
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Control and Steering of a Small 3D Printed Rover and its Applications to Engineering
Education

Permalink
https://escholarship.org/uc/item/2bd4m4xn

Author
Bleything, Talesa

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bd4m4xn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Control and Steering of a Small 3D Printed Rover and its Applications to
Engineering Education

A Thesis submitted in partial satisfaction of the requirements for the degree
Master of Science

in

Engineering Sciences (Mechanical Engineering)

by

Talesa Rene Bleything

Committee in Charge:

Professor Thomas Bewley, Chair

Professor Maurício de Oliveira

Professor Michael Tolley

2016

iii

The Thesis of Talesa Rene Bleything is approved and it is acceptable in quality
and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2016

iv

Dedication

Thank you Tom. For everything.

v

Table of Contents

Signature Page…………………………………………………………………………….. iii

Dedication………………………………………………………………………………….. iv

Table of Contents………………………………………………………………………….. v

List of Figures……………………………………………………………………………...... vii

List of Tables……………………………………………………………………………........ x

Abstract of the Thesis……………………………………………………………………… xi

Chapter 1 Introduction………………………………………………………………….... 1
1.1 Research Motivation……………………………………………………….… 1
1.2 Research Scope…………………………………………………………….… 3
1.3 Thesis Outline…………………………………………………………………... 5

Chapter 2 Related Work………………………………………………………………….. 7
 2.1Current Trends in Science and Engineering Education………………... 7
 2.1.1 Example One: Flipped Classroom Model……………………... 7

 2.1.2 Example 2: Active Learning in a High School Pre-Calculus
Course………………………………………………………………………………. 8

 2.1.3 Example 3: MIT Introduces the Maker Portfolio……………..... 9
 2.2 Educational Robotics……………………………………………………….. 10
 2.2.1 FIRST Robotics……………………………………………………... 10
 2.2.2 LEGO MINDSTORMS…………………………………………........ 12
 2.2.3 C-STEM and Linkbots……………………………………………... 14
 2.3 Conclusions…………………………………………………………………... 16

Chapter 3 BeagleRover Steering…………………………………………………........ 20
 3.1 Active Four Wheel Steering………………………………………………... 21
 3.2 Ackermann Steering Geometry………………………………………….. 23

3.3 Drive Modes………………………………………………………………….. 27

Chapter 4 Control Design……………………………………………………………….. 34
4.3 Lag Control………………………………………………………………....... 39
4.4 Lead Control…………………………………………………………………. 42
4.5 Closing the Loop…………………………………………………………...... 43
4.6 Discrete Time Controller.. 44
4.7 Balancing in Normal Drive Orientation... 44

Chapter 5 Implementation.. 46
5.1 Hardware and Codebase... 46
5.2 Programming Environment.. 49

vi

5.2.1 Multithreaded Programming and Drive.c Program Architec-
ture... 50
5.3 State Estimation... 52

5.3.1 A Note on Euler Angles... 53
5.3.2 Complementary Filter.. 54

5.4 Code Optimization and Features.. 58
5.4.1 Drive to Balance Transition.. 60

Chapter 6 Introduction to BeagleBone Robotics.. 61
6.1 BeagleBone Robotics Outline.. 62
6.1.1 BeagleBone Robotics Parts One and Two... 62

Chapter 7 BeagleBone Robotics Part Three.. 65
7.1 Introduction to BeagleBone Robotics Part Three................................. 65
7.2 Using this Chapter... 66
7.3 Problem Statement... 66
7.4 Equations of Motion.. 67

7.4.1 Free Body Diagrams and Constants....................................... 67
7.4.2 Kinematics.. 69
7.4.3 Dynamics.. 70
7.4.4 Nonlinear Equations of Motion.. 72
7.4.5 Linearization.. 73

7.5 Control... 74
7.5.1 Approximate 2nd Order Design Guides.................................. 75
7.5.2 G1(s).. 77
7.5.3 Discrete Equivalent Design.. 78
7.5.4 Padé Approximation... 80

7.6 Lead Control.. 81
7.7 Including Motor Dynamics... 83
7.8 Lag Control.. 86
7.9 Lead Control with Motor Dynamics... 87
7.10 Closing the Loop... 89
7.11 Discrete Time Controller.. 90
7.12 Balancing in Normal Drive Orientation... 91

