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1 Introduction

Supersymmetry (SUSY) provides one of the most promising solutions to the hierarchy

problem of the Standard Model (SM) [1–4]. However, the lack of finding of SUSY partners

casts serious doubts on whether SUSY can still naturally explain the electroweak (EW)

scale. Fine-tuning of the EW scale in minimal SUSY models implied by the LHC searches

was recently quantified in refs. [5, 6], which demonstrated that the current limits on stop

and gluino masses exclude regions with fine-tuning better than 10%, even if a very low

mediation scale of the SUSY breaking of 100 TeV is assumed.1 The fine-tuning quickly

gets worse for larger mediation scales due to longer RG running of the soft Higgs mass.

This is indication of the little hierarchy problem.

A possible remedy to the little hierarchy problem is offered by Twin Higgs mecha-

nism [11–15]. In the scenario, the Higgs is a pseudo-Nambu-Goldstone boson of a global

SU(4) symmetry emerging from Z2 symmetry exchanging the SM with its mirror (or twin)

copy. We refer to [16–23] for composite Twin Higgs models, and [24–34] for cosmological

aspects of Twin Higgs scenario.

Early realisations of SUSY UV completion of Twin Higgs scenario [14, 15], which

generate an SU(4) invariant quartic term with an F -term potential of a heavy singlet

superfield, are not able to significantly reduce fine-tuning as compared to non-Twin SUSY

models [35–37]. It was only very recently that SUSY Twin Higgs models were proposed

in which tuning at the level of 10% is possible by introducing either hard Z2 symmetry

breaking in the F -term model [36] or a new U(1)X gauge symmetry whose D-term potential

1The fine-tuning may be improved if the higgsino mass is not tied to the Higgs mass squared, see

e.g. refs. [7–10]. In such a case higgsino could be heavier leading to compressed spectra for which the lower

bounds on stops, and gluino are much weaker.
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provides a large SU(4) invariant quartic term [37]. It should be, however, emphasised that

the tuning at the level of 10% can be obtained in these models only for a low mediation

scale or a low Landau pole scale. In the F -term model of ref. [36] a fine-tuning penalty for

a larger mediation scale and hence a longer RG running is severe because the large SU(4)

invariant coupling induces growth of the top yukawa coupling at higher energy scales. In

the D-term model the RG effect of the gauge coupling gX of the new interaction is to

reduce the top yukawa coupling, and the effect of a higher mediation scale is not as severe

as the one for the F -term model. However, the RG running of the U(1)X gauge coupling is

fast and hence the Landau pole scale of gX is as low as 105–106 GeV for values of gX that

are large enough to guarantee approximate SU(4) symmetry of the Higgs potential. While

such a low mediation scale or a low Landau pole scale is in principle possible, it strongly

limits possible schemes of the mediation of the SUSY breaking and UV completions above

the Landau pole scale.

In the present work, we point out that the Landau pole scale and the mediation scale

of the D-term model can be much higher if the SU(4) invariant term is generated by a

D-term potential of a new non-abelian gauge symmetry. We construct a consistent model

with SU(2)X gauge symmetry with small number of flavors charged under this symmetry.

The new gauge interaction drives the top yukawa coupling small at higher energy scales,

which also helps obtain the EW scale more naturally. As a result, the tuning of the EW

scale for 2 TeV stops and gluino can be at the level of 5–10% for mediation scales as high

as 109–1013 GeV. One can keep perturbativity up to around the Planck scale with tuning

better than 5% (for low mediation scales). The model allows for moderate tuning better

than few percent with the mediation scale around the Planck scale. If the gluino mass is

a Dirac one, the tuning may be as good as 10%, which realizes a natural SUSY with a

gravity mediation.

2 A SUSY D-term Twin Higgs with an SU(2) gauge symmetry

In this section we present a SUSY D-term Twin Higgs model [37] where the D-term poten-

tial of a new SU(2)X gauge symmetry generates the SU(4) invariant quartic coupling. We

assume a Z2 symmetry exchanging the SM with its mirror copy, and denote mirror objects

with supersctripts ′.

The matter content of the model is shown in table 1. In addition to the SU(3)c ×
SU(2)L × U(1)Y gauge symmetry and its mirror counterpart, we introduce an SU(2)X
gauge symmetry which is neutral under the Z2 symmetry. We embed an up-type Higgs

Hu into a bi-fundamental of SU(2)L × SU(2)X , H, and its mirror partner H ′u into that of

SU(2)′L × SU(2)X , H′. As we will see later, the D-term potential of SU(2)X is responsible

for the SU(4) invariant quartic coupling of Hu and H ′u. The SU(2)X symmetry is broken

by the vacuum expectation value (VEV) of a pair of SU(2)X fundamental S and S̄. Except

for S and S̄ all matter fields have their mirror partner.

