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Genetic variants affecting hematopoiesis can influence com-
monly measured blood cell traits. To identify factors that affect
hematopoiesis, we performed association studies for blood cell
traits in the population-based Estonian Biobank using high-
coverage whole-genome sequencing (WGS) in 2,284 samples
and SNP genotyping in an additional 14,904 samples. Using up
to 7,134 samples with available phenotype data, our analyses
identified 17 associations across 14 blood cell traits. Integration
of WGS-based fine-mapping and complementary epigenomic
datasets provided evidence for causal mechanisms at several
loci, including at a previously undiscovered basophil count-
associated locus near the master hematopoietic transcription
factor CEBPA. The fine-mapped variant at this basophil count
association near CEBPA overlapped an enhancer active in com-
mon myeloid progenitors and influenced its activity. In situ
perturbation of this enhancer by CRISPR/Cas9 mutagenesis in he-
matopoietic stem and progenitor cells demonstrated that it is nec-
essary for and specifically regulates CEBPA expression during basophil
differentiation. We additionally identified basophil count-associ-
ated variation at another more pleiotropic myeloid enhancer
near GATA2, highlighting regulatory mechanisms for ordered ex-
pression of master hematopoietic regulators during lineage spec-
ification. Our study illustrates how population-based genetic
studies can provide key insights into poorly understood cell dif-
ferentiation processes of considerable physiologic relevance.

genome sequencing | GWAS | basophils | hematopoiesis | CEBPA

The human hematopoietic system is among the best understood
paradigms of cell differentiation in physiology (1). However,

despite our sophisticated understanding, many aspects of this
process remain poorly understood. In particular, although he-
matopoiesis is perturbed in a variety of human blood disorders
and shows considerable interindividual variation, the underlying
basis of the disease etiology and variation remains incompletely
understood. Genetic variation in hematopoiesis can be reflected
in commonly measured laboratory values, such as hemoglobin
levels or blood cell counts. Rare mutations disrupting genes in-
volved in hematopoiesis can result in severe abnormalities in
various blood cell counts (2). Common genetic variants affecting
hematopoiesis can also subtly influence blood cell measurements
in the general population and can alter the clinical manifesta-
tions in rare blood disorders (1, 3–5). Genetic studies offer a
unique opportunity to gain insight into the hematopoietic system
without being biased by our prior knowledge.

The Estonian Biobank is a population-based biobank that has
collected DNA samples from 51,535 individuals representing
∼5% of the Estonian population (6). This cohort is composed of
adults representative of the larger Estonian population in terms
of age, sex, and geographic distribution. The biobank has par-
ticular value because electronic medical records (EMRs) in
Estonia are centralized and all participants have consented to
allow full access to their medical records, providing an excellent
resource to investigate the underlying genetic basis for a variety
of traits and diseases. Moreover, many of the samples from the
biobank have undergone extensive genomic characterization, in-
cluding single-nucleotide polymorphism (SNP) genotyping from
14,904 nonoverlapping individuals and PCR-free, high-coverage
whole-genome sequencing (WGS) from 2,284 individuals. Here,
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to gain insight into hematopoiesis and regulatory mechanisms
underlying this process, we have taken advantage of the valuable
resource afforded by the Estonian Biobank to perform genetic
association studies of all blood cell measurements available in
this large population-based cohort.

Results
Study Overview. To perform the genetic association studies for
blood cell traits, we used the WGS of 2,284 individuals and the
SNP genotypes of 14,904 individuals from the Estonian Biobank.
The WGS data underwent joint variant calling, followed by ex-
tensive sample and variant-level quality control (QC) (Dataset
S1 and Fig. S1). The SNP genotypes were imputed to a custom
reference panel constructed from the high-coverage Estonian
Biobank WGS data. The custom imputation panel included all
single-nucleotide variants present in the WGS with allele count
of ≥3 in the WGS, representing a total of 16,536,512 imputed
variants.
Using the genotype data described above, we tested for asso-

