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Abstract

Network Congestion and Performance Management

by

Andrew G. Shewmaker

We increasingly depend on well-behaved networks in the course of every-day activ-

ities for business, community, government, science, and recreation. And with more people

demanding a greater variety of services comes sharp disagreement about which needs are most

important. Unfortunately, today’s technology is inadequate to guarantee the performance of

dynamic and diverse workloads in such a way that we are prevented from hurting each other’s

goals.

No one likes waiting in traffic, whether on a road or on a computer network. Stuttering

progress and slow interactive feedback annoy everyone and cost time and money. A network

should aim to (1) minimize latency, (2) maximize bandwidth, (3) share resources according

to agreements, (4) enable incremental deployment, and (5) minimize administrative overhead.

Many technologies have been developed, but none yet satisfactorily address all five of these

goals. The best performing solutions to date achieve some success in goals 1-3, but they often

downplay the importance of goals 4-5. Solutions almost always require coordinated configura-

tions across many pieces of a network, but they end up being either impractical or suffer poor

performance when even a single piece of a network is not cooperating.

In this dissertation I present an overview of the multilayered problem surrounding

network performance, a transport-level solution called TCP Inigo, and foundations for a clean-

ix



slate queueing discipline solution based on a new combination of recent real-time and economic

scheduling algorithms. TCP Inigo uses independent delay-based algorithms on the sender and

receiver. In emulated experiments with single administrative domains, a situation common in

data centers or a single HPC cluster, TCP Inigo’s fairness, bandwidth, and latency indices are up

to 1.3× better than the best available solution. When deployed in a more complex environment,

such as across administrative domains, TCP Inigo performs up to 42× better.
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“Those who do not understand TCP are destined to reimplement it.”

- Jon Postel

“It’s not a big truck. It’s a series of tubes.”

- from Senator Ted Stevens’ famous explanation of congestion on the Internet
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Part I

Introduction
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The end goal of my research is to produce formal theories and real-world implemen-

tations of flexible, general, and fine-grained performance guarantees on standard commodity

network hardware. Network performance guarantees should be compatible with performance

guarantees made for CPU, disk, and memory resources such that end-to-end Quality of Service

(QoS) can be provided, from a client to a remote resource.

The Resource Allocation and Dispatching (RAD) model, described in § 2.3, provides

an underlying framework that makes end-to-end guarantees possible, and has been previously

been used successfully in the other contexts [19, 89, 90, 91, 92, 122, 124, 125] Systems built

using RAD are able to satisfy performance guarantees without over-provisioning, and can per-

fectly virtualize the performance of resources. This dissertation will apply RAD to network

resources and show how RAD enables automatic identification of unreliable components § 5.2.

End-to-end performance guarantees are a grand challenge in Operating Systems re-

search, if there ever was one. And, before that goal can be reached a fundamental problem

which has plagued computer networks for decades must be solved . . . congestion. Consider

that the Internet, as well as local area networks, have been the subject of intense study by

brilliant researchers for over 30 years and we are still discovering how to better detect packet

loss [166, 165]. Advanced networks with credit-based flow control may block flows due to full

queues in certain scenarios [55, 56, 138], so even if congestion does not cause dropped packets

it can still cause huge variations in delay [139, 140]. And if we lack enough basic control of

our networks to manage their queues without overflowing or blocking, then how can we expect

to satisfy more difficult performance guarantees?

The contributions of this dissertation include the following innovations in congestion
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control. First, a sender-side algorithm inspired by Data Center TCP (DCTCP) but using Round-

trip-times (RTTs) to mimic Explicit Congestion Notification (ECN). Second, a receiver-side

algorithm that similarly mimics ECN using differences in One Way Delay (OWD). I call both

of these algorithms by the name TCP Inigo, after the famous swordsman that could fight with

either hand from The Princess Bride [54]. TCP Inigo’s ambidextrous, delay-based algorithm’s

complement DCTCP’s ECN-based congestion control, with the result that TCP Inigo is able to

minimize congestion even when not every sender, middle-box, and receiver can be modified.

This dissertation also presents enhancements to RAD scheduling algorithms that can

provide a solid foundation for clean slate queue scheduling designs. The RAD model is ex-

tended to include economic benefit, which affects the order in which reservations are admitted

into a system. I describe new policies for performance and power efficiency for use with the

Reduction to UNiprocessor (RUN) algorithm [131]. But more importantly, when RUN is com-

bined with Rate Based Earliest Deadline (RBED) scheduling [19], it can then support efficient

use of dynamic slack on multiple resources with sporadic workloads. Previous versions of RUN

are not work-conserving, and are inappropriate for common use cases.

In addition to the two new congestion control algorithms described above, the im-

plementation of TCP Inigo uncovered subtle implementation issues in existing DCTCP imple-

mentations. When optimized scaled arithmetic is used to calculate DCTCP’s congestion ratio,

it is easy to accidentally preclude the ratio from ever reaching zero (i.e. no congestion). My

bug fix was accepted in to Linux and I helped write the description of the issue in section 4 of

the DCTCP Internet-Draft standard [13]. Another issue I discovered is that DCTCP does not

specify whether or not Slow Start should be exited upon reception of the first ECN echo. This

3



causes an overshoot of the ideal congestion window and cause unnecessarily high RTTs. I have

brought the issue up to the IETF working group, and will continue to work with them to address

it.

The rest of the dissertation is organized as follows: chapter 1 gives context to this

research. It shows how network performance fits into a larger picture of end-to-end performance

management. It also describes congestion and why it is a difficult problem to solve.

Next, chapter 2 reviews many established and proposed techniques that improve per-

formance in controlled environments, such as data centers, where all components (i.e. end-hosts

and middle-boxes) can be modified. However, the effectiveness of those same techniques signif-

icantly degrades in uncontrolled environments when interacting with unmodified components

across network borders. Established systems with multiple owners and long histories, like most

networks, favor incremental evolution over dramatic change because upgrades are costly and

decisions to upgrade are made independently. Even data centers and supercomputers, which are

prime examples of scenarios where new network technologies can be leveraged, must commu-

nicate frequently with external systems, and end-to-end arguments [14, 136] should be consid-

ered.

Part I of the dissertation ends with chapter 3, which describes the strengths and weak-

nesses of different strategies for demonstrating the effectiveness of network research.

Part II begins with a presentation of TCP Inigo in chapter 4, and continues with real-

time and economic-based scheduling algorithmic foundations for a clean slate queueing disci-

pline in chapter 5. Future work is outlined in chapter 6, and the dissertation concludes with

chapter 7.
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Chapter 1

Background

Network performance cannot be studied in isolation. From Figure 1.1 it should be

obvious there needs to be explicit relationships between the network and other resources. Each

hop in the diagram— from permanent storage to server cache, from server cache to network,

throughout the network, and so on and so forth to the user application—needs to match speeds

and feeds. And this dissertation is intended to be read in light of its place in a larger end-to-end

Quality of Service (QoS) project. Traditionally, network QoS involves coarse-grained priority

classes, but UCSC’s project includes the ability to provide performance guarantees to individual

flows.

1.1 Congestion

The most famous study of congestion occurred before the World Wide Web, when

Van Jacobson and others saved the Internet from collapse [70]. It is a wonderful example of

doing the simplest thing that might work. It created a stable foundation for the Internet, and it
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Figure 1.1: Radon is a component of a larger Storage QoS project

turned the Transmission Control Protocol (TCP) into one of the most successful protocols ever

invented. But for all TCP’s success, it leaves much to be desired.

Most modern networks operate on the principle of statistical multiplexing, which is a

scientific way of saying, “Let’s all just go for it when we’re ready because we probably won’t hit

each other.” Smarter network technologies exist, but there are economic advantages to simple

hardware. A real life example of statistical multiplexing occurs regularly on college campuses

when a bicyclist flies through a crosswalk at breakneck speed. In many cases, it does not appear

possible that the cyclist could either properly judge the speed of traffic or avoid a collision if

a vehicle moved into their path. It seems clear that the cyclist is betting with their life that the

crosswalk is usually empty. The story of an Ethernet packet is similar when it is sent through a

switch with overflowing queues.

Now consider a second analogy of how a series of TCP packets, a flow, behave. A

traditional TCP flow is like a delivery train with a blind and deaf engineer. The engineer’s only

method of determining if they should slow down or stop is by feeling collisions. The train has a

long way to go and a deadline to meet, so the engineer keeps increasing speed as a general rule.
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When the train shudders from hitting something, the engineer slows to half the current speed.

Now, we are fortunate that our networks use buffers to temporarily store packets. Out

of a pair of contending packets, one passes through immediately, and the other usually suffers

delay, not destruction. Therefore buffering saves us much grief, but it has a cost and it has

limits. We call it congestion.

Congested networks remain a perennial concern in data centers and the Internet. For

businesses, the long tail of variations in delay can cost money [38], and congestion made worse

by bufferbloat [53] creates pain for every-day users. Network congestion can block flows from

passing through a busy port on a switch, and it can cause performance collapse in a worst case

scenario such as servers simultaneously sending data to the same client (i.e. incast) in a storage

network. Additionally, the network will come under more pressure as the number of users and

the speed of storage increase.

High Performance Computing (HPC) systems often run tightly coupled simulations

that are highly sensitive to delay variability since global progress is only as fast as the slow-

est task. Some practitioners believe that moving to a fine-grained asynchronous programming

model will solve their problems. However, the ability for individual tasks to continue alone with

work is limited, and congestion can degrade performance regardless of programming model.

This effect stems from pushing inadequate scheduling technology to loads higher than it is de-

signed. The X-Stack Program, which researches ways to make scientific computing achieve

Exascale performance says, “Congestion management and flow control mechanisms are of par-

ticular concern at very large scale . . . ” even though HPC programmers are anticipating the

use of fine-grained asynchronous communication to help [20]. Application-level congestion

7



management alone simply is not enough [96].
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Figure 1.2: Network QoS Layers

Providing QoS on networks is complex because several independent resources must

be managed in concert: transmission and reception queues on the communicating hosts and the

transmission queues on the switches. As Figure 1.2 shows, flow is affected by the route it takes,

the bottlenecks on that route, and the manner in which a host sends its data.

Table 1.1 summarizes the scope of the resource management problem for various

topologies of both wired and wireless networks. The simplest case is one in which two hosts
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Table 1.1: Scope of resource management problem for various types of networks.

Network Description Complexity
two linked hosts 2×host port
n chained hosts 2(n−1)×host port
d dimensional P2P fabric 2dn×host port
switched 2×host port+ switch port
hub or wireless 2×host port+ collision domain
wireless P2P fabric dn× (2×host port+ collision domain)

are directly connected to each other, and even then each host must schedule use of its network

interface between competing processes and threads. The resource management problem quickly

increases in difficulty as the topology of a network becomes more complex, but the distinguish-

ing feature of network resource management is its distributed nature. Scheduling decisions

cannot rely on global knowledge without incurring prohibitive communication overhead, mak-

ing uncoordinated transmissions (i.e. statistical multiplexing) generally preferred over other

strategies.

1.2 Types of Networks

Current network technology, no matter how fast or expensive, lacks a compelling

solution to congestion and end-to-end performance guarantees (i.e. QoS). Of course, networks

vary in capability, from the cheap and unreliable to the expensive and robust. TCP Inigo, one

of the primary contributions of this research, is described in chapter 4 and applies to almost any

network, since its techniques do not require special support. Even the fastest, most expensive

networks, found in supercomputers and clusters used for scientific simulation must use TCP at

some point even if they use higher performance protocols internally. Note that this dissertation
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primarily concerns itself with wired networks. Although the ideas concerning delay still apply,

wireless technology brings another set of problems which are out of scope for this research.

The three major classes of storage networks are Network Attached Storage (NAS),

the Storage Area Network (SAN), and the distributed file system. NAS is the most common

and least expensive storage network, where one or more servers individually provide a file

system interface over a standard Ethernet network. More expensive SANs are composed of

storage arrays connected with a high performance network such as Fibre Channel and appear

as a local device to a host. Distributed file systems come in Wide Area Network and Local

Area Network (LAN) variants. Wide area systems serve large numbers of users and operate

over a large variety of technologies. In contrast, local area systems are designed to provide a

high performance parallel file system for a set of well-defined users. In general, all networks

are grown over time even if they were initially designed.

The market is pressuring vendors to unify storage products with converging technolo-

gies that provide reliable, or nearly lossless, transport (e.g. Fibre Channel Over Ethernet and

Converged Enhanced Ethernet). However, the adoption of new standards often takes the better

part of a decade, and it is an uneven process. Priority Flow Control (PFC) was accepted by

industry, but can deadlock. The Quantized Congestion Notification standard alleviated fears

of PFC deadlock, but has rarely been implemented. The much older Explicit Congestion No-

tification (ECN) standard is often unused even though it is supported [82]. So, most Ethernet

network still suffer packet drops.

Figure 1.3 demonstrates congestion in a simple switch model, which is applicable

even if advanced link level flow control features are available. Packets contending for the same
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Figure 1.3: Multiple flows harm each other with congestion in a simple switch model.

destination port are queued. Continuous contention may cause previously isolated streams to

interfere with each other. In the worst case, the queue will overflow and packets will be lost.

Distributed file systems experience a particular case of congestion called incast [81, 121] where

a file spread among many servers is sent in simultaneous bursts to a client, which can overflow

a switch buffer with little or no warning signs.
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Figure 1.4: Time-series plot of a switch buffer with and without congestion
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Figure 1.4 shows the best-case behavior of a switch performing statistical multiplex-

ing on the right and the worst-case behavior on the left, over three periods. Assuming that each

client is using half of the period to transmit, the switch will never exceed four units of buffer

space, and each packet will always be served within the period of its arrival. On the other hand,

in the best case, transmissions from each client interleave perfectly, the switch uses no buffer

space at all, and the latency for individual packets is minimal.

High speed network architectures exist that provide reliable transport using credit-

based flow control and multiple levels of QoS. When flow control is implemented throughout

the network, some of the worst effects of congestion are mitigated (i.e. prevention of packet

drops). However, high speed networks are not immune. They suffer from a form of congestion

called the Parking Lot Problem [55, 56, 160]. Therefore, it is important to supplement flow

control with improved congestion control. Also, their priority-based QoS is only appropriate

for static network flows as opposed to the dynamic flows seen in many environments.

Neither converged enterprise networks nor more exotic high speed networks provide

hard latency or throughput guarantees without significant over-provisioning. This research fo-

cuses on providing flexible, general, and fine-grained performance guarantees on a local area

distributed file system.

1.3 Real-world Considerations

Regardless of whether or not a transport is reliable, there are other real-world con-

siderations. For example, the maximum transmit unit (MTU) and buffer sizes should increase
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with speed of the network, otherwise the number of interrupts the hosts’ CPUs must handle will

exceed its capabilities. While the network adapter may offload some of the protocol processing

overhead from the CPU, but this does not always result in a positive result for all workloads and

it can complicate debugging problems in the network. In addition to the capabilities of hard-

ware, the topology of the network also has implications with regard to making performance

guarantees.

A Network Interface Controller (NIC) affects the performance that can be achieved

and the amount of overhead it imposes on a host computer. A large amount of effort has gone

into interrupt moderation techniques, where one interrupt is delivered for a group of packets in

order to reduce the amount of work required by the CPU. While this can successfully increase

throughput, it can also cause an undesirable increase in latency variation. In Linux, drivers

can be written to conform to either the softnet or the “New API” [135]. NAPI solved several

problems with softnet, including avoiding interrupt livelock [106] and packet re-ordering, by

switching between interrupt driven and polling modes depending on the number of packets

being received. The Linux kernel is continuing to evolve, traditional interrupt handling with

top and bottom halves will likely be replaced by the real-time Linux tree’s threaded interrupt

handlers. Also, significant work has already been merged to allow hardware with multiple

queues to scale its processing over multiple cores.

While small packets can be transferred much faster than large packets, they ineffi-

ciently use system resources. Overall performance can be maximized if the Maximum Trans-

mission Unit (MTU) of the NIC is a multiple of the operating system’s memory page size. This

allows the PCI bus to use its maximum transfer size without requiring an extra transfer to handle
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the last part of a packet.

NIC designers have added the ability to offload various pieces of the work generally

handled by the operating system. A TCP Offload Engine (TOE) implements an entirely separate

TCP stack in hardware. Generic Segmentation Offload (GSO), refers to a NIC with the ability

to take a large buffer and split the data into packets on behalf of the operating system. The com-

plement of GSO is Generic Receive Offload (GRO), which merges received packets. One of the

primary benefits of both GRO and GSO is a reduction of the load on the system bus. When seg-

menting or merging packets the hardware must also support offloading the checksum operation,

so the main CPU also does less work. Furthermore, there are security and performance pitfalls

with any of these advanced hardware features, so many drivers allow them to be disabled. What

may be beneficial on a multi-user system may impede performance on a router or hinder packet

filtering functionality. One of the more useful features from a resource management standpoint

is the availability of hardware generated timestamps for each packet.

Network performance is largely determined by a protocol’s flow control, which man-

ages the rate at which a stream injects data into the network when there is no congestion, and

congestion control, which adapts the rate, burstiness (i.e. dispersion), and timing of packet

transmissions when congestion is detected. TCP/IP is the most widely deployed end-to-end

network protocol, but its congestion control algorithms do not provide performance guarantees.

A TCP sender continuously tries to increase throughput by increasing the window (burst) size

and uses packet loss as a congestion signal to throttle the sender drastically. Even for a single

connection, this results in a sawtooth pattern for throughput over time and a large variance in

packet delays, as a switch’s queue continually overflows and drains. Feng, et al. [28] show that
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the flaws in TCP’s congestion control dramatically worsen as the number of streams scale up in

local area distributed system because the streams tend to respond to congestion in lock step.

Many researchers have sought to improve or replace TCP, but change has proven to

be difficult because TCP actually does a decent job in many situations. TCP is fairly robust, the

Internet community desires new protocols to be friendly with older versions, and it is difficult

to get buy-in for new ideas from a significant portion of the Internet community. The current

default variant used by the Linux kernel is called CUBIC [59, 58] because of the function it

uses to modify its window size. It is intended mostly to enhance behavior on high bandwidth

networks with large delays.

4X Spine
Switch

1X

2X

Leaf
Switch

Client

Client

Leaf
Switch

Client

Client

1X

2X

Leaf
Switch

Server

Server

Leaf
Switch

Server

Server

4X

Figure 1.5: Canonical Fat-tree storage network.

Figure 1.5 depicts a canonical network–a closed, full bisection bandwidth, Fat-Tree [88]

network composed of standard Gigabit Ethernet switches. If the network is segmented into

equal parts, then the links connecting the switches allow all pairs of hosts to communicate at

their full link bandwidth.

Real-world enterprise networks may provide less than full bisection bandwidth or
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redundant routes, but a basic Fat-Tree is a reasonable starting point for congestion and QoS re-

search. For now, it is assumed that the network is tightly controlled and that the only significant

source of packet loss is due to a buffer overflow. After achieving guaranteed performance at

the single switch level, further research must explore the affects of more complex topologies.

A good congestion control algorithm should be able to converge quickly to fair shares of band-

width, and minimize losses and delay variation. With QoS, a good congestion control algorithm

should be able to guarantee up to the bisection bandwidth of a Fat-Tree network.

In summary, scheduling network resources is a difficult theoretical problem because

many resources must be scheduled coherently and centralized control includes too much over-

head to be efficient. Even when the theoretical problem of scheduling resources is not com-

pounded by extraneous administrative and economic factors, network hardware designers can-

not afford to provide separate queues to each flow. Therefore, congestion continues to be a

fundamental problem preventing fine-grained performance guarantees.
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Chapter 2

Previous Work

Before diving into the history of scheduling on network resources, it is important to

remember some of the broader history of scheduling. Because early systems were severely

resource constrained, the first scheduling algorithms focused on maximizing responsiveness

(foreground processing) or minimizing context switching (background processing) using the

simplest, most efficient algorithms possible. Next, schedulers were developed that dynamically

adapted their parameters depending on whether a task was CPU or IO limited. As systems be-

came less resource constrained, schedulers have been asked to meet more specific performance

targets, such as when a multimedia process needs to finish a certain amount of work during each

interval of time.