Chapter 8 Conclusions and Future Work.. 92

vii

List of Figures

Figure 1.1: Image of the most current version of BeagleRover.............................. 2

Figure 3.1: Close up of four bar steering mechanism.. 21

Figure 3.2: BeagleRover showing out of phase alignment of the wheels on the
left and in phase alignment on the right. In the left image, the front wheels are
rotated clockwise while the rear wheels are rotated counterclockwise. This is
opposed to the right image where all wheels are rotated clockwise................ 22

Figure 3.3: Ackermann steering geometry showing difference in radii between
the circle traced by the inner wheel and the circle traced by the outer wheel
in a right hand turn.. 24

Figure 3.4: Comparing minimum turn radii of four wheel steering (left) vs. front
wheel steering (right) on the same vehicle. Consider the front inner wheel in
each drawing to be turned the maximum number of degrees as limited by the
mechanical design.. 25

Figure 3.5: This plot shows the rotation rate about the z-axis of the gyroscope in
radians per second through one full counterclockwise rotation of the vehicle
with Ackermann geometry implemented... 28

Figure 3.6: This plot shows the rotation rate about the z-axis of the gyroscope in
radians per second through one full counterclockwise rotation of the vehicle
without Ackermann geometry implemented... 28

Figure 3.7: This plot shows the rotation rate about the z-axis of the gyroscope in
radians per second through one full counterclockwise rotation of the vehicle
with Ackermann geometry implemented... 29

Figure 3.8: This plot shows the rotation rate about the z-axis of the gyroscope in
radians per second through one full counterclockwise rotation of the vehicle
without Ackermann geometry implemented... 29

Figure 3.9: BeagleRover pictured in its Normal drive mode on the left and Crab
drive mode on the right.. 31

Figure 3.10: BeagleRover pictured in Lane Change drive mode on the left and
Spin drive mode on the right... 32

Figure 4.1: Free body diagrams of the wheel and rod.. 36

Figure 4.2: Bode (left) and root locus (right) plots of –G1(s)................................. 40

Figure 4.3: Bode plot of lag controller ����(�)... 43

Figure 4.4: Bode (left) and root locus (right) plots of −����(�)	1(�)..................... 42

viii

Figure 4.5: Final open loop Bode (left) and root locus (right) plots with lead and
lag control where ����(�) = (� + 15)/(� + 86.4).. 43

Figure 4.6: Closed loop step response of system without a loop prefactor on the
left and with a loop prefactor of 1/1.4 on the right. The addition of the loop
prefactor causes the step response to settle at one as desired.......................... 44

Figure 5.1: Visual depiction of the various threads running in the drive.c program
and their respective tasks.. 50

Figure 5.2: Software architecture of the balance function. PWM LW stands for
PWM input to the left wheel and PWM RW is PWM input to the right wheel...... 51

Figure 5.3: 2D representation of the axes of an accelerometer as it changes
position in space. On the left hand side the x-axis reads slightly positive and on
the right hand side the x-axis reads slightly negative.. 55

Figure 5.4: The block diagram on the left hand side illustrates integration of the
complementary filter into the complete feedback system. Note disturbances
and noise are not shown here... 57

Figure 7.1: BeagleRover pictured on the left and 2D model of BeagleRover as
a mobile inverted pendulum on the right... 67

Figure 7.2: Free body diagrams of the wheel and rod.. 68

Figure 7.3: Graphical depiction of the s-plane showing how the natural
frequency of the system is affected by pole location.. 76

Figure 7.4: Block diagram of the controller/plant system. The bottom diagram
shows the series connection of the controller and plant with the delay that arises
from the digital-to-analog conversion of the discrete time controller output.....79

Figure 7.5 Bode (left) and root locus (right) plots of the plant, G1(s), combined
with a second order Padé approximation of the delay introduced to the system
by the BeagleBone Black’s DAC... 81

Figure 7.6: Bode (left) and root locus (right) plots of the plant, G1(s), and n=2
Padé approximation of the delay function, P(S), with lead control applied..... 83

Figure 7.7: Bode (left) and root locus (right) plots of the plant G1(s)
incorporating motor dynamics... 85

Figure 7.8: Bode plot of lag controller D_lag (s)... 87

Figure 7.9: Bode (left) and root locus (right) plots of lag control combined with
the plant G1(s).. 87

