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Abstract
We propose an acceleration scheme for real-time many-body dynamic collision detection. We kinetize the sweep
and prune method for many-body collision pruning, extending its application to dynamic collision detection via
kinetic data structures. In doing so, we modify the method from sample-rate driven to event-driven, with no more
events than the original method processed, also removing the per-frame overhead, allowing our method to scale
well in terms of frame-rates. Unlike many schemes for many-body collision pruning, ours performs well in both
sparse and dense environments, with few or many collisions.

Categories and Subject Descriptors(according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Virtual reality
General Terms: Algorithms, Performance, Reliability
Additional Key Words and Phrases: dynamic collision detection and kinetic data structures

1. Introduction

Collision detection is a common and often critical require-
ment for virtual and augmented reality, haptics, and physical
simulations. The work of collision detection is to determine
if/when objects intersect, or interact, which is useful in pro-
viding realistic environments, accurate simulations, and both
appropriate and robust user interactions. The level of accu-
racy in collision detection directly affects each of the afore-
mentioned properties. While some situations involve rela-
tively few objects, it is common to find scenarios with hun-
dreds or more objects. Scenarios requiringmany-body colli-
sion detectioninclude: large or complex environments, col-
laborative environments, and complex or large-scale physi-
cal simulations (see Figure 1). Most of the scenarios we have
mentioned involve objects whose motion is not fully known
in advance and require interactive frame rates of 30-60 Hz,
so they require an on-line collision detection method. Hap-
tics require even greater response rates at 1000 Hz or more.

Collisions are a common form of interactions, usually de-
tected by the use of intersection tests. Many-body collision
detection usually involves an acceleration method for prun-
ing the majority of tests for object intersections paired with
a method for reducing the number of feature intersection

tests, along with more exact (and expensive) methods for
finding interacting object features. The three primary classi-
fications that apply to any of the above components of colli-
sion detection are static, pseudo-dynamic, and dynamic (also
called continuous) [HKM95]. Static refers to one-time meth-
ods that determine if objects interact in their current config-
uration. Pseudo-dynamic collision detection is the common
extension of static methods to systems with moving objects
by incrementally moving objects and performing static col-
lision detection at a regular rate. Commonly, due to the ir-
regular distribution of collisions in time, this rate is too fre-
quent or too infrequent at any given point in simulation.
It is well known that these methods suffer fromtemporal
aliasing,missing collisions due to objects moving too much
between collision detection samples. Increasing the sample
rate yields greater levels of accuracy with diminishing re-
turns and degraded performance. Dynamic collision detec-
tion considers time and motion information in order to give
conservative results without missing collisions, also pro-
viding time and location information about collisions. Re-
solving collisions is straightforward given this information,
since objects never interpenetrate. Dynamic collision detec-
tion does not suffer from temporal aliasing. The threshold
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Figure 1: Many-body (1000 rings, all in motion) interactive
collision fly-through scenario on a display wall, for visual
exploration. Red models are colliding.

where the accuracy of dynamic collision detection signifi-
cantly diverges from pseudo-dynamic collision detection de-
pends on how far objects move per sample interval. We have
previously demonstrated that this threshold is when objects
move by 1/3 of the smallest diameter of any feature, per sam-
ple interval, orframe[CS04].

Methods for pruning object intersections as well as
feature intersections often use bounding volumes (BV) for
simple preliminary tests, to reduce the number of expensive
primitive tests that must be performed. World-centric BV’s,
described in world-coordinates and often used in many-body
collision pruning, include axis-aligned bounding-boxes
(AABB) [HKM95, CLMP95, Zac02, ES99], discrete ori-
ented polytopes (k-DOP) [FF03, Zac98, ES99], and spheres
[KGS98, Hub95, Hub96, PG95, ES99, OD99, RKC01].
Spheres are also used as model-centric BV’s.
In contrast to most world-centric BV’s, model-
centric BV’s like oriented bounding-boxes (OBB)
[Ebe02, ES99, RKC02, RKLM03, GLM96, GML00], are
described in model-coordinates, and are often trivial to up-
date for rotations. Model-centric BV’s are useful for object
feature collision pruning. Both pseudo-dynamic and dy-
namic BV intersection tests exist for BV’s [KGS98, Ebe02].