The right-handed top quark is embedded into Q̄R and allow for a large enough top

yukawa coupling through the superpotential term HQ̄RQ3, where Q3 is the third generation

quark doublet. Ē is necessary in order to cancel the U(1)Y -SU(2)2
X anomaly. The VEV of

– 2 –



J
H
E
P
1
0
(
2
0
1
7
)
1
0
9

SU(2)X SU(2)L SU(2)′L U(1)Y U(1)′Y SU(3)c SU(3)′c

H 2 2 1/2

H′ 2 2 1/2

Q̄R 2 −2/3 3̄

Q̄′R 2 −2/3 3̄

S 2

S̄ 2

Ē 2 1

Ē′ 2 1

U 2/3 3

U ′ 2/3 3

E1,2 −1

E′1,2 −1

φu 2 1/2

φ′u 2

φd1,2,3 2 −1/2

φ′d1,2,3 2 −1/2

Q1,2,3 2 1/6 3

ū1,2 −2/3 3̄

ē1,2,3 1

d̄1,2,3 1/3 3̄

L1,2,3 2 −1/2

Q′1,2,3 2 1/6 3

ū′1,2 −2/3 3̄

ē′1,2,3 1

d̄′1,2,3 1/3 3̄

L′1,2,3 2 −1/2

Table 1. The matter content of the model.

φu is responsible for the masses of the up and charm quarks. Q1,2,3, ū1,2, ē1,2,3, d̄1,2,3 and

L1,2,3 are usual MSSM fields. To cancel the gauge anomaly of SU(3)2
c-U(1)Y and U(1)3

Y

originating from the extra up-type right handed quark in Q̄R and two extra right-handed

leptons in Ē, we introduce U and E1,2. There are three up-type Higgses in H and φu, so

we need to introduce three down-type Higgsses φd1,2,3. Their VEVs are responsible for the

masses of down-type quarks and charged leptons.

– 3 –
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2.1 SU(2)X symmetry breaking

We introduce a singlet chiral field Z and the superpotential coupling

W = κZ(SS̄ −M2). (2.1)

We assume that the soft masses of S and S̄ are the same,

Vsoft = m2
S(|S|2 + |S̄|2). (2.2)

Otherwise, the magnitude of the VEVs of S and S̄ are different from each other, and give

large soft masses to the Higgs doublets through the D-term potential. The VEVs of S and

S̄ are given by

〈S〉 =

(
0

vS

)
,
〈
S̄
〉

=

(
vS
0

)
, vS =

√
M2 −m2

S/κ
2. (2.3)

The constraint on the T (ρ) parameter requires that vS & 2.9 TeV in the limit of large tan β

and neglecting the effect of mixing between the SM and the mirror Higgses, see appendix A

for a derivation of this constraint and more precise formula. The masses of the SU(2)X
gauge bosons are given by

m2
X = g2

Xv
2
S . (2.4)

After integrating out massive particles with a mass as large as vS , the potential of H
and H′ is given by

1

8
g2
X

∑
i=1,2,3

(
H†σiH+H′†σiH′

)2 (
1− ε2

)
, (2.5)

ε2 =
m2
X

2m2
S +m2

X

. (2.6)

In the SUSY limit, m2
S = 0, the D-term potential vanishes. In terms of the model param-

eters M,mS , κ, gX , ε2 is given by

ε2 =
g2
X(m2

S − κ2M2)

g2
X(m2

S − κ2M2)− 2κ2m2
S

. (2.7)

In the limit where κ� gX , ε2 = 1 and hence the D-term potential decouples. In order to

obtain a large D-term potential, it is preferable that κ is as large gX .

To estimate the maximal possible value of κ, we solve the renormalization group equa-

tion of gX and κ,

d

dlnµ
gX =

g3
X

16π2

1 + 21
16π2 g

2
X −

1
8π2κ

2

1− g2X
4π2

, (2.8)

d

dlnµ
κ =

κ

16π2
(4κ2 − 3g2

X), (2.9)

– 4 –
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Figure 1. Running of gX and κ from a high energy scale M∗ down to lower energy scales.

from a high energy scale M∗ towards low energy scales, with a boundary condition at M∗
of gX = κ ' 2π. M∗ can be identified with the Landau pole scale. The running of gX and

κ is shown in figure 1, which shows that κ ' gX much below M∗. We obtain the same

conclusion as long as κ(M∗)
>∼ 1. For κ ' gX , ε2 is

ε2 '
g2
XM

2 −m2
S

g2
XM

2 +m2
S

. (2.10)

We may obtain a sufficiently small ε2, say ε2<∼ 0.2, for m2
S
>∼ 0.6g2

XM
2.