General systems have most often used the concepts of priorities or shares in order

to meet the performance goals of different processes. However, these approaches can lead

to processes being inappropriately ranked as always more important than others, even though

they are only more important according to one criterion. The Resource Allocation and Dis-
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patching (RAD) model [19], developed by Brandt, et al. more than a decade ago and described

in § 2.3, describes a better model that meets the multidimensional work and time goals common

in modern, dynamic systems.

The direction of the research of this dissertation has been heavily influenced by RAD.

TCP Inigo, described in chapter 4, is an end-to-end protocol which is not based on RAD, but

is intended to solve the problem of congestion so that RAD theory can then be applied. On the

other hand the economic and real-time scheduling theory described in chapter 5, involves the

direct application of RAD to queueing disciplines.

2.1 Network Scheduling

Whenever devices communicate, potentially mismatched speeds or overloaded routes

commonly result in data being queued in buffers. The data in a well behaving buffer drains

between peaks, but the data in a badly behaving buffer persists, taking up space needed to

handle new packets and increasing delay without any benefit to the application [112].

Five general techniques used to encourage good buffering are:

1. dropping packets to implicitly signal senders to slow down

2. explicitly requesting senders to slow down

3. delaying packets to increase interleaving of packets from different sources or match up-

stream speeds to downstream speeds

4. selecting different routes for load-balancing
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5. classifying packets in order to apply combinations of the above to different types of traffic.

These techniques can be applied in hardware, software queues immediately above the

hardware, communication protocols, or in applications.

This section describes how the five general techniques listed above have been applied

to the network, beginning with the bottom layer. Additionally, the section discusses how well

they address the five network design goals first listed in the abstract. The goals are to:

1. minimize latency

2. maximize bandwidth

3. share resources according to agreements

4. enable incremental deployment

5. minimize administrative overhead

There is considerable practical value in being able to improve network performance

while minimizing the effort needed to deploy and maintain the changes. When work done

in hardware must be redone in software layers (i.e. guaranteeing end-to-end delivery across

different networks), or a feature increases the complexity of network configurations, it will

likely find itself in a losing tug-of-war with end-to-end arguments [14, 136]. For instance,

if two workable solutions compete, where one is implemented at end-points and the other is

implemented in middle-boxes, the end-point solution will be more economic and robust in the

face of evolving technology.
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It should be noted that network-layer approaches such as load balancing of routes and

assistance from Software Defined Networking are out of scope for this dissertation. However,

they are complementary to all of the techniques described below.

Link-layer

The link-layer hardware of some networks can limit the growth of buffers while pro-

viding per-hop fairness. Earlier Ethernet switches may support a limited form of link-level

flow control by sending a PAUSE command to transmitting devices to indicate they should

slow down for a specified amount of time. This can help in some situations, but the early flow

control standards were implemented using multicast packets and do not differentiate between

senders. The early standards also ignore Ethernet priorities.

Newer Ethernet standards, collectively known as either Data Center Ethernet or Con-

verged Enhanced Ethernet, include Priority-based Flow Control – addressing the flaws in the

previous Ethernet PAUSE command, Enhanced Transmission Selection – allowing different

priorities to share each others’ spare bandwidth, and Congestion Notification – providing upper

layer protocols such as TCP with information to help them set their transmission rates. Even

with those enhancements, Ethernet will probably not match the performance and reliability of

more advanced technology such as Infiniband or Omnipath.

Infiniband’s credit-based flow control and Ethernet’s Quantized Congestion Notifica-

tion (QCN) [47, 77] are two examples of more advanced link-layer solutions. Infiniband has

seen success in supercomputing, but it still experiences Head-of-Line (HoL) blocking and con-

gestion in the form of the Parking Lot Problem [55, 56, 160] when many flows are treated as
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one during subsequent hops in a network fabric. Reducing or eliminating HoL is being actively

researched [138], and Infiniband does provide hardware-level congestion control. However, an

informal survey of Department of Energy labs indicates that Infiniband’s congestion control is

left disabled due to unstable performance. While Infiniband has been at the forefront of high

speed commodity networks, its advantages have not translated into displacing Ethernet due to

its greater cost and incompatibility with existing infrastructure. With regard to Ethernet’s link-

layer congestion control, the only QCN-enabled hardware the authors of this paper are aware of

comes from Mellanox, and that is likely because they support similar features in their Infiniband

products.

In a personal communication in January 2014 the editor of the QCN standard said,

“. . . The promise of [QCN] congestion control made more palatable the standardization of IEEE

Std 802.1Qbb Priority Flow Control, to which objections were raised on the grounds that it could

cause a deadlock. . . . ”

“Judging by the scarcity of implementations of IEEE Std 802.1Qau, the prin-
ciple benefit obtained from the standard may not have been congestion control,
itself. The promise of congestion control made more palatable the standardization
of IEEE Std 802.1Qbb Priority Flow Control, to which objections were raised on
the grounds that it could cause a deadlock. 802.1Qau lessens the likelihood of
802.1Qbb deadlocks.”

Another standardization effort is the Time-Sensitive Networking (TSN) Task Group

of the IEEE 802.1 Working Group [52]. TSN is intended for audio, video, and time-sensitive

control over small Ethernet networks, sacrificing bandwidth for low latency. TSN uses “Traffic

SPECifications” (TSPEC) reservations (max packet size, peak data rate, max burst size), as

specified by the Stream Reservation Protocol (SRP).
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The admission control done using the SRP must account for the worst case possibility

of every source’s packets arriving at a switch port at the same time. So, if the latency require-

ments dictate that a buffer can only be 8 packets deep, then there can only be 8 sources. A limit

of 64 sources would not be too bad since even large switches are made up of modules that limit

the possible contention for any given port to at most 64:1. Maybe that ratio will increase.

TSN requires packet pacing, and the best pacer in Linux right now is the Fair Queue

qdisc. However, it does not appear to be the same as the one referred to in the TSN standard.

The TSN bridge traffic shaper is only required to pace all flows as an aggregate, and not on a

per-flow basis. In contrast, the FQ qdisc is designed to interleave the packets from different

flows to achieve efficient pacing.

Traffic Shaping and Classification

Traffic shaping and classification may be implemented in hardware or in the software

layer immediately above it. Traffic shaping throttles bandwidth or rate-limits transmissions by

delaying packets, and classification enables various techniques, such as shaping, to selectively

affect applications.

Le Boudec’s and Thiran’s Network Calculus [86] thoroughly describes the behavior

of traffic shaping using Min-plus algebra to reason about the equations representing arrival and

service curves. The analysis reveals that for feasible flows, a switch’s buffer requirement is the

sum of the burst sizes that can arrive simultaneously for a single destination port, regardless of

any other parameter. They prove that bursts from peer links must be paid for only once, since

traffic becomes serialized at the first bottleneck. Of course, the next hop in a fabric may include
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more peer links with flows destined for the same transmit port.

Loeser and Haertig used simple cooperative traffic shaping [95] to limit the size of

the transmit queues used in an Ethernet switch in order to provide real-time guarantees. With

respect to a reservation, the equations used to calculate the size of its buffer is dependent on

the burstiness caused by the shaping interval. The maximum delay of a packet is the sum

of all buffers divided by the speed of the switch plus a switch-specific multiplexing constant.

This bound assumes that the switch uses one big First In First Out (FIFO) queue and does not

keep track of a separate queue for each transmit port, servicing them in a round-robin fashion.

A smaller shaping interval reduces burstiness, buffer size, and maximum delay; but it also

increases the CPU load. As the number of clients grow, the total amount of buffer space and the

maximum packet delay grow until they reach the limit of the switch’s memory. In the end, this

sort of overprovisioning fails to effectively utilize the theoretical capacity of a network since the

worst case is uncommon and it requires hosts to know characteristics of middle-boxes, which is

impractical.

Queue Scheduling

Queueing disciplines (i.e. queue scheduling algorithms) are largely studied indepen-

dently from other types of resource scheduling. Beyond FIFO and its associated “Drop Tail”

semantics, the most common queue schedulers are descended from Processor Sharing [1, 80]

on early time-shared computer systems. Queue scheduling gradually grew beyond Processor

Sharing’s early Round-robin algorithm, gaining the ability to add weights to different classes of

traffic. A second family of queueing discipline is descended from Shortest Job First (SJF). SJF
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and its preemptive variant, Shortest Remaining Time, can suffer from starvation but works well

when workloads can be described by a heavy-tailed distribution with many short flows [137, 61].

There appears to be little interaction between current research on queue scheduling

and real-time processor scheduling. A handful of network papers [8, 153, 161] reference Ear-

liest Deadline First (EDF) [93], but they are the exception to the rule, and significant advances

have been made since EDF was first published.

Whereas a traffic shaper treats all packets coming through it the same way, Active

Queue Management (AQM) manipulates packets depending on the state of the queue. When the

number of packets or bytes in a queue configured with the Random Early Detection (RED) [51]

AQM exceeds an upper limit, it drops or marks the packet. If the queue length is below a lower

limit, then the packets are left alone. And between those thresholds, RED randomly drops or

marks a packet in proportion to the queue length relative to the thresholds. Hardware support

for RED is common in switches and it is able to signal TCP to lower its congestion window,

however RED is difficult to configure and remains unused in practice.

Controlled Delay (CoDel) is perhaps the most successful Active Queue Management

(AQM), and it [31, 108, 112, 150] solves bufferbloat by limiting the amount of time packets

remain in a queue. By default, CoDel assumes an average RTT of 100ms and a target of 5ms

of delay. It was designed and tested for edge routers of Internet connections, although should

theoretically work with tuning for lower latency networks. The biggest issue with CoDel is that

if it is not the controlling the slowest link, then it cannot control delay, and that is exactly the

case when flows converge somewhere else on a network.

The Fair Queuing packet scheduler implemented in the Linux kernel, works in con-
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junction with TCP to set a pacing rate to improve the interleaving of flows [36]. In general

AQMs and improved TCP congestion control algorithms are complementary to each other be-

cause in situations where an AQM can be deployed, it prevents non-TCP flows from over-filling

buffers. Getting the maximum theoretical benefit out of AQM would require deploying it ubiq-

uitously throughout a network. Yet even if one AQM, such as CoDel, is only deployed on the

edge of networks, it provides the clear benefit of preventing a user from overfilling their own

buffers. Variants like Fair Queuing with CoDel or CAKE [108] add important features such as

hashing flows to independent queues and pacing packets, which make the combined AQM+TCP

solutions more effective.

If the type of network that CoDel is being used on does not provide back-pressure (i.e.

the network allows new packets to be inserted even when the next hop does not have adequate

buffer space), then a traffic shaper must be added so that CoDel can manage the queue of the

slowest link.

A network cannot afford enough hardware queues to keep each flow separate, and

software AQMs end up having to dissect flows from the aggregate packet stream in order to

enforce fairness or QoS. This is problematic because it creates more work (i.e. the end points

higher in the stack already treat flows separately) and Network Address Translation complicates

the dissection. This happen because queueing disciplines, in Linux at least, are applied after

packets have been translated on egress and before they have been translated on ingress.
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Transport Protocols

The Transmission Control Protocol (TCP) is the broadest deployed transport proto-

col ensuring reliable delivery of data. Applications use TCP through a socket interface, that

abstracts much of the details of communication. There are other protocols that provide similar

guarantees to TCP, but they are difficult to use in practice because middle-boxes regularly limit

connections to either TCP or Unreliable Datagram Protocol (UDP). Even TCP’s evolution has

been hampered by middle-boxes which modify its headers and option fields in a fashion that

prevents adoption of new options as allowed in the TCP specification.

TCP endures despite its suboptimal performance in various scenarios because it as-

sumes little about the details of the networks it traverses, yet is able to provide adequate per-

formance in most cases, as long as packet loss generally results from congestion instead of the

reliability of the connection. Even though TCP does not know the speed of a network or where

bottlenecks lie, it leverages the idea of using acknowledgments (ACKs) from the receiver as a

clock in an effort to follow the principle of ‘conservation of packets’ [70]. A Slow-start phase

starts the ACK clock, quickly discovering bandwidth by doubling the congestion window—a

limit on amount of data sent every Round-trip-time (RTT). A retransmit timer based on a good

RTT and variance estimator ensures data is only resent if it should have arrived long ago. And a

Congestion Avoidance phase responds to a signal of congestion once every RTT by halving the

congestion window and then slowly probing for bandwidth.

Delay has a difficult history of being used effectively within TCP. It cannot be the only

signal used by congestion control, although it should be used [63]. TCP Vegas [17, 65] was an
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earlier delay-based congestion control variant that showed promise when tested by itself, but

suffered badly when attempting to co-exist with loss-based TCPs. Other delay-based protocols

followed Vegas and have met with mixed success; and FAST TCP [76], Compound TCP [151],

and others have not become ubiquitous either. Even so, delay-based protocols or enhancements

are actively being pursued by Facebook with New Vegas [146] and Google with various projects,

including

The RACK [166, 165] algorithm is particularly interesting with regard to this disser-

tation because it uses a similar threshold—1.25RT Tmin versus 1.17RT Tmin—to make decisions.

However, RACK is purposely decoupled from congestion control. It is used only for detecting

when packets are lost. Also, its threshold has a default and lower bound of one millisecond.

TCP Santa Cruz [119] modeled queueing in a switch by summing the RFDs over

an interval and dividing that by the average packet service time during that same interval.

TCP Santa Cruz was implemented in the NS-2 network simulator, and so did not have to contend

with noisy delay measurements.

Probe Control Protocol (PCP) [12], a congestion control protocol outside the family

of TCP, uses probe packets to detect if the network can currently support a specific load and

converges to a desired throughput using short, paced, high-rate bursts. PCP is shown to out-

perform traditional TCP in various ways including response time and loss rate, and recovers

from incast after some packet loss. Despite all of those positive features, PCP never progressed

beyond a simulated prototype.

Matthew Mathis and Bob Briscoe have put forward an interesting variant of TCP,

Relentless TCP [100]. They observe that existing interactions between AQMs and TCP senders
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make it difficult to control traffic. Instead of halving the congestion window, Relentless TCP

simply reduces the transmission window by the number of segments dropped instead of halving

the window once per RTT if one or more packets is dropped. This simple and direct effect

makes it straightforward for a traffic controller to exactly adjust a flow’s rate. Since it is not

friendly to other TCPs, Relentless TCP has not been widely deployed.

There have been many attempts to create a replacement for TCP, including including

XCP [78], RCP [41], and many others. While many good ideas appear in XCP and RCP,

they tend to run into fundamental problems. There is an enormous amount of inertia behind

TCP, and it is easy to screw up something that TCP has already figured out. Furthermore,

many ideas are on the wrong side of the End-to-end argument [14, 136]. Clean slate designs

can produce valuable insight, but in practice, it appears that the most valuable research works

toward evolving TCP rather than replacing it.

Standard ECN support [130] directs a sender to halve its window once per RTT upon

seeing an acknowledgment (ACK) marked with Congestion Exists (CE), whereas DCTCP [4]

tracks the ratio of bytes marked with CE to the total number of bytes ACKed in order to estimate

the extent of congestion. A congestion ratio of 1 causes DCTCP to halve its window, and smaller

ratios cause it to back off correspondingly less.

When ECN is not supported by the receiver, DCTCP falls back to basic TCP Reno. If

the receiver supports ECN, but was not modified to accurately convey ECN with delayed ACKs,

then DCTCP will under-estimate the extent of congestion. Kato developed a one-sided variant

of DCTCP [79]. However, it compromises the performance of DCTCP when the receiver has

been modified.
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New TCP header options could allow a sender to detect if a receiver has been modi-

fied. Unfortunately, that type of solution can run into problems when middle-boxes manipulate

headers without properly supporting new or rarely used options. The primary tool at present for

ensuring DCTCP senders talk to modified receivers is to configure per-route congestion control.

While this works for homogeneous subnets, it is an increasingly complex and infeasible solution

when communication occurs between a wide variety of hosts controlled by other organizations.

Switches must also be configured to mark ECN appropriately for use with DCTCP.

Configuring for DCTCP is simpler than for RED [51], and it can use the common support for

RED in Ethernet hardware. However, there are many situations where DCTCP cannot be easily

deployed. A cloud provider may not be able to force all tenants to use a buffer-friendly TCP,

they may consider configuring separate switch queues to be impractical, or setting per-route

congestion control on the application side may not be fine-grained enough for the applications

running on their cloud.

In cases like these, it would be good to fall back to behavior as similar as possible,

but with fewer requirements. Based on our observations thus far, we submit that existing RTT

measurements are adequate to the task. Up until this point, congestion control algorithms using

existing delay measurements have not resulted in low bottleneck queue depths on switches and

tight latency distributions similar to DCTCP.

Some newer TCP congestion control variants [4, 87] reduce latency, increase band-

width, and share resources more fairly than older TCPs with the help of Explicit Congestion

Notification (ECN) or improved timestamping. However, configuring switch queues to mark

ECN appropriately or separating low latency protocols from aggressive legacy traffic is not
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always feasible. And the inertia and variety of networks makes modifying both senders and

receivers, altering drivers, or adding new TCP options a daunting challenge.

While change may be well worth it in some cases, networks tend to resist change.

Consider the slow uptake of IPV6, ECN, RED, and FQ_CoDel [112]. Even when hardware and

software support become common, network administrators and application developers do not

change their configurations quickly (or at all) to take advantage of them.

The difficulty of adopting significantly different protocol headers should not be un-

derestimated. It has taken 20 years for IPV6 to reach 10% adoption because the annoyances of

using IPV4 were not enough to encourage the upgrading of every client, server, and middle-box

(e.g. router, firewall, load balancer, and management system). Increasing pressure from address

exhaustion might be enough to finally drive widespread change by 2020 [154].

Many enhancements have been proposed to improve or leverage DCTCP, includ-

ing RTT-fairness through sub-window adjustments [5], improved fairness [77], ultra-low la-

tency with phantom queues [7], deadline-awareness [153], minimizing flow completion times

[110], sender-side only DCTCP [79], application to wireless networks [156] stability enhance-

ments [27], elimination of Slow Start in conjunction with Data Center Bridging [148], and

various ideas for deployability enhancements [142].

Academia is not alone in trying to take DCTCP further. The Internet Engineering

Task Force (IETF) is discussing DCTCP’s vulnerability to ACK-loss, along with the ways they

might improve congestion notification and DCTCP [24, 82, 37]. Apple is enabling of ECN in all

its software [84], which could encourage more ECN marking in routers and help make DCTCP

feasible on the Internet [83]. However, those routers would need to be configured both to mark

30



ECN as DCTCP requires and to enable DCTCP to coexist with other TCP variants. Change of

that magnitude should not be expected.

DCTCP has not eliminated the interest in other congestion control algorithms in the

data center or for the Internet. CAIA Delay-Gradient (CDG) TCP [62] uses minimum and

maximum RTTs to reason about congestion, with an emphasis on coexistence with loss-based

congestion control in wide area networks, and it was merged into the Linux 4.2 kernel. It is a

sender-side only modification, so it is easy to deploy.

Incast Congestion Control for TCP (ICTCP) [164] is one of very few receiver-side

congestion control algorithms. It shows that sometimes the receiver is best able to decide how

to respond to or prevent extreme congestion scenarios, such as incast, when many servers send

data to one client. There approach adapts TCP Vegas’ congestion control and is able to prevent

incast better than DCTCP. ICTCP was implemented as a Microsoft Windows driver, which

allowed it to transparently affect the behavior of virtualized guests.

Google’s Chrome Project has been experimenting with the Quick UDP Internet Con-

nection (QUIC) [126], with reduced connection and transport latency being two of its goals.

It seeks to send an initial payload without requiring multiple handshakes like secure TCP con-

nections. Forward Error Correction allows QUIC to recover from data loss without incurring

retransmission latency. The original documents for QUIC indicated that it would pace pack-

ets, but the latest documentation only refer to CUBIC and New Reno style congestion control

[69, 127]. This change is probably because pacing can be done more effectively in the Fair

Queuing packet scheduler.

Remy [147, 162] has been used to generate congestion control protocols, and it com-
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pares favorably to many previous loss-based and delay-based TCPs in simulations. However,

RemyCC results in RTTs 4− 6× worse than DCTCP since Remy does not yet take advantage

of ECN or AQM. The Tao protocols in later Remy experiments appear to approach the perfor-

mance of an omniscient scheduler, but DCTCP was not included in that comparison. It remains

to be seen if machine generated congestion control is practical or if it can lead to new and better

understanding of congestion.

