

Q

22

Q55

23

Q7

Q58

Q2

Q7

Q6k

Q2

33

23

5

Q3

QQ6

6

Q3

Q2k

6

Q3

Q3k

6

Q7

Q4Q

Q2

32

23

6

5

Q4

3

Q5

4

6

QQ8

Q2

22

Q28

23

29

Q39

Q

29

Q46

Q

29

Q

Q6

Q

5

Figure 5.11: Example of a SR-DFA extracted by ParaMiner from proftpd traces.

141



of less precision.

In specification mining tools with automata as the target formalism, quality of mined speci-

fications is usually evaluated in terms of conciseness or size metrics (e.g., the total number

of states and edges), precision metrics (e.g., the average branching factor, also called the

density, which is the average outgoing degree of all states) and accuracy metrics (e.g., false-

positives rate or statistical significance). Moreover, it is important to relate the size metrics

to the size of input traces using a compression ratio.

The branching factor (out-degree) quantifies how much predictive power each state of the

mined automaton has. If the average branching factor is too high, states do not uniquely

predict what events should come next (the states are too permissive).

Note that the single-state automaton with an all-encompassing self-loop transition is the most

imprecise model and it has the lowest average branching factor and best compression ratio.

Therefore, MSA statistical significance needs to be incorporated in the overall evaluation.

5.10.3 Statistical Significance

One of the main challenges that specification mining tools are facing is false positives [80];

that is inferring spurious hypotheses (i.e., patterns that do not codify genuine properties of

the system). Therefore, a core requirement is to ensure that a MSA carries statistical sig-

nificance (i.e., probably captures statistical regularities actually present and shared among

the observed trace slices) rather than being a product of chance or statistical noise. Equiv-

alently, a MSA must be qualified with a measure of how likely the aligned sequences are

completely unrelated (p-value) and, hence, the optimal MSA is meaningless. In this thesis,

MSA naturally adopts a scoring scheme that can then be used to quantify the statistical

significance of inferred formal specifications and reject those properties scoring too low to

142



be significant (i.e., scoring too low to be indistinguishable from noise or scores achievable by

aligning sequences drawn by chance). We can construct a statistical distribution of the MSA

score random variable for independent random sequences38. Given a significance level (or a

false-positives rate) α, a MSA is considered statistically significant if the p-value p of the

alignment is less than α, where p is the probability of having an alignment of independent

random sequences scoring more than the observed score. Of course, we are left with two

problems:

• Generating and aligning enough independent random sequences is tedious (if not im-

practical) and must be done for every new scoring scheme.

• Figuring out the probability distribution to fit the sampled score distribution. This

is important because statistical significance depends heavily on the tail shape of the

fitting distribution.39

A p-value that is too large can be an indication that the set of aligned trace slices are not

closely related, probably because of one or more divergent traces that should be removed

from the alignment. The score distribution of global multiple sequence alignments depends

on lengths, composition and number of aligned sequences as well as the scoring scheme.

No theoretical results on the score distribution of global multiple sequence alignments are

known [133].

The score distribution will depend on how much information about the aligned traces we

retain in the randomly generated traces used to estimate the score distribution for random

sequences. Sequence shuffling (or permutation) [7, 72, 99] has already been used as a tool

to construct the background models (or null hypotheses) necessary to quantify/assess the

statistical significance of biological sequence alignments. The first-order shuffling method40

38This is the null hypothesis to be tested.
39The Extreme Value Distribution (EVD) applies only to local alignments where the score can be modeled

as the maximum of N Gaussian random variables [59, Chapter 2].
40Implemented, for example, by the Java Collections.shuffle() method.

143



preserves only event frequencies (i.e., first-order statistics). In many cases, there can be

logical units of activity larger than single events (or singlets [7]) that need to be preserved

in order for permutations to be meaningful (i.e., legal). Otherwise, meaningless or illegal

permutations will overwhelm and skew statistical significance estimates to be too optimistic

and favor noisy alignments. As in [7], assessing statistical significance relative to a noise

background of randomly permuted sequences evaluates whether or not similarity among the

unpermuted sequences can be attributed to their composition (i.e., event frequencies) alone

without regard to event orderings inside each sequence. Any other natural or invariant

structure (in addition to composition) common to the entire population of execution traces

and that we preserve in the generated permutations will be factored out from any statistical

significance value ascribed to the aligned sequences. This is important because otherwise

unrelated sequences will be declared similar due to these natural causes [7]. This can also

be understood as follows: permutations used to construct the null model need to reflect

characteristics of the population of all possible/legal execution traces so that the inferred

score distribution faithfully reflects the relationship among sequences drawn randomly from

that population.

In the context of specification mining, a simple example is preserving consecutive call-

start/call-end pairs. Another example is preserving second-order (i.e., transition) statistics

(or doublet frequencies). A more difficult structure, that is not present in biological se-

quences, to preserve in shuffled execution traces is recursive method calls, which appear in

traces similarly to a perfectly matched set of nested parentheses. But recursive structure is

destroyed by random permutations as well as by automata learning algorithms, since finite-

state automata cannot capture/express recursion. Therefore, recursive structure is precluded

from our consideration.

We use an algorithm from [7, 99] to generate all doublet-preserving permutations with equal

probability, and use an algorithm from [173] as a subroutine to generate uniformly random

144



MSA Score

Score dist. of null hypothesis

Score dist. of MSA refinements...

Figure 5.12: Statistical significance.

spanning trees. Basing statistical significance tests on shuffling and scoring the aligned

sequences only may introduce some bias (or overfitting) [133]. Therefore, given a large set

S of sequences containing the set L ⊆ S of sequences being aligned, we construct the score

distribution by shuffling, aligning and scoring H subsets {S1, . . . ,SH}, with Sk ⊆ S, each

drawn randomly from S.

As shown in Figure 5.13, the alignment score distribution of randomly shuffled sequences is

a mixture of two components, a normal distribution and a Gamma distribution. However,

we could not prove this decomposition consistently for all sequence alignments. Therefore,

no assumptions about the form of score distributions are made and the p-value for a given

alignment with score S is calculated as p = M/N , where N is the number of doublet-

preserving permutations aligned and scored, and M is the number of those experiments

scoring equal to or higher than S.

145



−1.5 −1 −0.5 0
·105

0

1

2

3

·10−5

−4 −3 −2 −1 0 1 2
·105

0

2

4

6

8

·10−6

−6 −4 −2 0 2
·105

0

1

2

3

4

5

·10−6

50 60 70 80 90 100

6

8

10

12

Sequence Length

k

0.2

0.4

0.6

0.8

1
·104

θ

k
θ

50 60 70 80 90 100
−3

−2

−1

0

·105

Sequence Length

µ

2

4

6

8

·104

σ

µ
σ

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Sequence Length

P
ro

b
a
b
il
it

y

pnormal
pgamma

Figure 5.13: Alignment score distribution generated by conducting 5000 MSAs of 20 se-
quences of length 50/75/100 sampled randomly (with replacement) from 20 trace slices,
and shuffled randomly each time. Benchmark is Dropbox (in indexing/uploading state) and
the monitored data type is Thread. Doublet-preserving permutation is used. Blue bars
depict the empirical PDF and the red bars depict the MLE-fitted PDF.

−2 −1.5 −1 −0.5 0 0.5
·105

0

200

400

600

Figure 5.14: Alignment score distribution generated by conducting 5000 MSAs of 20 se-
quences of length 50 sampled randomly (with replacement) from 100 trace slices, and
shuffled randomly each time. Benchmark is Dropbox (in indexing state) and the monitored
data type is Thread. Effect of doublet-preserving permutation on score distribution is clearly
demonstrated.

146



Part III

Applications and Future Research

147



Chapter 6

Mining Specifications for Digital

Logic Designs

In this chapter, we embark on a novel and rigorous mining methodology (data preparation,

mining algorithms, selection criteria, etc.) for finite-state automata checkers from large

simulation traces of digital logic design using an iterative and interactive mining tool, called

Topaz.1 Topaz is evaluated using an open-source 32-bit RISC CPU design as a case study to

demonstrate extraction of local (block-level) as well as global, core-level complex temporal

properties cross-cutting through all CPU pipeline stages, guided by the CPU instruction set

specification.

6.1 Introduction

Complex computing systems may possess behaviors never conceived of by their designers.

Thorough functional verification helps to reduce design re-spins due to functional bugs and

1Topaz is a mineral gemstone.

148



enables first-pass silicon success. All verification techniques, static and dynamic, decide cor-

rectness of an implementation against some notion of a specification that describes what a

computing system does or does not do (in the form of properties, golden models, etc.) inde-

pendently of how the system will be implemented. Unfortunately, formal specifications2 are

not always used, mainly because of their high development and maintenance cost and com-

plexity, since they require substantial expertise in formal specification languages and their

decision procedures, as well as abstraction techniques. This difficulty hinders formal spec-

ifications from coping with agile, fast-paced development environments that foster rapidly

evolving systems. Additionally, specifications of legacy RTL designs are needed to verify

new designs integrated with them [176]. Here, a distinction can be made between standard

interface-specific properties whose development cost is amortized over a large number of de-

signs, and (2) the properties relevant only to one particular proprietary design. Unless the

prohibitive specification development cost is reduced, design-specific properties will remain

unjustified except for critical control blocks of a design.

