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High-fidelity numerical tools based on high-order Discontinuous-Galerkin (DG)

methods and Lagrangian Coherent Structure (LCS) theory are developed and validated for

the study of separated, vortex-dominated flows over complex geometry. The numerical

framework couples prediction of separated turbulent flows using DG with time-dependent

analysis of the flow through LCS and is intended for the development of separation control

strategies for aerodynamic surfaces.

The compressible viscous flow over a NACA 65-(1)412 airfoil is solved with a
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DG based Navier-Stokes solver in two and three dimensions. A method is presented in

which high-order polynomial element edges adjacent to curved boundaries are matched

to boundaries defined by non-smooth splines. Artificial surface roughness introduced

by the piecewise-linear boundary approximation of straight-sided meshes results in the

simulation of incorrect physics, including wake instabilities and spurious time-dependent

modes. Spectral accuracy in the boundary approximation is not achieved for non-analytic

boundary functions, particularly in high curvature regions.

An algorithm is developed for the high-order computation of Finite-Time Lya-

punov Exponent (FTLE) fields simultaneously and efficiently with two and three dimen-

sional DG-based flow solvers. Fluid tracers are initialized at Gauss-Lobatto quadrature

nodes within an element and form the high-order basis for a flow map at later time.

Gradients of the flow map and FTLE are evaluated with DG operators. Multiple flow

maps are determined from a single particle trace by remapping the flow map to the

quadrature nodes on deformed mesh elements. For large integration times, excessive

subdomain deformation deteriorates the interpolating conditioning. The conditioning

provides information on the fluid deformation and identifies subdomains that contain

LCS. An exponential filter smooths the flow map in highly deformed areas. The algorithm

is tested on several benchmarks and is shown to have spectral convergence.

The two and three-dimensional LCS field are analyzed for the unsteady flow over

a NACA 65-(1)412 airfoil at a free-stream Reynolds number of Re=20,000 based on

the chord length and a Mach number of 0.3. In two-dimensions, a Karman vortex street

forms at the trailing edge. The three-dimensional vortex street breaks down to turbulence

at the trailing edge.
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Chapter 1

Introduction

1.1 Motivation

Prediction and control of separated flow is an important field of study for the

advancement of technologies that rely on fluid transport, such as aircraft and turbo-

machinery. Large pressure losses associated with separation on aerodynamic surfaces

lead to performance losses. With Active Flow Control (AFC) of fluid separation, the

operating range can be enhanced, operational lifetime extended and fuel consumption

and emissions reduced.

Turbulent, separated flow, and the control thereof, are challenging for several

reasons. First, a large separation of scales exists, ranging from small scale instabilities,

to large scale vortex-dominated wake structures. Secondly, in these highly non-linear

environments, large scales are very sensitive to small perturbations in the flow and

modifications in the geometry, such as changes in the airfoil design. Lastly, non-linear

instabilities complicate the dynamic and unsteady control of coherent structures and

wave phenomena. These challenges pose high demands on prediction and control tools,

requiring high-fidelity in most, if not all, stages of a control loop.

1
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Industry standard Computational Fluid Dynamics (CFD) software typically relies

on Reynolds-Averaged Navier-Stokes (RANS) solvers. However, RANS methods do

not capture the sensitive, time-dependent structures that are critical in understanding

flow separation and advancing AFC methods. Direct Numerical Simulation (DNS) and

Large Eddy Simulation (LES) are necessary to resolve the temporal evolution of unsteady

fluid flow. To obtain, accurate, unsteady Navier-Stokes solutions efficiently, higher-order

methods are most often used for DNS. The low dispersion and diffusion characteristics

of high-order methods ensure long time accuracy and make them well suited for DNS

and LES.

1.2 High-Order Methods on Complex Geometries

Historically, efforts towards the DNS of the Navier-Stokes equations began with

finite difference methods. Important early contributions include those of Courant et al.

[2], Evans and Harlow [3], and Godunov [4]. These examples were restricted to relatively

small numbers of degrees of freedom and did not address the simulation of turbulent flows.

The DNS of full three-dimensional incompressible isotropic turbulence was first presented

by Orszag and Patterson [5]. The simulation was performed using a Fourier spectral

method with 323 degrees of freedom. As computing power and resources became more

available, flows with higher Reynolds numbers and more complex turbulence problems

were addressed with DNS. Most early efforts in the DNS of turbulent flows were focused

on isotropic or free shear turbulence. For instance, the DNS of compressible turbulence

in a shear flow was analyzed with a Fourier spectral method by Sarkar et al. [6].

The high-fidelity numerical analysis of turbulent wall bounded flows was begun in

the 1980s with the LES of the incompressible plane channel flow [7]. This was followed

by the DNS of the incompressible plane channel flow by Kim et al. [8]. The first DNS
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of turbulent flow on curved geometries was studied by Moser and Moin [9], where the

incompressible turbulent flow through a curved channel was simulated. The channel

flow simulations of [8, 9] used a Fourier spectral method in the streamwise and spanwise

directions and a Chebyshev spectral method in the wall normal directions.

As advancements in the DNS of turbulent flows began to include more complex

geometrical configurations, spectral methods were used comparatively infrequently since

few spectral methods were available that could accommodate complex geometries. For

instance, much of the early work on the DNS of flow separation focused on the separated

flow over a backward-facing step using finite differences and finite volume methods

[10, 11].

Patera [12] introduced the spectral element method, thus combining the superior

convergence qualities of spectral methods with the geometric flexibility afforded by finite

volume methods. Further developments led to numerous studies on separated flows using

spectral element methods. Kaiktsis et al. [13] implemented a spectral element approach

for the backward-facing step, however Gresho et al. [14] showed that the results in [13]

were under-resolved. Mittal and Balachandar presented a single domain spectral method

on a curvilinear, boundary-fitted mesh for the turbulent separated flow over elliptical

cylinders. Bassi and Rebay [15, 16] demonstrated spectral convergence can be achieved

on geometries with curved edges using spectral element methods. Jacobs [17] revisited

the separated, turbulent flow over a backward-facing step using a spectral element method

and found good agreement with the literature. Hughes et al. [18] proposed methods

for mesh refinement on complex curved geometries. Sun et al. [19] demonstrated a

multidomain spectral method on the inviscid and viscous flow over a sphere.

Several aspects of high-order Discontinuous-Galerkin (DG) spectral element

methods provide a robust approach to the numerical analysis of separated flows in

non-trivial boundary configurations. We refer to [20, 21] for comprehensive overviews
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of spectral element methods. By mapping the solution from an irregular element to

a regular master element, high-order orthogonal polynomials are used to construct

spectral methods on unstructured meshes. Dubiner [22] introduces a method in which

the solution is mapped to triangular elements, making it consistent with triangular mesh

generators used frequently in the industry. Sherwin and Karniadakis [23] extended

this idea to three-dimensional elements. Persson et al. [24] describe a scheme for

solving the time dependent Navier-Stokes on deformable meshes with a high-order

DG method. Kopriva [25, 26] presents a quadrilateral based scheme that projects non-

conforming element boundaries to a mortar space, providing a flexible route for local

element refinement. Element boundary fluxes are treated locally so that the solution in

each element only depends on adjacent element. In this way, parallelization is easily

implemented and efficient. Since high-order polynomials are used to approximate the

solution on the reference element, polynomial element boundary representations are

implemented naturally with appropriate treatment of transfinite mappings and metric

terms [27].

Although DG methods are naturally suited for numerical analysis of flows on

curved geometries, the use of curved elements introduces some challenges. At least

one of the edges of the elements neighboring physical boundaries are not linear. The

Jacobian for curved elements is not constant throughout the element, and the mapping to

computational space is non-linear. If the inner products are exactly integrated, the cost of

storing and inverting the mass matrix is substantial, leading to higher computational and

memory costs for curved-sided elements when compared to straight-sided elements.

The added costs of implementing curved-sided elements in fully integrated DG

methods has motivated research into improving the efficiency of solvers using irregular

elements. Lou et al. [28] develop a fast multigrid DG method for curved elements.

Kirvodonova and Berger [29] present a method for efficiently approximating curved
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boundaries in DG methods by using straight-sided meshes and matching the angle of the

tangential velocity vectors and surface normals to the exact geometric boundary. Zhang

and Tan [30] propose a similar method for problems with curved material interfaces.

Toulorge and Desmet [31] show that the boundary approximation of [29] does not signifi-

cantly improve accuracy of computations in which aeroacoustic effects are important.

Salman et al. [32] argue that when the flow region of interest is far from any curved

boundaries, it is sufficient to use straight-sided elements at those curved boundaries, thus

avoiding the issue.

An additional challenge for DG approximations of complex edges is that engi-

neering geometries are frequently defined by non-smooth parametric functions, such as

splines and Bezier curves [33, 34]. Discontinuities in the higher derivatives of non-smooth

curves are difficult to accurately approximate with smooth functions (e.g. polynomi-

als), as Gibbs-like phenomena near the discontinuities are not trivial to overcome with

high-order approximations [35, 36, 37, 38, 39, 40, 41].

Although implementing DG methods on curved bodies involves several chal-

lenges, errors introduced by the approximate geometry may significantly affect the large

scale characteristics of a flow. Poor quality surface approximations introduce variations

in surface height as compared to the smooth curved boundaries that they approximate,

numerically emulating surface roughness effects. The sensitivity of separated flows to

surface roughness upstream of the separation location is well documented in the literature

[42, 43, 44, 45]. Small-scale roughness elements induce perturbations in the boundary

layer that destabilize the separated shear layer and lead to the development of turbulence

downstream, which has a significant effect on the aerodynamic characteristics of the

flow. Low numerical diffusion makes high-order methods particularly susceptible to the

perturbations induced by small-scale geometric imperfections since these perturbations

are not attenuated by numerical dissipation.
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1.3 Lagrangian Coherent Structures and Separated Flow

The control of vortex dominated wakes induced by flow separation starts on

the solid boundary where the flow breaks away from the geometry. Flow separation,

hence, has been a major fields of study in aerodynamics in general, and for flow control

specifically. Dating back 100 years ago, Prandtl [46] defined flow separation by deriving

exact Eulerian criteria for steady flow separation in two dimensions. Since then, several

authors have developed both Eulerian and Lagrangian criteria for unsteady separation in

two and three-dimensions. Rott [47], Moore [48] and Sears and Telionis [49] proposed

criteria for moving separation surfaces, assuming a separation speed is known. Cowley

et al. [50] numerically analyzed unsteady separation in the Lagrangian frame, showing

that fluid ejects from the wall along spikes. Shariff et al. [51] proposed a Lagrangian

separation theory that defined separation in incompressible periodic flows as a fixed point

with an unstable material manifold. More recently, criteria for unsteady separation in

two and three dimensions were derived that relates separation lines to unstable manifolds

in compressible flows [52, 53, 54]. Numerical validations of this theory [55, 56] has

shown that Lagrangian separation surfaces evolve into complex manifolds that align with

important transport barriers in the flow known as Lagrangian Coherent Structures (LCS).

To identify LCS in time-dependent fluid flows, Haller and Yuan [57] and Haller

[58], introduce a theory which associate LCS with regions of locally maximal repulsion

or attraction. They show that the finite-time Lyapunov exponent (FTLE) field provides

a quantitative measure of the repulsion rate in forward-time and the attraction rate in

backward-time in a fluid. Subsequent work has been devoted to rigorously developing a

precise definition of LCS manifolds and the role they play in fluid motion. Shadden et al.

[59] define LCS as ridges in the FTLE field. Lekien [60] extends this to higher dimensions.

A range of applications involving transport phenomena (e.g. [61, 62, 63, 64, 65, 66])
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have shown this method to be useful in uncovering the physical mechanisms driving

momentum and particle transport. More recently, Haller [67, 68] has formulated a

variational approach that generalizes the definition of LCS to be co-dimension one

manifolds identified as minimal geodesics of the metric induced by the Cauchy-Green

strain tensor. A robust method for computing hyperbolic LCS with this variational

approach is developed by Farazmand and Haller [69]. Blazevski and Haller [70] have

extended application of the variational theory to three-dimensions, developing methods

that extract hyperbolic and elliptic LCS from three-dimensional flow fields.

The determination of the FTLE field in vortex-dominated flows and complex

geometry is not trivial. In areas of large fluid deformation (e.g. near solid walls or in

wakes), greater resolution or a more refined approximation is required to accurately

determine the FTLE. However, there has been relatively little work towards improving

the accuracy of the near-wall FTLE field. Typically, FTLE algorithms use low-order

Cartesian grids such that the FTLE near complex boundaries is poorly resolved. Salman et

al. [32] emphasize the importance of high-fidelity LCS identification in near wall regions,

particularly in the context of flow control. They solve the Navier-Stokes equations with

a high-order spectral element method on unstructured grids coupled with a low-order

boundary-fitted finite element method to compute the FTLE field. Cardwell and Mohseni

[71] and Lipinski et al. [72] detail the identification of LCS in the two-dimensional

flow over an airfoil. Others have introduced boundary-fitted methods with the aim of

improving the resolution of the near-wall FTLE field using Adaptive Mesh Refinement

(AMR) [73, 74]. However, to the best of the authors’ knowledge, the first high-order

method for determining the FTLE field on unstructured grids was introduced in [75, 76].

Much of the work with LCS in three-dimensions has focused on flows related to

bio-fluid mechanics [77, 63] and geophysical fluid dynamics [78, 79, 80]. In contrast,

relatively few studies focus on geometries with industrial application, such as bluff-bodies
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and aerodynamic control surfaces. Garth et al. [81] extract ridges from the FTLE field of

three dimensional flows around high-speed trains and delta wings. Bourgeois et al. [82]

uses the FTLE field of the three-dimensional phase-averaged wake of a wall-mounted

square cylinder to identify high-strain structures and correlates them with incoherent

turbulence production. Sadlo and Peikert [83] visualize LCS in three-dimensions in a

Pelton turbine and a hydro-powerplant intake using an AMR method. However, studies of

the three-dimensional flow over airfoils with LCS methods are absent from the literature,

to the best of the authors’ knowledge.

A significant issue with the integration of LCS theory into flow control problems

is the high computational costs associated with advecting dense grids of fluid tracers

over long time intervals. Recent work has focused on improving efficiency and accuracy

of LCS identification algorithms (e.g. [81, 74, 84]). The requirement for high-fidelity

resolution of ridges in the FTLE field is important, particularly in the area of flow control,

as pointed out by Salman et al. [32]. However, relatively few authors have explored the

application of LCS theory on flow control problems [32, 65].

In this thesis, we focus on the development of high-fidelity CFD methods for sim-

ulation of turbulent flows and high-fidelity analysis of Lagrangian separation and coherent

structures in separated wakes — all components that are integral to the development and

testing of successful AFC methods for separated fluid flows.

1.4 Outline and Contributions

The most important contribution of this dissertation is the development of the

numerical tools necessary to apply Lagrangian analysis to flow control analysis, including

methods specifically designed to extract LCS with high-order accuracy from turbulent

separated flows simultaneously with the DNS or LES of the underlying flow on complex
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geometries with curved surfaces. The following two chapters of this work describe the

governing fluid conservation laws and the DG spectral element method used to solve them.

The next chapter introduces LCS and details the novel numerical algorithm developed in

this work to compute FTLE fields with high-order DG operators. Chapters five and six

present the DNS of a NACA 65-(1)412 airfoil at low Reynolds number in two an three

dimensions.

The major contributions of this work can be summarized as follows:

• An algorithm is developed that computes the Cauchy-Green Strain (CGS) tensor

using high-order accurate DG differential operators, thus extending high-order

accuracy to Lagrangian quantities based on the CGS tensor, such as FTLE fields

and LCS. The algorithm is consistent in implementation and accuracy with DG

fluid solvers and can be integrated directly into the fluid solver to determine FTLE

fields concurrently with the fluid solution. Furthermore, the algorithm relies on

DG elemental discretization, which is boundary fitted and approximates curved

boundaries with high-order accuracy.

• The algorithm is extended to determine multiple flow maps, both backward and

forward in time, from a single particle trace using high-order interpolation on

orthogonal bases constructed on the deformed subdomains formed by flow maps

at later times. By doing so, redundant particle integrations are avoided and the

efficiency of the algorithm is greatly improved. Additionally, the conditioning of

the interpolation matrix constructed from the deformed subdomains is shown to

provide additional quantitative information on the deformation of the subdomains

and flow field.

• A method for implementing high-order curved boundary approximations on com-

plex geometries is developed that allows the flexibility to match the order of the

elemental boundary curves to the order of the fluid solver. It is shown that high-
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order boundary representation is necessary in the context of separated flows to

simulate the correct physics, and that small variations in the boundary approxima-

tion induce measurable, and in some cases significant, variations in the global flow

characteristics.

• The DNS of a NACA 65-(1)412 airfoil in two and three dimensions is performed at

a Reynolds number of Re = 20,000. Few numerical studies have been performed

in this Reynolds number range. It is shown that at Re = 20,000, the wake is an

asymmetric Karman vortex street in two dimensions. In three dimensions, the

vortex street breaks town into a network of interconnected spanwise and streamwise

vortices due to an elliptic instability in the vortex shedding zone at the trailing edge

of the airfoil.



Chapter 2

Governing Model

2.1 The Navier-Stokes Equations

2.1.1 Dimensional Form

We consider three dimensional, Newtonian, compressible flows that are governed

by

Q∗t +∇ ·F∗ = 0, (2.1)

where the flux tensor F can be separated into advective (a) and viscous (v) fluxes, such

that

∇ ·F∗ = Fa∗
x +Ga∗

y +Ha∗
z − (Fv∗

x +Gv∗
y +Hv∗

z ). (2.2)

11
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The conserved variables and advected fluxes are given by

Q∗ =



ρ∗

ρ∗u∗

ρ∗v∗

ρ∗w∗

ρ∗e∗


, (2.3)

Fa∗ =



ρ∗u∗

p∗+ρ∗u∗2

ρ∗u∗v∗

ρ∗u∗w∗

u∗(ρ∗e∗+ p∗)


, Ga∗ =



ρ∗v∗

ρ∗v∗u∗

p∗+ρ∗v∗2

ρ∗v∗w∗

v∗(ρ∗e∗+ p∗)


, Ha∗ =



ρ∗w∗

ρ∗w∗u∗

ρ∗w∗v∗

p∗+ρ∗w∗2

w∗(ρ∗e∗+ p∗)


.

(2.4)

The sum of the internal and kinetic energy is ρ∗e∗ = ρ∗cvT ∗+ρ∗(u∗2 + v∗2 +w∗2)/2.