Dong, et al. [40] make the argument that even though Remy generates protocols, it

searches a space of hardwired responses to packet level events, and its performance can degrade

when the real network does not match its assumptions, just like most TCPs. They propose

Performance-oriented Congestion Control (PCC), a sender-side modification to TCP that mod-

ifies its rate and packet pacing based on continuous experimental trials of rates differing 1-5%.

PCC makes fewer assumptions than most congestion control algorithms, but one assumption

it shares is that repeatedly trying higher rates is necessary even if those attempts always lower

the measured utility. A PCC prototype is publicly available, but the current implementation of

its packet pacing either consumes an entire core per flow or can be fragile depending on the

operating system version or virtualization.

There has been a long line of TCP congestion control variants that try to keep con-

gestion low and do not require extensive change or configuration of network equipment, but

most are unable to compete for bandwidth with loss-based TCPs [22]. Some variants, such

as CAIA Delay-Gradient (CDG) TCP [62], are able to coexist with loss-based TCP to some

degree. Others have maturity or performance issues that prevent them from being practical.

Performance-oriented Congestion Control (PCC) [40] has a prototype that has issues with its
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packet pacing implementation.

Lee, et al. propose DX [87], which shows that accurate queue delay measurements

can be attained even for high speed networks by modifying drivers, adding TCP options, and

modifying both senders and receivers. Their congestion response is driven by the ratio of the

measured average queuing delay to an estimate of the number of competing flows, resulting in

higher utilization and lower latency than DCTCP. The combination of these changes is almost

impossible to implement in reality since broad support for new TCP header options is difficult

to attain and diverse networks cannot be expected to have compliant hosts. TIMELY [105] uses

hardware timestamps, delay gradients, and rate control to implement congestion control for

RDMA traffic. While this paper does not include a direct comparison with DX or TIMELY, it is

reasonable to expect that TCP Inigo would also benefit from improved timestamps. However,

TCP Inigo can be used without any additional development effort and on any hardware.

Application

An application may be better suited to manage congestion than lower layers of the

network stack because of special knowledge. That reasoning is part of why the Unreliable

Datagram Protocol exists. If a programmer controls many end points, then they can take the

most appropriate action to reduce network load.

Furthermore, it is difficult to evolve TCP without breaking it. New ideas cannot

simply be an improvement—they also have to be deployable. With Google’s experimental

QUIC protocol, and now Transport Over UDP [35], it appears application developers may be

willing to take on the responsibility of providing their own network stacks. This flexibility
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comes with many potential disadvantages: encapsulation is a performance overhead, it enables

proprietary solutions, and it could fracture efforts to improve networking into even more efforts

that must each independently be debugged.

Luo, et al. [96] report that one-sided paradigms suffer less from congestion than

two-sided paradigms, but that they still suffer significantly from congestion. In fact, one-sided

paradigms may be less effective than simple throttling.

The behavior of RandomAccess illustrates an interesting performance inversion
phenomenon: an implementation with blocking communication and congestion
avoidance is able to attain better performance than an implementation hand opti-
mized for communication overlap. Best performance is obtained by the implemen-
tation optimized for overlap and using congestion avoidance.

They propose throttling back on the number of cores used, as well as throttling the

rate at which cores send messages, and show a 2× improvement for collective operations, 60%

improvement for fine grained application benchmarks, and 17% improvement for the NAS Par-

allel Benchmarks.

Routing

The research in this dissertation is intended to address the congestion problems that

arise on simple switched networks with full bisection bandwidth. As a network’s topology

becomes more complex, questions about how to best use multiple routes will naturally need to

be addressed. For instance, admission control will need to be combined with a routing algorithm

in order to maximize utilization of the network.

Google’s B4 [74] is a global software defined WAN. They abstract each site to a single

node on a graph with a single edge to each remote site. All links from a site to a remote site
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are treated as one link by using a custom variant of ECMP hashing. This simplification of the

topology was done for scalability.

B4 operates on Flow Groups — source, destination, QoS tuples — rather than indi-

vidual applications. This was also done in order to achieve scalability. B4 maps Flow Groups

to a set of Tunnels which represent routes, preferring shortest paths first. That mapping, com-

bined with corresponding weights, is called a Tunnel Group. QoS is specified with a Bandwidth

Function, where the weight/priority is the slope of the function.

Google tried an optimal fair share algorithm called LP, but it was too slow. Instead,

they created an algorithm that achieves similar fairness and utilization, but is faster. It iterates

over the Flow Groups, looking at preferred tunnels first (min cost path with no contention).

When multiple Flow Groups require more bandwidth and must use paths that share an edge, the

algorithm iterates to find a fair share value that, when plugged into the Bandwidth Functions

of the Flow Groups, produces their fair share ratios. Bandwidth is iteratively parceled out.

Each Flow Group’s demand is met, with the slack apportioned according to the Bandwidth

Functions. Afterwards, the ratios need to go through a quantization so that they match the

hardware capabilities.

As of Nov. 12th, B4 was managing 2700 Flow Groups and 240 Tunnel Groups. Most

of their Traffic Engineering Operations were completed in 5 seconds. One half to one third of

that time is taken by the Traffic Engineering Optimization algorithm.

Hedera [3] is intended for data center network flow scheduling, and uses simulated

annealing to centrally schedule long lived flows while falling back to ECMP forwarding for

short lived flows. It focuses on natural bandwidth demands rather than QoS specifications. To
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scale, they assign a core switch to each host rather than assigning it per flow. Their algorithm

can schedule 27K hosts and 250K large flows in 100-200 milliseconds, with a demand measure-

ment and reallocation frequency of 5 seconds. While Hedera generally performs much better

than static ECMP hashing, it can be improved upon. The “optimal” non-blocking switch they

compared to sometimes performed worse than Hedera, so it is difficult to say how close to op-

timal Hedera is. However, in their shuffle experiment, Hedera achieved 86% of the bisection

bandwidth as the control network.

Multi-layer Approaches

Traditional traffic shaping, even combined with a global routing algorithm which en-

sures routes are not overloaded, could still allow a bottleneck queue to build up and drop pack-

ets. The bottleneck would have to be able to handle the worst case simultaneous burst from

every flow on that route [86]. Furthermore, even lossless networks such as Infiniband suffer

from congestion in the form of congestion trees and the Parking Lot Problem [55, 56, 160].

In practice, Infiniband’s congestion control is not enabled because it must be tuned to the spe-

cific traffic patterns of the system. If the traffic changes, then overall throughput can be badly

hampered.

Alizadeh, et al. proposed pFabric [8], in which flows are first class citizens, flow

completion time is minimized, and rate control is decoupled from flow scheduling. End-hosts

set packet priority independently, and adjust rate based on a minimal set of TCP mechanisms.

Switches implement priority scheduling and dropping, and are capable of Earliest Deadline First

(EDF) [93]. pFabric assumes 10Gbps host rates, a fixed retransmit timeout based on 3×RTT,
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and a fixed chronic congestion threshold. Those improvements probably will not hold with

heterogeneous and dynamic host rates which can be expected with incremental upgrades and

energy-proportional networks. Simulations show pFabric delivers nearly optimal flow com-

pletion times, but its architecture allows starvation, and co-existing priority schemes require

reconfiguration.

PriorityMeister [168] provides good end-to-end storage tail latency QoS by automati-

cally configuring priorities and rates. The global controller greedily searches through a trimmed

search space, requiring users to provide a Service Level Objective and a trace of access patterns.

While PriorityMeister’s autoconfiguration potentially makes it robust to a variety of scenarios,

the approach was only shown for a few concurrent workloads. Its worst-case latency analysis

focuses on a single workload, ignoring the interaction between workload arrival and service

curves. And the controller must recalculate rates and priorities when workloads or service

curves change. It meets 99.99% of latency objectives except for very bursty workloads because

it treats the network as a black box.

PASE [111] combines normally independent strategies in order to minimize flow

completion times better than any one approach. It coordinates DCTCP, distributed arbitration,

and priority scheduling with modest end-host modification and available switch technology.

PASE arbitrators have a overhead-accuracy trade-off inherent to pruning and delegation opti-

mizations. They assume a tree topology and traffic similarity in both halves of the tree, adjusting

if that is not true.

Dogar, et al. [39] focus on minimizing the completion time of tasks (i.e. sets of flows

associated with waiting users) with Baraat, observing that Shortest Flow First scheduling shows

37



little improvement over Fair Sharing when there are a large number of flows per task. They

argue that users are best served in FIFO order when a task is small and by limited multiplex-

ing when a task is heavy. Switches make consistent task-level scheduling decisions using a

unique task priority assigned by a common entry point. The threshold governing when a task is

considered heavy is determined using historical task size distribution of a data center.

QJUMP [57] combines traffic shaping with classification and priority queues. This

approach can provide performance guarantees, but it is not a complete solution. The number of

queues is significantly less than the possible types of traffic, and flows in the same class can still

harm each other by filling up shared buffers. Furthermore, there is no guarantee that once a flow

crosses into a new administrative domain that the owner will use the same traffic classification

scheme or priorities.

2.2 Economic-based Scheduling

Google knows the benefit ordering for admission control [43].

Ramaswamy was in charge of the many algorithms that make sure Google always
orders the ads on its search results pages in the most profitable way. (Side note: For
this, he deserves partial credit for the destruction of Yahoo, which used a simplistic
straight auction to order its search ads. The difference in yield allowed Google to
pay more for search distribution and eventually gain a practical monopoly.)

CoD = customer+business+ criticality+ risk+opportunity+ . . . (2.1)
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WSJF =
CoD

Duration
≈ CoD

JobSize
(2.2)

Businesses have begun using the Weighted Shortest Job First (WSJF) algorithm de-

veloped by D. Reinertsen to minimize the cost of delaying work [68, 133]. From Reinertsen’s

economic viewpoint, FIFO is only appropriate when jobs are small and uniform, Least Slack

Time First forces all jobs to share as much costly delay as possible, and schedules based on

maximizing revenue ignore potentially high hidden costs. Similarly, Shortest Job First schedul-

ing focuses exclusively on finishing what can be done quickly. And Earliest Deadline First

maximizes slack in the system rather than allowing it to be leveraged to be more cost effective.

One of the key parameters of WSJF is the Cost of Delay (CoD), which encompasses

many attributes. Equation (2.1) defines a CoD appropriate for business that is the sum of vari-

ous estimates, including but not limited to: preferences of the customer, business revenue, value

decay, deadlines, dependencies between other jobs, and secondary benefits. After the CoD is

summed, it is then divided by the expected job duration to produce WSJF , as seen in equa-

tion (2.2). Scheduling jobs according to the highest WSJF ratio minimizes the sums of the

products of the CoD and duration for each job.

Reinertsen gives guidance on estimating the economic benefits and risk of deferring

work [134], and brings a more rigorous scientific approach than previous ill-defined business

philosophies. Even so, applying WSJF to business often requires many estimations of costs

and probabilities, whereas computer scheduling problems should be able to bring more live

measurements to bear.
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Job CoD Duration WSJF
($/s) (s) $/s2

A 1.8 0.09 20.00
B 0.6 0.06 10.00
C 1.5 0.05 30.00

A,C,B B,C,A C,B,A C,A,B
($) ($) ($) ($)

0.000 0.27 0.27 0.090
0.084 0.00 0.03 0.084

+ 0.135 0.09 0.00 0.000
0.219 0.38 0.30 0.174

Figure 2.1: Weighted Shortest Job First scheduling minimizes risk of not completing jobs oc-
curring later in an ordering.

For example, consider a video website serving three types of jobs: A long adver-

tisements, B short advertisements, and C primary content with costs and durations described

in Table 2.1. The ordering A,C,B would be chosen by several different algorithms, including:

Highest CoD, Highest CoD×Duration. A Lowest CoD First algorithm would choose ordering

B,C,A and Shortest Job First produces ordering C,B,A. Finally, WSJF results in ordering C,A,B

. . . the only ordering that minimizes the risk and cost of not completing later jobs.

2.3 Real-time Scheduling

Scheduling algorithms like Earliest Deadline First (EDF) [93] would require all dis-

patchers contending for the same resource to know the release times of all jobs so that they can

agree on the earliest deadline. Furthermore, the clocks of the dispatchers must be synchronized

at a granularity corresponding to the differences between deadlines, and not just at the gran-

ularity of the periods. A different scheduling algorithm is clearly needed when a resource is

scheduled by multiple dispatchers.

The Least Laxity First (LLF) [107] scheduling algorithm uses the notion of laxity,

depicted in Figure 2.2. The laxity of a job li, j is defined as the time remaining before the job
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now deadline
laxity

release

budget

Figure 2.2: Laxity.

must be scheduled in order to meet its deadline, li, j = di, j−t−e′i, where t is the current time and

e′i is the budget remaining in the period. In contrast with EDF, which schedules based on the

deadline a job must be finished, LLF schedules based on the deadline a job must be started. LLF

is optimal for scheduling a single resource in the same sense that EDF is, if a feasible schedule

exists, then both will find one. Implementing LLF across multiple dispatchers would require

just as much communication and synchronization as EDF, but it lends itself to an approximation

suitable for distributed dispatchers because the measure of laxity is relative while deadlines are

absolute.

Resource Allocating and Dispatching (RAD)

The Resource Allocation and Dispatching (RAD) scheduling model [19] has proven

to be an effective way to provide a range of performance guarantees [92], first for CPU and

later for disk [124] resources. Its success is due to the separation of Resource Allocation, which

answers the question “How much?”, from Dispatching, which answers the question “When?”

The Resource Allocation for a given task is specified using a reservation of some fraction of the

resource at some granularity period, or more concisely, Rate. Dispatching schedules the work

defined by the Rate such that it is finished by the Deadline at the end of each period.

Resource Allocation and Dispatching (RAD) reservations are (rate, period) tuples
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that obsolete priority classes and previously defined rate-limit specifications. Prior non-realtime

scheduling methods possess a limited number of relative, coarse-grained classes (priorities), re-

quire rates to be strictly satisfied for any measured interval (e.g. Token Bucket Filters), have

common periods between all tasks, or have a fixed linear mapping between periods to priorities.

RAD reservations enable arbitrarily fine-grained Quality of Service (QoS), possess meanings

that stay consistent in a dynamic environment, and allow straightforward reasoning about com-

posing end-to-end QoS.

The intention of adapting RAD to the network resource is to provide flexible, general,

and fine-grained performance guarantees on standard commodity network hardware similar to

what CPU and disk resources enjoy under the same general model. One important goal of

applying the same scheduling model to every level of the operating system is the desire to

compose guarantees system-wide.

Resource Allocation A task Ti’s reservation (ui, pi), where ui is network time utilization and

pi is the length of the period for which ui is guaranteed.

Dispatching A task Ti has a budget ei = ui · pi, and is made up of a sequence of jobs Ji, j, each

possessing a release time ri, j and a deadline di, j = ri, j + pi.

One of the ways the RAD model is flexible is that it allows the reservation to be spec-

ified in different types of units. Usually people prefer to specify I/O reservations as the amount

of data per period, but that may not be the best way to implement the resource management.

A data reservation is not appropriate if the usage pattern of the reservation has a large effect

on the rate achieved. For example, disk I/O is greatly affected by sequentiality while network
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I/O is greatly affected by the size of the individual jobs. If the achieved rates are dependent on

the way in which the resource is used, then it is better to implement resource management with

time reservations.

Perhaps the most important scheduler built on top of the RAD model is the Rate Based

Earliest Deadline (RBED) scheduling algorithm. RBED is a generalization of EDF, enabling

integrated scheduling of hard real-time, soft real-time (minimum rate with proportional sharing

of slack), and best effort tasks [19]. The RAD model also clearly reveals how to apply various

optimizing heuristics within the bounds of guarantees. This is exemplified in the Fahrrad disk

scheduler’s use of a horizon line to reorder requests [124]. It should also enable the RUN

multiprocessor algorithm, described in § 2.3 to effectively handle more general task models.

RUN

The Reduction to UNiprocessor (RUN) [131, 132, 91] algorithm was first described

by Regnier, et al. as a novel and elegant solution to real-time multiprocessor scheduling. The

first practical implementation of RUN created by Compagnin, et al. [29], both verified the sim-

ulation results and showed that it can be efficiently implemented on top of standard operating

system primitives. While RUN is now the proven best solution for scheduling fixed task sets

with fixed rate on multiprocessors, further work remains to make it practical for common work-

loads and on resources other than CPUs.

The RUN algorithm takes advantage of two features of highly loaded systems. First,

a busy system has little idle time, so it makes more sense to solve the dual schedule (i.e. when

tasks are not running). The critical nature of idle time was first noticed by Levin, et al. when they
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created a theory explaining all previous optimal 1 multiprocessor algorithms [90, 89]. Second,

a highly loaded system will generally have many small tasks that can be packed together and

treated as one task. Both steps simplify the problem at hand, and when they are combined

recursively they produce a reduction tree that partitions the scheduling problem amongst the

packings and bounds the interactions between packings.

In a system with N processes and M processors where each process requires a fixed

share of a processor, packing shrinks the size of N and taking the dual of the system reduces the

size of M whenever N < 2M By alternating packing and dual operations, Regnier, et al. [131]

showed that they were able to reduce the difficult multiprocessor problem down to a simple

uniprocessor problem. The approach is revolutionary because it is simple and provably more

efficient in terms of context switches and migrations than any previous approach (e.g. the family

of proportionate fairness and deadline partitioning scheduling algorithms).

Figure 2.3 shows the specification of 22 tasks randomly generated using the Rand-

fixedsum algorithm [44], with hard real-time reservations of 6-98% utilizations and periods

ranging 15-910 milliseconds. RUN was reimplemented in Python and used to generate their

schedule on eight resources. The program also draws the first 100 milliseconds of the schedule

in Figure 2.4 in order to aid in debugging and to help develop an intuition for scheduling pat-

terns and densities of events. The tiny ticks scattered along the top of each row of the resource

schedule are preemptions, and the thin black arrows leading from one row to the next indicate

task migrations.

Considering that the 22 tasks keep eight resources 100% utilized, there are remarkably

1Optimal in the sense that an algorithm will produce a valid schedule for any task set that is feasible.
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time (ms)

1 (45/100, 15.0)

2 (83/100, 180.0)

3 (98/100, 60.0)

4 (30/100, 10.0)

5 (35/100, 690.0)

6 (53/100, 20.0)

7 (54/100, 290.0)

8 (23/100, 870.0)

9 (7/100, 305.0)

10 (94/100, 355.0)

11 (87/100, 410.0)

12 (5/100, 40.0)

13 (33/100, 60.0)

14 (23/100, 45.0)

15 (78/100, 910.0)

16 (6/100, 10.0)

17 (36/100, 180.0)

18 (10/100, 180.0)

Original Tasks

Figure 2.3: 18 Tasks with Hard Real-time reservations.

few migrations—an average of 3.205 migrations per task per second. In fact, most tasks of

the task migrate little, if at all. Table 2.3 makes it clear that the bulk of the preemptions and

migrations happen to the tasks with the both the highest utilization and longest periods: 10, 11,

15. Furthermore, this schedule was generated with a naive unordered First Fit policy. Other

heuristics could minimize preemptions by packing harmonic or high frequency tasks together

first.

See Appendix B for an example of how RUN is able to find proper subsets of tasks

which can be scheduled in isolation from all the other tasks in a set. And see 5.3 for discussion

about RUN heuristics and application to networking.
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Table 2.1: Most tasks rarely incur migration penalties in a RUN-generated schedule!

Task Avg. Avg.
ID Preemptions/Job Migrations/Job

1 4.507 0.000
2 145.400 0.000
3 60.375 0.938
4 2.770 0.000
5 157.000 0.000
6 7.980 0.000
7 158.000 0.000
8 133.000 0.000
9 18.333 0.000

10 354.500 4.000
11 390.000 9.500
12 2.720 1.520
13 22.471 1.471
14 15.682 2.591
15 827.000 36.000
16 1.200 1.680
17 61.000 0.000
18 15.000 0.000
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Figure 2.4: RUN - 18 Tasks on Eight Resources.
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Chapter 3

Experimentation Strategies

After serving nine years on the SIGCOMM Program Committee, C. Partridge wrote

“How to Increase the Chances Your Paper is Accepted at ACM SIGCOMM” in 1989 [120], and

he had this to say about TCP papers:

TCP performance is a well-trod ground and so the standards for getting a TCP
paper accepted are now quite high.