Collision pruning methods utilize spatial and temporal co-
herence of objects in consecutive frames. Spatial subdivision
methods [KGS98, dBCG01] prune pairs of objects that can-
not possibly collide because they are not in the same cell
at the same time. Spatial subdivision suffers from the diffi-
culty of choosing cell sizes as well as the performance ratio
of work spent on the scheme to the number of collisions de-
tected. Adaptive spatial subdivision [dBCG01] suffers from
high constant factors in the cost of maintaining the spatial
subdivision as well as pathological configuration cases.

Coherence also aids the sweep and prune method used
by Cohen et al. [CLMP95], as well as bounding vol-
ume hierarchies (BVH), in efficiently reducing the num-
ber of bounding volumes that need to be compared.
[KHM ∗98, Ebe02, Zac02, van97, RKC02, RKLM03]

In this paper, we present a many-body dynamic collision
detection method that operates at interactive rates. To this
effect, our contributions are as follows:

• Kinetize the sweep and prune method for use with
dynamic collision detection.

• Provide an event-driven method with no per-frame over-
head, that is particularly scalable in terms of frame-rates.

• Demonstrate a scheme for efficient dynamic collision
detection, with only locally known motion, that is quickly
responsive to changes in motion.

• Give an alternative to swept bounding volumes for
reducing the number of dynamic object intersection tests.

2. Related work

Most collision detection schemes work with a collision de-
tection pipeline similar to the one proposed by Zachmann
[Zac01]. This involves updates to bounding volumes, pair-
wise bounding volume tests, and pairwise feature tests be-
tween possibly-intersecting objects. This is followed by col-
lision response, performed for each interval of time, usually
at a rate of at least 30 Hz, some beyond 1000 Hz. Such meth-
ods incur overhead for each time interval tested, spent updat-
ing bounding volumes and collision pruning data structures,
regardless of the occurrence or frequency of collisions dur-
ing the time interval.

2.1. Collision detection methods

Dynamic collision detection methods generate results that
are valid so long as the motions of the involved objects are
valid. Thus, dynamic methods are driven by the events that
cause changes in objects’ motions. Swept bounding volumes
(SBV) [MC95, RKC02, RKLM03, LSW99, HKL∗99], are
pseudo-dynamic BV’s that bound an object through its entire
motion over a time interval, effectively reducing the num-
ber of dynamic intersection tests by casting the dynamic
collision pruning problem into pseudo-dynamic acceleration
schemes such as [CLMP95]. The problem with this is that
it is still constrained by per-frame overhead, which is now
more expensive due to the requirement to find tight bounds
on not only the object, but its motion. Sampling too infre-
quently results in large SBV’s, and thus more dynamic in-
tersection tests. Yet sampling too frequently results in much
overhead in computing the SBV’s. Instead of an SBV that
bounds motion, while itself not moving, we would like to use
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a BV that moves with the object it bounds [KGS98, Ebe02],
to avoid the per-frame overhead of SBV’s. We will call this
moving BV akinetic BV.

In I-COLLIDE, Cohen et al. [CLMP95] usedsweep and
prune, a pseudo-dynamic object collision pruning method
which reduced 3D collision detection among AABB’s into
three separate 1D problems, taking advantage of spatial co-
herence for expectedO(n) performance. We note that sweep
and prune is a pseudo-dynamic method with per-frame over-
head. We discuss sweep and prune in further detail in Section
3 and our extension of it for dynamic collision detection by
kinetizingin Section 4.1.

Other methods using sweep and prune include: SOLID
[van97, van99, van01], Swift++ [EL01], and V-COLLIDE
[HLC∗97]. Each of these methods used sweep and prune
for object collision pruning along with different pseudo-
dynamic intersection tests: Enhanced GJK [Cam97], Lin-
Canny [LC91], and Separating Axis Theorem (SAT) with
OBB-tree [GLM96] respectively. Further, each method
could benefit from using our extensions along with the dy-
namic version of their corresponding intersection tests.

Eberly [Ebe02] discussed efficient dynamic collision tests
based on SAT, applied to polygons, spheres, and OBB’s.
He also provided a framework for hierarchical dynamic col-
lision detection with OBB-trees, which we use. Cameron
[Cam90] extruded 3D objects into a hierarchical 4D struc-
ture and performed half-space intersection tests based on
that. He noted, however that for many-body collision detec-
tion part of the method explicitly considered allO(n2) pairs
of objects. Eckstein and Schömer [ES99] used hierarchical
dynamic collision detection between complex objects, but
did not resolve many-body dynamic collision detection, cit-
ing it as a “major bottleneck of multi-body simulation.”