A key insight is that specification of a design module can be implicit or hidden in how it

is being used by, and reacting to, high-quality client code [176]. Therefore, specification

mining [10? ] emerged as an automated technique used to discover formal specifications of

systems from examples or samples of their behavior executions, source code, change logs or

any associated artifact. From Table 6.1, inferred properties can take many forms, such as

rules and value invariants, finite-state machines (FSMs), and temporal properties. Inferred

specifications and can then be examined, refined, abstracted or corrected by designers and

verification specialists. Once validated, these specifications will drive functional verification,

regression testing, or serve as invariants to be preserved as the design evolves, or can be

published as part of documentation. Specification mining for digital hardware designs has

been gaining much traction recently [37, 62, 71, 84, 97, 113, 150, 168]. Many of these tools

2Industrial specification languages include the Property specification language (PSL) [2] and SystemVer-
ilog Assertions (SVAs) [3] with Open Verification Library (OVL) [4] and IBM Sugar as their precursors.

149



are of great practical value but most of them still suffer from serious limitations detailed in

Section 6.2. From Table 6.1, notable examples of these limitations include the use of inade-

quate design state abstractions, limited expressive power (e.g., using a predefined repertoire

of candidate property templates and a restricted set of operators to combine them), and

using a finite time window which can easily miss long-range temporal relations.

In this chapter, we present a tool, called Topaz, that discovers design properties of arbitrary,

tunable complexity and precision from large simulation traces. Due to their wide scope and

intuitiveness, the target specification formalism of Topaz is deterministic finite automata

(DFAs) that detect violations of automatically learned design properties. Topaz relies on a

novel specification mining, and language learning, technique that is the first (to the best of

our knowledge) to use multiple sequence alignment (MSA) [59] in order to obviate many lim-

iting assumptions made by prior tools and resolve the long-standing initial-state uncertainty

problem in offline specification mining [154]. Sound theoretical underpinnings of using MSA

as a language learning tool are presented here. Using MSA, Topaz can reconstruct proper-

ties with abstract state spaces which do not merely duplicate the hidden design state space

and whose sizes are dictated solely by the complexity of observed simulation traces. Each

abstract state of the constructed DFA may stand for many concrete design states and can

capture temporal relations among widely separated logic events. More abstraction can then

be selectively applied among simulation-equivalent states [19] to trade off precision for con-

ciseness or understandability. MSA also naturally adopts a scoring scheme that can be used

to quantify the statistical significance of inferred specifications and reject spurious proper-

ties. Topaz also enables controlling abstraction levels of mined properties through the use

of simulation preorder and equivalence [19] and by taking advantage of user-defined logic

events, that can enable extracting transaction-level properties from RTL designs.

The rest of the chapter reviews the prior work on specification mining, and then develops

terminology and notation for subsequent discussions. Next, we explain the Topaz mining

150



flow, followed by a case study on the open-source Amber CPU design. Some experimental

results from the Amber case study are also scattered throughout the chapter. Finally, we

conclude with a summary of results and venues for future work.

6.2 Related Work

A brief survey (which is by no means comprehensive) of specification mining tools for digital

hardware designs is shown in Table 6.1. Dynamic analysis tools, such as Topaz, can be

unsound. That is, they can return specifications not satisfied by the analyzed designs in all

situations. Inferno [97] scours simulation traces for transaction diagrams depicting design

behavior at a high level and generates Verilog checkers for them. Inferno focuses on control

signals and abstracts away data buses (by using a bus-width threshold). This is justified by

contrasting to PropGen [71], where the infrequent data values will obscure repetitive control

sequences. However, a serious limitation of Inferno is that it identifies the internal design

state with its output control signals. Completely ignoring internal design state (other than its

outputs) producing FSMs that might have modest predictive power (i.e., modest precision in

constraining observable design behavior) when used as an anomaly detector. Alternatively,

control signal values should be used as an alphabet set Σ annotating transitions (rather than

states) of a DFA whose states abstract the design internal state space while preserving as

much information as possible.3

Dianosis [150] analyzes simulation traces and builds property candidates over all combina-

tions of signals given a set of parameterized basic property templates, such as OVL check-

ers [4]. Extracted basic properties are then recursively combined into higher-level trans-

actions until no more combination is possible. Combining lower-level properties relies on

using three types of inter-property relations: mutual exclusion (or disjointness), coincidence

3This is the typical usage model in formal verification where transitions of a Büchi automaton derived
from a LTL formula are triggered by the labels of the DUV transition system states.

151



(or sequence conjunction in the SVA sense [3]), and ordering. However, these relations are

not sufficient to capture all of LTL/SERE semantics. For example, they cannot express

consecutive and non-consecutive Klein closure (open-ended repetition). Moreover, being

template-based, every new property must be explicitly added, which restricts expressiveness

(i.e., the properties that can be mined using Dianosis).

In [37], extracted specifications express sequential relations among events which are unique

combinations of signal values. Signals contributing to events are user-defined. Extracted

assertions take the implication form A⇒ C, where A is the antecedent and C is the conse-

quent, and both A and C are episodes of events. An episode is a partially ordered (multi-)set

of events and, hence, can be represented with a DAG. To reduce computational complex-

ity, only relations among episodes within a preset sliding window are considered. Another

window-based tool is [62], where a simulation trace is divided into fixed-size windows. There-

fore, a sequential data miner can only detect patterns shorter than the given window size.

Extracted assertions also take the implication form A ⇒ C, where A and C are frequent

event sequences. Yet another window-based tool is PropGen [71], where extracted properties

are low-level Boolean formulas over the inputs, state variables and outputs within a moving

finite window W . Such formulas might not give as much insight as higher-level or more

abstract properties.

All window-based tools have severely limited ability to discover long-range temporal relations

among events4, which are quite common in many pipelined designs. For example, in a

processor pipeline, cache misses, branch prediction and resource conflicts can introduce wild

latency variations. IODINE [84] extracts dynamic invariants (e.g., req-ack pairs, mutual

exclusion, FSMs, scoreboards, etc.) from logic simulation traces. The FSMs mined by

IODINE are based on explicit state vectors (i.e., bit-vectors that make selective transitions

among a limited set of values). However, this lacks any abstraction or generalization, and

4In order to reduce search space, the window size must be kept small.

152



is thus not scalable and may duplicate design bugs in the extracted specification. In this

chapter, we construct DFAs based on an implicit or hidden state space whose size is dictated

by the complexity of simulation traces, as shown in Fig. 6.1. This is expected to abstract

away many details pertinent only to the implementation and, hence, hopefully extracts bug-

free more understandable specifications.

In [113], recurring temporal behaviors matching a set of pattern templates in a trace are

mined and synthesized into more complex patterns by using inference rules, and can be

translated into linear temporal logic (LTL) formulas or regular expressions. Specifications

mined from correct as well as erroneous traces are used to localize or diagnose errors. Learn-

ing property templates from traces rather than learning a single FSM is justified by the

fact that learning an automaton from samples of its behavior is NP-hard [79]. However,

this misses the point of specification mining as a learning technique that is supposed to

generalize beyond a limited set of observed traces rather than memorize them in a minimal

FSM. Moreover, the assumption that multiple smaller properties can be learned and then

composed into more complex specifications is also untenable since the synchronous product

of two distinct properties extracted separately from the traces is not equivalent to (and is

less precise than) a single joint property extracted directly from the traces.

Finally, GoldMine [168] uses data mining to automatically generate LTL assertions of the

form G(A ⇒ C), where A and C can be propositional or temporal formulas involving

operators X, U or F. However, the GoldMine methodology is also applicable within a

bounded time window and “cannot generate unbounded safety or liveness properties”.

In this chapter, we allow the salient design behaviors speak for themselves. Parameters

are provided to control the trade-off between precision and mining time/space complexity,

without constraining the forms of specifications inferred or capturing temporal relations

within a bounded time window.

153



Table 6.1: Classification of specification mining tools.

Tool
Analysis Target Formalism

Prior Info.
Requires

Statistical Metric Mining Techniques Limitations
Static Dynamic Hybrid FSMs Assertions Rules Source Codeb

Topaz 6 4 6 4 6 6 Interface signals No Statistical significance Multiple sequence alignment (Only safety)a

Dianosis [150] 6 4 6 6 4 6 OVL templates No None N.A. Ia

Chang et al. [37] 6 4 6 6 6 4 Mining window size No Support/Confidence Sequential data mining I, IIa

Mandouh et al. [62] 6 6 4 6 4 6 Mining window size Yes Support/Confidence Sequential data mining I, IIa

GoldMine [168] 6 6 4 6 4 6 Mining window size Yes Support/Confidence Decision Tree Learning IIa

IODINE [84] 6 4 6 4 4 6 Templates/Analyzers No Confidence Template-specific analysis Ia

PropGen [71] 6 4 6 6 4 6 Mining window size Yes None Bit-vector pattern search I, IIIa

Inferno [97] 6 4 6 4 6 6 Interface signals No None Likely transact. boundary search IIIa

Li et al. [113] 6 4 6 6 4 6 Property templates Only hierarchy Frequency, variance Pattern matching Ia

a(I) Limited expressiveness. (II) Finite time span. (III) Lack of state-
space abstraction. bTools not relying on source code can be used in reverse
engineering.