To be accepted at SIGCOMM, a TCP performance paper should demonstrate that
the proposed performance improvements have been thoroughly tested. For in-
stance, any changes to TCP flow control should be tested over heavily loaded multi-
hop topologies with cross traffic. Furthermore, the analysis should show not only
that the enhanced TCP performs better, but also show the effects of the enhanced
TCP on non-enhanced traffic. Note that TCP performance papers are often mea-
surement papers and so . . .

Writing good measurement papers is very hard. It requires careful network moni-
toring, using good statistical techniques. A good monitoring paper should explain
how the data was taken, why the data is believable (i.e., what statistical measures
were taken to ensure the data was sound), and then analyze the data carefully with
good charts and graphs and discussion that indicates the data was thoroughly ana-
lyzed and contemplated. Probably more than any other type of paper, measurement
papers benefit from extra time for the author to refine the paper. Start writing early!

Writing TCP papers has not gotten easier in the last two decades. Experienced engi-
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Figure 3.1: Fortunately, we are not limited to two choices.
Red and blue pill as in the Matrix. W. Carter. 2014. Creative Commons Attribution-Share Alike 4.0 International.

neers tend to discount the results in academic papers unless they can test working code. Best

practices for evaluating congestion control, simulation, and testbed scenarios have been written

by the IETF [48, 50]. However, there is no real consensus on how or what should be measured,

except that researchers should use as many methods and metrics to compare as is possible.

The following sections describe some of the strengths and weaknesses of different

strategies for demonstrating the effectiveness of network protocols. Although the sections are

split up into a blue pill and red pill, as seen in Figure 3.1 [157], that is not to say that it is strictly

an either/or choice.

3.1 Modeling

Mathematical modeling allows a researcher to set aside most implementation details

in order to determine if an idea is otherwise feasible. A feasible congestion control or AQM

should achieve high link utilization by not allowing queues to totally drain, while rarely, if ever,
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overflowing. Furthermore, the process of achieving good queue behavior should be globally

stable even if it must naturally lead to local oscillations in queue sizes.

Another reason models are important is that they can correct misguided configura-

tion. For instance, it became common over the decades for network hardware to gain bigger

memories for buffers to hold large bandwidth-delay products. However, Raina [129] and oth-

ers have shown through models and stability analysis that proper functioning of TCP requires

small buffers. Eventually, that knowledge gained from modeling helped lead to a concerted ef-

fort to the de-bloat some network stacks in the real world, and it has made a significant positive

difference in the behavior of the Internet, although it is an ongoing process.

Possible models include many simplifying assumptions, such as: the system is in a

steady state, all flows have a single RTT, or all flows can be represented by a single average

flow size. These assumptions are used to make equations more understandable and efficient to

solve. And while the insights gained in this way can be invaluable for proving useful character-

istics like average case bounds, there is a real danger they will not capture important real-world

problems (e.g. the long tail of delay distributions), especially when the features are caused by

relatively rare events, which assumptions can hide.

The simplest network models use renewal theory [101] to reason about the sawtooth

pattern of TCP’s window size. Assuming a steady state like Congestion Avoidance, it is straight-

forward to use algebraic equations to estimate a bottleneck queue’s maximum size using the

amplitude and periods of oscillations of a TCP window. This sort of analysis is adequate to

provide basic insight for a small number of synchronized flows.
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Variable Description
A Arrival process
S Service time distribution
c number of servers
K capacity of queue
N size of population of jobs
D queueing discipline
Figure 3.2: Markov model variables.

The most common models in network analysis are based on Erlang’s queueing the-

ory [18, 46] combined with control theory [102]. The models are described by the notation,

A/S/c/K/N/D, whose variable descriptions can be found in Figure 3.2. For example, consider

the common Markovian / Markovian / 1 / ∞ / ∞ / FIFO model, often abbreviated as M/M/1. It

is a stochastic process that describes the length of a queue in which jobs arrive according to a

Poisson process, service times have an exponential distribution, with a single server, an infinite

queue, an infinite number of jobs, and a First In First Out (FIFO) queueing discipline.

A Markov Chain is a memoryless stochastic process in which each state only depends

on the previous state (or n previous states for an n-order Markov Chain) and a set of probabili-

ties. Padhye, et al. proposed a model [115] for TCP Reno included a state space with window

size, packet loss per round, timeout state, RTT, number of packets transmitted, and number of

packets received. The evidence for the accuracy of the Poisson model for the Internet is well

established [163]. However, it is likely inappropriate for data centers and HPC systems for two

reasons. First, TCP requires segmentation offloading in order to reach high speeds and pacing

is not always supported, so at the very least, a batch-Poisson would be a better fit [163]. Sec-

ond, since the communication patterns in those settings can include collective operations such
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as reductions, the flows associated with those patterns can not be assumed to be stochastically

independent.

Queueing disciplines (qdiscs) include, but are not limited to: FIFO, Shortest Job First

(SJF), and variants of Round-robin (Processor Sharing [1, 80], Weighted RR, Deficit RR, etc.).

Note the simplicity of these disciplines is partly driven by the desire to implement them in

hardware. One of the key practical considerations regarding the implementation of queuing

disciplines is the economic limit on the number of hardware queues that can be provided. This

means qdiscs support a small number of priority classes. Of course, software queueing disci-

plines can be more intricate, but higher complexity decreases the line rates they can support.

Fluid models [94, 5] are continuous, deterministic alternatives to the discrete, stochas-

tic queueing models described above. Instead of chains of states, a set of differential equations

are used to describe the rate of change of variables of interest. These equations look like those

used to describe physical systems, circuits, etc. Unlike Markov chains, the differential equations

can depend on any previous state of the system. Thus, they are called time-delayed differential

equations. In software used to solve the equations, the time parameter passed into functions can-

not themselves be functions. This has to do with potentially endless recursion or the difficulty

in solving such a system numerically.

All models must be analyzed for convergence or bounded stability [5, 6, 129, 128,

163]. More specifically, control theory dictates that closed loop systems (i.e. those utilizing

feedback) need to be stable. Many control theoretic tools for studying stability have been devel-

oped, including Poincairé maps, and are used to find fixed stable points for edge cases or limit

cycles more generally.
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A researcher might wonder whether it is best to use stochastic queuing theory or

fluid models, and it depends. Those who find it natural to reason in terms of state machines

and probabilities may prefer queueing theory using Markov chains. Its semantics match TCP’s

policy of making decisions once every RTT, TCP implementations include many state machines,

and the Poisson distribution has proven itself with regard to the Internet. However, the statistical

nature of the model makes it difficult to increase the fidelity of a model. And as pointed out

above, the Poisson distribution (while not required) may not be appropriate for some networks.

Fluid models, on the other hand, may be more intuitive in general since everyone has

some experience with water and rates. And the faster a packet network is, the more it resembles

fluid. In addition to being continuous, differential equations can also express dependencies at

multiple time scales (e.g. per round) using time delays in the variable passed into its functions.

And while fluid models are deterministic, they can be used in conjunction with probabilistic

functions (e.g. packet dropping or marking). Adding detail to fluid models (e.g. preventing

windows from decreasing below two packets or forcing a queue size to remain positive) can

cause problems with solver software in which the numerical solution becomes unstable.

3.2 Implementation

When it comes to implementing an idea there is a huge spectrum in the level of detail

and flexibility which is helpful for a given experiment. Increasingly, simulation, emulation,

and the real-world can be mixed and matched, providing realism or flexibility where it is most

needed. Simulators themselves may accurately represent hardware or they may represent ev-
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erything at a much higher level and more closely resemble one of the mathematical models

discussed previously. Emulators and emulated environments use code from real operating sys-

tems, but they fake characteristics of hardware or topologies. In the end, there is really only one

way to know how well an idea works, and that is to try and measure it on an actual system.

Simulation

Many research papers include simulation results because they fill an important gap

between modeling and a full blown implementation. Where modeling can be used to evaluate

the fundamental feasibility and explore the mathematical limits of an idea, simulation’s primary

use case is validating the protocols and algorithms necessary to implement the mathematical

model.

Simulations contain more detail than models, but are generally easier to program

and more flexible than real-world implementations. The amount of detail can vary from cycle

accurate hardware like BookSim [75] to the more common protocol level simulators. The latter

include advantages such as the ability to configure almost any topology and allowing the use of

floating point arithmetic.

The most venerable simulator is NS-2 [103], although there is an effort to replace it

with something more modern NS-3 [64]. There are other simulators that have found favor in

some subcommunities: Omnet++ [155], BookSim [75], and ROSS [26]. Omnet++ is best if

Infiniband [97] is of primary interest. BookSim implements general credit-flow based fabrics

and is cycle accurate, but high levels of detail such as cycle accuracy limit the size of a simulated

experiment. ROSS is also general, but more high level, and can simulate larger networks (e.g.
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a million node dragonfly fabric).

There are multiple downsides to using a simulator, including: the need to debug the

simulator itself, lack of detail (especially of switch buffers), lack of performance, and the need to

validate the simulator against real-world results. However, assuming the simulator is continually

validated against real-world results [11, 49, 67, 109], its ability to help extrapolate beyond a

simple laboratory network while not endangering any real traffic is valuable.

Emulation

Emulated environments [2, 60, 159, 167] leverage the code of real operating systems

as well as virtualization, container, traffic shaping, and Software Defined Networking technol-

ogy in order to fake larger numbers of hosts and more diverse topologies than a testbed actually

possesses. The ability to develop and test distributed systems on a laptop is a great increase in

productivity. However, emulation must sacrifice speed in order to scale out, and attempting to

fake too many hosts or too much bandwidth decreases the fidelity of experiments.

One of the easiest to use and highest fidelity emulators is Mininet [60], which wraps a

Python interface around Linux containers, queueing disciplines, and Open Virtual Switch [45].

The containers provide multiple hosts with the lightweight virtualization of namespaces and

resource controllers. The characteristics of the network are defined by queueing disciplines—

generally a Token Bucket Filter shapes bandwidth and netem injects delay, packet loss, packet

duplication, and packet re-ordering.
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Real-world

Some real-world considerations were previously discussed in § 1.3, but it was by no

means exhaustive. Most network stacks are implemented in kernel-space in order to allow the

network hardware to be pushed as hard as possible. Of course, this means algorithms must per-

form calculations without using floating-point arithmetic. Also, cross-layer information sharing

such as providing TCP congestion control with transmission timestamps of packets, or giving

RTTs of flows to qdiscs may be cumbersome or impossible.

Operating systems may provide an API for providing new functionality. In addition to

TCP congestion control modules, Linux also provides an API for pluggable qdiscs and resource

control groups (cgroups). Linux allots 64 bytes for custom congestion control per-connection

variables in addition to many commonly used variables provided by the general socket structure.

The hooks provided for congestion control are limited, but they have been extended—most

recently to support DCTCP’s use of ECN. A system-wide congestion control algorithm can

be chosen, or more recently and also for DCTCP, it can be set per route. Congestion control

behavior can be tuned by load-time module parameters, run-time procfs and sysfs tunables, and

per socket options.

Link, socket, and qdisc statistics are made available through a handful of tools such

as ip, netstat, ss, tc. If more detailed information is desired, packet traces can be recorded and

analyzed with tcpdump, tcptrace [114], and wireshark [113]. Linux also provides a dynamic

tcp_probe module that records per connection trace information such as the size of the conges-

tion window and the current smoothed RTT. Trace events can be added to create an even more
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efficient and flexible capability than what tcp_probe provides.

Note well that modifying the Linux kernel involves a big learning curve, and that

modifying the heart of its TCP stack is made difficult by the active work of professional de-

velopers. As an example, the original DCTCP code did not use the congestion control module

API because it needed hooks that were not present. This made it extremely difficult to use as a

basis for further work on more recent kernels that included many important enhancements like

microsecond RTTs. Fortunately, the module API was enhanced and DCTCP became a clean,

stable module in the upstream kernel.

Applications are needed to test network stacks, and in addition to microbenchmarks

like iperf [152], more complex benchmarks resembling common industry use cases, such as

the Yahoo Cloud Services Benchmark [30] have been created. For very specific TCP tests,

one might create something at the packet level with Packetdrill [25]. Or if a higher level,

reproducible test is required, then the coNCePTuaL [116, 117, 118] domain specific language

can help.

The HPC community uses many microbenchmarks to compare high speed networks

and validate performance. Among these microbenchmarks, System Confidence [139, 140, 141]

stands out because it looks at the whole distribution of delay measurements instead of just a

few, such as minimum, maximum, and average.
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Chapter 4

Ambidextrous Congestion Control

In this chapter I present TCP Inigo, which effectively addresses all five network de-

sign goals stated in chapter 2 (latency, bandwidth, fairness, deployment, and administration),

whereas other solutions neglect some goals or perform worse. In particular, Inigo out-performs

the current widely-accepted solution, Data Center TCP [4, 13] (DCTCP), described in Sec-

tion § 2.1.

Inigo includes two primary contributions to the state-of-the art. First, a sender-

only modification inspired by DCTCP but uses Round-trip-times (RTTs) to mimic Explicit

Congestion Notification (ECN). Second, a receiver-only modification that similarly mimics

ECN with differences in One Way Delay (OWD). Inigo’s worst-case performance better is than

DCTCP’s because Inigo’s sender and receiver modifications are delay-based and can operate

independently or together. The first row in Figure 4.1 represents a best-case administrative sce-

nario, such as a data center, in which every component in the network is under a single authority

and can be upgraded and configured coherently. The second and third rows illustrate worst-case
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Figure 4.1: Inigo’s latencies are up to 1.3× better than DCTCP, the best deployable so-
lution, when all components of a network are properly configured (green check). Inigo’s
sender-only mode is up 42× better than DCTCP’s corresponding failure mode, according
to fairness, bandwidth, and latency indices; and Inigo can also offer improvements when
only the receiver is configured. Letter grades are relative to a C for Reno-level performance.

scenarios in which every part of the network is owned by a different entity only one end-host

can be modified.

In chapter 2 I overviewed many specific techniques that improve performance in con-

trolled environments, such as data centers, where all components (i.e. end-hosts and middle-

boxes) can be modified. But the effectiveness of those same techniques significantly degrades

in uncontrolled environments when interacting with unmodified components across network

borders. Established systems with multiple owners and long histories, like most networks, fa-

vor incremental evolution over dramatic change because upgrades are costly and decisions to

upgrade are made independently. Even data centers and supercomputers, which are prime ex-

amples of scenarios where new network technologies can be leveraged, must communicate fre-
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quently with external systems, and end-to-end arguments [14, 136] should be considered. There

is considerable practical value in being able to improve network performance while minimizing

the effort needed to deploy and maintain the changes. Figure 4.1 shows just a few examples of

the many failure modes a solution to congestion should handle.

This chapter focuses on ways to improve network performance for applications built

on TCP. While other protocols exist, TCP is the most widely used. Furthermore, the techniques

Inigo uses can be re-applied to other protocols that track RTTs or use timestamps at end-hosts.

The rest of this chapter is organized as follows: First, the Inigo sender-side (§ 4.1) and

receiver-side (§ 4.2) algorithms. I then evaluate Inigo (§ 4.4) and demonstrate the effectiveness

of both techniques independently and combined. Finally, I describe the availability of TCP Inigo

code and Mininet experiments (§ 4.5).

4.1 TCP Inigo Sender

TCP Inigo is composed of two independent techniques. The first is a sender-side only

modification that uses TCP RTT measurements. The second uses differences in One Way De-

lays (OWDs) on the receiver-side. Both follow in the footsteps of DCTCP in using a congestion

ratio, a measure of the extent of congestion, in order to proportionally adjust the congestion

window.

The Inigo sender-side congestion control module uses the Linux kernel’s pluggable

congest control interface, and has been made possible by several developments in the Linux

kernel since the original DCTCP paper [4]. Internal buffer bloat and delay variability were
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much improved with features such as Byte Queue Limits [33], TCP Small Queues [34], and

TCP Segmentation Offload (TSO) sizing and pacing [36]. Importantly, the units of the sender’s

RTT measurement changed from milliseconds to microseconds in 2014 [42]. These changes

improve the behavior of every TCP, but they are vital for Inigo’s delay-based algorithms.

RTTs are readily available measurements, but TCP’s timestamps are taken several

layers and queues above the hardware. As such, they include the variability of the host operating

systems and not just the network delay due to congestion. If the goal is to minimize the end-to-

end delay variability observed by the application layer, then the fact that the TCP RTT includes

delays due to Operating System (OS) buffers and network buffers may be an advantage. Also,

RTT measurements do not combine independent signals in a way that might indicate more

congestion than is actually present. In contrast, ECN marking at switches is done independently,

so one could envision an unlikely scenario where a series of switches each experienced minor

congestion at different times, causing the majority of a flow’s packets to be marked. Since

location and presence of congestion is combined in a marking, the end hosts cannot tell for

certain how bad the congestion is.

RTT measurements are noisy, so reacting to individual measurements results in un-

predictable behavior. That is why many algorithms use some sort of smoothing, but given the

dynamic range of RTTs this can often prevent quick responses to changing conditions.

4.1.1 RTT Congestion Ratio

DCTCP’s congestion ratio, αECN = bytesECN
bytestotal

, is driven by an ECN marking threshold

designed to balance conflicting requirements—to fully utilize bandwidth while keeping latency
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low. In this section I will explain how I leverage the same reasoning that led to DCTCP’s ECN

marking threshold to justify the RTT threshold that drives Inigo’s congestion ratio, αRT T =

RT T slate
RT T sobserved

.

K ≈ 0.17Cd (4.1)

Alizadeh, et al. [5] derived equation (4.1), in which C and d denote the bottleneck

capacity (packets/second) and RTT delay (seconds), giving a threshold of K (packets). This

threshold is 2.7% larger than their original, and is based on a fluid model of DCTCP that is

more accurate than their previous sawtooth model. Intuitively, this threshold says that the queue

should absorb bursts of up to 17% of the bandwidth-delay product before it starts telling flows

to slow down.

Inigo uses late RTTs in the same way that DCTCP uses ECN markings to calculate

and respond to the extent of congestion. Increases in RTTs are generally due to congestion

in current systems where the OS is not CPU bound and it keeps its internal bufferbloat under

control.

dthresh = K/C (4.2)

dthresh ≈ 0.17Cd/C = 0.17d (4.3)

Since the RTT signal arrives at the same frequency as ECN markings (i.e. every
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ACK), and since TCP RTTs correspond to increased queuing, it can be assumed that the rec-

ommended DCTCP threshold is valid for defining what makes an RTT late. The corresponding

queuing delay threshold, dthresh, is simply K divided by the bottleneck capacity C. Substituting

equation (4.1) into (4.2) gives (4.3). See Section 4.3 for more detail about the mathematics.

Algorithm 1 Inigo RTT Congestion Marking.

for each ACK do
if RT Tmin = 0∨RT T < RT Tmin then

RT Tmin← RT T
end if
RT T sobserved ← RT T sobserved +1
if RT T ≥ RT Tmin +dthresh then

RT T slate← RT T slate +1
end if

end for

Algorithm 2 Inigo RTT Congestion Ratio.

for every window do
F ← RT T slate/RT T sobserved
αRT T ← (1−g)×αRT T +g×F
RT T sobserved ← 0
RT T slate← 0

end for

Algorithm 2 calculates the congestion ratio αRT T using the RTTs marked late by

algorithm 1. It is nearly identical to the approach taken in DCTCP, where a fraction F of ECN-

marked bytes is tracked during a window and used to update the exponential weighted moving

average of the DCTCP congestion ratio αECN .

There are some subtle implications of using a congestion ratio driven by RTT observa-

tions instead of ECN marked bytes. Most importantly, RTTs allow a sender-only modification.

Also, Inigo does not need to compensate for delayed ACKs since they only reduce the number
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of observations driving the congestion ratio and do not distort the magnitude of the congestion

signal, as they do for ECN markings. Similarly, the number of RTT measurements can be fur-

ther reduced when the lower layers of the network stack or hardware implement segmentation

offloading, which aggregates TCP’s segments into larger chunks before sending them out onto

the network.

4.1.2 Slow Start

There are many variations of TCP Slow Start, in which the initial rate of transmission

rapidly increases, usually via window doubling. This phase is necessary because TCP does

not know the speed of the network. DCTCP shows that the standard method of doubling the

window size every RTT can quickly achieve full throughput while keeping queue occupancy

low with the help of ECN marking on switches.