Notice also that for ε2 < 1 there is a threshold correction to the soft Higgs mass which

is proportional to a new gauge bosons mass squared:

(
δm2

Hu

)
X

= 3
g2
X

64π2
m2
X ln

(
ε−2
)
, (2.11)

which may be a source of tuning of the EW scale. The same threshold correction is present

also for the right-handed stop soft mass squared m2
U3

.

2.2 SU(4) invariant quartic coupling and µ terms

We give masses to H = (H1, H2)T and φu by pairing them with φd,1,2,3 through the super-

potential terms,

W = λ1φd,1HS + λ2φd,2HS̄ +mφuφd,3 . (2.12)

The pairs (H1, φd,1), (H2, φd,2) and (φu, φd,3) obtain masses of λ1vS , λ2vS and m, re-

spectively. We assume that λ2vS ,m
>∼ 1 TeV and neglect (H2, φd,2) and (φu, φd,3) for the

dynamics of the electroweak symmetry breaking. We identify H1 and φd,1 with Hu and Hd

in the Higgs sector of the standard SUSY model. The µ parameter is given by µ = λ1vS .

The SU(4) invariant quartic coupling of (Hu, H
′
u) is given by

V =
g2
X

8
(1− ε2)(|Hu|2 + |H ′u|2)2. (2.13)

– 5 –
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As we will see, the VEV of φu is responsible for the masses of the up and charm quarks,

and the neutrinos. To give a VEV to φu, we introduce a coupling

W = δmφuφd,1. (2.14)

Through the F term potential of φd,1, φu obtains a tadpole term after Hu obtains its VEV,

which induces a non-zero VEV of φu.

Through the coupling λ2(> λ1), m2
Hu

receive a quantum correction from m2
S ,

∆m2
Hu
' − λ2

2

8π2
m2
SL = −(600 GeV)2

(
λ2

0.3

)2 m2
S

(6 TeV)2

L

ln104
, (2.15)

where L denotes a log-enhancement through an RGE. As long as λ2
<∼ 0.4, this contribu-

tion is always smaller than that from stops and/or the threshold correction from X, and

hence we neglect it. Note, however, that even larger values of λ2 may be possible without

introducing tuning if the mediation scale of SUSY breaking is relatively low and/or m2
S

runs to smaller values at higher energies.

Note that the Z2 symmetry S ↔ S̄ is explicitly broken by the above superpotential

couplings. Even if we assume the Z2 symmetry of the soft masses of S and S̄, we expect a

quantum correction to a mass difference of them,

∆m2
S ≡ m2

S −m2
S̄ '

λ2
2

8π2
m2
SL. (2.16)

This leads a asymmetric VEV of S and S̄, which give m2
Hu

through the D-term potential,

mH2
u
' −ε

2

2
∆m2

S , (2.17)

which is always smaller than the direct one-loop quantum correction in eq. (2.15).

It is also possible to maintain the Z2 symmetry. Instead of the coupling in eqs. (2.12)

and (2.14), we introduce

W = H(λ1φd,1 + λ3φd,3)(S + S̄) + λ2Hφd,2(S − S̄) + φu(m1φd,1 +m3φd,3) . (2.18)

Here we have assumed that φd,2 is odd under the Z2 symmetry. After S and S̄ obtain their

VEVs, the mass terms become

W = vS(λ1φd,1 + λ3φd,3)(H1−H2) + λ2vSφd,2(H1 +H2) + φu(m1φd,1 +m3φd,3). (2.19)

We assume that λ2vS ,mi
>∼ 1 TeV. Then (H1 +H2)/

√
2 and φu obtain a large mass paired

with φd,2 and a linear combination of φd,1 and φd,3, respectively, and are irrelevant for the

dynamics of the electroweak symmetry breaking. Hu ≡ (H1 −H2)/
√

2 obtains a mass of

O(λ2,3vS) paired with another linear combination of φd,1 and φd,3 which we call Hd.

– 6 –
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2.3 Masses of matter particles

We first consider a case where the Z2 symmetry S ↔ S̄ is explicitly broken. A large enough

top yukawa coupling is obtained by the superpotential

W = ytHQ̄RQ3 → yt
(
H2Q̄R,1 −H1Q̄R,2

)
Q3, (2.20)

where Q̄R = (Q̄R,1, Q̄R,2)T . We give a large mass to Q̄R,1 by introducing a coupling

W = yQ̄RUS, (2.21)

and identify Q̄R,2 with a right-handed top quark ū3.