6.2.1 The Need for Abstraction

The number of embedded processor cores and IPs crammed on a single SoC quadrupled in

the period from 2006 to 2014 [73] concomitant with many HW/SW cross-cutting layers of

interacting functional, security and power domains. As a result, bug-triggering conditions

became more complex and hard to stumble upon simply by manipulating bit-level design

interfaces. That is why the most widely used verification methodologies (e.g., UVM, OVM,

VMM, etc.) are centered around the transaction concept which raises the level of abstraction.

Specifications are abstract by definition. This means that specifications are detached from

the inundating implementation details which refine those specifications. Therefore, a spec-

ification mining tool must be good at finding/crafting/discovering abstractions from very

detailed logic simulation traces. This viewpoint is illustrated in Fig. 6.1, where Topaz ex-

tracts or constructs a DFA model for a large digital design hidden behind its simulation

traces. Each (abstract) state of the constructed DFA model may stand for many (concrete)

states of the modeled design. In many cases, the protocol of an interface is known or stan-

dard and it is required to reconstruct or reverse-engineer a higher-level protocol built on

top of that interface. For example, a cache coherence protocol can operate on top of AMBA

AXI bus protocol.

Topaz does not require access to the RTL source code and only works on simulation traces

154



dumped from comprehensive test-case runs.

6.3 Background

Functional verification of digital designs relies on various complementary technologies to

efficiently implement verification plans and facilitate pre-silicon debugging. Among these

technologies are constrained random testing (CRT), coverage-driven verification (CDV), and

assertion-based verification (ABV). CRT drives a design under verification (DUV) into re-

gions of the state space never conceived of by designers, thus finding bugs that would other-

wise be hard to stumble upon using directed tests alone. CDV closes the loop by continuously

measuring verification progress and flagging the need to steer CRT stimulus generation to-

wards sparsely covered states. Using assertions in logic simulations add valuable insights into

the verification process by virtue of the increased visibility and precision of bug detection

(i.e., closeness of assertion firing to the problem root causes).

Usually, the control (i.e., sequencing) path of a digital design presents most of the correctness

challenge and the hiding place for most bugs, while the data (or computing) path is less likely

to hide any bugs and more amenable to analytic evaluation techniques.

6.4 Preliminaries

In this section, we develop the terminology and notation used throughout the chapter. In

a synchronous digital design, a global clock orchestrates the propagation of signal values

among all flip-flops.5 A formal specification consists of one or more properties, where each

property establishes a relation between signal values spanning multiple, not necessarily con-

5Nowadays, a typical digital design contains multiple, possibly asynchronous, clock domains.

155



secutive, clock cycles. The most widely used specification formalism is propositional linear

temporal logic (PTL) [19], usually augmented with sequential extended regular expressions

(SEREs). Binary signals taking part in a property specification are formally represented by a

set AP of atomic propositions. These signals can themselves be explicit or (combinationally

or sequentially) derived from design signals (such as the modeling-layer signals in PSL [2]),

and temporal operators are used to express temporal relations among signals. Typical tem-

poral operators include next, eventually, always, until in addition to (non-)consecutive

repetition operators.

The design under verification (DUV), which is a synchronous digital logic design, can be

described by a labeled transition system TS [19], given by a tuple (S,→, I,AP, L), where

S is the set of states, → ⊆ S×S is a (possibly nondeterministic) transition relation, I ⊆S

is a set of initial states, AP is a set of atomic propositions, and L : S→ 2AP is a labeling

function, where 2AP is the power set of AP. If the set AP has n bits, then 2AP is isomorphic

to the set {0, 1}n of all n-bit vectors. A state typically represents the current value of all

design registers and binary inputs. The transition relation → models the change of these

registers and output bits in response to input changes at clock edges. Nondeterminism of→

might be due to lack of constraints on the inputs. The set AP is chosen depending on the

properties to be verified, and summarizes the observable facts of interest about states of TS.

Each proposition characterizes exactly those states in which the proposition holds. Clock

cycle time is modeled by the set N of integers.

A path in TS is a (possibly infinite) sequence of states s0, s1, s2, . . . such that s0 ∈ I and

si→si+1 for i ≥ 0. For every path s0, s1, s2, . . ., there is a trace L(s0), L(s1), L(s2), . . .. The

set Traces(TS) is the set of all traces of TS starting from an initial state. Let (2AP)ω be the

set of infinite words over 2AP. A linear-time (LT) property ϕ over AP is a subset of (2AP)ω.

Transition system TS satisfies LT property ϕ, written as TS |= ϕ, iff Traces(TS) ⊆ ϕ. A LT

property ϕ is a safety property if every violating trace τ ∈(2AP)ω (i.e., τ 6∈ϕ) has a finite bad

156



prefix (i.e., a prefix all of whose infinite extensions also violate ϕ). A regular safety property

is a safety property whose bad prefixes constitute a regular language and, hence, can be

recognized by a finite automaton [19]. A finite automaton is a tuple A = (Q,Σ, δ, Q0, F ),

where Q is a finite nonempty set of states, Q0 ⊆ Q is the set of initial states, F ⊆ Q is the set

of accepting (or final) states, Σ is a nonempty finite alphabet set.6 Finally, δ : Q× Σ→ 2Q

is the transition function. An automaton A is deterministic (a DFA) if |Q0| ≤ 1 and for

every q ∈ Q and σ ∈ Σ we have |δ(q, σ)| ≤ 1.7 It is nondeterministic (a NFA) otherwise.

The extended transition function δ∗ :Q×Σ∗→2Q is inductively defined as:

w,w′ ∈ Σ∗, σ ∈ Σ, w = σw′ =⇒ δ∗(q, w) = δ∗(δ(q, σ), w′)

A finite word w ∈ Σ∗ is accepted byA iff δ∗(Q0, w)∩F 6= ∅. The language L(A) of automaton

A is the set of all accepted finite words. For any p, q ∈Q, if q ∈ δ(p, σ), this is abbreviated

as p
σ−→q. If ∼ ⊆ Q×Q is an equivalence relation, then each equivalence class is an abstract

state [42] and A/∼ is the quotient automaton, which can be nondeterministic even if A is

deterministic. It then holds that L(A) ⊆ L(A/∼).8

Alphabet Set - Logic Events. Given AP, the set of logic signals used in specification

mining, the alphabet set Σ of an extracted DFA is a partition over 2AP. That is:⋃
σ∈Σ

σ = 2AP and σ1 6= σ2 ⇒ σ1 ∩ σ2 = ∅ (6.1)

Users of Topaz specify the alphabet symbols of Σ as (mutually exclusive) Boolean formulas

over AP, since the set of Boolean formulas over AP is isomorphic to the power set of 2AP.

We can establish a trace abstraction function A :Traces(TS)→Σω in such a way that a logic

trace τ :N→2AP of transition system TS is translated to an event trace e :N→Σ by noting

that for all n ≥ 0, if σ ∈ Σ and τn ∈ σ, then en = σ.

6The set Σ will be related to 2AP later.
7In this case, δ becomes a (total) function δ : Q× Σ→ Q.
8This holds if the quotienting operation uses existential abstraction [42], which over-approximates the

original automaton A.

157



Topaz

Tra
ce

s

Hidden

q1start

q2

q3

q4

q5

q6

Figure 6.1: Mining FSMs infers a set of abstract states that capture the essence of design
behavior, rather than duplicate its implementation internals.

Topaz extracts DFAs from logic simulation traces to capture regular safety properties, which

can then be verified formally or by simulation. For a DFA A, let L†(A) = L(A).Σω be the

set of all infinite extensions of words from the language of A. Then the complementary set

L†(A) is the set of all event traces satisfying the regular safety property ϕ expressed by A

and, in turn, A−1(L†(A)) is the set of all logic traces satisfying ϕ. An extracted DFA A is

intended to over-approximate the set Sim⊆Traces(TS) of logic simulation traces used in the

mining process. If Sim is adequate, it is then hoped that A also over-approximates the set

Traces(TS) of all possible observable behaviors of TS. That is, Traces(TS)⊆A−1(L†(A)).

Formal Verification. A transition system TS can be verified to satisfy a regular safety

property ϕ described by a NFA Aϕ = (Q,Σ, δ, Q0, F ), where Σ = 2AP, with the help of the

product TS
⊗
Aϕ = (S ′,→′, I ′,AP′, L′), defined in [19] as:

S ′=S×Q, I ′ = {(s0, q)|s0∈I, δ−1(q, L(s0))∩Q0 6=∅} (6.2)

∀s, t ∈ S,∀p, q ∈ Q :
s→ t, p

L(t)−−→ q

(s, p)→′ (t, q)
(6.3)

To verify that TS |=ϕ, it is sufficient to check that for all (s, q)∈S ′ reachable from I ′, we

have q 6∈F , since accepting states in F indicate violation of ϕ.