Figure 7.10: Bode (left) and root locus (right) plots of lead and lag control
applied to the plant, G1(s), showing high gain at low frequencies for good

ix

tracking of the reference signal and ample phase bump at the crossover
frequency.. 89

Figure 7.11: Step response of closed loop system without a loop prefactor on
the left and with a loop prefactor on the right. Addition of the loop prefactor
causes the response to settle at one as desired.. 90

x

List of Tables

Table 5.1: A subsection of the example programs included in the Robotics Cape
codebase.. 48

Table 5.1: Drive.c key program features and their descriptions........................... 59

xi

ABSTRACT OF THE THESIS

Control and Steering of a Small 3D Printed Rover and its Applications to
Engineering Education

by

Talesa Rene Bleything

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2016

Professor Thomas Bewley, Chair

 This thesis presents both the control design used to stabilize a small rover

on two wheels as a mobile inverted pendulum, as well as the steering design

used to achieve a series of unique stable driving modes. Additionally, the rover

is assessed as an educational platform for use in teaching various STEM topics

at both the high school and undergraduate university levels. The vehicle,

termed BeagleRover, uses four DC motors and four servo motors to

independently steer each wheel and achieve a total of six different driving

modes, four of which are inherently stable four-wheel drive modes while two

are unstable two-wheel drives modes. Two of the four stable drive modes

xii

implement Ackermann steering geometry to reduce side slip when driving

around a turn. Experimental results using measurements from an onboard

gyroscope suggest that side slip is indeed reduced by this method. Stability in

the two unstable drive modes is achieved through classical control methods

including lead and lag control. Complementary filtering of gyroscope and

accelerometer measurements is used to derive accurate body position data

for use in feedback. In support of current STEM education trends, this thesis

provides a detailed solution set to the steering, control and filtering problems

for potential use in STEM course material.

1

Chapter 1 Introduction

 The purpose of this thesis is twofold. First, it is to apply classical and digital

control theory to control a four-wheel steerable rover, referred to as

BeagleRover, with the ultimate goal of achieving a unique combination of

various four-wheel drive modes, two-wheel balance modes and the transition

between four-wheel and two-wheel driving and back. BeagleRover is pictured

in Figure 1.1. Second, it is to provide support material and lay groundwork for

the design of Science, Technology, Engineering and Mathematics (STEM)

curricula centered on BeagleRover and two other educational robots termed

BeagleMiP, a miniature Segway-like mobile inverted pendulum, and

BeagleMav, a small hexacopter. These three together comprise the EduLine, a

line of educational robots designed for use in the classroom or as commercial

products. The potential impact of this work lies mainly in furthering advances in

engineering and other STEM fields by contributing to the advancement of

science and engineering education. It will be demonstrated that BeagleRover

is well positioned to further this advancement as an educational robotics

platform.

1.1 Research Motivation

According to a recent study out of the Construction Engineering

Department at the University of Central Florida, the number of students pursuing

STEM disciplines in the United States has decreased by 18% over the last two

decades, while the number of undergraduate students specifically pursuing

engineering degrees continues to follow a decreasing trend [1]. Some

2

researchers believe the problem lies in attracting students to the field of

engineering while others believe the bigger issue is retaining students

throughout their studies and engaging them in the learning process, pointing to

the fact that only 40% of students who choose STEM actually end up with a STEM

degree [1]. Whether the root cause of the decline in STEM degrees is initial

attraction or retention, it has educators motivated and a trend in the proposed

solutions to this challenge has emerged. This trend can be quickly summarized

as a transition away from traditional, lecture-based, instructor-focused

classrooms toward more non-traditional, application-based, student-focused

approaches where hands-on lessons are emphasized. Accordingly, this is

creating the need for more educational platforms that can support these

active learning, hands-on approaches.

Traditional approaches are defined by an instructor-focused setting in

which information transmission is the primary goal and students take a largely

Figure 1.1: Image of the most current version of BeagleRover.