Interestingly, the DCTCP Internet-Draft [13] does not specify Slow Start behavior,

and the 4.4 Linux DCTCP implementation appears to overshoot the ideal congestion window

and cause unnecessarily high RTTs. For this reason, when using ECN, Inigo exits Slow Start

immediately upon seeing the first ACK in a window with a CE marking. Other than that, Inigo

behaves the same as DCTCP when ECN is available. Matching the efficiency of an ECN-driven

Slow Start exit using only delay is challenging, with HyStart [58] probably the most successful

example of the technique.

Linux kernel implementations of HyStart in TCP CUBIC [59] and CDG [62] contain

some experimental changes. Both variants detect congestion during Slow Start with ACK trains

and when a late RTT is observed. They take the minimum of the first seven RTT samples
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and exit Slow Start immediately upon receiving one late RTT. The delay threshold, dthresh,

used by CUBIC in Linux 4.2.0 is one eighth the minimum RTT, bounded between 32 and 128

milliseconds. CDG’s dthresh is also one eighth the minimum RTT, but it is calculated with a

microsecond clock and has an upper bound of 125 microseconds.

HyStart was designed to find an early, safe exit point to enter CUBIC’s aggressive

Congestion Avoidance phase. But the threshold was increased to one eighth in 2014 because

one sixteenth was too sensitive. That over-sensitivity was one of the reasons Linux network-

ing maintainer David Miller recommended disabling HyStart by default [104]. Interestingly,

CUBIC’s new threshold is within 1.8% of the initially recommended threshold for DCTCP [4].

Algorithm 3 Inigo Slow Start.

for every ACK do
if cwnd ≤ ssthresh∧ samples≥ 8 then

F ← RT T slate/RT T sobserved
αRT T ← (1−g)×αRT T +g×F
if αRT T > 0 then

ssthresh← cwnd− cwnd_cnt×α/2
end if

end if
end for

Inigo sets aside HyStart’s ACK train heuristic, exiting Slow Start only upon seeing

an RTT that exceeds RT Tmin + dthresh, as in algorithm 2. Similar to HyStart, Inigo requires a

minimum number of observations to initialize RT Tmin. But instead of simply exiting Slow Start

by setting the Slow Start threshold ssthresh to the current congestion window cwnd, Inigo uses

the congestion ratio to decrease the congestion window. Algorithm 3 uses RT T sobserved and

RT T slate from algorithm 2. If the congestion ratio is non-zero once eight RTTs are observed,

then it reduces cwnd by the congestion ratio similarly to algorithm 5 in § 4.1.3. Finally it assigns
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ssthresh = cwnd.

4.1.3 Congestion Avoidance and Response

Alizadeh, et al. proposed an RTT-fairness enhancement [5], in which DCTCP would

respond to congestion every ACK. The improvement counter-acts the typical TCP behavior of

flows with longer RTTs growing more slowly than flows with short RTTs by causing the latter

to respond to congestion more rapidly. Conventional wisdom is for a congestion response to

only occur once per RTT in order to see the effect of the response, but it is reasonable to use a

quicker response when the sum of the adjustments are designed to approximate the once-per-

RTT response.

As an analogy, passengers in a vehicle appreciate a driver who makes micro-adjustments

instead of slamming on the breaks or the accelerator, even if the average speed is the same.

While packets do not care about sudden changes in acceleration, a person feels it in the form

of long tail latencies. Fortunately, a TCP that makes sub-window adjustment should be able to

avoid over-steering.

This is about more than RTT-fairness. It affects convergence time for long lived flows

with the same RTT starting at different times. Flows beginning earlier will have a larger window

and respond more slowly than newer flows. And sub-window adjustments should allow short-

lived flows to enter and leave with smaller perturbations to long-lived flows.

Unfortunately, DCTCP’s RTT-fairness update algorithm needs to adjust the window

by a fraction of a packet, and implementations of DCTCP in kernel-space require the use of

whole integer variables. Alternatively, the sender’s window could be tracked in bytes like the
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Algorithm 4 DCTCP RTT-fairness Congestion Response.

for every ACK do
α← (1−g)×α+g×ECN

W ←W +

{
1/W if ECN = 0
1/W −α/2 if ECN = 1

end for

receiver’s window, allowing fine-grained changes to accumulate. Or the window mechanism

might be altered to allow sending at a different frequency, as has been proposed for scaling to

small RTTs [23]. However, both would require either modifying the whole TCP stack or adding

extra variables to the TCP congestion structure for private per-socket data. A sub-window

approach to RTT-fairness is simpler to implement and requires fewer variables.

As an example of the problem, if W = 200 and α = 300/1024, then upon seeing

and ECN marking W ← 100+1/200−150/1024≈ 199.86. Integer arithmetic would result in

W ← 200, and if α remains relatively constant, then W ← 200 after a window of ACKs. On the

other hand, the original once per RTT response would yield W ← 171.

Algorithm 5 Inigo RTT-fairness Congestion Response.

for every Wsub ACKs, where 1 <Wsub <W do
if α > 0 then

W ←W −Wsubα/2
end if

end for
for every window do

W ←W +2
end for

Linux implements Congestion Avoidance with a counter snd_cwnd_cnt, which is

incremented by the number of ACKed packets until snd_cwnd_cnt reaches snd_cwnd and

snd_cwnd is incremented by one. Similarly, snd_cwnd can be decremented by a fractional

68



packet by responding every N ACKs as in algorithm 5. I observed (§ 4.4) that a sub-window

response sometimes backs off a little too much, and I found that Congestion Avoidance of

W ←W + 2/W ensured better link utilization. It does not significantly alter the DCTCP fluid

model analysis [5] since its impact on the average per-flow window size is small. At most, it

causes flows to operate more often in the primary operating regime.

Also, since two is much smaller than the largest sensible window for an unloaded

path, incrementing by two satisfies the additive increase policy stated by Jacobsen [70]. In

appendix D Jacobson elaborated on the choice of the 1-packet increase, saying that the goal

was to limit the average loss rate caused by gently probing for bandwidth to <1%. While the

1-packet increase was on the aggressive side for Arpanet with its 4-5 packet largest sensible

window, later TCPs such as CUBIC showed the need for more aggressive probing on long, fat

networks. Furthermore, Inigo can afford a more assertive probe for bandwidth since it uses

delay to keep bottleneck buffers low and is unlikely to cause packet loss.

The frequency of response must be balanced with sensitivity to the congestion ratio,

αmin, calculated with equation (4.4). For instance, a response interval Wsub = 20 and a maximum

congestion ratio αmax = 1024 would be able to adjust the window in response to α≥ 104. The

smallest sub-window that could make any adjustments below α = αmax would be Wsub = 3, with

α≥ 684. Note that increasing the scaling factor of α does not significantly improve sensitivity.

αmin← ⌈2αmax/Wsub⌉+


1 ifαmin mod 2 = 1

0 ifαmin mod 2 = 0

(4.4)
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4.2 TCP Inigo Receiver

The second, separate congestion control that makes up TCP Inigo is a receiver-side

only modification that detects congestion by monitoring the accumulation of differences in One

Way Delays (OWDs). The receiver controls congestion in a style similar to DCTCP via the

receive window. Theoretical benefits of receiver-side congestion control include: (1) switch

configuration is unnecessary, (2) TCPs senders are forced to use a maximum window size cal-

culated by a single algorithm instead of a variety of algorithms, and (3) mistaken maximum

windows sizes due to ACK loss are corrected upon next ACK.

4.2.1 Relative Forward Delay

Relative Forward Delay (RFD) was defined as the difference of OWDs by Parsa, et

al. [119] when they used it in the congestion control of TCP Santa Cruz. Example RFDs are

shown in Figure 4.2, where S is the delta between send timestamps, R is the difference between

receive timestamps, and RFD is DF , the delta between any pair of S and R. Calculating RFD

does not require clock synchronization, but it does require stable clocks of the same resolution.

The simulator implementation of TCP Santa Cruz required modifications to both the

sender and receiver, and results showed promise, but it was never tested on real networks. This

was evidently due in part to TCP Santa Cruz’s reliance on an experimental TCP option, unlike

this work.

Others have also used RFD to reason about bandwidth and congestion. Pathload [72]

used packet trains to probe the available bandwidth of a network. HyStart [58] found Pathload’s
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Figure 4.2: Examples of Increasing and Decreasing Relative Forward Delay Measurements.
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techniques unsuitable for integration with TCP, but used them as inspiration for its ACK-train

heuristic used as a signal to exit Slow Start.

The receiving side of TCP can use timestamps to calculate RFD, but unfortunately

the existing TCP timestamps are too coarse-grained for data centers. RFC 1323 and the updated

RFC 7323 [71, 15] both recommend a timestamp resolution between 1 millisecond and 1 second

per tick, whereas data center RTTs are measured in microseconds. Similarly unfortunate, the

receiver only has an estimate of the RTT in milliseconds, and it appears to be less than the actual

RTT in our experiments. This will tend to magnify the measurement of congestion since the

minimum RTT is used to define dthresh.

In order to accommodate both Internet and data center latencies, TCP could keep

track of minimum Si, j and Ri, j for consecutive packets. If RTTs and timestamp deltas for both

sender and receiver are less than or equal to one millisecond, then TCP could swap out the

millisecond timestamp operations for microsecond versions. Relying on both sides being able

to increase timestamp resolution would be the sort of change that would inhibit adoption. Also,

a side effect of increasing the timestamp resolution would be to reduce opportunities for Generic

Receive Offload [32].

Algorithm 6 shows how the running RFD total of DF
total and dthresh based on RT Tmin

can be used to mark bytes as late, similarly to DCTCP with ECN and Inigo’s sender with RTTs.

The receiver keeps track of the running sum of RFD using TCP timestamp value, (tsval), and

timestamp echo reply (tsecr) fields from the header. Inigo keeps earlier timestamps until the

clock resolution allows differences between sends and receives to be detected. If the total RFD

becomes negative, then that means the measurements started taking place when congestion was
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Algorithm 6 RFD Congestion Marking.

for each packet received do
if RT Tmin = 0∨RT T < RT Tmin then

RT Tmin← RT T
end if
bytestotal ← bytespkt
Si, j← tsval j− tsvali
Ri, j← tsecr j− tsecri

if Si, j = 0∧Ri, j = 0 then return
end if ▷ low clock resolution
DF

i, j← Ri, j−Si, j

DF
total ← max(0,DF

total +DF
i, j)

if DF
total ≥ dthresh then

byteslate← bytespkt
end if
tsvali← tsval j

tsecri← tsecr j

end for

already in progress, and therefore the total RFD is zeroed as a new baseline. The receiver’s

congestion ratio is updated using byteslate
bytestotal

similarly to Algorithm 2.

Whenever the total RFD exceeds dthresh given by equation (4.3), the receiver marks

Congestion Encountered (CE) bits on the next ACK. This is done just before the code that

DCTCP added to accurately transmit the extent of congestion using ECN despite delayed ACKs.

Algorithm 7 Congestion Ratio with RFDs.

for every window do
F ← byteslate/bytestotal
αRFD← (1−g)×αRFD +g×F
bytestotal ← 0
byteslate← 0

end for

The receiver tracks the congestion ratio and modifies the receive window in a fashion

similar to algorithms 3 and 5, except in bytes and with an immediate ACK sent every conges-
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tion window change. Because the algorithm is so similar, it is not included in this paper. The

receiver exits Slow Start immediately when DF
total exceeds dthresh instead of waiting for multiple

measurements like the sender. This is partly because the magnitude of RFD between consec-

utive packets is naturally much smaller than that of RTTs, and partly because the millisecond

granularity of TCP timestamps is not adequate for measuring RFD between consecutive packets

sent at a high rate.

RFCs 793 and 1122 strongly discourage shrinking the receive window since in-flight

packets would be dropped, but they also say that senders should be prepared for that case [123,

16]. However, Linux, at least, does not appear to be in danger of dropping packets due to

a shrinking receive window. It keeps quadruple the amount copied to user space in the last

RTT in order to handle packet losses, Slow Start, and three RTTs worth of data. Experiments

in Section § 4.4 with Inigo show that shrinking the receive window carefully results in fewer

retransmitted segments than would normally occur.

Essentially, because Linux receivers are already lying to the sender about having 4×

less buffer space than in reality, Inigo’s small DCTCP-style adjustments, and frequent ACKs are

in little to no danger of causing in-flight packets to be dropped. Other TCP stacks that wish to

implement receiver-side congestion control like Inigo should ensure that their receive buffer is

at least twice the size of the congestion window. This will prevent in-flight packets from being

dropped during extreme congestion when the window is halved over the span of one RTT.

RFC 793 states:

The mechanisms provided allow a TCP to advertise a large window and to sub-
sequently advertise a much smaller window without having accepted that much
data. This so called “shrinking the window,” is strongly discouraged. The robust-
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ness principle dictates that TCPs will not shrink the window themselves, but will
be prepared for such behavior on the part of other TCPs.

RFC 1122 states:

A TCP receiver SHOULD NOT shrink the window, i.e., move the right win-
dow edge to the left. However, a sending TCP MUST be robust against window
shrinking, which may cause the "useable window" (see Section 4.2.3.4) to become
negative.

If this happens, the sender SHOULD NOT send new data, but SHOULD re-
transmit normally the old unacknowledged data between SND.UNA and SND.UNA+SND.WND.
The sender MAY also retransmit old data beyond SND.UNA+SND.WND, but
SHOULD NOT time out the connection if data beyond the right window edge is
not acknowledged. If the window shrinks to zero, the TCP MUST probe it in the
standard way (see next Section).

DISCUSSION: Many TCP implementations become confused if the window
shrinks from the right after data has been sent into a larger window. Note that
TCP has a heuristic to select the latest window update despite possible datagram
reordering; as a result, it may ignore a window update with a smaller window than
previously offered if neither the sequence number nor the acknowledgment number
is increased.

4.3 Fluid Model

As described in Section 4.1.1, the DCTCP and Inigo sender-side fluid models are

composed of the following non-linear, delay-differential equations in which W (t) describes the

source’s window size, α(t) is the congestion ratio, q(t) is the queue size of the switch, R(t) is

the RTT of every flow, R∗ is an approximate fixed RTT needed to solve the equations, pq(t) is

the packet marking process on a switch queue, and ps(t) is the packet marking process on an

Inigo source. DCTCP and Inigo use all of the same equations except for pq(t) and ps(t), which

are mathematically equivalent. Those equations and their variables are described in Table 4.3.
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Variable Description
C link capacity (packets per second)
K marking threshold (1.5KB packets)
N number of flows
d propagation delay (seconds)
dq queueing delay (seconds)
dthresh delay threshold (seconds)
g gain
t time (seconds)
R(t) RTT of every flow (seconds)
R∗ approximate fixed RTT (seconds)
W (t) average of source window sizes (1.5KB packets)
α(t) perfect congestion ratio
p(t) packet marking process
pq(t) packet marking process on a switch queue
ps(t) packet marking process on a source
q(t) queue size of the switch (1.5KB packets)

Figure 4.3: Fluid model variables.

dW
dt

=
1

R(t)
−W (t)α(t)

2R(t)
p(t−R∗) (4.5)

dα

dt
=

g
R(t)

(p(t−R∗)−α(t) (4.6)

dq
dt

= N
W (t)
R(t)

−C (4.7)

pq(t) = 1{q(t)>K} (4.8)

Equation (4.5) represents the Congestion Avoidance phase of TCP where the win-

dow size is incremented by one packet per RTT. It subtracts the traditional half window upon
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congestion except it is modifies the reduction according to the extent of congestion that was

measured during the previous RTT. Equation (4.6) is a perfect continuous approximation of the

ratio of packets marked with congestion to the total number of packets. It is perfect in the sense

that all flows have a complete view of congestion, whereas in reality each flow would recieve a

sampling of the actual ratio base on the position of its packets in the bottleneck queue. Equa-

tion (4.7) describe the change in the bottleneck queue, the difference in the aggregate number

of packets sent by all flow minus the capacity of the link in packets per second.

5
Cd +K

⪅ g ⪅
1√

Cd +K
(4.9)

K ≈ 0.17Cd (4.10)

Alizadeh, et al. derived Equations (4.9) and (4.10) by analyzing the limit cycle so-

lution of equations (4.5)-(4.8), and determining the minimium normalized queue size during a

period for many values of g. They bounded g by noting the frequency of the marking process,

and by analyzing the convergence rate of a hybrid model.

dq =
q(t)
C

(4.11)

dthresh ≈ 0.17d (4.12)
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ps(t) = 1{dq>dthresh} (4.13)

Equations (4.11)-(4.13) directly follow from Equations (4.8)-(4.10)

Figure 4.4 replicates Figure 2 from [5] using inigo. See Listing A for an example

of the Mathematica code used to generate the plots. While Figure 4.4 initially appears much

different, that is only because it uses the recommended threshold of K ≈ 0.17Cd instead of the

K ≈ 0.78Cd = 65 from the realworld 10Gbps experiments done in [4]. In those experiments,

Alizadeh, et al. observed that DCTCP only approached full throughput utiliation when using a

threshold K ≥ 65 due to the inherent burstiness of the existing hardware and software stack. If

dthresh = 0.78d in Listing A, or K ≈ 14.2 in A, then DCTCP and Inigo plots would be identical.

Despite the caveats mentioned above, this simple fluid model gives us confidence that

the mathematics behind a congestion ratio attenuating the window backoff is basically sound.

Figure 4.4 plots the numerical solution of Inigo’s equations, and like DCTCP it can theoretically

keep queue sizes low even when the maximum possible number of flows are vying for the same

link.

One important fact to keep in mind is that the fluid model is continuous, whereas

TCP operates discretely at the packet level. Not only that, but TCP traditionally only responds

to congestion once per RTT in order to observe the effects of its changes. The authors of

DCTCP did propose a variant with a per packet response and simulations showed promise, but

all current DCTCP implementations respond once per RTT.

The fluid model makes it easy to perform parameter sweeps. In particular, several
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Figure 4.4: Inigo Fluid Flow Model.

TCPs have proposed decreasing the traditional backoff from W/2 to W/3. Note that the con-

gestion ratio in Figure 4.4 is at most 0.56 up to 20 flows, where the backoff would be 0.28W .

See the Figure A.2 in the appendix for the full results, but Figure 4.5 shows the effects of a one

third window reduction (modified by the congestion ratio) for 20 flows. Even though the range

of window reductions are similar in magnitude, the W/3 flows drive closer to the ideal window

size of 3.5 and they keep the queue size below half of the W/2 flows.

There is little effect of different reduction limits for fewer flows, but the story is not

as good for W/3 reductions as the number of flows increase beyond. Its standing queue is much

higher with 100 flows, as seen in Figure 4.6. In some sense, the congestion ration α is not

simply a measure of congestion, but also a measure of contention. A larger number of flows

will naturally drive the average α higher.

The simple fluid model can be extended to tease out whether or not there is any benefit
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Figure 4.5: One-third Window Reductions Can Keep Queue Sizes Lower Than One-half
Window Reductions.

to lowering the maximum window reduction. Instead of solving for a single average dW
dt , I solve

for a system of dWi
dt , one for each flow. I will retain a single, “perfect” α for now. A per-flow α

could be calculated if I also tracked individual queue occupancies. However, tracking window

sizes independently allows for different initial window sizes and run times. That allows us to

see how well the equations converge to fairness in significantly more realistic scenarios than
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Figure 4.6: One-third Window Reductions Do Not Back Off Enough Under High Con-
tention.

before. See code listing A, which also improves upon the simple model by ensuring that the

queue size must be non-negative and window sizes never drop below two packets.
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Figure 4.7: One-third Window Reductions Do Not Back Off Enough Under High Con-
tention (20 flows).

4.4 Experiments

I have created TCP Inigo, which has two independent types of congestion control.

The key feature of the first component of Inigo is an RTT-based congestion ratio on the sender,

used as a fallback for DCTCP instead of TCP Reno when ECN is not supported. The key feature
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of the second component is an RFD-based congestion ratio used by the receiver to control the

receive window.