158



6.5 Specification Mining Flow

Topaz specification mining flow is shown in Fig. 6.2.

Trace Recording. Topaz needs a database of simulation traces (e.g., VCD files) providing

sufficient coverage of system behavior in order to increase model precision. These traces

typically originate in the testbench environment.

Event Extraction and Coalescing. Topaz helps users build the event alphabet by ex-

tracting the set of unique combined values of a user-specified list of signals. These values

can then be coalesced into coarser (i.e., more abstract) events by the user. If the alphabet

set Σ specified by the user violates the first condition of Equation 6.1, Topaz completes Σ

by adding an event NONE that is complementary to all user-defined events.

Trace Profiling. Trace profiles ensure quality of results from the subsequent trace slicing

and alignment stages. Simulated designs typically exhibit phase transitions, as shown in the

spectrograms in Figure 6.4 produced by Topaz for Amber [1], an open-source design studied

later here. Moreover, given an alphabet set Σ, a logic simulation trace T (or parts thereof)

can be irrelevant for specification mining with Σ if T does not show sufficiently diverse

and rich activity over Σ. To filter irrelevant simulation traces, Topaz can measure event

(and event-doublet) frequencies over a large set of traces to help users identify testcases

with maximum information content. In Figure 6.3, Topaz profiled 66 VCD files of Amber

testcases over 5 alphabet sets. Relevant events are those specified by each profiled alphabet

(i.e., all events other than NONE).

Trace Slicing. Trace slicing merely extracts the event traces (given a description of Σ) from

raw logic simulation traces and divides each trace into multiple trace slices for subsequent

MSA. It is crucial to select slice lengths and boundaries properly so as to ensure that slices

contain complete episodes of the behaviors of interest. This helps to improve the quality of

159



Topaz GUI

DUV

Simulation
Traces

Trace Profiling
& Slicing

MSA & Iterative
Refinement

PFSA Construction
& Reduction

DFA Construction

DFA Abstraction

Validation

DFA
Checkers

Signal
List

Event Extraction
& Coalescing

Alphabet
Description

Testbench Environment

Figure 6.2: Topaz specification mining flow. Topaz is a Java application with 55,000 lines of
code.

h
el

lo
w

or
ld

ad
c

ad
d

ad
d

r
ex

an
d

b
ar

re
l

sh
if

t
b

ar
re

l
sh

if
t

rs
b

cc
b

ic
b

u
g b
l

ca
ch

e1
ca

ch
e2

ca
ch

e3
ca

ch
e

flu
sh

ca
ch

e
sw

ap
ca

ch
e

sw
ap

b
u

g
ca

ch
ea

b
le

ar
ea

ch
an

ge
m

od
e

ch
an

ge
sb

it
s

co
n

fli
ct

rd
d

d
r3

1
d

d
r3

2
d

d
r3

3
et

h
m

ac
m

em
et

h
m

ac
re

g
et

h
m

ac
tx fir
q

flo
w

1
flo

w
2

flo
w

3
flo

w
b

u
g

h
ib

oo
t

m
em

in
fla

te
b

u
g

ir
q

ir
q

d
is

ab
le

ir
q

st
m

ld
m

1
ld

m
2

ld
m

3
ld

m
4

ld
m

5
ld

m
st

m
on

et
w

o
ld

r
ld

r
st

r
p

c
ld

rt
m

la
m

la
s

b
u

g
m

ov
rr

x
m

ov
s

b
u

g
m

u
l

sb
c

st
m

1
st

m
2

st
m

st
re

am st
rb

su
b

sw
i

sw
p

sw
p

lo
ck

b
u

g
te

q
ts

t
u

ar
t

re
g

u
ar

t
rx

u
ar

t
rx

in
t

u
ar

t
tx

u
n

d
efi

n
ed

in
s

100
102
104

Load/Store

Relevant Events Irrelevant Events

101
103
105

Add/Mult.

101
103
105

Branch

101
103
105

Swap

101
103
105

SWI

Figure 6.3: Testcase alphabet profiles. The x-axis is a set of 66 testcases from the Amber
test suite. The y-axis is a set of 5 alphabet sets used in Section 6.6.

subsequent MSA and the final outcome.

Sequence Alignment. Most automata-learning algorithms [12, 25] assume the existence

of a means to reset the automaton being learned to a fixed start state, either by using

a reset signal or by applying homing sequences [148]. However, these techniques are only

meaningful for online learning of automata. In this chapter, only offline learning using

passive observation of simulation traces is used. To obviate the use of resets9, we now

9Even though resets are ubiquitous in almost all digital designs, a specification mining algorithm must
avoid them completely. Resets are useful in learning finite automata which are, by definition, terminating
systems, whereas digital designs are intended to be reactive or non-terminating [19]. A single sufficiently
long trace should be enough for Topaz to infer system properties.

160



show that MSA, which revolutionized biological sequence analysis [59], holds the answer to

the initial-state uncertainty problem [154] in passive or offline learning contexts. Moreover,

MSA enables modeling the observed system behavior with a NFA A whose abstract state

space Q is not set in advance. In a MSA, as shown in Figure 6.5, two or more traces

are arranged as rows of a 2-dimensional matrix so that identical logic events common to

one or more traces are aligned in the same column. Due to the intrinsic variability of

computing systems behaviors, different traces cannot typically be perfectly superimposed

or aligned. Non-alignable positions are filled with gap symbols. Unlike biological sequences

alignments [59], it is prohibited to align different symbols (i.e., σ1, σ2 ∈ Σ with σ1 6= σ2) in the

same column. The only degree of freedom left by this is placement of gaps. How can MSA

be useful for specification mining? For every observation sequence σ = (σ0, σ1, σ2, . . .) ∈

Σω of logic events, there is an implicit unknown labeling L : N → S×Q of each event

with a hidden state of transition system TS ′ = TS
⊗
A. Conceptually, a labeling L =

(s0, q1), (s1, q2), . . . represents two synchronous and parallel runs s0, s1, . . . and q1, q2, . . . of

TS and A, respectively, where there is q0 ∈ Q0 such that ∀i ≥ 0 : σi = L(si) and:

q0
σ0−→ q1

σ1−→ q2
σ2−→ q3 . . . ‖ s0 −→ s1 −→ s2 −→ s3 . . .

Therefore, given n different observation sequences (or trace slices) {σ1, . . . ,σN} and a corre-

sponding set of hidden-state labelings {L1, . . . ,LN}, we can impose an alignment on these

sequences, where any two events σmi and σnj from σm and σn, respectively, can be aligned

A
m

b
er

C
P

U
T

es
ts mla

stm stream

ddr32

hello world

Figure 6.4: Examples of distinct design operation phases vs. cycle time as captured by
the largest two principal components (displayed as color hue and saturation, resp.) of the
feature-vector histogram of the design bit-vector (DBV) within a moving window of size
100 clock cycles. The DBV combines values of all logic signals in one giant bit vector. DBV
features are counts of (overlapping) binary strings from “0” to “111”.

161



only if Lm(σmi ) = Ln(σnj ). Conversely, hidden-state labelings can be recovered if an appro-

priate alignment of the observation sequences can be established, which can then be used to

reconstruct an abstract version of TS or A or their product TS
⊗
A. However, there is not

a unique alignment induced by every labeling. It is only possible to find an alignment that

maximizes a given optimality criterion (or scoring scheme) that ranks different alignments.

Moreover, there is not a unique hidden-state labeling for every observation sequence due to

nondeterminism of both TS and A. By using enough simulation traces, a sufficiently faithful

image of all nondeterministic choices in TS
⊗
A can be reconstructed. Despite some pecu-

liarities of specification mining in Topaz, the details of MSA are largely standard [59, 61, 167]

and are omitted for space constraints.

Complexity. Heuristic MSA algorithms [59] rely on pairwise sequence alignment, which

has complexity O(mn), n and m being the lengths of the two sequences. Moreover, a

distance matrix is constructed based on pairwise alignment scores. Therefore, time and

space complexity will be O(k2nm), where k is the number of trace slices.

Graph Representation of MSAs. We now explain how a NFA A can be recovered

from a given MSA m. As a first step, we construct a probabilistic finite-state automaton

(PFSA) [52, 145] Gm = (V,Σ, p), as shown in Figure 6.6, where V is a finite nonempty set

of states, Σ is the alphabet set (which is a partition over 2AP), and p : V × Σ× V → [0, 1]

Figure 6.5: A section of an example MSA of 20 trace slices from the Amber stm stream

testcase. Gaps are gray and every logic event is depicted by a different color.

