
UCLA
Papers

Title
Short Paper: A Wireless Time-Synchronized COTS Sensor Platform, Part I: System
Architecture

Permalink
https://escholarship.org/uc/item/2d13p810

Authors
Elson, J
Girod, Lewis
Estrin, D

Publication Date
2002-09-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2d13p810
https://escholarship.org
http://www.cdlib.org/

SHORT PAPER: A WIRELESS TIME-SYNCHRONIZED COTS SENSOR PLATFORM
PART I: SYSTEM ARCHITECTURE

Jeremy Elson, Lewis Girod, and Deborah Estrin

Department of Computer Science, 3440 Boelter Hall
University of California, Los Angeles USA 90095

{jelson,girod,destrin}@lecs.cs.ucla.edu

ABSTRACT

In this paper, we describe an implementation of a ad-hoc,
distributed sensor platform that provides synchronized time
to its users. By abstracting the time synchronization layer
away, we allow developers to focus on the core challenges
of their applications (e.g., signal processing, aggregation,
routing) rather than dealing with the algorithmic and sys-
tems issues that inevitably arise when integrating sensing
with distributed synchronization. Through a variety of tech-
niques, notably the use of Reference-Broadcast Synchro-
nization (RBS) [5], our platform offers better than 5µsec
precision when comparing streams of audio data sampled at
nodes separated by one network hop.

1. INTRODUCTION

Recent advances in miniaturization and low-cost, low-power
design have led to active research in large-scale, highly dis-
tributed systems of small, wireless, low-power, unattended
sensors and actuators [2]. While individual sensor nodes
have only limited functionality, the global behavior of a sen-
sor network can be quite complex. The network’s value is
in this emergent behavior: the functionality of the whole is
greater than the sum of its parts. Such behavior is achieved,
in part, through data fusion, the process of merging individ-
ual sensor readings into a high-level result.

Time synchronization is critical for distributed data fu-
sion; it is nearly always required to meaningfully corre-
late the output of distributed sensors. There are many ex-
amples of sensor network tasks that require synchronized
time: for example, to save energy by forming a sleep and
wakeup schedule [3]; create a distributed acoustic beam-
forming platform [15]; integrate a time-series of proximity
detections into a velocity estimate [4]; measure the time-
of-flight of sound for localizing its source [7]; or suppress
redundant messages by recognizing that they describe du-
plicate detections of the same event by different by nearby

In Proceedings of the IEEE CAS Workshop on Wireless Communica-
tions and Networking, Pasadena, California. September 2002.

sensors [9].
In this paper, we describe an implementation of a dis-

tributed sensor platform that provides synchronized time
to its users. By abstracting the time synchronization layer
away, we allow developers to focus on the core challenges
of their applications (e.g., signal processing, aggregation,
routing) rather than dealing with the algorithmic and sys-
tems issues that inevitably arise when integrating sensing
with distributed synchronization. Through a variety of tech-
niques, most notably the use of Reference-Broadcast Syn-
chronization (RBS) [5], our platform offers better than 5µsec
precision when comparing streams of audio data acquired at
peers separated by one hop.

Of course, time synchronization is a well-studied prob-
lem; for decades, protocols such as NTP [12] have kept the
Internet’s clocks ticking in phase. However, in a network
where physical-layer broadcasts are possible, RBS can im-
prove precision over NTP by nearly an order of magnitude
[5]. In addition, as we argue in [6], NTP is not necessarily
the right choice for a distributed sensor networks for more
subtle reasons.

The organization of this paper is as follows. In Sec-
tion 2, we describe our hardware platform, and the advan-
tages of using a commercial off-the-shelf (COTS) system—
a Compaq iPAQ—rather than something custom-made. Sec-
tion 3 how the integrated 802.11 (wireless Ethernet) net-
work can be used to achieve inter-node time synchroniza-
tion of better than 5µsec. In Section 4, we discuss our audio
server, which simplifies application development and inte-
grates acoustic sampling with the time synchronization sys-
tem. Finally, Section 5 has our conclusions and future di-
rections. Part II of this paper [15] describes an application
implemented on our platform: a distributed, acoustic beam-
forming array, based on earlier work in centralized beam-
forming [16].

2. HARDWARE PLATFORM

Over the past few years, a number of hardware platforms
have emerged in the wireless network sensor arena, perhaps

starting with the WINS system developed at UCLA and
Rockwell [3, 14]. Most recently, the Berkeley Mote plat-
form [8, 10] is notable due to its growing popularity in the
research community. While these platforms are typically
the most energy-efficient and have the smallest form factors,
we have also found COTS (commercial off-the-shelf) plat-
forms to be useful due to their lower cost, ready availabil-
ity in quantity, and ease of use (minimal “hardware hack-
ing” required). While the dedicated platforms are usually
required for real world deployments, a COTS platform fa-
cilitates rapid application prototypes and data collection.