Next I present convergence and incast experiments based on those commonly found

in papers such as DCTCP [4]. Mininet [60] emulates a network using actual Linux code and

enables rapid development and easy reproduction of experiments. Mininet is configured to

provide a simple star topology with links running at 500Mbps and a 2ms one way delay between

hosts. This is the highest speed network reasonable to emulate at high fidelity on a modern

laptop, and while it is lower performance than one would find in a data center it is better than

most connections between a data center and a home user, a case of particular interest. Iperf2

[152] clients generate the flows to one server.

Each experiment was run 30 times. The stacked bandwidth graphs show results from

one representative run, and the probability distribution of results was analyzed for all results,

although only a subset are shown, in violin plots due to space restrictions. Mininet does not

currently allow link bandwidths above 1Gbps, and the fidelity of experiments can suffer long

before that, depending on the system. However, Mininet does allow rapid development and easy

reproduction of experiments.

The results of typical runs are shown using stacked bar graphs of iperf bandwidth vs.

time. Each bar averages bandwidth over one second, and each graph has the same scale. In

these graphs, the specific values are less important than the ability to see at a glance whether

or not the expected pattern of flow bandwidths has been achieved. Below each graph are Jain’s

Fairness Index [73], an index defined by the fraction of aggregate application-level throughput

achieved vs. theoretical rate ( rateachieved
ratetheoretical

), and an index of the 99th percentile of the Smoothed
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Roundtrip-time (SRTT) distribution ( RT Tmin
SRT T99th %ile

). Note that the latency index inverts the theo-

retical:measured ratio compared to the bandwidth indices. Each index ranges from 0 to 1.0, and

the combination of all three should be examined in order to evaluate the complete performance

of a congestion protocol. The probability density curves showing the variation in results over

30 runs are shown after the stacked bandwidth graphs using violin plots.

I compare Inigo against CDG (the best delay-based sender variant of TCP available

in Linux), CUBIC (the aggressive loss-based TCP that is default in Linux and in QUIC), and

DCTCP, all described in chapter 2. Performance-oriented Congestion Control (PCC) results are

not included because it was fragile, resulted in high latencies and packet loss, its experimental

latency sensitive utility function did not fully utilize the link.

The first columns results are from a scenario where only the sender can be modified

and ECN is typically not enabled or configured, such as in communication across networks

and hosts owned by different entities. The second column corresponds to a data center-like

environment in which the configuration of end-hosts and middle-boxes is coordinated. The

third column is like the first except only the receiver can be modified.

4.4.1 Convergence

The first experiment demonstrates whether a technique can converge quickly to equal

shares, maximize aggregate throughput, and minimize latencies while flows start and stop. Each

iperf2 client precedes the next by five seconds and continues transmitting five seconds longer

than the client that follows it. The bandwidth in each bar should be equally shared. Due to TCP

overhead, 0.97 is the maximum Goodput index possible in this scenario.
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Theoretical Ideal 10% Cap 1 Greedy Flow

1.0; 1.0; 1.0 1.0; 0.1; 1.0 0.2; 1.0; 1.0

Figure 4.8: Theoretical Ideal, 10% Capped, and 1 Greedy Flow examples.
Stacked Goodput vs. Time, five converging flows. Indices below: (1) Jain’s Fairness Index;
(2) Goodput Index; and (3) Latency Index of the Smoothed Round-trip-time distribution. Higher
is better, and 1.0 is ideal. See beginning of Section § 4.4 for explanations.

The ideal theoretical graph for the five converging flows is shown in Figure 4.8 along

with a situation where flows are fair with regard to each other, but are shaped to prevent them

from fully utilizing the link’s available bandwidth. Finally, one greedy flow is shown consuming

all available bandwidth.

In Figure 4.9, DCTCP and Inigo are seen in two scenarios. Senders, receivers, and

the network are all set up to cooperate in the first 1 administrative domain case, while only the

sender is configured in the >1 administrative domain case. Inigo’s worst case Latency Index

is up to 42× better the competition while its Fairness and Goodput Indices are similar. This

means that Inigo is good at fully utilizing links while encouraging good buffer behavior (i.e.

low occupancy and draining).

Figure 4.10 shows additional possible combinations beyond Figure 4.9. Each TCP

variant is tested without ECN support configured in the network, with ECN configured in the

network, and without ECN but with an Inigo receiver. The Inigo sender (last row) and receiver

(last column) have consistently better fairness, aggregate goodput, latencies compared to the
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Figure 4.9: Inigo improves upon DCTCP’s Latency Index up to 1.3× in simple environ-
ments and up to 42× when not all components can be modified.

other TCP variants in comparable situations.

Figure 4.12 shows how all modes of Inigo have comparable or better performance to

that of DCTCP. InigoECN would have the exact same performance profile as DCTCP if it did

not include a small Slow Start modification, where the first CE marked ACK in an observation

window causes an immediate exit. Our latency index emphasizes the importance of tight dis-

tributions, and InigoRTT does well without any help from ECN or the receiver. Other TCPs are

not shown because their goodput and 99th percentile latency indices are not competitive.
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Table 4.1: Inigo Receiver eliminates most retransmissions and drops when paired with
CUBIC and Reno.
TCP Sender (TCP TX), Receiver-side Congestion Control (Inigo RX?), percent of retransmit-
ted segments (%re-TX), percent of retransmitted segments that were lost (%Lost re-TX), and
percent of packets dropped by the bottleneck switch (%Drop), for five converging flows. Fewer
is better.

TCP Inigo %re-TX %Lost %Drop
TX RX? re-TX
CDG 0.0000 0.00 0.0000
CDG Y 0.0002 0.00 0.0000
CUBIC 1.5768 0.25 0.6660
CUBIC Y 0.0001 0.00 0.0000
DCTCP 0.0009 0.00 0.0005
DCTCP Y 0.0005 0.00 0.0005
DCTCP Reno fallback 0.8857 7.73 0.4293
DCTCP Reno fallback Y 0.0002 0.00 0.0000
Inigo 0.0005 0.00 0.0006
Inigo Y 0.0003 0.00 0.0009
Inigo RTT-based fallback 0.0004 0.00 0.0000
Inigo RTT-based fallback Y 0.0002 0.00 0.0000

Of course, good utilization and fair bandwidth sharing is only part of the story. A link

can be kept fully utilized if its buffer is kept filled to capacity, but the question is: how low a

buffer can be kept without letting it drain completely too often? It can be seen in Figure 4.13

that the worst case mode for the Inigo sender approaches the low queue length of ECN-enabled

TCPs, achieving greater aggregate goodput at a modest cost of increasing tail latencies. Inigo’s

receiver-side congestion control dramatically helps CUBIC in this case, preventing it from over-

flowing the bottleneck queue.

It is surprising that dropped packets or retransmitted segments were recorded in sev-

eral cases (e.g. DCTCP with ECN configured and Inigo without receiver-side congestion con-

trol) since they never cause the switch’s queue to overflow and the receiver window never

shrinks. Inigo’s and DCTCP’s retransmissions were all fast retransmissions, and occurred both
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with and without recorded loss. Retransmits were reported even when fast retransmit [10] and

early retransmit [9] were disabled, though the number of retransmits decreased. That decrease

indicates reordered packets triggered some retransmits.

Analysis of packet traces using Wireshark [113] found no retransmissions occurring

even while kernel stack traces confirmed that tcp_fastretrans_alert was being called. Fu-

ture work is necessary to determine if Linux retransmission counts are being incremented erro-

neously, or if there is some other cause for these strange results

If Linux retransmit counts are taken at face value, then Table 4.1 shows that the danger

of shrinking the receiver’s window is low or zero. Inigo recorded fewer or equal retransmissions

compared to DCTCP in every experiment. Furthermore, the Inigo receiver almost always re-

duces the number of retransmissions and drops. In the case of CUBIC and Reno, the Inigo

receiver helps dramatically. CDG is the only TCP that sees an increase—3 fast retransmissions

out of 1,721,616 sent segments.

Every TCP tested recorded segments being retransmitted—they occurred in over 86%

of the experiments run, regardless of whether the switch queue dropped packets or whether

receiver-side congestion control was used. In the cases where the need for retransmissions

seemed improbable, analysis of packet traces with Wireshark [113] indicated none occurred.

Figure 4.14 shows that Inigo’s receiver-side congestion control (i.e. window shrinking) is not

dangerous, and almost always reduces retransmissions for loss-based senders by 1000×.
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4.4.2 Incast

Our incast experiment was performed using 33 servers connected by Gigabit Ethernet,

with 32 iperf2 clients connecting to one server simultaneously and sending for 45 seconds. This

type of scenario is common in parallel storage systems.

Figure 4.15 shows similar looking fairness and goodput. However, the underlying

statistics gathered by the kernel indicate that CDG retransmitted 10000-13000 segments per

flow, CUBIC retransmitted 7000-10000 segments per flow, and Inigo retransmitted 2800 to

3700 segments per flow.

Figure 4.16 shows that Inigo performs well in a modest incast experiment. And the

Inigo receiver can do much to improve the fairness of DCTCP’s Reno fallback. CDG and

CUBIC results are not shown due to space restrictions and since their performance indices are

in line with those seen in the convergence experiment.

Initial results from testing 32-flow incast on Gigabit hardware indicate that Inigo re-

transmits less than half the number of segments per flow compared to CDG and CUBIC. Full

analysis of those results, as well as for 10 Gigabit Ethernet will be available for the final draft.

4.5 Availability

The kernel module implementing the RTT-based fallback for DCTCP, as well as the

receiver-side congest control patch, together called TCP Inigo in this paper, the experimental

results in this paper, and the Mininet experiment framework can be downloaded from GitHub.

https://github.com/systemslab/tcp_inigo
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Inigo should be easily back ported to earlier kernels, although the effectiveness of the

sender side will be strongly affected by the decreased RTT resolution before Linux 3.14, among

other changes. The receiver-side modification is mostly contained in two functions, inserted

before ECN processing and a seven line change to the receive window size selection code.

Although the location of the new function calls will be slightly different prior to DCTCP’s in-

clusion in Linux 3.17, the impact to Inigo with prior kernels should only effect DCTCP senders.

Of course, DCTCP’s receiver-side change could be backported too.
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Figure 4.10: Inigo’s worst-case 99th percentile Latency Index is > 2× better than the near-
est competitor, CDG, and is > 40× better than DCTCP’s Reno fallback. Receiver-side
Inigo improves fairness and latency of CUBIC, Inigo’s RTT-based fallback, and Reno.
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Figure 4.11: Five Flows Converge
Empirical CDF of TCP Smoothed RTT
Inigo’s RTT-based fallback achieves latencies similar to DCTCP and > 40× better than
DCTCP’s Reno fallback.
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Figure 4.12: Inigo’s ECN mode optimizes for latency while its delay-based mode targets
greater aggregate goodput while keeping tail latencies low. The Inigo receiver further
decreases latencies while sacrificing little bandwidth.
InigoRTT,RCV (RTT-based sender with Inigo receiver), InigoECN,RCV (ECN-based sender with
Inigo receiver), InigoECN (ECN-based Inigo sender), InigoRTT (RTT-based Inigo sender), and
DCTCP. Due to limited space, DCTCP’s Reno fallback mode and other TCPs with smaller
goodput and latency indices are not included. Probability density plot of goodput and latency
indices. Right and thicker is better. Boxplot shows median, quartiles, and outliers.
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Figure 4.13: Inigo’s RTT-based worst-case sending mode approaches the low queue depth
of the best-case scenario for DCTCP—Inigo’s maximum queue is half CDG’s.
Empirical CDF of Bottleneck Queue, five converging flows. Left and vertical is better. Results
with worse aggregate goodput or greater queue lengths not shown.
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Figure 4.14: Inigo’s receiver-side congestion control (i.e. window shrinking) is not dan-
gerous, and almost always reduces retransmissions for loss-based senders by 1000×.
RenoINIGO (DCTCP fallback with Inigo receiver), RenoSTD (DCTCP fallback with standard
receiver), CUBICINIGO (with Inigo receiver), and CUBICSTD (with standard receiver). Proba-
bility density plot of %retransmitted segments. Left and thicker is better.

CDG CUBIC Inigo

Figure 4.15: Inigo’s fairness, aggregate goodput, and latency indices are all significantly
superior to DCTCP’s Reno fallback.
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ECN Disabled ECN Enabled Receiver-side
and Configured Inigo

C
D

G

0.92; 0.96; 0.15 0.96; 0.78; 0.79 0.94; 0.95; 0.18

C
U

B
IC

0.79; 0.87; 0.08 0.96; 0.69; 0.77 0.90; 0.96; 0.07

D
C

T
C

P

0.45; 0.57; 0.02 0.97; 0.86; 0.79 0.96; 0.96; 0.06

In
ig

o

0.88; 0.95; 0.45 0.98; 0.87; 0.76 0.91; 0.95; 0.49
Figure 4.16: Inigo’s fairness, aggregate goodput, and latency indices are all significantly
superior to DCTCP’s Reno fallback.
Stacked Goodput vs. Time, five converging flows. Indices below: (1) Jain’s Fairness Index; (2) Normalized Goodput;

and (3) Latency index of the Smoothed Round-trip-time distribution. Higher is better.
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Figure 4.17: 9 Flow Incast - Receiver Congestion Control
Empirical CDF of Bottleneck Queue.
Inigo Receiver ...
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Figure 4.18: Empirical CDF of Bottleneck Queue, incast of eight flows. Left and vertical is
better. Results with worse aggregate goodput or greater queue lengths not shown.
Inigo’s RTT-based worst-case sending mode approaches the low queue depth of the best-
case scenario for DCTCP—Inigo’s maximum queue is a third of CDG’s.
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Chapter 5

Economic-Real-time Scheduling Theory

Foundations For Queueing Disciplines

Systems should maximize the value of work being accomplished while minimizing

the cost of completing it, rather than over-invest in the minimization of completion times. Ad-

mission policies like Shortest Flow First assume all flows of a given size are of equal value and

finishing small flows quickly is more valuable than completing a larger flow earlier. But there

are many cases where those assumptions are false. If the value of a given task is unknown, then

a system should minimize completion times, but tasks should be allowed to ask for specific

performance guarantees so that a system can use its resources effectively to maximize the value

of work.

“What is the benefit (e.g. monetary, entertainment, scientific)?” is a question about

what order a task should be admitted rather than a question about its place in a specific resource

schedule. If it is always of less benefit, then it might suffer from starvation, but that means more
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resources need to be provided and not that the scheduler failed.

Take a social network company, for example. They must primarily serve their user’s

social needs, but they make money by serving ads. There are a set of core social functions

that must work well, or else usage will decline and their ads will be worth less. Therefore, the

benefit of those core features is basically infinite. There are extra features (e.g. auto-playing

videos) that some users like, but are not essential. And then there are different types of ads that

generate different amounts of revenue.

If the social network company finds that its extra features are not always getting re-

sources, then they are still okay, but it is like a canary in a coal mine. If the advertisements

cannot get reservations, then the business needs to calculate how much lost revenue there is and

if it makes sense to buy more hardware. If the core functions cannot get reservations, then the

system is unusable for that number of users. The business either has to kick people off to keep

making enough money or take a loss while they bring up more resources.

“What are the economic costs and benefits?” is a separate question from “How

much?” and "When?", and it can be used to extend RAD reservations.

(rate, period,bene f it) (5.1)

All three factors need to be used in order to determine admission order along the lines

of WSJF, and then only rate and period are used in the actual resource schedule. The WSJF

equation (2.2) used in business possesses a term called Time Criticality that is not well defined,

although it includes notions of value decay and deadlines.
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urgency = Tc(t)/Td(t) (5.2)

Tc(t) =


period if t ≤ 0

period if t ≤ 0

(5.3)

Td(t) = tdeadline− tnow (5.4)

D2TCP’s [153] notion of urgency makes a good definition for Time Criticality, one

that is especially suited for distributed deadline-aware congestion control and QoS. It is essen-

tially the same as percent budget in my MS thesis [143], with the primary difference being that

the latter used the metric to directly define pacing rather than attenuating window back-off.

RAD avoids wasted effort(where other approaches do and it enables a clean, separate

decision for maximizing benefit at admission time (or periodically for long running RAD reser-

vations). Welch, et al. partially separated out the benefit optimization from resource allocation

[158].

5.1 Extending RAD With Benefit-based Admission Ordering

CoD = Rdirect +Rindirect +Rdecay (5.5)
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WSJF =
CoD

Duration
(5.6)

Businesses sometimes use the Weighted Shortest Job First (WSJF) algorithm [68,

133] to optimize the return on investment of work being done. One of the key parameters of

WSJF is the Cost of Delay (CoD, which is an aggregate cost rate price
second encompassing many

attributes. Equation (5.5) defines a reasonable, although not comprehensive, CoD. For a given

job the CoD is the sum of various estimates, including but not limited to: direct revenue (Rdirect),

indirect revenue (Rindirect) due to job dependencies, and revenue decay (Rdecay).

Rdecay might be a linearly increasing fraction of Rdirect , or it may be more complex.

For instance, it may have an absolute real-time quality in which the value of the job drops

instantly to zero because the opportunity was lost. Determining the value of Rdecay for a real-

time job is somewhat difficult because equation (5.5) cannot simply be made to have multiple

cases in which CoD goes to infinity if a deadline is not met. Instead, the job owner must choose

an Rdecay value that represents the cost of the job’s urgency without inflating its cost beyond the

revenue it can actually generate.

That sum of costs is then divided by the expected job duration, as in equation (5.6).

In business, job size is often used as a proxy for duration since it can be difficult to know. In

computer systems the amount of data involved in an operation and the amount of time required

to complete an operation on it can often be predetermined or bounded. Ideally, CoD is calculated

with absolute values. If relative values are used, then when a new job enters the system it may

cause every other job’s relative values to change. Highly dynamic systems should avoid the
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Job CoD Duration WSJF Deadline
($/s) (s) $/s2 (s)

A 1.8 0.09 20.00 0.15
B 0.6 0.06 10.00 0.20
C 1.5 0.05 30.00 0.16

A,C,B B,C,A C,B,A C,A,B
($) ($) ($) ($)

0.000 0.27 0.27 0.090
0.084 0.00 0.03 0.084

+ 0.135 0.09 0.00 0.000
0.219 0.38 0.30 0.174

Figure 5.1: Weighted Shortest Job First scheduling minimizes risk of not completing jobs oc-
curring later in an ordering.

A,C,B B,C,A C,B,A C,A,B
(s) (s) (s) (s)

A 0.09 0.20 0.20 0.14
B 0.20 0.06 0.11 0.20
C 0.14 0.11 0.05 0.05

Figure 5.2: Completion times for each job under different orderings. Only A,C,B and C,A,B
satisfy deadlines.

overhead of recalculations if possible.

Scheduling jobs according to the highest WSJF ratio, which is in units of price
second2 ,

minimizes the sums of the product of the CoD and duration.

Then, the deadlines of each job should be validated by summing the durations of the

current job and all previous jobs.

For example, consider a video website serving three types of jobs: A long adver-

tisements, B short advertisements, and C primary content with costs and durations described

in Table 2.1. The ordering A,C,B would be chosen by several different algorithms, including:

Highest CoD, Highest CoD×Duration, and Earliest Deadline First (EDF). A Lowest CoD First

algorithm would choose ordering B,C,A and Shortest Job First produces ordering C,B,A. Fi-

nally, WSJB results in ordering C,A,B. Only A,C,B and C,A,B satisfy deadlines as can be seen

by looking at the completion times in Table 5.2. And only C,A,B, chosen by WSJF, minimizes

the risk of not completing later jobs.
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Bmax =

2
(⌈

pc
pp

⌉
+1

)
rp pp− rp pp pp ≤ pc

2rp pp +max
(

0,rp pp−
(⌊

pp
pc

⌋
−1

)
rc pc

)
pp > pc

(5.7)

If all the jobs complete, then the ordering may not matter. However, not all potential

jobs can be admitted into a real system due to constrained resources, or they may not be able to

complete before their deadlines due to the ordering. The WSJF admission ordering can be used

to help ensure that user latency requirements are met while revenues are maximized.

RAD-based schedulers ensure that a task gets resources when it needs them instead

of over-investing effort. However, RAD schedulers do not maximize the benefit (e.g. monetary,

entertainment, scientific) of work. Fortunately, RAD can be easily extended with a notion of

benefit or CoD such that admission control is ordered according to WSJF and then existing

RAD scheduling algorithms ensure that admitted jobs complete on time.

