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Abstract—As part of a restoration project designed to enhance
Chinook salmon populations in the lower Yuba River, we sought
to characterize river temperatures at micro-habitats scales rel-
evant to juveniles. Given that temperatures vary more across
the channel than they do longitudinally, temperature had to be
assayed both along the length of a study reach as well as across
the channel. These temperatures needed to be measured at least
hourly in order to capture the totality of the diel fluctuations.
It was necessary to sample for the full duration of juvenile
residence in the lower Yuba River – a six-month period over the
winter. Though it was desirable to design a system that could
sample for at least a year to capture the totality of seasonal
fluctuations. In this paper, we present the design, implementation
and deployment of a wireless sensor network that was installed
to monitor temperature data on the Lower Yuba River. The mesh
network was implemented using nodes that contained a MSP430
chipset with a radio operating at 433 MHz. We describe the
network architecture which included a network storage function
to address intermittent link failures. We describe the event-based
software architecture of the mesh network mode specifically
in relation to energy optimization. We also give details of the
deployment and provide measurement data.

Index Terms—Monitor River-Temperature, Wireless Sensor
Network, Battery Power Optimization, Network Storage, Times-
tamp Alignment

I. INTRODUCTION

River managers and experts working on the Accord Man-
agement Team for the lower Yuba River in California’s Central
Valley sought to enhance Chinook salmon populations in 2014.
They targeted the juvenile life-stage as particularly suitable for
restoration efforts in the river. Recent work had determined
that salmonids were adapted to the temperatures in their home
rivers [1] [2]. There was hope that restoration work could be
done to adapt the river system to better address the energetic
needs of juvenile Chinook salmon, which have historically
been abundant on the Yuba River [3].

Anadromous fish, like salmon, swim from oceans into rivers
where they spawn. Their progeny hatch, grow and mature into
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smolts in these rivers, then move downstream and eventually
out into the ocean. Salmonids expend considerable energy
during river life-stages Prior to spawning, they must swim for
miles against currents, generate gametes, and spawn. Then, the
juveniles must hatch, grow in size many orders of magnitude,
avoid predators, eat foods nearly as large as themselves, and
finally smoltify. Yet, these river life-stages occupy only about
a year of their total lifespan. Indeed, most of their time is
spent in the ocean.

Anadromous fish must be adapted to the oceans where they
live, which are relatively homogeneous in temperature. At the
same time, they must retain (and pass on to their progeny)
the ability to expend considerable energy and thrive in rivers
with variable temperatures. In our study system, this is even
more difficult as the fish must first traverse the relatively warm
Feather River before entering the much colder Yuba River.

In addition to the evolutionary energetic impacts of river
temperature – which might be suitably characterized by sea-
sonal temperature data for a basin – we endeavored to place
river temperature into an ecological context by assessing
temperatures in micro-habitats. Micro-habitat river tempera-
tures are complex and dynamic. River temperatures generally
increase moving downstream from headwaters to mouth [4],
and are related-to, but not forced by air-temperatures [5]. Yet,
these trends vary seasonally and daily [6]. Solar warming is a
strong predictor of river temperature [7], and as a result, veg-
etative shading can have intense local effects on micro-habitat
temperature [8]. Finally, flows through sediments, which are
shaded from the sun and are not subject to convective warming
from air can stay relatively constant in temperature over
vast distances [9]. Integrating these various inputs makes
temperature predictions in rivers exceedingly complicated.

Determining river temperatures from models was found to
be feasible, but computationally difficult, particularly at fine-
scales, physics-based models were less effective than were
interpolative models [10] [11]. Further, sensing methodologies
like FLIR [12] and fiber-optic sensing [13] were not feasible in



remote and treacherous environments found on may rivers as
they require continuous maintenance and large power sources.

A. Goals and Objectives

In order to meaningfully sample the temperature expe-
rienced by juvenile salmonids, we needed to sample river
temperatures at least once per hour (we opted for 4/hr) for
a 3 km reach of the multi-threaded lower Yuba River. In order
to capture the full juvenile life-stage, this sampling needed to
span at least six months. Due to the regular winter flooding
that coincides with the juvenile Chinook salmon residency and
renders the river inaccessible, sensors needed to record and
report data remotely. Data-logging temperature sensors were
impractical for this reason. Monitoring needed to be highly-
resolved both in space and time. Specifically, it was required
that the temperature be monitored both longitudinally (along
the river spaced a hundreds of meters apart) and across the
channel (spaced meters apart).

