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Abstract of the Dissertation

Theshold Dynamics for Statistical Density Estimation

and Graph Clustering

by

Tijana Kostic

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2013

Professor Andrea L. Bertozzi, Chair

In 1992 Merriman, Bence and Osher [7] proposed a computationally inexpensive threshold

dynamics algorithm for the approximation of the motion by mean curvature. Since its

introduction, numerous generalizations of the algorithm have been made, and the algorithm

has been successfully used in a wide variety of computer vision applications, such as image

segmentation, image inpainting, surface reconstruction etc.. The main focus of this work

are the extensions of the original algorithm as well as multiple new applications such as

probability density estimation and graph segmentation.

Part I discusses a threshold dynamics segmentation algorithm for estimating a probabil-

ity density based on discrete point data. Since point data may represent certain activities,

such as crime, this method can be successfully used for detecting regions of high activity, as

well as locating the region where activities generally occur. To achieve the goal of accurately

locating such regions, a binary segmentation version of the well-known Maximum Penal-

ized Likelihood Estimation (MPLE) model is designed. The method is applied to different

computational examples, including one with actual residential burglary data from the San

Fernando Valley.

In Part II we present an adaptation of the classic Merriman-Bence-Osher (MBO) scheme

utilizing a fully or semi nonlocal graph Laplacian for solving a wide range of learning problems

in data clustering and image processing. Combining ideas from L1 compressive sensing, image

ii



processing and graph methods, the diffuse interface model based on the Ginzburg-Landau

functional was recently introduced to the graph community for solving problems in data

classification. Here, we propose an algorithm for graph-based methods and also make use of

fast numerical solvers for finding eigenvalues and eigenvectors of the graph Laplacian. To

demonstrate the performance of our model, various computational examples are presented,

which proves that the method is successful on images with texture and repetitive structure

due to its nonlocal nature. A wide range of applications is discussed, including data labeling,

image segmentation and image inpainting, which demonstrates the versatility of the proposed

algorithm. The success of this algorithm also raises an important theoretical question: is

it possible to define an analog of the motion by mean curvature of surfaces on graphs, and

what properties would such notion possess.
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CHAPTER 1

Introduction to the MBO method

1.1 Variational Methods in Image Processing

Over the past few decades variational methods became state-of-the-art techniques in image

processing. Each method of the class has an energy functional associated with it, a one

that is constructed in such way that it models a certain property of the image. Due to the

optimizational nature of these methods the goal is to, using variational techniques, mini-

mize the given functional. Variational methods have been successfully used to solve many

different restoration problems in image processing. In their groundbreaking work on image

segmentation [47], Mumford and Shah proposed the following functional that translates the

common image properties into a mathematical framework:

min
K⊆D
u:D→R

MS(u,K) =

∫
D\K
|∇u|2dx+ µLength(K) + λ

∫
D

(u− f)2dx (1.1)

where f is an image that should be segmented, u is a segmentation function, and K is a set

of curves on which function u is discontinuous. The segmentation function u is supposed

to be a piecewise constant approximation of the image f thus capturing the regions in the

given image. The properties modeled by the constraints given in the functional (1.1) are

the following: the first term in (1.1) controls the smoothness of the segmentation function

u outside of the set of curves K, the second term controls the length of K and the last one

encourages u to be close to the original image f . From the need to bound the length of the

edge set K arises an assumption that u is a function of bounded variation. The idea to use

total variation norm as a regularization term was introduced by Rudin, Osher and Fatemi

in 1992 in their pioneering work on image denoising [40], where they proposed the following
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functional:

min
u∈BV (D)

‖u‖TV (D) +
λ

2

∫
D

(u− f)2dx (1.2)

where u is a denoised function. Gradient descent minimization of the functional (1.2) yields

the following equation 
∂u
∂t

= ∇ · ∇u|∇u| + λ(f − u)

ν · ∇u = 0 on ∂D.

(1.3)

To find a numerical solution of (1.3) the authors proposed a numerical scheme where they

used an explicit discretization of the curvature term. Their approach leaves an open question:

Is it possible to use the alternative ways to approximate the curvature term? In this work, we

will use an alternative method, called the MBO scheme to approximate different curvature-

like motions. In 2 we will describe the application of the MBO scheme for density estimation

and in 3 we propose the MBO scheme for the graph based non-local methods.

1.2 The MBO Scheme

In case of motion by mean curvature a planar curve moves with a normal velocity that is

proportional to the curvature at any given point. In their work [7], Merriman, Bence and

Osher (MBO) introduced an intuitive and efficient level set method to approximate the mo-

tion of an interface by its mean curvature flow. The methods developed to approximate the

motion by mean curvature prior to the MBO scheme were complicated and computationally

inefficient, while the MBO scheme can successfully handle even the cases when the curve has

self intersections and multiple junctions.

1.2.1 Intuition of the MBO scheme

The authors of the MBO analyzed the motion by mean curvature of the curve C by studying

the diffusion equation χt = ∆χ, where χ is the characteristic function of the set Σ and

∂Σ = C, i.e. C represents a sharp front between two phases of the characteristic function.

Considering a point P on the boundary of the set, and switching to local polar coordinate
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system (r, θ) with origin at the center of the curvature of P, as it is shown in 1.1, the heat

equation we are discussing becomes:

χt =
D

r
χr +Dχrr +

D

r2
χθθ

Since χθ = 0 because of the local circular symmetry the equation can be written as:

Figure 1.1: The parameters in the suggested change of coordinates. This picture originally
appeared in [7].

χt =
D

r
χr +Dχrr

which reveals that advective velocity is proportional to mean curvature. While the boundary

moves at the advective speed, diffusion simultaneously blurs the front. However, the χ = 1
2

level set is invariant to blurring. From there it follows that, the χ = 1
2

level set yields motion

by mean curvature. Image 1.2 shows us the geometric prospective of the motion. Based on

the previous observation the following numerical scheme is proposed:

• Step 1 Let v(x) = S(δt)un(x) where S(δt) is a propagator by time δt of the equation:

vt = ∆v

with appropriate boundary conditions.
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• Step 2 Threshold

un+1(x) =

 0 if v(x) ∈ (−∞, 1
2
]

1 if v(x) ∈ (1
2
,∞).

The only parameter in the proposed numerical scheme is time step δt. We choose δt such

that is small enough so the local analysis derived in 1.2.1 is still valid, but on the other hand,

big enough so the curve does not get stuck.

Figure 1.2: 1
2
-level set is invariant to diffusion. This image originally apeared in [7].

1.2.2 Applications of the MBO scheme

The simplicity of the MBO scheme inspires researchers to devise similar thresholding schemes

to approximate different curvature-like motions. In 2.2 we describe an application the MBO

scheme on image segmentation. In 2.5 we propose a threshold dynamics algorithm for locat-

ing the regions of high density in geographic point data. In 2.6 we explain the implementation

details and the concept of adaptive timestepping and adaptive time resolution, the numerical

procedures we used to speed up our threshold dynamics scheme. The graph based methods

are becoming increasingly popular in many spheres of image and data processing. However,

the graph representation usually poses numerous computational challenges and the itera-

tions of the algorithms featuring non-local data representation tend to be very expensive. In

3.4 and 3.5 we present the threshold dynamics graph-based methods for data labeling and

inpainting. In 3.4.2, 3.5.1 and 3.5.2 we demonstrate that out threshold dynamics algorithm

4



on average takes fewer iterations to converge, and thus is more efficient than some other

famous graph-based algorithms.

1.3 Image Segmentation

We approach the density estimation problem that we solve in 2 as a segmentation problem.

To construct the model we propose in 2.3 we use the Ginzburg-Landau functional as a

regularizer, the concept previously introduced in image segmentation. These models are

commonly called diffuse interface models.

1.3.1 Ginzburg-Landau functional in Image Processing

Rudin, Osher and Fatemi in their work [40] developed a denoising model that uses the total

variation semi-norm as a regularizer. The idea to minimize the total variation of a noisy

image seems to be a natural one. The TV regularization technique has since been popular in

many other image processing applications such as segmentation, inpainting, cartoon texture

decomposition etc.. In the case of image segmentation the Ginzburg-Landau functional

appears in the literature as an alternative to the TV semi-norm.

Numerous image segmentation energy functionals use a binary segmentation function that

takes a certain value inside the segmented region and a different one outside of the segmented

region. In their pioneering work [47], Mumford and Shah propose the energy functional that

uses the perimeter of the segmentation function as a regularizer. Many papers, such as [13],

successfully use the total variation (TV) semi-norm

||u||TV =

∫
Ω

|∇u|dx (1.4)

to approximate the perimeter of the front between the two values of the segmentation func-

tion. As an alternative to this approach, many researchers, such as Esedoglu and Tsai in
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their work [23], use the Ginzburg-Landau functional

GL(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx (1.5)

to approximate the perimeter of the front. W (u) is a double well potential. In this work,

W (u) = (u2 − 1)2 is used. Note that due to the nature of the potential, the functional is

used for binary data.

A proof in [38] shows that the perimeter is the limit in the sense of Γ- convergence of the

Ginzburg-Landau functional. Therefore, one can write

GL(u)→Γ C|u|TV . (1.6)

This convergence allows the two functionals to be interchanged in some cases. One might

prefer to use the GL functional instead of the TV semi-norm since its highest order term is

purely quadratic which allows for efficient minimization procedures. In contrast, minimiza-

tion of the TV semi-norm leads to a nonlinear curvature term, making it less trivial to solve

numerically. However, recent advances, such as the split Bregman method described in [32],

have made progress in such problems.

Due to its connection to the TV semi-norm, the Ginzburg-Landau functional has also

often been used in image processing and in various image processing applications, such as

inpainting [18, 3] and segmentation [22, 23]. In practice, one would minimize

E(u) = GL(u) + F (u, u0) (1.7)

where F is the fidelity term and u0 is the initial state of the system. In the case of inpainting,

the fidelity term is C
∫

(u − u0)2, where one integrates over the known region only. For

denoising, the term is an L2 fit, C
∫

(u−u0)2. In the case of deblurring, it is C
∫

(K ∗u−u0)2,

where K is some kernel. Of course, a different norm, such as the L1 norm, can be used.

When one minimizes the Ginzburg-Landau functional, the function u approaches either

one of the two minimizers, 1 and −1, of the double well potential. However, the presence
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of the gradient term will force u to be somewhat smooth, i.e. without any sharp transitions

between 1 and −1. Therefore, the function that minimizes the functional will have regions

where it is close to −1, close to 1 and a thin region of scale O(ε) where it is somewhere

in between. Since the minimizer appears to have two phases with an interface between

them, models involving the Ginzburg-Landau functional are typically referred to as ”diffuse

interface models”.

1.3.2 Chan-Vese method

The famous Mumford-Shah segmentation functional proposed in [47] is:

min
Σ⊆Ω
u:Ω→R

MS(u,Σ) =

∫
Ω\Σ
|∇u|2dx+ µPer(Σ; Ω) + λ

∫
Σ

(u− f)2dx (1.8)

where f is an image that should be segmented, and u is a segmentation function. Another

important model built around the Mumford-Shah functional is the Chan-Vese model. In their

work [13], Chan and Vese give a level set formulation of the piecewise constant Mumford-

Shah model. This is an active contour model that uses an evolving curve to detect an object

in the image. For instance, a curve, that was initially given as a circle around the object

to be detected will move inward until it is aligned with the boundary of the object. Unlike

classic active contour models that can only detect objects with sharp gradient edges, the

Chan-Vese model is more robust and can segment objects with no visible boundaries. To

describe their model, the authors define the evolving curve C, and an open set ω where

C = ∂ω. The level set function φ : Ω→ R is defined such that:


∂ω = {(x, y) ∈ Ω : φ(x, y) = 0}

ω = {(x, y) ∈ Ω : φ(x, y) > 0}

ω̄C = {(x, y) ∈ Ω : φ(x, y) < 0.}

(1.9)
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The level set form of the length term in the Mumford-Shah function is:

Length(C) =

∫
Ω

| ∇H(φ(x, y)) | dxdy

=

∫
Ω

δ0(φ(x, y)) | ∇φ(x, y) | dxdy. (1.10)

H is the Heaviside function, and δ0 is the Dirac measure. The piecewise constant Mumford-

Shah energy functional is:

min
Σ⊆Ω

c1,c2∈R

E(Σ, c1, c2) = Per(Σ; Ω) + λ

∫
Σ

(c1 − f)2dx+ λ

∫
D\Σ

(c2 − f)2dx. (1.11)

The level set formulation of 2.1 is:

min
φ:Σ→R
c1,c2∈R

F (φ, c1, c2) =

∫
D

|∇H(φ)|+ λ
{
H(φ)(c1 − f)2 + (1−H(φ))(c2 − f)2

}
dx. (1.12)

The minimization of the energy F (φ, c1, c2) from 1.12 for the fixed function φ gives us the

following values of c1 and c2:

c1(φ) =

∫
Ω
u0(x, y)H(φ(x, y))dxdy∫

Ω
H(φ(x, y))dxdx

(1.13)

if
∫

Ω
H(φ(x, y))dxdy > 0 and

c2(φ) =

∫
Ω
u0(x, y)(1−H(φ(x, y)))dxdy∫

Ω
(1−H(φ(x, y)))dxdx

(1.14)

if
∫

Ω
(1−H(x, y))dxdy > 0. After the optimal values for constants c1 and c2 are determined,

the time-dependent Euler-Lagrange equation for φ is found:

φt = H ′ε(φ)

{
∇ ·
(
∇φ
|∇φ|

)
− λ

{
(c1 − f)2 − (c2 − f)2

}}
(1.15)

whereHε is an approximation of the Heaviside function, and a semi-implicit numerical scheme

is created to solve (1.15). Computational examples of Chan-Vese algorithm are shown in
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Figure 1.3 and Figure 1.4. Due to the computational complexity of the numerical algorithm

that solves equation (1.15), Gibou and Fedkiw created algorithms that do not explicitly solve

(1.15). In their work [29], they designed the hybrid k-means level set method and applied it to

images that were previously processed using the Perona-Malik diffusion. Another algorithm

that successfully minimizes the piecewise constant Mumford-Shah functional without solving

the gradient descent equation (1.15) is proposed in [60]. Numerous modifications of the

piecewise constant Mumford-Shah model, and different ways to minimize it appeared in the

literature (see [21], [15],[23], [28], [63] and [64]).

