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Abstract
The use of mathematical and computational tools in investigating Natural Killer (NK) cell biology

and in general the immune system has increased steadily in the last few decades. However, unlike

the physical sciences, there is a persistent ambivalence, which however is increasingly diminish-

ing, in the biology community toward appreciating the utility of quantitative tools in addressing

questions of biological importance.We survey someof the recent developments in the application

of quantitative approaches for investigating different problems in NK cell biology and evaluate

opportunities and challenges of using quantitative methods in providing biological insights in NK

cell biology.
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1 INTRODUCTION

Scientific progress is marked by formation of paradigms.1 Thomas

Kuhn defines paradigms as, “universally recognized scientific achieve-

ments that for a time provide model problems and solutions to a

community of practitioners.”1 Experimental investigations, mechanis-

tic explanation of the acquired data, and development of frameworks

to explain a broad range of observations are essential steps to gener-

ate paradigms.1,2 This pattern has been observed historically in phys-

ical as well as in biological sciences. The application of mathemat-

ical or computational approaches in generating paradigms in phys-

ical sciences has a history of over 2000 years1; however, the role

of quantitative approaches in producing tangible progress leading to

formation of paradigms in many areas of biology including immunol-

ogy is still debated. It is not uncommon for a modeler to provide

Abbreviations: CA, correspondence analysis; CyTOF, cytometry by the time of flight; KIRs,

killer-cell immunoglobulin-like receptors; NKRs, NK cell receptors; PCA, principal component

analysis; SFKs, Src family kinases; sc-RNA-seq, single-cell RNA sequencing; t-SNE,

t-distributed stochastic nonlinear embedding.

convincing answers to experimental collaborators, journal referees,3

or funding agencies to questions such as: Canmodels tell us something

newand useful about the system thatwe cannot intuit fromour knowl-

edge andexperience?Canmodels help replace costly experimentswith

in silico simulations or help us design experiments? Even mathemati-

cal modelers and bench scientists who apply quantitative tools won-

der about these questions as they assess the impact of their contribu-

tions in anarea that hasbeenhistorically spearheadedbyexperimenta-

tion. These questionsmight not lead to conclusive answers all the time,

which perhaps is one of the reasons that these questions still persist

in the field. We attempt to make a case for the relevance of mathe-

matical and computational modeling in understanding the biology of

leukocytes, in particular, NK cells in the light of the above questions by

reviewing a fewrecent investigations.Wehope thiswill help the reader

to assess these questions and lead to the answer in the context of the

system she or he is interested in.

Mathematical and computational tools have been an integral part

of progress in the physical sciences. This is perhaps most evident in

the time and resources invested in testing theoretical predictions in

J Leukoc Biol. 2019;1–13. c©2019 Society for Leukocyte Biology 1www.jleukbio.org
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the experiments carried out in the Large-Scale Hadron Collider and

the Laser Interferometer Gravitational-Wave Observatory projects.

Therefore, it would be useful to take a look at NK cell biology with

the scope of a physical scientist and determine the similarities and dif-

ferences between a typical physical system and NK cells, and more

generally leukocytes. Analysis of a system in physical sciences begins

by identifying the length and the time scales involved in the system.4

Consider the scales involved in single NK cells to NK cell populations.

Nanometer-sized NK cell receptors (NKRs) on single NK cells interact

with cognate ligands of similar sizes on a target cell tomount responses

composed of lysis of target cells, secretion of cytokines, and in some

cases 103–104-fold clonal expansion that spread to different organs

(length ≥ cm).5,6 The NKR–ligand interactions occurring in time scales

of a few seconds generate responses lasting for days (e.g., generation

of “memory” NK cells lasting for longer than a month). These pro-

cesses describe a 107-fold change in length and a 105-fold change in

time scale. The above change of scales is similar to processes relating

the formation of snowflakes from a collection of jiggling molecules in

water vapor.7 There is a multitude of processes that work together to

relay changes from the smallest to the largest scales in these systems.

Mathematical models, often providing a reduced or a coarse-grained

description of these physical processes, become essential to describe

such multiscale systems.8–11 Reduced models have been successful in

describing several aspects of NK cell and leukocyte biology, in partic-

ular for signaling and development in NK cells, and evolution of NKR

repertoires. Thesemodels are discussed in Section 1.

There is a unique aspect of NK cell biology and of the immune sys-

tem in general with no counterpart in nonliving physical systems. It

is the enormous diversity of the building blocks (e.g., single cells) of

the system.12,13 The size of the proteome of human NK cells is over

3000.14 The number of phenotypically distinct NK cells in an indi-

vidual can range from 6000 to 30,000.15 The NK cell responses per-

haps impact most of the human proteome16 whose size is over 20,000

proteins.17 Thus, application of reduced models in addressing ques-

tions where the diversity of NK cells is relevant can become chal-

lenging. As recent advances in sequencing and single-cell technologies

probe single cells with more details, the diversity of the NKRs, phe-

notypes, and lineages keeps increasing and many appear to be impor-

tant fordeterminingNKcell responses. Therefore, a keyquestion in the

community is about how to characterize the large-scale data and then

use the analysis to glean underlying mechanisms and develop thera-

pies. A substantial research activity in recent years has been directed

toward development of data analysis tools and statistical models to

characterize, visualize, and, interpret functional implications of these

large datasets. These advances are reviewed in Section 2. However,

these data-driven techniques lack the ability of the reduced models

to determine underlying mechanisms. Thus, it is an open challenge to

be able to build appropriate mechanistic models in the context of the

high-dimensional data describing the system. This issue is reviewed in

Section 3.

