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Abstract

Purpose of review: This review addresses recent developments in studies of lipid regulation of 

calcific disease of arteries and cardiac valves, including the role of nuclear receptors. The role of 

lipid-soluble signals and their receptors is timely given the recent evidence and concerns that lipid-

lowering treatment may increase the rate of progression of coronary artery calcification, which has 

been long associated with increased cardiovascular risk. Understanding the mechanisms will be 

important for interpreting such clinical information.

Recent findings: New findings support regulation of calcific vascular and valvular disease by 

nuclear receptors, including the vitamin D receptor, glucocorticoid receptor, nutrient-sensing 

nuclear receptors (liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated 

receptors), and sex hormone (estrogen and androgen) receptors. There were two major unexpected 

findings: First, vitamin D supplementation, which was previously believed to prevent or reduce 

vascular calcification, showed no cardiovascular benefit in large randomized, controlled trials. 

Second, both epidemiological studies and coronary intravascular ultrasound studies suggest that 

treatment with HMG-CoA reductase inhibitors increases progression of coronary artery 

calcification, raising a question of whether there are mechanically stable and unstable forms of 

coronary calcification.

Summary: For clinical practice and research, these new findings offer new fundamental 

mechanisms for vascular calcification and provide new cautionary insights for therapeutic avenues.
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Introduction

This review is focused on lipids and mineralization, specifically the contributions of nuclear 

receptors to calcific vascular and valvular diseases (CVVD) as well as interactions between 

therapies for osteoporosis and cardiovascular disease. A number of recent reviews have 

considered other aspects of these disorders, including the roles of oxidized lipoproteins [1], 

lipoprotein(a) [2], and both [3]; the unique manifestations in patients with chronic kidney 

disease [4], affecting primarily the medial layer of vessels [5]; the role of matrix vesicles and 

extracellular vesicles [6, 7]; potential inhibition by vitamin K and its relationship to clinical 

warfarin therapy [8]; potential artifacts in imaging [9]; and biomechanical factors [10].

Nuclear receptors

A number of landmark studies in the 1980s provided unequivocal evidence that structurally 

related transcription factors can directly interact with endogenous signaling molecules to 

specify physiologic effects [11], launching the field of nuclear receptor biology. Today, 

much is known about the functional domains, interacting partners, and preferential DNA 

binding patterns of the 48 members of this superfamily [12]. This research has provided 

fundamental insights into contributions of gene regulatory mechanisms in health and 

disease.

In general, nuclear receptors are activated inside of cells in response to hormones or lipid 

soluble signals such estrogen, retinoic acid or vitamin D [13]. They can exist as monomers, 

homodimers or heterodimers and bind specific DNA sequences to induce or repress the 

expression of target genes upon ligand stimulation [13]. Not surprisingly, the ability of 

nuclear receptors to serve as important conduits between environmental clues and gene 

expression is absolutely critical to the maintenance of vascular homeostasis and bone 

turnover. Dysregulation in nuclear receptor pathways can lead to a number of pathologic 

states including cardiac calcification, atherogenesis, and abnormal skeletal mineralization. 

We review below the contributions of specific nuclear receptors in calcific vascular disease.

Vitamin D receptor

In recent years, vitamin D has received widespread attention due to a campaign targeting 

physicians to measure levels and treat presumed deficiency [14]. Based on observational 

studies, which had unavoidable biases, it was believed that vitamin D supplementation 

would prevent cardiovascular disease as well as numerous other diseases including cancer. 

However, recent results from the VITAL [15] and J-DAVID [16] randomized, controlled 

trials showed that vitamin D supplementation fails to reduce risk of cardiovascular or other 

diseases. Thus, the campaign led to a marked increase in the number of tests for blood levels 

and an increased rate of clinical hypervitaminosis D from excess supplementation without 

demonstrable benefit [15]. The past few years have seen a global increase in 25(OH)D levels 
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in the general population attributed to excess vitamin D supplementation [17], and this may 

increase the risk of calcific vascular and valvular disease worldwide [18].

