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Abstract

We propose a novel way to use discriminative analysis to
project high-dimensional EEG data onto a low-dimensional
discriminative space for visualization, analysis, and statistical
testing. This multivariate analysis directly controls forthe mul-
tiple comparison problem (MCP) by effectively reducing the
number of test variables. A major advantage of this approach
is that it is possible to compare the brain activity across condi-
tions even when the trial count is low, provided that a sufficient
number of trials are used to establish the initial hyperplane(s),
meaning that error conditions and conditions that divide sub-
tle behavioral differences can be readily compared. Currently
these data are either ignored or lumped with other data thereby
losing the ability to reveal the neural mechanisms underlying
subtle behavioral differences. The proposed method provides a
powerful tool to analyze conditions with relatively small num-
bers of trials from high-dimensional neural recordings.
Keywords: MCP; statistical testing; pattern classification;
multivariate analysis

Introduction
Electroencephalography (EEG) is extensively used in cogni-
tive neuroscience and related fields to reveal the neural re-
sponses associated with specific sensory, cognitive, and mo-
tor operations. In a standard EEG experiment, subjects are
given a number of trials representing different experimental
conditions (i.e. type of stimulus presented, type of response
elicited) while the EEG signal is recorded. One way to ana-
lyze the EEG signals is to use event related potentials (ERPs).
ERPs are computed by averaging over the EEG in response
to a given stimulus across numerous trials. ERP analysis re-
veals the time- and phase-locked brain response to a stimulus,
which would not be visible in a single trial of EEG. Another
way to analyze EEG signals is to conduct a frequency-domain
analysis. By computing the spectral power changes over time
and averaging over multiple trials, we can produce a two-
dimensional map often referred to as event-related spectral
perturbations (ERSPs) (Scott Makeig, 2004).

In order to determine whether a certain effect is statisti-
cally significant based on the hypothesis underlying the ex-
periment, statistical testing methods are applied to compare
between different experimental conditions (or factors). How-
ever EEG recordings are high-dimensional in nature due to
the spatio-temporal structure of the data. Hence, we often
come up against the multiple comparison problem (MCP)
when conducting statistical analysis to compare the brain ac-
tivities from different conditions. It is usually difficultto con-
trol the family-wise error rate (FWER) using standard statisti-
cal procedures that operate at the level of a single comparison

since typical experiments consist of thousands of dependent
variables (Groppe, Urbach, & Kutas, 2011).

When comparing ERP components where the latency of
the component is known a priori (such as the P300 or N400),
the standard approach is to compare the amplitudes of the
component from the different conditions by averaging over
the samples within a given time window (Luck, 2005). The
spatial locations of interest are often restricted based onprior
knowledge. This simple approach effectively increases the
SNR of the signal while avoiding the comparisons across ad-
jacent time samples. The component of interest is then tested
for significance using a statistical approach such as ANOVA
or t-tests. Many cognitive experiments deal with interactions
in a cross factorial design so ANOVA is a common choice.
However, the test will fail to reveal any unexpected effectsly-
ing outside of the temporal, spectral, or spatial analysis win-
dow.

Another common method used to conduct statistical analy-
sis on EEG data is a non-parametric randomization test using
cluster-based correction (Maris & Oostenveld, 2007). Rather
than averaging over a pre-defined window, the cluster-based
method figures out the time/spatial/spectral cluster with the
most significant activity from the data. First, the test statis-
tic between the two test conditions (stimulus type, behavioral
response, etc.) is calculated for each variable (time sample,
frequency bin, or electrode position). Clusters are then iden-
tified by finding adjacent variables with significant difference
between the two conditions (below a certain p-value, e.g.
p < 0.05). The cluster-level statistic is calculated by sum-
ming up these differences for each cluster and selecting the
cluster with the maximum value. This result is compared to
the cluster-based statistic of the permutation distribution gen-
erated from a large number of random permutations of the
trial labels. This approach allows the researcher to directly
solve the MCP but the sensitivity of the test depends on the
threshold used to select significant variables.

In order to increase the statistical power of a test, it is de-
sirable to have many observations in a given condition. This
means that conditions with few trials (e.g. sub-categorical
conditions or error trials) are often not analyzed or combined
with other conditions due to low statistical power. These rare
conditions however are likely to reveal critically interesting
information about how neural activity gives rise to complex
behavior.