We discuss the role of quantitative tools in generating theories for

NK cell biology in Section 4. The definition of theory in biology can

vary. A report from theNational Academyof Sciences defines theory in

biology as a “collection of models,”18 whereas Shou et al.19 describe

scientific theory as a “unifying framework that can explain a large class

of empirical data”. The later point of view is more consistent with

the concept of theory, also a hallmark of a paradigm, in physical sci-

ences. For example, Kepler’s planetary laws explained thedetailed data

acquired by Tyco Brahe pertaining to planetary motion, and Newton’s

gravitational theory described not only the planetary motion but also

the motion of any object possessing a mass.20 We will lean toward

the above definition of theory in discussing efforts to develop theo-

ries for NK cell biology. The major theories in physical sciences, such

as the theory of gravitation or the theory of electricity andmagnetism,

have been described bymathematical relations, whereas the dominant

theories in biology such Darwin’s evolutionary theory21 or the clonal

selection theory by Burnet22 were proposed originally in qualitative

terms. In the later years the works of Fisher,Wright, Haldane, and oth-

ers provided a strong mathematical foundation for Darwin’s theory.23

Burnet’s clonal selection theory and related theories were formulated

mathematically by Jerne24 and later by Perelson and Oster.25 How-

ever, apart from these singular examples, theories or major hypothe-

ses in many areas of biology have been pursued in qualitative terms.

The lack of the use of mathematical formulations to push forward the-

ories in biology arises in part due to the unique complexity of the

biological systems. Furthermore, the technical and conceptual chal-

lenges in developing broad principles for describing many body phys-

ical systems8 specifically that are not in equilibrium (e.g., dissipates

energy) also apply to living systems.26 The research covered in Sec-

tions 2–4 mark the progress made in the execution of the successive

steps required to create a paradigm. We have highlighted the top 5

advancements in the area of computational modeling of NK cell biol-

ogy in Box 1 to help the reader with the brief introduction to the field.

We conclude by discussing few future directions in Section 5.

2 REDUCED MODELS

Reduced models provide an intuitive and approximate description of

biological systems. Thesemodels have beenwidely employed to inves-

tigate signaling kinetics, development, andevolutionof receptor reper-

toire in leukocytes such as T cells, B cells, and NK cells.Wewill restrict

our discussion to NK cells here. Excellent overviews on this topic per-

taining to T and B cells are available in prior reviews.27–32

2.1 Signaling and activation of NK cells

Coarse-grained models studying NK cell signaling kinetics describe

signaling events as biochemical reactions between signaling species

(usually proteins). The molecular details of protein structures in regu-

lating protein–protein interactions are approximated intomass-action

reaction rates.33 The signaling proteins and the reactions in these

models are usually chosen intuitively based on the literature and

provide a reduced description of the actual detailed reactions,34 that

is, multiple phosphorylation states are described by fewer activation

states or molecular details of enzymatic regulations are reduced to

few Michaelis–Menten parameters. The biochemical reaction kinetics

are modeled by deterministic mass action kinetics or by stochastic
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Box1. Major advancements in application of quantitative

approaches to NK cell biology

1. Mathematical modeling of development of Ly49 repertoire:

First proposed by Raulet and Vance in 1998,35 and then

further studied by Johansson et al.36 and extended to

KIRs by Andersson et al.37 The model by Raulet and

Vance is one of the first examples of mathematical mod-

eling in NK cell biology.

2. Modeling of signal integration in NKR signaling: Das38 and

Mesecke et al.39 developed mechanistic NKR signaling

models for activating CD16 and inhibitory Ly49A recep-

tors in mouse NK cells, and, activating NKG2D and

inhibitory NKG2A receptors in human NK cells, respec-

tively. Thesemodels quantifiedmechanisms that underlie

signal integration in NK cells.

3. Quantification of NK cell diversity: Horowitz et al.15

used mass cytometry (CyTOF) measurements and anal-

ysis of high-dimensional datasets (SPADE) to character-

ize the enormous diversity of NK cells (∼6000–30,000
phenotypes) in a human subject and elucidated the

roles of genetics and the environment in regulating the

NKR diversity.

4. Modeling of the evolutionary arms race between viruses

and NKRs: Carrillo-Bustamante et al. developed agent-

based models to describe evolution of inhibitory KIRs

demonstrating that “decoys” produced by viruses diver-

sify inhibitory KIRs.40 This model was later extended to

include activating NKRs.

5. Data-driven model with mechanistic insights for analyzing

cytokine-NKR synergy: Mukherjee et al.41 developed a

data-driven model to analyze mass cytometry data and

provide mechanistic insights that underlie the synergy

between IL-2 treatment andNKG2Dmediated activation

of human primary NK cells.

processess (e.g., Markov processess) that account for the random

fluctuations in the protein copy numbers originating from the thermal

fluctuations. A wide variety of software packages42–45 are available to

simulate these biochemical reactions where the user inputs the model

as a set of biochemical reactions with specified kinetics rates and ini-

tial abundances of reactant species. It can be challenging to know the

values of all the reaction rates and abundances of the signaling species

in a model because of the following reasons: (i) Many of these values

are measured in in vitro experiments, which can change in the in vivo

environment and in the context of specific cell type (primary cells vs

cell lines). (ii) It can be difficult tomeasure some of these parameters in

experiments. These issues are common for developing kinetic models

for cell signaling and are dealt with by carrying out sensitivity analysis

of the key results against variations of the unknown parameters46 or

by estimating parameters using measured data (e.g., kinetics of a par-

ticular protein abundance).47 Usually the number ofmodel parameters

is much larger compared to the variables that can be measured and

contribute toward large confidence intervals in parameter estimations.