Although Chan-Vese model is not a diffuse interface model, Esedoglu and Tsai in their

work [23] propose a piecewise constant Mumford-Shah functional with the Gizburg-Landau

functional. The idea to use this type of regularization instead of the TV semi-norm largely

influences the direction of our research. More detailed description of work by Esedoglu and

Tsai is given in 2.2

1.4 Maximum Penalized Likelihood Estimation

Geographic point data can be used to represent any kind of events and activity, such as

crime.

Let us assume our data consists of n points x1,x2,...,xn and is a sample of n independent

random variables with common density d0. Maximum likelihood estimation is a standard

method for estimating the density based on given data. In the case of a parametric model,

we know that d0 belongs to the family of density functions D = {d(·, θ) : θ ∈ Θ}, and our

goal is to find a parameter θ0 such that d(·, θ0) = d0(·). This class of problems are known

as parametric density estimates. In 1922, According to Fisher’s model [24], an optimal

parameter θ0 ∈ Θ (where Θ is a set of all parameters) satisfies the following:

θ0 = −min
θ∈Θ

1

n

n∑
i=1

log d(xi, θ). (1.16)

However, in many applications, a parametric model may not be available, or information

9



Figure 1.3: Detection of objects in a noisy image. The curve evolution is shown. The
intensity of the pixels inside the curve is proportional to the value of c1 from 1.13. The
image originally appeared [13].

about the family of density functions may be unknown, in which case we are dealing with a

nonparametric density estimate. The analog of the model (1.16) is an ill-posed problem, i.e.

finding a probability density function d0 such that

d0 = − min
d:Ω→R∫
d=1

1

n

n∑
i=1

log d(xi) (1.17)

has no solution, and thus can not be directly applied. A class of standard methods to
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Figure 1.4: Detection of the clusters in the point data. The curve evolution is shown. The
intensity of the pixels inside the curve is proportional to the value of c1 from 1.13. This
image originally appeared in [13].

solve this problem are kernel density estimation methods [58, 59]. These methods impose

smoothness by approximating the density function by a sum of kernel functions.

d(x) =
1

nh

n∑
i=1

k

(
x− xi
h

)
,

where h is a bandwidth. The kernel density functions are chosen to be smooth, radially sym-

metric and with non-compact support. The Gaussian distribution appears in the literature
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as a common choice for the kernel.

To avoid “rough” density functions, with large values concentrated around data points and

small values elsewhere, the roughness penalization function R(d) was introduced, and this

method is known as maximum penalized likelihood estimation:

d(x) = max
d:Ω→R∫
d=1

{
N∑
i=1

log(d(xi))− αR(d)

}
. (1.18)

In 2 we propose an MPLE segmentation model with the goal to efficiently and precisely

locate the dense regions in point data sets.

1.5 TV Regularization MPLE Methods

Different penalty functionals appear in literature, such as R(d) =
∫

Ω
|∇
√
d|2, or R(d) =∫

Ω
|∇3 log d|2 from [20]. These and many other standard penalty functional enforce smooth-

ness on density function, but do not perform well when the density function has sharp

gradients, i.e. is piecewise constant. To resolve this issue, Koenker and Mizera in [37] as

well as Sardy and Tseng in [55] propose the penalty functional to be the TV semi-norm.

This approach was also successfully used in [39] and [26]. In our work, since we assume the

density is a step function, choosing a penalty functional that can successfully handle sharp

gradients is crucial. As previously mentioned , instead of the TV semi-norm, we chose the

Ginzburg-Landau functional to be the penalty functional. In [26] the authors, inspired by the

Split Bregman technique, present an efficient minimization algorithm for two dimensional

TV-based MPLE. The model proposed in [26] is

min
d:Ω→R∫
d=1

{
N∑
i=1

−µ log(d(xi))+ | ∇d |

}
. (1.19)

To eliminate the constraint
∫
d = 1, the authors transform (1.19) using an augmented

Lagragian model approach. To apply the Split Bregman techique, the new variable ~s = ∇d
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is introduced, and the model becomes:

min
d,~s

{
N∑
i=1

−µ log(d(xi))+ | ~s | +
λ

2
‖~s−∇d‖2 + γ(1−

∑
i,j

d)2

}
(1.20)

where γ and λ are positive constants. The additional Bregman vectors are added into the

functional 1.20 and which gives us the final version of the problem:

(dk, ~sk) = min
d,~s

{
| ~s | −µ log(d(xi)) +

λ

2
‖~s−∇d−~bk−1‖2 + γ(1−

∑
i,j

di,j − bk−1
1 )2

}
,

(1.21)

~bk = ~bk−1 +∇dk − ~sk, (1.22)

bk1 = bk−1
1 +

∑
i,j

uki,j − 1. (1.23)

To minimize with respect to ~s the authors use the shrinkage function and to minimize with

respect to d they use the gradient descent of (1.21), which yield the following formula:

− µwi,j
di,j

− λ∆di,j + λ(∇T ~bi,j −∇T ~si,j) + γ(
∑
i,j

di,j + b1 − 1) = 0, (1.24)

where w has value 1 only in data points xi and 0 elsewhere. Note that (1.24) can be easily

transformed into a quadratic equation with respect to di,j. Since a density function can

only take non-negative values, the positive root is a value of di,j. In the case of piecewise

constant density functions this algorithm performs significantly better than the kernel-based

algorithms. The kernel algorithms produce overly smooth solutions that do not approximate

the density very well. The comparison is shown in Figure 1.5. Standard density estimation

methods do not incorporate geographical information, which may lead to the density function

taking positive values in unrealistic locations. To prevent this, Smith et al. in their work [39]

propose a modified version of the TV MPLE algorithm that successfully integrates spacial

information into the model. Spacial information is usually obtained from city and county

boundary maps, census data hyperspectral images and many other sources. Using prior

information to obtain a valid region D, the goal is to find a density function that only take
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Figure 1.5: The images of the data set is given in the left row. The solutions obtained by the
algorithm from [26] is in the middle and the solutions obtained using a kernel based method
is on the right. This image originally appeared in [26].

non-zero values inside D. This can be achieved by aligning the level curves of the density

function d with ∂D. Since ∇d
|∇d| gives the unit normal vectors to the level curves of d the

condition is:
∇χD
| ∇χD |

=
∇d
| ∇d |

(1.25)

where χD is a characteristic function of D. One of the ways to formulate this constraint is

by using an auxiliary variable. Let θ = ∇χD
|∇χD|ε

where | v |ε=
√
v2
x + v2

y + ε2. One of the ways

to enforce a discontinuity on ∂D is to minimize | d | −θ · θ. After integration by parts this

term is
∫

Ω
| ∇d | +d∇·θdx. The idea to control the boundary by aligning the normal vectors

of the level sets is proposed by Buades et al. in [5]. The similar approach is also used for
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hyperspectral image fusion in [44]. The Modified total variation penalty function proposed

in [39] is:

d0((x)) = min
d:Ω→R∫
d=1

{
N∑
i=1

−µ log(d(xi)) +

∫
Ω

| ∇d | +λd∇ · θdx

}
. (1.26)

Another way to enforce the previously mentioned discontinuity constraint is by using the

Ambrosio-Tortorelli approximating function zepsilon(x) where zε → (1− δ(∂D)). Moreover,

zε((x)) =

 1 if distance(x, ∂D),

0 if x ∈ ∂D.
(1.27)

Thus the penalty functional is:

d0((x)) = min
d:Ω→R∫
d=1

{
N∑
i=1

−µ log(d(xi)) +
1

2

∫
Ω

z2
ε | ∇d |2 dx

}
. (1.28)

In the case of both (1.26) and (1.28) the minimization is carried out by the adaptations of

the Split Bregman algorithm. In Figure 1.6 we can see the comparison of the results from

[26] and [39] as well as the performance of the kernel based algorithms.

1.6 Graph Methods in Image Segmentation

In chapter 3 we present a novel graph-based algorithm for data labeling and image inpainting.

The algorithm utilizes the symmetric graph Laplacian, a concept that originates form graph

theory and is recently introduced to the image processing community. In this section we show

the connection between the normalized cut methods for image segmentation and the graph

Laplacian. Graph-based methods have been present in the image segmentation literature for

over thirty years and the formulations using graph cuts appeared more recently. In graph

theory the cut is defined as a total weight of the edges between two graph partitions A and

B, where G = (V,E) and A ∪B = V :

cut(A,B) =
∑

u∈A,v∈B

w(u, v). (1.29)
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Figure 1.6: This is a sparse example with 40 events. The true density is given in (a), and
it is the same density from the example in the introduction. The sampled events are shown
in (b). Figures (c) and (d) show the two current density estimation methods, Kernel Density
Estimation and TV MPLE. Figures (e), (f), and (g) show the density estimates from modified
TV MPLE methods. The color scale represents the relative probability of an event occurring
in a given pixel. The images are 80 pixels by 80 pixels. This is image originally appeared in
[39].

Wu and Leahy [66] propose a clustering method where the optimal bipartitioning satisfies

the min cut condition. However, the min cut condition will generally be biased toward very

small sets. To avoid this Shi and Malik propose a different measure of fitness of a cut called

the normalized cut:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(1.30)
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where assoc(A, V ) =
∑

u∈A,t∈V w(u, t) is the total weight of all edges from nodes in A to all

nodes in the graph and assoc(B, V ) is similarly defined. There is a way to mathematically

formulate (1.30) using an N =| V | dimensional indicator vector x where xi = 1 if node i is

in A and xi = −1 otherwise. Let d(i) =
∑

j w(i, j). With d and x (1.30) becomes:

Ncut(A,B) =

∑
xi>0,xj<0−wi,jxixj∑

xi>0 di
+

∑
xi<0,xj>0−wi,jxixj∑

xi<0 di
. (1.31)

Let D be an N×N diagonal matrix with d on its diagonal, and W be an N×N symmetrical

matrix with W (i, j) = wi,j,

k =

∑
xi>0 di∑
i di

, (1.32)

and 1 be an N × 1 vector of all ones. Further computations and a substitution y = (1 +

x)− b(1− x) where b = k
1−k transforms 1.31 into:

minxNcut(x) = miny
yT (D −W )y

yTDy
(1.33)

with the conditions y(i) ∈ {1,−b} and yTD1. The authors propose the minimization of 1.33

by solving the generalized eigenvalue system:

(D −W )y = λDy (1.34)

with the constraint yTD1 = 0. With the substitution z = D
1
2y 1.34 becomes:

D−
1
2 (D −W )D−

1
2 z = λz. (1.35)

Since z0 = D
1
2 1 is an eigenvector of 1.35 with eigenvalue 0, the condition 0 = yD1 is

equivalent to 0 = zT z0. Thus, z that minimizes λ in 1.35 is the second eigenvector of

D−
1
2 (D−W )D−

1
2 and λ is the second eigenvalue. Using z we can easily recover the partition.

Since the scale of the eigenvector that yields the minimal normalized cut is unknown, to

find the best partition the algorithm is usually applied for different values of the norm of

the eigenvector. The algorithm can be applied recursively for multiway partitioning. The
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segmentation results obtain by this method are shown in Figure 1.7

Figure 1.7: Segmentation using the normalized cut method. (a) shows a 126× 106 weather
radar image. (b)-(g) show the components of the partition with Ncut value less than 0.08.
This image originally appeared in [57].

1.7 Nonlocal Methods in Image Processing

In [5] Buades, Coll and Morel introduce a non-local filter for image denoising. The idea of

non-local filtering comes from non-local averaging, the technique where averaging is applied

based on similarity between the pixels, rather than inside a particular neighborhood. Non-

local methods provide a continuous framework for the graph methods we describe in Section

1.6. This method, unlike its local counterparts, performs well in the case of textured and

periodic images. The non-local filter proposed in [5] is:

NL(u)(x) =
1

c(x)

∫
Ω

e−
da(u(x),u(y))

h2 u(y)dy, (1.36)
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where

da(u(x), u(y)) =

∫
Ω

Ga(t) | u(x+ t)− u(y + t) |2 dt, (1.37)

Ga is a Gaussian with standard deviation a, c(x) is normalized factor and h is a parameter:

c(x) =

∫
Ω

e−
da(u(x),u(y))

h2 dy. (1.38)

The discrete formulation of (1.36):

NL(u)(i) =
∑
j

α(i, j)u(j), (1.39)

where

α(i, j) =
1

c(i)
e−
‖u(Bi)−u(Bj)‖

2

h2 , (1.40)

u(Bi) = (u(k) : k ∈ Bi), where Bi is a small patch around pixel i.

In [31] Gilboa and Osher study the following non-local functional as a way to generalize

(1.36):

J(u) =
1

4

∫
Ω×Ω

(u(x)− u(y))2w(x, y)dxdy (1.41)

where Ω ⊂ R2 and w is a weight function. We define w(x, y) ∈ Ω × Ω as positive and

symmetric. The authors create a method for image denoising with a functional from (1.41)

used as a regularizer. Thus, the type of regularization depends on the choice of w. The

gradient descent of the functional (1.41) yields the following equation:

ut(x) = −J ′(u)(x) = −
∫

Ω

(u(x)− u(y))w(x, y)dy. (1.42)

The new functional Lu is defined as:

Lu(x) =

∫
Ω

(u(y)− u(x))w(x, y)dy. (1.43)

19



Assuming f is the noisy input image, the authors construct the energy functional:

E(u, f) = J(u) +
λ

2
‖u− f‖2 (1.44)

and minimize this energy in order to find a solution. From (1.44) we have that the solution,

u, satisfies the Euler-Lagrange equation

ut = Lu+ λ(f − u). (1.45)

To calculate the weights w(i, j) the authors of [31] suggest a method based on similarity

of the feature vectors Ff (i) and Ff (j). Each feature vector contains certain information on

the image, particularly on the region surrounding the pixel, such as intensity values, edge

indicator, dominant frequency, etc. Usually, for the sake of computational speed of the

algorithm, the weights w(i, j) take non-zero values only if j is inside a designated Ωw(i) area

around i. The weights are defined as:

w(i, j) =

 g(Ff (i), Ff (j)) j ∈ Ωw(i)

0 otherwise
(1.46)

where g(s1, s2) is a similarity function with the following properties:

1. Positive, g(s1, s2) > 0.

2. Symmetric g(s1, s2) = g(s2, s1).

3. Bounded, g(s1, s2) ≤M <∞.

4. Maximal at equality, g(s1, s1) ≥ g(s1, s2), ∀s1, s2.

One such function, often used in nonlocal applications is

g(s1, s2) = e−
‖s1−s2‖

2

h2 (1.47)
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where h is a parameter.