Hotz et al. [LSW99, HKL∗99] used swept AABB’s with
space partitioning or coordinate sorting (similar to sweep
and prune) for object collision pruning. Remaining object-
pairs were tested for collisions using dynamic intersection
tests. Our previous arguments against spatial subdivision and
swept bounding volumes apply here.

Redon et al. [RKC02] used swept OBB’s and heuristically
subdivided them when they grew too large relative to the ob-
ject itself. The necessity of such a heuristic along with the
involved work in subdividing SBV’s is evidence to us in fa-
vor of kinetic BV’s over SBV’s. They made no claims of
scalability in the number of objects, however our tests with
low frame-rates that have resulted in 30% more SBV over-
laps, and thus worse collision pruning, than kinetic BV’s.

2.2. Kinetic data structures

Kinetic data structures (KDS) [BGH99] are methods for mo-
bile data that “animate proofs through time,” by maintaining
a set ofcertificatesand a schedule of events representing

failures of the certificates. For collision detection, a common
use of KDS is to maintain proof of non-penetration of a pair
of objects [BGH99, BEG∗04, dBCG01].

Basch et al. provided an efficient KDS [BGH99] for main-
taining the closest pair of points in a set, a method that natu-
rally extended to maintaining closest features, which is use-
ful for collision detection, however the closest pair of points
or features can easily changeO(n2) times without a colli-
sion even occurring. Maintaining the closest pair generates
events too frequently for the case of collision detection, and
with complex non-convex objects, evaluating the closest pair
is expensive. Basch et al. [BEG∗04] further provided meth-
ods for kinetic collision detection between two non-convex
polygons by maintaining a KDS that kept track of the space
between the polygons.

Kim et al. [KGS98] utilized a KDS for space-partitioning,
where the events were (bounding) spheres entering or leav-
ing cells, as well as collisions. Their method requiredO(lgn)
work each time an object entered or left a cell, often much
more frequent events than collisions.

Often, collisions are irregularly distributed in time, so we
propose an event-based collision detection method that uses
a KDS to avoid this per-frame overhead.

3. Overview

Our method allows the simulation to drive its action, pro-
cessing events in time-sequential order and/or accepting mo-
tion updates as deemed necessary by the simulation. Due
to the order of events, collision pruning, object intersection
tests, and collision responses are handled in an interleaved
manner. Figure 2 shows how we handle these actions. Note
that the simulation can delegate work to the collision de-
tection whenever it has extra time; the collision detection
engine is robust and without penalty for invoking collision
detection too frequently or infrequently.

In order to accomplish this, our methods draw on estab-
lished techniques in both collision detection and computa-
tional geometry. Sweep and prune [CLMP95] provides ob-
ject collision pruning while we use dynamic collision de-
tection using OBB-trees [Ebe02] for exact feature-level col-
lision detection. Kinetic data structures [BGH99] are com-
monly used in computational geometry for efficiently han-
dling data points with motion information.

Sweep and prune is a dimension reduction collision prun-
ing technique that projects objects’ geometries into 1D inx,
y, andz, storing the extrema on lists. The method updates and
sorts these extrema and prunes collisions by tracking when
they swap positions. We go into more detail on sweep and
prune in Section 4.1 and object intersection tests in Section
4.4. For now, we note that it is a good candidate forkine-
tizing, extending a static or pseudo-dynamic method with a
kinetic data structure, because it depends on swaps that are
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[New BV intersection]   
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Figure 2: The collision detection engine (CDE) offers an
interface with two primary functions, event processing and
updating object motions. Whenever motions are updated
through the interface, the CDE maintains motion-dependent
event predictions (swaps and collision responses) and may
perform complex object intersection tests. Further, the CDE
processes events, in time-sequential order as requested by
the simulation. Collision response events callback to the sim-
ulation for collision response, with resultant motion changes
being processed as before, as well as testing the next possi-
ble collision with the same objects. Swap events, requiring
some prediction maintenance, signal that a pair of AABB’s
may have started or ceased to intersect. In the former case,
the CDE uses dynamic intersection tests to predict when and
where a collision may occur.

straightforward to extend into swap events. For further dis-
cussion of swap events, see Section 4.2.