Parameter identifiability analyses are carried out to determine such

sloppy parameters, which can suggest new measurements or repara-

meterization of the model to constrain the parameter values.48,49 This

remains an active area of research in systems biology.50

A reduced model was set up to quantitatively characterize the

“missing-self” hypothesis in mouse NK cells stimulated by activating

CD16 and inhibitory Ly49A receptors.38 The missing-self hypothesis

states that healthy target cells express ligands cognate to activating

and inhibitory NKRs such that the opposing signals generated by

these interactions are balanced out and result in tolerance in NK cells

interacting with the target cells (Fig. 1). This balance is disrupted in

transformed or virally infected target cells due to down or up regu-

lation of inhibitory or activating ligands leading to NK cell activation

and lysis of the target cells. In the model, the Src family kinases (SFKs)

phosphorylated ITAMs and ITIMs associated with activating and

inhibitory NKRs, respectively. The Syk family kinases (Syk and Zap70),

recruited by phosphorylated ITAMs, phosphorylated the guanine

nucleotide exchange factor Vav1, and the phosphatase, SHP-1 bound

to phospho-ITIMs, and dephosphorylated p Vav1. Vav1 phosphory-

lation resulted in Erk phosphorylation, which was used as a marker

for NK cell cytotoxicity. The modeling showed that pVav1 increases

sharply as the abundance of activating ligands is increased. The

sharp Vav1 activation profile arises due to the competitive nature of

enzymatic activation and deactivation of Vav1 molecules mediated by

phosphorylated Zap70 or Syk and receptor-bound SHP-1 molecules,

respectively. This is a consequence of zeroth order ultra-sensitivity51

in the biochemical reactions regulating Vav1 phosphorylation. In such

cases, the ratio (R) of the concentrations of the enzymes mediating

activation and deactivation plays a decisive role in producing activa-

tion. Thus, themodel suggested integration of activating and inhibitory

signals in NK cells occurs as a ratio rather than as a sum.

Another modeling study by Mesecke et al.39 considered activation

of the human NK cell line NKL by activating NKG2D and inhibitory

CD94-NKG2A receptors. The authors considered 72 different compu-

tational models constructed by considering different combinations of

7 different signaling modules such as association of SFKs with phos-

phorylated NKG2D-DAP10 complexes, exclusion of CD45 from the

immunologic synapse, and dephosphorylation of SHP-1 by SFKs. In

the model, SFKs phosphorylated Vav1 and SHP-1 dephosphorylated

pVav1. Comparison of model results against measurement of pVav1

at different concentrations of agonist antibodies (𝛼-NKG2D and 𝛼-

NKG2A) cognate to activating NKG2D and inhibitory CD94-NKG2A

receptors showed that the physical association of SFKs with NKG2D-

DAP10 is necessary to generate the sharp increase in Vav1 activation

as the concentration of activating (or inhibitory) ligands increased (or

decreased). The study also measured abundances of several proteins

in theNKL cells that were used in developing themodel. NK cell signal-

ing models for other NKRs such as CD16 and 2B4, have been devel-

oped recently.52 Spatial clustering of killer-cell immunoglobulin-like

receptors (KIRs) and select signaling proteins play an important role in
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iNKR aNKR iNKR aNKR
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F IGURE 1 The missing self-hypothesis. NK cells interact with target cells expressing ligands cognate to a diverse set of activating (aNKR) and
inhibitory (iNKR)NK receptors. (A) Healthy target cells express ligands that lead to a “balance” in the signals generatedby theduelingNKRs. (B) The
missing self-hypothesis posited that infected or transformed target cells express lower numbers of inhibitory ligands (e.g., MHC class I molecules)
that leads to a bias in the activating signals generated by the aNKRs. However, there are various other scenarios (e.g., increase in activating ligands,
decrease in inhibitory ligands) that can favor activating over inhibitory signals leading to NK cell activation. What is the quantitative nature of the
balance between the activating and the inhibitory signals in NK cells? For example, is the balance given by the sum or the ratio of the numbers of
activating and inhibitory ligands? The results from themodel by Das38 point to the later

NK cell signaling and activation.53,54 Spatially resolved in silicomodels

reviewed in refs. 55,56 have been developed to analyze roles of such

clustering.

2.2 NK cell populationmodel

Models describing roles of NK cell populations in immune

surveillance,57 in responding to viral infections,58,59 and in inter-

actions with lymphocytes of the adaptive immunity have been

developed.58,59 Excellent reviews of these models investigating

immune cell population kinetics are available in the literature.55,60–62

These models are constructed using variables that describe different

cell populations (e.g., NK cells, tumor cells, T cells) or viruses, and the

population kinetics are described by ordinary differential equations,

partial differential equations, or agent-based models. These models

include processes such as lysis of tumor cells or secretion of cytokines

or differentiation of NK cells quantified by mass-action rates. Recent

advances in microscopy has made it possible to image development

of single precursor NK cells on stromal cells over a long time (∼21
days). Khorshidi et al.63 characterized images of tracks of single NK

cells in the presence of target cells in vitro and in the mouse spleen

using models of random walk to find that NK cells showed more

directed movements compared to a pure Brownian walk. Lee and

Mace64 modeled these movements using random Brownian walks,

directed Levy walks, and constrained random walks, and found that

the proportion of the cells executing directed Levy walks increased

as NK cells become more mature. These different models of random

movements could provide insights65 regarding if NK cells choose

specific migration properties at different stages of development to

optimize contact timewith stromal cells or killing of target cells.

2.3 Development of NKR repertoire

Probability andagent-basedmodels havebeenconstructed todescribe

development of NKRs that are specific or nonspecific to self-MHC

class I within a host. These models describe activation of NKR genes

and selection of NK cells during development by few coarse-grained

processes that are executed with simple probability rules. Vance

and Raulet35 developed a binomial probability-based model to evalu-

ate consequences of 2 hypotheses describing the NK cell education,

namely, a 2-step selection and a sequential model, on determining

the NKR repertoire. Johansson et al.36 developed agent-based mod-

els that simulated an extended version of the Vance and Raulet model

to evaluate NKR repertoire in 4 different MHC class I backgrounds.