To implement the algorithm the following forward Euler discretization of (1.45) is used

un+1
i = uni + ∆t

∑
j∈Ωw(i)

w(i, j)(unj − uni ) + λ∆t(fi − uni ) (1.48)

with the timestep restriction

1 ≥ ∆t(
∑

j∈Ωw(i)

wi,j + λ). (1.49)

The presented algorithm from 1.48 can be adapted for inpainting problems. The comparison

of the models from [5] and [31] is given in Figure 1.8.

(a) (b)

(c) (d)

Figure 1.8: Denoising using nonlocal means: Image (a) presents the original image. Image
(b) is the noisy input image. Image (c) is the solution obtained by the original non-local
method from [5], PNSR = 14.59 . Image (d) is the solution obtained by the method from
(1.48), PNSR = 16.32.
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1.8 Diffuse Interface Models on Graphs

In graph theory, a graph is commonly represented as an ordered pair G = (V,E) where V

are vertices and E are edges. A function on a graph G, u is defined as a set of values in

all vertices from V . Function u can be used to define a weighed graph on the structure G.

The weights of the edges are determined using an appropriate similarity function. The role

of the similarity function will be explained in 3.2.4. In their paper [8] Bertozzi and Flenner

introduce diffuse interface models in a graph framework by proposing a graph version of the

Ginzburg-Landau functional:

GL(u) = εu · Lsu+
1

ε

∫
W (u)dx (1.50)

where u is a graph function Lsu is a symmetric graph Laplacian that will be described in

more detail in 3.2.2. The authors of [8] propose a classification algorithm by minimizing the

graph Ginzburg-Landau function with a fidelity term:

E(u) = εu · Lsu+

∫
|∇u|2dx+

1

ε

∫
W (u)dx+ F (u, u0). (1.51)

The functional is minimized using the method of gradient descent resulting in the follow-

ing equation:
∂u

∂t
= −εLsu−

1

ε
W ′(u)− ∂F

∂u
. (1.52)

Note that this is just the Allen-Cahn equation with a fidelity term where ∆u is replaced by

a graph operator term −Ls. Choosing the fidelity term F to be 1
2
Cλ(x)(u − u0)2 for some

constant C, one obtains

∂u

∂t
= −εLsu−

1

ε
W ′(u)− Cλ(x)(u− u0). (1.53)

Motivated by other minimization schemes for the continuous Ginzburg-Landau functional,

the authors of [8] propose a convex splitting minimization scheme. The convex splitting is

commonly used in other image processing models that are built around the Ginzburg-Landau
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functional and it involves writing the energy functional as a sum of the implicit convex and

the explicit concave part. The results from [8] show that this method outperforms many

state-of-the-art classification such as Bayesian decision trees from [50] and spectral clustering

using the p-Laplacian from [61] and [9]. In 3.4 we present a new numerical scheme for solving

(3.3). Unlike the scheme from [8], our scheme does not require convex splitting. In Section

3.4.2, we compare the results of the method from [8] and our method, where we show that

our method generates results of comparable quality, but significantly faster.

(a) (b)

(c) (d)

Figure 1.9: An example of the image labeling from [8]. The results indicate robustness of
the algorithm to lightning condition and changes in texture Image (a) is the original image
Image (b) is the labeled training region. Image (c) is the image that is supposed to be
labeled. Image (d) is the labeling result obtained by the algorithm from [8]. This image
originally appeared in [8].
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1.9 Outline

This thesis is structured in the following way: 2 is dedicated to the MBO method for density

estimation while in 3 we present the MBO scheme for data labeling. In sections 2.1 we give

an overview of our method for density estimation. In 2.2 we introduce some of the recent

work on the MBO schemes. In 2.3 and 2.4 we give the details of the two models for density

estimation. In 2.5 and 2.6 we explain the numerical implementation of our method. In 2.7

we show or computational results. In 3.1 we give an overview of the different techniques we

use in our work on data labeling. In 3.2 we present a short graph theory background. In

3.3 we discuss the nonlocal operators in more detail. In 3.4 we explain our method for data

labeling and we show our results. In 3.5 we present our inpainting algorithm, along with our

results for inpainting.
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CHAPTER 2

Threshold Dynamics for Density Estimation

2.1 Introduction of the proposed method

Our goal is to estimate a probability density based on discrete point data via segmentation

techniques. The idea to use binary segmentation techniques for density estimates arises

from the need to quickly and accurately locate the regions of higher activity, as well as

to calculate the local density. Instead of obtaining a complete density function estimate,

such as seen in [26] and [39], our goal is to segment only one region at a time. Since point

data may represent certain activities, such as crime, our method can be successfully used

for detecting regions of high activity. In this work we design a binary segmentation version

of the well-known Maximum Penalized Likelihood Estimation (MPLE) model, as well as a

minimization algorithm based on thresholding dynamics originally proposed by Merriman,

Bence and Osher [7]. We also present some computational examples, including one with

actual residential burglary data from the San Fernando Valley.

2.2 Esedoglu-Tsai method

We find the modification of the MBO scheme proposed in [23] by Esedoglu and Tsai partic-

ularly interesting. In their paper [23], the authors proposed a diffuse interface version of the

Mumford-Shah energy functional

min
Σ⊆Ω

c1,c2∈R

E(Σ, c1, c2) = Per(Σ; Ω) + λ

∫
Σ

(c1 − f)2dx+ λ

∫
D\Σ

(c2 − f)2dx, (2.1)
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MSε(u, c1, c2) =

∫
D

ε|∇u|2 +
1

ε
W (u) + λ{u2(c1 − f)2 + (1− u)2(c2 − f)2}dx (2.2)

for segmenting the image f . The first variation of the model (2.2) yields the following

gradient descent equation:

ut = 2ε∆u− 1

ε
W ′(u) + 2λ{u(c1 − f)2 + (1− u)(c2 − f)2} (2.3)

and an adaptation of the MBO scheme was used to solve it. Esedoglu and Tsai proposed

the following scheme:

• Step 1 Let v(x) = S(δt)un(x) where S(δt) is a propagator by time δt of the equation:

wt = ∆w − 2λ̃
(
w(c1 − f)2 + (1− w)(c2 − f)2

)
with appropriate boundary conditions.

• Step 2 Set

un+1(x) =

 0 if v(x) ∈ (−∞, 1
2
],

1 if v(x) ∈ (1
2
,∞).

Based on computational experiments, the authors presented their conclusions about the

choice of δt timestep in the step 1. of the algorithm. If δt is chosen too large compared

to the parameter λ−1, the interface tends to be overly smooth. An advantage of choosing

larger values for δt is faster convergence. The segmentation could also benefit from the

larger values for the parameter λ, as there is less penalty on high curvature of the interface

in this case. The size of the spatial resolution has to be taken into account when the

value for δt is chosen, as values much smaller than the spatial resolution could lead to the

pinning of interface. These observations can also be used as guidance in parameter selection

for our algorithm. The authors also show that MBO thresholding type methods for binary

segmentation can easily be generalized to multi-phase segmentation methods. To accomplish
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that, the authors propose the four phase model based on the modified version of (2.2) with

the sum of the two Ginzburg-Landau functionals built around two different segmentation

functions, u1 and u2. In this case, the fidelity term naturally depends on both u1 and u2.

After they find the gradient descent equations with respect to u1 and u2, they construct the

thresholding numerical scheme to solve the obtained system of parabolic equations. We will

adapt ideas by Esedoglu and Tsai to solve our MPLE problem and illustrate the usefulness

of this simple method. Some extension of the MBO algorithms appeared in [54, 53, 45]. An

efficient algorithm for motion by mean curvature using adaptive grids was proposed in [51].

2.3 General Model

For now we are going to focus on the segmentation function u. We assume our segmentation

function is the characteristic function of the region Σ, where Σ is an area with a larger

density. For any given data and any given segmentation function we obtain an explicit

formula for the density. With w denoting the data, the total number of events is equal to∫
w, while the number of events inside and the number of events outside of the region Σ

are simply
∫
wu and

∫
w(1− u), respectively. Thus, the density c1(u) inside the region Σ is

equal to ∫
wu∫
u
∫
w

and the density c2(u) in the region ΣC is equal to

∫
w(1− u)∫
w
∫

(1− u)

. Finally, we write the density function as c1(u)u+ c2(u)(1− u). The established correspon-

dence between the segmentation and the density function suggests that building a diffuse

interface MPLE model around the segmentation function is possible. As the segmentation

function takes only 0 and 1 values, the Ginzburg-Landau functional is a natural choice. Since

the density is a rescaled segmentation function, using the Ginzburg-Landau functional for

u, as opposed to the Ginzburg-Landau functional for the density seems both reasonable and
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convenient. In other words, we search for an appropriate u and the density values are defined

automatically.

Here we propose the diffuse interface Maximum Penalized Likelihood Estimation model.

arg min
u(x)

∫
ε|∇u|2 +

1

ε
W (u)dx− µ

∫
w log(c1(u)u+ c2(u)(1− u))dx, (2.4)

where c1(u) =
∫
wu∫
u
∫
w

and c2(u) =
∫
w(1−u)∫
w
∫

(1−u)
,w represents the given data, W (u) = u2(1− u)2

and µ is a parameter. As we already mentioned, the Ginzburg-Landau functional converges

to the TV norm in the sense of Γ convergence, as ε → 0+. As a consequence, the diffuse

interface model we propose here converges to the TV-based MPLE that was used in [26],[39],

when ε→ 0+. Now, variation of energy of (2.4) gives us the following cases for the L2 gradient

descent equation:

• If both and c1(u) and c2(u) (further we use c1 and c2 instead for simplicity of the

notation) are non-zero:

ut = 2ε∆u− 1

ε
W ′(u) + µw[

c1 − c2

c1

u+
c1 − c2

c2

(1− u) + (

∫
(1− u)w∫

1− u
−
∫
uw∫
u

)]. (2.5)

• If c1 is equal to zero:

ut = 2ε∆u− 1

ε
W ′(u) + µ[w(u− 1) + (

∫
(1− u)w∫

1− u
− w)]. (2.6)

• If c2 is equal to zero

ut = 2ε∆u− 1

ε
W ′(u) + µ[wu+ (w −

∫
uw∫
u

)]. (2.7)

2.4 Special Case Model

For the special case problem the density in a high region ΣC is zero, so the density function is

just a rescaled characteristic function. Thus, replacing the density function c1(u)u+c2(u)(1−
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u) in the MPLE term of our general model by the segmentation u seems reasonable. Now,

the model we propose is:

arg min
u(x)

∫
ε|∇u|2 +

1

ε
W (u)dx− µ

∑
i,j

wi,j log(ui,j). (2.8)

Once again, assuming w is a function that approximates the data, in order to make everything

well-defined we introduce the model with a small constant ν:

arg min
u(x)

∫
ε|∇u|2 +

1

ε
W (u)dx− µ

∫
w log((1− ν)u+ ν(1− u))dx. (2.9)

The Euler-Lagrange equation for the energy functional (2.9) is:

ut = 2ε∆u− 1

ε
W ′(u) + µw(

1

1− ν
u+

1

ν
(1− u))(1− 2ν). (2.10)

2.5 Proposed dynamics

We use the following gradient descent equation

ut = 2ε∆u− 1

ε
W ′(u) + A(u(·, t))u+B(u(·, t)) (2.11)

with A(u(·, t)) and B(u(·, t)) being non-linear functions. Each of the gradient descent equa-

tions, (2.5), (2.6), (2.7) and (2.10) can be given in the form (2.11), where A(u(·, t)) and

B(u(·, t)) take different vales in different cases.

A(u(·, t)) B(u(·, t)) Equation

µw
(c1 − c2)2

c1c2

µw
c1 − c2

c2

+ (c2 − c1)

∫
w (2.5)

µw µ(c2

∫
w − 2w) (2.6)

µw µ(w − c1

∫
w) (2.7)

−µw (2ν − 1)2

(1− ν)ν
µw

1− 2ν

ν
(2.10)
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Motivated by the MBO scheme for solving the Allen-Cahn equation, we propose a thresh-

olding scheme to approximate the solution of the equation (2.11). Esedoglu and Tsai used a

similar approach to minimize the Mumford-Shah segmentation functional in [23]. The first

step we need to take toward generating a thresholding scheme is finding a good way to split

the equation (2.11) into two steps analogous to those proposed in the MBO scheme. In

that regard, finding a way that successfully deals with the non-linear forcing term of equa-

tion (2.11) is critical. Inspired by the algorithm presented in [23] we propose the following

dynamics:

• Step 1. Let v(x) = S(δt)un(x) where S(δt) is a propagator by time δt of the equation:

yt = ∆y − A(y(·, t))y +B(y(·, t))

with appropriate boundary conditions.

• Step 2. Set

un+1(x) =

 0 if v(x) ∈ (−∞, 1
2
]

1 if v(x) ∈ (1
2
,∞).