By kinetizingsweep and prune, we transform it from a
frame-driven method, dependent on updates at a regular in-
terval, to an event-driven method. Many collision detection
methods are frame-driven due to convenient synchroniza-
tion with rendering. However, collisions are often irregularly
distributed in time, so detecting collisions is best done in
an event-driven manner, where the events are: collision re-
sponses, motion changes, and BV intersections. All of these
events signal the possibility of new collisions, so they can re-
sult in object intersection testing. In our case, as with sweep
and prune, the status of BV intersections are signalled by
swap events. We go into more detail onkinetizingsweep and
prune in Section 4.1 and the events in Section 4.2.

4. Components of our method

In this section we present the components that make up our
dynamic collision detection schemekinetic sweep and prune
(kinetic SP). Given descriptions of the motions of objects,
we schedule events that signal when kinetic BV’s start or
stop intersecting. When kinetic BV’s start intersecting, a pair

objects could collide in the near future, so we perform dy-
namic complex object intersection tests to determine when
and where the first point of intersection will occur. If a future
intersection is found, we then schedule a collision response
to occur at the first intersection time.

4.1. Kinetizing sweep and prune

We use akinetic sorted list[BGH99], a KDS for maintain-
ing a sorted list of 1D moving points. This keeps the list
continuously sorted, in spite of the values in the list chang-
ing, i. e. due to their motion. For each pair of adjacent list
elements, we schedule an event for the first time when the el-
ements cross (or the earliest time they could possibly cross,
if motion descriptions are incomplete). The following equa-
tion shows the simple calculation to predict intersection for
linear motions:

t =
p j − pi

vi −v j
. (1)

Wheret is the time of intersection relative to timet0; pi , p j
and vi , v j correspond to the position and velocity, respec-
tively, of moving pointsi and j at t0.

Scheduled events are processed in time-sequential order
and list elements swap positions, resulting in the destruction
of two old adjacencies and the creation of two new adja-
cencies. Thekinetic sorted listmust respond in turn by de-
scheduling up to two events and scheduling up to two new
events. Processing each swap in this way is not optimal for
certain circumstances [BGH99]. However, we apply theki-
netic sorted listto the sweep and prune method, where the
swaps provide useful information relevant to collision detec-
tion. For this reason, theoretical bounds on kinetic sorting
established by Abam and de Berg [AdB05] do not apply to
our method.

For collision pruning, wekinetize sweep and prune
[CLMP95]. We maintain three ascending-order sorted lists:
one for each ofx, y, andz axes. The elements on the lists
are intervalsMini ,Maxi , obtained by projecting objects’ ge-
ometries onto each axis. We keep these lists updated with
current projections and sorted with insertion sort. When two
maxima, or two minima, swap positions, there is no effect.
However, whenever a maxima and a minima swap positions
on the list, a pair of intervals either begins or ceases to inter-
sect, depending on whether the left element was a maxima or
minima, respectively, prior to the swap. A pair of objects can
intersect only if their projected intervals intersect on all three
axes, i. e. their AABB’s overlap. Thus, sweep and prune
maintains a basic set of separating axes, axes upon which ob-
jects’ projections do not intersect, which act as “witness” to
the non-penetration of objects. Further, this witness to non-
intersection is maintained through swap events.

Worst-case performance of this method is due to the pos-
sible number of swaps,O(n2). In practice, Cohen et al.



D. S. Coming & O. G. Staadt / Kinetic Sweep and Prune for Collision Detection

y

x

Mina Minb Maxi Minc Maxj MaxkØ pb,i Ø Ø pj,k
vax vixvbx        vkx

vjx      vcx

vj 

vk

vi
vb

va vc

Figure 3: Kinetic SP represents objects by their kinetic BV’s.
These are obtained by projecting objects’ geometries into
AABB’s; then the x and y components of the AABB’s and
objects’ velocities are stored in lists, one per axis. Kinetic SP
stores predictions for when adjacent list elements will swap,
based on their motion, e.g. by Equation 1. A prediction of∅
indicates that the corresponding pair of elements will never
swap. The details of the list corresponding to the x-axis have
been shown; the y-axis has a similar representation, as does
the z-axis in the 3D case.