As background, the dihydroxy- form of vitamin D [1,25(OH)2D] is the active form, which is 

a ligand for the vitamin D receptor (VDR), which regulates calcium and phosphate 

homeostasis. The level of the monohydroxy- form [25(OH)D] is an indicator of the 

adequacy of stores. Activation of 25(OH)D to the dihydroxy form occurs by the action of 1-

alpha hydroxylase, located primarily in the kidney, but also in the vasculature and in 

activated immune cells [19]. Thus, chronic kidney disease requires supplementation with the 

active form. VDR forms a permissive heterodimer with retinoid X receptor (RXR) and, upon 

stimulation of its ligand-binding domain by 1,25(OH)2D, it is capable of regulating a 

specific subset of genes that mediate calcium/phosphate transport and bone turnover, such as 

osteocalcin, osteopontin, transient receptor potential (TRPV6, which functions in renal 

calcium resorption), parathyroid hormone (PTH), and its related peptide (PTHrP), Cyp24a1 

(24-hydroxylase, which limits formation of active vitamin D) and Cyp27b1 (1alpha-

hydroxylase, which converts the monohydroxy- to the dihydrox- form) [19]. VDR also 

collaborates with other transcriptional regulators, such as RUNX2, which is considered a 

central factor in osteoblastic differentiation of vascular cells [20].

Excess vitamin D intake, leading to hypervitaminosis D, has been a known cause of vascular 

calcification for almost a century [18]. Administration of vitamin D to mice, rats, rabbits, 

and pigs is widely used as an experimental model for vascular, renal, and pulmonary 

calcification [21–24]. A recent report raises the possibility of that fibroblast growth factor 21 

may mitigate vitamin D-induced vascular calcification [25], but therapies, other than 

discontinuing unnecessary supplementation, are not established. Thus, unmonitored, 

prolonged, and empirical vitamin D supplementation carries risk of widespread calcific 

cardiovascular disease [17].

At the same time, extremely low levels of vitamin D, hypovitaminosis D, have also been 

associated, to a lesser degree, with vascular calcification. Epidemiologically, the links 

between low vitamin D levels and poor health in human observational studies are 

confounded by the fact that infirm individuals typically have limited sun exposure. That is, 

illness causing low vitamin D may account for the associations. Recent studies in mice, 

though, show that low dietary vitamin D is also associated with vascular calcification in wild 

type, LDLR null mice [26] and apolipoprotein E null mice [27]. But the degree of vascular 

calcification caused by low dietary vitamin D was much less than that caused by excess 

vitamin D. In mice deficient in VDR, aortic calcification was reported [27], but it was only 

on the valve leaflets where pigmentation may be mistakenly identified as calcification by 

von Kossa histochemical stain. Humans with loss-of-function mutations in VDR, known as 

hereditary vitamin D resistant rickets [28], are not known to have vascular calcification, 

though possibly because of the young age of subjects. Interpretation of the findings in VDR 

mutants is complex, given that there are ligand-independent effects of VDR, such as 

alopecia and gut-adipose crosstalk [29].

These results are consistent with the notion that the relationship between vitamin D and 

vascular calcification is complex, and multiple redundant regulatory circuits work 
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cooperatively to regulate its levels, including a negative feedback loop through 24-

hydroxylase. Adding another layer of complexity is that serum vitamin D level, often used 

as surrogate marker of vitamin D activity in clinical practice and investigative studies, does 

not generally reflect VDR transcriptional output and signaling [30, 31].

It is well established that inflammation augments vascular calcification. Although VDR is 

abundantly expressed in immune-cells and has potent anti-inflammatory properties [32–35], 

these effects are likely minor compared with the pro-mineralization effects of 

hypervitaminosis D. Intriguingly, statins, which possess potent anti-inflammatory properties 

and overall favorable effects on cardiovascular outcomes, have been shown to accelerate 

vascular calcification [36]. Thus, it is tempting to speculate, based on these observations, 

that sustained immune suppression or direct effects of statins on 25(OH)D levels and VDR 

activity [37, 38] may contribute to vascular mineralization. With recent guidelines placing a 

stronger emphasis on use of calcium scans in cardiovascular risk stratification [39], a better 

understanding of the connections between statins, vitamin D, and vascular calcification has 

become essential.

Glucocorticoid Receptor

One of the most widely studied nuclear receptors, the glucocorticoid receptor (GR), has an 

established role in potently inhibiting inflammation. GR is ubiquitously expressed, and 

insights into the contributions of GR to vascular mineralization stem from well-known side 

effects of glucocorticoids (GC) on bone, including increased turnover. Activation of GR is 

known to modulate osteoblast and osteoclast differentiation and function, resulting in 

reduced bone mass. It also leads to induction of receptor activator of nuclear factor-kappa b 

ligand (RANKL), which promotes osteoclast differentiation, and it also suppresses 

osteoblast-derived cytokines such as IL-11 [40]. In vascular pericytes, which may be the 

origin of at least some resident vascular pre-osteoblastic cells [41], GC treatment leads to 

enhanced osteogenic differentiation, effects that were abolished with GR antagonist 

treatment [42]. In addition, GR signaling in macrophages may contribute to vascular 

calcification. Deletion of the GR in macrophages showed no effect on atherosclerosis 

burden, but it attenuated vascular calcification and expression of osteogenic factors RANKL, 