ciations with 14 blood cell measurements. This included mea-
surements reflective of red blood cell (RBC) numbers, size, and
other related parameters [hemoglobin, hematocrit, RBC count,
mean corpuscular volume (MCV), mean corpuscular hemoglo-
bin (MCH), and mean corpuscular hemoglobin concentration
(MCHC)]; platelet numbers and size [mean platelet volume
(MPV)]; as well as white blood cell subtype numbers (absolute
numbers of neutrophils, monocytes, lymphocytes, eosinophils,
and basophils). As expected, these measurements are often
strongly correlated with each other (Fig. S2). Because all indi-
viduals in the Estonian Biobank consented to provide access to
their corresponding EMR data, we were able to greatly expand
sample sizes in a resource-efficient manner. For a subset of
randomly selected individuals, blood cell measurements were
directly assayed in a clinical laboratory (hereafter referred to as
“lab-based”) (Datasets S2 and S3 and Figs. S3 and S4). For most
individuals, we mined the EMR to extract blood cell measure-
ments when available. As each individual might have multiple
measurements in the EMR, we used the median value for each
individual after correcting for age, sex, location, and type of
measurement (laboratory or EMR-based). In general, the labo-

ratory-based and EMR-based values were strongly correlated;
however, the measurements of certain traits, especially of white
blood cell subtypes, were variable and had lower correlations
(Fig. S4). In total, for each trait, we had between 4,221 and 7,134
samples with genotype and phenotype data (Dataset S2). We
performed single-variant association analyses on all variants with
a minor allele count of ≥3. We also performed gene-based
burden testing of rare variants [minor allele frequency (MAF) <
5%] using SKAT-O (7).

Blood Cell Trait Associations in the Estonian Biobank. The single-
variant analysis revealed a total of 17 genome-wide significant
associations (P < 5 × 10−8) across the various blood cell mea-
surements (Table 1). Sixteen of these associations had been
identified previously and highlight important biological mecha-
nisms, such as associations at the HBS1L-MYB locus that con-
tains at least three independent variants showing pleiotropy with
multiple blood cell measurements (Dataset S4) (3, 8, 9). This locus
is of considerable interest because the blood trait-associated variants
within this region are associated with the severity of the major he-
moglobin disorders, sickle cell disease and β-thalassemia (9–11).
Other loci that we identified here contain well-known hematopoietic
regulators such as JAK2 (associated with platelet counts) (12, 13)
and F2RL2 (associated with MPV) (14). In contrast to the genome-
wide association studies (GWASs) involving common variants, the
gene-based burden testing (which seeks to aggregate rare variants
in each gene) did not identify any significant associations (at P <
8.33 × 10−7). Although studies (such as ours) that use whole-ge-
nome sequencing rather than genotyping a fixed set of genetic
markers have obvious advantages in terms of detecting rare vari-
ants (15), we note that our sample is likely underpowered for
comprehensive rare-variant analysis, which is expected to require
sample sizes in the range of tens of thousands of individuals (16).
The strongest effect identified was a previously undiscovered

association with basophil counts near the gene encoding CCAAT/
enhancer-binding protein alpha (CEBPA) (rs78744187; P = 6.19 ×
10−38) (Fig. 1 and Fig. S5). Each minor allele of this SNP is as-
sociated with a 5.9 (per microliter) decrease in basophil counts
and the SNP remarkably explains 4.4% of phenotypic variance
(Table 1). To ensure that this association is not driven by extreme