The yukawa couplings of the up and charm quarks originates from the couplings

with φu,

W = yu,ijφuQiūj . (2.22)

The left-handed neutrino masses are obtained in a similar manner once right-handed neu-

trinos are introduced. The yukawa couplings of the down-type quarks and the charged

leptons is given by couplings with φd,i,

W = yd,ijkφd,iQj d̄k + ye,ijkφd,iLj ēk. (2.23)

The extra SU(2)X charged particle Ē obtains its mass paired with E1,2 through the

SU(2)X symmetry breaking,

W = Ē(yE,1E1 + yE,2E2)S + Ē(ȳE,1E1 + ȳE,2E2)S̄. (2.24)

Next we consider a case where the Z2 symmetry is maintained. The top yukawa

coupling is obtained by the superpotential

W = ytHQ̄RQ3 → ytHu
1√
2

(
Q̄R,1 + Q̄R,2

)
Q3. (2.25)

One linear combination of Q̄R,1 and Q̄R,2 obtains a Dirac mass term paired with U ,

W = yQ̄RU(S + S̄)→ yvS
1√
2

(Q̄R,1 − Q̄R,2)U. (2.26)

We identify the massless combination (Q̄R,1 + Q̄R,2)/
√

2 ≡ ū3 as a right-handed top

quark. The extra SU(2)X charged particle Ē obtains its mass paired with E1,2 through the

coupling,

W = Ē(yE,1E1 + yE,2E2)S + Ē(yE,1E1 − yE,2E2)S̄. (2.27)

Here we assume that E2 is odd under the Z2 symmetry S ↔ S̄, so that all particles in Ē

and E1,2 obtains their masses.

So far we have assumed that a linear combination of Q̄R,1 and Q̄R,2 obtains a large mass

paired with U . It is also possible to identify the linear combination with the right-handed

charm quark. In such a model U and ū2 are not necessary. The mass of the right-handed

scharm is predicted to be as large as that of the right-handed stop. This choice is beneficial

for a high mediation scale, as it makes the SU(3)c and U(1)Y coupling constants relatively

smaller, reducing the fine-tuning from the gluino and the bino.

– 7 –
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3 Fine-tuning of the electroweak scale

Let us now discuss fine-tuning of the EW scale in the model. We quantify the degree of

fine-tuning by introducing the measure [35],

∆v ≡ ∆f ×∆v/f , (3.1)

where

∆v/f =
1

2

(
f2

v2
− 2

)
, (3.2)

∆f = maxi

(
| ∂lnf2

∂lnxi(Λ)
|, 1
)
. (3.3)

Here f ≡
√
v2 + v′2 is the decay constant of the spontaneous SU(4) breaking. ∆v/f mea-

sures the fine-tuning to obtain v < f via explicit soft Z2 symmetry breaking. ∆f measures

the fine-tuning to obtain the scale f from the soft SUSY breaking which is analogous to

the fine-tuning to obtain the electroweak scale from the soft SUSY breaking in the MSSM.

xi(Λ) are the parameters of the theory evaluated at the mediation scale of the SUSY break-

ing Λ. We include the important seven parameters, m2
Hu

, m2
Q3

, m2
ū3 , M2

1 , M2
2 , M2

3 and

µ2. To evaluate ∆f we solve the renormalization group equations (RGEs) of parameters

between mstop and Λ. We assume that the right-handed charm quark is also embedded

in Q̄R. Between mstop and mX we solve MSSM RGEs at the one-loop level appropriately

modifying the beta function of m2
Q3

. At a scale mX we perform matching by including the

threshold correction (2.11) to m2
Hu

and m2
U3

. Above mX we solve the RGEs (that include

the effects of non-MSSM states) at least at the one-loop level. The RGEs of the gauge

couplings are solved at the two-loop level, but set, for simplicity, κ = 0.2 The yukawa

couplings other than the top yukawa are neglected.

As clearly seen from eqs. (3.1)–(3.3), for a given value of f there is a lower bound on

∆v of ∆v/f . f/v is constrained by the Higgs coupling measurements [38] to be at least

2.3 [39]. The latter value has been obtained neglecting invisible decays of the Higgs to

mirror particles, which are generically non-negligible, so in our numerical analysis we use

less extremal value of f = 3v. Nevertheless, the tuning is quite independent of this choice

(unless f is so large that ∆v/f determines ∆v).