[CLMP95] argue, the performance of the insertion sort is ex-
pectedO(n). Such optimal scenes for the method are sparse,
have few collisions, or exhibit a high degree of temporal co-
herence due to either small object velocities or high sam-
ple rates. In these cases, we have measured that the number
of swaps is often one or more orders of magnitude smaller
thann. This indicates that the bottleneck no longer rests on
the frequency of swaps, but instead on updating the list el-
ements and verifying the sorted order of the lists. We can
remove these costs by using a KDS to maintain a proof that
the lists are sorted.

Kinetizingthe sweep and prune method involves usingki-
netic sorted listsrather than static lists with insertion sort.
Each list element has its own motion information. In ad-
dition, a priority queue stores predictions for when each
adjacent pair of list elements will swap, e.g. by Equation
1. Figure 3 shows how kinetic SP obtains and represents
these kinetic sorted lists from the objects’ BV’s and mo-
tions. The need for updates is reduced to only notifying ki-
netic SP when the motion of an object changes, rather than
every time the position changes. Otherwise, the sweep and
prune method is unchanged: we handle swaps the same, use
AABB’s, use one list for each of thex, y, andz axes, and
maintain the overlap status of each pair of BV’s.

MaxjMini MaxkMaxh
Ø pi,j pj,kpa,bMina Minb

... ...pq,r...pj,kpa,bpi,j

   Queue front

MiniMaxj MaxkMaxh
ph,j Ø pi,kpa,bMina Minb

pa,b pq,r...ph,j......pi,k

   Queue front

Before Swap (Mini, Maxj)

After Swap (Mini, Maxj)

Figure 4: Example of performing a swap: Kinetic swaps in-
volve up to four extrema: two to swap(Mini ,Maxj ), and
their neighbors(Maxh,Maxk) if any. For brevity, we will
refer to them as simply h, i, j,k. First get the next swap
from the queue. Deschedule non-null predictions among
ph,i , pi, j , p j,k. Note ph,i was∅, meaning h, i would not swap
given current motions. Next, swap the nodes i, j in the list.
Then, calculate the 1D intersections of h, j, i,k (note the jux-
taposition of i, j) and schedule the results as predictions
ph, j , p j,i , pi,k on the queue, whereby a prediction of non-
intersection is stored as∅. In this case, a minima swapped
with a maxima on its right, indicating that the corresponding
objects do not intersect. Changes are highlighted in red.

4.2. Events

Our system works with two types of events: collision re-
sponses and swaps. The KDS for swaps involves a priority
queue of swap predictions and a list of extrema with motion
information. Figure 4 demonstrates how swaps are handled.
When motions change, effectively, the same method is ap-
plied. Swap predictions for the neighbors ofMini ,Maxi are
descheduled, recalculated, and rescheduled; the difference is
that nodes are not swapped, unless the motion change was a
discontinuous change in position. Swaps and collision re-
sponses are stored in separate priority queues. To avoid un-
necessary computation on events that can be cancelled, only
the event time and associated object references are calcu-
lated in advance. The collision detection system processes
each swap or collision response in time-sequential order,
when prompted by the simulation. Additionally, the colli-
sion detection interface allows the simulation to notify the
collision detection engine of motion changes for objects.

Basch et al. [BGH99] mention that for a “real time sys-
tem, it is possible that there is not sufficient time to com-
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pletely process an event before the next event appears.” Pro-
cessing the swap event, in our case, isefficientin terms of
KDS’s, because the number of internal events is the same
as the number of external events, swaps, withO(lgn) work
for scheduling. The number of swapss is O(n2) in the worst
case, for linear motion in a given time interval. Events, es-
pecially collision responses, can occur in bursts with arbi-
trarily close times such that any system would fall behind.
We attempt to minimize the latency in such a scenario by
using OBB-trees for efficient intersection tests of large com-
plex models. Additionally, we cache the results of dynamic
intersection tests, which are by their nature, predictive, and
valid until the motions of the objects change. Our system is
scalable to very high frame rates, and often would leave the
CPU idle in a forced real-time situation. In such a case, it
would be possible to utilize the extra time for caching future
predictions and use a Timewarp Collision Detection [Mir00]
system for concurrency control.

4.3. Object motion

We draw a contrast here, between a discontinuous change in
position, and continuousmotion. Many collision detection
methods pay a cost related to objects merely moving through
space, whether they could possibly collide with other objects
or not. Among these methods are any pseudo-dynamic or
spatial subdivision methods, but most notably the original
sweep and prune, which Cohen et al. [CLMP95] measured
to have spent significant amounts of time updating bounding
volumes, due to discontinuous changes in objects’ positions.
Indeed, it was as much or more than the time spent sorting
theirO(n) size lists with insertion sort, which did exhibit the
expectedO(n) behavior.