Table 1. Detailed summary of significant associations

Locus Position
Ref/
Alt rsID MAF

WGS P
value

Combined
P value Effect size

Variance
explained Trait Gene CS

CS+
NDR

19q13 33754548 C/T rs78744187 0.104 1.25 × 10−14 6.19 × 10−38 −0.0059 (1,000/μL) 0.044 Basophil count CEBPA* 1 1
12q24 122216910 A/G rs11553699 0.100 0.0016 7.04 × 10−20 0.048 (fL) 0.011 MPV WDR66 1 1
3p14 56849749 T/C rs1354034 0.317 0.0012 1.29 × 10−14 −0.033 (fL) 0.012 MPV ARHGEF3 1 1
10q21 65063844 T/A rs61855497 0.369 0.0065 3.72 × 10−14 −0.023 (fL) 0.0085 MPV JMJD1C 18 4
6q23 135423209 T/C rs9373124 0.308 0.00014 6.86 × 10−14 0.073 (pg) 0.010 MCH HBS1L/MYB 19 7
6q23 135419631 A/G rs9389268 0.304 0.0014 1.23 × 10−13 0.19 (fL) 0.0070 MCV HBS1L/MYB 21 8
6q23 135419636 C/T rs9376091 0.304 0.011 6.96 × 10−12 −0.021 (106/μL) 0.0044 Red blood cell count HBS1L/MYB 20 10
3q21 128296273 G/A rs2465283 0.101 0.0014 9.99 × 10−12 −0.0028 (1,000/μL) 0.0077 Basophil count GATA2 11 1
7q22 106370644 C/G rs342292 0.487 0.00062 3.26 × 10−11 0.032 (fL) 0.013 MPV PIK3CG 46 6
9q31 113918856 A/G rs10980802 0.491 3.04 × 10−6 5.06 × 10−11 −0.020 (1,000/μL) 0.016 Monocyte count LPAR1† 18 0
9p24 4763491 G/A rs12005199 0.332 0.028 1.17 × 10−9 2.8 (1,000/μL) 0.0033 Platelet count JAK2 1 1
3p14 56849749 T/C rs1354034 0.319 0.015 4.40 × 10−9 2.6 (1,000/μL) 0.0040 Platelet count ARHGEF3 1 1
6q23 135431640 T/C rs9494142 0.254 2.16 × 10−5 7.51 × 10−9 5.3 (1,000/μL) 0.012 Platelet count HBS1L/MYB 22 7
11p15 242859 A/G rs55781332 0.264 0.043 1.42 × 10−8 −0.022 (fL) 0.0047 MPV PSMD13 35 6
6p21 33545125 A/G rs5745587 0.274 0.0011 2.81 × 10−8 4.1 (1,000/μL) 0.0072 Platelet count BAK1 23 2
5q13 75935631 A/T rs114685606 0.0230 0.53 3.41 × 10−8 0.011 (fL) 0.00046 MPV F2RL2 3 1
22q12 37470224 T/C rs2413450 0.459 0.0052 3.58 × 10−8 0.060 (pg) 0.0054 MCH TMPRSS6† 5 0

Both the WGS and combined (WGS plus SNP genotyping) P values are listed. Effect sizes (per minor allele) are based on untransformed trait values in the
WGS only. Variance explained is based on inverse normal transformed trait values in the WGS only. CS column shows the number of variants in the CS. CS+
NDR column shows the number of CS variants overlapping an ATAC-seq NDR.
*Indicates previously undiscovered locus.
†Indicates presence of a genic variant in CS.
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or spurious values from EMR-based measurements, we validated
the association using only laboratory-based measurements with
outliers removed (P = 3.31 × 10−15). Furthermore, to ensure that
this association is not population-specific, we examined this SNP
in 7,488 individuals from three US-based European ancestry co-
horts and observed a significant association with basophil counts
(P = 5.99 × 10−7; Fig. S6A). Despite the remarkably large effect
size of this SNP, previous GWAS for basophil counts have not
detected this association (17–19). This is likely because previous
studies were imputed to a sparser reference panel (HapMap).
Because none of the variants present in HapMap tag rs78744187
strongly, these studies would have failed to detect this association
(Fig. S6B). This observation demonstrates how denser reference
panels or comprehensive genome sequencing data can enable the
discovery of additional common variants associated with human
traits and diseases.
To assess the comprehensiveness of our analysis (Fig. S7),

we compared all of the variants identified by genome sequencing
at each locus with the 1000 Genomes (1000G) reference panel
(20). Although our study identified variants in significant linkage
disequilibrium (LD) with the lead SNP (r2 > 0.5) that were ab-
sent from the 1000G phase 1 reference panel, all of these variants
were present in phase 3 (21). Importantly, no variants identified

in significant LD with the lead SNP (r2 > 0.5) in 1000G were
missing from our analysis. In addition, there were no copy num-
ber variants (CNVs) within 1 Mb that were in LD (r2 > 0.5) with
any of the observed associations (Dataset S5). Given these
results, we were confident that all potential causal variants
had been captured by our analyses and our custom WGS-
based reference panel was genuinely reflective of the
study population, which are both important prerequisites for
fine-mapping.