5.2 Chained RAD Scheduler Analysis

If RAD schedulers are operating according to their design, then performance is guar-

anteed. However, the RAD model also enables sanity checking on the buffers between sched-

ulers. A producer-consumer model, RAD-Flows [122], derives equations 5.7 and 5.8 describing

the amount of buffer space Bmax and time Tmax is the amount of time it should take for the en-

tire buffer to be rewritten for a well behaved producer/consumer pair of two interacting RAD

(rate, period) reservations (rp, pp) and (rc, pc).
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Tmax =


2pc pp ≤ pc

3pp pp > pc

(5.8)

Given this knowledge, if an application suffers from overflow or underflow, RAD-

Flow buffers always indicate the direction of the problem. A RAD scheduler can also guard

against the unlikely situation where all RAD schedulers in a chain are misbehaving by produc-

ing and consuming too quickly.

tsts

producer (r, p)consumer (r, p)

circular buffer
B bytes

Figure 5.3: Circular RAD Buffer.

The following examples assume that a single circular buffer, as shown in Figure 5.3

can be efficiently accessed simultaneously by the producer and consumer, and a timestamp is

recorded whenever there is an attempt to move a pointer. Since we know the amount of time

it takes to rewrite a RAD-Flow buffer, the simple circular buffer is sufficient to illustrate the

general approach for other buffer data structures.
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The examples apply to both blocking and non-blocking producers. In the blocking

case, overflow does not result in lost data and RAD allows us to determine whether the producer

is blocking because it is attempting to write too quickly or whether the consumer caused the

block by reading too slowly. Non-blocking producers will lose overflowing data and the same

tests identify whether the producer or consumer bears responsibility.

If the producer pointer circles around to the consumer pointer (buffer overflow), then

there are three possibilities:

1. the producer is sending faster than its reservation

2. the consumer is too slow

3. both 1 and 2

producer =


fast tsp− tsc < Tmax

slow tsc− tsp ≥ Tmax

(5.9)

Since the producer has overtaken the consumer, we know that it has rewritten the

entire buffer from the consumer pointer on. It must have written to the consumer’s location

before the current value of the consumer timestamp. Because the buffer was sized according

to the RAD reservations, we know the producer’s pointer should not arrive at the consumer

pointer’s location before tsc + Tmax. Equation 5.9 uses that information to determine which

party is to blame for overflow, and figures 5.4 and 5.5 give examples of both cases.

Similarly, a buffer is underflowing when the consumer pointer circles to the producer

pointer. Equation 5.10 is a mirror to equation 5.9.
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7

5

producer (r, 1.5)

consumer (r, 1.2)

(7-5) < 3*1.5, fast

Figure 5.4: Overflowing RAD Buffer.

7

2

producer (r, 1.5)

consumer (r, 1.2) (7-2) > 3*1.5, slow

Figure 5.5: Underflowing RAD Buffer.

consumer =


fast tsc− tsp < Tmax

slow tsp− tsc ≥ Tmax

(5.10)

If both the producer and consumer are misbehaving, then overflow will be blamed on

the producer and underflow will be blamed on the consumer. Once their issues are fixed, the

buffer will continue to overflow or underflow, but the remaining bad actor will be blamed.
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With a chain of reservations, an overflowing upstream consumer might be the victim

of a slow downstream consumer. So, if there are several overflowing buffers in a row connect-

ing a chain of RAD reservations, then the blame falls on the furthest downstream consumer.

Similarly, the blame for a chain of underflowing buffers percolates up to the furthest upstream

producer.

There is another mode of misbehavior that is more difficult to detect. If a chain

contains several RAD schedulers, including a producer and consumer which are speed-matched

and both operating too fast or too slowly, then they will not overflow or underflow. However,

as long as one RAD scheduler in a chain is behaving correctly, it will point in the direction

of bad behavior. The only behavior dangerous to the system as a whole is when all producers

and consumers in a chain are too fast. This can be guarded against with a pair of timestamps

associated with the beginning of the buffer to track the last time it was produced or consumed

(pick one). Whenever the beginning is accessed, the current time is compared to the last time

and Tmax, see equation 5.11.

both fast if tsnow− tshead < Tmax (5.11)

In practice, comparisons will need to tolerate some small room for error to account

for scheduling quanta and small indeterminate overheads in timekeeping, etc.

The final case of misbehavior is when every producer and consumer in the chain are

too slow, but that would only happen when the ultimate producer is slow. In other words, it will

only happen when an application is using a fraction of its reservation. This is not a danger to
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the system and best-effort applications can benefit from the dynamic slack.

5.3 Enhancing Reduction to UNi-resource Scheduling

Modern network interface hardware often possesses multiple queues, and Linux has

supported them since the 2.6.27 kernel. That support currently allows an administrator sev-

eral options, including pinning hardware queues to cores or NUMA nodes. While minimiz-

ing context switches and maximizing cache use, pinning suffers from head-of-line blocking.

Alternatively, a round-robin scheduler can be used. While being fair and avoiding head-of-

line blocking, round-robin necessarily hurts efficiency due to frequent migrations. Multiqueue

scheduling can benefit from using RUN, which possesses provably low numbers of migrations

and can prevent head-of-line blocking while enforcing QoS.

In addition to the multiqueue support already mentioned, a network classifier control

group can tag packets to be handled by specific software queueing disciplines (qdiscs). Some of

the existing qdiscs are Token Bucket Filters, Stochastic Fair Queueing, Fair Queuing Controlled

Delay (FQ_codel), Random Early Detection, and Proportional Integral controller Enhanced.

Each of these is an attempt to mitigate congestion or reduce buffer bloat in the network. Most of

them concentrate on providing fairness, some provide coarse-grained QoS with priority classes.

Only one qdisc, the Hierarchical Fair Service Curve (HFSC) [149], claims to support

real-time traffic, and it has fallen out of favor largely due to its complexity. Configuring a

hierarchy of qdiscs to classify and shape traffic is not trivial, and HFSC separate link sharing

and real-time service curves have led to contradictory information in tutorials.
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FQ_codel is a “knobless” qdisc that combines Round-robin scheduling, packet pac-

ing, and marking or dropping of packets based on the time spent in the queue. Even though a

design goal was to reduce the amount of configuration, it still requires tuning based on expected

and target RTTs. And CoDel requires a rate-limiting qdisc working in conjunction with it if a

network does not supply its own back pressure. The CoDel part of FQ_codel is not intended for

purely internal data center network traffic.

Since RUN can schedule flows according to QoS constraints across multiple hard-

ware queues, it should be much simpler to configure. It would need to at least be able to

distinguish packets according to flow, if not sub-flows multiplexed over a single connection. In

that case, RUN would need to work in concert with a control group designed to tag packets with

(rate, period) information, in addition to the existing network priority control group.

By creating a RUN qdisc, not only will packets transmitted by Linux hosts be sched-

uled according to modern real-time theory, but it could lead to a RUN-based network fabric.

The Open Virtual Switch module in the Linux kernel is intended to be used for both virtual ma-

chine networks as well as the operating system on hardware switches, and Open Virtual Switch

uses the existing Linux qdiscs to enforce its QoS. Other Linux-based switches also exist. The

efficacy of RUN can first be tested using Mininet [85], and then on real hardware.

RUN was designed to use Earliest Deadline First (EDF) scheduling within packings,

but any optimal uniprocessor scheduling algorithm will work. In particular, since RUN already

uses knowledge of rates and periods, it would make sense to use the Rate Based Earliest Dead-

line (RBED) generalization of EDF since it enables integrated scheduling of hard real-time, soft

real-time (minimum rate with proportional sharing of slack), and best effort tasks [19].
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The theoretical underpinnings of RBED are based on the concept of Resource Alloca-

tion and Dispatching (RAD) reservations, which are (rate, period) tuples that obsolete priority

classes and previously defined rate-limit specifications. Prior non-realtime scheduling meth-

ods possess a limited number of relative, coarse-grained classes (priorities), require rates to be

strictly satisfied for any measured interval (e.g. Token Bucket Filters), have common periods be-

tween all tasks, or have a fixed linear mapping between periods to priorities. RAD reservations

enable arbitrarily fine-grained Quality of Service (QoS), possess meanings that stay consistent

in a dynamic environment, and allow straightforward reasoning about composing end-to-end

QoS.

Implementing RUN with EDF is easier than with RBED since EDF only uses the

tasks’ deadline information. RBED flexibility requires performing an online calculation of a

best effort task’s rate from the ratio of its individual weight to the total weight of all best effort

tasks.

If minimal preemptions with perfect proportional fairness between best-effort tasks is

desired, then RUN can accommodate that goal. However, RUN could take advantage of best-

effort tasks in a way similar to that of idle slack packing (see section 5.3.3). A per resource

reserve would encourage both schedule partitioning and work conservation. Tasks with guar-

anteed rates are Best Fit packed to the best-effort reserve limit while best-effort tasks are left

unassigned. RUN continues with idle slack packing, but when an idle task is executed or a

guaranteed task has no work (generating dynamic slack), RBED chooses the next best-effort

task that does have work.

Note that the LITMUS-RT implementation of RUN [29] does allow best effort tasks
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to use the processor when no real-time tasks are scheduled. While this is useful, RUN with

RBED would be simpler than a hierarchical scheduler such as that. Also, RBED can support a

broad range of quality of service. For instance, some tasks may only need best effort rates, but

do require deadlines to be met.

The description of RUN, as well as its implementation in simulators and in practice,

assumes the entire task set is known a priori and that it does not change throughout the life of

the system. Certainly this does not reflect reality and should be addressed. Furthermore, the

work required by the scheduler to adapt to these changes needs to be minimized.

If a task leaves the system, then it can be trivially swapped with an equal idle task

without disturbing the schedule (i.e. online slack packing). However, the change in available

utilization means that best effort tasks should recalculate their rates and be redistributed in order

to maintain perfect proportional sharing. Perhaps it would be best to only do this work for the

affected subsystem, even if that results in best effort tasks being treated somewhat unfairly

across the entire system.

If a feasible task enters the system and has a rate less than or equal to an idle task,

then it can be inserted with little effort. However, if the new task has a rate greater than any one

idle task, then RUN must create a new reduction tree. Of course, it would best to maintain the

previous reduction tree as much as possible in order to minimize one-time missed deadlines and

migration penalties.

In fact, there is an additional constraint in online packing when compared to offline

packing: in addition to task utilizations summing to less than or equal to one, the sums of their

remaining budget must be less than the time left until the furthest deadline of the packed tasks.
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This is always a constraint, but one that it is obviously satisfied when the system is offline.

Best-effort tasks, like idle tasks, make RUN’s job easier for dynamic task sets.

5.3.1 Sporadic Tasks

Defining all tasks as fixed-rate results in overprovisioning resources for a sporadic

task. This unused utilization is called dynamic slack. RUN does not, as of yet, support the

sporadic task model, so there is naturally interest in scheduling algorithms that do. It has been

an open question whether or not RUN can be directly modified to support sporadic tasks—the

original creators of it have, in fact, proposed the Quasi Partitioned Scheduling (QPS) algorithm

as an alternative [99, 98].

However, if RUN supports both best effort tasks and dynamic task sets as described

above, then it does not matter if a sporadic task is defined as a fixed-rate task. The dynamic

slack can be used by best effort tasks packed with sporadic tasks.

5.3.2 Resource Assignment

The creators of RUN were primarily concerned with producing the set of tasks that

should run at any given time. Their task-to processor assignment scheme is simple:

1. leave an executing task on its current processor

2. assign idle tasks to their last-used processor

3. assign remaining tasks arbitrarily
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For systems expect zero slack or best effort tasks, it might also be worth the effort

to keep track of the set of each tasks’ m previously used resources. That way, if a task must

migrate repeatedly, then it is more likely to migrate within a subset of the resources rather than

amongst all of the resources within its subsystem. In other words, this heuristic should help on

NUMA systems where the cost of migration becomes much larger between NUMA nodes.

5.3.3 Offline Bin Packing

The effectiveness of the pack step in RUN’s offline reduction phase determines the

performance of the algorithm in terms of the number of preemptions caused per job. The authors

prove that each release event in a p-level reduction tree causes at most ⌈(p+1)/2⌉ preemptions,

and so RUN suffers an average of no more than ⌈(3p+1)/2⌉ preemptions per job. Therefore,

packing heuristics that minimize both the number of reduction levels and the number of release

events are of interest.

The authors found that most packing heuristics achieved the same number of reduc-

tion levels as long as the task rates were sorted in descending order. Best Fit Descending

achieves fewer preemptions and migrations than the others due to its packing of high rate tasks

together first. Worst Fit Descending performs worse in this regard because it spreads out high

rate tasks among bins, increasing the likelihood that one of those tasks must be preempted more

often.

High rate tasks are at greater risk of suffering preemption than low rate tasks because

they utilize a greater percentage of their period. If high rate tasks are packed together first,

as in Best Fit Descending, then short period tasks are limited in the number of tasks they can

114



preempt. Likewise, a long period task can only be preempted by a limited number of tasks. This

vulnerability of high rate tasks also helps explain the humps in preemptions and migrations in

Levin’s figure 3.10 [91]. With a number of tasks, t, and resources m, the tasks are particularly

vulnerable when m < t < 2m on a fully utilized system.

Intuitively, one would expect tasks with similar periods (e.g. harmonic) to decrease

the number of release events, and Levin did report testing that hypothesis with a Least Common

Multiple (LCM) Fit heuristic in his dissertation. While LCM-fit sometimes results in trees with

more reduction levels, it still achieves 4-5% fewer preemptions and migrations. Unfortunately,

it comes at the cost of significantly greater algorithmic complexity.

By analyzing the number of additional events when a long period task is packed with

successively shorter period tasks in figure 5.6, It can be seen that LCM-fit fails to minimize

some events. When periods shorten, as in tasks 8 and 9, the least common multiple remains

small with task 1, but the number of release events continues to increase. If several tasks with

the same periods are encountered, then the packing benefits from overlapping events. However,

it would be better to pack a few tasks that were within half a period length of a long task rather

than a few beyond the 2nd harmonic.

p
1st harmonic
7/8p
3/4p
5/8p
2nd harmonic
3/8p
3rd harmonic
4th harmonic

0
11/8

11/4

13/8

1
21/3

2
3

Releases
Per p

Figure 5.6: The Effect Of Period Length On Events.
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In addition to measuring the preemptions caused per job, it would be illuminating to

compare preemptions per time unit. Since small rate jobs are less likely to be preempted, the

number of preemptions per job could look low even if the per time unit count is high.

There are considerations other than the number of preemptions that might make a

heuristic attractive. Below are brief descriptions of some different packing heuristics and when

they might be most useful.

Slack Packing As described in the original paper, Slack Packing increases the number of inde-

pendent partitions (decreasing migrations) when the system utilization is less than 100%.

By adding idle tasks at the end of the first packing (regardless of primary packing heuris-

tic).

Worst Fit Decreasing Rates Optimizes spreading large tasks amongst resources, making it

suitable for less highly loaded situations or when it is more important to use each resource

rather than using fewer resources. For instance, this would benefit parallel applications.

Best Fit Decreasing Rates Minimizes the number of packings and reduction levels (minimizes

preemptions and migrations), so it would be suitable for highly loaded situations or when

it is more important to use fewer resources than using all resources.

These heuristics have already been evaluated in terms of performance (i.e. preemp-

tions and migrations) by the original authors. Further work would be necessary to determine

which would be appropriate for a power saving policy. It might be that it would be necessary

to switch between Worst and Best Fit, as the former might allow all processors to finish more

quickly where the latter could keep some cores off entirely.
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Certainly other heuristics exist, but among these Slack Packing with Best Fit Decreas-

ing Rates is both simple to implement and one of the best performing heuristics.

5.3.4 Affinity

Some work needs to be done to make RUN support resource affinity. This is common

in the case of processes in a NUMA system that want to be as close to an attached device (e.g.

network card or GPU) as possible. Affinity can be thought of as a partial pre-specification of

the packings and placements. Pinning a task to a single resource should be easy to take into

account, and regular recurring sets (i.e. a NUMA nodes) should also be straightforward to

support. However, arbitrary affinity sets may be unworkable since they might over-constrain

the packing problem. At any rate, affinity support in RUN requires further investigation.

In general, it is unlikely that RUN can be directly applied to global load balancing of

routes. However, if the switches themselves use RUN as just described, then they should be able

to provide valuable information to a global load balancing algorithm: the amount of unreserved

rate (i.e. static slack), dynamic slack, number of best-effort flows, which flows are underflow-

ing or overflowing and whether they blame upstream or downstream. This information, while

simple, should be much more useful to a global scheduler than basic rate and drop information.

The rest of this section discusses why it would be nice to use RUN for route management and

why it is difficult to apply it.

The edges of networks present an interesting opportunity for RUN. Whether it is a

global WAN gateway where bandwidth is extremely limited and precious or the high perfor-

mance interconnect between a supercomputer and a parallel file system, flows should maximize
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the utilization of the available routes while preventing congestion and data loss. And in cases

where there are multiple links or paths that immediately reconverge on the other side, as in

figure 5.7, RUN can be applied.

.

.

.

M

1

2

Figure 5.7: Reduce to Unipath.

As opposed to traditional distributed multipath routing approaches described by Hopps

[66], RUN would be used by a SDN (Software Defined Network) Controller or a Subnet Man-
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ager (in the case of Infiniband) to assign routes to flows after they have passed the standard RAD

admission control test: Would the new flow’s rate cause the total flow rate to exceed capacity?

To be clear, RUN would not be discovering the topology of the network. It is schedul-

ing the routes given to it to manage. Also, it would take further work to make RUN take

considerations other than a path’s cost (e.g. security) into account.

Can RUN be used in the case where the multiple routes are not immediately recom-

bined as Jain, et al. addressed with B4 [74]? Perhaps, but there are two big concerns. First,

how would one partition the graph so that at least the left hand side of the routes looks identical

from RUN’s perspective? In other words, if the graph is simply bisected, then RUN assumes

that any route will work and could overload the left side of the graph. It appears RUN would

have to execute recursively on the graph from the edges inward.

That brings up the second concern: when RUN schedules a task it may migrate be-

tween several of the resources. At that point, the single fixed-rate task becomes a sporadic task

on each of those resources. Treating them each as fixed-rate will quickly exhaust the resources

even though best effort flows could suck up the dynamic slack. So, even a hard real-time flow

would be forced to become several best-effort flows, and thus comprise the original guaran-

tee. An additional concern arises from the best effort tasks. Just because they can use up the

dynamic slack at one hop does not mean the next hop can handle the burst.
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Chapter 6

Future Work

In addition to testing Inigo in a much greater variety of conditions, I have several

enhancements planned:

Linux now supports Kathleen Nichols’ minimum RTT tracking algorithm [166], which

might enable Inigo to adapt to situations with changing RTTs such as when a flow is forced to

switch to a longer route or the underlying media toggles Forward Error Correction.

A variant of Inigo that uses a per-ACK congestion response was inspired by Bob

Briscoe’s mention of Relentless TCP [100] in his review of the DCTCP Internet Draft [21].

Preliminiary experiments show that it yields superior fairness, goodput, and latency indices

compared to the sub-window response used in this paper. However, it appears to require mod-

ifications to Slow-start and Congestion Avoidance that need detailed analysis and a theoretical

proof of correctness.

The effectiveness of the Inigo receiver would greatly benefit from microsecond time-

stamps, just as the sender did moving from millisecond to microsecond RTTs. An administrative
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configuration may be the only safe way of maintaining compatibility across domains. However,

it may make sense to automatically toggle between resolutions depending on the RTT or the

spacing between packets.

I also plan on adding deadline-awareness to Inigo similar to D2TCP [153], but with

a probabilistic response instead of one adjusted by a fractional power (i.e. gamma) function.

Using a “coin flip” technique where a pseudo-random number is compared to a scaled urgency

should be more amenable to a kernel implementation than a fractional power function. Incor-

porating randomness in the window adjustment may also help desynchronize long-lived flows.
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Chapter 7

Conclusion

Providing good performance guarantees on networks is impossible without first solv-

ing the problem of congestion, which negatively impacts even high speed networks like In-

finiband. This dissertation presents both sender and receiver-side delay-based techniques for

congestion control, as well as presenting a foundation for clean slate queue scheduling designs

based on economic and real-time scheduling theory.

The difficulty inherent in deploying new technology on networks provided part of the

motivation for the TCP congestion control variant, Inigo, described in this paper. Inigo does not

require special hardware, driver development, or switch configurations.