Our COTS sensor platform is based around the Compaq
iPAQ 3760, which is a handheld, battery-powered device
normally meant to be used as a personal organizer (PDA).
The iPAQ provides a reasonable balance of cost, availabil-
ity, and functionality. It has a 206MHz Intel StrongARM-
1110 processor, 64MB of RAM, and 32MB of persistent
FLASH. Our iPAQs use the “Familiar” distribution of Linux
[1], which provides a development environment with con-
veniences typically not found in embedded operating sys-
tems (e.g., remote login for debugging, network error log-
ging, network software upgrade, etc.). We also selected
the iPAQ because it is readily available COTS hardware,
has reasonable battery life, and is usable right off the shelf.
The standard model has a built-in speaker and microphone,
with an audio codec capable of sampling at 48KHz. Fi-
nally, the iPAQs have a serial port, and a PCMCIA bus,
for which a wide variety of peripherals are available. All
of our iPAQs have spread-spectrum wireless Ethernet cards
(802.11b direct sequence, 11Mbit/sec), which can operate
in either base-station or ad-hoc mode.

3. NETWORK TIME SYNCHRONIZATION

In our system, network time synchronization is accomplished
using an implementation of Reference-Broadcast Synchro-
nization, or RBS, described in more detail in [5]. Briefly,
the fundamental property of RBS is that it uses the physical-
layer broadcast property of wireless networks to synchro-
nize a set of receivers with one another. By using only
receiver-to-receiver relations, the largest sources of nonde-
terministic latency are removed from the critical path. This
results in significantly better-precision synchronization than
traditional algorithms that synchronize a sender with a re-
ceiver with a correction for the measured round-trip delay.
In addition, because the residual error is often a well-behaved
distribution (e.g., Gaussian), multiple reference broadcasts
can be sent over time, allowing both improved precision of
the phase offset estimate and correction for clock skew.

Complex disciplines exist that can lock an oscillator’s
phase and frequency to an external standard [13]. However,
we selected a very simple yet effective algorithm to correct
skew: a least-squares linear regression on the time series

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120 140
-4

-3

-2

-1

0

1

2

3

4

O
ffs

et
 (

us
ec

),
 r

el
at

iv
e

to
 8

.0
09

12
1

se
c

F
it

er
ro

r
(u

se
c)

Time in seconds

Figure 1. Example of relative clock phase and frequency
recovery using a time series of compared broadcast obser-
vation times. using a linear regression through packet ob-
servations. The diagonal line is the best linear fit to the
data—i.e., the line that minimizes RMS error. The vertical
impulses, read with respect to the right-hand y axis, show
the distance from each point to the best-fit line.

of phase differences between nodes, after automatic outlier
rejection. This offers a fast, closed-form method for finding
the best fit line through the phase observations over time.
The frequency and phase of the local node’s clock with re-
spect to the remote node can be recovered from the slope
and intercept of the line. A visualization of this procedure
is shown in Figure 1.

Our RBS daemon simultaneously acts in both “sender”
and “receiver” roles. Every 10 seconds (slightly randomized
to avoid unintended synchronization), each daemon emits a
pulse packet with a sequence number and sender ID. The
daemon also watches for such packets to arrive; it times-
tamps them and periodically sends a report of these times-
tamps back to the pulse sender along with its receiver ID.
The pulse sender collects all of the pulse reception reports
and computes clock conversion parameters between each
pair of nodes that heard its broadcasts. These parameters
are then broadcast back to local neighbors. The RBS dae-
mons that receive these parameters make them available to
users. (RBS never sets the nodes’ clocks, but rather pro-
vides a user library that converts UNIX timevals from
one node ID to another.)

To improve the accuracy of the packet timestamps, we
made use of the Berkeley packet capture library, libp-
cap [11]. Without libpcap, typical applications read the
system clock from user-space, after the process has been
notified an event (such as a packet arrival). This can re-
duce the precision of timestamps due to the scheduling and
task-switching latency between the event and the time of

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.1 1 10 100

C
um

ul
at

iv
e

E
rr

or
 P

ro
ba

bi
lit

y

Error (usec)

RBS Synchronization Error using Kernel Timestamping

Clock Resolution

Figure 2. Cumulative distribution function of RBS synchro-
nization error on our Compaq iPAQs. Mean error was
1.26µsec, standard deviation of 1.11µsec. 50% of trials
were within 0.96µsec error; 95% within 3.51µsec, and 99%
within 4.89µsec.

the clock read. In contrast, libpcap can provide precise
packet-arrival timestamps by coöperating with the Linux
kernel, which annotates packets with the reception times in
the network interface’s interrupt handler. The timestamp
(and other meta-data) is then passed up to the application
along with the packet itself. This technique allows the sys-
tem to maintain high precision timestamps, even at times of
high CPU contention.