Fine-Mapping Genetic Associations. Although most of the asso-
ciations have been previously detected, none have yet been
pinpointed to specific variants. To attempt to identify the likely
causal variant at each locus, we performed statistical fine-
mapping analyses, which use LD patterns and association sta-
tistics to generate the probability that any particular variant at a
locus of interest is causal. We applied three methods for fine-
mapping [approximate Bayes factor (ABF), CaviarBF, and
PICS] (22–24) and, for each, generated a credible set (CS) of
variants, which has a 97.5% probability of containing the casual
variant. The CSs generated with ABF and CaviarBF exhibited
near-perfect concordance, whereas the CSs generated with PICS,
although in strong agreement at most loci, included substantially
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more variants for three of the loci (Fig. S8). As these addi-
tional variants nominated solely by PICS were generally of
low r2 to the sentinel association, the intersection of ABF and
CaviarBF was chosen as the final CS. Remarkably, at 4 of the
13 independent loci (MPV/platelet counts at 3p14, platelet
counts at 9p24, MPV at 12q24, and basophil counts at 19q13),
our fine-mapping results resolved the association signal to a

single putative causal variant. At two other loci, the CSs had
three and five variants (Table 1 and Dataset S6). Thus, by re-
solving association signals to a finer resolution, we are able to
generate experimentally tractable hypotheses about potential
causal mechanisms, as we discuss in detail below. For the
remaining 10 associations, the CSs have between 11 and 46
variants (median of 20).
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Overlap with Epigenomic Data Suggests Causal Mechanisms. An es-
timated 80–90% of causal GWAS signals are noncoding variants
that presumably act by altering expression of nearby genes (25,
26). To define potential causal mechanisms of the variants,
we overlapped CS variants with nucleosome-depleted regions
(NDRs) identified by assay for transposase-accessible chromatin
with high-throughput sequencing (ATAC-seq) from 13 primary
human cell types (27), comprising the majority of the hemato-
poietic hierarchy. For 35 CS variants (out of 186 variants from
17 loci; 18.8%), we identified an overlap with hematopoietic
NDRs, a significant enrichment compared with non-CS variants
in moderate to high LD (r2 > 0.5) (OR = 2.41, P = 0.0009).
Additionally, a permutation test involving local shifting of the
NDRs around the CS variants revealed a significant enrichment
(1.87-fold change in overlap, P = 0.00042) (28). Furthermore, at
11 of 13 independent loci (85%), at least one CS variant over-
lapped a NDR (Fig. 2A). Of note, only the remaining two loci
contained a genic variant in their CSs (Table 1). At TMPRSS6
associated with MCH, there is a missense variant (rs855791, p.
V736A) in strong LD with the lead SNP (r2 = 0.82). Rare
damaging mutations in TMPRSS6 cause iron-refractory iron-
deficient anemia, and this particular variant has been previously
reported to influence iron homeostasis (29, 30). At the 9q31
locus associated with monocyte counts, there are two variants
(rs59364245 and rs60698178) located in an uncharacterized long
noncoding RNA.
For example, at the well-known HBS1L-MYB locus (8), 11

variants associated with multiple red blood cell and platelet traits
overlap with a NDR in at least one stage of hematopoiesis. Seven
of these variants overlap with predominately erythroid-specific
NDRs (Fig. 2 A and B). Although our results agreed with pre-
vious studies that variants in the −84- and −71-kb elements
are putative functional variants (31), we also identified a previ-
ously uncharacterized −83-kb erythroid element harboring three
CS variants that may also have regulatory function (Fig. S9).
Notably, for all four of the association signals that we fine-
mapped to a single variant, the identified variant overlaps with a
hematopoietic NDR (Table 1). As an example, we were able to
fine-map the association with MPV and platelet counts on 3p14
to rs1354034. This variant overlaps with a common-myeloid pro-
genitor (CMP)- and megakaryocyte-erythroid progenitor (MEP)-
specific regulatory element that has previously been shown to af-
fect the transcription of nearby ARHGEF3, a factor implicated in
hematopoiesis (Fig. 2A and Fig. S10) (32). Interestingly, the
rs1354034 variant is associated (in trans) with the expression of
von Willebrand factor (VWF) and other key platelet/megakaryo-
cyte genes found at other loci, suggesting a role for this variant in
the development of this lineage (33, 34). In all of these examples,
our comprehensive ascertainment of genetic variation gave us
confidence that the causal variant is included among the variants
we analyzed.
To further explore the putative regulatory modalities of these

CS variants, we investigated the overlap of CSs with transcription
factor (TF) occupancy, functional regulatory models, and pre-
dicted motif disruptions. Based upon functional models trained
on TF occupancy, open chromatin, and histone modifications,
CS variants were enriched for functional regulatory variants (Fig.
S11) (35). Because TF occupancy profiles were not available for
the entire hematopoietic hierarchy, we inferred putative TF
overlap by investigating the overlap of CS variants with 4,559
publicly available ChIP-seq datasets from human blood-based
tissues and cell lines. These analyses revealed putative mecha-
nisms for a number of variants and provide testable hypotheses,
which are particularly tractable for the four CSs containing only
a single variant (Datasets S7 and S8). For example, rs1354034,
which we described above as being within a NDR near ARH-
GEF3, disrupts a conserved GATA motif. In addition, Gata1
occupies the orthologous mouse region containing this variant in

megakaryocytes, but not erythroid cells, suggesting a putative
mechanism by which this variant may act (Fig. S12).