In figure 2 we present contours of ∆v assuming low and high mediation scales of SUSY

breaking Λ.3 Here and hereafter, the stop mass mstop and the gluino mass M3 refer to

the values at the TeV scale. For Λ = 100mstop tuning at the level of 10% can be obtained

for the stop masses as large as 3 TeV, as seen from the upper left panel. An important

constraint on the parameter space is provided by the Higgs mass measurement [40]. In

order to assess the impact of this constraint we compute the Higgs mass following closely

the procedure described in ref. [37]. The blue bands show the parameter region with

2Non-zero κ slightly slows down the running of gX but the impact on ∆v and the scale of the Landau

pole is negligible.
3In the figure we shade the parameter region where the Landau pole scale of the gauge coupling gX

is above Λ. It is also possible that the SUSY breaking is mediated above the Landau pole scale, but we

cannot calculate the fine-tuning measure unless we specify the description of the model above the Landau

pole scale.

– 8 –
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Figure 2. Fine-tuning (red contours) in the model for f = 3v, µ = M1 = M2 = 500 GeV,

mA = 1 TeV and the soft gluino mass term M3 = 2 TeV assuming the mediation scale Λ = 100mstop

(upper panels) and Λ = 1016 GeV (lower panels). In the left panels, the orange contours depict

the value of the SU(4) preserving quartic coupling and in the green regions the Landau pole of the

SU(2)X gauge coupling constant is below Λ. In the upper (lower) left panels, tan β = 2.5 (3) so

that the correct Higgs mass mh = 125 ± 3 GeV (the blue region) is obtained for stop masses close

to 2 TeV for the most interesting range of gX . In the right panels, the fine-tuning is shown in the

plane mstop-tanβ for some fixed values of gX . mX is chosen such that the constraint from EW

precision measurements is saturated — see appendix for details.

mh = 125±3 GeV, where the error is a theoretical one. It can be seen from the upper right

panel of figure 2 that this constraint prefers rather light stop unless tan β is small enough.

Since we are most interested in stop masses that easily avoid current or even potential

future LHC constraint we set for the low scale mediation case tan β = 2.5 which implies

the stop masses in the range between about 1.5 and 3 TeV. This range narrows to between
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1.7 and 2 TeV if one demands tuning better than 10%. Interestingly, tuning is minimised

for intermediate values of the stop masses which is a consequence of some cancellation

between the threshold correction from X and corrections from stops and gluino to m2
Hu

. In

this region the value of |m2
Hu
| at the mediation scale is somewhat suppressed. For lighter

stops (which can be compatible with the Higgs mass constraint for larger tan β) the tuning

is dominated by the threshold correction which implies tuning at the level of few percent.

It should be noted that fine-tuning of the EW scale is minimized at some intermediate

value of gX of about 1.5–2 even though perturbativity constraint allows for gX as large

as about 2.5. This is because for appropriately large gX the tuning is dominated by the

threshold correction to m2
Hu

from the new gauge bosons. Since the latter must be rather

heavy for large gX due to EW precision constraints, the threshold correction dominates

for gX & 2 and the tuning gets worse with increasing gX in spite of larger SU(4) invariant

coupling. In fact, for very large value of gX there is essentially no tuning of the EW scale

from stops and gluino but the overall tuning is at the level of few percent. In the region

of large gX , where the threshold correction dominates the fine-tuning, larger values of ε

lead to smaller tuning. On the other hand, for smaller gX , when the threshold correction

is subdominant, it is preferred to have smaller ε to suppress corrections from stops and

gluino by larger SU(4) invariant coupling.

It is interesting to compare the fine-tuning of the present model to that in the model

where an SU(4) invariant coupling originates from a non-decoupling D-term of U(1)X gauge

symmetry proposed in ref. [37]. For the stop mass below about 1 TeV, the U(1)X is less

tuned with tuning even better than 20%. This is because the threshold correction from the

X gauge bosons in the U(1)X case is three times smaller than in the case of SU(2)X . As

the stop mass increases the tuning in the U(1)X model gets worse and already for 2 TeV

stops the tuning in the SU(2)X model becomes better than in the U(1)X model due to

larger SU(4) invariant coupling which suppresses the correction from stops.

The biggest advantage of the SU(2)X model is that RGE running of gX is relatively

slow so the Landau pole scale, for given gX , is much higher than in the U(1)X model.