2.6 Numerical implementation

In the propagation phase of the algorithm we solve the following PDE:

vt = ∆v − A(v(·, t))v +B(v(·, t))

with the un being an initial condition. To generate the numerical results we denote the

timestep by δτ is a timestep, and approximate the Laplacian by its five-point stencil, which

gives us the following scheme:

vn+1 − vn

δτ
= ∆vn+1 + A(vn(·, t))vn +B(vn(·, t)).
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As the linear linear system described above is circulant we find the Fast Fourier transform

(FFT) a convenient way solve it. Other solvers with even better computational complexity

than the FFT, such as a multigrid algorithm, could be used. In the propagation phase our

goal is not to achieve steady state, and iterations are repeated only until the total propagation

time reached δt. After the propagation phase, a thresholding step is necessary to complete

the iteration:

un+1
i,j =

 0 if vli,j ∈ (−∞, 1
2
],

1 if vli,j ∈ (1
2
,∞).

where l is a total number of iterations we made in the propagation phase. The small relative

change of the L2 norm between two consecutive iterations was used as a stopping criterion.

In this implementation, the data function w is used as an initial condition, along with Dirich-

let or Neumann boundary conditions.

2.6.1 Adaptive timestepping

The choice of timestep in the propagation phase, a “sub-timestep”, can be chosen to optimize

performance. In the early stage of computation, it is important to keep the sub-timestep

small in order to obtain a good estimate in the propagation phase. However, as our algo-

rithm is approaching steady state, a large number of iterations in the propagation phase

pose a burden on the computational time. To successfully speed up the convergence of our

algorithm, we used adaptive timestepping, a modified form of the scheme proposed in [4].

The scheme uses a dimensionless local truncation error calculated in every iteration, and the

timestep is increased when the error is smaller then a chosen tolerance.The error at time tn

uses solution at three consecutive timesteps tn−1, tn and tn+1.Let us define en+1 = (vn+1−vn)
vn

and en = (vn−vn−1)
vn

, as well as ∆told = tn − tn−1. The previous definitions allow us to define

a dimensionless estimate of the local truncation error:

∥∥∥∥en+1 − ∆t

∆told
en
∥∥∥∥
L2

. (2.12)
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This algorithm is both quick and practical. Even though other more accurate ways to es-

timate the measure of error are available, such as step doubling, they are often much more

computationally expensive.

We used adaptive timestepping at two different levels, in the propagation phase of the algo-

rithm we adapt the sub-timestep, as well as adapting an initial sub-timestep for the future

iterations. In the propagation phase of any iteration, we calculate a dimensionless trunca-

tion error estimate for different propagation times. Once an error is smaller than a given

tolerance Tol1 for a certain number of the consecutive iterations, we increase the timestep

by 10%. We also estimate the dimensionless error in every iteration of the algorithm, and if

we find an error to be smaller than Tol2 the initial sub-timestep in the propagation phase of

the next iteration will be increased be 10%. However, we never allow the initial sub-timestep

to be larger than 1
8

of the timestep. Notice that we are not adapting the timestep, the total

propagation time in each iteration is the same.

2.6.2 Adaptive resolution

Another way to improve the computational time is to use adaptive resolution. As we men-

tioned before, we use the data function w as an initial condition when solving the equation

(2.11). It is reasonable to assume that the more the initial condition “resembles” the so-

lution, the less iterations the algorithm would take to obtain the solution. The main idea

is to generate a lower resolution form of the data set, then use a low resolution solution to

create a good initial guess for the high resolution solution. Providing a good initial guess

for the higher resolution problem is particularly useful as the iterations when the algorithm

is applied to the higher resolution versions of the data set tend to be slower. In this imple-

mentation, we typically applied this procedure several times on some sparse data sets. At

each step we create the coarser form of the given data set, until we reach the version of the

data set that has a satisfying density. Our experiments show that data sets with the total

density between 0.05 and 0.2 are optimal for this algorithm. Once a sufficiently dense low

resolution version of the data set is obtained, we run our algorithm to get the low resolution
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solution, and start working our way up from there. The higher resolution approximation of

the solution is then generated, and used as an initial condition in the next step. In the next

step, we are solving the problem on the data set that has a higher resolution. It is important

to mention that this process does not alter the original data set. We call this process n-step

adaptive resolution where n is the total number of times we reduced the resolution of the

original data set. The number of steps, n, is closely related to our choice of timestep. In case

we are segmenting the region of higher density in our data, we noticed, through multiple

experiments, that the timestep often can be given as ω2n, where n is the number of levels in

adaptive resolution, and ω ∈ [0.15, 0.2]. In case we are locating the valid region, we usually

allow a smaller timestep, but also a larger number of levels in adaptive resolution. However,

starting with a problem that has a significantly lower resolution comparing to the original

one, we might run into some problems. Decreasing resolution significantly may result in a

very different looking data set, thus segmentation would not perform in an expected way,

i.e. this first initial guess would not be a good approximation of the solution we are trying

to find.

2.7 Computational Examples

2.7.1 Test Shapes

To verify the performance of our algorithm, we constructed three examples of the probability

density maps featuring three shapes and they are shown in the figures 2.1(a), 2.2(a) and

2.3(a). Each of the densities were sampled, and the toy data sets are obtained, and presented

in the figures 2.1(b) , 2.2(b) and 2.3(b) respectively. We applied the general version of our

algorithm to solve these problems, and the results are shown in images 2.1(c), 2.2(c) and

2.3(c). Adaptive timestepping was used in all of the examples with three shapes, while the

adaptive resolution was not used, given the small scale of these examples.
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(a) (b) (c)

Figure 2.1: Segmentation of three shapes: Image (a) presents a plot of the density map.
Assuming the size of (a) is 1× 1, the densities of the dense region and the sparse region are
3.3943 and 0.3927, respectively. Image (b) is a plot of the data set, in a 100 × 100 pixel
image, with 1449 events. Image (c) shows the contours of the segmented dense region. In the
process of generating this result we used the timestep 1.6 along with the parameter µ = 0.13.
The densities of our estimated dense and sparse regions are 3.4811 and 0.3649.

(a) (b) (c)

Figure 2.2: Segmentation of three shapes: Image (a) presents a plot of the density map.
Assuming the size of (a) is 1× 1, the densities of the dense region and the sparse region are
3.145 and 0.456, respectively. Image (b) is a plot of the data set, in a 100× 100 pixel image,
with 1539 events. Image (c) shows the contours of the segmented dense region. The choice
of parameters was 1.6 for the timestep, and µ = 0.15. The densities of our estimated dense
and sparse regions are 3.311 and 0.422.

2.7.2 Orange County Coastline

In their work [39] Smith et al. constructed several test data sets using the spatial information

of the Orange County coastline obtained from Google Earth. The authors determined the

boundary between the valid and the invalid region by locating the ocean, rivers, parks and
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(a) (b) (c)

Figure 2.3: Segmentation of three shapes: Image (a) presents a plot of the density map.
Assuming the size of (a) is 1× 1, the densities of the dense region and the sparse region are
2.605 and 0.592, respectively. Image (b) is a plot of the data set, in a 100× 100 pixel image,
with 1696 events. Image (c) shows the contours of the segmented dense region. The choice
of parameters was 1.6 for the timestep, and µ = 0.1. The densities of our estimated dense
and sparse regions are 2.780 and 0.573.

other features the valid region of a residential crimes map naturally excludes. Then, inside

the valid region, they constructed three other regions and assigned different densities to them,

which is shown on the density map in Figure 2.10, and we also, inspired by their examples,

constructed the density maps shown in Figure 2.4 as well as in Figure 2.7. Sampling from

these density functions we generated data sets shown in Figures 2.5(a), 2.6(a), 2.8(a),

2.9(a) and 2.11(a). A segmentation of the corresponding dense region is shown next to each

data set. Note that there are four different levels of densities in Figure 2.10. The solution in

Figure 2.11 shows that the different choice of the parameter µ can lead to segmentation of

the dense regions at different levels. All images in this section have resolution of 600× 1000

pixels.

2.7.3 San Fernando Valley Residential Burglary Data

We may also consider a special case of our problem, the case when we assume all events

are located inside the region Σ, and our goal is to segment the region. The region Σ would

represent a valid region of the given data set. In absence of geographic data that describe the

location of the valid region, an accurate estimate of it can dramatically improve accuracy
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Figure 2.4: The toy density map of the Orange County Coastline featuring two disconnected
dense regions.

(a) (b)

Figure 2.5: A 2000 event sample of the density function from Figure 2.4 is shown in (a).
The contour of the segmented dense region is shown in (b). The choice of parameters is:
µ = 0.1, time step is 13.0 with the 3-step adaptive resolution. The data points in this figure
are manually enhanced for the purpose of more clear display of the image.

of the density estimation, see [39] and [26]. In the following example, our goal was to,

without using any spatial information, segment the valid region from the San Fernando Valley

residential burglary data. The events in Figure 2.12(a) represent locations where burglaries

took place during 2004 and 2005. The contour of our valid region estimate obtained by

applying the special case model is also shown in Figure 2.12(a). Smith et al. in [39]

performed the valid region estimate using census and other types of data to locate the

residential area in the region of interest, and their result is Figure 2.12(b). They incorporated

the valid region estimate from Figure 2.12(b) in their Weighted H1 MPLE model to obtain
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(a) (b)

Figure 2.6: An 8000 event sample of the density function from Figure 2.4 is shown in (a).
The contour of the segmented dense region is shown in (b). The choice of parameters is:
µ = 0.092, time step is 8.0 with the 2-step adaptive resolution. The data points in this figure
are manually enhanced for the purpose of more clear display of the image.

Figure 2.7: The toy density map of the Orange County Coastline featuring three disconnected
dense regions.

the density estimate results from 2.12(c). The TV MPLE algorithm developed by Mohler

et al. in [26], was used to generate the density estimate in 2.12(b). This method did not

use any additional spatial information to locate the valid region.

2.8 V -fold cross validation

The choice of the smoothing parameter µ and the timestep can affect the performance of this

algorithm. Our experiments show that in case we are segmenting the high density region
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(a) (b)

Figure 2.8: A 2500 event sample of the density function from Figure 2.7 is shown in (a).
The contour of the segmented dense region is shown in (b). The choice of parameters is:
µ = 0.11, timestep is 11.0 with the 3-step adaptive resolution. The data points in this figure
are manually enhanced for the purpose of more clear display of the image.

(a) (b)

Figure 2.9: A 10000 event sample of the density function from Figure 2.7 is shown in (a).
The contour of the segmented dense region is shown in (b). The choice of parameters is:
µ = 0.075, timestep is 7.5 with the 2-step adaptive resolution. The data points in this figure
are manually enhanced for the purpose of more clear display of the image.

the optimal value of the parameter µ is not larger than 0.2. When our goal is to estimate

the valid region, we typically assign larger values to the parameter µ. To estimate the

value of the smoothing parameter we implemented a version of the V -fold cross validation

algorithm. In their work [55] Sardy and Tseng proposed the V -fold cross validation based

on the Kullback-Leibler information. In the V -fold cross validation, the original data set

is partitioned into V disjoint subsets xv = {xi, i ∈ Sv} where Sv consists of all indexes of
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Figure 2.10: The toy density map of the Orange County Coastline, featuring two discon-
nected dense regions and one sparse region.

(a) (b)

Figure 2.11: A 20000 event sample of the density function from Figure 2.10 is shown in (a).
The contour of the segmented dense region is shown in (b). The choice of parameters is:
µ = 0.03, timestep is 2.2 with the 2-step adaptive resolution.

data points from the partition v = 1, . . . V . Set x−v = {xi, i /∈ Sv} is used as a training set,

i.e. the algorithm is applied on x−v with some particular value µ̂, and the density d̂µ̂,−v is

estimated. Set xv is a validating set, which means that {d̂µ̂,−v(xi)}i∈Sv is used to estimate

the density on xv. Following these observations, the authors of [55] proposed the following

estimate of Kullback-Leibler information CV (µ̂) = −
∑V

v=1

∑
i∈Sv d̂µ̂,−v(xi), and after the

search of the set of parameters µ̂ the one that minimizes this quantity is selected. However,

CV (µ̂) uses only the log-likelihood to predict the performance of the model for some value µ̂

of the smoothing parameter, but does not take the H1 norm of the segmentation function of

the estimated density into account. We denote the segmentation function that corresponds
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(a) (b)

(c) (d)

Figure 2.12: San Fernando Valley residential burglary: (a) A plot of the data set with the
contours of the solution, the red contour bounds the dense region, while the blue one bounds
the valid region . The size of the original data set is 605×525 pixels. We used a timestep 2.0
with µ = 1.1 and 3-step adaptive resolution to find the valid region, and µ = 0.08, a timestep
3.5 with 1-step adaptive resolution to locate the dense region. The data points in this figure
are manually enhanced for the purpose of more clear display of the image. (b) A valid region
estimate from [39]. (c) and (d) are density estimates form [39] and [26] respectively.

to the density d̂µ̂,−v by ûµ̂,−v. Since the segmentation function is a binary function, the

descrete H1 and the descrete TV norm are equivalent, thus the H1 norm also measures

the length of the front between two phases. In some applications, such as the case when
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the dense and the surrounding sparse region have similar densities, the values of CV (µ)

for the different values of µ tend to be similar. It is useful in those cases to also measure

the H1 norm of the obtained segmentation ûµ̂,−v, and incorporate that information in the

V -fold cross validation. Because of that, we propose a slightly different technique, where we

evaluate CVH1(µ̂) = −
∑V

v=1(
∑

i∈Sv d̂µ̂,−v(xi)− ξ
∫
|∇ûµ̂,−v|2) for each value of µ̂ from some

proposed set of parameters, and select the value that minimizes it. The results do not appear

to be very sensitive to ξ, we used small values, comparable to those of µ̂. The evaluation

of CVH1(µ) for a single value of parameter µ requires V different density estimates, which

could cause the V -fold cross validation to be very computationally intense. However, all

density estimates that have to be performed are independent of each other, which makes

the V -fold cross validation a perfect candidate for parallelization. In this implementation,

we used 10-fold cross validation, and the process of calculating CVH1 is parallelized using

10 threads, which reduces the computational time of one evaluation of CVH1 down to the

computational time needed for one density estimate. The computational time one density

estimate takes varies from 0.2s in the small scale examples (100× 100 pixels) to around one

minute in the large scale examples (600× 1000 pixels). To demonstrate the performance of

the proposed algorithm, Figures 2.13 and 2.14 show some computational examples with

segmentations generated using a model with the smoothing parameter obtained through 10-

fold cross validation. To find the parameter µ we performed the linear search of intervals.
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(a) (b) (c) (d)

Figure 2.13: The data set shown in 2.3 and the results obtained using different values of
µ:(a) Smoothing parameter is too small µ = 0.12. (b) We used µ obtained through our
10-fold cross validation with the H1 norm, we evaulated CVH1 . (c) 10-fold cross validation
from [55], CV (µ), was applied to obatain µ used in this example. (d) Smoothing parameter
µ = 0.3, the value is larger than optimal.