Basophil Associations Illuminate Mechanisms for Hematopoietic
Lineage Specification. We next turned to the association with
basophil counts at 19q13 near CEBPA. As we noted above, this
locus could be resolved to a single putative causal variant,
rs78744187, which resides 39 kb downstream from CEBPA, near
a separate +42-kb enhancer that has been shown to influence
CEBPA expression along various myeloid lineages (36–38).
rs78744187 appeared to be solely associated with basophil counts
and showed no evidence of pleiotropic effects on other blood cell
traits, including among other myeloid lineages (Dataset S4).
Conditioning the association on the rs78744187 genotypes at-
tenuated all signals at the locus, suggesting the existence of only
one independent signal at the locus (Fig. S13). Interestingly,
rs78744187 resides within a distinct NDR present only in CMPs,
but not in granulocyte–monocyte progenitors (GMPs), consistent
with emerging data for a GMP-independent origin for basophils,
mast cells, eosinophils, and their progenitors (Fig. 3A) (39–42).
Moreover, this NDR is weakly to moderately present in myeloid
cell lines from mice and humans (HL60, K562, HPC7, and CMK)
and is occupied by numerous myeloid transcription factors, in-
cluding master regulators of myeloid differentiation: GATA2 and
RUNX1 (Dataset S7 and Fig. S14). In a luciferase reporter assay,
the +39-kb region demonstrated enhancer activity (∼40-fold in-
crease in activity relative to the minimal promoter) in the K562
myeloid cell line. Additionally, the basophil count-decreasing
rs78744187-T allele was associated with a 28.6% reduction in
enhancer activity (Fig. 4A). Despite extensive analyses of TF
occupancy and alterations to predicted TF motif, we were unable
to elucidate an exact mechanism for how this variant modulates
enhancer activity, as is frequently noted to be the case for pu-
tative causal variants that alter gene expression (4, 24). Taken
together, these data show that the +39-kb region contains a
myeloid enhancer element that is active in CMPs and that shows
variation in activity modulated by the rs78744187 variant.
To identify the gene(s) whose expression is modulated by

rs78744187 to influence basophil production, we performed in
situ perturbation of the +39-kb enhancer using CRISPR/Cas9-
mediated mutagenesis in CD34+ human hematopoietic stem and
progenitor cells (HSPCs) (43). We targeted the +39-kb enhancer
using two guides that flank the rs78744187 variant (Fig. 4B).
Deep sequencing of the target regions showed that both guide
RNAs caused insertions or deletions at a high efficiency (∼88%)
(Fig. 4C). We observed a 60% reduction in CEBPA expression in
the nonclonal population of enhancer-disrupted hematopoietic
cells compared with controls (Fig. 4D). As enhancer-promoter
looping interactions primarily occur within topologically associ-
ated domains (TADs), we investigated all other expressed genes
in the TAD harboring this variant but did not observe any significant
changes in their expression (Fig. 4D and Fig. S15) (36). Interestingly,
perturbation of this element in the granulocyte/monocyte cell lines
HL60 and U937 did not result in any major alteration of CEBPA
expression (Fig. S16), demonstrating the specificity of this regulatory
element during basophil differentiation.
The TF CEBPA has been previously implicated in basophil