3

passive role. According to a literature review published in the Journal of

Engineering Education in 2015, this results in surface learning approaches to

studying and limited understanding [2]. In contrast, more and more evidence

in the engineering and science education literature suggests a more student-

focused, active environment, in which students engage physically with the

activity in some way, leads to a deeper approach to studying and more

thorough understanding [2]. This can potentially result in the student feeling

more successful and improving retention. Consequently, teachers are being

increasingly encouraged to implement a more hands-on and active curriculum

in various STEM fields at the high school and higher education levels, where

active learning approaches become increasingly rare as courses are

transitioned to traditional lecture based techniques [3]. It is this understanding

of the push toward and the efficacy of active learning approaches that

motivates the application of BeagleRover to STEM education. This paper

presents the technical development of an engaging physical platform and

accompanying support material that together make the building blocks for

compelling hands-on and active learning curricula at both the high school and

undergraduate levels.

1.2 Research Scope

As previously stated, the ultimate goal of this research is to further the

field of engineering by developing an engaging, dynamic, educational

robotics platform that can be used to encourage student involvement in

various areas of science and engineering, ultimately leading to an associated

4

career. This has resulted in a multidisciplinary project, integrating technical

development and implementation while consistently documenting and

designing from the educational perspective. The technical development of

BeagleRover was accomplished using classical and digital control techniques,

implemented exclusively in a multithreaded c-programming environment.

These techniques were applied to an existing mechanical design, small

changes being suggested along the way as the use case became more and

more clear.

The major technical additions to a system previously capable of driving

on four wheels in four simple drive modes include implementation of

Ackermann steering geometry, control design to achieve balancing and

driving on two wheels and the transition between driving on four wheels to

driving on two wheels. The peak result being the ability of the vehicle to drive

“up the wall,” with sufficient friction between the tires and ground, in order to

upright itself and drive away from the wall while balancing indefinitely on two

wheels. This work provides the steering solution as well as the balance control

solution for the maneuvers listed above. Additionally, switching from the use of

Euler angles to implementation of a complementary filter for accurate state

estimation is explained.

 From the educational perspective, almost no support material written

exclusively for teaching a dispersible course or lesson around the EduLine

existed prior to the formal initiation of this thesis work. A major contribution of

this work is a text we are currently calling BeagleBone Robotics (BBR), designed

5

to serve as the lab text for MAE 143C, Digital Control Systems, taught at UCSD

and centering on BeagleMiP. BeagleBone Robotics is a three-part text. The first

two parts include instructions for getting started with the hardware, robot

assembly, and recommended homework exercises and solutions that range

from getting started in Linux to PCB design using the free software Eagle. The

third part is dedicated to control design. Currently the control design portion is

written based on BeagleRover, as control design and implementation for the

second robot in the EduLine family is the main technical focus of this paper.

1.3 Thesis Outline

 This thesis is split into two parts in order to best illustrate its dual nature.

Chapter two discusses related work while chapters three, four and five are

mostly quantitative, dedicated to the technical development and

implementation of the control and steering solutions. Chapters six and seven

present the support material developed around the EduLine as a result of this

thesis work. Chapters six and seven will be referred to as part two while chapters

three, four and five will be referred to as part one. Chapters three, four and five

also contain additional information and derivations that are not currently

included in the support material but will be useful as such in the future.

 Part one begins by explaining the steering mechanism used, although it

should be made clear that the mechanical design existed prior to this work. The

four different stable drive modes currently implemented on BeagleRover are

then explained, demonstrating the highly engaging nature of the vehicle. This

is followed by an explanation of Ackermann steering geometry which is

6

implemented in order to achieve a more efficient and maneuverable vehicle

as well as to provide material that can be used in high school level coursework.

 Following the discussion of the steering mechanism used and the

different stable drive modes is the control solution for balancing BeagleRover

on two wheels in its unstable drive mode. The control solution is the main

theoretical focus of this paper. This section is mirrored in chapter six, where the

theoretical portion of BeagleBone Robotics is presented, which is one of the

primary contributions of this thesis work. Chapter six makes up the bulk of part

two of this paper and is written to serve as a detailed solution set for the mobile

inverted pendulum problem as taught in UCSD's Digital Control course,

MAE143C.

 The final chapter of part one details implementation of the steering and

control solution in hardware and discusses BeagleRover's most dynamic

maneuver, the transition between driving on four wheels to balancing on two

wheels by driving up a wall. Finally, suggestions for future work and conclusions

are given in chapters eight and nine respectively. The application of

BeagleRover and the EduLine as a whole to high school level curricula is left to

future work and as such is discussed in the future works section.