(a) (b)

Figure 2.14: 10-fold cross validation was applied on the data sets displayed in 2.6(a) and
2.9(a) to select the parameter µ. The data sets with the countours of the respective dense
regions obtained using those values of µ are shown.
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CHAPTER 3

Threshold Dynamics Methods for Data Labeling

3.1 Introduction

In this chapter we present a fast algorithm for a recent variational method in a graph setting.

The method is inspired by diffuse interface models that have been used in a variety of prob-

lems, such as those in fluid dynamics and materials science. We consider data represented

as nodes in a weighted graph, and each edge is assigned a numerical value describing the

similarity between the nodes. In spectral graph theory, this approach is successfully used to

perform various learning tasks in imaging and data clustering. The standard techniques of

the theory are thoroughly described in [14, 46], and the graph Laplacian, which is discussed

in more detail in section 3.2, is introduced as one of the fundamental concepts. In imaging,

spectral methods are often used in image segmentation applications as shown in [57, 33, 62].

We are particulary interested in nonlocal total variation methods, as they are a link between

spectral graph theory and diffuse interface models, and thus can be used as a motivation for

our algorithm. These methods are used in numerous image processing applications. They

were initially developed as methods for image denoising [5, 31], but were successfully ap-

plied to many other image processing problems such as inpainting and reconstruction in

[30, 70, 27], image deblurring in [68] and manifold processing in [1].

As an alternative to L1 compressed sensing methods, Bertozzi and Flenner introduce a

graph-based model based on the Ginzburg-Landau functional in their work [8]. The gradi-

ent descent of the proposed functional:

E(u) = εu · Lsu+
1

ε

∫
W (u)dx+ F (u, u0). (3.1)

43



is resulting in the following equation:

∂u

∂t
= −εLsu−

1

ε
W ′(u)− ∂F

∂u
. (3.2)

Function u is a graph generalization of a binary segmentation function we introduced in

1.3.2. Properties of the operator Ls will be explained in more detail in sections 3.2 and 3.3.

Taking F to be 1
2
Cλ(x)(u− u0)2 for some constant C, one obtains

∂u

∂t
= −εLsu−

1

ε
W ′(u)− Cλ(x)(u− u0). (3.3)

The main purpose of this work is to develop a fast and simple method for solving (3.3)

in the small ε limit. To achieve our goal, we created a graph based MBO scheme. Recall

that the MBO scheme uses simple threshold dynamics to approximate motion my mean

curvature. Since the Allen-Cahn equation is closely related to motion by mean curvature,

the MBO scheme has been proven to be a very successful tool in solving different variants

of the Allen-Cahn equation. For example, the authors of [23] propose an adaptation of

the MBO scheme to minimize he piecewise constant Mumford-Shah functional. Inspired by

the efficency and the robustness of the MBO scheme, we decide to adapt it to solve (3.3).

However, the implementation of the proposed scheme poses many computational challenges.

The quadratic size of the graph Laplacian could make the iterative process of our algorithm

very computationally expensive. To reduce the dimension of the graph Laplacian and make

the computation more efficient, the authors of [8] propose the Nyström extension method

[11] to approximate eigenvalues and the corresponding eigenvectors of the graph Laplacian.

To maximize the performance of our algorithm we combine the Nyström extension with the

Raleigh-Chebyshev algorithm proposed in [6]. The details of our algorithm are discussed

in section 3.4, after the sections 3.2 - 3.3 on the relevant background. In this paper we go

beyond the applications presented in [8], and devise a non-local inpainting algorithm. To

show the efficiency of our algorithm, we compare the computational times of our algorithm

against those obtained by the state-of-the-art nonlocal inpainting algorithm form [30].

Various computational examples are presented to demonstrate the performance of our algo-
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rithm, which is successful on images with texture and repetitive structure due to its nonlocal

nature.

3.2 Background on Graph Theory

3.2.1 The Origins of Spectral Graph Theory

Algebraic methods in graph theory are as old as the idea to use the adjacency matrix to

describe a graph. It seems natural that mathematicians got interested spectral properties of

the adjacency matrix, and the interpretation of the spectrum in terms of graph properties.

There are several survey books, such as [16] that provide an overview of the vast literature on

this subject. Algebraic methods become very successful, especially in dealing with symmetric

adjacency matrices, i.e. matrices that describe undirected regular graphs. However, the

recent developments in spectral graph theory are often oriented toward geometric methods.

Geometric methods are very useful in applications on general graphs, and they successfully

complement algebraic methods. The reason for this trend may be found in many known

analogies between Riemannian geometry and spectral graph theory. Over the years, spectral

methods are becoming increasingly popular, and they have been applied in various areas of

mathematics and science. Since its beginnings, spectral graph theory has been applied in

chemistry. Also, there are applications in theoretical physics and quantum mechanics.

3.2.2 The Laplacian

Consider an undirected unweighted graph G = (V,E), where V and E are the sets of vertices

and edges, respectively. We assume this graph does not contain loops or multiple edges. In

an unweighted graph we define di, the degree of the vertex i, as the number of edges from
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E that are incident with i. Let us define the matrix L:

L(i, j) =


d(i), if i = j,

−1, if i and j are adjacent,

0, otherwise.

(3.4)

In the case of weighted graphs we assume that the edge that connects vertices i and j has

weight w(i, j). The degree of the vertex i ∈ V , d(i) is defined as

d(i) =
∑
j∈V

w(i, j). (3.5)

The definition of the matrix L can easily be extended to the case of weighted graph:

L(i, j) =


d(i), if i = j,

−w(i, j), if i and j are adjacent,

0, otherwise.

(3.6)

If we define the degree matrix D to be the N × N diagonal matrix with diagonal elements

d(i), then the matrix L can be written in matrix form as D −W , where W is the matrix

w(i, j). The matrix W is sometimes referred to as the ”affinity matrix”. Let us now define

the symmetric graph Laplacian Ls:

Ls(i, j) =


1, if i = j,

− w(i,j)√
didj

, if i and j are adjacent,

0, otherwise.

(3.7)

The relationship between L and the symmetric Laplacian is the following:

Ls = D−
1
2LD−

1
2 = I −D−

1
2WD−

1
2 (3.8)
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where W is the adjacency matrix of the graph G. To obtain information on the eigenvalues

of the matrix Ls and their bounds we will use the variational characterization:

〈g, Lsg〉
〈g, g〉

=
〈g,D− 1

2LD−
1
2 g〉

〈g, g〉
,

=
〈f, Lf〉

〈D 1
2f,D

1
2f〉

,

=

∑
i∈V f(i)Lf(i)∑
i∈V f

2(i)di
,

=

∑
i,j∈V (f(i)− f(j))2w(i, j)∑

i∈V f
2(i)di

, (3.9)

where g is an arbitrary vector and f = D−
1
2 g.

3.2.3 Spectrum of a graph

From equation (3.9) we can see that the smallest eigenvalue of Ls is zero and the rest of

them are positive. Also, since Ls is a Hermitian matrix, there are n linearly independent

eigenvalues, where n is a size of Ls. Let us denote the eigenvalues of Ls 0 = λ0 ≤ λ1 ≤

· · · ≤ λn−1. The following lemmas present some basic facts about the spectrum of Ls. An

important metric in a graph is the volume, which is defined as:

volG =
∑
i

d(i). (3.10)

The diameter D of a graph is the maximum number of edges between any two vertices of G.

The following theorem describes an upper bound of λ1 in terms of D and volG.

Lemma 3.2.1. Let G be a graph with diameter D ≥ 4, and let k denote the maximum

degree of G. Then

λ1 ≤ 1− 2

√
k − 1

k

(
1− 2

D

)
+

2

D
. (3.11)

Proof. A sketch of the proof of is given in [14].
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3.2.4 Choice of similarity function

In the application we propose in this work, the weight function w(i, j) is a function that

measures the degree of similarity between data assigned to vertices i and j. Although,

several options for w are discussed in [65], the choice depends on the problem, so no general

theory can be formulated.

One popular choice for the similarity function is the Gaussian function

w(i, j) = e−
d(i,j)2

σ2 (3.12)

where d(i, j) is some distance measure between the data assigned to two vertices i and j,

and σ is a parameter to be chosen. Von Luxburg in [65] explains that σ can be chosen to

be on the order of log(n) + 1, where n is the number of vertices. This similarity function

is an appropriate choice when vertices are, for example, points in Rn, since two points that

are close together are more likely to belong to the same cluster than two points that are far

apart.

Another choice for the similarity function used in this work is the Zelnik-Manor and

Perona weight function for sparse matrices described in [69]:

w(i, j) = e
− d(i,j)2√

τ(i)τ(j) (3.13)

where the local parameter
√
τ(i) = d(i, k) and k is the M th closest vertex to vertex i. As

noted in [8], one should use this similarity function for classification when there exist multiple

scales to be classified. In [69], M is chosen to be 7, while in [61], it is 10. Depending on the

data set, we use either (3.12) or (3.13).

The choice of d(i, j) varies with the data set. If one wants to cluster points in Rn, a

reasonable choice for d(i, j) is the Euclidean distance between points i and j. In the case

of image processing, where the vertices are the pixels in the image, to construct d(i, j), we

use the concept of feature vectors, as in [8]. Each vertex i is assigned a n-dimenstional

feature vector, and d(i, j) is then the weighted 2-norm (where each coordinate of the vector

48



is assigned a weight) of the difference of the feature vectors of pixels i and j. More details

on d(i, j) in this case are given in sections 3.5.1 and 3.5.2.

3.3 Nonlocal operators

In general, image processing methods that are local fail to produce satisfactory results on

images with repetitive structures and textures because they only operate on small neighbor-

hoods, without using any information about the whole domain. The advantage of nonlocal

operators is that they contain data about the whole vertex set and are thus more successful

with those types of images.

Zhou and Schölkopf in their papers [17, 72, 71, 73] formulated a theory of nonlocal

operators that is related to the discrete graph Laplacian described in section 3.2.2. Buades,

Coll and Morel applied this nonlocal theory to denoising algorithms in their work [5]. Osher

and Gilboa proposed using nonlocal operators to define functionals involving the TV semi-

norm for various image processing applications in their work [31].

We review nonlocal calculus below, where all definitions are continuous. Let Ω ∈ Rn,

u(x) be a function u : Ω→ R and the nonlocal derivative be defined as

∂u

∂y
(x) =

u(y)− u(x)

d(x, y)
, x, y ∈ Ω (3.14)

where d is some positive distance defined on the space and 0 < d(x, y) ≤ ∞ ∀x, y. If the

(symmetric) weight function is defined as

w(x, y) =
1

d(x, y)2
, (3.15)

the nonlocal derivative can be written as

∂u

∂y
(x) = (u(y)− u(x))

√
w(x, y). (3.16)

We now consider vectors and denote them as ~v = v(x, y) ∈ Ω × Ω. Let ~v1 and ~v2 be two
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such vectors. We define the dot product and the inner product as

(~v1 · ~v2)(x) =

∫
Ω

v1(x, y)v2(x, y)dy, (3.17)

〈~v1, ~v2〉 = 〈~v1 · ~v2, 1〉 =

∫
Ω×Ω

v1(x, y)v2(x, y)dxdy. (3.18)

The magnitude of a vector can be defined as

|v|(x) =
√
~v · ~v =

√∫
Ω

v(x, y)2dy. (3.19)

while the nonlocal gradient 5wu(x) : Ω→ Ω× Ω is the vector of all partial derivatives:

(∇wu)(x, y) = (u(y)− u(x))
√
w(x, y), x, y ∈ Ω. (3.20)

With the above definitions, the nonlocal divergence divw~v(x) : Ω × Ω → Ω is defined as

the adjoint of the nonlocal gradient:

(divw~v)(x) =

∫
Ω

(v(x, y)− v(y, x))
√
w(x, y)dy. (3.21)

The Laplacian is now defined as

∆wu(x) =
1

2
divw(∇wu(x)) =

∫
Ω

(u(y)− u(x))w(x, y)dy. (3.22)

Since the graph Laplacian was defined in section 3.2.2 as

Lu(x) =
∑
y

w(x, y)(u(x)− u(y)) (3.23)

one can interpret −Lu(x) as a discrete approximation of ∆wu. Note that a constant of 1
2

was needed here to relate the two Laplacians.
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According to the nonlocal calculus described above,

∫
Ω

|∇u|2dx =

∫
Ω×Ω

(u(y)− u(x))2w(x, y)dxdy. (3.24)

Since

u · Lu =
1

2

∑
x,y

w(x, y)(u(x)− u(y))2 (3.25)

one can consider 2u · Lu to be the discrete graph version of
∫
|∇u|2dx.

In their paper [8], Bertozzi and Flenner replace the ε
2

∫
|∇u|2dx term of (1.5) by εu·Lu(x).

However, normalization of the Laplacian is necessary (refer to Section 3.2.2), so instead they

use

εu · Lsu =
ε

2

∑
x,y

w(x, y)(u(x)− u(y))2√
d(x)d(y)

. (3.26)

When the variational solution u takes the values −1 or 1,

u ·Lsu = C + 4
∑

x∈A,y∈Ā

w(x, y)√
d(x)d(y)

− 2

 ∑
x∈A,y∈A

w(x, y)√
d(x)d(y)

+
∑

x∈Ā,y∈Ā

w(x, y)√
d(x)d(y)

 . (3.27)

In this case, C is a constant that varies with the graph but not with the partition. The

representation shows that the above is minimized when the normalized weights between

vertices of different groups are small, but the normalized weights between vertices within a

group are large. This is precisely the goal of graph clustering. Therefore, by replacing the

ε
2

∫
| 5 u|2dx term of (1.5) with εu · Lsu, thus creating a graph based version of (1.5), and

then minimizing the resulting equation, one achieves the desired segmentation.