162



is the transition probability function such that:10

∀v ∈ V :
∑
v′∈V

∑
σ∈Σ

p(v, σ, v′) = 1

For now, there are no initial or final states in Gm. The PFSA Gm is a directed acyclic graph

(DAG) constructed by noting that all identical letters σ ∈ Σ in the same column mi of m

stand for a single unknown hidden state (s, q) of TS
⊗
A. Since the state spaces S and Q of

TS and A, respectively, are unknown, we use a unique pair of labels (s, q) for every column

of m.11 Later, we will identify (i.e., merge) PFSA states that look sufficiently similar. A

PFSA state v ∈ V is connected by a directed edge to another state v′ if, for at least one

of the aligned trace slices, a letter in column mv directly follows a letter in column mv′ ,

possibly with intervening gap symbols only. Thus, every trace slice is a path in Gm. An edge

in Gm is annotated with transition probability according to how many trace slices follow

that edge in m. For these transition probabilities to be accurate, it is desired to align as

many trace slices as possible (i.e., to have deep alignments). The label σ∈Σ of a PFSA edge

(u, σ, v)∈ V ×Σ×V in Gm can be inferred by reversing Equation 6.3:

∀s, t ∈ S,∀p, q ∈ Q :
(s, p)→′ (t, q)

p
L(t)−−→ q

So every PFSA edge is labeled with the alphabet symbol in the MSA column associated with

its sink PFSA state.

PFSA Reduction Until now, the PFSA constructed from a MSA is acyclic and, hence,

it does not possess any recurrent behavior and cannot generalize beyond the training set

of traces. Recurrent behavior can be introduced into a PFSA by merging closely related

states that are likely to stand for similar hidden system state [19, Chapter 7]. The sk-

strings method [145] constructs an over-approximation G ′ of a PFSA G by associating a

10The standard definition of PFSA has:

∀v ∈ V, ∀σ ∈ Σ :
∑
v′∈V

p(v, σ, v′) = 1

This standard definition only replaces nondeterminism with probability.
11This yields an unfolded version of TS

⊗
A.

163



set of languages LPK(v), parameterized by a depth K > 0 and a probability 0 ≤ P ≤ 1,

with every PFSA state v. LPK(v) is the set of most likely length-K words whose total

probability is P . Two states v1 and v2 are sk-equivalent up to depth K and with probability

P if LPK(v1) ⊆ L1
∞(v2) and LPK(v2) ⊆ L1

∞(v1). By merging two states v1 and v2 that are

sk-equivalent, it is guaranteed that L(G) ⊆ L(G ′). The degree of over-approximation is

controlled by P and K which helps to trade off PFSA precision for conciseness.

Determinization and Minimization. As a first step toward determinization and min-

imization, a PFSA is turned into a NFA simply by dropping transition probabilities and

selecting one or more meaningful initial states. Selection of initial states happens after a

relatively small NFA has already been mined, which enables users to make more informed

decisions.

Topaz applies power-set construction [95] to a mined NFA to obtain the corresponding

complete DFA, where every state has a transition on every logic event. Therefore, a failure

(or accepting) state is added to the constructed DFA and a failure edge is extended to it from

every other DFA state. A failure edge is annotated with an event (i.e., a Boolean formula)

that is complementary to all other edges of its source state.

Abstraction. To allow users to trade off precision of a mined DFA A=(Q,Σ, δ, Q0, F ) for

−
σ1

σ1

σ1

σ1

σ2

σ2

σ2

σ2

−

−

−
σ3

σ3

σ3

σ4

σ4

−

−

−

σ5

σ5

σ5

σ5

σ5

q0 q1

q2

q3

q4

q5

σ1

σ2

σ2

σ3

σ3

σ4

σ5

σ5

Figure 6.6: A MSA viewed as a PFSA. Each state corresponds to one MSA column. Each
edge is annotated with σ of the MSA column associated with its sink PFSA state. Edge line
width is proportional to transition probability.

164



more conciseness, equivalence relations over Q with varying granularities are needed. Given

an equivalence relation ∼ ⊆ Q×Q, the state space Q can be reduced by taking the quotient

A/∼. A first step toward an equivalence relation is a simulation relation [19]. A simulation

preorder R⊆Q×Q is a relation such that for all (p, q)∈R and σ∈Σ, if p
σ−→ p′, then there

is q′ ∈ Q such that q
σ−→ q′ and (p′, q′) ∈ R. If a simulation relation R exists over A and

(p, q)∈R, it is said that state q simulates state p, denoted by p�q. Topaz uses algorithms

that compute simulation preorders in time O(|δ|.|Q|) [19]. A simulation relation � over Q

can give rise to equivalence relations, such as the symmetric closure ∼ = � ∪ �−1 and the

symmetric kernel ∼= = � ∩ �−1. Between these two extremes, it is left to the users of Topaz

to identify genuine state equivalences that preserve classes of properties important to them.

Statistical Significance. One of the main challenges that specification mining tools are

facing is false positives [80]; that is inferring spurious patterns that do not codify genuine

properties of the system. MSAs naturally adopt a scoring scheme that can then be used

to quantify the statistical significance (the p-value) of inferred properties. To estimate the

p-value for a given MSA m, Topaz generates random sequences from the sequences of m by

randomly shuffling order of their events [7, 72, 99]. The p-value for a given alignment with

score X0 is calculated as p = M/N , where N is the number of permutations aligned and

scored, and M is the number of those experiments scoring ≥ X0.

Validation. Once a DFA has been constructed, we can use the DUV as a source of coun-

terexamples, by running the system long enough under various operating conditions to reveal

any violations of the conjectured DFA and refine it.12 Alternatively, a set of traces deemed

representative of all correct system behaviors is divided into two sets: a training set, used in

the specification mining process, and a validation set used to validate the mined DFA.

12Using the terms of [12], only equivalence queries are allowed, whereas membership queries are not.

165



6.6 Amber Case Study

This section details one case study of Topaz on a fairly rich CPU design, Amber [1], which

is an open-source 32-bit RISC processor core implementing ARMv2a instruction-set archi-

tecture (ISA). The Amber-25 has a five-stage pipeline, separate data and instruction caches,

and a Wishbone interface, but does not contain a memory management unit (MMU).

Target Signal Groups. Given a digital logic design TS, the set AP of logic signals at

the focus of specification mining and verification can be selected in many different ways.

For each set Sim of logic simulation traces, Topaz produces a DFA for each set AP of

logic signals. We select sets of signals that span multiple pipeline stages and, hence, their

temporal relations may span many clock cycles. The organizing principle here is that for

each ARMv2a instruction, there is a set of signals that may exhibit some activity during the

processing of that instruction in the pipeline. That activity typically depends on preceding

and succeeding instructions (e.g., branches, back-to-back loads or stores), the cache state,

etc. This is a treasure trove for specification miners.

Simulation Traces. Topaz is driven by VCD simulation traces dumped by Amber’s test-

cases. Most of them are directed test-cases that exercise a particular instruction sequence

or a bug-triggering scenario.

Extracted Properties. Table 6.2 shows the inputs and parameters used by Topaz in 5

mining sessions with 5 different alphabet sets corresponding to 5 instruction families. It also

shows some descriptors of the mining outcomes. The number of DFA states reported in each

case is before any simulation equivalence is applied. Moreover, the number of simulation-

preordered pairs of states is an indication of the room for abstraction present in a mined

DFA.

Topaz Mining Run-time. Topaz, as well as RTL simulations, were run on a quad-core

166



Table 6.2: Amber specification mining parameters and results for 5 different alphabet sets
associated with 5 instruction types.

Alphabet Sets I Load/Store Add/Mult. Branch Swap SWI
Alphabet size 18 45 17 30 34
Modeled Signals 10 28 15 23 20
K 4 4 4 4 4
P 0.5 0.5 0.5 0.5 0.5
Trace Slices 225 152 14 158 100
Slice Size 200 100 200 200 200
Alignment time (min) < 1 < 1 < 1 < 1 < 1
p-value 0% 0% 0% 0% 0%
DFA States 57 172 127 84 137
Sim-preordered pairs 763 277 850 934 281

Intel i5, 2.5GHz CPU with 8GB of RAM and 64-bit operating systems (Windows for Topaz,

and Centos-6 for RTL simulations). The most time-consuming stage in Topaz mining flow

is MSA. In all 5 cases shown in Table 6.2, it completed in less than a minute, which is on

par with state-of-the-art MSA tools [61, 167].

SystemVerilog Checkers. Topaz automatically generates a synthesizable SystemVerilog

module for every extracted DFA. These checker modules can be bound to instances of design

modules using the SystemVerilog bind command without changing design source code. A

checker module has one output signal that is set to logic 1 once a minimal bad prefix has

been observed and stays high forever.

6.7 Summary and Conclusions

The feasibility of mining meaningful and diverse checker automata for a realistic CPU design,

with minimal input from users, has been demonstrated. Designers and verification engineers

can easily target different points on the precision-vs.-conciseness trade-off frontier. They

may also defer deciding initial states until a relatively small NFA has already been mined

and, hence, more informed decisions can be made. We are now working on integrating Topaz

with a formal verification tool to decide validity of mined properties. Finally, there is still

167



room for improving automated ranking of simulation-preordered pairs, alphabet selection

and abstraction.

168



Chapter 7

Epilogue

In conclusion, we summarize the main contributions made in this thesis and comment on

the currently ongoing and future research efforts.