To test the precision of the time synchronization on our
platform, we connected a GPIO output from each of two
IPAQs to an external logic analyzer. The analyzer was pro-
grammed to report the time difference between two pulses
seen on each of its input channels. In each trial, we used
RBS’ clock conversion parameters to command each IPAQ
to raise their GPIO lines high at the same time. We ran a
total of 325 trials, each separated by about 8 seconds, for a
total test period of about 45 minutes. The results are shown
in Figure 2; RBS achieved a mean 1.26±1.11µsec synchro-
nization error. We believe this result was primarily limited
by the iPAQ’s clock resolution under Linux, which is 1µsec.

4. AUDIO SAMPLING SERVER

The second system service that facilitates distributed acous-
tic sampling on our platform is the audio server. This is
a process that continuously reads samples from the audio
codec, buffering the most recent 10 seconds, and making
that buffer available to user applications on demand. This
scheme can dramatically decrease the complexity of user
applications in a number of ways. For example, it enables
systems with external triggers (e.g., seismic sensors or cam-

eras), which can easily go back in time and retrieve the au-
dio data that corresponded to the trigger event. We have
also found this “after-the-fact sampling” useful for reduc-
ing the complexity of protocol interactions—for example, in
our acoustic ranging application [7]. Early designs required
several round-trips worth of interaction to ensure the re-
ceiver would be recording in advance of the sender’s chirp.
By recording continuously, the protocol is simplified: “I
chirped 2 seconds ago, when did you receive it?” The au-
dio server is also an effective way to resolve contention for
the codec in applications where multiple processes all need
access to the incoming audio stream.

The audio server serves another function: it improves
the timing precision of the recorded audio data. Unfortu-
nately, cheap consumer-grade audio codecs such as those
found in a PDA tend to have nondeterministic latency be-
fore the beginning of a recording or playback. It is im-
portant to minimize these effects since they contribute di-
rectly to synchronization error between the audio streams.
We have found that this problem can be avoided by run-
ning the codec continuously. With the help of a modifi-
cation to the Linux kernel’s codec device driver, the au-
dio server timestamps each DMA transfer of audio samples
from the codec’s chipset as it arrives. Although there is a
delay between when audio is physically acquired and when
the DMA transfer completes, this delay appears to be deter-
ministic and easily calibrated out. In contrast, the nondeter-
ministic delay between a “start recording now” command
and the first audio sample leads to poor synchronization.

Our time synchronization daemon, described in its RBS
role in Section 3, also supports synchronization between
components within a system. Components such as the au-
dio codec have sampling clocks that are independent of the
system clock. Network RBS only synchronizes the system
clocks, but applications typically need the sampling clocks
to be synchronized so that audio data can be correlated across
nodes. We therefore explicitly model both types of clocks
in our synchronization process, with explicit conversion pa-
rameters between them. Each time the audio server receives
and timestamps a new block of audio data, it injects a pair
of values into the time daemon: an audio sample number
and associated system clock value. These pairs relate the
two clocks to each other over time; the daemon computes
conversion parameters that allow iPAQ system clock values
to be converted to audio sample numbers, and vice-versa.
The daemon uses the same linear least-squares regression
and outlier rejection as it does for RBS. This makes it very
robust against outliers due to (for example) an occasional
late DMA transfer.

By integrating this “codec pairs synchronization” with
the RBS synchronization described in Section 3, exact audio
samples can be correlated across iPAQs. That is, a codec
sample number on iPAQ X is converted to an X system time

value; X’s system time is converted to a system time on Y

using RBS; and the codec pairs are used again to convert
the Y system clock value to a Y codec sample number. The
codecs sample at 48KHz, or ≈ 21µsec per sample, so the
5µsec inter-node synchronization achieved by RBS is well
within the threshold needed to correlate co-occurring audio
samples from codecs on a distributed set of iPAQs.

5. CONCLUSIONS

In this paper, we have presented a PDA-based COTS plat-
form that provides time distributed synchronization for both
the system clocks and the audio codecs, enabling a variety
of interesting distributed sensing experiments. (Part II of
this paper [15] describes an application implemented on our
platform: a distributed, acoustic beam-forming array, based
on earlier work in centralized beam-forming [16].) Our plat-
form typically achieves better than 5µsec phase error and
samples audio at 48KHz.