Data from two highly discriminative behavioral conditions
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can be used to train a classifier to learn the discriminative hy-
perplane between the two conditions (orclasses). The pattern
classifier efficiently combines the temporal, spatial and spec-
tral features from the EEG data and projects the data onto
a vector which is perpendicular to the discriminative hyper-
plane defined by the two discriminative conditions. For ex-
ample, if the two conditions were remembered vs. forgot-
ten trials from a recognition memory experiment, the projec-
tion values would be related to encoding success. The ob-
servations from the remaining conditions which have simi-
lar cognitive components can be projected onto this vector
and the resulting values can be compared across conditions.
This classifier-based method can be considered a multivari-
ate analysis which directly controls for the MCP. We show
that this approach can reveal significant differences between
conditions without requiring prior assumptions based on ex-
isting data or theory. The proposed method also gives high
sensitivity even for low trial count conditions, provided that a
sufficient number of trials are used to establish the initialhy-
perplane(s) and that the conditions are related to the training
conditions. This method was applied to a simulated dataset
and compared to the conventional t-test and cluster-based test
to investigate its effectiveness.

Methods

Let us consider a dataset of EEG recordings from a cogni-
tive experiment where there are two highly discriminative be-
havioral conditions (e.g. recollected vs. forgotten trials in a
recognition memory experiment). We can formulate a super-
vised learning problem with two classes using this dataset.
Let ST = {(x̄i ,yi)}

N
i=1 be the training set withN trials. Each

pair consists of the recorded signal ¯xi and the class (or con-
dition) yi ∈ {1,2} from one of the two discriminative con-
ditions. Also letSR = {(x̄i ,yi)}

N+M
i=N+1 be the set of observa-

tions from the remaining conditions (yi /∈ {1,2}) which share
some cognitive components with the discriminative condi-
tions. The goal is to construct a functionh : x̄i → pi where
pi is a projection of triali onto the vector perpendicular to
the discriminative hyperplane. In this paper, we mappi to
qi which is a value between 0 and 1. The composed func-
tion can be considered as a mapping of the EEG signal onto
the [0,1] interval where a value closer to 0 (1) implies that
the given trial shows features which are more similar to those
from training condition 1 (2).

The trials from classes 1 and 2 are then projected onto
a vector which is perpendicular to the discriminative hyper-
plane. Careful attention is required when projecting the trials
from the conditions used to train the pattern classifier. The
trials used as the training set should not be used to evalu-
ate the classifier performance or the significance of an exper-
imental variable. In other words, the trial being projected
onto the vector should always be isolated from the classi-
fier training procedure in order to eliminate any overfitting
(Bishop, 2006). This can be achieved via cross-validation or
by pre-designating an evaluation set which is excluded from

any training procedure. The trials from the two highly dis-
criminative conditions would ideally have significantly dif-
ferent outputs when projected onto the vector provided that
there is discriminative information in the neural signals and
appropriate feature extraction and classification methodsare
used. Specific feature extraction and classification methods
for EEG signals will not be discussed here since it is not un-
der the scope of the current paper.

The observations from the remaining conditions (yi /∈
{1,2}, e.g. trials with low confidence responses in an
episodic memory experiment) can be projected onto this vec-
tor in the same manner but without risk of overfitting. The
average projection values for the different conditions canbe
compared using conventional statistical methods such as t-
tests or ANOVA. Here we only consider comparing the fea-
tures in the temporal domain, but the proposed method can be
applied to spatial, spectral, or a combination of features in a
similar manner.

Analysis on a simulated dataset

The effectiveness of the proposed algorithm was evaluated
using artificial datasets. One evaluation set was designed to
test sensitivity with different means across the differentcon-
ditions and the other set was designed to test specificity with
equal means. The sensitivity and specificity of the current
method was compared to that of two conventional methods,
namely the t-test and the cluster based statistical test (Maris
& Oostenveld, 2007).

Simulated dataset

Artificial datasets were generated from real EEG data to sim-
ulate EEG from a single channel during memory retrieval.
ERPs were calculated using data from an actual recogni-
tion memory experiment (see Experiment 2 from Mollison
and Curran (2012) for details of the experimental proce-
dures) from two conditions which typically show the pari-
etal old/new effect (class 1: source correct old trials, class 2:
correctly rejected new trials). Data from the left posterior su-
perior electrodes were averaged to acquire the ERP templates
for each class. As illustrated in Figure 1, the parietal old/new
effect can be observed between 500-800 ms after item pre-
sentation (noted as 0 ms).