7

Chapter 2 Related Work

2.1 Current Trends in Science and Engineering Education

 This section is not intended to be a comprehensive literature review of

science and engineering education in itself but rather to highlight some

meaningful examples of recent advancements in non-traditional classroom

settings and set the stage for how BeagleRover may fit into these trends.

However, all of the examples cited in section 2.1 have conducted

comprehensive literature reviews and or specific case studies and therefor

provide useful insight into how BeagleRover, and by extension the EduLine as a

whole, may contribute to the advancement of engineering education. To this

end, three example studies will be highlighted.

2.1.1 Example One: Flipped Classroom Model

There has recently been a surge in the popularity of the flipped, or

inverted, classroom model [2]. The flipped classroom model is one in which

technical knowledge is gained primarily through online videos prepared by the

instructor and class time is used for problem solving through peer interaction,

during which the instructor acts primarily as a guide. As opposed to the

traditional classroom lecture model, the goal of the flipped classroom model is

to free up class time for hands-on work and application of theory to real world

problems.

In a study conducted by Butler, Zappe and Mahoney (2015), data from

a comprehensive literature review on the current use of the flipped classroom

8

model in engineering education is inconclusive when using exam scores as the

metric by which to measure success. Empirical evidence from a case study

across three semesters of an undergraduate environmental engineering course

(80-90 students per semester), during which the transition is made from a

traditional lecture based format through two iterations of a flipped classroom

design, similarly reports no significant improvement in cumulative exam scores.

However, the students report a much higher satisfaction with the course via a

student survey and 77% of students who engaged in version two of the flipped

course agree that they would rather take a flipped course with the same

instructor than a traditional course [2].

2.1.2 Example 2: Active Learning in a High School Pre-Calculus Course

As part of a National Science Foundation STEM grant, entitled Science

and Technology Enhancement Program (Project STEP), graduate engineering

students from the University of Cincinnati joined high school classrooms for 10

hours a week for the duration of a full academic year (Project STEP 2010). Under

Project STEP, the graduate students created interactive, project-based high

school lesson plans, meeting state science and math standards. The goal was

to increase interest in STEM fields, stating that strong academic preparation in

high school is more likely to lead to STEM degree completion [3].

The lesson of focus here, Shaking Up Pre-Calculus, written and led by

Chelsea Sabo, a Robotics Postdoctoral Researcher at the University of Sheffield

in the UK, teaches high school pre-calculus concepts using a miniature shake

table. Students build structures to test using KNEX and analyze data using a Go!

9

Motion Sensor. The students were given pre and post assessments containing

identical questions in order to assess whether or not the students learned the

material. The results showed roughly 30% to 80% improvement on all questions

from beginning of the class to end of the class, suggesting the material was

successfully delivered.

Additionally, students were given feedback forms in order to get a

clearer picture of the impact of Shaking Up Pre-Calculus. Results of this survey

show that approximately 70% of students responded favorably to the question

of whether or not the lesson made them want to learn more about engineering.

Results were similar for increasing confidence in science and math. All three of

these results were similar to those of the same survey conducted in year two of

the course.

2.1.3 Example 3: MIT Introduces the Maker Portfolio

As of 2014, MIT Admissions began accepting a “maker portfolio” as an

equally weighted part of their admissions process. In a white paper prepared

by MIT Admissions for the inaugural White House Maker Fair in 2014 [4, 5], the

maker portfolio is described as “a powerful tool for helping admissions officers

to identify, understand, evaluate and admit exceptionally skilled applicants

whom a conventional selective admissions process might undervalue or

“overlook altogether” [4]. An official decision by one of the leading tech

universities in the country to value conventional assessment methods equally

with “high maker potential” represents a profound paradigm shift toward the

formal acceptance of non-traditional approaches to technical education.

10

Other universities may begin to follow suit, potentially widening the market for

platforms such as BeagleRover that can be used in the high school STEM

classroom, especially in a flipped classroom type of model.

2.2 Educational Robotics

Robotics construction kits designed for education have an

approximately 50-60 year old history, arguably beginning with the Logo

programming language developed by Seymour Papert in 1967 and the

associated programmable Turtle robots [6, 7, 8, 9]. Since this introductory step,

robotics in education has been ever increasing in popularity. This is especially

true within the past couple decades as computation has continued to become

cheaper and cheaper, enabling programmable robotics platforms to reach a

wide range of classrooms and schools [9, 10]. This has led to what’s been

termed a “robotic revolution” [9]. Accordingly, a multitude of robotics platforms

marketed as educational exist today, some more legitimate than others. If the

EduLine is to become a viable educational platform, an understanding of

successful educational robotics platforms is a must. An overview of several of

these platforms is given next.