For example in the case of Λ = 1016 GeV presented in the lower panels of figure 2, values

of gX up to about 1.2 are possible without the Landau pole below Λ. In the previously

proposed SUSY Twin Higgs models it is was not possible to keep perturbativity up to such

high scale. We see from figure 2 that for Λ = 1016 GeV the fine-tuning better than few %

can be obtained for the stop masses as large as 2 TeV. This is obviously worse than in

the low-scale mediation case discussed before but for high-scale mediation there are more

possible mechanisms of the mediation of the SUSY breaking. The fine-tuning is also much

better than in the MSSM with high-scale mediation. This is due to suppression of the

corrections from stops and gluino (which dominates tuning for high mediation scales) by

the SU(4) invariant coupling but also because a large value of gX efficiently drives the

top yukawa coupling to smaller values at higher scales. Dependence of fine-tuning on the

mediation scale for 2 TeV stops is presented in figure 3. We see that moderate tuning

of few percent can be obtained for high mediation scales. For high mediation scales the

tuning is dominated by the correction from the gluino so the tuning crucially depends

on the gluino mass limits. It was recently emphasised in ref. [6] that one should convert
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Figure 3. The same as in figure 2 but in the plane Λ-gX for mstop = 2 TeV, tan β = 3 and

M3 = 2 TeV (left panel) or 2.5 TeV (right panel). For the chosen values of mstop and tanβ, the

Higgs mass is in agreement with the measured value within theoretical uncertainties in the most

of parameter space. For gX & 1.5 the Higgs mass is slightly too big which can be compensated by

reducing tan β by about 10 % which would have negligible impact on fine-tuning.

running soft masses to pole masses when assessing the impact of experimental constraints

on naturalness of SUSY models. It was shown that the loop corrections [41] from 2 TeV

squarks increase the gluino pole mass by 10% as compared to the soft mass. For heavier

1st/2nd generation of squarks, as experimentally preferred, the correction may be much

larger e.g. 20% for 10 TeV squarks. In the left panel of figure 3 we fix the soft gluino mass

to 2 TeV which easily satisfies the LHC constraints even for moderate loop corrections from

squarks [42, 43]. In such a case, 5% tuning is possible with the mediation scale, being below

the Landau pole scale, as high as O(1012) GeV. For M3 = 2.5 TeV, presented in the right

panel, for which the gluino is definitely outside of the LHC reach [44], mediation scale of

order O(1010) GeV can still allow for better than 5% tuning. Notice also a sharp increase

in tuning when the mediation scale approaches the Planck scale. This originates from the

fact that U(1)Y gauge coupling constant runs rather fast due to many new states carrying

hypercharge and eventually enters non-perturbative regime around the Planck scale. In

consequence, bino strongly dominates fine-tuning when the mediation scale is close to the

Landau pole for U(1)Y .

The fine-tuning for high mediation scales is even better if the gluino obtains its mass

paired with an adjoint chiral superfield by a supersoft operator, due to the absence of the

log-enhanced correction to m2
Hu

[45]. The soft stop mass and the higgs mass are dominantly

generated by the threshold correction around the gluino mass,

m2
stop '

1

16
M2

3 , (3.4)

m2
Hu
' 3yt(M3)2

4π2
mstopln

M3

mstop
. (3.5)
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Figure 4. The same as in the left panel of figure 3 but with a Dirac gluino with a soft mass

M3 = 8 TeV and M1 = M2 = 200 GeV.

In non-Twin models the fine-tuning may be at a few % level even if the stop mass is as large

as 2 TeV, which is further improved by the Twin-Higgs mechanism. The contour of ∆v

assuming the Dirac gluino is shown in figure 4. For the stop mass of 2 TeV, O(10)% tuning

is possible even if the mediation scale is as high as 1016 GeV. Note that in Dirac gluino

models the large log enhancement of the quantum correction to the Higgs mass squared

is already absent. Thus the improvement of the fine-tuning by the Twin higgs mechanism

simply originates from a large SU(4) invariant coupling. For gX = 1–1.5, the improvement

is by a factor of 2–4.

In some UV completions of the Dirac gluino, the fine-tuning may be worse and at the

O(1)% level [46]. For example in gauge mediated models, a tachyonic soft mass term of the

adjoint chiral superfield larger than the Dirac gluino mass is often generated. See ref. [47]

for a pedagogical discussion. To prevent the instability of the adjoint field one needs to

cancel the tachyonic mass by additional large soft mass or a supersymmetric mass of the

adjoint, which leads to fine-tuning. See ref. [48] for a gauge mediated model free from this

problem. In gravity mediated model the tachyonic mass is not necessarily larger than the

Dirac gluino mass. Our D-term model, together with the Dirac gluino, realizes the natural

SUSY even for the gravity mediation.