BMP2, and Msx2 [43]. More recent evidence has linked GR activation with cancer 

metastasis, a feature that may lead to eventual arteriolar calcification [44]. In addition to 

activating GR, the effects of steroids on vascular calcification are thought to be, at least in 

part, mediated by the closely related mineralocorticoid receptor [45], whose activation leads 

to osteoblastic differentiation and mineralization of vascular smooth muscle cells [46]. The 

structurally related growth hormone-releasing hormone (GHRH) has been recently shown to 

inhibit vascular calcification through regulation of inflammation-mediated osteogenesis [47]. 

Thus, multiple lines of evidence support the notion that GR plays an important role in VC, 

but whether the observed effects are due to direct transcriptional activities of GR remains 

unclear.

Nutrient-sensing nuclear receptors (LXR, FXR, and PPARs)

Liver X receptors (LXRs) are sterol-sensing nuclear receptors with critical roles in 

regulating lipid metabolism. Like other nuclear receptors, LXRs are activated upon 
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stimulation of their ligand-binding domain. In response to accumulation of oxysterols, they 

exchange transcriptional corepressors with coactivators to potently inhibit inflammation and 

to induce the expression of genes involved in cholesterol efflux, triglyceride synthesis, lipid 

uptake, phospholipid composition, and cholesterol feedback [48]. LXR activation in vitro 
has been shown to augment vascular cell calcification induced by PKA signaling [49], while 

loss of LXR function attenuates this effect [50]. The mechanism may be related to LXR-

mediated increases in lipogenesis [50]. Similar in some respect to LXRs, farnesoid X 

receptors (FXRs) are bile-acid sensors that play important roles in cholesterol and bile acid 

regulation. Activation of FXR in calcifying vascular cells reduces triglyceride accumulation 

and inhibits mineralization [51]. In addition, activation of FXR in vivo reduces vascular 

calcification without impacting atherosclerosis development, possibly via JNK 

phosphorylation [51]. In contrast, in bone marrow stromal cells, FXR activation increases 

calcification [52], suggesting context-dependence. Finally, activation of the peroxisome 

proliferator-activated receptors (PPARs), the targets of thiazolidinedione drugs, inhibits 

vascular calcification through favorable metabolic effects that lead to upregulation of Klotho 

or modulation of WNT signaling [53–55]. In general, precise mechanisms as to how 

nutrient-sensing nuclear receptors may regulate vascular calcification remain undefined. 

Direct transcriptional control of canonical regulators of bone mineralization has not been 

shown. A common thread, however, to the activity of the above nuclear receptors is 

regulation of inflammatory activation as well as modulation of intracellular stearate and lipid 

content with downstream ossification [50]. Development of selective modulators of LXR 

and FXR has been of immense interest owing to the favorable effects of these receptors on 

atherosclerosis (LXR), cancer (LXR) and fatty liver diseases (FXR). A number of 

compounds are currently in various stages of clinical development, which should provide 

more insights into the contributions of these receptors to human vascular calcification.

Sex hormone receptors (ER and AR)

The role of estrogen in cardiovascular health and disease has been a controversial topic, both 

with respect to hormone replacement therapy in patients and with respect to effects on 

vascular calcification. Estrogen activates two subtypes of estrogen receptor (ER), ER-alpha 

and ER-beta. While some in vitro studies had shown 17beta-estradiol (E2) inhibited vascular 

cell calcification [56, 57], one showed E2 stimulated vascular cell calcification [58]. A more 

definitive study showed not only stimulation of osteogenic calcification in vascular cells by 

E2, but also in vivo stimulation of osteogenic calcification in aged (atherosclerotic) ApoE 

null mice of both sexes [59]. In a seeming paradox, they also found that direct antagonism of 

either alpha or beta subtypes of ER also promoted vascular calcification, but it was 

consistent with their finding that E2 suppressed expression of ER-beta [59], suggesting an 

inhibitory feedback mechanism, non-genomic effects of E2, or cross-talk with other co-

activators or nuclear receptors in the presence of excess E2.