The Γ-convergence of the graph based Ginzburg-Landau functional is investigated in [?].

The authors prove that as ε → 0, the limit is related to the total variation semi-norm and

cut from (1.7).

Another important operator that arises from the need to define variational methods on

graphs is the mean curvature on graphs. This non-local operator was introduced by Osher

and Shen in [48] , who defined it via graph based p-Laplacian operators. p-Laplace operators
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are a family of quasilinear elliptic partial differential operators defined for 1 ≤ p <∞:

Lp(f) = ∇ · (| ∇f |p−2 ∇f). (3.28)

In the special case p = 2 p-Laplacian is just a regular Laplacian, for p = 1 p-Laplacian

represents curvature.

The discrete graph version of p-Laplace operators is defined as:

Lp(u(x)) =
1

p

∑
(x,y)∈E

w(x, y)(‖∇u(x)‖p−2 + ‖∇u(y)‖p−2)(u(x)− u(y)). (3.29)

Note that the graph 2-Laplacian is just the graph Laplacian, which is consistent with the

continuous case. Let us now define the mean curvature on graphs, the discrete analog of the

mean curvature of the level curve of a function defined on a continuous domain of RN :

κw =
1

2

∑
(x,y)∈E

w(x, y)(
1

‖∇u(x)‖
+

1

‖∇u(y)‖
)(u(x)− u(y)). (3.30)

Note that in the case of unweighted mesh graph κw becomes a numerical discretization of

mean curvature.

3.4 Data labeling algorithm

We construct a new data labeling algorithm by proposing a different approach to minimize

(3.1) than the one in [8] to obtain a more simple and efficient method that eliminates the

diffuse interface parameter ε. Our scheme is based on a variation of the MBO scheme.

As was shown in section 1, for small ε, the MBO thresholding scheme can be used to

evolve the Allen-Cahn equation to steady state. The scheme consists of two steps: a heat

equation propagation step and a thresholding step.

A candidate for the threshold dynamics of (3.1) is found by splitting equation (3.3), which

is the Allen-Cahn equation plus an extra fidelity term. There are several options, including
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splitting the equation into three steps, but we choose the possibility in which equation (3.3)

is split so that the thresholding step resembles the one in the original MBO scheme, as is

done in [23].

Therefore, our algorithm consists of alternating between the following two steps to obtain

approximate solutions un(x) at discrete times:

- Step 1. (heat equation with forcing term) Propagate using

∂y

∂t
= −Lsy − C1λ(x)(y − u0) (3.31)

starting with un. Note that C1 can be different from the original C.

- Step 2. (thresholding) Set

un+1(x) =


1, if y(x) ≥ 0

−1, if y(x) < 0

Note that we now use 0 as the thresholding value (instead of 1
2

as in the original MBO

scheme) since the values of u are concentrated at −1 and 1, not 0 and 1.

We have decided to discretize (3.31) above in the following manner:

un+1 − un

dt
= −Lsun+1 − C1λ(x)(un − u0). (3.32)

Note that the symmetric Laplacian is calculated implicitly. This is due to the stiffness of

the operator, which is caused by a wide range of its eigenvalues. An implicit term is needed,

since an explicit scheme requires all the scales of the eigenvalues to be resolved numerically.

The scheme is solved using the spectral decomposition of the symmetric graph Laplacian.

Let un =
∑

k a
n
kφk(x) and C1λ(un− u0) =

∑
k d

n
kφk(x), where φ(x) are the eigenfunctions of
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the symmetric Laplacian. Using the obtained representations and equation (3.32), we obtain

an+1
k =

ank − dtdnk
1 + dtλk

(3.33)

where λk are the eigenvalues of the symmetric graph Laplacian.

Therefore, the new algorithm consists of the following:

- Step 1. Create a graph from the data, choose a similarity function and then calculate the

symmetric graph Laplacian.

- Step 2. Calculate the eigenvectors and eigenvalues of the symmetric graph Laplacian. It

is only necessary to calculate a portion of the eigenvectors.

- Step 3. Initialize u.

- Step 4. Apply the two-step scheme (to minimize the Ginzburg-Landau functional) described

above for a certain number of iterations until a stopping criterion is satisfied. Use the

following method:

1. Let a0
k =

∑
x u0(x)φk(x) and d0

k(x) = 0 for all x.

2. Until a stopping criterion is satisfied, do the following:

a. Repeat for some number s of steps:

1. ank ←
ank−δtd

n
k

1+δtλk

2. y(x) =
∑

k a
n
kφk(x)

3. dnk =
∑

xC1(y − u0)(x)φk(x)

b. (thresholding part)

un+1(x) =


1, if y > 0

−1, otherwise

c. Let an+1
k =

∑
x un+1(x)φk(x) and dn+1

k =
∑

xC1(y − u0)(x)φk(x)
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The parameter δt is chosen using trial and error. The stopping criteria we use in our

work is
||unew−uold||22
||unew||22

< α = 0.0000001.

3.4.1 Computation of eigenvectors

Our method involves the computation of eigenvalues and associated eigenvectors of the sym-

metric graph Laplacian. In practice, one needs to compute only a fraction of the eigenvalues

and eigenvectors (since eigenvectors with very small eigenvalues are not very significant

computationally), and different methods of doing so are used depending on the size of the

domain.

When the graph is sparse and is of moderate size, around 5000 × 5000 or less, we use

a Rayleigh-Chebyshev procedure outlined in [6]. It is a modification of an inverse subspace

iteration method that uses adaptively determined Chebyshev polynomials. The procedure

is also a robust method that converges rapidly and that can handle cases when there are

eigenvalues of multiplicity greater than one.

When the graph is very large, such as in the case of image data labeling, the Nyström

extension method, to be described in the next section, is used.

3.4.1.1 Nyström extension for fully connected graphs

Nyström extension [8, 10, 11, 52] is a matrix completion method often used in many image

processing applications, such as kernel principle component analysis [19] and spectral clus-

tering [43]. This procedure performs much faster than many alternate techniques because it

uses approximations based on calculations on small submatrices of the original large matrix.

When the size of the matrix becomes very large, this method is especially valuable.

Note that if λ is an eigenvalue of Ŵ = D−
1
2WD−

1
2 , then 1 − λ is an eigenvalue of Ls,

and the two matrices have the same eigenvectors. We formulate a method to calculate the

eigenvectors and eigenvalues of Ŵ and thus of Ls.

Let w be the similarity function, λ be an eigenvalue of W , and φ its associated eigenvector.
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The Nyström method approximates the eigenvalue equation

∫
Ω

w(y, x)φ(x)dx = λφ(x) (3.34)

using a quadrature rule, a technique to find weights cj(y) and a set of L interpolation points

X = {xj} such that

L∑
j=1

cj(y)φ(xj) =

∫
Ω

w(y, x)φ(x)dx+ E(y) (3.35)

where E(y) represents the error in the approximation.

We use cj(y) = w(y, xj) and choose the L interpolation points randomly from the vertex

set V . Denote the set of L randomly chosen points by X = {xi}Li=1 and its complement by

Y . Partioning Z into Z = X ∪ Y and letting φk(x) be the the kth eigenvector of W and λk

its associated eigenvalue, we obtain the system of equations

∑
xj∈X

w(yi, xj)φk(xj) = λkφk(yi) ∀yi ∈ Y, ∀k ∈ 1, ..., L. (3.36)

This system of equations cannot be solved directly since the eigenvectors are not known.

To overcome this problem, the L eigenvectors of W are approximated using calculations

involving submatrices of W . Let WXY be defined as


w(x1, y1) . . . w(x1, yN−L)

...
. . .

...

w(xL, y1) . . . w(xL, yN−L)


where W has dimension N×N . The matrices WY X , WXX and WY Y can be defined similarly.

Notice that WXY = WY X
T . Then the matrix W can be written as

 WXX WXY

WY X WY Y


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To calculate the eigenvalues and eigenvalues of Ŵ , one must correctly normalize the above

weight matrix. The correct normalization is achieved by the following calculations, where

we denote by 1K the K-dimensional unit vector. Let the matrices dX and dY be defined as

dX = WXX1L +WXY 1N−L,

dY = WY X1L + (WY XW
−1
XXWXY )1N−L.

(3.37)

If A./B denotes componentwise division between matrices A and B, and vT denotes the

transpose of vector v, then define the matrices ŴXX and ŴXY as

ŴXX = WXX ./(sXs
T
X)

ŴXY = WXY ./(sXs
Y
X)

(3.38)

where sX =
√
dX and sY =

√
dY . It is shown in [8] that if ŴXX = BXDB

T
X , and if A and Γ

are matrices such that

ATΓA = ŴXX + Ŵ
− 1

2
XXŴXY ŴY XŴ

− 1
2

XX (3.39)

then the eigenvector matrix V consisting of L eigenvectors of Ŵ and thus of Ls is given by

 BXD
1
2BT

XAΓ−
1
2

ŴY XBXD
− 1

2BT
XAΓ−

1
2


while I − Γ contains the corresponding eigenvalues of Ls in its diagonal entries. Therefore,

the efficiency of the Nyström extension method lies with the fact that when computing the

eigenvalues and eigenvectors of an N × N matrix, where N is large, it approximates them

using calculations involving only much smaller matrices, the largest of which has dimension

N ×L, where L is small. Although this method is very efficient, there are problems when it

is applied to binary image inpainting, especially when the image has a repetitive structure.

This occurs because of singular or nearly singular matrices that arise in the calculations

of the Nyström extension method. Therefore, in this case, we use the Rayleigh-Chebyshev
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procedure of [6] to calculate the eigenvalues and associated eigenvectors.

3.4.2 Results for data labeling

We applied our labeling algorithm on three data sets: the two moons data set, an image and

the House of Representatives voting records from 1984. A comparison of the results to those

of the method of Bertozzi and Flenner in [8] is displayed in tables 3.1 and 3.2. The tables show

that our method significantly reduces the number of iterations and the minimization time.

There are four parameters that were involved in this problem: the number of eigenvectors,

C1, σ and dt. As long as the number of eigenvectors was not too small compared to the

sample size, there was enough information to produce an accurate result. The fidelity term

C1 was also chosen to be relatively big so that the fidelity region is preserved. The weight

matrix parameter σ was chosen so that the weights contain a wide range of numbers from

0 to 1; in other words, the situation in which most weights are very close to 0 (or 1) was

avoided. The time range dt was the most difficult parameter, and its value differed per data

set. It was mostly chosen by trial and error, but in all cases it was neither too small or

too big (in which case there is either no evolution in the iterations or frequent oscillations).

The algorithm is relatively robust with the above conditions. In the case of semi-supervised

labeling, λ(x) was set to 1 on the known region and 0 elsewhere, since our fidelity term

assumed a least-squares fit on the information supplied. Note that the fidelity term allows

for a small amount of misclassification in the known data.

3.4.2.1 Two moons

This data set was used by Bühler et al. in [9] in relation to spectral clusering using the

p-Laplacian. It is constructed from the following two half circles in R2 with radius one. The

first half circle is centered at the origin and is in the upper half plane. The second half

circle is formed by taking the lower half of the circle centered at (1, 0.5). A thousand points

are chosen uniformly from each of the two half circles. The two thousand points are then

embedded in R100, and i.d.d. Gaussian noise with standard deviation 0.02 is added to each
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coordinate. The goal is to segment those two half circles using unsupervised binarization.

This is achieved using the mean zero constraint. An affinity matrix W is created using the

weight function w(i, j) = e
− d(i,j)2√

(τ(i)τ(j)) , a weight function introduced by Zelnik-Manor and

Perona in [69], where τ(i) is the Euclidean distance between point i and the Mth closest

point to it, and d(i, j) is the Euclidean distance between points i and j. The matrix W (i, j)

is made sparse by setting W (i, j) equal to zero if point j is not among the Mth closest points

to point i. It is then ”symmetrized” by setting W (i, j) = max(W (i, j),W (j, i)). To calculate

the eigenvectors, the Rayleigh-Chebyshev procedure [6] is used, since the graph is not large

and Nyström extension is inefficient for sparse graphs [8]. Since the problem is unsupervised

binarization, in step IV of the algorithm, there is no fidelity term so λ(x) = 0 for all x. Thus,

dnk = 0 for all k and n. Due to the mean zero constraint,
∫
u(x)dx = 0, before thresholding,

one applies the mean constraint to y by subtracting its mean from each element of y. For

initialization of u, we use the sign of the second eigenvector of the symmetric Laplacian after

the mean zero constraint has been applied to it. We compared our results to the method of

Bertozzi and Flenner in [8] by running simulations on 35 different randomly generated two

moons data sets, each taking around 2 seconds to run. The average accuracy was 96.0520%

and 96.0460% for our method and the method in [8], respectively. However, 40 iterations

in the minimization procedure were used, compared to 300 needed using the method in [8].

Therefore, our method resulted in a significant decrease in the number of iterations. The

minimization time was also decreased from 0.105 seconds to 0.002 seconds. These results

are displayed in Tables 3.1 and 3.2.

We also compared our results to a spectral clustering method of thresholding the second

eigenvector of Ls. The results are displayed in Figure 3.1. Clearly, clustering using the

second eigenvector does not result in an accurate binarization.

3.4.2.2 Image data labeling

We also applied our algorithm to label objects in images of cows from the Microsoft image

database. The goal was semi-supervised image labeling, where two images are inputted into

the algorithm, one of which has been hand labeled into the two classes. The algorithm labels
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(a) (b)

Figure 3.1: Binarization by thresholding the second eigenvector in image(a) and our method
in image (b), respectively. The spectral method achieves only 83.75% accuracy while or
method is 97.7% accurate. The four parameters s (in step IV of our algorithm), number of
eigenvectors, dt, and M (parameter in the Zelnik-Manor and Perona weight function) are
set to 3, 25, 0.725 and 13, respectively.

the second image based on the labeling of the first. A fully connected graph is constructed

in this case, and the entries in the affinity matrix are calculated using feature vectors.