The wino and the bino masses are also bounded from above by naturalness. The

constraint is stronger than that in the MSSM as we add extra SU(2)L and/or U(1)Y
charged fields which makes the corresponding gauge couplings and gaugino masses growing

faster with the renormalization scale. Fine-tuning from bino and wino may be very large

especially for high mediation scales. In the left panel of figure 5 we fix Λ = 1017 GeV

and present contours of fine-tuning in the plane M1 −M2. We see that bino as light as

700 GeV induces tuning at the level of 1 % for this mediation scale. The tuning from wino

is slightly smaller but still 1 TeV wino results in about 1 % tuning. From the comparison

– 12 –
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Figure 5. Fine-tuning in the plane M1 −M2 with a Dirac gluino for Λ = 1017 GeV and maximal

value of the SU(2)X gauge coupling constant, gmax
X , that do not induce the Landau pole below

the mediation scale (left panel). In the right panel, fine-tuning in the plane Λ −M2 is shown for

M1 = 100 GeV and gX = min(1.5, gmax
X ). The remaining parameters are the same as in figure 4.

of figures 4 and 5 we see that in order not to increase tuning by more than a factor of two,

bino (wino) must be lighter than about 400 (600) GeV. Thus, one generally expects all

neutralinos to be light and the LSP to be a mixture of bino, wino and higgsino. Assuming

majorana gluino, the impact of wino and bino on the tuning is less pronounce but in order

not to increase tuning by more than a factor of two their masses are still expected to be

below about 1 TeV, cf. figures 3 and 5. For smaller mediation scales the tuning from bino

and wino is milder. The tuning from bino is subdominant unless Λ & 1016 GeV. In the

right panel of figure 5 we present tuning from wino as a function of the mediation scale.

We see that even for small mediation scale wino mass should generally be below 1 TeV in

order not to dominate tuning. The bounds on the masses is avoided if the wino and the

bino also obtain Dirac masses. Interestingly, with an additional SU(2)L adjoint paired with

wino, the SU(2)L gauge coupling constant also blows up around the Planck scale.

In the above analysis we have ignored the contribution to the RGE running of m2
Hu

proportional to the SU(2)X gauge coupling constant. As long as the SU(2)X gaugino

mass is suppressed, one-loop contributions are negligible. At the two loop level, there is a

contribution,

d

dlnµ
m2
Hu
⊃

3g4
X

256π4

∑
i

m2
i , (3.6)

where m2
i is a soft mass squared of a SU(2)X fundamental. Although this is a two-loop

effect, the largeness of m2
S required to obtain a large non-decoupling SU(4) invariant quartic

and the largeness of gX around the Landau pole scale can make this contribution non-

negligible. In the left panel of figure 6, we show the fine-tuning including this two-loop effect
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Figure 6. The same as in the left panel of figure 3 but including the effect of m2
S under the

assumption that it is constant during the RGE flow (left panel) or assuming that m2
S = 0 at the

mediation scale and large value of m2
S at low energy corresponding to ε2 = 0.1 is obtained due to

RG contribution from the soft mass m2
Z for κ = 0.3 (right panel).

to m2
Hu

, with m2
S fixed at the value determined by eq. (2.6), while ignoring contribution

from other SU(2)X charged fields. The fine-tuning gets worse than the case ignoring the

two-loop effect, especially when the mediation scale is close to the Landau pole scale, while

it remains the same if the mediation scale is much smaller than the Landau pole scale. We

note, however, that the two-loop effect strongly depends on the boundary condition of soft

masses at the mediation scale and might be much smaller. For example, if m2
S = −m2

Ē
at

the boundary, the two-loop effect is suppressed. This special boundary condition should

be explained by a UV completion of our model. It is also possible that m2
S at the UV

boundary is much smaller than around the mX scale, and is generated through the RG

running. Actually couplings with the fields Z and/or E1,2 can generate a non-zero and

positive m2
S , if the soft masses of them are negative. For example, in the right panel of

figure 6 we show tuning under the assumption that m2
S vanishes at the mediation scale and

gets renormalized to appropriately large value determined by eq. (2.6) at the EW scale via

the interaction (2.1) (by suitable choice of the soft mass for Z) with κ = 0.3 at the UV

boundary. In this case the impact of m2
S on tuning is rather small unless the mediation

scale is very close to the Landau pole scale.