The viscous fluxes are

Fv∗ =



0

τ∗xx

τ∗yx

τ∗zx

u∗τ∗xx + v∗τ∗yx +w∗τ∗zx +κ∗T ∗x


, (2.5)
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Gv∗ =



0

τ∗xy

τ∗yy

τ∗zy

u∗τ∗xy + v∗τ∗yy +w∗τ∗zy +κ∗T ∗y


, (2.6)

Hv∗ =



0

τ∗xz

τ∗yz

τ∗zz

u∗τ∗xz + v∗τ∗yz +w∗τ∗zz +κ∗T ∗z


. (2.7)

The shear stresses are

τ
∗
xx = 2µ∗(u∗x− (u∗x + v∗y +w∗z )/3),

τ
∗
yy = 2µ∗(v∗y− (u∗x + v∗y +w∗z )/3),

τ
∗
zz = 2µ∗(w∗z − (u∗x + v∗y +w∗z )/3),

τ
∗
yx = τ

∗
xy = µ∗(v∗x +u∗y),

τ
∗
zx = τ

∗
xz = µ∗(w∗x +u∗z ),

τ
∗
zy = τ

∗
yz = µ∗(w∗y + v∗z ). (2.8)

An ideal gas is assumed so that the constitutive equation relating the pressure, density

and temperature is the ideal gas law,

p∗ = ρ
∗RT ∗, (2.9)

where R is the particular gas constant.
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2.1.2 Non-Dimensional Form

The dimensional equations are made non-dimensional by normalizing all of the

variables by the reference length (L f ), density (ρ f ), velocity (U f ), temperature (Tf ), and

viscosity (µ f ) and thermal diffusivity (κ f ). The non-dimensional variables become

x =
x∗

L f
u =

u∗

U f

y =
y∗

L f
v =

v∗

U f

z =
z∗

L f
w =

w∗

U f

t =
t∗U f

L f
T =

T ∗

Tf

µ =
µ∗

µ f
ρ =

ρ∗

ρ f

κ =
κ∗

κ f
p =

p∗

ρ fU2
f

(2.10)

The non-dimensional equation of state is p = ρT/γM2
f . The reference Reynolds, Mach

and Prandtl numbers are defined by Re f = ρ fU f L f /µ f , M f =U f /(γRTf )
1/2 and Pr =

cpµ f /κ f = 0.72, respectively. Viscosity, µ, and thermal diffusivity, κ, are computed by

Sutherland law [85],

µ = κ =
(1+RT )T 3/2

T +RT
, (2.11)

where RT is the ratio of the Sutherland constant and the reference temperature, RT =

S/Tf = 110/200. The ratio of specific heats, γ, is taken to be 1.4. Under this normaliza-

tion, the Navier-Stokes equations are written

Q+Fa
x +Ga

y +Ha
z −

1
Re f

(Fv
x +Gv

y +Hv
z) = 0. (2.12)
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The solution vector is

Q =



ρ

ρu

ρv

ρw

ρe


, (2.13)

and the advective fluxes are

Fa =



ρu

p+ρu2

ρuv

ρuw

u(ρe+ p)


, Ga =



ρv

ρvu

p+ρv2

ρvw

v(ρe+ p)


, Ha =



ρw

ρwu

ρwv

p+ρw2

w(ρe+ p)


. (2.14)

The non-dimensional total energy is ρe = p/(γ− 1)+ρ(u2 + v2 +w2)/2. The

viscous fluxes are

Fv =



0

τxx

τyx

τzx

uτxx + vτyx +wτzx +
κ

(γ−1)PrM2
f
Tx


, (2.15)
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Gv =



0

τxy

τyy

τzy

uτxy + vτyy +wτzy +
κ

(γ−1)PrM2
f
Ty


, (2.16)

Hv =



0

τxz

τyz

τzz

uτxz + vτyz +wτzz +
κ

(γ−1)PrM2
f
Tz


, (2.17)

where the terms of the non-dimensional stress tensor, τ, are

τxx = 2µ(ux− (ux + vy +wz)/3),

τyy = 2µ(vy− (ux + vy +wz)/3),

τzz = 2µ(wz− (ux + vy +wz)/3),

τyx = τxy = µ(vx +uy),

τzx = τxz = µ(wx +uz),

τzy = τyz = µ(wy + vz). (2.18)
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2.2 Lagrangian Coherent Structures

2.2.1 Trajectories and Flow Maps

Following Shadden et al. [59], we consider dynamical systems which are solutions

to the initial value problem given by


ẋ(t) = v(x(t), t)

x0 = x(t0)

This linear, first order ordinary differential equation (ODE) defines the path that the

particle takes in space, as a function of time, subject to the velocity field given by

v(x(t), t). The solution to (2.19) is

x(t) = x0 +
∫ t

t0
v(x(τ),τ)dτ (2.19)

We can rewrite (2.19), including the parameters x0 and t0 in the function argument, and

expressing the time in terms of the time interval T ≡ t− t0,

x(T ;x0, t0) = x0 +
∫ t0+T

t0
v(x(τ),τ)dτ (2.20)

The flow map is given by

φ(x0, t0;T )≡ x(x0, t0;T ). (2.21)

The flow map is a vector field that is a function of the space-time given by (x0, t0) subject

to the parameter T , which is the time interval that the flow map is determined over. The

space-time (x0, t0) is known as the extended phase space.

We denote the extended phase space as X ⊂ {Rn, t}. We relate the flow map with
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(a) (b)

Figure 2.1: Schematic of a repelling LCS (a) and an attracting LCS (b).

the equations for particle trajectories by defining the the flow map to be the set of all

values of x constrained by (2.20) within the extended phase space X , or

φ(x0, t0;T ) :=
{

x⊂ Rn : x = x0 +
∫ t0+T

t0
v(x(τ),τ)dτ ∀{x0, t0} ∈ X

}
. (2.22)

2.2.2 Finite-Time Lyapunov Exponent Field

Haller [58] originally defined LCS as material lines with locally the strongest

normal repulsion, in forward-time and the strongest attraction, in backward-time. Con-

ceptually, LCS are the material surfaces where, in forward-time, a fluid parcel will stretch

normal to the surface as it is advected by the flow (Fig. 2.1a). Attracting LCS, on the

other hand, tend to attract nearby fluid parcels, which are then stretched along the length

of the LCS (Fig. 2.1b).

Ridges in the FTLE field gives locally the strongest stretching and Shadden et

al. [59] showed that under certain circumstances, these ridges are nearly Lagrangian.

Hence, it is proposed in [59] that LCS be defined by ridges in the FTLE field. However,

more recently, Haller [67] demonstrated that, in general, ridges in the FTLE field do not
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always coincide with LCS since there is no guarantee that the stretching is normal to

the ridge. In light of this, the FTLE field provides a useful diagnostic for identifying

candidate LCS and other important structures (e.g. shear layers) in unsteady flows.

Furthermore, computation of the FTLE field from the Cauchy-Green strain tensor is

efficient as compared with extracting LCS using geodesic theory [69, 68], and thus

is well suited for identifying candidate LCS simultaneously with the solution of the

Navier-Stokes equations using CFD applications. Therefore, in this thesis, we will limit

our analysis to the FTLE field.

Given a dynamical system with a flow map defined by (2.21), we can define the

linearized flow map, φ̄, using the Taylor expansion of (2.21),

φ(x0, t0;T )≈ φ(y0, t0;T )+
∂φ(y0, t0;T )

∂x0
(x0−y0)+O

(
(x0−y0)

2) . (2.23)

The linearized flow map describes the mapping of perturbations in x0 subject to the time

interval T . In the limit that y0→ x0, we define the perturbation

δx0 ≡ lim
y0→x0

|x0−y0|. (2.24)

Similarly, we define

δφ≡ lim
y0→x0

|φ(x0, t0;T )−φ(y0, t0;T )|. (2.25)

With (2.23), (2.24) and (2.25), the linearized flow map is defined by the first-order Taylor

expansion,

φ̄(x0, t0;T ) : δφ̄ =
∂φ̄(x0, t0;T )

∂x0
δx0 = ∇x0 φ̄δx0. (2.26)

Henceforth, we will assume φ(x0, t0;T ) = φ̄(x0, t0;T ), and so only use φ in the remaining

analysis.
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Figure 2.2: Maximal stretch of an infinitesimal spherical fluid parcel as determined by
projecting the eigenvectors and eigenvalues of C onto an ellipsoid via the operator

norm.

Since ∇x0φ is a linear operator on δx0, we can use the operator norm to find the

maximal amount, max |δφ|, that ∇x0φ will stretch an initial line element of length |δx0|,

max |δφ|= ‖∇x0φ‖|δx0|. (2.27)

It is important to note that

‖∇x0φ‖=
√

λmax (∇x0φ∗∇x0φ) =
√

λmax (C), (2.28)

where C is the (right) Cauchy-Green strain tensor and λmax (C) is the maximal eigenvalue

of C. The operator norm serves to project the maximal and minimal eigenvalues of C to

the semi-major and semi-minor axes of an ellipsoid, respectively, as in Figure 2.2. The

orientation of the ellipsoid is such that the axes are aligned with the eigenvectors of C,

Ni.

By assuming that max |δφ| diverges exponentially in time, we can determine the
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rate of this divergence, or ”stretching”, by rewriting (2.27):

max |δφ|= |δx0|eσ|T | (2.29)

Thus, by construction, we define the FTLE (σ) as:

σ(x0, t0;T ) =
1
|T |

ln‖∇x0φ‖ (2.30)

Or equivalently:

σ(x0, t0;T ) =
1
|T |

ln
√

λmax (C) (2.31)

It is clear from (2.29) and (2.30) that the FTLE is a measure of the maximum

rate of stretching in the fluid. From a Lagrangian point of view, neighboring trajectories

that diverge exponentially over the time interval T lie at the interface of a fluid boundary

where, by definition, fluid particles do not cross.



Chapter 3

The Discontinuous-Galerkin Spectral

Element Method

The Navier-Stokes equations are discretized with a dG spectral element method.

For detailed descriptions of dG methods, we refer to [25, 26, 86]. We begin by dividing

the computational domain, Ω, into a set of non-overlapping quadrilateral subdomains,

Dk, such that

Ω =
K⋃

k=1

Dk. (3.1)

22
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Figure 3.1: Mapping from physical space (x,y,z) to the unit cube in computational
coordinates (ξ,η,ζ). The mapping is uniquely defined by the edge polynomial

representation Γi, the face polynomials Σi and the corner coordinates xi.

The subdomains, Dk, are mapped to the unit cube as in Fig. 3.1 using a transfinite map

given by the linear blending formula

x(ξ,η,ζ) =−(1−η)Σ1(ξ,ζ)−ηΣ2(ξ,ζ)− (1−ζ)Σ3(ξ,η)

−ξΣ4(η,ζ)−ζΣ5(ξ,η)− (1−ξ)Σ6(η,ζ)

+(1−η)(1−ζ)Γ1(ξ)+ξ(1−η)Γ2(ζ)

+(1−η)ζΓ3(ξ)+(1−ξ)(1−η)Γ4(ζ)

+η(1−ζ)Γ5(ξ)+ξηΓ6(ζ)+ηζΓ7(ξ)+(1−ξ)ηΓ8(ζ)

+(1−ξ)(1−ζ)Γ9(η)+ξ(1−ζ)Γ10(η)+ξζΓ11(η)+(1−ξ)ζΓ12(η)

−x1(1−ξ)(1−η)(1−ζ)−x2ξ(1−η)(1−ζ)

−x3ξη(1−ζ)−x4(1−ξ)η(1−ζ)

−x5(1−ξ)(1−η)ζ−x6ξ(1−η)ζ−x7ξηζ−x8(1−ξ)ηζ. (3.2)

The functions Γi are parametric curves that represent the subdomain edges, while the
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functions Σi are two-dimensional parametric surfaces representing the subdomain faces.

Under this mapping, the governing equation (2.1) becomes

Q̃t +∇ · F̃ = 0, (3.3)

where,

Q̃ = JQ,

F̃i = (a j×ak)i ·F. (3.4)

In three-dimensions, the vectors ai represent the metric terms and are given by ai = ∂x/∂ξi.

For instance, evaluating a1 = ∂x/∂ξ1 = ∂x/∂ξ, we have

∂x
∂ξ

=− (1−η)∂ξΣ1(ξ,ζ)−η∂ξΣ2(ξ,ζ)− (1−ζ)∂ξΣ3(ξ,η)

−Σ4(η,ζ)−ζ∂ξΣ5(ξ,η)+Σ6(η,ζ)

+(1−η)(1−ζ)Γ′1(ξ)+(1−η)Γ2(ζ)

+(1−η)ζΓ
′
3(ξ)− (1−η)Γ4(ζ)

+η(1−ζ)Γ′5(ξ)+ηΓ6(ζ)+ηζΓ
′
7(ξ)−ηΓ8(ζ)

− (1−ζ)Γ9(η)+(1−ζ)Γ10(η)+ζΓ11(η)−ζΓ12(η)

+x1(1−η)(1−ζ)−x2(1−η)(1−ζ)

−x3η(1−ζ)+x4η(1−ζ)

+x5(1−η)ζ−x6(1−η)ζ−x7ηζ+x8ηζ. (3.5)

Equation (3.5) and the analogous equations for η and ζ form a set of covariant basis

vectors as depicted in Fig. 3.2 for two-dimensions. The J in (3.4) is the Jacobian of the
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mapping,

J = ai · (a j×ak). (3.6)

Gradients under the mapped subdomains are computed using the chain rule such

that ∇xF(x) is given by the matrix-vector multiplication

∇xF(x) = (JT )−1
∇ξF (3.7)

where (JT )−1 is the inverse of the Jacobian transpose matrix JT and in three-dimensions,

(3.7) expands to 
∂F
∂x

∂F
∂y

∂F
∂z

=


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ



−1
∂F
∂ξ

∂F
∂η

∂F
∂ζ

 . (3.8)

We can recast (3.7) in terms of the covariant bases, ai, such that

∇xF(x) =
1
J

3

∑
i=1

∂

∂ξi [(a j×ak)F ]. (3.9)

Q̃ is approximated with Nth-order Legendre polynomials in the computational

coordinates, (ξ,η,ζ),

Q̃N(ξ,η, t) =
N

∑
i=0

N

∑
j=0

N

∑
k=0

Q̃i, j,k(t)`i(ξ)` j(η)`k(ζ), (3.10)

where `i(ξ), ` j(η) and `k(ζ) are the Lagrange polynomials given by

`i(ξ) =
N

∏
k=0
k 6=i

ξ−ξk

ξi−ξk
. (3.11)
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Figure 3.2: Covariant bases definition.

The spatial derivative is determined in one-dimension as follows,

f ′(ξi)≈
N

∑
j=0

f j`
′
j(ξi) =

N

∑
j=0

Di j f j, (3.12)

with Di j given by

Di j =


1

ξ j−ξi

N

∏
k=0

ξi−ξk

ξ j−ξk
, i 6= j

N

∑
l=0

1
ξ j−ξl

, i = j.

(3.13)

In the Galerkin approach, the residual is minimized by taking the inner product

with the test function, ϕ(~ξ) = `i(ξ)` j(η)`k(ζ), yielding

∫
Dk

(
Q̃t +∇ · F̃

)
ϕ(~ξ)d~ξ = 0, (3.14)

Integrating by parts leads to

∫
Dk

∂Q̃N

∂t
ϕ(~ξ)d~ξ+

∫
∂Dk

F̃N ·nϕ(~ξ)dS−
∫

Dk

F̃N ·∇ϕ(~ξ)d~ξ = 0. (3.15)
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To ensure connectivity between each subdomain, we replace FN · n in the boundary

integral with a numerical flux F∗, which for conservation laws is typically the solution

to an approximate Riemann problem based on QN at the coincident faces from two

subdomains. Simplifying (3.15) with

Mi, j,k =
∫

Dk

`i(ξ)` j(η)`k(ζ)d~ξ,

Fi, j,k =
∫

∂Dk

`i(ξ)` j(η)`k(ζ)dS, (3.16)

Si, j,k =
∫

Dk

∇(`i(ξ)` j(η)`k(ζ))d~ξ.

we have

M
∂Q̃N

∂t
+F F̃∗−S F̃N = 0, (3.17)

where M is the mass matrix and F is the stiffness matrix.

The remaining system of ordinary differential equations is integrated in time with

a 4th-order low-storage, low-dispersion explicit Runge-Kutta method [87].



Chapter 4

Effect of Boundary Representation on

Viscous, Separated Flows in a

Discontinuous-Galerkin Navier-Stokes

Solver

Sections 4.2 through 4.5 are reprinted from an upcoming manuscript submitted

to Theoretical and Computational Fluid Dynamics in 2015 [88].

4.1 Overview and Summary

Little, if any, literature has been published on the effect of boundary representation

on fluid solutions with high-order methods. Benchmark problems for DG Navier-Stokes

solvers are nearly always in simple flow regimes with smooth geometries. Examples

of simulations performed on straight-sided meshes and curved-sided meshes exist [15,

16, 28, 29, 31, 32, 35], however, no study has focused on the relationship between the

28
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approximation of curved boundaries and the physics of flow separation.

In this chapter, the effect of approximating curved boundaries with high-order

curved DG elements on the DNS of the separated flow over an airfoil at low Reynolds

number with DG methods is investigated. The flow over a NACA 65(1)-412 airfoil is

studied, with emphasis on the impact of the boundary representation on the flow physics.

The airfoil boundary is defined by a cubic spline constructed from coordinates published

in the classical book on airfoil theory by Abbot et al. [89]. The edge polynomial of the

DG element is fit to the spline and the polynomial order of the fluid solver is matched.

The effect of h and p refinement are analyzed for both the curved-sided and straight-

sided grids. It is shown that the straight-sided grids induce spurious instabilities in the

flow, which lead to a large, chaotic wake and reduced aerodynamic performance when

compared with the curved-sided grids.

4.2 High-Order Curved Boundary Representation

4.2.1 Airfoil Geometry

The NACA 65(1)-412 airfoil was selected for its frequent use in industrial ap-

plications, such as turbomachinery. Geometries in real engineering applications tend to

be defined by piecewise continuous functions, such as splines, as is the NACA 6-series

airfoils. Hence, the complex boundary definition of the NACA 6-series are ideally suited

for studying methods for approximating complex, real world geometries that do not have

an analytical representation.

The coordinates for NACA 6-series airfoils are derived from a prescribed velocity

profile with a method introduced by Abbot et al. [89]. According to Abbot et al., given a

desired velocity profile, two parameters, ψ and ε, are computed from a theory developed

by Theodorsen [90]. Theodorsen showed that the velocity distribution over an airfoil of
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arbitrary shape can be approximated by

v =V
[sin(α+θ+ ε)+ sin(α+ εT )](1+ ε′)eψ0√

(sinh2
ψ+ sin2

θ)(1+ψ′2)
, (4.1)

where V is the free-stream velocity, α is the angle of attack, εT is the value of ε at the

trailing edge, and ψ0 is the average value of ψ. The parameters, ψ and ε, are functions of

θ – the angle around the unit circle – and the derivatives, ψ′ and ε′, are taken with respect

to θ. ψ and ε are related by

coshψ =
x

2cosθ
, (4.2)

sinhψ =
y

2sinθ
, (4.3)

ε = φ−θ. (4.4)

Additionally, we have

z = eψ0+iφ, (4.5)

z′ = ze(ψ−ψ0)−iε, (4.6)

ζ = z′+
1
z′
, (4.7)

and

ζ = x+ iy. (4.8)

where x and y are the airfoil coordinates. Hence, x and y are mapped to the z′ plane with a

conformal map and the parameters ψ and ε are computed as functions of θ with Equations

(4.2) - (4.8). According to the procedure by Abbot et al., symmetric airfoils with a pre-

determined velocity profile are produced iteratively by adjusting the coordinates, x and

y until the desired velocity is reached as computed with (4.1). Camber is introduced
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by computing the desired camber line, (xc,yc), and projecting the symmetric airfoil

coordinates, (xs,ys), normal to the camber line such that we have

xu = xc− ys sinδ(xc) (4.9)

yu = yc + ys cosδ(xc) (4.10)

xl = xc + ys sinδ(xc) (4.11)

yl = yc− ys cosδ(xc), (4.12)

where the subscripts u and l refer to the upper surface and lower surface, respectively,

and δ(xc) is the local inclination of the mean line at xc. Airfoils with the same camber

line and series number that differ in thickness to cord ratio are generated by scaling the

functions ψ and ε by a constant factor. The constant factor is generally not known a

priori, hence the scale factor is applied iteratively until the required thickness ratio is

achieved.

Several methods exist for computing additional coordinates not published in

[89]. The first such method, developed by Ladson et al. [91], uses the coordinates

published in [89] to determine the values for φ and ε for a representative symmetric

airfoil from each family in the NACA 6-series. New values of φ and ε are obtained by

interpolating between the stored values of φ and ε using a cubic spline. The coordinates

for an arbitrary thickness ratio are produced by providing an initial guess for the scale

factor and iterating until the desired thickness ratio is obtained. Camber is added with

the method discussed in [89], as before. This algorithm was later updated to include

additional airfoil types and reflect advances in computer technology [92]. Carmichael

[93] developed a method in which the scale factor can be determined using a polynomial

fit through several precomputed scale factors, eliminating the need to iterate.