The simulations favored the 2-step selection hypothesis, where NKRs

are acquired stochastically and then selected when the inhibitory sig-

nal crosses a threshold value. Anderson et al.37analyzed distributions

of multiple inhibitory KIRs in human donors and found correlations in

coexpressions of the KIRs. These distributions were modeled using a

correlated-probability model. Their analysis of the distributions of self

and non-self KIRs suggested against the sequential selection model

and favored random acquisition of the KIRs. An overview of these

models66 can be found in ref. 55.

2.4 Evolution of NKR repertoire

NKRs coevolve with viruses such as CMV.67 Agent-based models

describing the above evolution kinetics have been developed. In agent-

based models agents representing different components of the sys-

tem (e.g., healthy individuals, CMV-infected individuals) evolve with

time following a set of rules. Carrillo-Bustamante et al.40 developed

agent-basedmodelswherehealthy individuals carryingoneMHC locus

and one KIR haplotype become infected by a herpes-like virus. The

healthy and infected individuals also reproduce and die. The infected

individuals recover or become chronically infected, and the KIR genes

in the germline and the virus can also mutate. The above processes

occur with specific rates. The simulations showed that the genera-

tion of decoy molecules by the virus increases the diversity of the

inhibitory KIR repertoire.40,66 Later models by Carillo-Bustamante
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et al.68 included activating NKRs and modulation of NKR-MHC class

I interactions by peptide fragments.69

Above reduced models produced mechanisms and hypotheses and

helped design experiments that were not possible by simple logical

extension of the known experimental results available at the time

of their construction. For example, Vance and Raulet’s mathematical

formulation35 of two competing hypotheses regarding development of

NKcells predictedpatterns ofNKR repertoires suggested experiments

that can help choose one mechanism over the other. Can these mod-

els be used to unify a broad range of features in NK cell biology? It is

difficult to give a straightforward answer to this question in the face

of new details about NK cell biology that are emerging from recent

single cell70 and sequencing measurements.71,72 These multidimen-

sional datasets may lead to revision of assumptions and approxima-

tions made in these models, and some of the new data could be incom-

patible with these models as many of these models’ behaviors are sen-

sitive to changes in key assumptions or parameter values.50

3 CHARACTERIZATION, VISUALIZATION,

AND INTERPRETATION OF

HIGH-DIMENSIONAL DATASETS

Traditional flow cytometry methods enabled us to assay about 4–10

proteins in single cells and recent developments in mass cytometry

techniques such as cytometry by the time of flight (CyTOF) increased

that number almost by an order of magnitude to 40–100 proteins.73,74

This number of measured proteins still remains small (<1% of the pro-

teome size) compared to the large number of proteins involved in NK

cell responses, nevertheless, it provides a glimpseof thedetails that are

involved in generating single-cell responses. The large dimensions (40–

100) of these datasets have necessitated the use of quantitativemeth-

ods to classify, characterize, interpret, and visualize the data in lower

(2 to 3) dimensions. Clustering algorithms,75 in particular, hierarchi-

cal clustering, have been used to group single cells in high-dimensional

datasets generated by CyTOF measurements. Hierarchical cluster-

ing approaches can be broadly classified into 2 types: agglomerative

and divisive.76 Agglomerative clustering starts by assigning a cluster

to each single cell and then successively merging the most “similar”

smaller clusters into bigger clusters. The “similarity” between a pair of

smaller clusters is quantified by ametric such as the Euclidean distance

(Fig. 2A). The divisive clustering begins by including all the objects

(e.g., single cells) in a giant cluster and then breaking it up successively

based on the similarities between the objects (Fig. 2A). A list of the

clustering algorithms, visualization tools, and the biological questions

they address are shown in Table 1. The large variety in the algorithms

used to address different aspects of the immune response bears sim-

ilarity with which different and often conflicting theories were used

to describe electric and magnetic phenomena in the 1700s before

the physical theory of electricity and magnetism was discovered.1

We will briefly discuss the tools that were developed to character-

ize diversity and function in lymphocytes, in particular NK cells, using

CyTOF measurements. A summary of these methods is provided in

Table 1.

SPADE was one of the earliest computational tools developed to

characterize and graphically visualize CyTOF data.77 SPADE uses an

agglomerative clustering (Fig. 2A) to cluster phenotypically similar

cells. These clusters are then visualized as a tree graph (SPADE tree)

where the vertices representing the clusters are connected by edges

that minimize the total edge length (or a minimum spanning tree con-

struction).Qiu et al.77 represented the hierarchy of phenotypes in pop-

ulation of peripheral blood mononuclear cells (PBMCs) obtained from

human donors using SPADE trees. Horowitz et al.78 applied the SPADE

analysis on CyTOF measurements for PBMCs obtained from identical

twins and relative expressions of NKRs in SPADE trees demonstrated

that the expression for inhibitory receptors in diverse (over 6000) NK

cell populations in an individual is largely determinedby the genetics of

the individual. However, SPADE does not preserve the single-cell res-

olution in the output as the agglomerative clustering method merges

smaller clusters into larger clusters. Therefore, other dimension reduc-

tion schemes that preserve the resolution at the single-cell level have

been used for visualization and classification of cell phenotypes.

Several studies79–81 employed principal component analysis

(PCA)82,83 and correspondence analysis (CA)82 to project high-

dimensional single-cell data to 2 or 3 dimensions in order to visualize

the data and perform further analysis in the lower dimensions (Fig. 2).