While dedicated platforms are likely to be preferred for
real-world sensor deployment, our COTS platform is at-
tractive for early prototyping and data collection. It has a
general purpose operating system (Linux), allowing a wide
range of application exploration. The platform is sufficiently
small, low-power, general-purpose, and time-synchronized
to gain valuable experience through pilot deployments and
real-world data collection experiments.

Our system image is publicly available. For more in-
formation, please see http://lecs.cs.ucla.edu, or
contact the authors (testbed@lecs.cs.ucla.edu).

Acknowledgements

This work was made possible with support from the DARPA
NEST program (the “GALORE” project, grant F33615-01-
C-1906). Additional support was provided through the Uni-
versity of California MICRO program (grant number 01-
031) and matching funds from Intel Corporation.

6. REFERENCES

[1] Familiar Linux. http://www.handhelds.org.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless Sensor Networks: A Survey. Computer
Networks, 38(4):393–422, March 2002.

[3] G. Asada, T. Dong, F. Lin, G. Pottie, W. Kaiser, and
H. Marcy. Wireless integrated network sensors: Low power
systems on a chip. In Proceedings of European Solid
State Circuits Conference, The Hague, Netherlands, October
1998.

[4] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis
Girod, Michael Hamilton, and Jerry Zhao. Habitat
monitoring: Application driver for wireless communica-
tions technology. In Proceedings of the 2001 ACM

SIGCOMM Workshop on Data Communications in Latin
America and the Caribbean, April 2001. Available at
http://www.isi.edu/scadds/papers/CostaRica-oct01-final.ps.

[5] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-
grained network time synchronization using reference
broadcasts. Technical Report UCLA-CS-020008,
University of California Los Angeles, May 2002.
http://lecs.cs.ucla.edu/Publications.

[6] Jeremy Elson and Kay Römer. Wireless sensor net-
works: A new regime for time synchronization. Tech-
nical report, UCLA Technical Report, July 2002.
http://lecs.cs.ucla.edu/Publications.

[7] Lewis Girod, Vladimir Bychkovskiy, Jeremy Elson, and
Deborah Estrin. Locating tiny sensors in time and space:
a case study. In Proceedings of the International Conference
on Computer Design (ICCD), Freiburg, Germany, September
2002. http://lecs.cs.ucla.edu/Publications.

[8] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, and Kristofer Pister. System architecture directions
for networked sensors. In Proceedings of the Ninth Interna-
tional Conference on Arhitectural Support for Programming
Languages and Operating Systems (ASPLOS-IX), pages 93–
104, Cambridge, MA, USA, November 2000. ACM.

[9] Chalermek Intanagonwiwat, Ramesh Govindan, and Debo-
rah Estrin. Directed diffusion: A scalable and robust com-
munication paradigm for sensor networks. In Proceedings of
the Sixth Annual International Conference on Mobile Com-
puting and Networking, pages 56–67, Boston, MA, August
2000. ACM Press.

[10] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next century chal-
lenges: mobile networking for Smart Dust. In Proceedings of
the fifth annual ACM/IEEE Intl. Conf. on Mobile computing
and networking, pages 271–278, 1999.

[11] Steven McCanne and Van Jacobson. The BSD packet fil-
ter: A new architecture for user-level packet capture. In
USENIX Association, editor, Proceedings of the Winter 1993
USENIX Conference: January 25–29, 1993, San Diego, Cal-
ifornia, USA, pages 259–269, Berkeley, CA, USA, Winter
1993. USENIX.

[12] David L. Mills. Internet Time Synchronization: The Network
Time Protocol. In Zhonghua Yang and T. Anthony Marsland,
editors, Global States and Time in Distributed Systems. IEEE
Computer Society Press, 1994.

[13] David L. Mills. Adaptive hybrid clock discipline algorithm
for the network time protocol. IEEE/ACM Transactions on
Networking, 6(5):505–514, October 1998.

[14] G.J. Pottie and W.J. Kaiser. Wireless integrated network sen-
sors. Communications of the ACM, 43(5):51–58, May 2000.

[15] H. Wang, L. Yip, D. Maniezzo, J.C. Chen, R.E. Hudson,
J.Elson, and K.Yao. A Wireless Time-Synchronized COTS
Sensor Platform Part II–Applications to Beamforming. In
Proceedings of IEEE CAS Workshop on Wireless Communi-
cations and Networking, Pasadena, CA, September 2002.

[16] K. Yao, R.E. Hudson, C.W. Reed, D. Chen, and F. Lorenzelli.
Blind beamforming on a randomly distributed sensor array
system. IEEE Journal of Selected Areas in Communications,
16(8):1555–1567, Oct 1998.