The methods in [91, 92, 93] are intended to rapidly produce coordinates for
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airfoils that do not have coordinates already published in [89]. When airfoils published in

[89] are used, the most common method for generating additional surface points is cubic

spline interpolation, as is implemented in rapid airfoil design software such as XFoil,

JavaFoil and XFLR5 [94]. This work uses the cubic spline method to conform to common

practice. The spline, X(s), is defined on a set of n data points, Xi, for i = 1,2, . . .n. The

data points begin at the trailing edge and run over the upper surface, to the leading edge,

then across the lower surface back to the trailing edge. The spline parameter, s, is defined

such that the nodes, si, are determined by the distance between each data point, and then

are normalized to lie on the interval [0,1]. Before normalization, we have

s′i =
i−1

∑
j=1

√
(X j+1−X j)2 +(Yj+1−Yj)2, (4.13)

for i = 2,3, . . .n and s′1 = 0. The parameter is then normalized so that

si =
s′i− s′1
s′n− s′1

. (4.14)

The curve, X j(s) for each interval j in which si ≤ s j ≤ si+1 is computed with

X j(s) = a j +b js+ c js2 +d js3, (4.15)

with the constraints

X j(si) = X j+1(si), (4.16)

X′j(si) = X′j+1(si), (4.17)

X′′j (si) = X′′j+1(si). (4.18)
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A natural spline is constructed by setting the second derivative at the endpoints to zero,

X′′1(0) = X′′n−1(sn) = 0. (4.19)

A tri-diagonal system of equations is constructed to solve for the coefficients in

(4.15) and the coefficients are stored for evaluation of X(s).

4.2.2 Boundary Node Adjustment

We use the commercial software GridPro to generate the initial computational

grid. GridPro produces straight-sided, quadrilateral, multi-block meshes with an itera-

tive smoothing algorithm that ensures that the orthogonality and mesh smoothness are

optimized. The requirement for generated nodes to coincide exactly with boundaries is

relaxed in order to maximize smoothness and orthogonality and improve robustness in

case of conflicting geometry constraints. In theory, the grid generator should converge

to coincide with the boundaries. However, in practice, this does not occur with curved

geometries, since smoothness and orthogonality are enforced at the cost of precision

[95].

We adjust the nodes in Matlab to coincide exactly on the spline by determining

the point on the spline, Xs, that is closest to the GridPro-generated point, XGP. First, the

closest spine node, Xi, is determined, by cycling through each spline node and finding

the node in which √
(Xi−XGP)2 +(Yi−YGP)2 (4.20)

is minimum. The nearest point on the spline is then found by minimizing the function

f (s) = (∆X(s))2 = (X(s)−XGP)
2 +(Y (s)−YGP)

2. (4.21)
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To find the minimum of f (s), a Newton method is used to find the zeros of f ′(s) with

the spline nodes in (4.20) as an initial guess. The first and second derivatives of f (s) are

given by

f ′(s) =(X(s)−XGP)X ′+(Y (s)−YGP)Y ′, (4.22)

f ′′(s) =(X(s)−XGP)X ′′+(Y (s)−YGP)Y ′′+(X ′)2 +(Y ′)2, (4.23)

respectively. The parameter, s, corresponding to the nearest spline point is then deter-

mined by iterating

sn+1 = sn− f ′(sn)

f ′′(sn)
, (4.24)

until s converges to the desired tolerance. We calculate the location, Xs, using the stored

spline coefficients in (4.15).

4.2.3 Compatibility of Commercial Mesh Generators with DG

GridPro produces geometry that has two characteristics that are incompatible

with the DG method employed in this work, and hence require adjustment in order to

produce a mesh that can be used in the fluid solver. First, the face numbering convention

in GridPro is different than the convention used in DG, as depicted in Figure 4.1. Second,

GridPro produces a multiblock mesh while DG does not.

Geometry produced by GridPro is converted to DG compatible geometry in

several steps. First, the face ordering of the GridPro blocks is remapped to be consistent

with the DG method. Next, the DG element data is constructed from each element in

the GridPro blocks. Within each N×M block, the element indexing is such that DG

element n corresponds to GridPro element ( j−1)i for i = 1,2, . . .N and j = 1,2, . . .M.

The blocks are then merged by identifying he duplicate nodes on block interfaces and

deleting them. Finally, the node data, element data, and boundary condition data are all
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Figure 4.1: Differences in face ordering between GridPro and DGSEM.

printed to a mesh format compatible with the DG code.

A summary of the mesh conversion algorithm is given below:

1. The boundary nodes are adjusted to coincide with the spline curve.

2. Element faces are reordered to be consistent with the DG convention.

3. DG elements are constructed from the elements within the blocks generated by

GridPro.

4. The duplicate nodes on the boundaries of the blocks are eliminated.

5. The node, element, and boundary condition data are written in a mesh file that is

compatible with the DG solver.

4.2.4 High-Order Boundary Fitting

The straight-sided elemental data generated by GridPro are fit to the spline

boundary with high-order polynomial elemental boundaries in the DG solver. The

boundary in the DG scheme is piecewise approximated by the parametric curves,

Γk(ξ) =
N

∑
j=0

X j` j(ξ), (4.25)
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for k = 1,2, . . .Kb, where Kb is the number of elements along the boundary and ξ is the

parameter. Each boundary curve spans a length of the spline over the interval [Xa,Xb],

with corresponding spline interval [sa,sb]. To fit Γk(ξ) to the boundary spline, X, we map

the parameter, ξ, to the parameter, s, using an affine map such that

s j = ξ j(sb− sa)+ sa, (4.26)

for j = 0,1, . . .N, where N is the desired polynomial order. The nodes ξ j are taken to

be the Chebyshev-Lobatto quadrature nodes. Hence, for the nodes of Γk(ξ), we have

X j = X(s j) and with s j as in (4.26).

When the curved element faces are constructed, the metric terms for the curved

elements are computed. By constructing the curved element faces in the pre-processing

stage of the solver, the order of the fluid solver is matched ad hoc and a single grid

with straight-sided elements is used, eliminating the need to generate multiple grids

with different boundary polynomial orders, if needed, and ensuring that the boundary

approximation will always be consistent with the order of the fluid solver.

The convergence of the high-order boundary representation depends, in part, on

the underlying geometry. Uniform convergence of the boundary approximation assumes

that the approximated function is smooth for all s over the interval of the approximating

polynomial, [sa,sb]. Following Canuto et al. [96], the error in the Legendre polynomial

interpolant, INu approximating the function u is estimated to be

‖u− INu‖L2(−1,1) ≤CN−m|u|Hm;N(−1,1), (4.27)

assuming u ∈ Hm(−1,1), where Hm(−1,1) is the mth-order Sobolev space. When u is

analytic, and hence u ∈C∞, the interpolant will converge to u faster than any power of N,

i.e. spectrally. Given that the boundary we are approximating is a cubic spline, X(s), we
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have X(s) ∈ H2(sa,sb), and

‖X−Γ‖L2(sa,sb)
∼ O(N−2). (4.28)

Hence, we have second-order convergence, at best.

Algebraic convergence of the approximating polynomial is a consequence of the

discontinuous third derivative of the spline at the spline nodes, si, where we have

∆X′′′ ≡ |X′′′(s+i )−X′′′(s−i )| 6= 0∀si. (4.29)

Approximating discontinuous functions with smooth functions results in Gibbs-like

oscillations in the approximating function near the discontinuities. When we have one

or more si ∈ [sa,sb], the error in the interpolant will depend, in part, on the size of the

discontinuity, ∆X′′′, as well as the number of discontinuities in [sa,sb].

Geometric accuracy of the boundary approximation is measured by the local error

in the slope, m, and the curvature, κ, of the DG representation of the boundary. The local

error of the slope is given by

εm(s) =
∣∣∣∣(Γy

k(ξ|s))
′

(Γx
k(ξ|s))′

− Y ′(s)
X ′(s)

∣∣∣∣ . (4.30)

The curvature of the spline curve is defined by

κ(s) =
∣∣X ′(s)Y ′′(s)−Y ′(s)X ′′(s)

∣∣([X ′(s)]2 + [Y ′(s)]2)−3/2
. (4.31)

The curvature of the DG boundary representation, κΓ, is similarly determined with the

functions Γx
k(ξ|s) and Γ

y
k(ξ|s). The local error of the curvature is given by

εκ(s) = |κΓ−κ| . (4.32)
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The accuracy of the fluid solution near the boundary depends on the degree to

which the boundary approximation is affected by the inconsistency in the differentiability,

which is directly related to the size of the discontinuity in the third derivative of the

boundary spline given by (4.29). Regions with high curvature tend to be associated with

large changes in curvature, which often result in large third derivative discontinuities

in a cubic spline. Alternatively, regions with low curvature area accompanied by small

changes in curvature and hence small third derivative discontinuities. As such, one would

expect the region on a spline with the highest curvature to correspond to the region of

highest error in the spline boundary approximation.

4.3 Problem Setup and Grid Independence

The flow over a NACA 65(1)-412 airfoil is computed at a Reynolds number of

Re = 20,000 based on the cord length and the freestream velocity. The Mach number is

M = 0.3 and the angle of attack is α = 4◦ (Fig. 4.5).

The size of the domain is based on the results by Jones et al. [97], who show

that for the two-dimensional DNS of a NACA 0012 airfoil at a low Reynolds number

(Re = 50,000), the difference between the solution from a grid with boundaries 5.3

chord-lengths from the airfoil and a solution with a grid 7.3 chord lengths away is not

significant. To verify this, we compute the solutions with two domain sizes. One has an

inlet surface that is 5 cord-lengths away from the leading edge, and the wake extends

15 cord lengths downstream of the trailing edge. The second, larger domain extends

30 chord-lengths from the airfoil in all directions. We compute the solution using the

straight-sided boundary approximation and the curved-sided boundary approximation,

both with a polynomial order of 12.

Comparing the average pressure and average skin-friction coefficients (Fig. 4.2)
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(a) (b)

Figure 4.2: Comparision of the skin friction (a) and pressure (b) of the small domain
size and the large domain size using the curved-sided boundary approximation.

Table 4.1: Results for the small domain and the large domain, N = 12. CS denotes the
curved-sided element mesh and SS denotes the straight-sided element mesh.

Small Domain Large Domain
CS SS CS SS

Total Lift 0.22426 0.20295 0.22188 0.20144
Total Drag 0.01197 0.01297 0.01194 0.01257
Frequency 2.7 2.5 2.7 2.5

between the curved-sided results shows that they are the same to graphical accuracy and

the boundaries in the smaller domain do not have a significant effect on the solution. The

lift coefficient, drag coefficient, and Strouhal number for the small domain differ by at

most 1% from the large domain values, which are tabulated in Table 4.1. Results from

the straight-sided mesh are in agreement between the small domain and large domain

as well, as shown in Figure 4.3 and Table 4.1. The effect of the domain size on the lift

spectra is not significant in both the curved-sided and straight-sided case (Fig. 4.4). Since

the solution is independent of domain size for the domains chosen, the remainder of the

analysis in this work will use the smaller domain.

The left side of the domain has an inflow condition specified, while the top,
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(a) (b)

Figure 4.3: Comparision of the skin friction (a) and pressure (b) of the small domain
size and the large domain size using the straight-sided boundary approximation.

(a) (b)

Figure 4.4: Comparision of the lift spectra between the small domain size and the large
domain size using the curved-sided boundary approximation (a) and the straight-sided

boundary approximation (b).
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Figure 4.5: Airfoil simulation setup.

bottom and right side specify pressure outflow conditions. The surface of the airfoil is a

no-slip, adiabatic wall. Each computation was run for 90 time units. After a ten time unit

initial transient stage, the average flow field was computed over 40 time units and the

RMS flow field was computed over an additional 40 time units.

4.3.1 Mesh Characteristics

The simulations are performed on C-grids, which are depicted in Fig. 4.6. One

grid is coarse and contains 1,044 elements, whereas the refined grid contains 2,256

elements. The ratio of largest element area to smallest element area for the coarse grid

is Amax/Amin = 8.46× 103, with Amin = 2.1× 10−4. For the fine grid, Amax/Amin =

9.68×103, with Amin = 9.9×10−5. Polynomial orders range from N = 4 to N = 12. A

close-up of the leading edge for each mesh is seen in Figs. 4.7 and 4.8, illustrating the

improvement in boundary approximation with the curved-boundary representation.
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(a)

(b)

Figure 4.6: Coarse mesh (a) and fine mesh (b).
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(a) (b)

Figure 4.7: Straight-sided mesh detail (a) and curved-sided mesh detail (b) for Mesh 1.
The polynomial order is N = 12.

(a) (b)

Figure 4.8: Straight-sided mesh detail (a) and curved-sided mesh detail (b) for Mesh 2.
The polynomial order is N = 12.



44

4.3.2 Grid Refinement

The effect of h- and p-refinement is assessed by evaluating the frequency spectrum

of the lift time history and the skin friction coefficient, C f . Each mesh is p-refined up

to a polynomial order of N = 12. The accuracy of each mesh is estimated with the

root-mean-square (RMS) local error in C f , εRMS, with respect to the curve-sided Mesh 2

solution at N = 12, Cre f
f ,

εRMS =

(
1
n

n

∑
i=1

(
C f (xi)−Cre f

f (xi)
)2
)1/2

. (4.33)

As N is increased for the straight-sided meshes (Figs. 4.10 and 4.12), there is no

significant change in the accuracy. However, the straight-sided approximations converge

to different solutions that depend on the mesh. For the straight-sided Meshes 1 and 2,

εRMS = 2.6×10−3 and 1.3×10−3, respectively. Furthermore, the straight-sided meshes

have multiple large peaks in the frequency spectrum (Figs. 4.10a and 4.12a).

In contrast, the curved-sided approximations (Figs. 4.9 and 4.11) converge to

the same solution with increasing N, regardless of the mesh used, as we have εRMS =

5.5×10−4 for the coarse mesh at N = 12. Both curved-sided meshes show a single peak

frequency in the frequency spectrum (Figs. 4.9a and 4.11a).

4.3.3 Comparison with Previous Studies

Few numerical studies of airfoils at a Reynolds number near 20,000 are available

in the literature, so an adequate benchmark for airfoils at such a Reynolds number has not

yet been established. However, Yarusevych et al. [98] present an approach to determine

a characteristic Strouhal number for bluff-body flows that is largely independent of

Reynolds number, thus providing a universal point of comparison for a wide class of
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(a) (b)

Figure 4.9: Convergence for curved-sided Mesh 1.

(a) (b)

Figure 4.10: Convergence for straight-sided Mesh 1. Note the additional frequencies as
compared to the curved-sided mesh.
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(a) (b)

Figure 4.11: Convergence for straight-sided Mesh 2.

(a) (b)

Figure 4.12: Convergence for straight-sided Mesh 2. Note the additional frequencies as
compared to the curved-sided mesh.
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flows. The universal Strouhal number, St∗s , is given by

St∗s =
fsd∗

U0
, (4.34)

where fs is the vortex shedding frequency, U0 is the free-stream velocity and d∗ is the

distance between the two local maxima in the upper and lower portions of the wake r.m.s

velocity profiles obtained at x/c= 1.25. For airfoil flows computed at a range of Reynolds

numbers of Re≈ 50,000−225,000, Ref. [98] reports values of St∗s ≈ 0.14−0.25 with

an average of St∗s ≈ 0.17. The value of St∗s computed in this work is St∗s ≈ 0.26, which is

comparable to the values given in [98].

Work by Dortmann [99] details results at a similar Reynolds number that qualita-

tively agree with the results presented in this work. Specifically, the flow over the airfoil

separates near mid-cord and the wake is characterized by a regular Karman vortex street.

4.4 Direct Numerical Simulation

4.4.1 Wake Analysis

The wake is time-periodic with an asymmetric von Karman street of vortices shed

from the upper and lower surface of the airfoil (Fig. 4.13). The stronger vortices are

shed from the lower surface. The separation region on the suction surface of the airfoil,

defined to be the region of fluid beginning at the initial point of boundary-layer separation

at x/c≈ 0.5, and extending to the trailing edge, consists of a series of stable vortices, the

furthest downstream of which is the progenitor of the upper surface shed vortex.

Straight-sided and curved-sided elements produce different wakes. With the

straight-sided grid, the wake is irregular and upturned, indicating lower circulation, a loss

of lift and an increase in drag.
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(a)

(b)

Figure 4.13: Flow field plots for grid 1. Vorticity for the curved-sided grid (a) and the
straight-sided grid (b).
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(a)

(b)

Figure 4.14: Flow field plots for grid 1. RMS velocity for the curved-sided grid (a) and
the straight-sided grid (b).

The RMS velocity, urms, in Fig. 4.14 shows that the curved-sided mesh (Fig.

4.14a) produces a flow with a very narrow, well defined wake, whereas the straight-sided

mesh (Fig. 4.14b) produces a flow with a wide, vertically dispersed wake. Furthermore,

urms is higher on the suction surface near the trailing edge of the straight-sided grid

results as compared to the curved-sided, which indicates a complex time-dependency in

the separation region for the straight-sided grid.

When the mesh is h-refined, the differences between the curved-sided and straight-

sided mesh are less pronounced (Fig. 4.15). The curved-sided airfoil has the same stable

vortex street as in the flow from Mesh 1. Although the straight-sided airfoil has an

unstable vortex street, the wake is stable for a longer time than for the coarse mesh flow

(Fig. 4.15b).

The fine straight-sided mesh also shows an increased wake dispersion as compared
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(a)

(b)

Figure 4.15: Flow field plots for grid 2. Vorticity for the curved-sided grid (a) and the
straight-sided grid (b).
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(a)

(b)

Figure 4.16: Flow field plots for grid 2. RMS velocity for the curved-sided grid (a) and
the straight-sided grid (b).

to the curved-sided results. Similar to the coarse mesh urms profile, there is an increase in

the urms near the trailing edge of the suction surface, corresponding to increased variation

in the fluid motion in the separation region.

4.4.2 Force Analysis

The aerodynamic forces on the airfoil are computed using Gauss quadrature to

ensure a consistent high-order accuracy of the force calculation. The lift and drag are

determined by

L =
Kb

∑
k=1

∫
S
(τxynx + τyyny− pny)dS (4.35)

=
Kb

∑
k=1

N

∑
i
(τxynx + τyyny− pny)iwidSi, (4.36)
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D =
Kb

∑
k=1

∫
S
(τxxnx + τyxny− pnx)dS (4.37)

=
Kb

∑
k=1

N

∑
i
(τxxnx + τyxny− pnx)iwidS, (4.38)

from the shear stress tensor, τi j, (given by (2.18)) and the pressure, p, using the outward

normal, n, the quadrature weights, wi, and dS is the differential arc-length element given

by

dS =

√(
∂Γx

k(ξ)

∂ξ

)2

+

(
∂Γ

y
k(ξ)

∂ξ

)2

dξ. (4.39)

The lift and drag are computed at each time step and the time series is recorded.

The integration error under Gauss quadrature relative to the Legendre weight,

from Canuto et al. [96], is given by

∣∣∣∣∫ 1

−1
u(x)φ(x)dx− (u,φ)N

∣∣∣∣≤CN−m|u|Hm;N(−1,1)||φ||L2(−1,1), (4.40)

where φ∈PN . Thus the integrated forces converge spectrally in a manner that is consistent

with the spectral accuracy of the solution method.