B. Design Considerations

There were many factors that impacted the design of the
sensors and the wireless mesh network. With respect to the
sensors, one important consideration was their ability to sur-
vive diverse and changing flows and river conditions. To that
end, sensors were installed in thick cables, which were tethered
to anchors buried in the riverbed. While sensors were designed
to withstand high flows and velocities, it was infeasible to
design them to survive trees and other large debris carried by
the river during floods.

Multiple environmental factors played in the design of both
the wireless mesh network and the node level architecture.
First, there were no reliable power sources on the river, where
the sensor network was deployed. Consequently, the sensors
and the wireless mesh network nodes needed to be battery-
powered. Second, the geography and topography of the river
and surrounding floodplains constrained the node placement.
Third, the river reach was highly-trafficked by hikers, beavers,
and bears, this required that nodes be small and well hidden.
As a result of these environmental and human factors nodes
were widely spaced and hard to access. First, due to larger
distances between the network nodes, the link quality could
become impaired particularly during heavy downpours and
windy conditions. This required a network layer function to
store data in intermediate nodes until network links were
re-established. Second, once deployed, changing batteries at
many of the nodes was a long and expensive operation. Hence,
it was very important to ensure that the software architecture
of the nodes were optimized to minimize power use.

II. TECHNOLOGY

A. Sensor Technology

We used off-the-shelf temperature sensors: Campbell Scien-
tific CS225-L. These sensors were ideal as they are designed
to be robust to field conditions (containing a steel wire-rope
core and thick rubber jacket). These sensors are also versatile
as they use SDI-12, each sensor is individually addressed, and

are digital, so strings of sensors can be of any length without
issue.

B. Wireless Mesh Network

We opted to connect these off-the-shelf sensors to wireless
mesh network constructed of inexpensive, low-power devices
with radios, capable of maintaining communications over the
necessary ranges (100s of meters). We opted use 433 MHz,
as it strikes a reasonable balance between penetration and
distance, even at low power and with low-cost antennae. In
applications such as ours, ranges of 500m are common. At this
frequency, transmissions can penetrate vegetation, yet reflect
well off of solid surfaces. In a river, the steep embankments
leading up to floodplains and levees can create something of
an echo chamber to enhance transmission ranges.

We chose to use the Wizzimote [14] – an IoT device built
on top of TI CC430F5137 Microcontroller (based upon the
MSP430, and with integrated 433MHz radio) – as the back-
bone of our WSN. As a System-on-Chip (SOC), CC430F5137
provides integrated peripherals for a variety of battery op-
erated wireless applications. The operating modes take into
account three different needs: ultra-low power, speed and
data throughput, and minimization of individual peripheral
current consumption [15]. MSP430-based SOCs are capable
of multiple low-power modes (LPM0: 80uA, LPM2: 6.5uA,
LPM3: 2uA, LPM4: 1uA), which preserve energy by shutting
down respective clocks. MSP430s can later return to active
mode (AM: RX: 15mA, TX: 30mA, depending on transmit
strength) through enabled interrupts in less than 6us [15].
While transitioning between modes, the state of execution is
saved on the stack and is restored; state and memory are also
maintained for data preservation.

III. PROTOCOL AND NETWORK ARCHITECTURE

The network is comprised of three node types (Fig. 1):
1) Sensor Nodes (orange): These units interfaced with

a temperature sensor string, and were connected to
the wireless mesh network. They were the sources of
the temperature data. An Arduino periodically pulls,
formats, and passes data to the Wizzimote through a
serial interface. The Wizzimote transmits the packet to a
relay node in the wireless mesh network. In the deployed
network, there were as many as seven sensor nodes,
each located at the edge of the river, with five sensors
attached, spanning the width of the channel.

2) Relay Nodes (blue): These nodes formed the backbone
of the wireless mesh network. They received data pack-
ets from sensors, then passed them through upstream
relay nodes. Packets were transmitted until they reached
the gateway. They periodically received and transmitted
packets, with the ability to buffer packets during periods
when the forwarding channel was impaired.