Every pixel in the image is assigned a feature vector consisting of intensity values of pixels

in its neighborhood, which was of size 7 × 7 in our labeling tests. We use the formula

w(i, j) = e−
d(i,j)2

σ2 , where d(i, j) is the weighted 2-norm of the difference of the feature vectors

of pixels i and j, and we add along the three RGB channels of the image. The weighted

2-norm modifies the components of the entered vector by giving more weight to the pixels

close to the original pixel and less weight to those farther away. We use a linearly decreasing

kernel, where the weight decreases linearly. This construction can be used to label different

types of objects using, for example, their color and texture features. Note that the weight

function can be modified according to the image. For example, a weight function calculated

using the spectral angle may be more effective in the labeling of hyperspectral images. To

obtain eigenvalues and eigenvectors of Ls, the Nyström extension method is used, since the

size of the graph is very large (70, 000× 70, 000). For the problem, in the fidelity term, λ(x)

was set to 1 on the hand labeled image and 0 on the unlabeled image. On the hand labeled
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Minimization time Minimization time
in method in [8] in our method

two moons 0.105 s 0.002 s
grass label 8 s 3.5 s
cow label 18 s 3.5 s
sky label 6 s 1.8 s
voting data set 0.035 s 0.002 s

Table 3.1: Comparison of minimization time of the two methods

image, we initialized u to be 1 for one class and −1 for the other class. On the unlabeled

image, u0 was set to zero. The results are displayed in Figure 3.2, where it is shown that our

algorithm is robust to mislabeling in the hand labeled image. To transfer the label for the

grass, cows and sky, our method needed about 29, 29, 27 seconds, respectively. The number

of iterations in the minimization procedure (step 4 of the algorithm) and minimization time

as compared to the method in [8] are displayed in Tables 3.1 and 3.2. The calculations show

that our method significantly reduces the minimization time and the number of iterations.

3.4.2.3 House voting records from 1984

We applied our algorithm to the US House of Representatives voting records data set, which

consists of 16 different votes from each of the 435 individuals. The goal was to assign each

individual to either the Republican or the Democrat party using the prior knowledge of the

party affiliation of only five individuals, two Democrats and three Republicans. The votes

were taken in 1984 from the 98th United States Congress, 2nd session. An affinity matrix is

constructed using calculations involving feature vectors. A 16-dimensional feature vector is

assigned to each individual consisting of his/her 16 votes. A ”yes” vote is set to 1, a ”no”

vote is set to −1, while a ”did not vote” recording is set to 0. The weight function used is

w(i, j) = e−
d(i,j)2

σ2 where d(i, j) is the 2-norm of the difference between the feature vectors

of points i and j. The graph is made sparse by setting W (i, j) equal to zero if point j is

not among the M th closest points to point i. The graph is then ”symmetrized” by setting

W (i, j) = max(W (i, j),W (j, i)). To calculate the eigenvectors, a SVD solver is used. In

step IV of the algorithm, the function u is initialized to 1 for the two Democrats, −1 for
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the three Republicans and 0 for the rest of the Representatives. The three Republicans were

chosen to be the first, second and eighth person in the list. The Democrats were chosen to

be the third and fourth person in the list. In the fidelity term, λ(x) was set to 1 for each

of five known individuals and 0 for the rest. The parameters C1 (fidelity term parameter),

s (in step IV of our algorithm), number of eigenvectors, dt, σ and M are set to 9.25, 3, 45,

4.675,
√

5 and 10, respectively. We obtained an accuracy of 94.023%. Only 5 iterations in

the minimization procedure were needed compared to 450 iterations needed by the method

in [8]. Each simulation took about 0.7 seconds, and the minimization time was decreased

by more than 15 times. The information is shown in Tables 3.1 and 3.2. Some of the votes

predicted the party affiliation very well, i.e. above 85%. We investigated the accuracy of

our algorithm when these votes were removed. With top two, top six and top eight most

predictive votes removed, our method obtained an accuracy of 90.1149%, 88.34448% and

81.1494%, respectively. The order of the top eight predictive votes from the most predictive

to least predictive is vote 4, 14, 1, 2, 15, 6, 3 and 8.

# of iterations # of iterations
in method in [8] in our method

two moons 300 40
grass label 130 22
cow label 274 29
sky label 84 11
voting data set 400 5

Table 3.2: Comparison of # of iterations of the two methods

3.5 Image inpainting algorithm

The problem of fitting information in the missing pixels of an image is an important inverse

problem in image processing with various applications. Obviously, the goal is to produce a

modified image that will look natural to an observer. The problem of inpainting may also

be seen as the problem of removing occlusive objects from an image. Sparse reconstruction

refers to the problem of recovering randomly distributed missing pixels. There are numerous
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approaches to solve these problems in the current literature. Local TV methods became

state-of-the-art techniques for image impainting. However, since they do not perform well

on images with high texture, methods that decompose images into cartoon and texture and

simultaneously inpaint both are developed [41, 56]. The problem is also solved with nonlocal

inpainting methods. We are particularly interested in the nonlocal inpainting algorithm from

[30] as we develop a computationally efficient nonlocal method. Some very successful nonlocal

methods for inpainting and sparse reconstruction are given in [49] and [25]. Recently, the

class of methods that use dictionaries of small patches that commonly appear in natural

images became increasingly popular. Those methods, besides inpainting, are also successful

in denoising as shown in [36]. In addition, a method for image inpainting using Navier-Stokes

fluid dynamics is proposed in [2]. The authors use Navier-Stokes dynamics to propagate

isophotes into the inpainting region, thus simulating the way painting restoration is done.

Wavelets and framelets are also successfully applied to solve inpainting problems [18, 35].

We modify our labeling algorithm slightly for the purpose of binary and grayscale image

inpainting. The algorithm consists of the same 4 steps:

• Create a graph from the data using pixels as vertices, choose a similarity function and

then create the symmetric graph Laplacian.

• Calculate the eigenvectors and eigenvalues of the symmetric graph Laplacian. It is

only necessary to calculate a fraction of the eigenvectors.

• Initialize u.

• Apply the two-step scheme (to minimize the Ginzburg-Landau functional) detailed in

Section 2 for a certain number of iterations until a stopping criterion is satisfied.

However, there are some important differences to be discussed in sections 3.5.1 and 3.5.2.

Our algorithm is an efficient image inpainting algorithm that is able to correct images with

repetitive structure or those with high texture content.
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3.5.1 Binary image inpainting

Although the key steps of the labeling algorithm remain the same when it is modified for

image inpainting, there are key differences to be noted. For example, it is clear that if

a damaged image is used to construct the adjacency matrix W , the results might not be

accurate, so we first apply a fast and simple H1 inpainting algorithm on the image and then

use the result to create W . Although the latter algorithm is very fast, it does not perform

well on images with high textures and repetitive structures nor does it preserve edges [?],

something that is achieved by our algorithm. The matrix W is built by using a window of a

certain size around each pixel. We set W (i, j) = 0 for all pixels j that are not in the window

of pixel i. Inside the window, W (i, j) = w(i, j), where the weight function is calculated in the

same way as in section 3.4.2.2,i.e,. using feature vectors and the Gaussian weight function.

No updating of the matrix W is necessary in the case of binary image inpainting. The

Rayleigh-Chebyshev procedure is used to calculate the eigenvectors and eigenvalues of the

graph Laplacian for binary inpainting. As mentioned before, the Nyström extension method

encounters some problems when dealing with binary images. In step IV of the algorithm,

λ(x) in the fidelity term is set to 0 on the inpainting region (which is given the value 0.5 on a

0 to 1 intensity scale) and to 1 on the rest of the image, while u0 is set to 0 on the inpainting

region, 1 on the white area and −1 on the black area. The same stopping criterion is used.

3.5.2 Grayscale image inpainting

To generalize to graycale inpaining, we split the signal bit-wise into channels, as in [18]:

u(x) =
K−1∑
m=0

um(x)2−m (3.40)

where um denotes the mth component or digit in the binary representation of the signal,

and um ∈ {0, 1} for ∀x. A fully connected graph is created in the same way as in section

3.4.2.2. Again, we first apply the H1 inpainting algorithm on the image, and use the result

to build the matrix W . The Nyström extension method is used to calculate the eigenvalues
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and corresponding eigenvectors since the size of the graph is very large. In step IV of the

algorithm, λ(x) in the fidelity term is set to 0 on the inpainting region (which is either

black or white) and to 1 on the rest of the image. The initialization of u varies with the

bit. In the inpainting region, u0 is 0, while in the rest of the image, it is 1 on the area

where the bit is 1 and −1 on area where the bit is 0. The same stopping criterion is used,

except α = 0.0001. For some images, step IV is performed for a certain number of iterations.

Updating the matrix W is often necessary for grayscale inpainting, since the adjacency

matrix formed from the damaged image is usually not good enough to restore texture and

complex patterns, as it contains ”bad” regions whose values lie far from the true value. In

our tests, every few iterations, the matrix is updated using the result from the last iteration

as the ”new image”.

3.5.3 Binary image inpainting results

We applied our algorithm on an image of Barbara and one of stripes. The results and their

PSNR are displayed in Figure 3.3. In both cases, the algorithm was able to recover the

texture and repetitive structure present in the image, something that is unfeasible for simple

algorithms, such as local TV inpainting.

3.5.4 Grayscale image inpainting results

We applied our algorithm on an image of Barbara and a chessboard-like pattern. The goals

ranged from removing occlusive objects, such as a flower, text or a rectangle, to sparse

reconstruction. The results along with their PSNR are displayed in Figures 3.4-3.9. Figure

3.9 is a reconstruction of the original image ??. In all cases, repetitive structure and texture

were recovered.

We compare our results to local and nonlocal TV inpainting. Local TV inpainting fails

to recover texture and repetitive structure. While the results of nonlocal TV inpainting

are comparable to those of our method, our method is more efficient. Timing results are

displayed in Table 3.3. We also show our method and nonlocal TV inpainting at certain
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iterations in Figure 3.10. To implement the nonlocal TV inpainting algorithm, we used the

Bregmanized version detailed in [67] and modified it for inpainting. The stopping condition

was the same as in our inpainting algorithm, and a quick H1 inpainting algorithm was run

on the image before the weights were calculated.

Total time for Total time for
nonlocal TV our method

chessboard-like pattern 266 s 48 s
text inpainting 410 s 67 s
small rectangle inpainting 1882 s 443 s
large rectangle inpainting 3397 s 832 s
50% inpainting 1402 s 333 s

Table 3.3: Timing comparison between our method and the nonlocal TV
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Figure 3.2: In the top row we see the original images. The left column contains the images
of the original labels, and the right one contains the images of the grass, cow and sky label
transferred using our algorithm. The number of eigenvectors, C1 and σ were set to 200, 30
and 22, respectively. The parameter dt was 0.03, 0.003 and 0.17 for the grass, cow and sky
label, respectively. 67



Figure 3.3: Binary Inpainting. In the top row we present the Barbara example and our
result acheves the PSNR of 20.6896. The bottom row contains the fingerprint example and
our solution has the PSNR of 25.0687. For the Barbara image, the simulation took 113
seconds, and there were 6 iterations in the two-step scheme. We used C1 = 700, dt = 0.003,
σ = 45, 31× 31 neighborhood for feature vector calculation, 21× 21 window and calculated
400 eigenvectors. For the image of stripes, the simulation took 66 seconds, and there were
4 iterations in the two-step scheme. We used C1 = 700, dt = 0.002, σ = 45, 17 × 17
neighborhood for feature vector calculation, 21×21 window and calculated 200 eigenvectors.
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(a) (b) (c)

(d) (e)

Figure 3.4: Pattern. Image (a) is the original image while image (b) is the damaged one.
Images (c), (d) and (e) are the results obtained by the local TV method, the non-local TV
method and our method, respectively. The local TV achives the PSNR of 16.5520, the non-
local result has the PSNR 41.3891, while our methods obtains the perfect reconstruction.
The simulation took 48 seconds, and there were 2 iterations in the two-step scheme. We
used C1 = 700, dt = 0.005, σ = 20, 41× 41 neighborhood for feature vector calculation, and
calculated 600 eigenvectors. No updating of W was necessary. The nonlocal inpainting took
266 seconds.
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(a) (b) (c)

(d) (e)

Figure 3.5: Text Inpainting. Image (a) is the original image, image (b) is the damaged image.
Images (c), (d) and (e) are the results obtained by the local TV, non-local TV and our method
respectively. The PSNR values for the local, non-local and our result are 29.1508, 35.6896
and 34.0688 respectively. The simulation took 67 seconds, and there were 4 iterations in the
two-step scheme. We used C1 = 700, dt = 0.005, σ = 5, 21 × 21 neighborhood for feature
vector calculation, and calculated 500 eigenvectors. We update W every other iteration. The
nonlocal inpainting took 410 seconds.
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(a) (b) (c)

(d) (e)

Figure 3.6: Small Rectangle Inpainting. Image (a) is the original image, image (b) is the
damaged image. Images (c), (d) and (e) are the results obtained by the local TV, non-local
TV and our method respectively. The PSNR values for the local, non-local and our result
are 32.8517, 44.1469 and 44.2848 respectively. The simulation took 443 seconds, and there
were 13 iterations in the two-step scheme. We used C1 = 700, dt = 0.01, σ = 4, 31 × 31
neighborhood for feature vector calculation, and calculated 500 eigenvectors. We update W
every iteration. The nonlocal TV inpainting took 1882 seconds.