specification, in particular during the bifurcation from the de-
velopmentally related mast cell lineage (44–46). However, CEBPA
is also implicated more broadly in hematopoiesis as a master TF
(36, 47, 48), suggesting that its expression is temporally regulated
to specify basophils and other terminal lineages (49). To test
whether the +39-kb enhancer provides the temporal regula-
tion of CEBPA expression for proper basophil differentiation,
we performed directed differentiation of the CRISPR/Cas9
enhancer-mutagenized HSPCs in the presence of IL-3 (50–52).
IL-3–mediated differentiation of human CD34+ cells predominately
generates basophils but can generate mast cells to a lesser degree
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(50, 53, 54). Following 2 wk in culture, ∼51% of cells expressed
basophil surface marker phenotypes (CD203c+/CD117−) and
∼26% of cells expressed mast cell marker phenotypes (CD203c+/
CD117+) (Fig. 5B). Morphologically, 25% of the cells in these
cultures resembled mature basophils, suggesting that our cultures
may also accommodate less mature precursors of these lineages as
well, which is in agreement with the observation that the CD203c
antibody can detect mature human basophils, mast cells, and
their precursors (53). The enhancer-mutagenized cells showed
a significant reduction in basophil production based upon cell

surface markers and morphology, as well as a proportionate in-
crease in immature mast cells compared with controls (Fig. 5 A–D
and Fig. S17). In addition, the basophils produced in the enhancer-
mutagenized cells frequently showed impaired maturation with a
paucity of basophilic granules and a high frequency of empty or
eosinophilic granules instead (Fig. 5 C and D). These results dem-
onstrate that an intact +39-kb enhancer is required for proper ex-
pression of CEBPA during basophil differentiation and maturation.
Alternatively, the +39-kb CEBPA enhancer may regulate cytoplas-
mic granule development in basophils, independent of its effects on
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differentiation. Our results also extend earlier studies in mice that
suggested a key role for Cebpa in modulating the basophil/mast cell
lineage fate choice (55, 56).
Our GWAS also identified an association with basophil counts

at 3q21, which includes another master TF: GATA-binding pro-
tein 2 (GATA2) (rs2465283, P = 9.99 × 10−12) (Fig. 1A and Table
1). A previous GWAS performed in a Japanese population also
identified an association at this locus with basophil counts
(rs4328821; P = 5.3 × 10−40) (18). We noted that the basophil-
decreasing allele of rs4328821 is associated with decreased
GATA2 expression in whole blood (P = 5.3 × 10−13) (57). By
leveraging differences in the LD patterns between Estonians and
East Asians and examining only variants in strong LD (r2 > 0.8)
with the lead SNP in both populations, we were able to reduce
our CS from 11 to 6 variants. Of these six CS variants, only one
variant (rs6782812) overlapped a strong hematopoietic NDR.
Surprisingly, similar to the CEBPA variant (rs78744187), this
NDR is also CMP specific (Fig. 3B) and is occupied by the
RUNX1 and GATA2 TFs (Fig. S18). In luciferase-based assays
in K562 cells, the NDR demonstrates ∼4.5-fold enhancer activity
and the fine-mapped GATA2 variant (rs6782812) reduced en-
hancer activity by 69% (Fig. S18A). Because there are common
master TFs at the two basophil-associated loci (GATA2 and
CEBPA), we examined whether these two loci might show an
epistatic interaction. We found no evidence of epistasis between
rs2465283 (GATA2) and rs7874418 (CEBPA) (P = 0.070). The
GATA2-associated variant was also associated with eosinophil
counts (P = 3.07 × 10−3; Dataset S4), as has been seen previously
in other studies (17–19, 58). An independent association near
GATA2 for monocyte counts has been reported by other studies
(monocyte sentinel SNP rs9880192; r2 = 0.054 to rs2465283 in
Europeans) (17, 19). These associations near GATA2 are con-
sistent with the well-known role of GATA2 in driving myeloid
differentiation (59, 60). Together, these results suggest that the
fine-mapped GATA2 variant (rs6782812) influences lineage
specification at an earlier myeloid progenitor that is capable of
producing basophils, eosinophils, and potentially other lineages,
whereas the CEBPA variant (rs78744187) appears to be present in
an enhancer that is specifically necessary for production of baso-

phils from a downstream bipotential basophil/mast cell progenitor
(BMCP) or other myeloid progenitor (Fig. 5E).