The pressure and skin friction at the boundary are computed by projecting the

pressure and shear stress tensor to the boundary using Lagrange interpolation. The

pressure at the boundary is then extracted directly and the skin friction is determined

from the stress at the boundary given by

C f =
1

Re f

{
−(τxxny + τyxny)nx +(τxynx + τyyny)nx

}
, (4.41)

where nx and ny are the components of the surface normal vector.

The large element sizes in the present study, which are typical for high-order

DGSEM grids, cause significant differences in the vortex shedding behavior between the
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(a) (b)

Figure 4.17: Time series of the lift (a) and frequency spectra of the lift (b) for grid 1.
N = 12 for both the straight-sided and curved-sided grid.

straight-sided mesh and the curved-sided mesh. Large amplitude perturbations imposed

by the sharp corners in the coarse straight-sided mesh contribute additional frequencies

as compared to the curved-sided mesh, which destabilize the wake. In the frequency

domain, the amplitude spectrum of the lift and drag (Fig. 4.17b) show a single peak at a

frequency of 2.7, i.e. the flow is periodic with a single, distinct period. In contrast, the

amplitude spectrum of the straight-sided grid exhibits several peaks at lower frequencies,

with the primary peak at a different frequency than the curved-sided grid, which is 2.1.

The wide wake dispersion depicted in Fig. 4.14b means that there is poor pressure

recovery on the trailing edge of the airfoil, which leads to reduced lift and increased drag

(Fig. 4.17). The average lift coefficient, CL, for the curved and straight-sided grid is

0.225 and 0.199, respectively. The average drag coefficient, CD is 0.0117 and 0.0137 for

the curved and straight-sided grid respectively.

Lower lift and higher drag for the straight-sided airfoil as compared to the curved-

sided airfoil are observed in the fine grid (Mesh 2) results. However, the fine grid induces

smaller amplitude perturbations on the boundary layer, as compared to the coarse grid

(Mesh 1). The reduced strength of the corner perturbations has a decreased effect on the
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(a) (b)

Figure 4.18: Time series of the lift (a) and frequency spectra of the lift (b) for grid 2.
N = 12 for both the straight-sided and curved-sided grid.

Table 4.2: Results for Mesh 1 and Mesh 2, N = 12.

Mesh 1 Mesh 2
CS SS CS SS

p-Lift 0.224139 0.197644 0.223019 0.20178
f-Lift 0.001245 0.001119 0.001237 0.001171

Total Lift 0.225383 0.198763 0.224256 0.202952
p-Drag 0.00223 0.003853 0.002541 0.003399
f-Drag 0.009439 0.009857 0.009425 0.009571

Total Drag 0.011668 0.01371 0.011966 0.01297
Frequency 2.7 2.1 2.7 2.5

large scale aerodynamic characteristics. The differences between the straight-sided and

curved-sided mesh are less for the refined mesh when compared to the coarse mesh (Fig.

4.17).

The aerodynamic forces are tabulated in Table 4.2. The CL for the curved and

straight-sided grid is 0.224 and 0.203 respectively. The CD for the curved and straight-

sided is 0.0120 and 0.0130 respectively. The amplitude spectrum (Fig. 4.18b) also

depicts smaller differences, with fewer additional peaks in the straight-sided grid. The

peak frequency for the curved and straight-sided grid is 2.7 and 2.5, respectively.



55

(a) (b)

Figure 4.19: Average pressure coefficient, Cp, (a) and skin friction coefficient, C f , for
the upper surface (b) for Mesh 1.

4.4.3 Pressure and Skin Friction Distributions

The straight-sided meshes have sharp corners that the fluid must travel around or

separation will occur. The effect the corner has on the fluid is dependent on the angle

of the corner, with higher angles producing larger effects. Note that the effect of the

corners in viscous flow is highly non-linear. Relatively small angles can produce large

scale effects on the flow. As the fluid traverses the corner, a pressure well and a peak

in the shear stress develops as a consequence of the large centripetal force associated

with turning of the flow. These wells and peaks lead to poor pressure recovery and a

corresponding loss in lift, as well as increases in skin friction and an overall increase in

drag. An increase in the skin friction in the separation region is seen for the straight-sided

mesh, contributing to the drag further. The average aerodynamic profiles for Mesh 1

(Fig. 4.19) illustrate the pressure wells (Fig. 4.19a) and skin friction peaks (Fig. 4.19b)

resulting from the straight-sided mesh, as compared to the smooth profiles produced by

the curved-sided mesh.

With the h-refined boundary, the effect of the sharp corners on the flow decreases
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(a) (b)

Figure 4.20: Average pressure coefficient, Cp, (a) and skin friction coefficient, C f , for
the upper surface (b) for Mesh 2.

as the slope discontinuities decrease (Fig. 4.20). The pressure wells (Fig. 4.20a) and

skin friction peaks (Fig. 4.20b) remain, similar to the Mesh 1 results. However, with

h-refinement, the peaks and wells are smaller with a corresponding smaller loss in lift

and increase in drag. The straight-sided skin friction profile in the separation region

compares well with the curved-sided results, suggesting that vortex shedding behavior is

similar between the refined straight-sided grid and the curved-sided grid.

4.4.4 Curvature Analysis

We measure the accuracy of the boundary representation in the curved mesh with

the error in slope, ελ, and curvature, εκ as a function of parameter s. Error is analyzed

on the refined mesh with the polynomial order, N = 12. Two significant sources of

error in the boundary representation are the high gradients near the leading edge and the

discontinuities in the second derivative of the boundary spline. The highest errors in the

slope are concentrated near the leading edge (s≈ 0.5) (Fig. 4.21) where the curvature is

highest and the spline discontinuites are the largest. Similar to the slope error, the error

in the curvature (Fig. 4.22) is highest near the leading edge (s≈ 0.5) where the changes
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(a) (b)

Figure 4.21: Slope of the airfoil spline definition plotted against the x-coordinate (a)
and local error in slope (b) plotted against the spline parameter, s. The error in the slope

was computed for Mesh 2, N = 12.

in curvature are greatest.

The effect of the boundary representation on the near-wall flow is examined in

two regions. The first is near the leading edge, where the curvature is high. The second is

in the suction surface separation region, where the curvature is low.

The error in the boundary curvature is compared to the surface aerodynamic

forces near the leading edge in Fig. 4.23. The data from three elements near the leading

edge are overlaid, where the vertical black lines depict the element boundaries. The

largest spread in the solution data coincides with the element with the largest curvature

error. Furthermore, large second derivatives in the skin friction curves are evident at the

element boundaries, as compared to the pressure curves, hence the skin friction is more

sensitive to the quality of the boundary representation than the pressure.

The error in the boundary curvature as compared to the aerodynamic forces near

the separation location is depicted in Fig. 4.24. The curvature errors are roughly two

orders of magnitude smaller than the error near the leading edge. Notably, the spread

in the solution data is very small and all polynomial orders depicted are in excellent
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(a) (b)

Figure 4.22: Curvature in the airfoil spline definition (a) and local error in the
curvature (b), both plotted as a function of the spline parameter, s. The error in the

curvature was computed for the curved-sided Mesh 2, N = 12.

Figure 4.23: Effect of boundary representation near the leading edge. The black
vertical lines depict the locations of element boundaries. Curved-sided Mesh 2 is used.
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Figure 4.24: Effect of boundary representation on separation region. The black vertical
lines depict the locations of element boundaries. Curved-sided Mesh 2 is used.

agreement with each other within graphical accuracy.

4.4.5 Discussion

Differences in aerodynamic performance between Mesh 1 and Mesh 2 (Table 4.2)

for the curved airfoil are small, with a maximum of 2.5% difference in the drag between

the two meshes. In contrast, the aerodynamic performance between Mesh 1 and Mesh 2

for the straight-sided airfoil are less consistent, with a 2.1% increase in lift with Mesh

2 over Mesh 1 and a 5.4% decrease in drag for Mesh 2 over Mesh 1. The results from

Mesh 2 with the straight sides are in better agreement with the curved-sided results than

the straight-sided Mesh 1. This is consistent with the piecewise linear approximation
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improving as the number of elements increases. The large observed differences between

the flow physics produced by straight-sided meshes and the curved-sided meshes imply

that the straight-sided meshes fail to simulate the correct physics.

4.5 Summary of Results

A comprehensive analysis of the effect of curved-boundary approximation on the

physics of the separated flow over an airfoil is presented. An approach to fitting high-order

curved DGSEM elemental edges to the airfoil geometries defined by splines is introduced

and the DNS results of the high-order boundary approximation is compared to low-order

piecewise-linear boundary representations. The piecewise-linear approximations are

shown to result in the simulation of incorrect physics.

The method for fitting high-order DGSEM elements with curved-edges to com-

plex boundaries defined by splines matches the polynomial order of the simulation by

fitting a polynomial at the Chebyshev-Lobatto quadrature nodes of the same order as

the fluid solver for each element edge along the boundary. Constructing the curved

elements as a preprocessing step in the DGSEM solver allows for greater flexibility with

the mesh definition, i.e. the high-order curved boundary approximation does not have to

be incorporated into the mesh file. A method for improving the accuracy of boundary

node location is included in the geometry generation algorithm.

Although the method uses high-order piecewise polynomials to approximate

the boundary, spectral accuracy in the boundary representation cannot be achieved

for boundary functions that are non-analytic, as demonstrated by the implementation

of this algorithm on the cubic spline that defines the profile of the NACA 65(1)-412

airfoil. In regions of the airfoil with high curvature, poor boundary convergence leads to

poor convergence of the solution. Solution convergence improves in regions with low
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curvature.

The DNS of the flow over a NACA 65(1)-412 is performed to demonstrate the

effect of using a high-order boundary representation as compared to a piecewise linear

approximation. It is established that the solution is grid independent with the comparison

of skin friction profiles and the time series amplitude spectrum for each grid.

Artificial surface roughness introduced by the piecewise-linear boundary ap-

proximation of the straight-sided meshes results in the simulation of incorrect physics.

Visualization of the wake vorticity field, and RMS field reveal the destabilization of the

von Karman vortex street by the piecewise-linear boundary approximation, as compared

to the high-order boundary approximation. The destabilized wake leads to a wide wake

dispersion, indicating loss of aerodynamic performance.

Analysis of the time series of the lift and drag for each grid demonstrates the

loss in aerodynamic performance by the piecewise linear boundary approximation as

compared with the high-order boundary approximation. Amplitude spectra of the lift and

drag time series indicate the introduction of spurious frequencies by the piecewise-linear

boundary, whereas the high-order boundary representation results in a single strong peak.

A comparison of the surface profile of the skin friction and the pressure for each

mesh identifies pressure wells and skin friction peaks at the corners of the straight-sided

mesh, which are not present in the profiles associated with the curved-sided mesh. The

boundary effects of the straight-sided mesh are identified as a significant source of

the loss in the predicted aerodynamic performance of the piecewise-linear boundary

approximation.

The effect of the boundary representation on local flow features is analyzed, in-

cluding the flow near the leading edge and the flow separation on the suction surface. The

effect on the flow is greater near the leading edge, where the boundary error was higher.

Significant sources of the boundary error include the second derivative discontinuities in
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the boundary spline and the large boundary derivatives in the high curvature region of

the leading edge.

Chapter 4, in part, has been submitted for publication of the material as it may

appear in Theoretical and Computational Fluid Dynamics, 2015, Nelson, Daniel; Jacobs,

Gustaaf and Kopriva, David, ”Effect of Boundary Representation on Viscous, Separated

Flows in a Discontinuous-Galerkin Navier-Stokes Solver”. The dissertation author was

the primary investigator and author of this paper.



Chapter 5

Lagrangian Coherent Structures with

High-Order Discontinuous-Galerkin

Methods

Sections 5.2, 5.4 and 5.5 are a reprint of a manuscript published in The Jour-

nal of Computational Physics in 2015 [75]. The results presented in Section 5.3 are

reprinted from a conference publication submitted to the American Society of Mechanical

Engineers in 2013 [76].

5.1 Overview and Summary

In this Chapter, we present a DG-based algorithm that determines flow maps

and corresponding FTLE fields at multiple times from a particle trace at a single initial

time, both backward in time and forward in time in two dimensions. Since the algorithm

requires only a single particle trace at one initial time to determine the FTLE fields at

several (forward and backward) times, it is low-storage and computationally efficient.

63
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By initiating particles at quadrature points, flow map approximations are generated

that are consistent with the piecewise DG approximation. Hence, DG operators can be

directly used to determine the deformation gradients required for the FTLE. Because

of its seamless fit with DG Navier-Stokes solvers, the algorithm is not only consistent,

but is also suited for the simultaneous computation with large-scale, parallel direct

numerical simulations and large eddy simulations based on DG [100, 101, 102, 103], at

low computational overhead, while eliminating the need for storage of large data sets.

Although effort has been made to decrease storage requirements and improve

efficiency of the presented algorithm as compared to currently available methods, the

focus of this chapter is on the high-order accuracy of the algorithm. Computational costs

will be examined in detail elsewhere.

In the next section, we summarize the particle tracer, the flow map approximation

and FTLE determination with DG. Next, the interpolation of flow maps at multiple

times from a single initial time particle trace is discussed, including its conditioning and

the relation of conditioning to the deformation field. The algorithm is tested on three

benchmark cases, including a spatially periodic gyre flow, an analytical vortex advected

by a uniform flow, and the viscous flow around a square cylinder. The final section is

reserved for conclusions and future work.

5.2 FTLE with Spectral Methods

5.2.1 Fluid Particle Tracking Algorithm

The particle tracking algorithm requires three steps [104]: 1) the host domain

of the particle is located; 2) the fluid velocity is interpolated from the DG grid to the

particle’s location; 3) the system (2.19) is integrated in time.

We initialize particles at Chebyshev Gauss-Lobatto quadrature nodes in each
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subdomain, and numerically integrate the dynamical system (2.19) over the time interval

T = t− t0. The particle final locations form the approximation

φ≈
K⋃

k=1

Φ
k
N . (5.1)

where Φk
N is the Nth-order polynomial approximation of φ on the subdomain Dk. Since in

DG, the boundaries of conforming subdomains coincide, we remove duplicate boundary

particles to improve the efficiency of the particle tracking algorithm.

The particle’s host cell is found by comparing the particle coordinate in the unit

square to the bounds of the unit square. The inverse of the blending function (3.2) maps

the particle’s physical space location to its location, ξp, within the unit square. For

curved sided subdomains, an analytical expression for the inverse map does not exist

and so a Newton root-finding method is used to invert the map. A fluid particle leaves

a subdomain if it’s mapped coordinate is outside the bounds of a unit square. If this

is the case, the subdomains shared by the nearest corner determine the new host cell.

The fluid velocity is interpolated to the particle location using the existing polynomial

approximation of the solution vector, QN . Therefore, the interpolation error in the fluid

particle velocity is of the same order as the numerical scheme. Particles are advected

by integrating (2.19) in time with an Adam-Bashforth (AB) scheme. The AB is used

because it is computationally more efficient as compared to Runge-Kutta schemes used to

integrate the Navier-Stokes equations and the linear particle equations are not constrained

by numerical stability.

5.2.2 Forward-Time FTLE with Spectral Methods

The locations of the fluid particles in each subdomain that are traced over the

time interval, T , are denoted by Φi j. These locations construct the interpolant for the
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flow map given by

ΦN(ξ,η, t) =
N

∑
i=0

N

∑
j=0

Φi, j(t)`i(ξ)` j(η). (5.2)

The deformation gradient tensor is determined from ΦN using the DG operators (3.12)

and (3.13). Taking into account the mapping to computational space, we compute the

components of the deformation gradient tensor at the quadrature nodes as follows,

∂Φ

∂x0
=

1
J

[( N

∑
k=0

D(ξ)
ik Φk, j

)
∂y0

∂η
−

(
N

∑
k=0

D(η)
jk Φi,k

)
∂y0

∂ξ

]
,

∂Φ

∂y0
=

1
J

[( N

∑
k=0

D(η)
jk Φi,k

)
∂x0

∂ξ
−

(
N

∑
k=0

D(ξ)
ik Φk, j

)
∂x0

∂η

]
. (5.3)

From the deformation gradient tensor, the FTLE is determined with (2.31).

5.2.3 Multiple Flow Maps From a Single Particle Trace

We can determine the flow map at time t2 > t1, over time interval T2 = t2− t1,

φ
t2
t1 = x2(t2; t1,φ

t1
t0), (5.4)

with the same particle trace we used to determine the flow map at t1 over the time interval

T1 = t1− t0,

φ
t1
t0 = x1(t1; t0,x0), (5.5)

if we take the flow map at t1 as the initial state for the flow map at t2. To do so, we map

and interpolate the Nth-order polynomial approximation of the flow map on a subdomain

at t1,

φ
t1
t0 ≈ΦN , (5.6)
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to Gauss quadrature nodes, so that it can be used as the basis for the polynomial approxi-

mation of the map at t2,

φ
t2
t1 ≈ΨN . (5.7)

Similarly, we find an approximation to the backward-time flow map at t0,

φ
t0
t1 ≈ΘN , (5.8)

using the same mapped and interpolated flow map at t1, (5.6) as a basis.

Mapping of Flow Map to Unit Square

To project the approximation of the flow map at t1, ΦN , to the quadrature nodes,

the nodes, Φi j, are first mapped to the master element with the inverse of the linear

blending function (3.2). We parameterize the boundary of the map, Γ
φ

i , in (3.2) with

Γ
φ

i = ΦN |∂Di
k
, (5.9)

i.e. the polynomial approximation of the flow map, ΦN , at the edges of the subdomains,

Dk, as shown in Fig. 5.1.

The particles that are initialized at the quadrature nodes at time t0 (Fig. 5.2a), and

that are advected until time t1, form the flow map, ΦN based on the particle nodes ,Φi j,

(filled circles, Fig. 5.2b). Through the inverse transfinite map function (3.2), Φi j, maps to

the nodes in the unit square, αi j (filled circles, Fig. 5.2c), where we invert the non-linear

transfinite mapping function (3.2) with an iterative Newton method using the quadrature

nodes as an initial guess.

The nodes αi j do not necessarily coincide with the quadrature nodes, α′i j (open
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Figure 5.1: The nodes that define the flow map subdomain boundaries, Γ
φ

i are
constructed from the final locations of the nodes initialized at the boundaries of the

subdomains at time t = t0 such that Γ
φ

i = ΦN |∂Ωi .

Figure 5.2: The fluid tracers are initialized at the Chebyshev-Lobatto quadrature nodes
at time t = t0, designated by the filled circles (a). The particles are then advected to

time t1 (filled circles (b)), where they are mapped to the master element with the inverse
map x(α)−1 (filled circles (c)). The open circles in (b) and (c) correspond to the

quadrature nodes in physical space, Φ′i j, and mapped space, α′i j, respectively.

circles, Fig. 5.2c), i.e.,

αi j 6= α
′
i j, (5.10)

except along the parameterized curves that bound the subdomain, and in the trivial case

of uniform flow.
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Orthogonal Basis for the Integrated Flow Map

On the unit square, we formulate the following interpolant,

ΦN(α,β) =
N

∑
i=0

N

∑
j=0

Φ
′
i j`i(α)` j(β). (5.11)

Here, Φ′i j are values of the flow map at t1 on the quadrature nodes. They are obtained

using the known values of the flow map, Φlm, at the coordinates (αl,βm) in the unit

square. So,

Φlm =
N

∑
i=0

N

∑
j=0

Φ
′
i j`i(αl)` j(βm), (5.12)

which in matrix-vector form can be expressed as

Φ̃q = Φ̃
′
pIpq, (5.13)

where Ipq is the (N +1)2× (N +1)2 interpolation matrix,

Ipq = `i(αl)` j(βm), (5.14)

and Φq and Φ′p are contiguously aligned, so that p = i(N +1)+ j and q = l(N +1)+m.