71



(a) (b) (c)

(d) (e)

Figure 3.7: Large Rectangle Inpainting. Image (a) is the original image, image (b) is the
damaged image. Images (c), (d) and (e) are the results obtained by the local TV, non-local
TV and our method respectively. The PSNR values for the local, non-local and our result
are 31.3673, 35.0663 and 37.0315 respectively. The simulation took 832 seconds, and there
were 13 iterations in the two-step scheme. We used C1 = 700, dt = 0.014, σ = 4, 45 × 45
neighborhood for feature vector calculation, and calculated 500 eigenvectors. We update W
every iteration. The nonlocal inpainting took 3397 seconds.
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(a) (b) (c)

(d) (e)

Figure 3.8: .
50% Random Inpainting. Image (a) is the original image, image (b) is the damaged image
with 50% randomly distributed missing pixels. Images (c), (d) and (e) are the results ob-
tained by the local TV, non-local TV and our method respectively. The PSNR values for the
local, non-local and our result are 23.6049, 27.8196 and 27.1651 respectively. The simulation
took 333 seconds, and there were 50 iterations in the two-step scheme. We used C1 = 700,
dt = 0.005, σ = 4, 7 × 7 neighborhood for feature vector calculation, and calculated 400
eigenvectors. We update W every iteration. The nonlocal inpainting took 1402 seconds.
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(a) (b) (c)

Figure 3.9: 35% Random Inpainting. Image (a) is a damaged image with 35% randomly
distributed missing pixels. Images (b) and (c) are the results obtained by the local TV, and
our method respectively. The PSNR values for the local, non-local and our result are 22.6530
and 24.1266 respectively. The simulation took 1200 seconds, and there were 150 iterations in
the two-step scheme. We used C1 = 700, dt = 0.012, σ = 4, 7× 7 neighborhood for feature
vector calculation, and calculated 500 eigenvectors. We update W every other iteration.
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Figure 3.10: The comparison of our method (the bottom row) and the non-local TV inpaint-
ing (the top row) after 2, 5, 8 and 13 iterations
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CHAPTER 4

Conclusion

In this work we presented different variations of the MBO scheme originally proposed in [7].

Our work demonstrates efficiency and versatility of the MBO approach, and it has inspired

other researchers to extend the MBO scheme beyond its traditional form. The multiclass

segmentation appears to be a natural extension of our data classification algorithm. The

MBO numerical schemes are also applied to the modularity function minimization, a popular

technique for counting and identifying communities in a graph. Detecting ”communities” in a

graph, is a very important problem in sociology, computer science and many other disciplines.

In this chapter we also present a spline method for the density estimation problem discussed

in Chapter 2.

4.1 Multiclass segmentation

The multiclass graph-based segmentation is one of the most important problems in machine

learning. As we show in 3.2.4, it is possible to construct a weighted graph based on the

similarity between the data points. In such a graph structure, certain groups of data points

will form clusters based on the connectivity of the data points within a group. The goal

is to detect such clusters. This problem is closely related to the image segmentation, thus

the techniques developed be the imaging community present an invaluable source of ideas

for the multiclass segmentation. The authors of [12] utilize the Ginzburg-Landau functional

to create a diffuse interface model for the multiclass semi-supervised segmentation of high

dimensional data.

In 3.1 we introduce a graph segmentation function that plays an important role in the model
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we propose in there. The authors of [12] generalized this notion by introducing a label vector

U = (u1,u2, ...,uND)T where ND is a number of data points. For each data point i there

is a vector ui ∈ RK where the kth component of ui measures the likelihood of data point i

being in the class k. For each data point i vector ui is an element of the Gibbs simplex ΣK

defined as:

ΣK =

{
(x1, ..., xK) ∈ [0, 1]K ,

K∑
i=1

xi = 1

}
. (4.1)

In its general form, the energy functional used for data classification can be written as:

E(ψ) = ‖ψ‖a + µ‖ψ − ψ̂‖pb (4.2)

where ‖ψ‖a is the regularization term, and ‖ψ − ψ̂‖pb is the regularization term that incor-

porates the known classification values ψ̂. In [12], the proposed model uses the multiclass

version of the Ginzburg-Landau functional as a regularizer and a standard L2 norm fidelity

term

E(U) =
ε

2
〈U, LsU〉+

1

2ε

∑
i∈V

(
K∏
k=1

1

4
‖ui − ek‖2

L1

)
+
∑
i∈V

µi
2
‖ui − ûi‖2, (4.3)

where

〈U, LsU〉 = trace(UTLsU), (4.4)

ek is a unit vector whit kth component being equal to 1 and ûi is set to be equal to ek if

node i is known to be in class k. There are two different schemes proposed in [12] that can

be used for the energy minimization of (4.3), one that uses a convex splitting and the other

one that uses the MBO splitting. In the case of convex splitting function 4.3 is decomposed

into convex and concave parts as:

E(U) = Econvex(U) + Econcave(U),

Econvex((U)) =
ε

2
〈U, LsU〉+

C

2
〈U,U〉,

Econcave((U)) =
1

2ε

∑
i∈V

(
K∏
k=1

1

4
‖ui − ek‖2

L1

)
+
∑
i∈V

µi
2
‖ui − ûi‖2 − C

2
〈U,U〉, (4.5)
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with C ∈ R denoting a constant that guarantees the convexity of Econvex and the concavity

of Econcave. The time discretization scheme for gradient descent of the convex splitting is

Un+1
ik + dt

δEconvex
δUik

(Un+1
ik ) = Un

ik − dt
δEconcave
δUik

. (4.6)

When the functional derivatives are evaluated, equation 4.6 becomes:

Un+1 + dt(εLsU
n+1 + CUn+1) = Un − dt

(
1

2ε
Tn + µ(U− Û)− CUn

)
, (4.7)

where

Tik =
K∑
l=1

(1− 2δkl)‖ui − el‖L1

K∏
m=1
m 6=l

1

4
‖ui − em‖L1 , (4.8)

µ is a diagonal matrix with elements µi, and Û = (û1, ...), ûND)T . Solving (4.7) for Un+1

gives the equation:

Un+1 = B−1

(
(1 + Cdt)Un − dt

2ε
Tn − dtµ(Un − Û)

)
(4.9)

where

B = (1 + Cdt)I + εdtLs. (4.10)

Equation (4.9) represents a numerically stable implicit scheme.

Another way to minimize 4.3 is to generalize the MBO scheme, similarly to the graph version

of the MBO scheme we proposed in 3.4. The multiclass MBO scheme, just like its standard

counterpart can be divided into two phases, the heat propagation phase and the thresholding

phase, and the algorithm consists of alternating between the two:

1. Diffusion:
Un+ 1

2 −Un

dt
= −LsUn − µ(Un − Û). (4.11)

2. Thresholding:

un+1
i = ek, (4.12)
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where vector ek is the vector closest to u
n+ 1

2
i .

Both (4.9) and (2) are tested on multiple benchmark data sets, such as MNIST, COIL and

WebKB. They achieve excellent results in term of accuracy and usually outperform all state-

of-the-art methods. On all of the data sets, the multiclass MBO reaches convergence in fewer

iterations.

4.2 Network modularity optimization using the MBO scheme

Communities of a graph are defined as groups of nodes with a higher density of connections

within them than between them. Research on graph communities is focused on decomposing

a graph into (possibly overlapping) communities. There are numerous application of this

approach, such as in studies of the social networks, legislation cosponsorship in the United

States Congress, functional modules in biology networks and many others. A very popular

way of detecting the communities of a graph is via maximizing the modularity function of

a graph partition. The modularity function Q measures the fraction of total edge weight

within each community minus the edge weight that would be expected if edges were places

randomly. Let g = {gi}Ni=1 be a partition of a graph. Let the quantity gi represent the

community assignment of the node ni, assuming there are n̂ communities, where n̂ is not

greater than N . The modularity function Q of the partition g is defined as:

Q(g) =
1

2m

N∑
i,j=1

(
wij − γ

kikj
2m

)
δ(gi, gj), (4.13)

where wij is a weight if the edge between the nodes ni and nj, ki is a degree of the node

ni, 2m =
∑N

i=1 ki, γ is a resolution parameter and the term δ(gi, gj) = 1 if gi = gj and

δ(gi, gj) = 0 otherwise. Intuitively, maximization of the modularity function should yield a

good decomposition of the graph G. The maximization of the modularity function is an NP

hard problem, and numerous heuristical algorithms are proposed to solve it.

In [34], Hu et. al. propose a reformulation of the modularity function using the TV norm
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and the l2 norm of a function defined on a graph. Let f : G→ R

| f |TV =
1

2

N∑
i,j=1

wij | fi − fj |,

‖f‖2
l2

=
N∑
i=1

ki | fi |2,

mean(f) =
1

2m

N∑
i=1

kifi, (4.14)

where fi = f(ni). For a vector function f = (f (1), ..., f (n̂)) the TV norm and the l2 norm are

defined as:

| f |TV =
n̂∑
l=1

| f (l) |TV ,

‖f‖l2 =
n̂∑
l=1

‖f (l)‖l2 , (4.15)

and mean(f) = (mean(f (1)), ...,mean(f (n̂))). Based on the previous discussion community

l can be defined as the set Al = {ni ∈ G, gi = l}, where l ∈ {1, 2, ..., n̂}. Let f (l) : G ∈ {0, 1}

be the indicator function of the community l. For each partition g a vector function called

the partition function can be defined as f = (f (1), ..., f (n̂)). Since the assumption that

the communities do not overlap is made, the partition function f can be reformulated as

f : G→ V n̂, where V n̂ is the standard basis of Rn̂. The authors of [34] prove the following

theorem:

Theorem 4.1 (Hu et. al., 2013). Maximizing the modularity functional Q over all partitions

that have at most n̂ communities is equivalent to minimizing

| f |TV −γ‖f −mean(f)‖2
l2

(4.16)

over all functions f : G ∈ V n̂.

Given the established connection between the TV norm and the modularity of the optimal

partitioning the authors of [34] propose the Ginzburg-Landau relaxation of the modularity
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function:

Hε(f) =
1

2

n̂∑
l=1

〈f (l), Lf (l)〉+
1

ε2

N∑
i=1

Wmulti(fi)− γ‖f −mean(f)‖2
l2
, (4.17)

where ε > 0, Wmulti : Rn̂ → R is a multi-well potential and L is the graph Laplacian we

previously introduced in 1.6. Hu et. al. prove that the functional Hε Γ-converges to the

functional defined in 4.16 on the space X = {f |f : G→ Rn̂}. The gradient descent equation

of 4.17 is

∂f

∂t
= −(Lf (1), ..., Lf (n̂))− 1

ε2
∇Wmulti(f) +

δ

δf
(γ‖f −mean(f)‖2

l2
). (4.18)

Similarly to the variations MBO schemes we presented in 2 and 3 the authors of [34] propose

a Modularity MBO scheme that alternates between the following two steps to obtain an

approximate solution of 4.17:

1. In the diffusion step we apply

∂f

∂t
= −(Lf (1), ..., Lf (n̂)) +

δ

δf
(γ‖f −mean(f)‖2

l2
) (4.19)

on fn with time τn and we repeat it for η time steps.

2. In the thresholding step:

fn+1
i = egi , (4.20)

where

gi = arg max
1≤l≤n̂

{f̂ (l)
i }. (4.21)

In [34], the authors propose a convex-splitting scheme to solve 4.19. Since 4.19 is the gradient

descent of H1 + H2, they take advantage of the splitting where H1(f) =
∑n̂

l=1〈f (l), Lf (l)〉

is convex and H2(f) = −γ‖f − mean(f)‖2
l2

is concave. In [34] there are two proposed

implementation of the MBO scheme. The Recursive Modularity MBO is suitable for the

cases when the expected number of communities is very large and the Multiple Input-n̂
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Modularity is suitable for the cases of graphs with fewer communities.

4.3 A spline method for density estimation

The idea to utilize splines with the polynomial basis functions to create a new version of the

MPLE model introduced in Section 1.5 originates from the fact that the valid region can be

elegantly incorporated into the model, and no additional penalty terms are needed. In terms

of the simplicity of the model, the spline model we will introduce here has clear advantage

over the modified TV MPLE models from [39].

Let 4 be a triangulation of the valid region D, and let us define a family of the polynomial

spline functions of the degree m and smoothness r:

Srm(4) = {s ∈ Cr(D)|s �τ∈ Pm, τ ∈ 4}. (4.22)

The TV MPLE model is proposed that will be minimized over Srm:

d̂ = arg min
d∈Srm

{
α

∫
D

√
ε+ | ∇d(x) |2 +

N∑
j=1

log
1

d(xj)
, d(x) ≥ 0,

∫
D

d(x) = 1

}
(4.23)

where d is a density function and ε is a parameter. In [42], the Bernstein-Bezier polynomials,Bτ
ijk

are proposed to be a basis of the spline functions:

d(x) =
∑
τ∈4

∑
i+j+k=m

cτijkB
τ
ijk(x). (4.24)

Using this, the constraint
∫
D
d(x) = 1 can be written as:

∑
τ∈4

Aτ(
m+2

2

) ∑
i+j+k=m

cτijk = 1, (4.25)

where Aτ denotes the area of triangle τ . Also d(x) ≥ 0 is equivalent to cτijk ≥ 0, i+j+k = m.

The model 4.23 can be written in a matrix form using the vector c = (cτijk, i+j+k = m, τ ∈
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4)

min Φε(c) +
1

2α
Ψ(c), (4.26)

where

Sc = 0, (4.27)

Bc = G, (4.28)

where Φε(c) =
√
ε+ | ∇d |2 and Ψ(c) =

∑
i log( 1

T (xi)
). The algorithm to minimize 4.26

proposed in [42] is a variant of the Uzawa algorithm. At each iteration of the algorithm the

following minimization problem is solved:

k+1 = min
c

Φε(c) +
1

2α
Ψ(c)− λkc, Sc, Bc = G, (4.29)

where λk+1 ∈ Rn
+ is a parameter. Following the minimization, the parameter λk is updated:

λk+1 = max{λk − ρck+1, 0}, (4.30)

where ρ is a step size. The proof of convergence for this method is given in [42].

In this work we apply the variants of the MBO scheme to minimize the MPLE energy

functional and the graph based Ginzburg-Landau function. Comparing to other numerical

schemes iterations of the MBO scheme are simple and computationally inexpensive. Our

graph based MBO scheme converges in up to ten times fewer iterations than the state-of-

the-art nonlocal method. We are proud that our methods opened the way to several new

applications of the MBO scheme.
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