We introduced the expressive and efficiently monitorable specification language of self-

replicating automata, making use of first-order logic to empower classical finite-state au-

tomata to ensure proper handling of data along the time dimension. The graph represen-

tation of self-replicating automata offered a precise, dynamic and elegant picture of the

underlying sea or ensemble of automaton replicas teeming with life as program execution

unfolds. It also proved to be an efficient and shareable distributed data structure suitable for

implementation on a scalable, distributed and low-overhead RV architecture, NUVA. That

graphical representation eventually emerged as an independent contribution in its own right,

and was applied to the most ubiquitous class of functions, Boolean functions. An essen-

tial piece of the puzzle is ParaMiner, our specification mining and behavioral modeling flow

that automates learning of software behavior, without prior assumptions about its form, and

helps to extract specifications that truly abstract away implementation details.

With many offerings on the market, and even more to come, of multiprocessor chips fitted

169



out with on-chip FPGA fabric, NUVA has a clear path to adoption in enterprise, cloud and

embedded computing systems putting a premium on visibility, safety and security.

We are currently working on many challenging problems including:

• Using RV based on SR-DFAs for anomaly-based intrusion detection by monitoring sys-

tem calls made by a running program: The ability of SR-DFAs to digest, not only

the sequences of system calls, but also their argument values offers an opportunity

to craft more precise specifications of normal behavior. This is beneficial for two rea-

sons: first, precise behavioral models or specifications hinder attackers ability to mount

mimicry attacks intended to avoid detection. Second, precise models help to reduce

the false-positives rate which has been the main inhibitor of widespread adoption of

anomaly-based intrusion detection.

• Malware classification: We are experimenting with exploiting the enhanced precision

levels of SR-DFA models of computing systems in summarizing system-call traces (with

argument values included) of many malware samples (we collected north of 3000 sam-

ples) and using them in rapid classification of these samples and inferring their mali-

cious intent. This is instrumental in forensic analysis in enterprise environments where

there is an explosion in the rate of attacks and intrusion attempts.

• Using lattice-based function graphs (LBFGs) as a basis for approximation algorithm

design: we are studying representation of combinatorial optimization problems de-

fined on partially ordered sets and how to approximate their solutions by symbolically

manipulating LBFGs.

• Runtime verification of transaction-level models (TLMs): We are experimenting with

SR-DFAs ability to express many high-level properties of embedded computing systems

and digital logic designs and offer a very good match to transaction-level modeling.

170



Bibliography

[1] OpenCores. http://opencores.org/. Accessed: 2015-09-18.

[2] IEEE standard 1850-2005 for property specification language (PSL). IEEE Standards
Association, 2005.

[3] IEEE Standard for SystemVerilog–unified Hardware Design, Specification, and Verifi-
cation Language. IEEE Standards Association, 2010.

[4] Accellera. OVL V2 Standard Library Reference Manual. 2010.

[5] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API Patterns As Partial Orders from
Source Code: From Usage Scenarios to Specifications. ESEC/FSE, pages 25–34, 2007.

[6] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching with
free variables to AspectJ. OOPSLA, 2005.

[7] S. F. Altschul and B. W. Erickson. Significance of nucleotide sequence alignments: a
method for random sequence permutation that preserves dinucleotide and codon usage.
Molec. Bio. and Evol., 1985.

[8] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface specifications
for java classes. POPL, pages 98–109, 2005.

[9] L. Amarú, P.-E. Gaillardon, and G. De Micheli. Biconditional bdd: A novel canonical
bdd for logic synthesis targeting xor-rich circuits. DATE, 2013.

[10] G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. POPL, 2002.

[11] D. Angluin. On the complexity of minimum inference of regular sets. Information and
Control, 39(3):337 – 350, 1978.

[12] D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, Nov. 1987.

[13] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha. Secure embedded processing
through hardware-assisted run-time monitoring. In DATE, 2005.

171

http://opencores.org/


[14] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of np.
J. ACM, 45(1):70–122, Jan. 1998.

[15] T. M. Austin. Diva: A reliable substrate for deep submicron microarchitecture design.
MICRO 32, 1999.

[16] S. Axelsson. Intrusion detection systems: A survey and taxonomy. Technical report,
Chalmers University of Technology, 2000.

[17] M. M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood,
A. Jaleel, C.-K. Luk, G. Lyons, H. Patil, and A. Tal. Analyzing parallel programs
with pin. Computer, 2010.

[18] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. ICCAD, 1993.

[19] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[20] H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard. Quantified
event automata: Towards expressive and efficient runtime monitors. In FM, 2012.

[21] A. Bauer, J.-C. Küster, and G. Vegliach. From propositional to first-order monitoring.
In RV, 2013.

[22] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol., 2011.

[23] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton, NJ, USA,
2011.

[24] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. TACAS, 1999.

[25] A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput., 21(6):592–597, June 1972.

[26] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The Gem5 simulator. SIGARCH Comput. Archit. News, 2011.

[27] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and
analysis. In OOPSLA ’06, pages 169–190, Oct. 2006.

[28] E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis to improve
the performance of runtime monitoring. ECOOP, 2007.

172



[29] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique
problem. In Handbook of Combinatorial Optimization, pages 1–74. Kluwer Academic
Publishers, 1999.

[30] D. Brand. Verification of large synthesized designs. ICCAD, 1993.

[31] L. C. Briand, Y. Labiche, and J. Leduc. Toward the reverse engineering of uml sequence
diagrams for distributed java software. IEEE Trans. Softw. Eng., 32(9):642–663, Sept.
2006.

[32] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput., 1986.

[33] R. E. Bryant. Binary decision diagrams and beyond: enabling technologies for formal
verification. In ICCAD, 1995.

[34] J. Brzozowski. Canonical regular expressions and minimal state graphs for definite
events. Mathematical Theory of Automata, 1962.

[35] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. Society for Indus-
trial and Applied Mathematics, 2012.

[36] S. Butt, V. Ganapathy, A. Baliga, and M. Christodorescu. Monitoring data structures
using hardware transactional memory. RV, 2012.

[37] P.-H. Chang and L. C. Wang. Automatic assertion extraction via sequential data
mining of simulation traces. ASP-DAC, 2010.

[38] F. Chen and G. Roşu. Mop: An efficient and generic runtime verification framework.
OOPSLA, 2007.

[39] F. Chen and G. Roşu. Parametric trace slicing and monitoring. TACAS, 2009.

[40] S. Chiba. Javassist – a reflection-based programming wizard for Java. In Proceedings
of the ACM OOPSLA Workshop on Reflective Programming in C++ and Java, 1998.

[41] D. G. Chinnery and K. Keutzer. Closing the power gap between asic and custom: An
asic perspective. In Proceedings of the 42nd Annual Design Automation Conference,
DAC’05. ACM, 2005.

[42] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement. CAV, pages 154–169, 2000.

[43] J. E. Cook and A. L. Wolf. Automating process discovery through event-data analysis.
ICSE, pages 73–82, 1995.

[44] S. A. Cook. The complexity of theorem-proving procedures. STOC, 1971.

[45] F. Corno, M. S. Reorda, and G. Squillero. RT-level ITC’99 benchmarks and first ATPG
results. IEEE Design & Test of Computers, 17(3):44–53, 2000.

173



[46] O. Coudert. Two-level logic minimization: An overview. Integr. VLSI J., 17(2):97–140,
Oct. 1994.

[47] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller. Mining object behavior with
adabu. WODA, pages 17–24, 2006.

[48] M. d’Amorim and G. Roşu. Efficient monitoring of ω-languages. CAV, 2005.

[49] A. Darwiche. SDD: A new canonical representation of propositional knowledge bases.
IJCAI, 2011.

[50] C. de la Higuera. A bibliographical study of grammatical inference. Pattern Recogn.,
38(9):1332–1348, Sept. 2005.

[51] C. de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, New York, NY, USA, 2010.

[52] C. de la Higuera. Learning finite state machines. FSMNLP, 2010.

[53] R. Dedekind. Über Zerlegungen von Zählen durch ihre größten gemeinsamen Teiler.
In Festschrift Hoch Braunschweig Ges. Werke. vII, pages 103–148, 1897.

[54] J. N. Departarnento and P. Garcia. Identifying regular languages in polynomial time.
In Advances in Structural and Syntactic Pattern Recognition, volume 5 of Series in
Machine Perception and Artificial Intelligence, pages 99–108. World Scientific, 1992.

[55] V. M. F. Dias, C. M. H. de Figueiredo, and J. L. Szwarcfiter. On the generation of
bicliques of a graph. pages 109–113, 2004.

[56] R. Diestel. Graph Theory. Springer-Verlag Berlin Heidelberg, 2005.

[57] A. T. Do, C. Yin, K. Velayudhan, Z. C. Lee, K. S. Yeo, and T.-H. Kim. 0.77
fJ/bit/search Content Addressable Memory Using Small Match Line Swing and Au-
tomated Background Checking Scheme for Variation Tolerance. IEEE JSSC, 2014.