Examination of Disease Associations. Basophils have been impli-
cated in inflammation and host defense, but the causal role
that basophils play in human disease is poorly understood (44,
61–63). To identify potential disease roles for basophils, we
performed a phenome-wide association study (pheWAS) for
rs78744187 and rs2465283 (64). To accomplish this, for each
available International Statistical Classification of Diseases and
Related Health Problems, 10th Revision (ICD-10) medical bill-
ing code, we treated all individuals with the code as cases and
treated anyone without the code as a control. We tested for the
existence of associations between either variant and all 534 dis-
eases that had greater than 100 cases. No disease associations
reaching the P value threshold of 9.2 × 10−5 (following Bonferroni
correction) were identified for either SNP. However, rs78744187
was nominally associated with joint derangements and enteropathic
arthropathy (P values of 0.00023 and 0.00059, respectively), which
may have autoinflammatory etiologies (Dataset S9). Previous
studies have identified multiple associations with inflammatory
bowel disease (IBD) near CEBPA (65–67). However, the basophil
association at rs78744187 appears to be independent from the
IBD associations (Dataset S10). We do note that, although dis-
ease associations with basophil counts are likely to exist, similar to
those seen with the related eosinophil lineage, we are likely to be
underpowered in our current study to robustly detect such an
effect, particularly given the variable fidelity of medical coding
(Fig. S19) (68).

Discussion
In this study, we integrated WGS-based GWASs, fine-mapping,
epigenomic datasets, and functional assays to provide additional
insight into our evolving understanding of lineage specification
during human hematopoiesis (69, 70). Integration of compre-
hensive genetic and extensive epigenomic data at these loci pro-
vided key insight into human hematopoietic regulatory mechanisms.
For example, we were able to identify a variant that likely affects
GATA1 TF binding to influence expression of ARHGEF3 during
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megakaryopoiesis. At the extensively studied HBS1L-MYB locus,
by overlapping fine-mapping data with extensive ATAC-seq data,
we provided evidence for additional putative causal variants. By
integrating these complementary datasets, we were able to gen-
erate experimentally tractable hypotheses for further functional
investigation.
At one of these loci, we fine-mapped a previously undiscovered

association with basophil counts near the master TF CEBPA to
a CMP-restricted enhancer element. Functional assays revealed
that the causal variant altered enhancer activity and resulted in
decreased CEBPA expression, which therefore helps drive the
lineage choice between basophils and mast cells. Whether this
lineage choice happens at the BMCP or a different myeloid
progenitor stage is currently not resolved, and because our
GWAS study did not measure mast cells in nonhematopoietic
tissues, our findings cannot directly address this issue (71, 72).
In the region of another master TF, GATA2, our study identi-
fied a basophil and eosinophil count-associated variant within a
similar CMP-restricted enhancer associated with GATA2 ex-
pression. Thus, our study provides evidence that common genetic
variation regulates basophil production by tuning the ordered
expression of master TFs through the alteration of stage-specific
enhancer elements (49). Furthermore, as both basophil-associ-
ated variants fall within enhancer elements that are active spe-
cifically in CMPs (but not GMPs or MEPs), our study provides
strong support for revised models of hematopoiesis, where eo-
sinophils, basophils, mast cells, and their progenitors bifurcate at
the earlier CMP stage, rather than the more traditional models
where these lineages arise from GMPs along with granulocyte
and monocyte progenitors (Fig. 5E) (41, 42). Our findings pro-

vide key insights into the molecular regulation of basophil pro-
duction, an important and nonredundant cell type in inflammation
and host defense that has been challenging to study in humans
due to its rarity (44, 61–63). The identification of these variants
will also allow for further studies of the mechanisms by which
genetic variants influencing basophil counts may impact on
human diseases.
Our study also demonstrated the benefits of using high-cov-

erage WGS in a population-based biobank. Comprehensive
ascertainment of genetic variation allowed us to identify the
association near CEBPA, which would have been missed had we
imputed to sparser reference panels, such as HapMap. Fur-
thermore, the high-coverage WGS allowed us to comprehen-
sively capture variation that might be missed by lower coverage
sequencing approaches (such as longer indels and variants in
low-complexity regions), giving us confidence that the true causal
variant has been identified at each locus, an important pre-
requisite for fine-mapping. Moreover, by performing our study in
a population-based biobank, we were also able to link genetic
data with EMRs to greatly increase sample sizes in a resource-
efficient manner, providing support for similar programs such as
the Precision Medicine Initiative (73). Together, our study dem-
onstrates how key genetic and biological insights can be gained
from comprehensive genetic studies in population-based biobanks.