3) Gateway Node (maroon): This node was the aggrega-
tion point. The data, received from one or more relays,
was sent from the Wizzimote to a Raspberry Pi over a
serial interface. The Raspberry Pi timestamped the data



Fig. 1. Map of the network deployed in November 2018 through May 2019
on the lower Yuba River. The orange nodes are the sensor nodes, the blue
nodes are the relay nodes, and the maroon node is the gateway node. This
map was generated using Google My Maps.

packets, stored them on a memory card, and uploaded
the data to an off-site server using a cellular connection.
The gateway was solar powered.

A. Medium Access Control

Synchronization between nodes was achieved using an
advertisement-based approach as in [16]. To ensure that two
nodes could synchronize when needed, we set each node’s
sleeping period to be 900 ticks (1 tick was roughly 1 ms)
and the advertisement period to be 1000 ticks. This ensured
that the receiving node woke up during the transmitting
node’s advertisement. During the 1000 ticks, the transmit node
continuously sent packets containing the remaining time of
advertisement (in ms). The data were transmitted immediately
after the advertisement period. The transmitting node had no
knowledge of whether or not a receiver heard the advertise-
ment. The transmitter reattempted this process (in between
sleeping) until the receiving node acknowledged receiving the
data packet.

The use of advertisements to synchronize nodes signifi-
cantly increased the chance of collision at merge points, where
multiple nodes transmitted to one receiving node. As failed
transmissions were repeated, collisions increased the transit
time for a packet to reach the gateway node from a sensor.
To avoid collisions, we implemented cross-listening – listening
on the transmitting channel for other nodes before advertising.
This is similar to the Carrier Sense Multiple Access (CSMA)
used in IEEE 802.11 protocols.

B. Routing and Channel Assignment

To save energy and simplify the installation, the network
used static routing. As the network topology was uncertain
when designed, developing the system with static routing
provided better control over the exact traversal path of the
packets. Static routing was achieved by assigning fixed chan-
nels (frequency bands) between nodes. As there were only a
limited number of channels, channels were reused in links that
were far apart.

Fig. 2. Finite State Machine (FSM) showing the overall organization of the
pseudo-threads and the events that trigger transitions to the different threads.

C. Network Storage

Through testing in the field, we found that weather, distance,
position, direction, obstacles, etc, can all intermittently impair
the link quality. In order to mitigate these impediments, we
implemented a module in the nodes that minimized repeated
re-transmissions while preserving a maximum number of
packets. This was achieved by exponentially backing-off of the
transmitter in times of unsuccessful transmission. In particular,
the base transmission interval of 4 seconds, on unsuccessful
transmissions, was binary exponentially increased to 8 sec-
onds, 16 seconds, 32 seconds, and so on. While the node
slowed its transmissions, received packets were stored until
its queue filled, thereby storing as many packets as possible
in the network. Once the link quality was restored (detected
by nodes via a successfully acknowledged transmission), the
transmission interval was reset to 4 seconds. The details of
this algorithm are beyond the scope of the present paper.

IV. NODE ARCHITECTURE

The Wizzimote library implemented Protothreads, a system
of stack-less threads that provided a blocking context on
top of an event-driven system [17]. Using macros to save
the relative processing state of each function, Protothreads
provided sequential flow of control without using complex
state machines or full multi-threading. The Wizzimote radio
library contained one radio buffer that was shared between
transmitting and receiving. This affected our decision to have
threads scheduled sequentially (transmit after receive), so as
to prevent a conflict over radio resources.

A. Thread Architecture

In each relay node, there were three threads: the manage-
ment thread, the transmit (TX) thread, and the receive (RX)
thread (Figure 2).

1) Management Thread: The management thread initialized
both transmit and receive threads. The main() and management
thread coexist because all KAL processes must exit before the
node could transition into sleep mode, which was achieved
by killing the management thread. The main() function also



controlled two timers. The main timer put the node to inter-
mittent sleep (See ”Energy Efficiency” below) and the built-
in watchdog timer of MSP430, which detected inactivity and
performed a hardware restart if necessary [15].

2) RX Thread: The RX thread was started by the manage-
ment thread, and listened for incoming packets. The receive
thread was instantiated before the transmit thread in order to
maximize queue usage. Even when the forward channel was
broken, the node continued to receive until the queue was full.

3) TX Thread: The TX thread was called after the RX
thread finished its cycle. When the queue was non-empty,the
TX thread advertised and transmitted (backing off exponen-
tially when transmission were unsuccessful). The end of TX
thread returned to the management thread, which triggered the
next sleep, receive, transmit cycle.