2.2.1 FIRST Robotics

For Inspiration and Recognition of Science and Technology (FIRST) is a

not-for-profit public charity youth organization specializing in robotics

education. The mission of FIRST is to inspire youth to become science and

technology leaders by engaging kids from kindergarten to high school in

mentor-based robotics programs [11]. Reaching over 400,000 students in 2015-

11

2016, FIRST is widely recognized as the “leading not-for-profit STEM engagement

program for kids worldwide” [11, 12].

 The FIRST program is competition based and is most well-known for its

flagship competition, FIRST Robotics. FIRST Robotics Competition (FRC) is for high

school students grades 9-12 and is the FIRST program that is most comparable

to the skill set potentially taught at this level by the EduLine, specifically

BeagleRover. In order to participate in FIRST Robotics, a student must be part of

a team of at least 10 and must be willing to commit to demanding time

requirements as the program is designed to operate in an afterschool setting,

similar to a school sports team. The season last between six weeks and four

months depending on how far a team advances in the competition [13]. The

cost per team is anywhere from 5,000.00$ - 6,000.00$ plus travel, food and team

shirts, with costs naturally increasing as teams stay in the competition longer

[14]. Although FIRST offers resources to help teams with funding, the number one

concern of team leaders is affordability, according to a study conducted by

Brandeis University [15].

 The competition itself requires a range of skill sets both technical and

non-technical, and students need not have any prior experience to participate

[13]. Teams receive a standard kit of parts that includes the mechanical and

electrical components necessary to build that year’s robots. The robots are

industrial sized requiring access to a large space and a variety of machine shop

power tools [13]. The students are responsible for the mechanical design as well

as the programing of the robots in order successfully perform in a variety of field

12

games. The current hardware used centers around the roboRIO from National

Instruments, a student robotics controller designed specifically with FRC in mind

that combines a Xilinx FPGA and dual-core ARM Cortex-A9 processor. It can be

programmed using LabVIEW graphical programming tools or C text based

language [16]. Both the reconfigurable I/O architecture (RIO), LabVIEW

software and C are used in industry for a range of applications and give

students the opportunity to work with professional grade tools.

2.2.2 Lego Mindstorms

Lego Mindstorms Education EV3 is Lego’s most current solution to

teaching STEM concepts in the classroom. Unlike FISRT Robotics, the Lego

Mindstorms EV3 approach is designed to be implemented during the regular

school day and is aligned with Common Core State Standards and Next

Generation Science Standards [17]. Educators can choose between three

different packages which include the EV3 Core Solution, EV3 Curriculum

Solution and EV3 Comprehensive Solution. All packages can teach a range of

classroom sizes and come with the same hardware and software. The

differences lies in the curriculum support that is provided. The Core Solution

includes no curriculum while the Curriculum Solution comes with the EV3 Design

Engineering Projects Curriculum which includes lesson plans and over 30 hours

of instruction [17, 18]. The most in depth option is the EV3 Comprehensive

solution which includes the EV3 Design Engineering Projects Curriculum, EV3

Science Curriculum and EV3 Coding Activities, all of which are supported by C-

STEM curriculum (explained further below) and include lesson plans at varying

13

numbers of total teaching hours [19]. For a classroom of 30 students, the kits cost

5,999.95$, 6,299.95$ and 10,499.95$ in order of increasing value of the

curriculum as listed above, and are designed to provide one set of hardware

and software per every two students [17, 18, 19].

 The hardware provided with all variants of the Lego Mindstorms

Education EV3 kits includes a range of common sensors, motors, battery,

cables, build instructions, Lego Technic building bricks and the EV3 intelligent

brick. The combination of the EV3 brick, which is built around a 32-bit Arm9

processor and a Linux based operating system, with Lego Technic building

bricks allows for many different types of robots to be built within this one system

[20]. The programming environment is designed to follow a drag and drop

paradigm and is based on LabVIEW. Although a historically limited

programming environment, the Mindstorms EV3 can be programmed using

standard industry and college level tools such as C and Java [21, 22].