Finally, by inverting (5.13) we have

Φ̃
′
p = I−1

pq Φ̃q. (5.15)

The flow map, Φ̃′p is based an orthogonal, tensorial, quadrature grid and forms the basis

at t1 for new flow maps in forward and backward time.
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Construction of Backward-Time Flow Maps

We find the backward-time flow map at t0 by integrating the known flow map at

t1 to t0,

Θi j = Φi j +
∫ t0

t1

(
dΦi j

dt

)
dt (5.16)

Since (5.16) back-traces the particles that we initiate at x0 to obtain ΦN in forward time,

it follows that Θi j represent the nodes on the initial DG-mesh, x0
i j, (Fig. 5.3b).

With respect to the flow map, Φ′i j, on the orthogonal quadrature nodes at t1, we

find the flow map in backward time at t0 (Fig. 5.3c) as

Θ̃
′
p = I−1

pq Θ̃q, (5.17)

according to the definitions in (5.13) and (5.14).

We prove (5.17) by multiplying (5.16), recast in matrix-vector form, with I−1
pq ,

I−1
pq Θ̃q = I−1

pq Φ̃q + I−1
pq

∫ t0

t1

(
dΦ̃q

dt

)
dt. (5.18)

Since the operators are linear we can rewrite this as

I−1
pq Θ̃q = I−1

pq Φ̃q +
∫ t0

t1

(
dI−1

pq Φ̃q

dt

)
dt. (5.19)

With (5.15) and (5.17) it follows that

I−1
pq Θ̃q = Φ̃

′
p +

∫ t0

t1

(
dΦ̃′p
dt

)
dt. (5.20)

The right hand-side represents the integration of orthogonal flow map at t1 to t0 and thus

is equal to Θ̃′p. This proves (5.17).

Since Θ̃′p represent an approximation of the backward-time flow map on the
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orthogonal quadrature basis, we can use spectral operators like in (5.3) to determine the

deformation gradients from the flow map.

Alternatively, the backward-time FTLE can be computed using a method by Haller

and Sapsis [1], who derive an analytical relationship between the largest backward-time

FTLE and the smallest forward-time FTLE. This enables one to compute the backward-

time FTLE associated with the flow map, φ
t0
t1 , from the forward-time flow map, φ

t1
t0 , in the

following way:

σ(φ,−T ) =
1
|T |

ln

√
λmax

(
∂x0

∂φ

∗
∂x0

∂φ

)

=− 1
|T |

ln

√
λmin

(
∂φ

∂x0

∗
∂φ

∂x0

)
. (5.21)

The backward-time FTLE computed from (5.21) is determined on the same deformed

grid at t1 that we use for our DG-FTLE algorithm, and so suffers the same computational

challenge as the present work. Although (5.21) presents an efficient and accurate method

for computing the backward-time FTLE field from the forward-time flow map, the method

Haller and Sapsis [1] present does not allow for the determination of the backward-time

flow map, whereas our DG-based method does. Work by Karrasch et al. [105] implies

that determination of the backward-time flow map will reduce the computational costs and

increase the numerical stability associated with the identification of repelling hyperbolic

LCS according to the geodesic theory by Haller [67]. Hence, extensions of this algorithm

to identify LCS from geodesic theory will benefit from the high-order accurate backward-

time flow map computed from the forward-time flow map afforded by this algorithm. We

compare our DG-based approach with the approach by Haller and Sapsis on a vortex test

case in section 5.4.
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Figure 5.3: With the fluid tracers integrated from time t0 (b) to t1 (a), then to t2 (d), we
can find the locations of the quadrature nodes at t2 (e) and t0 (c) that map from the

master element to the flow map at t1 using interpolation if we invert the interpolation
matrix Ipq.

Multiple Forward-Time Flow Maps From a Single Particle Trace

Similar to the backward-time flow map, we find new flow maps in forward-time

at time t2 > t1 with

Ψi j = Φi j +
∫ t2

t1

(
dΦi j

dt

)
dt, (5.22)

from a particle released at the single intial time, t0. Following Fig. 5.3a, d and e, the flow

map at t2 is determined with respect to the flow map, Φ′i j, on the orthogonal quadrature

nodes at t1, as

Ψ̃
′
p = I−1

pq Ψ̃q, (5.23)

according to the definitions in (5.13) and (5.14).

We can reiterate the projection to an orthogonal basis at t2 and find as many flow

maps as we desire from a single initial time particle trace and continue to use consistent

spectral differentation to find the deformation gradient tensor and its corresponding

FTLE.
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Notes on the DG-FTLE from single particle trace

Pertaining to the use of a single particle trace to determine multiple forward and

backward FTLEs, we make the following remarks:

Remark 1: As the flow map time interval increases, gradients in ΦN increase and

hyperbolicity in the flow field causes the flow map topology to become increasingly

tangled. This translates to Gibbs oscillations and aliasing errors in the approximation of

the flow map.

Remark 2: The distance between the quadrature nodes, α′i j, and the inverse-mapped

nodes, αi j, increases as the flow map gradients increase with time. Since the Newton

method uses α′i j as an initial guess, increasing T will affect the convergence of the inverse

map.

Remark 3: It is well known that deviations from near-optimal nodal points, such as the

Chebyshev Gauss-Lobatto nodes, increase the Lebesgue constant, ΛN(I ) [106], which is

connected to poor conditioning of the interpolation. Therefore, since I depends on α′i j

as in (5.14), as the time interval is increased, ΛN(I ), the conditioning and interpolation

errors increase. As the polynomial order, N, increases, ΛN(I ) further increases [106].

Remark 4: Ipq is easily inverted with

I−1
pq = [`i(αl)` j(βm)]

−1 = `l(α
′
i)`m(β

′
j), (5.24)

where p and q are the same as in (5.14).

While the conditioning can lead to large interpolation errors, it also offers insights

into the deformation of the fluid that compliment the FTLE. So, in addition to the

FTLE, we have more measures for the deformation of the subdomains, including: 1) the
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Lebesgue constant, ΛN ; 2) the condition number, κ, of I , given by

κ(I )≡ λmax(I )
λmin(I )

; (5.25)

and 3) the separation |αi j−α′i j|, whch we reduce to a single parameter ∆α defined by

∆α≡max |αi j−α
′
i j|. (5.26)

In general, the Lebesgue constant is difficult to determine for an arbitrary two-dimensional

set of interpolation nodes. Hence, we do not include ΛN in our analysis. In the vortex

and cylinder test cases, we illustrate the correlation between κ(I ) and ∆α and the FTLE.

5.2.4 Algorithm Summary

The algorithm that determines several FTLEs from a single particle trace is

summarized as follows:

A. Particle tracing algorithm in DG:

1. Initialize fluid tracers on Chebyshev Gauss-Lobatto nodes.

2. Remove double particles at subdomain boundaries.

3. The velocity solution of a DG Navier-Stokes solver is interpolated to each

particle’s location.

4. The particles are advected one step in time using a 3rd-order Adams-Bashforth

scheme.

5. Particle search algorithm:

i. The particle is mapped to its last known host domain.

ii. If the particle leaves the host domain, a new host domain is found from the

host domains connected to the nearest node.
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B. Forward-time FTLE using DG at time t1:

1. The deformation gradient tensor is determined using spectral operators on the

flow map Φ′i j.

2. The Cauchy-Green deformation tensor is constructed.

3. The FTLE is computed according to (2.30).

C. The FTLE at time t2:

1. Given the nodes of the flow map approximations, Φi j and Ψi j, find the node

locations αi j using the inverse of (3.2).

2. Construct the interpolation operator matrix Ipq from the nodes αi j and the

quadrature nodes α′i j.

3. Construct the vector Ψ̃q from Ψi j and compute Ψ̃′p from (5.23).

4. Once Ψ′i j is computed, the FTLE can be computed using (5.3) and (2.30).

D. Backward-time FTLE:

1. Given the interpolation matrix Ipq, construct the vector Θ̃q from Θi j and

compute Θ̃′p from (5.17).

2. Once Θ′i j is computed, the FTLE is computed using (5.3) and (2.30).

5.3 Forward-Time FTLE Test Cases

We test the spectral forward-time FTLE algorithm using three benchmark cases,

including a periodic gyre, a vortex advected in an inviscid flow field, and the viscous

flow around a square cylinder. Details of the velocity fields for these cases are given in

Section 5.4
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5.3.1 Gyre Flow

The gyre flow is defined by the following velocity field [59]:

u(x,y, t) =−πAsin(π f (x, t))cos(πy)

v(x,y, t) = πAcos(π f (x, t))sin(πy)
∂ f
∂x

, (5.27)

where we have

f (x, t) = a(t)x2 +b(t)x, (5.28)

a(t) = εsin(ωt), (5.29)

b(t) = 1−2εsin(ωt). (5.30)

While this is not a solution to the fluid conservation laws, it represents a simplified model

of a generic gyre flow, which is a common flow type in geophysical systems. When we

set t = 0, we have a simplified, time-independent flow given by

u(x,y) =−πAsin(πx)cos(πy),

v(x,y) = πAsin(πy)cos(πx). (5.31)

As seen in Fig. 5.4a, the time-independent gyre velocity field consists of spatially

periodic rotating square cells that are one unit wide. The FTLE field (Fig. 5.4b) is a

spatially periodic arrangement of ridges bounding the rotating cells seen in the vector

field. As the time interval is increased, the gradient around the ridges increases and hence

the ridges become sharper.

As the time interval is increased, the gradient around the ridges in the FTLE field
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(a) (b)

Figure 5.4: Velocity field and FTLE field for the periodic gyre flow.

increases and the ridges become sharper. At high polynomial orders, the approximation

of this ridge can become oscillatory. However, this can be mitigated with grid refinement

near the ridges, as in Fig. 5.11b.

The high-order algorithm converges spectrally, as compared to the algebraic

convergence of the second-order finite difference method (Fig. 5.5). Additionally, when

we use a grid with a cosine distribution, where subdomains are refined along the ridges,

the accuracy and convergence rate increases over a regular grid implementation. Although

it is not always possible to know the locations of FTLE ridges a priori, it is a general

trend for the solution of conservation laws that ridges tend to form in flow regions that

require high grid resolution, such as near walls and in turbulent regions.
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Figure 5.5: Comparison of the convergence rates for the spectral element approach and
the finite difference approach.

5.3.2 Vortex Advected by Uniform Flow

We consider the benchmark problem of a circular, isentropic vortex that is ad-

vected by a uniform flow. Following [107], the velocity field is given by

u(x,y, t) =U∞−
A
R
(y−Yc)exp

(
−(x−Xc−U∞t)2 +(y−Yc)

2

2R2

)
,

v(x,y, t) =
A
R
(x−Xc−U∞t)exp

(
−(x−Xc−U∞t)2 +(y−Yc)

2

2R2

)
, (5.32)

and the temperature field by

T = 1− 1
2
(AM∞)

2 exp
(
−(x−Xc−U∞t)2 +(y−Yc)

2

R2

)
(γ−1). (5.33)

where Xc and Yc are the initial coordinates of the vortex center. The initial conditions

given by (5.32) and (5.33) are solutions to the Euler equations. The velocity field at

initial time t0 with the vortex center located at (Xc,Yc) = (0.5,0.5) is shown in Fig. 5.6a.

The uniform free-stream velocity is set to U∞ = 1 and the radius is R = 0.1. The vortex

strength A is set to 0.2.

Although the exact velocity is known for this flow, the velocity was computed
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(a) (b)

Figure 5.6: Velocity field for the periodic vortex flow (a) and the FTLE field for
T = 0.5 (b).

using the DGSEM method to solve the Euler equations. The FTLE was computed

simultaneously during the computation of the velocity field in order to test this algorithm’s

effectiveness as an ”on-the-fly” method for computing the FTLE. The resulting FTLE

field is shown in Fig. 5.6b for a polynomial order of 9 and a time interval t− t0 = 0.5.

Since we have an analytical solution for the flow field, flow map, and FTLE field,

we are able to directly measure the error and compare error sources more rigorously.

As shown in Fig. 5.7, the fluid solution, represented by the u-velocity and v-velocity,

converge spectrally. The error in the flow map is affected by the high-order interpolation

of the velocity field on the fluid particles and the third-order time stepping scheme used

to advect the particles. Since the interpolation is high-order and the time stepping is

algebraic, we expect the flow map error to be dominated by the time stepping error and,

hence, be nearly algebraic. This is shown in Fig. 5.7 by the Xp and Yp curves, which

converge more slowly than the fluid solution. The error in the FTLE is a combination of

the error in the fluid solution, the velocity interpolation, the fluid particle time integration,

and the high-order derivatives used to compute the deformation gradient. Since most
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Figure 5.7: Error sources in the ”on-the-fly” implementation. The largest errors are
present in the flow map, while the velocities and FTLE field demonstrate spectral

convergence.

of the error sources are from spectral methods, we expect the FTLE error to converge

spectrally until the time stepping error becomes dominant at high polynomial orders. In

Fig. 5.7, we see that the FTLE does indeed converge spectrally until about P = 6, at

which point the flow map error begins to dominate and the convergence rate decreases.

5.3.3 Flow around a square cylinder

In our last case that we considered, the compressible Navier-Stokes equations

were solved to simulate the viscous flow around a square cylinder [62, 17]. This test

case comprises a more complex geometry to illustrate the application of the algorithm

developed in this paper to complex, time-dependent flows. The simulation was performed

on a rectangular computational domain shown in Fig. 5.22. The reference length of

the flow is the cylinder width, c=1. The computational domain size is 40c×20c with

the center of the cylinder located 10c from the left boundary and 10c from the top and

bottom boundaries. Uniform inflow conditions are set on the left boundary, with uniform

outflow conditions set at the top, bottom and right. The cylinder wall is adiabatic. The

Reynolds number and Mach number based on the free-stream velocity and cylinder width
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Figure 5.8: Problem setup for square cylinder case.

are Re = 150 and M = 0.3 respectively.

This simulation was run at a polynomial order of 6. Figure 5.9 shows the fluid

solution using 2 different grid resolutions. The finer mesh is four times the resolution

of the course mesh. Figure 5.10 shows the FTLE field and the x-flow map for the 2

grids. There are visible jumps at the subdomain interfaces in the fluid solution using the

coarse mesh, which indicate that this solution is not fully resolved. The fluid solution

is very smooth using the refined mesh, hence it is more resolved than that of the coarse

mesh solution. As shown in Fig. 5.10, the flow map using the refined mesh is much

smoother than that using the course mesh. This leads to a much smoother result in the

FTLE field on the fine mesh as well. However, the steepest ridges in the near wake and

up stream of the cylinder exhibit less smoothness than the LCS seen further downstream

and further from the cylinder due to the high gradients associated with the steeper ridges.

Resolution requirements in numerical studies are strongly linked to and often dictated

by gradients in the solution field, hence the high gradients in the FTLE field, which
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Figure 5.9: Convergence of the fluid solution can be seen in the vorticity plot using the
most refined mesh, where the defects at the subdomain boundaries are no longer visible.

The finer mesh is four times the resolution of the coarse mesh.

originate in the flow map, are the cause of the errors seen in Fig. 5.10. Since there is

no requirement that the polynomial order of the solution must be consistent with the

polynomial order of the FTLE computation, a higher polynomial can be used to compute

the FTLE by interpolating the fluid solution onto the higher resolution FTLE grid. To

improve efficiency in future implementations of this algorithm, an adaptive routine can

be implemented that increases the polynomial order in a subdomain when a certain

deformation gradient threshold is reached.

5.4 DG-FTLE Test Cases

We test the FTLE algorithm for three cases; a steady, spatially periodic gyre flow

with a prescribed velocity field that is not a solution to the Navier-Stokes equations; a

vortex advected by a uniform, inviscid flow, with a velocity field that is computed with a

DG method; and the complex, viscous flow around a square cylinder.
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Figure 5.10: Improvement in resolution of the FTLE is visible as the mesh becomes
more refined. However, the most refined mesh still exhibits defects in the sharp FTLE
ridges in the near wake. The gradients in the flow map are generally much greater than
the gradients in the corresponding fluid solution. Hence, the FTLE field, in regions of
high FTLE, will generally require more resolution than the fluid solution. The same

two meshes that were used in Fig. 5.9 are used in this figure.

5.4.1 Gyre Flow

We determine the FTLE field on two grids for this case; one uniform grid (Fig.

5.11a) and a grid with increased resolution at the locations of the ridges (Fig. 5.11b)

using a cosine distribution.

As a reference, we consider a highly resolved computation based on a cosine

grid with 32×32 subdomains, a polynomial order of 12, and a time step, ∆t = 0.00125.

Coarser computations on a 16×16 grid, with ∆t = 0.0025 and polynomial orders from

P = 2 to P = 7 are compared to the reference case to determine the errors. The FTLE is

determined at T = 2, 3, and 4 for each case.

Fig. 5.12 shows that the flow map ΦN converges spectrally to the fine grid

solution at time t1, while, as T increases, the error increases. The forward-time FTLE

at t2 = t0 +2T and the backward-time FTLE computed from the same trace converge

spectrally as well (Fig. 5.13). Since the gradients are larger in ΨN as compared to ΘN , the
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(a) (b)

Figure 5.11: Uniform distribution of subdomains (a) and a cosine distribution where
the subdomains are clustered near the FTLE ridges (b).

error in the deformation gradient tensor increases and hence the error in the forward-time

FTLE is larger than in the backward-time FTLE.

The time-dependent gyre flow provides a quantitative test of the accuracy of the

algorithm on a simple FTLE field with an LCS that is not grid-aligned, in contrast to the

FTLE field for the steady gyre case. The unsteady gyre flow is given by u(x,y, t) and

v(x,y, t) in (5.27) and is a time-periodic perturbation in the x-direction of the steady gyre

flow. Time-dependence of the flow field leads to a curved FTLE ridge separating the

gyres (Figure 5.14). In this study, we set ε = 0.1, A = 0.1, and ω = 2π/10. The FTLE is

computed over the domain [0,2]× [0,1]. The convergence of the error for the FTLE field

computed over time intervals of T = 3 and 4 is exponential as depicted in Figure 5.15.

5.4.2 Vortex Advected by Uniform Flow

The flow map and FTLE field for this velocity field can be determined analytically,

as mentioned in [76]. We present the solution in A.
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Figure 5.12: Convergence for the FTLE fields computed from ΦN at time intervals
T = 2, 3, and 4.

Figure 5.13: Convergence for the FTLE fields computed from ΨN (forward-time) and
ΘN (backward-time) at time intervals T = 2, 3, and 4.

Errors in the Forward-Time Flow Map

The analytical solution to the vortex case provides a reference for a detailed

analysis of the numerical errors. There are a number of sources of error in the numerical

algorithm to compute the flow map, ΦN , including the error in the DG computation of the

velocity field, and the error in the flow map, ΦN , with contributions from the numerical

integration of the fluid tracers, the grid spacing, and the interpolation error, which in

turn is affected by high gradients in the flow map. For a detailed discussion of the fluid

particle tracking algorithms and accuracy and convergence of DG methods, we refer to
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Figure 5.14: Time-dependent gyre FTLE field for a time interval of T = 4.

[104] and [21], respectively. In this work, we ensure that the numerical errors from the

DG method and fluid particle integration algorithm are small compared to the flow map

error so that the error in the FTLE determination can be examined. In order to quantify

the local error of the flow map, we compute the interpolation nodes exactly and compute

the difference between the exact flow map, φ, and the polynomial approximation, ΦN ,

given by

εφ = |ΦN−φ|. (5.34)

As the integration time, T , increases, the flow map topology becomes more distorted and

tangled (Fig. 5.16), leading to large gradients. Therefore, the interpolation error must

increase with increasing T . The root-mean-square error, εRMS, of ΦN is given by

εRMS =

√√√√ 1
M

(
M

∑
i=1
|ΦN−φ|2

)
, (5.35)

where M is the number of interpolation points. A comparison of εRMS computed at

T = 0.5 and T = 5 is plotted in Fig. 5.17 versus the polynomial order, P. Spectral
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Figure 5.15: Convergence for the FTLE fields computed from ΦN at time intervals
T = 3 and 4 for the time-dependent gyre flow.