[58] C. M. Dobson. Protein folding and misfolding. Nature, 426:884–890, 2003.

[59] R. Durbin. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge university press, 1998.

[60] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. ICSE, 1999.

[61] R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res, 32(5):1792–7, 2004.

[62] E. El Mandouh and A. G. Wassal. Automatic generation of hardware design properties
from simulation traces. ISCAS, 2012.

[63] M. El-Ramly, E. Stroulia, and P. Sorenson. From Run-time Behavior to Usage Sce-
narios: An Interaction-pattern Mining Approach. KDD, pages 315–324, 2002.

174



[64] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs As Deviant Behavior:
A General Approach to Inferring Errors in Systems Code. SOSP, pages 57–72, 2001.

[65] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. In Proceedings of the 21st
International Conference on Software Engineering, ICSE ’99, pages 213–224, 1999.

[66] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Softw. Eng.,
27(2):99–123, 2001.

[67] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming, 69(1):35–45, 2007.

[68] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. ISCA, 2011.

[69] Y. Falcone. You should better enforce than verify. In RV, 2010.

[70] D.-F. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite to
correct phylogenetic trees. Journal of Molecular Evolution, 25(4):351–360, 1987.

[71] G. Fey and R. Drechsler. Improving simulation-based verification by means of formal
methods. ASP-DAC, 2004.

[72] W. M. Fitch. Random sequences. J. of Molec. Bio., 1983.

[73] H. Foster. The perfect storm: Trends in functional verification. DAC, 2015.

[74] M. Frantzen and M. Shuey. Stackghost: Hardware facilitated stack protection. SSYM,
2001.

[75] M. Fujita, P. McGeer, and J.-Y. Yang. Multi-terminal binary decision diagrams: An
efficient data structure for matrix representation. Formal Methods in System Design,
1997.

[76] A. Garg, A. Di Cara, I. Xenarios, L. Mendoza, and G. De Micheli. Synchronous versus
asynchronous modeling of gene regulatory networks. Bioinformatics, 2008.

[77] G. Geeraerts, G. Kalyon, T. L. Gall, N. Maquet, and J.-F. Raskin. Lattice-valued
binary decision diagrams. In ATVA, 2010.

[78] M. Gendreau, P. Soriano, and L. Salvail. Solving the maximum clique problem using
a tabu search approach. Ann. Oper. Res., 41(1-4):385–403, May 1993.

[79] E. M. Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302–320, June 1978.

175



[80] C. Goues and W. Weimer. Specification mining with few false positives. TACAS, pages
292–306, 2009.

[81] R. Grigore, D. Distefano, R. L. Petersen, and N. Tzevelekos. Runtime verification
based on register automata. TACAS, 2013.

[82] G. D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms. Springer,
2013.

[83] S. Hallé and R. Villemaire. Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput., 2011.

[84] S. Hangal, N. Chandra, S. Narayanan, and S. Chakravorty. IODINE: A Tool to Auto-
matically Infer Dynamic Invariants for Hardware Designs. DAC, 2005.

[85] S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly
detection. ICSE, pages 291–301, 2002.

[86] D. Harel. Statecharts: A visual formalism for complex systems. Science of computer
programming, 8(3):231–274, 1987.

[87] K. Havelund. Monitoring with data automata. ISoLA, 2014.

[88] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. SIGSOFT Softw.
Eng. Notes, 30(5):31–40, Sept. 2005.

[89] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. POPL,
2002.

[90] C. D. L. Higuera and J.-C. Janodet. Inference of omega-Languages from Prefixes.
ALT, pages 364–378, 2001.

[91] M. Hirosawa, Y. Totoki, M. Hoshida, and M. Ishikawa. Comprehensive study on
iterative algorithms of multiple sequence alignment. Computer Applications in the
Biosciences, 11(1):13–18, 1995.

[92] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of
system calls. J. Comput. Secur., 1998.

[93] P. Hogeweg and B. Hesper. The alignment of sets of sequences and the construction of
phyletic trees: an integrated method. Journal of molecular evolution, 20(2):175–186,
1984.

[94] G. J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 1997.

[95] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2006.

[96] P.-T. Huang and W. Hwang. A 65nm 0.165 fJ/Bit/Search 256x144 TCAM Macro
Design for IPv6 Lookup Tables. IEEE JSSC, 2011.

176



[97] B. Isaksen and V. Bertacco. Verification through the principle of least astonishment.
ICCAD, 2006.

[98] D. Jin, P. O. Meredith, D. Griffith, and G. Rosu. Garbage collection for monitoring
parametric properties. PLDI, 2011.

[99] D. Kandel, Y. Matias, R. Unger, and P. Winkler. Shuffling biological sequences. Dis-
crete Appl. Math., 71(1-3):171–185, Dec. 1996.

[100] R. M. Karp. Reducibility among combinatorial problems. Springer, 1972.

[101] M. J. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean for-
mulae and finite automata. In D. S. Johnson, editor, STOC, pages 433–444. ACM,
1989.

[102] C. Kern and M. R. Greenstreet. Formal verification in hardware design: A survey.
ACM Trans. Des. Autom. Electron. Syst., 4(2):123–193, Apr. 1999.

[103] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks
& Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 12th edition,
2009.

[104] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of View.
Springer Publishing Company, Inc., 2008.

[105] F. Kröger and S. Merz. Temporal Logic and State Systems. Springer Publishing Com-
pany, Inc., 2008.

[106] M. Kulkarni, M. Burtscher, K. Pingali, and C. Cascaval. Lonestar: A suite of parallel
irregular programs. ISPASS, 2009.

[107] A. v. Lamsweerde. Formal specification: A roadmap. ICSE, 2000.

[108] K. J. Lang. Random dfa’s can be approximately learned from sparse uniform examples.
In D. Haussler, editor, COLT, pages 45–52. ACM, 1992.

[109] D. Le Berre and A. Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7:59–64, 2010.

[110] C. Lee, F. Chen, and G. Roşu. Mining parametric specifications. ICSE, 2011.

[111] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial order
graphs. Bioinformatics, 18(3):452–464, 2002.

[112] M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of Logic
and Algebraic Programming, 2009.

[113] W. Li, A. Forin, and S. A. Seshia. Scalable specification mining for verification and
diagnosis. DAC, 2010.

177



[114] Z. Li and Y. Zhou. PR-Miner: Automatically Extracting Implicit Programming Rules
and Detecting Violations in Large Software Code. ESEC/FSE, pages 306–315, 2005.

[115] B. Livshits and T. Zimmermann. DynaMine: Finding Common Error Patterns by
Mining Software Revision Histories. ESEC/FSE, pages 296–305, 2005.

[116] D. Lo and S.-C. Khoo. Smartic: Towards building an accurate, robust and scalable
specification miner. FSE, pages 265–275, 2006.

[117] D. Lo, S.-C. Khoo, J. Han, and C. Liu, editors. Mining Software Specifications: Method-
ologies and Applications. Chapman & Hall/CRC Data Mining and Knowledge Discov-
ery Series, 2011.

[118] D. Lo, S.-C. Khoo, and C. Liu. Efficient mining of iterative patterns for software
specification discovery. KDD, pages 460–469, 2007.

[119] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software behavioral
models. ICSE, pages 501–510, 2008.

[120] H. Lu and A. Forin. Automatic processor customization for zero-overhead online soft-
ware verification. IEEE Trans. VLSI Syst., 2008.

[121] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting atomicity violations via access
interleaving invariants. ASPLOS, 2006.

[122] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Serbanuta, and G. Rosu.
Rv-monitor: Efficient parametric runtime verification with simultaneous properties.
RV, 2014.

[123] F. Maggi, M. Matteucci, and S. Zanero. Detecting intrusions through system call
sequence and argument analysis. IEEE Trans. Dependable Secur. Comput., 2010.

[124] S. Malik. Runtime verification: A computer architecture perspective. In RV, 2011.

[125] H. Mannila, H. Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes in
event sequences. Data Min. Knowl. Discov., 1(3):259–289, Jan. 1997.

[126] J. a. P. Marques-Silva and K. A. Sakallah. Boolean satisfiability in electronic design
automation. DAC, 2000.

[127] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[128] C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design. Springer-
Verlag New York, Inc., 1998.

[129] A. Meixner, M. E. Bauer, and D. Sorin. Argus: Low-cost, comprehensive error detec-
tion in simple cores. MICRO 40, 2007.

[130] A. Meixner and D. J. Sorin. Dynamic verification of memory consistency in cache-
coherent multithreaded computer architectures. IEEE Trans. Dependable Secur. Com-
put., 2009.

178



[131] C. C. Michael and A. Ghosh. Simple, state-based approaches to program-based
anomaly detection. ACM Trans. Inf. Syst. Secur., 5(3):203–237, Aug. 2002.

[132] S.-i. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems.
DAC, 1993.

[133] A. Y. Mitrophanov and M. Borodovsky. Statistical significance in biological sequence
analysis. Briefings in Bioinformatics.

[134] E. F. Moore. Gedanken-experiments on sequential machines. In C. Shannon and
J. McCarthy, editors, Automata Studies, pages 129–153. Princeton University Press,
1956.