Gaussian noise was added to each of the ERP templates
to generate the training set (50 observations per class) where
the standard deviation of the noise was 2 times as large as
the standard deviation of the ERP templates (the same noise
parameters were used for the evaluation sets). Note that
this training set was only used to train the classifier for the
classifier-based method. Two evaluation sets were generated
where each evaluation set had two classes. The evaluation
sets were designed to represent intermediate conditions (e.g.
sub-conditions with smaller effects) between the two train-
ing conditions. The sensitivity evaluation set consisted of
two classes with different means while the specificity eval-
uation set consisted of two classes with equal means. The
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Figure 1: The ERP templates used to generate the training set
for the simulation analysis. Class 1 is an average of source
correct old trials and class 2 is an average of correctly re-
jected new trials from Experiment 2 described in (Mollison
& Curran, 2012).

two conditions in the sensitivity evaluation set were gener-
ated by adding Gaussian noise to the weighted averages of
the ERP templates used to generate the training set (0.75×
template 1 + 0.25× template 2 for one condition and 0.25
× template 1 and 0.75× template 2 for the other condition).
The two classes in the specificity evaluation set were gener-
ated by adding Gaussian noise to the average of templates 1
and 2.

Analysis procedure
The evaluation sets were tested for significance in three dif-
ferent time segments (500-800/500-1200/500-1500 ms). The
motivation for this was to compare the different methods
when the tests were performed within an optimal/sub-optimal
region. Note that the best window width/location should not
be determined from the full dataset as that would result in
overfitting and too high a false alarm rate.

The following analysis was conducted for multiple num-
bers of trials per class (ranging from 5 to 50) on both evalu-
ation sets for each of the time segments. In order to evaluate
the performance of the classifier-based method, we compared
its results to two other statistical tests often used for EEG
analysis. The first method involved a t-test conducted on the
average over the segment between the two classes in each
evaluation set. The second method was a non-parametric ran-
domization test based on cluster-based correction (Maris &
Oostenveld, 2007). Clusters were identified by finding adja-
cent time points with t-statistic lower than 0.05. The largest
cluster was selected to be the true cluster statistic. This true
cluster statistic was compared to the permutation distribution
computed from 1000 random permutations of the class labels.

For the classifier-based method, the linear classifier trained
with the training set described above was used to project the
evaluation trials onto a value between 0 and 1. Before train-

ing the classifier, the dimensionality of all trials were reduced
by averaging over 100 ms non-overlapping windows of the
given time segments. Linear discriminant analysis (LDA)
with probability outputs was selected for classification and
trained using the feature vectors from the training set. This
classification approach is known to be effective at classifying
temporal features of the EEG data (Blankertz, Lemm, Treder,
Haufe, & Müller, 2011). A t-test was conducted on the clas-
sifier outputs to examine whether the mean projections were
significantly different between the two classes.

In order to reduce the noise from the randomness of the
evaluation sets, 1000 random evaluation sets were assessed
for each trial count for each of the three methods. The num-
ber of times a significant effect was observed (p< 0.05) out
of the 1000 runs were identified and the ratio of observing a
significant effect was computed.

Results
The ratio of observing a significant effect (p < 0.05) across
the 1000 random runs conducted on the sensitivity evaluation
set (different mean condition) is given in Table 1 for each set
of the parameters in the simulations. The results for the differ-
ent trial counts are given in separate columns. The t-test and
classifier-based results gave p-values below 0.05 for the ma-
jority of the simulations when the analysis was restricted to
500-800 ms. However, the sensitivity of the t-test decreased
as the analysis window increased. It was found that the t-
test only found significant effects 10 to 65 % of the time
for the 500-1500 ms analysis window. The classifier-based
method found significant effects over 95 % of the time when
the trial counts per condition were 10 or more for all win-
dow sizes and for all trial counts when the ROI was 500-1500
ms. The cluster-based method gave consistent results across
all window sizes, but only gave reliable results for the cases
where there were at least 40 trials per condition. The ratio
of observing a significant effect (p < 0.05) across the 1000
random runs conducted on the specificity evaluation set gave
false alarm rates close to 5 % for all three methods which is
expected given the common use of that p-value.