(a) (b)

Figure 5.16: Subdomain deformation at T = 0.5 (a) and T = 2.5 (b).

accuracy is seen in ΦN for both T and with increasing T , εRMS increases significantly.

Errors in the Flow Map Interpolation

In addition to the error introduced by the flow map, ΦN , the errors in the new

flow maps ΨN and ΘN are affected by the conditioning of the interpolation matrix I .

In Fig. 5.18, the maximum condition number, κ(I ), and the maximum value of the

parameter ∆α are plotted as a function of time for a 4th-order and 6th-order solution. As

Fig. 5.18 illustrates, κ increases as the time interval increases, as does ∆α. In both cases,
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Figure 5.17: The convergence of the RMS error of ΦN at two times, T = 0.5 and
T = 5.0.

a reduction in the magnitude of the parameters is observed when the grid is refined. The

relationship between κ and the Lebesgue constant, ΛN results in an increase in κ when

P increases. However, ∆α exhibits no dependency on P. This is because ∆α depends

only on the relationship between the topology of the flow map, ΦN , and the transfinite

mapping function, x(α).

Both the forward and backward-time flow maps are spectrally convergent for

two different time intervals (Fig. 5.19). However, the magnitude of the error for the

T = 5 flow maps is greater than the error for the T = 0.5 flow maps. Fig. 5.20 depicts

the convergence of the FTLE computation from the flow maps ΨN and ΘN with a time

interval T = 0.5. Given that ΨN and ΘN converge spectrally, their respective FTLEs

converge spectrally since spectral operators are used to compute the deformation gradient

tensor.

The backward-time FTLE from time interval [t1, t0] computed using the method

presented by Haller and Sapsis [1] is compared to the method presented in this work and

the convergence of εRMS is depicted in Fig. 5.21. The error in the method presented in

this work compares well with the error in the Haller-Sapsis method. Differences arise

from errors due to the poor conditioning of the interpolation problem at high deformation
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(a) (b)

Figure 5.18: Dependency of maximum condition number on polynomial order and
subdomain deformation. The refined case uses a uniform grid of ∆x = 0.05.

Figure 5.19: The convergence rates of the RMS error of the backward-time and
forward-time flow maps found using matrix inversion at two time intervals, T .

and high polynomial orders in the method in this work, whereas the Haller-Sapsis method

does not require interpolation and, hence, does not suffer from interpolation errors.

5.4.3 Flow around a square cylinder

We consider the unsteady flow around a square cylinder [62, 17]. The results

presented in this section are based on the refined grid solution. The fluid computation is

performed until quasi steady-state is reached [62, 17].
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Figure 5.20: The convergence rates of the backward and forward FTLE fields at time
interval T = 0.5.

Figure 5.21: The error in the backward-time FTLE computed at two time intervals —
T = 1.5 and T = 2.5 — using the method in Haller and Sapsis [1] and this work.

A von Karman vortex street develops in the wake of the cylinder, and provides

velocity fields that are well suited for study using LCS methods [32]. The forward-time

FTLE field exhibits a strong repelling LCS along the stagnation streamline upstream

of the cylinder, while the vortex boundaries can be seen in the wake (Fig. 5.23a). In

the backward-time FTLE field, strong attractors form in the near wake, where fluid

becomes entrained just behind the cylinder in a near-wake recirculation region (Fig.

5.23b). Additional attractors form at the vortex cores and along material lines connecting

the vortices. The time interval is T = 10, and the FTLE fields are computed using the
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Figure 5.22: Problem setup for square cylinder case.

algorithm presented in [76].

The effect of the conditioning of I and the errors in the inverse transfinite map is

most significant in the regions with the highest gradients in the flow map. This generally

correlates to regions with high FTLE values, as seen in Fig. 5.24. In Fig. 5.24b, the

log of the condition number, ln(κ), is plotted. The subdomains with the highest ridges

near the cylinder and along the stagnation streamline exhibit the largest κ values, which

tends to wash out the more subtle increases in κ around the ridges that form in the wake.

Alternatively, the parameter, ∆α, in Fig. 5.24c, scales in a way that allows improved

visualization of the flow structures in the far wake.

Fig. 5.25 shows the backward-time FTLE determined using the standard approach,

in which the fluid tracers are integrated backward in time (Fig. 5.25a), and the backward-

time FTLE determined from the forward-time flow map using the algorithm presented

in this work. Since the backward-time FTLE in Fig. 5.25b is computed on a highly

deformed grid, the values of the FTLE are interpolated onto a uniform grid using cubic
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(a)

(b)

Figure 5.23: Comparison of the forward-time FTLE field (a) and the backward-time
FTLE field (b). The time interval is T = 10.

interpolation so that the results can be better visualized. The high FTLE values in the

left side of Fig. 5.25b are a result of the lack of data in that region since the tracers that

were initialized upstream of the cylinder have advected downstream. Both methods agree

very well and depict the same stable manifolds in the wake with minor differences in the

near wake resulting from the poor conditioning of the subdomains in those areas for Fig.

5.25b.

The forward-time FTLE field is depicted in Fig. 5.26 for the time interval T = 10

and at the start times t0 = 0 (5.26a), t0 = 1 (5.26b), and t0 = 2 (5.26c). The frames in Fig.

5.26 were determined from a single particle integration, initialized at t = 0, illustrating

the potential for the numerical method presented in this work to compute FTLE fields at

different starting states while only integrating one set of particles.
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5.5 Summary of Results

An algorithm is developed that computes FTLE fields with DG operators at

multiple times, both in backward-time and in forward-time, from a single particle trace.

The algorithm is designed to be efficient and consistent in implementation and accuracy

with high-order DG methods used to solve the Navier-Stokes equations for the underlying

velocity vector fields and can be used simultaneously with the integration of the Navier-

Stokes equations, as opposed to post-processing.

By seeding particles on the DG nodal mesh points, the integrated flow maps find

their basis in the piecewise representation of the DG mesh, ensuring spectral convergence

of deformation gradients and FTLE fields if DG operators are used.

Projection to quadrature on a unit square of integrated flow maps that are initiated

on nodal points provides a basis for the determination of forward and backward flow maps

at several times from particles that are seeded at a single initial time. Conditioning of the

projection is poor when the flow map deforms significantly in time. Quantitative measures

for the conditioning also provide additional information regarding the deformation of the

flow field.

The algorithm is tested on three benchmarks: a spatially periodic gyre flow; the

advection of a vortex in a uniform, inviscid flow; and the unsteady, viscous flow around a

square cylinder. Spectral convergence is demonstrated on the gyre case and the vortex

case.

The sources for error are examined in detail on the gyre and vortex cases. The

most significant source of error is in the interpolation operator, I , where the conditioning

for the interpolation depends on the deformation of the flow map. As the time interval, T ,

increases, the increasing deformation of the subdomains with high flow map gradients

leads to poor conditioning for the interpolation to other flow maps, as measured by the
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condition number, κ, and the parameter ∆α. The parameters κ and ∆α are shown to

highly correlate with the locations of ridges in the FTLE field for the square cylinder

case.

The method for computing the backward-time FTLE from the forward-time flow

map using DG operators is compared to the method proposed by Haller and Sapsis. The

accuracy and convergence of the DG method compare well with the Haller-Sapsis method.

The DG method has the advantage of computing the backward-time flow map directly

from the forward-time flow map, providing for the ability to analyze the backward-

time flow map if needed. The Haller-Sapsis method, on the other hand, determines the

backward-time FTLE directly from the forward-time flow map, without determining the

backward-time flow map at any point. The DG method, has the drawback that it is more

computationally intensive than the Haller-Sapsis method.

The present work focuses on implementation of the algorithm in two dimensions.

Extension to three dimensions is straightforward. In future work, we aim to present test

cases in three dimensions. The algorithm can be extended to compute the eigenvector

field of the Cauchy-Green strain tensor with spectral convergence. Therefore, hyperbolic

material surfaces can be extracted with high-order accuracy using the LCS variational

theory. We aim to examine the application of this algorithm to the work of Farazmand

and Haller [69]. Our future efforts will further focus on developing an adaptive mesh

algorithm for improving the conditioning of I and extending the time interval over which

the algorithm can be applied, as well as parallelization, and improvements in efficiency.

Chapter 5, in part, is a reprint of the material as it appears in Journal of Computa-

tional Physics, vol. 295, 2015, Nelson, Daniel; Jacobs, Gustaaf, ”DG-FTLE: Lagrangian

Coherent Structures with Discontinuous-Galerkin Methods”. The dissertation author was

the primary investigator and author of this paper.

Section 5.3, in part, is a reprint of the material as it appears in The Proceedings of
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the ASME 2013 International Mechanical Engineering Congress and Exposition, 2013,

Nelson, Daniel; Jacobs, Gustaaf, ”Computation of Forward-Time Finite-Time Lyapunov

Exponents Using Discontinuous-Galerkin Spectral Element Methods”, The dissertation

author was the primary investigator and author of this paper.
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(a)

(b)

(c)

Figure 5.24: Comparison of the forward-time FTLE field (a) to the log of the condition
number, ln(κ), (b) and the parameter ∆α (c). The time interval is T = 10.
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(a)

(b)

Figure 5.25: Comparison of the backward-time FTLE computed from a particle trace
in backward-time (a) and the backward-time FTLE computed from the forward-time

flow map using Lagrange interpolation (b). The time interval is T = 10.
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(a)

(b)

(c)

Figure 5.26: The forward-time FTLE computed with a time interval T = 10 at times
t0 = 0 (a), 1 (b), and 2 (c) with one particle trace.



Chapter 6

High-Order Visualization of

Three-Dimensional Lagrangian

Coherent Structures with DG-FTLE

Sections 6.2 through 6.4 are reprinted from an upcoming manuscript to be pub-

lished in Computers and Fluids in 2016 [108].

6.1 Overview and Summary

In this chapter, we extend the DG-FTLE algorithm presented in [75] to separated

flows over curved geometries and flows in three-dimensions. The algorithm is applied on

boundary fitted grids with curved subdomain edges. The FTLE field is used to identify

vortex structures in the wake of an airfoil in two and three dimensions. Implementation

of the DG-FTLE algorithm in parallel for efficient three-dimensional computation and

integration into DG fluid solvers is discussed. An exponential filter is applied to the

flow map to smooth nearly discontinuous regions and remove Gibbs oscillations from

99
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the FTLE field when the integration time is large. The method for constructing multiple

flow maps from a single particle trace using interpolation developed in Chapter 5 is

demonstrated in two and three-dimensions, and the conditioning of the interpolation is

shown to be improved by h-adaptivity of the grid.

In the next section, the FTLE algorithm from [75] is presented in three dimensions,

followed by a discussion of the parallel implementation and the exponential filter. Next,

the algorithm is thoroughly assessed with three test cases to demonstrate the method

on curved geometries in two and three-dimensions. The first is the two-dimensional

separated flow over a NACA 65-(1)412 airfoil at low Reynolds number. The second is the

canonical three-dimensional ABC flow, followed by the three dimensional flow over the

NACA 65-(1)412 airfoil. In the final section, we discuss conclusions and future research.

6.2 Forward-Time FTLE with Spectral Methods

To determine the forward FTLE field, the subdomain mesh for the DG-FTLE

algorithm is the same as the element mesh used for the DG-based fluid solver. However,

the fluid solver element data structures are decoupled from the DG-FTLE subdomain

data structures, as two differences exist. First, the FTLE field requires finer resolution

than the fluid solver, hence different polynomial orders are used between the two grids.

Second, the DG-FTLE grid uses Lobatto quadrature nodes. Particles initialized at the

Lobatto node locations are duplicated at the boundaries between adjacent subdomains.

These duplicate particles are removed so that fewer particles are integrated.

Metric terms for the DG-FTLE subdomains are determined from the transfinite

mapping (3.2). The edges, Γi, and faces, Σi, are defined by Chebyshev-Lobatto nodes in

one-dimension and two-dimensions respectively, to be consistent with the subdomain
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Figure 6.1: The edges, Γi, and faces, Σi uniquely define a transfinite map for a
subdomain and are constructed from the Chebyshev-Lobatto nodes with the same order

as the subdomain discretization.

discretization (Fig. 6.1). In Lagrange form, the faces and edges are

Σ(ξ,η) =
N

∑
i=0

N

∑
j=0

xi, j`i(ξ)` j(η), (6.1)

and

Γ(ξ) =
N

∑
i=0

N

∑
j=0

xi`i(ξ), (6.2)

respectively. Subdomain faces that lie on curved boundaries are constructed by fitting the

face nodes, xi, j, to the boundary, so that the face forms a high-order approximation to the

boundary.

Fluid particles are initialized at the Chebyshev-Lobatto quadrature nodes in each

subdomain and are integrated in time over the interval T . A detailed description of the

fluid particle integration algorithm is given in [75] and [104]. The locations of the fluid

particles in each subdomain that are traced over the time interval, T , are denoted by Φi jk.

The values Φi jk are the nodes of the high-order polynomial approximation of the flow
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map given by

ΦN(ξ,η,ζ, t) =
N

∑
i=0

N

∑
j=0

N

∑
k=0

Φi, j,k(t)`i(ξ)` j(η)`k(ζ). (6.3)

The deformation gradient tensor is determined from ΦN using the DG operators

(3.12) and (3.13). From the deformation gradient tensor, the FTLE is determined with

(2.31).

Multiple Flow Maps from a Single Particle Trace

We summarize the algorithm for computing the FTLE field at multiple initial

times from a single particle trace in three dimensions. Additional details are given for

the construction of deformed subdomains from flow maps in three dimensions. For a

complete description of the algorithm in two dimensions, we refer to [75].

We denote the flow map approximation from time t0 to t1 = t0 +T1 by

φ(x0, t0;T1)≈ΦN . (6.4)

Furthermore, we denote another flow map approximation from t1 to t2 = t1 +T2 by

φ(x1, t1;T2)≈ΨN . (6.5)

T2 can be positive for a forward-time flow map or negative for a backward-time flow

map.

We apply DG differential operators to the flow map, ΨN , by composing an or-

thogonal basis on ΦN . Thus, we determine the FTLE field over the interval T2 without the

need to re-initialize fluid tracers at time t1 and eliminate redundant particle integrations.

The faces of the new subdomains based on ΦN are constructed from the locations
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of the particles initialized at the subdomain faces of the original grid. Since the fluid

particles are initialized on the Lobatto nodes, The faces of the new subdomains are

ensured to be conforming. With the new faces, the transfinite mapping for the new

subdomains is constructed, which in turn is used to compute the metric terms.

The particle locations, Ψlmn, integrated from the initial grid at t0, in general are

not associated with quadrature nodes on the deformed subdomain given by ΦN . We must

determine the quadrature node locations, Ψ′i jk, by interpolation.

The orthogonal basis on ΦN is established by, first, projecting the fluid particle

locations given by the nodes, Φlmn onto the reference element using the inverse of the

transfinite map given by (3.2). Since (3.2) does not have an explicit inverse, we find the

mapped locations with a Newton method. We denote the reference element coordinates

projected from ΦN with (α,β,γ), to distinguish from the reference element coordinates

associated with the original grid, (ξ,η,ζ).

With the locations, (αlmn,βlmn,γlmn), we build an interpolation operator that

interpolates the known values, Ψlmn, to the unknown values Ψ′i jk,

Ψ
′
i jk =

N

∑
l=0

N

∑
m=0

N

∑
n=0

Ψlmn`l(α
′
i jk)`m(β

′
i jk)`n(γ

′
i jk). (6.6)

Note that the coordinates (α′i jk,β
′
i jk,γ

′
i jk) coincide with the quadrature nodes in the

reference element. Hence, (6.6) is equivalent to

Ψ̄
′
p = I−1

pq Ψ̄q, (6.7)

where

Ipq = `i(αlmn)` j(βlmn)`k(γlmn), (6.8)

and p = i(N +1)2 + j(N +1)+ k and q = l(N +1)2 +m(N +1)+n.
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The operator I−1
pq is a linear operator that can operate on any Ψlmn, regardless of

the time interval, T2.

Interpolation Conditioning

As reported in [75], spectral convergence is achieved for interpolated FTLE fields

in elements with low levels of deformation. For elements with high levels of deformation,

errors in the FTLE field grow for two reasons.

First, as the time interval increases, the interpolation operator I becomes increas-

ingly ill-conditioned as the node locations in the reference element move away from the

Chebyshev nodes. From polynomial approximation theory, the Lebesgue constant, given

by

ΛN = max
N

∑
i=0
|`i(x)|, (6.9)

is known to grow exponentially with increasing polynomial order for uniformly dis-

tributed nodes [106]. This growth rate can be faster than exponential for irregular

distributions. Hence, the error induced by the poor conditioning of the interpolation

operator I can be larger for elements with large N, as compared with elements with

smaller N.

Second, the Newton-Raphson method with which the particles are projected

to the reference element is not robust for high-order polynomials. As the order of a

polynomial increases, the size of the domain of convergence for each root decreases [109].

Thus, the method grows more sensitive to the initial guess with increasing polynomial

order. Determining a suitable initial condition for the Newton-Raphson method in large

elements with high polynomial orders is made difficult by the highly non-linear motion

of the fluid particles.

Numerical experiments in previous work [75] have shown that h-refinement of the

grid on which the FTLE is computed can reduce the condition number of the interpolation
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operator to acceptable levels. The algorithm can be further improved by implementing

root finding methods that are less sensitive to the initial conditions as compared with

the Newton-Raphson method [110]. Alternatively, the particles may be reinitialized

periodically at the Lobatto nodes to minimize the growth of error and the sequence of

integrations can be recomposed using interpolation [84]

Parallel Implementation

Integration of the DG-FTLE algorithm with a three-dimensional DG-based fluid

solver requires the DG-FTLE algorithm to be parallelized. Several components of

the algorithm require special treatment to be implemented in parallel, including the

storage of subdomain metric terms and node data, fluid particle data storage, particle

integration, and FTLE determination. To handle the transfer of data between partitions

on a multiprocessor platform, the Message Passing Interface (MPI) library is used.

Each DG-FTLE subdomain corresponds to a DG element in the fluid solver.

Hence, the partitioning of the DG-FTLE mesh is the same as that for the fluid solver so

that the metric terms and node data for each subdomain are assigned to the same partition

as the corresponding fluid solver element.

As particles are integrated through the domain, some particles may pass from

a subdomain located on one partition to a subdomain located on another partition. To

determine if a particle should be passed to another processor, each subdomain adjacent to

the previous subdomain is searched by mapping the particle location to the corresponding

reference element. If the particle is found within a new subdomain that is on another

partition, the particle information is passed to that partition. For straight-sided subdo-

mains, only the corner locations are needed to map to the reference element. Therefore,

the corner coordinates for subdomains in adjacent partitions that share a face with the

previous partition are stored on the previous partition. For curved subdomains, the face
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data also must be stored.

Computation of the FTLE field requires constructing a flow map from the par-

ticle’s current location and differentiating the flow map with respect to the particle’s

initial location. However, since the DG-FTLE metric terms and derivative matrices may

be stored on a different processor than the particle is currently located, to compute the

FTLE, the particle current location is sent back to the initial partition.

Exponential Filter

The steep gradients in the flow map may lead to unphysical oscillations in the

flow map approximation. These oscillations can be reduced with the application of a

low-pass exponential filter. Following Vandeven [111] the exponential filter function,

σ(k/N), is C∞[−1,1] and satisfies

σ(0) = 1, σ(±1) = 0,

σ
( j)(0) = 0, σ

( j)(±1) = 0, j ≤ γ,

(6.10)

where γ is the filter order and σ( j) is the j-th derivative of σ. The filter function is given

by

σ(k/N) = exp(−α(k/N)γ), 0≤ |k| ≤ N, (6.11)

with α =− lnε, ε equal to the machine zero, and γ > 1 is the filter order.