One mechanism by which estrogen may influence vascular calcification is through 

upregulation of BMP-2 [60, 61]. The involvement of other sex hormones, such as the 

androgen receptor (AR), in vascular calcification remains unclear with studies showing 

opposing effects of AR activation on vascular calcification [62, 63]. With respect to human 

calcific disease, recent evidence from the large, NIH-funded Multi-ethnic Studies of 
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Atherosclerosis (MESA) indicates that baseline sex hormone levels are not associated with 

coronary calcium score, but that higher free testosterone levels associate with greater CAC 

progression at up to 10-years in post-menopausal women [64]. Overall, potential therapeutic 

directions based on associations need to take into consideration potential confounding due to 

effects of patient compliance and its correlation with health lifestyle [65].

Relations to skeletal calcification

Calcific atherosclerosis and osteoporosis often co-exist in patients [66], as do coronary 

artery disease and osteoporosis [67–70]. One possible mechanism for this reciprocal 

relationship between artery and bone mineral deposition is that proatherogenic lipid 

oxidation products, increased by high-fat diets, promote osteoblastic differentiation of 

vascular smooth muscle cells while they inhibit differentiation and mineralization in skeletal 

osteoblasts [71]. Hyperlipidemia, whether due to genetic modification or a high-fat diet, 

reduces bone mineral density in mouse models [72–75].

Effects of cardiovascular therapies on osteoporosis

The effects of lowering serum lipids on osteoporosis remain unclear. When lipid-oxidation 

products were neutralized in mice, high-fat-diet-induced bone loss was reversed [76]. 

However, effects of lipid-lowering, and statin treatment in particular, on bone have been 

controversial. Recent observational studies report improvement in bone health [77–79], 

however, randomized controlled trials, which are far more reliable, fail to confirm those 

findings, likely because patients adhering to one healthy regimen adhere to other healthy 

regimens as well [65].

Effects of osteoporosis therapies on cardiovascular disease

Two types of osteoporosis treatments, teriparatide, a bone anabolic agent, and 

bisphosphonate, an anti-resorptive agent, impact the cardiovascular system. Effects of 

teriparatide are of particular concern, because of its pro-mineralization functions. One earlier 

study showed that teriparatide actually inhibits initiation of cardiovascular calcification [80]. 

In a recent study in hyperlipidemic mice with basal cardiovascular calcification, teriparatide 

did not appear to affect the progression of aortic calcification, at least in terms of content 

[81]. However, it did appear to reduce surface area of vascular calcium deposits, based on 

histologic analysis, which could affect plaque stability [81]. For about three decades, 

bisphosphonates have been proposed as treatments for atherosclerotic calcification, given 

their similarity to the potent endogenous inhibitor, pyrophosphate. The concern has been that 

the doses required are toxic, and the clinical use of bisphosphonates is limited in duration 

due to adverse effects. However, this may be open to reconsideration based on a recent 

report of a novel bisphosphonate that shows 10-fold greater potency than etidronate, in 

inhibiting aortic calcification induced by vitamin D in rats [82].

Lastly, cardiovascular therapy may actually influence the efficacy of osteoporosis therapy, 

based on results of a small, retrospective study of 52 patients treated with teriparatide for 

severe osteoporosis. The degree of improvement in bone density depended on baseline lipid 
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profiles: bone density improved more in patients with favorable baseline lipid profiles (low 

LDL-cholesterol and high HDL-cholesterol) and less in patients with unfavorable baseline 

lipid profiles [83].

Conclusion

Growing evidence links lipids and lipid oxidation products to regulation of calcium 

mineralization, in arteries and cardiac valves as well as in skeletal bone. Nuclear receptors 

and their ligands contribute in a variety of ways. Both excess and deficiency of vitamin D 

promote vascular calcification. Activation of liver X receptor promotes vascular calcification 

whereas activation of farnesoid X receptor or PPAR inhibit it. 17beta-estradiol appears to 

promote vascular calcification. Lipid-lowering therapies for cardiovascular disease may 

affect osteoporosis, whereas bone anabolic therapies for osteoporosis may affect 

cardiovascular disease. Moreover, lipid-lowering therapy may impact efficacy of bone 

anabolic treatment. Observational studies of effects of lipid-lowering on bone are subject to 

confounding because adherence to treatments, even placebos, correlates with healthier 

outcomes. Randomized controlled trials are needed to test the potential value of lipid-

lowering for osteoporosis.
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Key points

• Nuclear receptors and their ligands have important and varying effects on 

vascular calcification.

• Vitamin D in excess promotes vascular calcification; deficiency has similar, 

though lesser, effects.

• While observational studies suggest that statins benefit bone health, the 

finding has not been detected in randomized controlled trials.

• Poor lipid profiles may reduce efficacy of bone anabolic therapy for 

osteoporosis.
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