For the kinetic sorted list, we can assume any piece-
wise pseudo-polynomial function for motion, which is what
KDS’s are designed to handle. We assume motions are
known at least locally, and that motions can change at any
time, so long as the collision detection system is notified of
the change. Though kinetic SP can efficiently and robustly
prune collisions with higher order motions, we use piece-
wise linear motions for simplicity in our testing. This is due
to the complications of higher-order primitive intersection
tests necessary when objects’ BV’s overlap.

In some cases, it is useful to provide kinetic SP with
simplified bounds on motion, rather than exact descriptions.
This is especially useful when actual motions are expensive
to parameterize and/or change very frequently. Also, this can
be used to deal with noise in the source of motions (e. g.,
tracked input devices). Further, for handling motions which
include rotations, kinetic SP could work just like the origi-
nal sweep and prune; place spheres around rotating objects,
so they have rotation-invariant BV’s as in [MC95], and then
enclose this with an AABB, which is not much larger than
the sphere [CLMP95]. Alternatively, the minima and max-
ima of the AABB’s could use motions that expand and con-

Figure 5: Example of a complex model scenario requir-
ing kinetic sweep and prune, along with OBB-trees for ef-
ficiency. Each of the 100 models is composed of over 6000
triangles, for a total of over 600,000 triangles; our collision
detection engine sustains over 15 frames per second, includ-
ing dynamic intersection tests. Red models are colliding.

tract the AABB to handle rotations. For the sake of avoiding
pathological cases where swaps happen at a high rate due to
such oscillation as shown in [CLMP95], we use an AABB
around a sphere for rotating objects. Dynamic intersection
tests that handle rotations [KR03, Ebe99] are not necessar-
ily fast enough for interactive rates with many objects. This
is because there is no closed form solution to those tests and
numerical solvers are required for root finding.

Motion has a tendency to change often, in scenarios re-
quiring collision detection, due to collision response, user
intervention, or other external factors. It is important, there-
fore, for the KDS to beresponsive,requiring updates for
few events when motion changes. For kinetic SP, a motion
change for an object can result in modification of up to six
events, two per axis, each of which could requireO(lgn)
work for scheduling. In practice, this work, while compara-
ble to that of a swap, is invoked much less frequently.

4.4. Practical concerns

Promptly following swap events that generateactive pairsof
objects (i. e., those whose BV’s overlap), we perform hier-
archical dynamic intersection tests between the correspond-
ing complex objects. The minimum of the search interval
for these tests is bounded by the current simulation time,
typically when the last swap, collision response, or motion
change occurred. The maximum starts unbounded. As with
any dynamic collision detection, the results of these inter-
section tests become invalid for objects which undergo colli-
sion response and/or motion changes. At such a time,active
pairs including one or more of the affected objects require
re-testing.



D. S. Coming & O. G. Staadt / Kinetic Sweep and Prune for Collision Detection

For complex object collision tests, we use dynamic in-
tersection tests with OBB-trees [Ebe02], based on interval
arithmetic and SAT, which gives time, location, and feature
information for collisions. We tested dynamic intersection
tests with sphere-trees like [RKC01], however OBB-trees
yielded significantly faster performance. Figure 5 contains
examples of complex objects, with over 6000 triangle faces,
that rely on OBB-trees for efficient intersection testing.

We refer the reader to the literature on OBB’s
[Ebe02, ES99, RKC02, RKLM03, GLM96, GML00] for in-
formation on hierarchical OBB intersection tests. Here it is
sufficient to know that an OBB-tree is a hierarchy of OBB’s,
built by bounding and subdividing pieces of a model, with a
constant number of primitives in each leaf node. OBB-trees
have been shown to be tight by Gottschalk et al. [GLM96].
Testing for intersections between objects bounded by OBB-
trees involves recursing through the trees, performing OBB
intersection tests among tree nodes and primitive intersec-
tion tests among primitives bounded in leaf nodes. This con-
tinues until intersecting primitives are found. For dynamic
intersection testing, the first intersection time is usually de-
sired, so the search continues after bounding the maximum
of the search interval with the first known intersection time.