As discussed by Don [112], the filter is applied to the modal expansion of the

function of interest, fN(x)

fN(x) =
N

∑
k=0

akTk(x), (6.12)

where ak are the Chebyshev coefficients and Tk(x) are the Chebyshev polynomials. The
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filtered function, f̃N(x) is then

f̃N(x) =
N

∑
k=0

σ(k/N)akTk(x). (6.13)

In practice, the filtering operation can be performed as a matrix-vector multiplication,

where a filtering matrix, S, is constructed by inserting the definition of ak into (6.13) and

rearranging the sum so that we have

f̃N(xi) =
N

∑
j=0

Si j f j. (6.14)

In matrix-vector notation, we have

f̃N = SfN . (6.15)

The filter provides a flexible method for reducing the magnitude of high wave

number modes occuring near regions with steep gradients without affecting the spectral

accuracy of the lower wave number modes. The modes affected by the filter are deter-

mined by the strength of the filter, which is easily modified by the parameter γ. Lower

values of γ result in stronger filters. The filter function using various values for γ is

depicted in Figure 6.2. In this work, the filter is applied directly to the flow map.

6.3 Two and Three-Dimensional Lagrangian Visualiza-

tions With DG-FTLE

The DG-FTLE algorithm is thoroughly assessed on three test cases. The first is

the two-dimensional viscous flow over a NACA 65-(1)412 airfoil. Second, a sensitivity

study of the exponential filter with respect to h and p resolution is performed with a
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Figure 6.2: Filter function, σ at various filter orders.

steady, three-dimensional ABC flow. Lastly, the DG-FTLE algorithm is applied to the

three-dimensional flow over a NACA 65-(1)412 airfoil.

6.3.1 Lagrangian Coherent Structures Analysis of a Two-Dimensional

Airfoil Flow

To test the algorithm on a complex, curved geometry in two-dimensions, we

compute the FTLE field of the wake flow of a NACA 65-(1)412 airfoil at a Reynolds

number of Re = 20,000 based on the free-stream velocity and the airfoil chord length.

The Karman vortex street in the wake of the airfoil is visualized with the FTLE field.

The exponential filter is shown to smooth the flow map and remove Gibbs oscillations

in the FTLE field when computed over long time intervals. Multiple FTLE fields, both

backward and forward in time, are computed with a single particle trace.

Direct Numerical Simulation of a NACA 65-(1)412 Airfoil

The compressible two-dimensional Navier-Stokes equations are solved with a

Mach number of M = 0.3, so that the fluid is nearly incompressible. A schematic of
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Figure 6.3: Boundary conditions and geometry of the two-dimensional DNS of the
flow over an airfoil at Re = 20,000.

initial conditions and boundary conditions is depicted in Figure 6.3. The solid boundary

of the airfoil is approximated with high-order curved boundary-fitted elements so that the

boundary approximation is consistent in order with the fluid solution. The simulation

was run until quasi-steady state was reached. Additional details for the flow solution can

be found in [88].

The flow over the suction surface of the airfoil separates near x/c = 0.5 and the

wake consists of an asymmetric Karman vortex street. Vortices shed from the pressure

surface of the airfoil are stronger than vortices shed from the suction surface, as shown

in Figure 6.4 by the lower density in the pressure-side vortex cores as compared to the

suction-side vortices.

Wake Analysis With DG-FTLE

Vortex structures are identified by comparing the z-vorticity with the FTLE field.

Strong vorticity regions enclosed by curved FTLE ridges delineate a vortex. Such

structures are highlighted in Figure 6.5. We note the greater detail in the FTLE in the

vortices that are shed from the pressure surface, as compared with the suction surface
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Figure 6.4: Two-dimensional DNS of the flow over an airfoil at Re = 20,000.; contours
of density.

Figure 6.5: Attracting (blue) and repelling (red) LCS overlayed on vorticity.
Pressure-side vortices are highlighted with solid boxes while suction-side vortices are

highlighted with dashed-boxes.

vortices. As vortex strength increases, the fluid rotation rate in the vortex core increases.

The faster rotation rate will induce more tangling of the stable and unstable manifolds

(LCS) in a strong vortex for a given time interval as compared with a weak vortex. In

terms of Eulerian quantities, higher rotation rates in vortex cores are associated with

higher vorticity magnitude as compared with lower rotation rates. Thus, within vortex

cores, more detail in the FTLE field should correspond with larger vorticity magnitudes,

which is consistent with Figure 6.5.

As the flow develops in time, ridges in the forward-time FTLE field partition

the flow field into regions where fluid is entrained in the wake vortices (Fig. 6.6). The

suction-side vortices draw in fluid from above the shear layer, whereas the pressure-side

vortices draw in fluid from the near the lower surface of the airfoil. This is consistent
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with the results given by Cardwell and Mohseni [71] and Lipinski et al. [72], who show

that for two-dimensional airfoil flows with laminar separation bubbles, the fluid in the

upper surface vortices is entrained from above the separated shear layer.

Ridges in the backward-time FTLE identify the locations in the fluid with the

strongest stretching. Hence, backward-time FTLE ridges provide few details on the

entrainment of fluid in vortex structures (Figure 6.6). Note the characteristic spiral

structure in the core of the pressure-side vortex cores, which is difficult to distinguish in

the suction-side vortex cores for the time interval used. As the time interval is increased,

more details in the FTLE field emerge, due to the increased stretching and folding of the

flow map. This suggests that the amount of detail given by the FTLE field for a particular

flow feature is connected to the characteristic time scale of that feature.

Effect of Exponential Filter

Steep gradients form in the flow map in regions with locally strong fluid strain

and deformation, such as in vortices and shear layers. Gradients in the flow map grow

as the time interval, T , over which the flow map is computed increases. In regions

of particularly strong fluid deformation, the flow map becomes nearly discontinuous,

as depicted in Figure 6.8. The steep flow map gradients induce Gibbs oscillations in

the FTLE field, particularly in elements with near discontinuities. To remove these

oscillations, an exponential filter is applied to the flow map with an exponential factor

γ = 4. The filter reduces steep gradients and discontinuities, as depicted in Figure 6.9,

while preserving the features away from the discontinuities. Hence, the filtered FTLE

field preserves all of the fine scale structures present in the unfiltered FTLE field, while

the Gibbs oscillations are removed.
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Figure 6.6: Development of the forward-FTLE field over time. The highlighted regions
delineate fluid that is eventually entrained in the vortex cores. The dashed lines

represent suction-side vortices and the solid lines represent pressure-side vortices.
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Figure 6.7: Development of the backward-FTLE field over time. The highlighted
regions are the same as those in Figure 6.6.
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Figure 6.8: Location of the line from which data is extracted (a). As the time interval T
is increased, gradients in the flow map increase, leading to near discontinuities (b).

(a) (b)

Figure 6.9: The exponential filter is applied to the flow map, where it smooths steep
gradients (a). Steep gradients lead to Gibbs oscillations in the unfiltered FTLE (b)-top.

Application of an exponential filter with γ = 4 removes the unphysical oscillations
(b)-bottom.
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(a)

(b)

Figure 6.10: Backward-time FTLE field computed from the forward-time flow map at
T = 0.04 (a), and the backward-time FTLE field determined with direct integration (b).

Multiple Flow Maps with a Single Particle Trace

The backward FTLE is computed using two different methods. In the first, the

backward-time flow map is constructed from the forward-time flow map by interpolating

the fluid tracers onto an orthogonal basis constructed at time T = 0.04. The FTLE field

is then computed on this basis (Fig. 6.10a). The second approach is to integrate the fluid

particles backward in time from an regular grid and compute the FTLE field in the same

manner as for the forward-time FTLE field (Fig. 6.10b). The polynomial order is taken

to be N = 24 for both cases.

The strong vortex shedding from the trailing edge deforms the subdomains

initialized in the vortex to the extent that the projection of particle locations to the

reference element does not converge, thus those elements are colored completely red in

Figure 6.10a. The non-optimal conditioning in subdomains with moderate deformation
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concentrates numerical errors near the edges of the subdomains [106]. This effect is seen

as non-physical ridges in the FTLE field near the subdomain boundaries.

The conditioning in the interpolation operator is improved by reducing the poly-

nomial order and h-refining the mesh. The mesh is h-refined and the polynomial order

is decreased so that the same number of degrees of freedom are used in the unrefined

and the refined mesh. The lower polynomial order reduces the Lebesgue constant for

the interpolation operator, thus reducing the conditioning. Furthermore, by reducing the

polynomial order, the domains of convergence for the Newton solver used to project the

particle locations to the master element are increased, thus making the Newton solver

more robust.

We refine the mesh by two levels, so that there are 16 refined elements per single

coarse element. Thus, the polynomial order of each element is reduced by a factor of

four to N = 6. The refined mesh is compared to the original mesh in Figure 6.11b and

6.11a, respectively. The refined mesh produces a smooth FTLE field that compares well

with the direct method (Fig. 6.11d). A small number of highly deformed subdomains

initialized in the core of the trailing edge vortex lead to localized large errors in the FTLE

field. However, the local nature of these errors suggests that further refinement of those

particular subdomains will minimize the interpolation conditioning.

We compute three FTLE fields, with t0 = 0, 0.02 and 0.04, and a time interval

of T = 0.25 (Fig. 6.12), on the refined mesh. A shorter time interval than T = 0.37, as

is used in the preceding sections, is chosen so that errors due to the conditioning are

prevalent, as compared with Gibbs oscillations. The subdomains with significant errors

due to poor conditioning are restricted to those that were initialized in the trailing edge

vortex, which is consistent with the backward FTLE results (Fig. 6.11d).
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(a) (b)

(c) (d)

Figure 6.11: Original coarse mesh (a), and the refined mesh constructed by splitting
each element twice (b). Backward-time FTLE field computed from the forward-time
flow map at T = 0.04 with the coarse mesh (c), and the backward-time FTLE field

determined with the refined mesh (d).

6.3.2 Three-Dimensional ABC Flow

To demonstrate the determination of the FTLE field in three-dimensions using

DG differential operators, we apply our algorithm to the steady three-dimensional ABC

flow. The fluid tracers are integrated using the exact velocity given in (6.16), with no

velocity interpolation, such that the determination of the flow with DG operators can be

assessed separately from the other components of the algorithm.

A sensitivity study of the exponential filter with respect to h and p-refinement and

filter strength is performed on the ABC flow. The ABC flow is defined by an analytical

velocity field and provides a suitable case for studying the effect of the filter applied to

the flow map, since the only components of the DG-FTLE algorithm used are the filter

and the DG differential operators. In this way, the effects of the filter are isolated.

The performance of the filter is evaluated on several grid configurations. Two

meshes were used: one with a single element and another with 10×10×10 elements.

The effect of the filter is compared for large elements with high polynomial order on

the single element mesh and small elements with lower polynomial orders on the multi-
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(a)

(b)

(c)

Figure 6.12: Forward-time flow maps for T = 0.25 starting at t0 = 0 (a), t0 = 0.02 (b),
and t0 = 0.04 (c). Each frame is computed from the same particle trace that was

initialized at t0 = 0.
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element mesh. Additionally, the filter is tested with different filter strengths and with

different polynomial orders on each mesh.

The three dimensional ABC flow is given by the velocity field


u(x) = Asinz+C cosy,

v(x) = Bsinx+Acosz,

w(x) =C siny+Bcosx,

with A =
√

3, B =
√

2 and C = 1. The ABC flow is a benchmark for three-dimensional

FTLE algorithms and has been covered extensively in the literature [58, 84, 113, 114].

The flow field is spatially periodic over the interval [0,2π] in each direction and forms a

criss-crossing network of invariant KAM-type vortex tubes. The regions containing the

vortex tubes are partitioned by repelling LCS and align with strong ridges in the FTLE

field.

As the time interval increases, the flow map becomes nearly discontinuous in

places, as seen in Figure 6.13a. Application of the exponential filter with γ = 4 smooths

these near-discontinuities (Fig. 6.13b). The steep gradients in the flow map lead to severe

Gibbs-phenomena and poor quality visualization of the FTLE field as compared with the

filtered flow map (Fig. 6.14).

Different filter strengths are compared to assess the effect of the filter on the

flow map and the FTLE field. Using the single element mesh, the polynomial order is

taken to be N = 240, and the filter is applied using γ = 4, 8, and 16. The FTLE field for

each of these is compared to the unfiltered FTLE field (Fig. 6.14). As the filter strength

is increased, the Gibbs oscillations are removed, beginning with the oscillations in the

smooth regions using the weakest filter (γ = 16) and progressing to the ridges for the

strongest filter (γ = 4). Taking data from a line in the z-direction at x = y = 0.5, we
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(a) (b)

Figure 6.13: Flow map Φx, of the steady ABC flow (a) unfiltered, and (b) filtered with
filter power γ = 4.

compare the filters directly (6.15). Although all filters resolve the large structures in the

flow map (Fig. 6.15a), the weaker filters still retain steep gradients, leading to FTLE

values which more closely match the unfiltered case (Fig. 6.15b).

As N is increased on each mesh, more details in the flow map are resolved given

the same filter power, while the quality of the FTLE field is preserved (Fig. 6.16). The

multi-element mesh leads to more resolved filtered flow maps as compared to the single-

element mesh (Fig. 6.17). As a result of the finer detail retained in the flow map for the

multi-element mesh as compared to the single element mesh, more details are resolved in

the FTLE as well (Fig. 6.17).

The general trends with the operation of the filter suggest that when the filter is

applied to very large polynomial orders, some of the fine details are lost as compared to

the results when smaller elements and smaller polynomial orders are used.

In three-dimensions, ridges in the FTLE field identify two-dimensional surfaces

embedded in the three-dimensional flow domain. However, it is often challenging to

extract these features from the FTLE field, since the ridge height may vary over the ridge

[59]. In the case of the ABC flow, a very good approximation to the location of the ridge
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(a) (b)

(c) (d)

Figure 6.14: FTLE field of the steady ABC flow using different filter powers. (1)
Unfiltered, (b) γ = 16, (c) γ = 8, and (d) γ = 4. The single element mesh is used with

N = 240.
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(a) (b)

Figure 6.15: The effect of different filter strengths on the (a) flow map and the (b)
FTLE field.

(a) (b)

Figure 6.16: Effect of the filter on different polynomial orders for the 10×10×10
mesh (a) and the single element mesh (b) with filter power γ = 4.
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(a) (b)

Figure 6.17: Effect of the filter on the flow map for the 10×10×10 mesh (a) and the
single element mesh (b) with filter power γ = 4.

(a) (b)

Figure 6.18: FTLE field of the steady ABC flow for the 10×10×10 mesh (a) and the
single element mesh (b) with different polynomial orders.
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Figure 6.19: Iso-surfaces of the FTLE field for the steady ABC flow.

can be obtained with iso-contours of the FTLE field, due to the relative uniformity of the

ridge heights (Fig. 6.19).

6.3.3 Three-Dimensional Airfoil Flow

The DG-FTLE algorithm is assessed on the three-dimensional transitional flow

over a NACA 65-(1)412 airfoil. Three-dimensional streamwise and spanwise vortices in

the wake are identified. Multiple FTLE fields, both backward and forward in time, are

computed with a single particle trace.

Three-Dimensional DNS of a NACA 65-(1)412 Airfoil

Transitional bluff body flows are characterized by a breakdown of the two-

dimensional spanwise vortex structures into a three-dimensional network of spanwise

and streamwise vortices. This class of flows has been studied extensively in the literature

[115, 116, 117, 118, 119]. The development of the streamwise vortices is a result of

instabilities in the spanwise vortex cores and the braid region connecting the spanwise

vortices, termed elliptic (or mode A) and hyperbolic (or mode B) instabilities, respectively.
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Both instability mechanisms lead to streamwise vortex structures aligned along the braid

region connecting the spanwise vortices, differentiated by the spanwise separation of the

secondary vortices [118].

Although vortex cores are characterized by strong vorticity, vorticity alone cannot

unambiguously identify a vortex. Several alternative Eulerian criteria have been devel-

oped to identify vortex structures. The work of Green et al. [61] and Haller [113] provide

comparisons of various Eulerian vortex identification methods with the FTLE field. Since

Eulerian criteria, such as Q, λ2, ∆, are computed from Eulerian quantities such as rate of

strain and vorticity, they are easily computed from instantaneous data sets as compared

with Lagrangian methods such as the FTLE field. However, it is shown that the Eulerian

criteria do not adequately identify vortices in rotating frames since they are not objective

[113]. Furthermore, Green et al. [61] points out that the finer resolution of the FTLE

field provides more information on vortex internal structure than Eulerian criteria, which

are restricted to the resolution of the velocity data.

Following Green et al. [61], we choose structures that can be identified a priori

to illustrate the application of the DG-FTLE algorithm on a complex flow of practical

interest. The airfoil flow is simulated at a transitional Reynolds number and the stream-

wise vortices are identified (Fig. 6.20). In this work, we compare the vorticity magnitude

to the FTLE field. Streamwise vortex cores identified by the vorticity magnitude are

correlated with LCS visualized by the FTLE field.

The three-dimensional mesh for the fluid solution is generated by extruding the

domain in the z-direction to a depth of Lz = 0.5c. The boundary conditions in the z-

direction are periodic. To reduce the computation time, the two-dimensional solution is

used as the initial condition for the three-dimensional solution. The polynomial-order is

N = 8. The Reynolds number, Mach number, Prandtl number and all other flow variables

and boundary conditions are the same for the three-dimensional case as compared with



126

Figure 6.20: Iso-contours of vorticity magnitude, colored by u-velocity of the
three-dimensional flow over an airfoil at Re = 20,000.

the two-dimensional case, with the exception of the periodic boundary conditions in the

z-direction of the three-dimensional case. Additional details of the three-dimensional

solution will be presented elsewhere.

Identification of Wake Structures With DG-FTLE

The forward-time FTLE field is determined over a time interval of T = 0.14, with

a polynomial of degree N = 36 and the flow map is filtered with γ = 4.

Vortex core regions in the wake identified with vorticity magnitude coincide with

vortex structures identified by ridges in the FTLE field (Fig. 6.21). The FTLE field shows

a greater level of detail than does the vorticity, highlighting the internal structure of the

streamwise vortices and the complex fluid folding induced by the interaction between the

streamwise vortices and the spanwise vortices.

Slices of the FTLE field showing the wake structures in profile (Fig. 6.22), and

at several x-locations in the wake (Fig. 6.23) illustrate the fine detail in the complex

vortex wake structures. Evidence of the counter-rotating configuration of the streamwise

vortices can be seen in Figure 6.23f.
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(a) (b)

Figure 6.21: Isocontours of vorticity magnitude (a) and FTLE (b).

(a) (b)

Figure 6.22: Slice of the magnitude of vorticity (a) and the FTLE field at the same
location (b). The FTLE field is computed over a time interval of T = 0.14, with a

polynomial order of N = 36 and a filter with γ = 4. Vortex structures are highlighted.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.23: Vorticity magnitude at x = 0.98 (a), 1.03 (c), 1.18 (e), 1.33 (g), and FTLE
field at the same intervals (b), (d), (f), (h). The gray regions at the bottom of (a) and (b)

denote the surface of the airfoil. Vortex structures are highlighted.
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(a) (b)

Figure 6.24: Slice of the backward-time FTLE interpolated from the forward-time flow
map (a) and the backward-time FTLE field computed with the direct method (b).

Multiple FTLE Fields From a Single Particle Integration

Computation of the backward-time FTLE field from the forward-time flow map is

made difficult by the large subdomain sizes relative to the characteristic lengths of the flow

structures within each subdomain. The small scale structures resolved by the FTLE field

require high polynomial orders to adequately capture them. However, the conditioning

of the interpolation operator rapidly deteriorates as the polynomial order is increased.