Inigo’s sender-side RTT-based congestion control integrates with DCTCP and pro-

vides a fallback that resembles DCTCP’s ECN-based behavior. The receiver-side RFD-based

congestion control, though less effective than the sender-side due to coarse-grained timestamps,

is able to encourage fair bandwidth sharing and smaller buffer occupancy of TCP senders such

as CUBIC and Reno. We refer to both of these modifications as TCP Inigo in this paper, even

122



though each modification can be brought into service separately.

When Inigo’s sender and receiver are used together, their latency, bandwidth, and

fairness indices are up to 1.3× better than the best deployable solution. And only senders can

be modified, Inigo performs up to 42× better than the competition.
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Appendix A

Fluid Flow Model
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Figure A.1: DCTCP Fluid Flow Model.

1 Bpp = 8* 1500 ;

Cap = 10 Power [ 1 0 , 9 ] / Bpp ;

3 K = 6 5 ;

d = 100 Power [ 1 0 , −6];

5 g = 1 / 1 6 ;

Nf = 2 ;

7 p [ t _ ] := P i e c e w i s e [ { { 1 , q [ t ] > K} , {0 , q [ t ] <= K} } ]
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Figure A.2: Inigo One-third Backoff Fluid Flow Model.

9 n s o l 2 =

NDSolve [

11 { W’ [ t ] == 1 / ( d + q [ t ] / Cap ) − W[ t ] \ [ Alpha ] [ t ] ( p [ t − ( d + K / Cap ) ] ) / ( 2 ( d + q [ t ] / Cap ) ) ,

W[ t / ; t <= 0] == 10 ,

13 \ [ Alpha ] ’ [ t ] == g / ( d + q [ t ] / Cap ) ( p [ t − ( d + K / Cap ) ] − \ [ Alpha ] [ t ] ) ,

\ [ Alpha ] [ t / ; t <= 0] == 0 ,

15 q ’ [ t ] == Nf W[ t ] / ( d + q [ t ] / Cap ) − Cap ,

q [ t / ; t <= 0] == 0} ,

17 { W[ t ] , \ [ Alpha ] [ t ] , q [ t ] } ,

{ t , 2 , 2 . 0 2 }

19 ]

P l o t [ E v a l u a t e [ {W[ t ] } / . F i r s t [ n s o l 2 ] ] , { t , 2 , 2 . 0 2 } , P lo tRange −> A l l ]

21 P l o t [ E v a l u a t e [ { \ [ Alpha ] [ t ] } / . F i r s t [ n s o l 2 ] ] , { t , 2 , 2 . 0 2 } , P lo tRange −> A l l ]

P l o t [ E v a l u a t e [ { q [ t ] } / . F i r s t [ n s o l 2 ] ] , { t , 2 , 2 . 0 2 } , P lo tRange −> A l l ]

code/dctcpfluidflow–fig2.txt

Bpp = 8 * 1500 ;

2 Cap = 10 Power [ 1 0 , 9 ] / Bpp ;

d = 100 Power [ 1 0 , −6];

4 d t h r e s h = 0 . 1 7 d ;

g = 1 / 1 6 ;
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6 Nf = 2 ;

p [ t _ ] := P i e c e w i s e [ { { 1 , q [ t ] / Cap > d t h r e s h } , {0 , q [ t ] / Cap <= d t h r e s h } } ]

8

n s o l 2 =

10 NDSolve [

{ W’ [ t ] == 1 / ( d + q [ t ] / Cap ) − W[ t ] \ [ Alpha ] [ t ] ( p [ t − ( d + d t h r e s h ) ] ) / ( 2 ( d + q [ t ] / Cap ) ) ,

12 W[ t / ; t <= 0] == 10 ,

\ [ Alpha ] ’ [ t ] == g / ( d + q [ t ] / Cap ) ( p [ t − ( d + d t h r e s h ) ] − \ [ Alpha ] [ t ] ) ,

14 \ [ Alpha ] [ t / ; t <= 0] == 0 ,

q ’ [ t ] == Nf W[ t ] / ( d + q [ t ] / Cap ) − Cap ,

16 q [ t / ; t <= 0] == 0 } ,

{ W[ t ] , \ [ Alpha ] [ t ] , q [ t ] } ,

18 { t , 2 , 2 . 0 2 }

]

20 P l o t [ E v a l u a t e [ {W[ t ] } / . F i r s t [ n s o l 2 ] ] , { t , 2 , 2 . 0 2 } , P lo tRange −> A l l ]

P l o t [ E v a l u a t e [ { \ [ Alpha ] [ t ] } / . F i r s t [ n s o l 2 ] ] , { t , 2 , 2 . 0 2 } , P lo tRange −> A l l ]

22 P l o t [ E v a l u a t e [ { q [ t ] } / . F i r s t [ n s o l 2 ] ] , { t , 2 , 2 . 0 2 } , P lo tRange −> A l l ]

code/inigofluidflow–fig2.txt

Nf = 4 0 ;

2 e x p o r t d i r = " / tmp / " ;

4 SeedRandom [ 1 ] ;

Win i t = RandomInteger [ { 2 , 46} , 1 0 0 ] ;

6 t s t o p = 0 . 0 3 5 ;

t e n d = 0 . 0 8 ;

8 Wstop = {

tend , t s t o p , t s t o p + 0 . 0 0 4 , t s t o p + 0 . 0 0 8 , t s t o p + 0 . 0 1 2 ,

10 t s t o p + 0 . 0 1 6 , t s t o p + 0 . 0 2 0 , t s t o p + 0 . 0 2 4 , t s t o p + 0 . 0 2 8 ,

t s t o p + 0 . 0 3 2 ,

12 t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

14 t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

16 t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

18 t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

20 t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p

} ;
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22

bpp = 8* 1500 ; ( * b i t s p e r p a c k e t * )

24 Cap = 10 Power [ 1 0 , 9 ] / bpp ; ( * pps l i n k c a p a c i t y * )

d = 100 Power [ 1 0 , −6] ; ( * Seconds RTT* )

26 d t h r e s h = 0 . 1 7 d ; ( * Delay c o n g e s t i o n t h r e s h o l d * )

g = 1 / 1 6 ; ( * g a i n * )

28 b = 0 . 5 ; ( * b a c k o f f f a c t o r * )

30 pqd [ t _ ] := P i e c e w i s e [ { { 1 , q [ t ] / Cap > d t h r e s h } , {0 , q [ t ] / Cap <= d t h r e s h } } ]

pq0 [ t _ ] := P i e c e w i s e [ { { 1 , q [ t ] > 0} , {0 , q [ t ] <= 0}}]

32 pw0 [ t _ ] :=

P i e c e w i s e [ { { 0 , t <= Wstop [ [ i ] ] } ,

34 { (1 + 0 . 5 S u b s c r i p t [W, i ] [ t ] ) / ( d + q [ t ] / Cap ) , t > Wstop [ [ i ] ] } } ]

36 Windows =

Tab le [ { S u b s c r i p t [W, i ] ’ [ t ] ==

38 1 / ( d + q [ t ] / Cap ) − S u b s c r i p t [W, i ] [ t ] \ [ Alpha ] [ t ] b pqd [ t − ( d + d t h r e s h ) ] / ( d + q [ t ] / Cap ) − pw0 [ t ] ,

S u b s c r i p t [W, i ] [ t / ; t <= 0] == Win i t [ [ i ] ] } , { i , Nf } ]

40 Weqns = Tab le [ { S u b s c r i p t [W, i ] [ t ] } , { i , Nf } ]

42 n s o l =

NDSolve [

44 {Windows ,

\ [ Alpha ] ’ [ t ] == g / ( d + q [ t ] / Cap ) ( pqd [ t − ( d + d t h r e s h ) ] − \ [ Alpha ] [ t ] ) ,

46 \ [ Alpha ] [ t / ; t <= 0] == 0 ,

q ’ [ t ] == ( Sum[ S u b s c r i p t [W, i ] [ t ] , { i , 1 , Nf } ] ) / ( d + q [ t ] / Cap ) − Cap pq0 [ t ] ,

48 q [ t / ; t <= 0] == 0} ,

{Weqns , \ [ Alpha ] [ t ] , q [ t ] } ,

50 { t , 0 , t e n d } ,

MaxSteps −> 300000

52 ]

54 P l o t [ E v a l u a t e [ Weqns / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

P lo tRange −> F u l l , P l o t L e g e n d s −> F l a t t e n [ Weqns ] ]

56 L o g L i n e a r P l o t [ E v a l u a t e [ Weqns / . F i r s t [ n s o l ] ] , { t , 0 . 0 0 1 , t s t o p } ,

P lo tRange −> F u l l , P l o t L e g e n d s −> F l a t t e n [ Weqns ] ]

58 P l o t [ E v a l u a t e [ { d + q [ t ] / Cap} / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

P lo tRange −> F u l l , P l o t L e g e n d s −> {" d " } ]

60 P l o t [ E v a l u a t e [ { q [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

P lo tRange −> F u l l , P l o t L e g e n d s −> {q [ t ] } ]

62 LogP lo t [ E v a l u a t e [ { q [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

P lo tRange −> {{ Automat i c } , {1 , Automat i c }} , P l o t L e g e n d s −> {q [ t ] } ,
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64 T i c k s −> { { 0 . 0 1 , 0 . 0 2 , 0 . 0 3 , 0 . 0 4 , 0 . 0 5 , 0 . 0 6 , 0 . 0 7 , 0 . 0 8 , 0 . 0 9 , 0 . 1 ,

0 . 1 1 , 0 . 1 2 } , {0 , 1 , 10 , 25 , 50 , 100 , 350 , 1000 , 2000}}]

66 P l o t [ E v a l u a t e [ { \ [ Alpha ] [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

P lo tRange −> Automat ic , P l o t L e g e n d s −> { \ [ Alpha ] [ t ] } ]

68

Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "−window . pdf " ,

70 P l o t [ E v a l u a t e [ Weqns / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

P lo tRange −> F u l l ] ]

72 Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "−window− l o g l i n e a r . pdf " ,

L o g L i n e a r P l o t [ E v a l u a t e [ Weqns / . F i r s t [ n s o l ] ] , { t , 0 . 0 0 1 , t s t o p } ,

74 P lo tRange −> F u l l , P l o t L e g e n d s −> F l a t t e n [ Weqns ] ] ]

Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "− r t t . pd f " ,

76 P l o t [ E v a l u a t e [ { d + q [ t ] / Cap} / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

P lo tRange −> F u l l ] ]

78 Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "−queue . pdf " ,

P l o t [ E v a l u a t e [ { q [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

80 P lo tRange −> F u l l ] ]

Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "−queue−l o g p l o t . pdf " ,

82 LogP lo t [ E v a l u a t e [ { q [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

P lo tRange −> {{ Automat i c } , {1 , Automat i c }} ,

84 T i c k s −> { { 0 . 0 1 , 0 . 0 2 , 0 . 0 3 , 0 . 0 4 , 0 . 0 5 , 0 . 0 6 , 0 . 0 7 , 0 . 0 8 ,

0 . 0 9 } , {0 , 1 , 10 , 25 , 50 , 100 , 350 , 1000 , 2 0 0 0 } } ] ]

86 Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "− a l p h a . pdf " ,

P l o t [ E v a l u a t e [ { \ [ Alpha ] [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

88 P lo tRange −> Automat i c ] ]

code/inigofluidflow–table.txt

Nf = 4 0 ;

2 e x p o r t d i r = " / tmp / " ;

4 SeedRandom [ 1 ] ;

Win i t = RandomInteger [ { 2 , 46} , 1 0 0 ] ;

6 t s t o p = 0 . 0 3 5 ;

t e n d = 0 . 0 8 ;

8 Wstop = {

tend , t s t o p , t s t o p + 0 . 0 0 4 , t s t o p + 0 . 0 0 8 , t s t o p + 0 . 0 1 2 ,

10 t s t o p + 0 . 0 1 6 , t s t o p + 0 . 0 2 0 , t s t o p + 0 . 0 2 4 , t s t o p + 0 . 0 2 8 ,

t s t o p + 0 . 0 3 2 ,

12 t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,
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14 t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

16 t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

18 t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p ,

20 t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p , t s t o p

} ;

22

bpp = 8* 1500 ; ( * b i t s p e r p a c k e t * )

24 Cap = 10 Power [ 1 0 , 9 ] / bpp ; ( * pps l i n k c a p a c i t y * )

d = 100 Power [ 1 0 , −6] ; ( * Seconds RTT* )

26 d t h r e s h = 0 . 1 7 d ; ( * Delay c o n g e s t i o n t h r e s h o l d * )

g = 1 / 1 6 ; ( * g a i n * )

28 b = 0 . 5 ; ( * b a c k o f f f a c t o r * )

30 pqd [ t _ ] := P i e c e w i s e [ { { 1 , q [ t ] / Cap > d t h r e s h } , {0 , q [ t ] / Cap <= d t h r e s h } } ]

pq0 [ t _ ] := P i e c e w i s e [ { { 1 , q [ t ] > 0} , {0 , q [ t ] <= 0}}]

32 pw0 [ t _ ] :=

P i e c e w i s e [ {

34 {0 , t <= Wstop [ [ i ] ] } ,

{ (1 + 0 . 5 S u b s c r i p t [W, i ] [ t ] ) / ( d + q [ t ] / Cap ) , t > Wstop [ [ i ] ] } } ]

36

\ [ Alpha ] t h r e s h 1 = 0 . 5 ;

38 \ [ Alpha ] t h r e s h 2 = 0 . 1 9 ;

back [ t _ ] :=

40 P i e c e w i s e [ {

{ \ [ Alpha ] [ t ] ^ 2 , \ [ Alpha ] [ t ] >= \ [ Alpha ] t h r e s h 1 } ,

42 { 0 . 5 \ [ Alpha ] [ t ] , \ [ Alpha ] [ t ] >= \ [ Alpha ] t h r e s h 2 } ,

{ 1 . 0 1 \ [ Alpha ] [ t ] , \ [ Alpha ] [ t ] < \ [ Alpha ] t h r e s h 2 }} ]

44

Windows =

46 Tab le [ { S u b s c r i p t [W, i ] ’ [ t ] ==

1 / ( d + q [ t ] / Cap ) − S u b s c r i p t [W, i ] [ t ] \ [ Alpha ] [ t ] back [ t ] pqd [ t − ( d + d t h r e s h ) ] / ( d + q [ t ] / Cap ) − pw0 [ t ] ,

48 S u b s c r i p t [W, i ] [ t / ; t <= 0] == Win i t [ [ i ] ] } , { i , Nf } ]

Weqns = Tab le [ { S u b s c r i p t [W, i ] [ t ] } , { i , Nf } ]

50

n s o l =

52 NDSolve [

{Windows ,

54 \ [ Alpha ] ’ [ t ] == g / ( d + q [ t ] / Cap ) ( pqd [ t − ( d + d t h r e s h ) ] − \ [ Alpha ] [ t ] ) ,

\ [ Alpha ] [ t / ; t <= 0] == 0 ,
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56 q ’ [ t ] == ( Sum[ S u b s c r i p t [W, i ] [ t ] , { i , 1 , Nf } ] ) / ( d + q [ t ] / Cap ) − Cap pq0 [ t ] ,

q [ t / ; t <= 0] == 0} ,

58 {Weqns , \ [ Alpha ] [ t ] , q [ t ] } ,

{ t , 0 , t e n d } ,

60 MaxSteps −> 300000

]

62

P l o t [ E v a l u a t e [ Weqns / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

64 P lo tRange −> F u l l , P l o t L e g e n d s −> F l a t t e n [ Weqns ] ]

L o g L i n e a r P l o t [ E v a l u a t e [ Weqns / . F i r s t [ n s o l ] ] , { t , 0 . 0 0 1 , t s t o p } ,

66 P lo tRange −> F u l l , P l o t L e g e n d s −> F l a t t e n [ Weqns ] ]

P l o t [ E v a l u a t e [ { d + q [ t ] / Cap} / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

68 P lo tRange −> F u l l , P l o t L e g e n d s −> {" d " } ]

P l o t [ E v a l u a t e [ { q [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

70 P lo tRange −> F u l l , P l o t L e g e n d s −> {q [ t ] } ]

LogP lo t [ E v a l u a t e [ { q [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

72 P lo tRange −> {{ Automat i c } , {1 , Automat i c }} , P l o t L e g e n d s −> {q [ t ] } ,

T i c k s −> { { 0 . 0 1 , 0 . 0 2 , 0 . 0 3 , 0 . 0 4 , 0 . 0 5 , 0 . 0 6 , 0 . 0 7 , 0 . 0 8 , 0 . 0 9 , 0 . 1 ,

74 0 . 1 1 , 0 . 1 2 } , {0 , 1 , 10 , 25 , 50 , 100 , 350 , 1000 , 2000}}]

P l o t [ E v a l u a t e [ { \ [ Alpha ] [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

76 P lo tRange −> Automat ic , P l o t L e g e n d s −> { \ [ Alpha ] [ t ] } ]

78 Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "−a lpha2−b a c k o f f−window . pdf " ,

P l o t [ E v a l u a t e [ Weqns / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

80 P lo tRange −> F u l l ] ]

Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "−a lpha2−b a c k o f f−window− l o g l i n e a r . pdf " ,

82 L o g L i n e a r P l o t [ E v a l u a t e [ Weqns / . F i r s t [ n s o l ] ] , { t , 0 . 0 0 1 , t s t o p } ,

P lo tRange −> F u l l , P l o t L e g e n d s −> F l a t t e n [ Weqns ] ] ]

84 Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "−a lpha2−b a c k o f f− r t t . pd f " ,

P l o t [ E v a l u a t e [ { d + q [ t ] / Cap} / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

86 P lo tRange −> F u l l ] ]

Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "−a lpha2−b a c k o f f−queue . pdf " ,

88 P l o t [ E v a l u a t e [ { q [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

P lo tRange −> F u l l ] ]

90 Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "−a lpha2−b a c k o f f−queue−l o g p l o t . pdf " ,

LogP lo t [ E v a l u a t e [ { q [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,

92 P lo tRange −> {{ Automat i c } , {1 , Automat i c }} ,

T i c k s −> { { 0 . 0 1 , 0 . 0 2 , 0 . 0 3 , 0 . 0 4 , 0 . 0 5 , 0 . 0 6 , 0 . 0 7 , 0 . 0 8 ,

94 0 . 0 9 } , {0 , 1 , 10 , 25 , 50 , 100 , 350 , 1000 , 2 0 0 0 } } ] ]

Ex po r t [ e x p o r t d i r <> " i n i g o f l u i d f l o w −t a b l e−n " <> T o S t r i n g [ Nf ] <> "−a lpha2−b a c k o f f−a l p h a . pdf " ,

96 P l o t [ E v a l u a t e [ { \ [ Alpha ] [ t ] } / . F i r s t [ n s o l ] ] , { t , 0 , t e n d } ,
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Plo tRange −> Automat i c ] ]

code/inigofluidflow–table–alpha2.txt
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Figure B.1: RUN Scheduling 42 Tasks on 20 Resources.
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Figure B.2: RUN Scheduling 42 Tasks on 20 Resources.
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Table B.1: Preemption and Migration Statistics for RUN Scheduling 11 Tasks on Four Re-
sources.

Task Avg. Avg.
ID Preemptions/Job Migrations/Job

1 1.605 0.000
2 85.980 0.000
3 0.746 0.000
4 1654.500 13.500
5 75.786 0.000
6 17.000 1.965
7 118.848 0.000
8 24.730 1.000
9 9.235 1.915

10 285.400 0.000
11 71.409 1.833
12 186.833 2.500
13 1334.500 0.000
14 0.824 0.000
15 32.050 0.000
16 3.657 0.940
17 30.857 0.000
18 19.100 1.855
19 656.667 3.667
20 360.800 4.300
21 882.000 0.000
22 11.500 0.800
23 2031.000 0.000
24 259.150 3.400
25 24.390 1.780
26 0.194 0.000
27 86.975 2.550
28 262.000 0.000
29 90.000 0.000
30 153.500 0.000
31 16.730 1.650
32 154.000 0.000
33 122.325 2.975
34 2303.000 0.000
35 583.778 3.222
36 993.500 0.000
37 14.435 0.000
38 20.225 0.000
39 271.000 0.000
40 574.750 3.250
41 42.343 1.448
42 19.134 0.000
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