Since the majority of the work spent maintaining a KDS
is scheduling and descheduling events, it is crucial to choose
an appropriate data structure for the priority queue. We chose
the auxiliary two-pass pairing heap [SV87], due to its effi-
ciency for priority queue operations. It features amortized
O(1) complexity operations for insert, meld (join with an-
other pairing heap), amortizedO(lgn) operations for re-
moveMin as well as arbitrary removals and decreaseKey, all
with low run-time coefficients.

5. Results and analysis

We tested many-body collision detection methods with ring-
models composed of 64 triangles each (see Figure 1). Except
where noted in specific experiments, collision detection was
sampled at 1000Hz with a scene consisting of 1000 objects
at 1% scene density, with velocities in random directions at
a magnitude in the range of 0.5–1.5 times the radius of the
average bounding sphere. Although we have demonstrated
interactive rates with more complex objects, as in Figure 5,
rings are sufficient to demonstrate the performance of colli-
sion pruning methods intended for complex objects.

As a simple approach to the problem, consider a dynamic

collision detection system which tests alln(n−1)
2 possible

object-object intersections and caches the results and han-
dles the collisions in order. Whenever a collision response
occurs or an object’s motion changes, the system would need
to re-test each affected object against each of the othern−1
objects. Let us refer to this method as cached dynamic col-
lision detection. As we will show, it is quite inefficient due
to the lack of collision pruning. However it is event-driven,
performing work only as necessary per collision.

Scalability - many objects and collisions
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Figure 6: Scalability of dynamic collision detection meth-
ods with respect to objects and collisions. Time spent on
collision detection includes updates, pruning collisions, and
intersection tests, and represents one second of simulation
time, sampled at 1000Hz. Reductions in the number of col-
lisions per object in certain configurations result in propor-
tionally much less work for methods without per-frame over-
head, favoring kinetic SP. Times are for 1000 frames.

Results were gathered on a 2GHz AMD Opteron 246 with
8 GB RAM. At any time, however, our method used only
a small fraction of system memory. Collision response is
performed as simple rigid-body collisions between equal-
mass objects. For statistical relevance, since collision detec-
tion occurs at very small time-scales, we generate results by
averaging no less than five samples per data point, in addi-
tion to allowing simulations to complete between 100 and
2000 frames, one full simulation second. Further, we use
uniformly random initialization methods for each object’s
position, velocity, orientation, and size.

Independent of configuration, the results from each
method, collisions including times and locations, agreed
and were consistent throughout the tests. This is because
dynamic collision detection does not suffer from temporal
aliasing. Hence, the comparisons in Figures 6 and 7 are fo-
cused on improving the performance of dynamic collision
detection, as well as extending it to high frequency domains
without frequency-related overhead.

As is shown in Figure 6, we verify the scalability of sweep
and prune, whether with SBV’s or KDS’s. We certainly see,
on this logarithmic scale, the benefits of collision pruning
with sweep and prune, and notably kinetic SP. The number
of collisions that occur given each configuration is shown
to give reference to the behavior of each method. Both ki-
netic SP and cached dynamic collision detection are event-
driven, evidenced by how closely their costs increase and
decrease proportionally with the number of collisions. How-
ever, while sweep and prune (with or without SBV’s) also
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Scalability - frame sample rate
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Figure 7: Scalability of collision pruning methods with re-
spect to frame rates. Updating and sorting increase linearly
with frame-rates for basic sweep and prune. Slight increased
cost to kinetic SP is due to polling from the simulation.

has an associated per-event cost, shown by the jumps in cost
for 200 and 400 objects, the per-frame overhead limits per-
formance for 700 objects, compared to other methods.

Figure 7 demonstrates the per-frame overhead of sweep
and prune; the cost of updating and sorting increases linearly
with simulation frame rates. By contrast, kinetic SP only
exhibits slight increases due to the simulation frequently
polling to check if a collision response was ready. Otherwise,
kinetic SP demonstrates freedom from per-frame overhead
as an event-driven method. Ideally, the simulation would
have a thread waiting for collision response events, instead
of polling, but that would make direct comparison difficult.