In order to check whether the improvement in sensitivity
resulted from the discriminative nature of the approach or
from dimensionality reduction, we compared the classifier-
based approach to principal component analysis (PCA). To
conduct a fair comparison, the PCA projections were also
learned from the training conditions and only the projections
onto the first principal component was used. The results from
the previous sensitivity evaluation set gave similar results for
both the classifier- and PCA-based approach. However when
the noise amplitude was increased by 25 %, the classifier-
based approach gave more reliable results compared to the
PCA-based approach as given in Table 2.

Discussion
The proposed method found significant effects in the sensitiv-
ity evaluation set even when the number of test observations
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Table 1: The statistical test results for the sensitivity evaluation set(different means between the two conditions).The values in
the table represent the ratio ofobservinga significant effect (p< 0.05) out of a total of 1000 random simulations for a given
number of trials per condition. Values above 0.95 are given in bold.

ms #trials/cond. 5 10 15 20 25 30 40 50
500-800 t-test 0.849 1 1 1 1 1 1 1

cluster 0.139 0.385 0.611 0.736 0.852 0.9180.994 0.998
classifer 0.911 0.998 1 1 1 1 1 1

500-1200 t-test 0.441 0.863 0.978 0.998 0.999 0.999 1 1
cluster 0.074 0.327 0.412 0.596 0.794 0.8850.977 0.999
classifer 0.934 1 1 1 1 1 1 1

500-1500 t-test 0.101 0.148 0.254 0.298 0.363 0.431 0.574 0.642
cluster 0.083 0.252 0.479 0.6 0.791 0.8840.973 0.999
classifer 0.961 1 1 1 1 1 1 1

Table 2: The statistical test results for the sensitivity evaluation set with higher noise shows that non-discriminative dimension-
ality reduction methods (e.g. PCA) may not be as effective asdiscriminative approaches. The values in the table represent
the ratio ofobservinga significant effect (p< 0.05) out of a total of 1000 random simulations for a given number of trials per
condition. Values above 0.95 are given in bold.

ms #trials/cond. 5 10 15 20 25 30 40 50
500-800 PCA 0.68 0.935 0.983 0.996 0.996 1 1 1

classifer 0.782 0.98 0.997 1 1 1 1 1
500-1200 PCA 0.639 0.91 0.977 0.991 0.998 0.999 1 1

classifer 0.829 0.99 0.997 1 1 1 1 1
500-1500 PCA 0.7 0.93 0.984 0.999 1 1 1 1

classifer 0.865 0.992 1 1 1 1 1 1

per condition was as low as 5 (for the 500-1500 ms window).
The t-test and the classifier-based method gave comparable
results when the evaluation was conducted within the time
period where the old/new effect was evident (500-800 ms).
The sensitivity of the t-test decreased as the ROI increased
while the proposed method was not affected by the change.
The increase in the analysis window was disadvantageous for
the t-test because the cross-over between the ERPs decreased
the size of the effect. The reason that the PCA-based ap-
proach performed relatively well is due to the fact that the
time segments with the largest variance were in fact infor-
mative in distinguishing between the two training conditions.
Hence the PCA and classifier weights may have been simi-
lar. However, PCA can easily be misled if the high variance
features are uninformative in distinguishing between the two
conditions.

The advantage of the classifier-based method appears to
be achieved with the cost of specificity in the feature space.
However, the relevance of an individual feature to a given
comparison can be identified by examining the activation pat-
terns corresponding to the projection weights (Haufe et al.,
2014). Nevertheless, a direct comparison between the EEG
signals better reveals the characteristics (e.g. latency,size,
duration, location) of the effect identified by the classifier.
Hence, a post-hoc analysis using the raw EEG features should
always be conducted in order to better understand sources of
the effect.

The cluster-based method only gave comparable results to
the other methods after the trial count per condition was at
least 40 per class for the sensitivity evaluation set. The sta-
tistical power of the cluster-based method depends on how

well the permutation distribution represents the null hypoth-
esis. However, in a low trial count condition there are only a
small number of possible permutations to estimate the permu-
tation distribution. For example if there are 5 trials available
for each condition, the number of possible permutations of
the labels is only 252 (=10!/(5!× 5!)). This may result in
an inaccurate estimation of the significance of a cluster. The
cluster-based method gave consistent results across the dif-
ferent evaluation windows. Since the cluster-based method
chooses the cluster with the maximum effect it is less sus-
ceptible to the cross-over between the two conditions. It was
found that the average end time of the clusters was approxi-
mately 800 ms even when analysis was conducted on the 500-
1500 ms window.