 The focus of the Mindstorms EV3 program is at the k-12 level, especially

the pre, elementary and middle school levels, as that is the level of study that

the provided EV3 curricula address (FIRST Lego League for elementary school

students uses Lego Mindstorms technology). That being so, there is room for use

of the platform at undergraduate college levels and there are many examples

of this being done [21, 22, 23, 24, 25]. Out of these examples, few exhibit the use

of Lego Mindstorms as a powerful teaching tool for advanced college

coursework, with many more pointing to the utility of the platform for teaching

freshman level introductory computer science and engineering courses [21, 22,

14

23, 25]. One study out of Iowa State University reported great success with using

Lego Mindstorms for an introductory computer science course for non-majors,

but declining success even at the programming I level, with failure at the

programming II level, leading the author to conclude that the Mindstorms

platform is only viable for a few courses [24]. Limitations for use at the college

level are reported elsewhere as well, pointing to technical limitations as well as

student opinion on the effectiveness of the platform at teaching certain

concepts [21, 24].

2.2.3 C-STEM and Linkbots

 Computing, Science, Technology, Engineering and Mathematics (C-

STEM) is a program that focuses on STEM education at the K-14 grade levels

through the use of computing and robotics. It comes out of the UC Davis Center

for Integrated Computing and STEM Education started by Dr. Harry H. Cheng,

professor in the Mechanical and Aerospace Engineering Department at UC

Davis. Although lacking the same name recognition as FIRST and Lego

Mindstorms, millions of dollars in grants and funding from the National Science

Foundation (NSF) and California Department of Education has been allocated

to the center to continue their research into how integrated computing and

robotics STEM education in formal and non-formal settings affects student

engagement and learning, especially in underrepresented and at-risk groups

[26]. C-STEM curriculum aligns with Common Core State Standards and Career

and Technical Education Standards and is a UC approved educational

preparation program, a category on all UC college application forms [26, 27].

15

At the high school level, C-STEM holds A-G program status which satisfies

UC/CSU admission requirements [28].

 Not all C-STEM curricula require use of the robotics platform, but it is

made optional for all courses. The robotics platform used is Linkbot by Barobo,

an educational robotics company co-founded by Dr. Harry Cheng and one of

his graduate students, and is designed for use with C-STEM curricula [29, 30].

Linkbots are modular robots with two degrees of freedom that can be snapped

together to create different systems. These bots are designed to allow anyone

to begin working with robots out of the box while providing a research grade

platform simultaneously [30, 31]. Each Linkbot is a mobile robot in itself with two

rotating face plates, an on board three-axis accelerometer and rechargeable

lithium-ion battery [32]. Many additional sensors are available, as well as freely

available CAD files for extending the mechanical design, including an

accompanying Computer Aided Design and 3D printing curriculum [32].

 The C-STEM curriculum centers on the C-STEM Studio software and Ch, a

C/C++ interpreter created by Dr. Harry Chang [33]. C-STEM Studio is a software

platform that integrates Ch, Linkbot Labs, Ch Linkbot Controller, Ch Mindstorms

Package and Robot Controller for Lego Mindstorms NXT/EV3, RoboSim,

RoboBlockly and ChDuino [34]. RoboBlockly and ChDuino are both C-STEM

designed graphical user interfaces for Ch and Arduino respectively. C-STEM

Studio is claimed to be the “only program in existence that can control Linkbots,

NXT and EV3 in a single program with only a few lines of C/C++ code” [34]. The

primary goal of Ch and C-STEM Studio within the C-STEM curriculum is to teach

16

computing and STEM concepts through introductory C/C++ programming

concepts and robotics. Research into the effectiveness of the C-STEM

educational platform in teaching computing and STEM concepts and or

engaging students in further scientific studies is still underway.

 At first glance the C-STEM program seems very accessible in terms of cost

as the C-STEM Studio software and RoboBlockly are both free of charge, while

the Ch software package only costs 300$ [35]. However the complete picture

of the C-STEM model reveals that it is much more of a commitment for a school

to start a C-STEM program. The main reason for this is that a school must

become a “C-STEM school” before classrooms can gain access to the full

curriculum. Becoming a C-STEM school costs an annual subscription of 600.00$-

1,000.00$ and requires teacher training that ranges anywhere from 3,000.00$-

15,000.00$ [35]. What’s more, including the robotics package for 32 students

adds another 5,599.00$ plus C-STEM textbooks at 20.00-50.00 each sold in sets

of 25 copies or more [35]. If the primary concern of schools participating in FIRST

robotics is cost, then the cost to initiate a C-STEM program will most certainly be

a concern and a barrier for many schools as well.