5.1. Performance

Our extension of sweep and prune does not get around the
per-frame asymptotic bounds ofO(n2) in the worst-case.
The worst-case limiting factor is the number of swaps, how-
ever we have shown that the per-frame update cost ofO(n)
becomes a limitation in consideration of high frame-rates.
The number of swaps is independent of frame-rates, which
is how we treat swaps. In getting around the per-frame over-
head of sweep and prune, we take on a scheduling overhead
that comes with the KDS. With two-pass auxiliary pairing
heaps, we keep this down to an amortized cost ofO(lgn) for
removal operations andO(1) for insertions. With kinetic SP,
coherence is used maximally, in fact, preserved each time a
predicted swap occurs, thus it is not necessary to talk about
its expected performance, but instead in terms of events. The
overall asymptotic bound of our collision pruning method
for any time interval isO((s+u+c) lgn+clgc+b), where
s is the number of swaps,c is the number of collisions,
u is the number of motion updates that occur in that in-
terval, andb is the cost of all of the object intersection

tests. This is an improvement over sweep and prune’s per-
frame cost ofO(n+ s+ c+ b), sinces� f n andu� f n,
where f is the number of frames sampled. Further, this im-
proves on the cost of sweep and prune with SBV’s, which is
O(n+s+clgc+b)

Kinetic SP performs no more intersection tests than sweep
and prune with SBV’s. The kinetic BV is tighter; it does not
expand to account for motions, so it generates the same num-
ber or feweractive pairsfor intersection testing than SBV’s,
at least when referring to the same base BV-type in both
cases. Our experiments have shown that for frame-rates as
low as 1Hz, SBV’s resulted in more than a 30% increase over
kinetic BV’s in the number of dynamic intersection tests per-
formed between objects. The extra 30% increase was extra-
neous, as it yielded no more collisions. This increase in in-
tersection tests was on the order of the number of collisions
detected for the tested interval. This differential grows with
higher object velocities or lower frame-rates.

In the terms outlined by Basch et al. [BGH99], the kinetic
sorted list islocal because the maximum number of events
in the KDS that depend on one moving object isO(1). In
fact, it is six: up to two events per axis. Further, it iscompact,
because it only requiresO(n) space. Also, it isefficientin our
case, as opposed to its original proposal, because it performs
the same number of internal as external events, swaps.

The memory requirement of both kinetic and regular
sweep and prune isO(n2), that is required for keeping track
of whether objects’ BV’s overlap. In addition to this, we
add two priority queues, one of which stores swaps inO(n)
space, and the other stores collision responses inO(n2)
space, with active removal of invalid nodes.

5.2. Robustness

Kinetic SP only requires an axis-projected BV such as
AABB or k-DOP, along with the motion of the BV and a
guarantee that the kinetic BV bounds the object for some
specified time interval. An event could be generated for end-
ing the validity of a kinetic BV, whereupon it can be recal-
culated. Kinetic SP works independent of the underlying de-
scription of objects, which could be made up of triangles,
point sets, or parameterized functions, for example. Further,
kinetic SP is independent of the motion of underlying ob-
jects, dependent only on the possibly simplified motion of
the kinetic BV provided. Rotations and even deformations
can be accounted for in the motion of the kinetic BV. It is
also necessary that some methods for testing object interac-
tions are defined, such as intersection tests.

Our method can use pseudo-dynamic intersection tests by
scheduling polling events that perform intersection tests on
all active pairsof objects at the polling time. This introduces
a per-frame overhead, but not due to kinetic SP. Such costs
may be acceptable for objects whose dynamic intersection
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tests are undefined or too costly. When used with pseudo-
dynamic intersection tests, our method will not introduce
missed collisions; it reports exactly when kinetic BV’s over-
lap. Missed collisions are due to pseudo-dynamic testing.

6. Conclusions and future work

We have presented our many-body dynamic collision detec-
tion system. We havekinetizedthe sweep and prune method,
extending its use to dynamic collision detection, and remov-
ing its per-frame overhead. This allows kinetic sweep and
prune to perform not only at interactive rates, but to scale
well for even higher sample-rates. This is accomplished even
with only locally-known object motions and is quick to re-
spond to changes in motion, without requiring swept bound-
ing volumes. Our method scales well with frame-rates, ob-
jects, and collisions, and is event-driven, allowing greater
flexibility than frame-based methods.

As future work, we would like to apply the methods we
have presented to high sample frequency settings, such as
haptics. Additionally, we intend to apply kinetic SP with
pseudo-dynamic intersection tests, for comparison. Finally,
there are cases where traditional sweep and prune is more
efficient than kinetic SP, such as when swaps and updates
become unusually frequent. However, such a condition usu-
ally occurs for short durations of time and so warrants further
investigation into a hybrid method.
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