PCA-based methods preserve variances in the single-cell data, but

do not preserve the local geometric structure in the lower dimen-

sional projections. Thus, clustering algorithms that use geometric

distance (e.g., Euclidean distance) between pairs of data points for

phenotype classification cannot be combined with such methods. CA

is a PCA-based method that is applied on high-dimensional Boolean

(presence or absence of proteins) data. CA was used on a Boolean

representation of receptor and signaling protein expressions in NK

cells in the presence or absence of HIV-infected CD4+ T cells, and

the quantification of the spread of the data in 2 dimensions sug-

gested a short-term increase in NK cell diversity in the presence of

HIV infection.80

A more popular method of visualization of CyTOF data in lower

dimensions is based on t-distributed stochastic nonlinear embedding

(t-SNE)84 (Fig. 2B). t-SNEpreserves the local geometric structure in the

lower dimensional projections. t-SNE assigns a probability (using a t-

distribution function) for a pair of cells to be separated by a Euclidean

distance in high dimensions and develops a lower dimensional rep-

resentation that minimally changes the assigned probabilities. Amir

et al.85 developed a visualization tool (vi-SNE) for CyTOF data using

t-SNE. Shekhar et al.86 developed amethod (ACCENSE) for generating

automatic clustering of single cells in using a kernel density transfor-

mation of the lower dimensional t-SNE data. The relative comparison

between SPADE, vi-SNE, andACCENSE is reported byAnchang et al.87

k-means clustering or kernel density-based clustering (e.g., used in

ACCENSE) assume a convex geometric local structure; however, the

CyTOF datasets often shownonconvex local structures (Fig. 2A). New-

man and Girvin developed a network detection algorithm that does

not assume convex structures in the context of determining connected

communities.76 This algorithm was adapted by Levin et al.88 (Pheno-

Graph) for analyzing CyTOF datasets to determine biomarkers of

AML (Fig. 2C).
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F IGURE 2 Clustering approaches for analyzing single cell data. (A) Agglomerative and divisive clustering. Schematic diagram showing single cells
(black dots) in the space (>3 dimensions) of measured protein abundances (e.g., pSrc, pPLC𝛾 , pAkt, pErk) in CyTOF experiments. An agglomerative
clustering method starts by assigning a unique cluster to a single cell (left most panel). Next, the most similar (e.g., clusters separated by the low-
est Euclidean distance) clusters are merged into a larger cluster. This operation is carried out continuously (e.g., left to right, black arrows) until
single cells separated by similarity scores lower than or equal to a user defined threshold value are binned into the same cluster. The software
package SPADE follows agglomerative clustering of the CyTOF data. Divisive clusteringmethod follows the above steps in the reverse order (right
to left, gray arrows). (B) Data visualization methods such as vi-SNE generates a lower dimensional (e.g., 2 dimensional) representation of the high-
dimensional dataset (left panel in (A)). (C) Single cells in CyTOF dataset can be clustered in shapes that are nonconvex (e.g., the crescent moon,
or the cluster outlined with red dashed line in the rightmost panel in (A)). Well defined clustering methods such as k-means clustering75 or kernel
clustering (used in ACCENSE) assume convex shapes (e.g., an ellipse) for the clusters. k-means clustering partitions the data in k number of clusters
following a specific optimization procedure (e.g., Voronoi tessellation). PhenoGraph circumvents this issue by creating a graphwhere single cells in
(A) (left panel) are represented by the vertices of a graph. A pair of vertices is connected by an edge when the separation between the single cells
is below a threshold value. The vertices in this graph are then clustered following a divisive clustering method proposed by Newman and Girvin76

that uses the “betweenness” metric for the edges to perform the clustering

TABLE 1 Summary of data analysis and visualization tools for CyTOF data

Toolkit (Ref)
Clustering
algorithm

Cell–cell
variation Biological implications

SPADE77 Agglomerative
hierarchical
clustering

No SPADEwas used in ref. 78 to quantify the diversity of NK cells in
humans, to find over 6000 phenotypically different NK cell
populations in an individual. The diversity of memory NK cells
was also elucidated in ref. 78.

PCA/CA80 No clustering Yes CAwas used by ref. 80 to demonstrate that virus (HIV-1,West
Nile virus) infected cells help NK cells to diversify.

CITRUS91 Agglomerative
hierarchical
clustering

Yes CITRUSwas used by ref. 92 to characterize NK cell phenotype
changes with cytokine treatment.

viSNE85 No clustering Yes Ref. 93 used vi-SNE to identify memory NK cells in acutemyeloid
leukemia patients.

ACCENSE86 Kernel density-
based clustering

Yes Ref. 86 characterized the heterogeneity in CD8+ T cell population
inmice using ACCENSE.

PhenoGraph88 Community
clustering

Yes Ref. 88 quantified the heterogeneity of leukemia cells in pediatric
acutemyeloid leukemia patients using PhenoGraph.
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t2 > t1

Ambiguous 

ξ = Δl/l0 >> 1

ξ(I) = Δl(I)/l0
(I)

 < 1

Straightforward
A B C 

pSrc

pErk

pAKT

pSrc

pErk

pAKT I pPLCγ pPLCγ

l0

l0
(I) Δl(I)

Δl

F IGURE 3 Reconstruction of single cell developmental or signaling trajectories. (A) Shows a schematic representation of single cells in the
space of protein abundances or gene expressions measured in CyTOF or single cell RNA-seq experiments. The cell population can contain single
cells residing in different stages of development. The trajectory reconstruction algorithms attempt to determine potential trajectories (dashed
lines) across development stages that single cells pass through. This is an example of the type 1 reconstruction as described in the main text. (B)
Another type of reconstruction problem (type 2) can arise when trajectories of signaling kinetics in single cells are reconstructed using cytometry
measurements of signaling proteins at multiple time points. In this case, the ordering of cell populations in time (e.g., cells in grey at t1 = 16 min
and cells in black at t2 = 32 min) is known, however, single cell signaling trajectories are still unknown since the single cells are not tagged or
are destroyed upon measurements. The ratio (𝜉 = Δl/l0) of the length scales, Δl, the average separation between the cells at t1 and t2, and l0, the
average distance between the cells at t1, determine the difficulty (𝜉 < 1 being straightforward, and 𝜉 > 1 being challenging) in connecting the single
cells across time. (C) Mukherjee et al.99 address the challenge in (B) by describing the signaling kinetics using soft or invariant variables where a
difficult reconstruction problem in the original variables (𝜉 > 1 in (B)) can turn into a straightforward reconstruction (e.g., connect cell pairs that
minimize the total Euclidean distance) problem in the space of new variables I

Single-cell RNA sequencing (sc-RNA-seq) is becoming a popular

method to characterize genetic diversity in single cells.89 Sc-RNA-seq

can quantify 10–30 genes in single cells and droplet-based technolo-

gies can identify 1000–3000 genes per single cell.89 The clustering and

visualization methods described above can be used to analyze these

datasets as well. A challenge in sc-RNA-seq is to separate systematic

measurement errors and biological noise in the cell–cell variations of

thedata.90 Crinier et al.71 performedsc-RNA-seqmeasurements inNK

cells from different organs of mice and humans and quantified organ-

specific similarities between the two species using PCA and tSNE visu-

alizations and hierarchical clustering.