B. Energy Efficiency

In order maximize battery-life and minimize in-field main-
tenance, nodes were put to sleep when not transmitting or
receiving. Each relay node was pulled to low power mode
3 (LPM3), which disabled the CPU (MCLK) and the high
frequency clock (SMCLK), leaving only the 32kHz low fre-
quency crystal clock ACLK active [15]. A timer of 900 ticks
was initialized in main() to interrupt and return to active mode.
After closing the radio layer and the serial, the node was put
into low power mode 3 (LPM3) and global interrupts were
enabled. The node woke up when the main timer timed out.
This process was repeated after every cycle of receive and
transmit.

V. DEPLOYMENT AND EVALUATION

A. Power Use

In order to determine the amount of power used by relay
nodes, we conducted an experiment that logged their current
draw. We did this by setting up three nodes: a dummy-sensor
node that generated numerous packets at regular intervals, a
relay which transmitted the data, and a gateway node that
received the data from the relay. We setup the dummy-
sensor node to transmit at a regular interval of 4, 8, 16,
or 32 seconds. The relay node was connected to a 3.600
VDC power source, through a logging bench-top multimeter
capable of 500 samples per second, with 200,000 sample
stoage (yielding 6 min 40 sec of continuous measurement).
We measured voltages both above and below this logging
meter to ensure that burden voltage was not too large, and that
supply voltage to the relay node stayed above 3.500 VDC.
These voltage/burden monitoring multimeters were put into
their high-speed max/min modes, which measured at least once
every 1ms.

Each of the relay node’s states were reflected consistently
in the data [Figs. 3]. Low-power sleep states used 2-3 uA,
active mode use about 5 mA, and receive and transmit modes
used 20-30 mA [Figs. 3]. These data were consistent with the
power-use metrics found in [15].

Fig. 3. Histogram of the power used in mA when relay node receives a data
packet every eight seconds. Each of the peaks in this histogram corresponds
to a state for the Wizzimote. The peak around 0 mA corresponds to the low-
power sleep state, 5 mA corresponds to active mode, and the peaks between
20 and 30 mA correspond to transmit and receive modes.

B. Network Storage

To test the efficacy of the network storage algorithm, we
recreated a simple network that simulated link instability and
observed the network recovery and loss. This amounted to a
linear network, in which a sensor node connected to a gateway
node through two relay nodes. The sensor node transmitted
data every 30 seconds and the relay nodes had a packet
queue of size 10 packets. The link between the second relay
and the gateway was shut down for 10, 100, 600, and 1000
seconds, each of these shutdowns was followed by 60 minutes
of potential recovery time. The network recovery time was
defined as the duration from the link failure to the point
where the gateway received its first packet after the network
recovered. There was an idle time period, during which the
network link had recovered, but the transmitting node had not
yet reattempted its transmissions. We consider the link to be
dysfunctional during this idle time period because the network
health was dependent on the overall traversal of packets in the
network rather than the individual link health.

Figure 4 shows that as the link remains down for longer
periods of time, the delays in between transmissions increased
exponentially, and so did the recovery times of each node. The
size of queue also influenced the back-off rate of the network.
When the queues of connected relay filled, the overall recovery
time of the network increased as a accumulation of multiple
relay back-offs.

The rate of packet creation was significantly greater than in
a realistic deployment. This was done to ensure that packet
queues saturated while the link was broken, which in turn
allowed us to test the back-propagation of packet storage.
Once the queues of all available relays filled, the packet loss
increased in proportion to the link down time. In the field
implementation, the packet frequency was much smaller, and
the number of relays was much larger. These two factors
granted the network in the field deployment more storage, over



Fig. 4. Network recovery time in seconds (log scale) as a function of link
failure duration. The mean recovery times are shown as the dashed line and
are respectively 6.36 s, 24.83 s, 415.36 s, and 815.75 s.The median recovery
times are respectively 3 s, 28 s, 331 s, 865.5 s.

a longer period of time, which minimized the probability of
packet loss.