Furthermore, the high deformation in the subdomains lead to poor initial estimates for the

Newton solver to project the flow map locations to the reference element. Therefore, the

FTLE determined in such a way performs poorly as compared with computing the FTLE

field directly by integrating the fluid tracers backward in time (Fig. 6.24). The FTLE

fields in Figure 6.24 are computed over the time interval T = 0.02 with a polynomial of

degree N = 24. The exponential filter is not applied in either case.

By refining the mesh, we improve the interpolation in three-dimensions, just as

was done in two dimensions. The three-dimensional FTLE field is computed on a mesh

that has four times the resolution as compared with the original mesh. The polynomial

order is also decreased by a factor of four to N = 6, such that the same number of degrees

of freedom are used and to minimize ΛN . In Figure 6.25, it is seen that the FTLE field

quality is greatly improved.
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(a) (b)

Figure 6.25: Slice of the backward-time FTLE interpolated from the forward-time flow
map (a) and the backward-time FTLE field computed with the direct method (b) for the

refined mesh.

As with the two-dimensional airfoil case, the algorithm is used to compute FTLE

fields at multiple initial times from a particle integration initialized at a single time. The

FTLE fields are computed over a time interval of 0.02 for initial times t0 = 0, 0.01,

and 0.02. As seen in Figure 6.26, the results are consistent with what was seen in the

two-dimensional case.

6.4 Summary of Results

Extension of the DG-FTLE algorithm developed in [75] to three dimensions and

its implementation on complex geometries with curved boundaries is presented.

Passive fluid tracers are initialized on DG nodal mesh points within each sub-

domain so that a high-order approximation of the flow map is constructed from the

tracer final locations. By computing the Cauchy-Green strain tensor with DG differential

operators, the FTLE field is high-order accurate.

Steep gradients that form in the flow map over long time integrations are smoothed

with an exponential filter. Parallel implementation of the particle tracing algorithm and

FTLE determination is presented.

The algorithm is thoroughly assessed on three benchmarks: the two-dimensional
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(a)

(b)

(c)

Figure 6.26: Forward-time flow maps for T = 0.02 starting at t0 = 0 (a), t0 = 0.01 (b),
and t0 = 0.02 (c). Each of these were computed from the same particle trace that was

initialized at t0 = 0.
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viscous flow over an airfoil at Re = 20,000, a steady three-dimensional ABC flow, and

the three-dimensional transitional flow over an airfoil.

Computation of the two-dimensional FTLE field on a mesh with curved bound-

aries is demonstrated on the two-dimensional airfoil flow. The FTLE field is determined

at multiple initial times, both backward and forward in time. The FTLE field is used to

identify vortex structures in the wake.

Implementation of the exponential filter and computation of FTLE fields with DG

operators is illustrated with the steady ABC flow for several h and p resolutions. Smaller

elements with lower polynomial orders are shown to produce more accurate results than

very large elements with higher polynomial orders, given the same number of degrees of

freedom.

Extension of the algorithm in three dimensions is tested on the three-dimensional

airfoil flow. Streamwise and spanwise vortex structures are shown in greater detail with

the FTLE field than with vorticity.

Application of an exponential filter to the flow map is shown to remove Gibbs

oscillations in the FTLE field when computed over long time intervals. Poor conditioning

in the interpolation on deformed grids has a negative impact on the quality of FTLE

fields constructed from these deformed subdomains, both backward and forward in time.

Interpolation conditioning and FTLE quality are shown to significantly improve with

h-refinement of the FTLE grid.

Future efforts will focus on developing an adaptive mesh algorithm for improving

the conditioning of I and extending the time interval over which the algorithm can be

applied, as well as improvements in efficiency. Additionally, we aim to examine the

application of this algorithm to the work of Farazmand and Haller [69].

Chapter 6, in part, has been submitted for publication of the material as it may

appear in Computers and Fluids, 2016, Nelson, Daniel; Jacobs, Gustaaf, ”High-Order
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Visualization of Three-Dimensional Lagrangian Coherent Structures with DG-FTLE”.

The dissertation author was the primary investigator and author of this paper.



Chapter 7

Conclusions

High-order accurate numerical tools based on DG spectral element methods are

developed for the Lagrangian analysis of separated, turbulent flows over complex geome-

tries. The compressible Navier-Stokes equations are solved in two and three dimensions

with a DG spectral element method which is coupled with a high-order accurate algorithm

for identifying and analyzing LCS in the flow. The numerical framework is intended to

be applied to the development on AFC strategies for flow separation over airfoils and

vanes.

7.1 Discontinuous-Galerkin Methods on Complex Geome-

tries

The unsteady, separated flow over a NACA 65-(1)412 airfoil is simulated with a

high-order DG spectral element method. The solution is computed at a Reynolds number

of 20,000 based on the free stream velocity and airfoil chord length, and a Mach number

of 0.3. A procedure for fitting high-order DG elements with curved-edges to boundaries

defined by splines is presented. The polynomial order of the boundary approximation is

134
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matched to the order of the fluid solver by fitting a polynomial to the Chebyshev-Lobatto

quadrature nodes of each element edge along the boundary.

Solutions using meshes with curved boundary elements are compared with so-

lutions which use straight-sided boundary element meshes. Curved-sided meshes pro-

duce regular, Karman vortex street wakes with a single, peak shedding frequency. The

piecewise-linear boundary approximation of the straight-sided meshes introduce artificial

surface roughness that leads to the simulation of incorrect physics. The surface variations

induce spurious time dependent modes in the wake that lead to large-scale instabilities

in the vortex shedding behavior. When compared with the curved-sided solutions, the

straight-sided mesh solutions under-predict the aerodynamic performance of the airfoil.

The error in the DG boundary approximation as compared to the exact spline

boundary definition is analyzed. It is shown that spectral accuracy in the boundary

approximation is not achieved for non-analytic boundary definitions. Regions with

high curvature produce large errors in the boundary approximation and lead to poor

convergence of the solution. Regions with low curvature lead to much better convergence

of the solution.

7.2 Lagrangian Coherent Structures

A method for identifying LCS using FTLE fields is developed that is consistent

with high-order DG methods in both accuracy and implementation. The method is

designed to be efficient and integrated directly into DG fluid solvers so that FTLE

fields are determined simultaneously with the fluid solution. Passive fluid particles

are initialized at the quadrature nodes in the DG elements so that the flow map is

approximated with a spectral polynomial interpolant. The flow map gradient is computed

using DG differential operators.
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In two dimensions, the algorithm is tested on three benchmarks: an analytical

spatially periodic gyre flow, a vortex advected by a uniform inviscid flow, and the viscous

flow around a square cylinder. In these cases, the algorithm is shown to have spectral

convergence. In three-dimensions, the flow is tested for an ABC flow.

As the time interval over which the FTLE field is computed increases, steep

gradients in the flow map form, inducing Gibbs oscillations in the FTLE. An exponential

filter is applied to the flow map to remove these oscillations.

An algorithm for computing multiple flow maps from a single particle trace is

presented. New initial times are established on flow maps at later times, as opposed to

initializing a new particle trace, by projecting the particle locations in the flow maps

isoparametrically to the reference element. A new, deformed initial element is then

constructed and the nodes at the projected locations are interpolated to the quadrature

nodes. The new flow maps can be determined both backward in time and forward in time.

For highly deformed elements, the interpolation is poorly conditioned. However,

the conditioning of the interpolation operator is shown to provide quantitative information

regarding the deformation of the fluid in each element that complements the FTLE field.

The two-dimensional and three-dimensional LCS field are analyzed for the un-

steady flow over a NACA 65-(1)412 airfoil. Strongly attracting and repelling stationary

LCS are visualized near the trailing edge of the airfoil. These transport barriers are not

advected into the wake, but remained fixed near the trailing edge. In two-dimensions,

alternating vortices are shed from the upper surface at the location of the stationary LCS

and from the lower surface at the trailing edge, forming a von Karman vortex street in the

wake. In three-dimensions, the vortex street breaks down at the location of the stationary

LCS and an elliptic instability induces the formation of streamwise vortical structures

connecting the spanwise vortices that are shed from the airfoil.
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7.3 Future Work

Future work should focus on implementing adaptive mesh refinement on the

FTLE algorithm to improve efficiency and accuracy. The conditioning of the interpolation

operator on deformed subdomains can be used as criteria for mesh refinement. Efforts

should also be directed towards extending the algorithm to extract LCS according to the

recent geodesic theory. Although LCS and Lagrangian separation manifolds are widely

assumed to be equivalent, a rigorous validation of this relationship is needed so that the

methods developed in this dissertation can be applied to Lagrangian flow separation.

Numerical studies of airfoils at Re higher than 20,000 (Re = 50,000-60,000),

show that the separated shear layer on the suction surface breaks down upstream of the

trailing edge to a KH-type instability. This implies that at some Re > 20,000, there

exists a critical point in which a bifurcation occurs, thus allowing the growth of the

KH instability in the shear layer and dramatically altering the overall characteristics of

the flow. A study to determine the nature and transition point of this bifurcation would

enhance the understanding of very low Re airfoils flows.



Appendix A

FTLE Field for an Analytical Inviscid

Vortex

The flow map for the uniformly advected vortex case with velocity field given by

(5.32) can be computed if we assume a change of coordinates such that

x′ = x−Xc−U∞(t− t0),

y′ = y−Yc, (A.1)

u′ = u−U∞.

v′ = v. (A.2)

Then, the velocity field simplifies to

u′(x′,y′) =−A
R

y′ exp
(
−r2

2R2

)
,

v′(x′,y′) =
A
R

x′ exp
(
−r2

2R2

)
, (A.3)
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where r =
√

(x′)2 +(y′)2. By transforming to plane polar coordinates, the velocity can

be integrated. The velocity becomes

ur = 0,

uθ =
A
R

exp
(
−r2

2R2

)
r. (A.4)

After integrating with respect to t− t0, and transforming back to Cartesian coordinates,

we have the trajectory equations,

x(t; t0,x0) =U∞(t− t0)+Xc (A.5)

+ r cos
[

arctan
(

y0−Yc

x0−Xc

)
+

A
R

exp
(
− r2

2R2

)
(t− t0)

]
,

y(t; t0,x0) = Yc + r sin
[

arctan
(

y0−Yc

x0−Xc

)
+

A
R

exp
(
− r2

2R2

)
(t− t0)

]
. (A.6)

where, in this case, we note that r is constant for each fluid particle according to Eqn.

(A.4). The components to the deformation gradient, ∇φ, are,

∂φx

∂x0
=cos

[
arctan

(
y0−Yc

x0−Xc

)
+

A
R

exp
(
− r2

2R2

)
t
]

x0−Xc

r

− r sin
[

arctan
(

y0−Yc

x0−Xc

)
+

A
R

exp
(
− r2

2R2

)
t
]

×
[
−y0−Yc

r2 − A(x0−Xc)

R3 exp
(
− r2

2R2

)
t
]
, (A.7)

∂φx

∂y0
=cos

[
arctan

(
y0−Yc

x0−Xc

)
+

A
R

exp
(
− r2

2R2

)
t
]

y0−Yc

r

− r sin
[

arctan
(

y0−Yc

x0−Xc

)
+

A
R

exp
(
− r2

2R2

)
t
]

×
[

x0−Xc

r2 − A(y0−Yc)

R3 exp
(
− r2

2R2

)
t
]
, (A.8)
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∂φy

∂x0
=sin

[
arctan

(
y0−Yc

x0−Xc

)
+

A
R

exp
(
− r2

2R2

)
t
]

x0−Xc

r

+ r cos
[

arctan
(

y0−Yc

x0−Xc

)
+

A
R

exp
(
− r2

2R2

)
t
]

×
[
−y0−Yc

r2 − A(x0−Xc)

R3 exp
(
− r2

2R2

)
t
]
, (A.9)

∂φy

∂y0
=sin

[
arctan

(
y0−Yc

x0−Xc

)
+

A
R

exp
(
− r2

2R2

)
t
]

y0−Yc

r

+ r cos
[

arctan
(

y0−Yc

x0−Xc

)
+

A
R

exp
(
− r2

2R2

)
t
]

×
[

x0−Xc

r2 − A(y0−Yc)

R3 exp
(
− r2

2R2

)
t
]
. (A.10)

Since ∇φ is a 2×2 tensor, the maximal eigenvalue is given explicitly by

λmax(C) =
1
2

[(
∂φx

∂x0

2

+
∂φy

∂y0

2
)

+

√√√√4
(

∂φy

∂x0

∂φx

∂y0

)(
∂φy

∂x0

∂φx

∂y0

)
+

(
∂φx

∂x0

2

− ∂φy

∂y0

2
)2
 , (A.11)

substituting (A.7) – (A.10). The FTLE is then computed using (2.30).
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[11] Hans Wengle, André Huppertz, Günter Bärwolff, and Gerd Janke. The manipulated
transitional backward-facing step flow: an experimental and direct numerical
simulation investigation. European Journal of Mechanics-B/Fluids, 20(1):25–46,
2001.

[12] Anthony T Patera. A spectral element method for fluid dynamics: laminar flow in
a channel expansion. Journal of computational Physics, 54(3):468–488, 1984.

[13] Lambros Kaiktsis, George Em Karniadakis, and Steven A Orszag. Onset of three-
dimensionality, equilibria, and early transition in flow over a backward-facing step.
Journal of Fluid Mechanics, 231:501–528, 1991.

[14] Philip M Gresho, David K Gartling, JR Torczynski, KA Cliffe, KH Winters,
TJ Garratt, A Spence, and John W Goodrich. Is the steady viscous incompressible
two-dimensional flow over a backward-facing step at re= 800 stable? International
Journal for Numerical Methods in Fluids, 17(6):501–541, 1993.

[15] F. Bassi and S. Rebay. High-order accuracte discontinuous finite element solutions
of the 2D Euler equations. J. Comp. Phys., 138:251–285, 1997.

[16] F. Bassi and S. Rebay. High-order accuracte discontinuous finite element method
for the numerical solution of the compressible Navier-Stokes equations. J. Comp.
Phys., 131:267–279, 1997.

[17] Gustaaf B. Jacobs, Farzad Mashayek, and David A. Kopriva. A comparison of
outflow boundary conditions for the multidomain staggered-grid spectral method.
Numer. Heat Transfer, B, 44(3):225–251, 2003.

[18] Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. Isogeometric analysis:
Cad, finite elements, nurbs, exact geometry and mesh refinement. Computer
methods in applied mechanics and engineering, 194(39):4135–4195, 2005.

[19] Yuzhi Sun, Zhi Jian Wang, and Yen Liu. High-order multidomain spectral dif-
ference method for the navier-stokes equations on unstructured hexahedral grids.
Communications in Computational Physics, 2(2):310–333, 2007.

[20] Jan S. Hesthaven, Sigal Gottlieb, and David Gottlieb. Spectral Methods for
Time-Dependent Problems. Cambridge, Cambridge, UK, 2007.

[21] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous-Galerkin Methods:
Algorithms, Analysis, and Applications. Springer, New York, 2008.

[22] Moshe Dubiner. Spectral methods on triangles and other domains. Journal of
Scientific Computing, 6(4):345–390, 1991.



143

[23] SJ Sherwin and G Em Karniadakis. A triangular spectral element method; applica-
tions to the incompressible navier-stokes equations. Computer methods in applied
mechanics and engineering, 123(1):189–229, 1995.

[24] P-O Persson, J Bonet, and J Peraire. Discontinuous galerkin solution of the
navier–stokes equations on deformable domains. Computer Methods in Applied
Mechanics and Engineering, 198(17):1585–1595, 2009.

[25] David A. Kopriva. A staggered-grid multidomain spectral method for the com-
pressible Navier-Stokes equations. J. Comp. Phys., 143:125–158, 1998.

[26] David A. Kopriva, Stephen L. Woodruff, and M. Y. Hussiani. Computation of
electromagnetic scattering with a non-conforming discontinuous spectral element
method. Int. J. Numer. Meth. Engng, 53:105–122, 2002.

[27] David A Kopriva. Metric identities and the discontinuous spectral element method
on curvilinear meshes. Journal of Scientific Computing, 26(3):301–327, 2006.

[28] Hong Lou, Joseph D. Baum, and Rainald L ohner. Fast p-multigrid discontinuous
Galerkin method for compressible flows at all speeds. AIAA Journal, 46(3):635–
652, 2008.

[29] Lilia Kirvodonova and Marsha Berger. High-order accurate implementation of
solid wall boundary conditions in curved geometries. J. Comp. Phys., 211:492–512,
2006.

[30] Xiangxiong Zhang and Sirui Tan. A simple and accurate discontinuous Galerkin
scheme for modeling scalar-wave propagation in media with curved interfaces.
Geophysics, 80(2):T83–T89, 2015.

[31] Thomas Toulorge and Wim Desmet. Curved boundary tratments for the discon-
tinuous Galerkin method applied to aeroacoustic propagation. AIAA Journal,
48(2):479–489, 2010.

[32] Hayder Salman, Jan S. Hesthaven, Tim Warburton, and George Haller. Predicting
transport by Lagrangian coherent structures with a high-order method. Theor.
Comput. Fluid Dyn., 21:39–58, 2007.

[33] Gerald E Farin. A history of curves and surfaces in CAGD. In Gerald E Farin, Josef
Hoschek, and Myung-Soo Kim, editors, Handbook of computer aided geometric
design. Elsevier, 2002.

[34] A. R. Forrest. On Coons and other methods for the representation of curved
surfaces. Comput. Graph. Image Process., 1(4):341–359, 1972.



144

[35] Florian Hindenlang. Mesh Curving Techniques for High Order Parallel Simula-
tions on Unstructured Meshes. PhD thesis, University of Stuttgart, 2014.

[36] David Gottlieb and Chi-Wang Shu. On the Gibbs phenomenon IV: recovering
exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise
analytic function. Math. Comp., 64(211):1081–1095, 1995.

[37] David Gottlieb and Chi-Wang Shu. On the Gibbs phenomenon V: recovering
exponential accuracy from collocation point values of a piecewise analytic function.
Numer. Math, 71:511–526, 1995.

[38] David Gottlieb and Chi-Wang Shu. On the Gibbs phenomenon III: recovering
exponential accuracy in a subinterval from a spectral partial sum of a piecewise
analytic function. J. Numer. Anal., 33(1):280–290, 1996.

[39] David Gottlieb, Chi-Wang Shu, Alex Solomonoff, and Herve Vandeven. On the
Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial
sum of nonperiodic analytic function. J. Comp. App. Math., 43(1):81–98, 1992.

[40] Francesc Arandiga, Albert Cohen, Rosa Donat, and Nira Dyn. Interpolation and
approximations of piecewise smooth functions. J. Numer. Anal., 43(1):41–57,
2005.

[41] John P. Boyd. Trouble with Gegenbauer reconstruction for defeating Gibbs’
phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial
approximations. J. Comp. Phys., 204(1):253–264, 2005.

[42] A.V. Boiko, A.V. Dovgal, A.V. Kozlov, and V.A. Shcherbakov. Flow instability in
the laminar boundary layer separation zone created by a small roughness element.
Fluid Dyn., 25(1):12–17, 1990.

[43] Elmar Achenbach. Influence of surface roughness on the cross-flow around a
circular cylinder. J. Fluid Mech., 46:321–335, 1971.

[44] Unal M.F. and D. Rockwell. On vortex formation from a cylinder. part 1. the
initial instability. J. Fluid Mech., 190:491–512, 1988.

[45] M.E. Goldstein. Scattering of acoustic waves into Tollmien-Schlichting waves
by small streamwise variation in surface geometry. J. Fluid Mech., 154:509–529,
1985.
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