3.1 Construction of single-cell trajectories

Gene regulatory processes that determine development of leukocytes

dependon single-cell abundances of transcription factors and signaling

proteins, as well as on intrinsic stochastic fluctuations of regulatory

processes, and, signals generated in the local microenvironment. Thus,

the trajectory of development initiated by a single progenitor cell

can be unique, but nevertheless follows well-defined development

stages. Investigation of these single-cell trajectories can provide cues

regarding mechanisms that underlie differentiation and commitment

to particular lineages in leukocytes. Similarly, signaling kinetics in

single-cells is also affected by protein abundances in individual cells,

and stochastic fluctuations intrinsic to biochemical signaling reactions.

Measurement of signaling kinetics in individual cells can provide

insights regarding the presence of fold change in activation, role of sig-

nal duration inmediating a specific response, and the relation between

peak values of specific activation markers and downstream responses.

Single-cell mass cytometry and single-cell RNA sequencing of a cell

population provide snapshot data regarding single cell expressions

of proteins and RNAs, respectively, that can be categorized into 2

types (Fig. 3A and B): (1) Single cells residing at different stages of

development are assayedunder a particular condition. (2) Apopulation

of a specific cell type (e.g., immature CD56bright NK cells) is assayed at

multiple time points following a specific type of stimulation. Construc-

tion of single-cell trajectories needs to address different challenges

depending on the type of the measurement. For type (1) data, pre-

cursor, intermediate-stage, and end-stage cell types can be identified

based on specific markers; however, the progression of the develop-

ment across a range of single-cell phenotypes is not knownbeforehand

(Fig. 3A). Thus, a computational approach is needed to order single

cells according to their status in the course of development based on

the available measured proteins or RNA sequences. In contrast, for

the data in type (2), the temporal ordering of the single cells is known;

however, the challenge is to connect single cells across successive

temporal measurements. Several computational approaches have

been developed in recent years to address these challenges.

Computational algorithms that assume a continuous change in

phenotypes (e.g., abundance of specific proteins and transcription fac-

tors) during the course of development have been proposed to gen-

erate single-cell developmental trajectories (summarized in Table 2).

These algorithms start from a precursor cell and then identify neigh-

boring cells that lie at the immediate next stage of development. The

progression of development from a precursor cell to an end-state is

built by connecting single cells with appropriate neighbors. The algo-

rithms use several methods to identify single cells in the neighborhood

of a precursor cell. One of the algorithms, Monocle, first projects the
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TABLE 2 Summary of computational approaches for construction of single-cell trajectories

Toolkit/Ref
Distance
metric

Characteristics of the
reconstructed trajectory

Cell–cell
variation

Lower dimensional
visualization

Wanderlust95 Cosine Branching not allowed No No

Monocle94 Euclidean Branching allowed Yes Yes

Wishbone102 Euclidean Branching allowed No Yes

SCUBA100 Euclidean Branching allowed Yes Yes

Mukherjee et al.99 Euclidean No branching allowed Yes Yes

high-dimensional dataset into lower dimensions using independent

component analysis,82 and then determines the trajectory by treat-

ing single cells as the vertices of a graph.94 The Euclidean distances

between the abundances of cell pairs denote the weights of the edges

joining the vertices. The developmental trajectory is then calculated by

finding the minimum spanning tree graph.94 A tree graph is a graph

without loops where any two vertices are connected, and the mini-

mum spanning tree graph possesses the minimum value for the sum

of the edge weights among all possible spanning tree graphs. Another

algorithm, Wanderlust, creates a developmental trajectory by consid-

ering graphs in dimension of the measurement where single cells are

considered as vertices of a graph where the weights (or length) of the

edges connecting the vertices are given by the Cosine distance.95 The

developmental trajectory is determined by finding the shortest path

that connects the precursor cell to the end-state. Kared et al.96 used

Wanderlustwas to track development of immatureCD56bright NKcells

in individuals infected with HCMV using CyTOF measurements. The

study foundNK cells fromHCMV-infected individuals showed an early

loss of CD62L accompanied with an up-regulation of NKG2C, CD57,

CD85j, and Tim-3.96

The challenge of trajectory reconstruction posed by the type (2)

measurements (Fig. 3B) are dealt with inmany disciplines, for example,

in physics, tracking fluid particles from snapshot data obtained from

microscopy experiments97 or, in computer science, tracking individ-

uals from snapshot data obtained from video feeds.98 The difficulty

in tracking individual objects in snapshot data is characterized by a

dimensionless parameter, 𝜉 = Δl/l0. Here,Δl is the average distance an
object moves between two successive time recordings (t1 and t2), l0
( = 𝜌−1/d) is the average separation between the objects that are dis-

tributed with a density 𝜌 in d dimensions. When 𝜉 ≪ 1, connecting the

objects across time is straightforward, whereas when 𝜉 ≫ 1, matching

problem becomes ambiguous. Most of the single-cell data fall in the 𝜉

≫ 1 regime.99 The reconstruction of signaling kinetics or developmen-

tal trajectories in single cells comes with several unique challenges. (1)