In a recent collaborative project (Noh et al., 2014), we
utilized this pattern classification method to replicate pre-
vious findings on the subsequent memory effect (Sanquist,
Rohrbaugh, Syndulko, & Lindsley, 1980; Paller & Wagner,
2002; Otten, Quayle, Akram, Ditewig, & Rugg, 2006; Otten,
Quayle, & Puvaneswaran, 2010; Park & Rugg, 2010; Gud-
erian, Schott, Richardson-Klavehn, & Duezel, 2009; Fell et
al., 2011). Moreover, the single-trial analysis revealed in-
teresting findings regarding the neural mechanisms relatedto
recollection and familiarity. The classifier was trained onthe
recollected vs. unfamiliar trials which projected the high-
dimensional EEG data onto a discriminative vector which
represented encoding strength. Note that the subjects were
instructed to give recollect responses only when they had a
conscious recollection of learning the item in the study phase
(i.e., they remembered the context of learning the item). The
analysis on the classifier score revealed that the trials with
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(a) Definitely familiar anddefinitely unfamiliar trials were sig-
nificantly different (p< 0.004). Recollect and definitely unfa-
miliar trials were significantly different (p< 10−5).
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(b) Definitely familiar andrecollecttrials were significantly dif-
ferent (p < 10−3). Recollect and definitely unfamiliar trials
were significantly different (p< 10−3).

Figure 2: A reproduced version of the results from Noh et al. (2014). The average projection values and the standard errors
of the three conditions given by the classifiers trained on the alpha (7-12 Hz) power between (a): 400-800 ms after stimulus
presentation and (b): 1000-1400 ms after stimulus presentation. The classifiers were trained using only the recollected vs.
unfamiliar trials.

definitely familiarresponses (which were not involved in the
training procedure) were mapped closer to therecollectedtri-
als early in the epoch (400-800 ms) while the same trials
were mapped closer to thedefinitely unfamiliartrials later
in the epoch (1000-1400 ms) when classification was con-
ducted on the spectral information in the alpha band (7-12
Hz). Post-hoc analysis showed that the alpha desynchroniza-
tion between 400-800 ms was weaker for the recollected trials
in the left central electrodes while the 1000-1400 ms showed
stronger desynchronzation for the recollected trials in the pos-
terior electrodes. These results (illustrated in Figures 2and 3)
suggest that the brain activity represented by the alpha band
may shift from encoding of the stimulus to also encoding the
contextual information of that trial.

In fMRI studies, pattern classifiers have been used as multi-
voxel pattern analysis (MVPA) methods for detecting and an-
alyzing cognitive states (Norman, Polyn, Detre, & Haxby,
2006). This approach has been proven to be successful in
characterizing neural coding and information processing in
many domains of cognitive neuroscience (Watanabe et al.,
2011; Yoo et al., 2012). In EEG, pattern classifiers have
mostly been used for the purpose of classifying brain sig-
nals for brain-computer interfaces (Lotte, Congedo, Lécuyer,
Lamarche, & Arnaldi, 2007). Our results suggest that multi-
variate analysis techniques also can be beneficial when testing
for significance in EEG data particularly for revealing signif-
icant effects in conditions with small numbers of trials. They
are also useful when prior hypotheses do not precisely specify
the ROI for the given experimental manipulation.

This multivariate analysis directly controls for the MCP by
effectively reducing the number of test variables. A major
advantage of this approach is that it is possible to compare
the brain activities across low trial count conditions, provided
that a sufficient number of trials are used to establish the ini-

tial hyperplane(s). Hence conditions that divide subtle be-
havioral differences can be readily compared. The strength
of this method comes from the fact that the information in the
observations used to train the classifier can be exploited tore-
strict the comparisons of the test observations. Another way
to look at this method is as a boot-strapping method where we
utilize conditions which are not currently being compared to
estimate the characteristics of the conditions of interest. The
application of this method is not restricted to EEG data but
can be applied to other high-dimensional neural data such as
MEG or single-unit recordings. It should also be noted that
careful cross-validation procedures or partition of the train-
ing and evaluation set is required when directly comparing
the conditions used to train the classifiers. The classifier out-
puts may overfit the training data and results should only be
used on held out data.
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