Materials and Methods
Blood Cell Measurements. We performed a complete blood count (CBC) in a
clinical laboratory (“lab-based”) for 2,000 participants. One thousand indi-
viduals were chosen for profiling based on their agreement to be part of a
recall study (mean follow-up time, 4.5 y) for collecting new biological sam-
ples and data on health and lifestyle. The remaining 1,000 samples represent
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a random subsample of 500 males and 500 females joining the biobank
throughout the year 2009. Clinical laboratory-based measurements where
performed at Tartu University Clinic’s Diagnostics center. More details on
specific methods and equipment used can be found online (www.kliinikum.
ee/yhendlabor/analyysid). For the remaining individuals, we extracted blood
cell measurements from EMR-based records as available. EMR-based phe-
notype measurements were obtained by systematically mining the EMRs
from the two main hospitals in Estonia (Tartu University Clinic and Northern
Estonia Regional Hospital). We were able to obtain EMR-based values for up
to 5,038 individuals (Dataset S2), with up to 305 measurements for a single
trait in an individual. Presence of other diseases was not taken into account
when normalizing the blood cell measurements.

For each individual, we used the EMR-based measurements only if labo-
ratory-based values were not available. We removed spurious values and
extreme outliers (Dataset S3). We then performed regression using a linear
mixed model adjusting for sex as a fixed effect, and setting (EMR-based vs.
laboratory-based, as well as the specific hospital/clinic) and age at measure-
ment as random effects. We took the median residual for each individual and
performed inverse normal transformation of the median residuals. These
median residuals were used for downstream association analyses.

Generation of genome sequencing data, variant calling, imputation, and
association testing are all described in SI Materials and Methods. Approval for
this study was obtained from the institutional review boards of the University
of Tartu, Massachusetts Institute of Technology, and Boston Children’s Hos-
pital. Informed consent was provided according to the Declaration of Helsinki.

Luciferase Reporter Assays. The genomic regions containing major and minor
allele of the variants rs78744187 (∼400 bp) and rs6782812 (∼364 bp) were
synthesized as gblocks (IDT Technologies; Dataset S11) and cloned into the
firefly luciferase reporter constructs (pGL4.24) using BglII and XhoI sites. The
firefly constructs (500 ng) were cotransfected with pRL-SV40 Renilla luciferase
constructs (50 ng) into 100,000 K562 cells using Lipofectamine LTX (Invitrogen)
according to the manufacturer’s protocols. Cells were harvested after 48 h and
the luciferase activity measured by Dual-Glo Luciferase Assay system (Promega).

Genome Editing in Human CD34+ HSPCs Using Lentiviral CRISPR/Cas9 Mutagenesis.
Two guide RNAs targeting the variant rs78744187 and a control guide RNA

targeting GFP (Fig. 4B) were cloned into LentiCRISPRv2 constructs (74). The
constructs along with packaging helper constructs were transfected into HEK-
293T cells for lentiviral production. The viral supernatant was then concentrated
60 times by ultracentrifugation. Human CD34+ HSPCs (adult) were purchased
from Seattle Fred Hutchinson Center and cultured in Iscove’s modified Dulbec-
co’s mediumwith 10% (vol/vol) FBS in the presence of human IL-3 (10 ng/mL). On
day 2 in culture, ∼500,000 cells were spinfected with the concentrated lentiviral
supernatant and polybrene (8 μg/mL) on retronectin-coated plates (Takara). On
days 5 and 6 in culture, the cells were selected with puromycin (1 μg/mL). CEBPA
expression was measured at day 7 in culture. The cells were subsequently cul-
tured until day 14 for differentiation into basophils and mast cells.

Genome Editing in HL60s and U937 Cell Lines Using Lentiviral CRISPR/Cas9. HL60
and U937 cells were cultured in RPMI with 10% (vol/vol) FBS. One to 2 million
cells were spinfectedwith lentiviral supernatant with polybrene (8 μg/mL). On
days 3, 4, and 5 postspinfection, cells were selected with puromycin (1 μg/
mL). CEBPA expression was measured at day 12 postspinfection. For the
Surveyor assay, genomic DNA was extracted at day 12 and a 600-bp region
containing the CRISPR cut sites was PCR amplified (Dataset S11). The
Surveyor assay was performed according to kit recommendations (IDT
Technologies).

Flow Cytometry. Cells were incubated with Human BD Fc Block (BD Biosciences)
for 10min at room temperature to prevent nonspecific binding to Fc receptors.
Subsequently, the cells were stained with CD117-PE (clone 104D2; Biolegend)
and CD203c-APC (clone NP4D6; Biolegend) antibodies and analyzed by BD
Accuri Flow Cytometer. FACS plots were generated by FlowJo (Tree Star).
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