The same single cell is present only once. This is different from particle

or individual trackingwhere the same object can be present inmultiple

time frames. (2) The progression in kinetics during signaling or devel-

opments occurs in a much higher dimension (∼40) compared to tra-

ditional pair-matching problems dealing with individuals or particles

(∼ 2–3 dimensions). (3) Sources of randomness are unique in signaling

or gene regulatory processes where the randomness often cannot

be described by a white gaussian noise. Marco et al.100 developed an

approach (SCUBA) to determine events of multi-lineage differentia-

tion using gene expression and sc-RNA-seq data measured in single

cells in mouse embryo at very early stages of development. The algo-

rithm uses k-means clustering to cluster gene expressions at a particu-

lar time point and assign a lineage tree to the clustered data. Mukher-

jee et al.100 proposeda fundamentally different approachbyprojecting

the data in lower dimensions spanned by ‘slow’ or invariant variables

that change at amuch slower rate compared to that of the original vari-

ables. This transformation posed the original problem in a space of new

variables (invariant or slow variables I) that do not change (Δl(I) = 0) or

changemore slowly (Δl(I) →0)with time,while still varying appreciably

between the objects at a fixed time point. The matching problem cast

in terms of the new variables will result in a substantial reduction in

the parameter 𝜉(I) ( = Δl(I)/l0 (I)) and can even fall in the range (𝜉(I)

≪ 1) where tracking objects is straightforward (Fig. 3C). The method

was applied on synthetic CyTOF data generated for in silico signaling

networks and produced excellent to reasonable reconstructions for

a range of conditions. Fundamental constraints on reconstructing

trajectories and inferring underlying models using snapshot data were

studied byWeinreb et al.101 using a physical flux balance law.

4 DATA-DRIVEN MODELS WITH

MECHANISTIC INSIGHTS

Reduced models to glean mechanistic insights are usually constructed

intuitively. This approach works well when the processes of interest

are well characterized or questions of general nature are addressed in

themodeling study.However,manyof the signaling reactions inNKcell

signaling and activation are not well characterized. Furthermore, the

existence of multiple pathways to produce activation can make it diffi-

cult to choose pathways for specific NK cell simulation. In the absence

of these details it can be challenging to set up a mechanistic model

because of the large number of possibilities for constructing reaction

rules between the interacting components. Data-driven models that

characterize the data in large dimensions obtained by single-cell tech-

nologies are usually statistical in nature and do not have the capabil-

ity of the reduced models to investigate mechanistic hypothesis with

molecular details. Several recent studies have attempted to bridge this

gap. Krishnaswamy et al.103 developed an information theory-based

method to analyze signal processing in naïve and antigen-exposed T

cells. The approach estimated a conditional probability distribution

function (P(y|x)), which described the probability of finding a single cell

with a protein Y with an abundance y when another the abundance of

another protein X is fixed to a value of x. The dependence of the con-

ditional probability P(y|x) on the values of x determine the effect of
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the protein species X on Y. An information metric was calculated using

P(y|x), which vanishes when x and y are independent of each other and

increases as y becomes dependent on x. Application of the method on

CyTOF measurements in CD4+ T cells showed that upon stimulation

by crosslinking CD3, CD28, and CD4, the influence of pErk on pS6

increases with time in both naïve and memory CD4+ T cells; however,

the magnitude of the influence was larger in the naïve compared to

that of thememory T cells. This prediction was further tested in T cells

obtained from Erk-knockout mice.

Mukherjee et al.41 developed a novel data-driven approach where

the CyTOFmeasured signaling kinetics in a particular time interval are

effectively described by a system of coupled first-order chemical reac-

tions. In themodel, the estimated reaction rates and the associated flux

of molecules between pairs of proteins describe the strengths of the

effective causal interactions between pairs of molecular species. The

framework has several advantages: (1) It provides an effective mech-

anistic description of the signaling kinetics in a time interval. (2) The

effective kinetics separates the contributions of basal (tonic) signaling

versus IL-2 pre-treatment or priming and the receptor (e.g., CD16 or

NKG2D)-induced signaling kinetics in single-cell protein abundances

post-receptor stimulation. (3) The model kinetics can be solved ana-

lytically in a closed expression, thus allowing for precise estimation of

the rate constants. The available CyTOF data analyses methods103 are

unable to provide the above properties, e.g., property #2. This method

was applied to analyze signaling kinetics in immature CD56bright and

mature CD56dim NK cells stimulated by NKG2D antibodies. The in sil-

ico analysis of fluxes between the protein pairs showed a predicted

involvement of CD45 in inducing large changes in the signaling path-

ways in the IL-2-treated CD56bright NK cells. IL-2 treatment increased

the abundance of CD45 in CD56bright NK cells by ∼2-fold, which led

to stronger Src kinase activation, resulting in increased Erk activation

and CD107a mobilization after NKG2D stimulation. Thus, a predic-

tion from this mechanism is that the IL-2-treated immature CD56bright

NK cells possessing CD45 abundances closer to that of control media-

treated CD56bright NK cells will display substantially less amounts of

CD107a on the cell surface following NKG2D stimulation. This pre-

diction was tested by comparing the IL-2-treated CD56bright NK cells

against low and high CD45 expression at a later time-point (t= 256min,

not used in model training) after NKG2D stimulation and found that the

NK cells with lower CD45 abundances indeed displayed less amounts

of CD107a on the cell surface. Another model prediction tested was

that both IL-2- and media-treated NK cells produce similar amounts

of pErk if CD45-mediated Erk activation pathway is bypassed. PMA +
ionomycin stimulation bypasses the need for Src kinases for Erk acti-

vation and we found that both IL-2-treated and control media-treated

NK cells showed similar increases of pErk.