Even though naturalness does not require sparticles to be within discovery reach of the

LHC (perhaps except for wino if the mediation scale is high enough) it does require that the

twin Higgs boson is relatively light. The mass of the twin Higgs boson is well approximated

by 2
√
λf with λ being the SU(4) invariant coupling. Both λ and f are constrained from

above by naturalness. For example, demanding better than 10% tuning f must be below

about 4.5. This upper bound on f is quite generic for Twin Higgs models unless hard Z2

breaking is non-negligible. The upper bound on λ is specific for this model and is set by
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the requirement of not too large threshold correction from X gauge bosons. We find that

better than 10% tuning requires λ . 0.5 which, together with the upper bound on f , leads

to the upper bound on the twin Higgs boson mass of about 1 TeV. The twin Higgs tends

to be lighter for a larger Landau pole scale. For recent studies of the phenomenology of

the twin Higgs boson we refer the reader to refs. [36, 39]. It is also noteworthy that in this

model MSSM-like Higgs bosons and their mirror counterparts are not required to be light

by naturalness because Hd is not charged under SU(2)X .

4 Summary

We proposed a new SUSY Twin Higgs model in which an SU(4) invariant quartic term

originates from a D-term potential of a new SU(2)X gauge symmetry. The choice of the

non-abelian gauge symmetry, together with a minimal number of flavors charged under

SU(2)X , makes the running of the new gauge coupling constant rather slow allowing for a

large SU(4) invariant quartic term without generating a low-scale Landau pole. The Twin

Higgs mechanism, together with the negative contribution from the new gauge coupling to

the RG running of the top yukawa coupling, allows for tuning of the EW scale better than

10% for high mediation scales up to O(109) GeV even for sparticle spectra that may be

outside of the ultimate LHC reach. If the gluino obtains a Dirac mass term, tuning of 10%

is possible even if the mediation scale is around the Planck scale. The model may be tested

at the LHC by searching for a twin Higgs boson whose mass is bounded from above by

naturalness and is anti-correlated with the Landau Pole scale. In parts of parameter space

with tuning better than 10% the twin Higgs boson is expected to be lighter than about

1 TeV. All electroweakinos are expected to be rather light, with masses in the sub-TeV

region, especially if the mediation scale of SUSY breaking is high.
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A Electroweak precision measurements

We use the so-called S, T, U parametrization [50] to constrain the parameter space of our

model. We follow the method presented in [51], where the observables shown in table 2 are

used to constrain S, T, U . We take U = 0 and show the constraint on (S, T ) in figure 7.

The Higgs multiplet H is charged under SU(2)X . After the electroweak symmetry

breaking scale, Z boson mixes with the SU(2)X gauge bosons. The mixing breaks the
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observables value reference

α−1 137.035999139(31) [52]

GF (GeV−2) 1.1663787(6)× 10−5 [52]

mZ (GeV) 91.1876(21) [53]

∆αlep(m2
Z) 0.03150 [54]

∆αhad(m2
Z) 0.02764(13) [53]

mW (GeV) 80.385(15) [53]

mt (GeV) 173.3(8) [55]

mh (GeV) 125 [40]

s̄2
` 0.23153(16) [56]

ΓZ→`+`− (MeV) 83.984(86) [53]

αs(m
2
Z) 0.1181(11) [53]

Table 2. Values of observable use to constraint the STU parameters.

-0.2 -0.1 0.0 0.1 0.2

-0.1

0.0

0.1

0.2

S

T

68% CL

95% CL

Figure 7. The constraint on the S,T parameters.

custodial symmetry and we expect a severe constraint from the electroweak precision mea-

surement. After integrating out the SU(2)X gauge bosons, we obtain the effective dimension

6 operator,

Leff =
g2
X

8m2
X

(
H†uDµHu − (DµHu)†Hu

)2
. (A.1)

This generates a non-zero T parameter,

T =
1

2α

c2
W

g2
2

g2
Xm

2
Z

m2
X

sin2 β . (A.2)
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The dependence on tan β originates from subdominant Hd component of the Higgs. S

and U parameters are negligibly small. Comparing this result with figure 7, we obtain the

constraint,

mX/gX > 4.1 TeV sin2 β. (A.3)

The mixing between the SM-like Higgs and the mirror Higgs also contributes to S and

T parameters,

S =
1

12π
s2
γ ln

m2
h′

m2
h

, (A.4)

T = − 3

16πc2
w

s2
γ ln

m2
h′

m2
h

. (A.5)

where γ is the mixing angle between the SM Higgs and the mirror Higgs. Note that the

sign of the T parameter is negative, and hence this contribution relaxes the constraint on

the SU(2)X symmetry breaking scale. In section 3, we use the constraint including the

Higgs mixing to determine the magnitude of the threshold correction around the SU(2)X
symmetry breaking scale.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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