C. Timestamp Alignment

Data were timestamped when they were received by the
gateway node. As a result, the timestamps were recorded
after any network-latency or delays that resulted from low-
network fidelity. When network fidelity was good, the latency
of the network yielded delays on the order of seconds to
minutes, which were below the scale of fluctuations of river
temperatures. But, when network fidelity was lower, or when
data were stored in the network for extended periods of time
due to node-failure, these delays were substantial. As such,
we needed to detect and align incorrectly-time-stamped data
packets. To do this, we first needed to find bad packets.
Data packets were generated every 15 min (+/- 1 min due
to temperature and crystal variation). For each packet of from
a sensor, we found the 10 packets that arrived before and after
that packet. Using the timestamps we computed an expected
timestamp for the packet in question, then averaged these 20
estimates. If the recorded timestamp was within 10 minutes
of that estimate, we kept the timestamp, else we marked it
as bad. This yielded 29,168 packets which were properly
timestamped, and 16,542 that were improperly timestamped.
Once identified, we sought to align the timestamps of these
packets. To this end, we created a window around the bad
packet, and expanded the window (from 10 to 48 hours)
until it contained 15 properly timestamped packets. We then
used these neighboring packets to estimate the timestamp
for the improperly stamped packet. 13,728 of the improperly
timestamped packets had at least 15 neighboring properly
timestamped packets in this window with which to estimate the
correct timestamp. We assessed the quality of these estimates
by considering their range. We kept those estimates which had
a range of less than 30 minutes. Finally, we took the mean
of all estimates and saved it as a new timestamp. Using this
methodology, we aligned the timestamps of 6,395 incorrectly
timestamped packets. The remaining either did not have 15

good timestamps within 48 hours, or the estimates did not fall
into the 30 minute range.

D. Temperature Data

This network persisted from November 2018 through May
2019 – when restoration work on the river rendered the
network impossible to maintain. While this period was shorter
than intended, it did cover the majority of the juvenile life-
stage of the Chinook salmon present in the river. The network
was particularly fruitful as it continued to upload data dur-
ing flood events (Figure 5: vertical red bars). Few (if any)
previous studies have recorded temperatures of large rivers
during major flood events. This is because flood-events are
powerful, and tend to damage, bury, and dislodge installed
data-logging temperature sensors, rendering them (and their
data) unrecoverable. While many of our sensors were damaged
during these large floods, because data were transmitted in
near-real-time, we were able to recover data recorded prior to
their destruction. As we continue to analyze these data, we
anticipate that fluvial temperatures homogenize during flood
events, but hope to find more complex and nuanced dynamics
at play during major floods.

VI. RELATED WORK

Wireless sensor networks (WSNs) have been used in mon-
itoring applications in similar harsh environments such as
early detection of forest fires [18], high resolution spatio-
temporal monitoring in underwater environments [19], and
tracking applications such as animal telemetry [20]. Tech-
niques to optimize energy in wireless sensor networks has
been extensively studied [21]. In [22] a Sparse Topology
and Energy Management (STEM) algorithm was proposed to
efficiently wake up nodes from a deep sleep state without
the need for an ultra low-power radio. It allowed tradeoff
between energy efficiency and the latency that is incurred
to wake up the node. The tradeoff between data fidelity and
energy efficiency has been investigated in [23]. There has also
been a number of studies on energy efficient routing schemes
[24]. In our work we have used an advertisement based node
synchronization method [16]. An alternative approach is a
randomized algorithm based on the birthday paradox which
has been proposed for wireless sensor networks [25]. A
comparative analysis of the two approaches (advertisement-
based and randomized) is beyond the scope of this paper.

VII. CONCLUSIONS

In this paper we have presented a detailed design, imple-
mentation, and deployment of a wireless mesh network to col-
lect river-temperature data at a fine spatial and temporal scale
(Figure 5), which has not been done before. The overarching
goal is use the temperature data along with other data including
anadromous fish habitat and other flow features of the river
to develop models and study the impact of river-temperature
profile on the survival and growth of juvenile anadromous fish
species. In this practice paper, we discussed the challenges
in deploying the mesh network and discussed how network



Fig. 5. Temperature data shown above are cross-channel means: they are the average of the five individual sensors attached to each sensor-node. The vertical
red lines are at midnight on days in which there was a flood of over twice (10,000 cfs) the bankfull flow (5,000 cfs).

storage was implemented to address intermittent link failures
during inclement weather. We also discussed the design of the
relay node and how a pseudo-thread architecture along with
low power mode was leveraged to optimize energy usage.
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