5 TOWARD THEORY

The central framework for explaining NK cell activation or tolerance,

known as the missing-self hypothesis, was proposed by Kärre.104,105

The original form of the missing-self hypothesis was proven to be too

simplistic and was generalized by Lanier and others.106 In the recent

years, several experiments, in particular, the absence of responsive-

ness of NK cells that lack any self-MHC inhibitory receptor during

development, has contradicted the missing-self hypothesis. Based on

the recent experimental results Pradeu et al.107,108 proposed a discon-

tinuity theory, which stated that NK cells (and immune cells in general)

respond to a discontinuous change in external signal but become toler-

ized to signals changing continuously. The authors set up a mathemat-

ical description that expressed an output variable denoting the activa-

tion of immune cells as a sigmoidal function of an input variable repre-

senting an external signal. The output at any instance of timedepended

on the sum of the changes in the input variable over a time interval in

the past. The mathematical relationship reproduced the basic condi-

tions of the theory, namely, increase in the output when the input vari-

able changedabruptly, anddecayof theoutput for a continuous change

in the input variable. As expected from a theoretical framework, their

theory makes several testable predictions, for example, the chronic

activationof the immune system in autoimmunedisorders is generated

from the change in auto-antigens during the course of the illness. The

mathematical tools used in developing this theory precisely quantify

the basic propositions; however, the predictionsmade from the theory

in Pradeu et al.107,108 do not depend on the non-trivial derivations

of the mathematical formulation. In his autobiography, Darwin com-

mented, “I have deeply regretted that I did not proceed far enough at

least to understand something of the great leading principles ofmathe-

matics; formen thus endowed seem tohave an extra sense”.109 Obtain-

ing this “extra sense” should be the aspiration of modelers striving to

generate theories for NK cell biology and in general biological systems.

6 FUTURE DIRECTIONS

The studies reviewed here demonstrated that mathematical and com-

putational tools help analyze complex data, glean mechanisms, create

mathematical models, and generate theoretical frameworks in NK cell

biology. What is the future of application of quantitative approaches

in NK cell biology? We think the future of this area of research will

be exciting, and as we discuss below, computational and mathematical

methods cangenerate transformative results in several areasofNKcell

biology in the coming years.

Development of mechanistic computational and mathematical

models for describing signal integration and activation in single NK

cells stimulated by diverse ligands cognate to activating and inhibitory

NKRs, and adhesion receptors will help us comprehend NK cell activa-

tion and tolerance beyond themissing-self hypothesis, which has been

found to be too simplistic to describeNK cell activation inmany recent

experiments, for example, NK cell activation due to changes in peptide

repertoire.54 Furthermore, super resolution and confocal microscopy

experiments have demonstrated nontrivial changes in spatial re-

organization of NKRs,110–113 NKR-associated signaling proteins,112

cytokine receptors,114 and coordinated reorganization of cytoskeletal

elements115 and transport of cytolytic granules115,116 during NK cell

signaling and activation. Quantitative models with predictive powers

that account for the above diverse interactions as well as spatial

changes could potentially provide valuable mechanistic insights that
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underlie activation of different types NK cells such as educated,117

uneducated, or “memory” NK cells.118 In silico predictions from such

models regarding outcomes of specific NK cells interacting with

target cells expressing designed ligands can be relevant for vaccine

development.119 Importantly, a better understanding of these NK

cell activation mechanisms is relevant to understanding why NK

cells tolerate the existence of tumors in cancer patients that have

lost MHC class I—and theoretically should be eliminated by “miss-

self” recognition.

Diverse NK cell populations (e.g., educated or uneducated NK

cells, “memory” NK cells) appear to be relevant for controlling viral

infections such as HCMV infection or proliferation of tumor cells

or graft rejection. High-dimensional datasets such as RNA-seq data

describing changes in NK cell gene expressions16,72,120 NKR gene

sequences,72,121 and protein expressions in single NK cells (e.g.,

CyTOF)70,72,122 provide detailed description regarding the involve-

ment of NK cell populations in immune responses elicited by a viral

infection or by an organ transplant. Data-driven models are being

increasingly applied to develop predictive computational frameworks

to determine precision biomarkers in patients for optimizing NK

cell123 and T cell responses124 in immunotherapies or organ trans-

plants. However, a key challenge in this endeavor is to know what

measured variables should be included in such computational models.

In addition, these measurements still probe a small fraction of the

complex NK cell response in these patients; therefore, knowing what

additional variables need to be measured so that the models can

be better trained is another important question. The difficulty in

addressing the above challenges arise due to the lack of a principled

framework for combining the diverse datasets that are acquired at

different scales (e.g., single cells, organs, human subjects) and time

points (e.g., different days after an organ transplant). Similar problems

inmodeling complex datasets are encountered in diverse areas such as

protein structure prediction (https://deepmind.com/blog/alphafold/)

or modeling the climate.125 Recently developed computational

tools have made substantial progress in generating precise pre-

dictions in these complex systems, and some of these tools

will hopefully be useful for analyzing the above questions in NK

cell biology.

NK cell response in an individual, as discussed in the Introduction,

involves a wide range of scales. At present, we have mechanistic mod-

els that are developed to describe NK cell response in a particular

scale (e.g., single cell or cell populations). Since the processes in these

scales interact seamlessly during a host response against an infection

or a tumor it will be essential to combine these models in order to

gain a mechanistic understanding into the role of NK cells within the

host response. Data-driven learning models combine data from these

different scales,126 but provide little or no mechanistic interpreta-

tion. Thus, a challenge for quantitative researchers is to be able take

the advantages of the rich multidimensional datasets and the learn-

ing algorithms and create approaches to delineate mechanisms that

underlie complex NK cell responses. Similar challenges of integrating

models spanning wide range of scales exist in different disciplines such

as statistical physics127 and materials science.128 Borrowing quan-

titative tools from these areas and combining those to the existing

mechanistic and data-driven models in NK cell biology can generate

novel solutions.
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