[135] A. Nassar and F. J. Kurdahi. Lattice-based boolean diagrams. In 2016 21st Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 468–473, 2016.

[136] A. Nassar, F. J. Kurdahi, and W. Elsharkasy. Nuva: Architectural support for runtime
verification of parametric specifications over multicores. In Compilers, Architecture and
Synthesis for Embedded Systems (CASES), 2015 International Conference on, CASES,
pages 137–146, 2015.

[137] A. Nassar, F. J. Kurdahi, and S. R. Zantout. Topaz: Mining high-level safety properties
from logic simulation traces. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1473–1476, 2016.

[138] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag New York, Inc., 1999.

[139] J. W. Nimmer and M. D. Ernst. Automatic generation of program specifications.
ISSTA, pages 229–239, 2002.

[140] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.
IEEE Trans. Pattern Anal. Mach. Intell., 12(7):629–639, July 1990.

[141] L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: A hard real-time runtime
monitor. RV, 2010.

[142] M. Prvulovic. Cord: Cost-effective (and nearly overhead-free) order-recording and data
race detection. HPCA, 2006.

[143] M. Prvulovic and J. Torrellas. Reenact: Using thread-level speculation mechanisms to
debug data races in multithreaded codes. ISCA, 2003.

[144] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: Cost-effective architectural support
for rollback recovery in shared-memory multiprocessors. ISCA, 2002.

[145] A. Raman, J. Patrick, and P. North. The sk-strings method for inferring PFSA. ICML,
1997.

179



[146] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel. Reliable software for unreliable
hardware: Embedded code generation aiming at reliability. CODES+ISSS, 2011.

[147] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. Swift: Software
implemented fault tolerance. CGO, 2005.

[148] R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences.
STOC, 1989.

[149] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Automated
API Property Inference Techniques. IEEE Trans. Softw. Eng., 39(5):613–637, May
2013.

[150] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rülke. Automatic generation of
complex properties for hardware designs. DATE, 2008.

[151] S. K. Sahoo, M.-L. Li, P. Ramachandran, S. V. Adve, V. S. Adve, and Y. Zhou. Using
likely program invariants to detect hardware errors. In DSN, 2008.

[152] N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular biology and evolution, 1987.

[153] M. B. Salem, S. Hershkop, and S. J. Stolfo. A survey of insider attack detection
research. In Insider Attack and Cyber Security, pages 69–90. Springer, 2008.

[154] S. Sandberg. Homing and synchronizing sequences. In M. Broy, B. Jonsson, J.-P.
Katoen, M. Leucker, and A. Pretschner, editors, Model-Based Testing of Reactive Sys-
tems, 2004.

[155] S. R. Sarangi, A. Tiwari, and J. Torrellas. Phoenix: Detecting and recovering from
permanent processor design bugs with programmable hardware. MICRO 39, 2006.

[156] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic
data race detector for multithreaded programs. ACM Trans. Comput. Syst., 1997.

[157] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static specification mining using
automata-based abstractions. ISSTA, pages 174–184, 2007.

[158] J. H. A. Shyamkumar Thoziyoor, Naveen Muralimanohar and N. P. Jouppi. Cacti 5.1.
In HP Labs, Tech. Rep. HPL-2008-20, April 2008.

[159] R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic rela-
tionships. University of Kansas Scientific Bulletin, 28:1409–1438, 1958.

[160] F. Somenzi. CUDD: CU Decision Diagram Package, Release 2.4.0. University of
Colorado at Boulder, 2005.

[161] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consistency and Cache
Coherence. Morgan & Claypool, 2011.

180



[162] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Safetynet: Improving the
availability of shared memory multiprocessors with global checkpoint/recovery. ISCA,
2002.

[163] A. Srinivasan, T. Ham, S. Malik, and R. K. Brayton. Algorithms for discrete func-
tion manipulation. In Computer-Aided Design, 1990. ICCAD-90. Digest of Technical
Papers., 1990 IEEE International Conference on, pages 92–95, Nov 1990.

[164] V. Stolz. Temporal assertions with parametrized propositions. J. Log. and Comput.,
2010.

[165] V. Stolz and E. Bodden. Temporal assertions using AspectJ. Electron. Notes Theor.
Comput. Sci., 2006.

[166] M. B. Taylor. Is dark silicon useful?: Harnessing the four horsemen of the coming dark
silicon apocalypse. DAC, 2012.

[167] J. Thompson, D. Higgins, and T. Gibson. CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673–4680, 1994.

[168] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. Johnson. Goldmine:
Automatic assertion generation using data mining and static analysis. DATE, 2010.

[169] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems.
CCS, 2002.

[170] I. Wagner, V. Bertacco, and T. Austin. Shielding against design flaws with field
repairable control logic. DAC, 2006.

[171] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal of
Computational Biology, 1(4):337–348, 1994.

[172] W. Weimer and G. C. Necula. Mining temporal specifications for error detection.
In Proceedings of the 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’05, pages 461–476, Berlin, Heidelberg,
2005. Springer-Verlag.

[173] D. B. Wilson. Generating random spanning trees more quickly than the cover time.
STOC, 1996.

[174] M. Xu, R. Bod́ık, and M. D. Hill. A serializability violation detector for shared-memory
server programs. PLDI, 2005.

[175] S. Yang. Logic synthesis and optimization benchmarks user guide version 3.0, 1991.

[176] A. Zeller. Mining Specifications: A Roadmap. In S. Nanz, editor, The Future of
Software Engineering, pages 173–182. Springer, 2011.

181



[177] P. Zhou, R. Teodorescu, and Y. Zhou. Hard: Hardware-assisted lockset-based race
detection. In HPCA, 2007.

[178] Y. Zhou, P. Zhou, F. Qin, W. Liu, and J. Torrellas. Efficient and flexible architectural
support for dynamic monitoring. ACM TACO., 2005.

182


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Motivation
	Background and Related Work
	Dimensions of Runtime Verification
	Formalism Crisis: Rise of Parametric Specifications
	Performance Crisis: Architectural Support to the Rescue
	Specification Mining

	Contributions
	Organization

	I Formalism
	Self-Replicating Automata
	Self-Replicating DFAs at a Glance
	First-Order Logic of Events
	Constant Arguments

	Semantics
	State Transition Systems.
	Linear-Time Parametric Properties.

	Self-Replicating DFAs
	Ensemble State
	Formal Verification

	Runtime Verification with SR-DFAs
	The Semi-Lattice of Partial Variable Valuations
	Graphical Representation of Ensemble State.
	Graphical Representation of SR-DFA Transition Function.
	Interpretation of the Transition LBFG


	Lattice-Based Function Graphs
	Introduction
	Prior Work
	Lattice Functions into Finite Sets
	LBFGs
	Restriction

	Symbolic Algorithms
	Co-Stability
	Structure of Equivalence Classes

	Function Composition
	Disjoint-Union Composition
	Product (or Concatenation) Composition
	Union Composition

	Local (Pointwise) Transformations
	Composition of Local Transformations

	Real-Valued Lattice Functions
	Graphical Representations

	Multi-Variable Functions
	The Semi-Lattice of Partial Variable Valuations

	The Boolean Lattice
	Intrinsic Representation

	Experimental Results
	Conclusions


	II Architectures and Tools
	Nonuniform Verification Architecture
	Architectural Elements
	Observation Unit
	Object Directories
	RV Controllers
	Automata Directories
	Automata Transactional Memory

	Experimental Validation
	Benchmarks.
	Bug Detection Capability.
	Simulation Results.
	Synthesis Results.
	Optimum APE Number

	Conclusion, Limitations and Future Work

	Specification Mining
	Specification Mining
	Introduction
	Mining SR-NFAs

	Prior Work
	ParaMiner Specification Mining Flow
	A Bio-Inspired Flow
	API Description
	Trace Recording
	Trace Slicing, Segmentation and Folding

	Role of Sequence Alignment
	Initial State Uncertainty.
	Multiple Sequence Alignment

	Ensemble States from MSAs.
	Initial State Selection

	From Ensemble States to SR-NFA States.
	Data-Flow Analysis.

	MSA Algorithms
	Pairwise Sequence Alignment
	Distance Matrix.
	Guide Trees
	Scalability - Trace Clustering
	Profile Alignment
	The Scoring Scheme.
	Language-Based Alignment
	Iterative Refinement
	Complexity.

	State-Space Reduction
	State Recurrence
	SR-NFA Determinization
	SR-DFA Completion
	SR-DFA Minimization
	Validation

	Variable Equivalence
	PFSA Variable Matching
	MSA Variable Matching
	MSA Variable Matching: An Alternative
	Abstraction

	Experimental Validation
	Benchmarking
	Quality of Results (QoR) Metrics
	Statistical Significance



	III Applications and Future Research
	Mining Specifications for Digital Logic Designs
	Introduction
	Related Work
	The Need for Abstraction

	Background
	Preliminaries
	Specification Mining Flow
	Amber Case Study
	Summary and Conclusions


	Epilogue
	Bibliography