2.3 Conclusions

 The three programs discussed above, FIRST Robotics, Lego Mindstorms

and C-STEM differ in their approaches to reaching students. FIRST Robotics is

solidified in the after school realm while Lego Mindstorms and C-STEM both align

with Common Core State Standards for integration into the traditional school

day curriculum. While Lego Mindstorms and C-STEM have this in common, C-

17

STEM requires teacher training and a school-wide adoption of the program

rather than the more class by class approach of Lego Mindstorms. Additionally,

C-STEM has a focus on underserved schools and at-risk students. In terms of

group activity, FIRST Robotics is heavily group work focused, providing a single

parts kit per team, while the Lego Mindstorms program is designed to provide a

robotics kit for every two students. C-STEM programs are designed to provide a

robotics kit to each individual student although group work is encouraged.

Although differing in their approaches to reaching students, all of these

programs have some key things in common. First, they are all fairly expensive to

implement. Second, they are all primarily focused on and marketed toward

absolute beginners to programming and robotics. This is true for the skill level of

the students as well as the teachers and mentors that would be implementing

the programs. Although some work has been done with Mindstorms at the

college level, most of the evidence leans toward it not being effective beyond

the most introductory courses. All of these platforms attempt to introduce

students to professional grade tools (as will the EduLine), however none of them

have a truly clear path from high school level curriculum to more advanced

college level work contained within the platforms themselves. There is potential

for the EduLine to fill this gap. This paper will in part show that the addition of

EduRover to the EduLine family provides the opportunity to teach high school

level STEM concepts while clearly demonstrating the bridge to advanced

college level study that is necessary to fully master the concepts introduced by

EduMiP. This can potentially inspire students to continue the pursuit of STEM

18

disciplines, especially engineering degrees, into college.

 Another similarity of FIRST Robotics, Lego Mindstorms and C-STEM is the

high cost of implementation. As the EduLine is still in its nascent stages as far as

development of a formal curriculum is concerned, it remains to be seen how

expensive it will be to implement on a per classroom basis. However, based on

the costs outlined for the above programs, there is opportunity for the EduLine

to affect a great number of students by offering an economically lower tier

solution at the high school level. As BeagleRover is based on the 35.00$

BeagleBone Black, and in turn supported by the open source Linux community,

while also being almost completely 3D printable, offering a lower cost

educational robotics solution is highly possible. And if achieved will thereby

increase the accessibility to schools. What’s more, for the same reasons, it is

promising that each student in a classroom could be provided the opportunity

to work with their own robot through the EduLine while still being more

economically viable than FIRST, Mindstorms or C-STEM. The potential impact of

working on shared robots being lowering the hands-on engineering work done

by each individual student and their sense of accomplishment at the end of a

course.

 It should also be noted that BeagleRover is a very unique physical

platform. The author was unable to find anything really comparable,

educational or otherwise, to a vehicle equipped with a similar four-wheel

steering mechanism that can also balance on two wheels as well as transition

between four-wheel and two-wheel driving via remote control. The closest

19

platform found was an MS thesis project out of the MAE department at UC Irvine

that addresses vehicle rollover through control experiments done on an RC car

[36]. The vehicle presented in this study can temporarily balance on two wheels

as well as transition between four and two-wheel modes using a prop but does

not possess four-wheel steering capability. The goal of this project was to gain

insight into controlling a vehicle during rollover by balancing it on its two side

wheels in the event that rollover occurs, not to create a vehicle designed to be

intentionally driven on two wheels. And as such the platforms are dynamically

very different. A couple other platforms were discovered that present a four-

wheeled vehicle capable of balancing on two wheels however they do not

have nearly the dynamic range of BeagleRover and do not warrant further

discussion here [37, 38]. The uniqueness of BeagleRover contributes to its innate

appeal, potentially setting it apart from the other educational robotics

platforms discussed in this section in its ability to attract and engage students in

STEM curriculum.

20

Chapter 3 BeagleRover Steering

 The basic goal of steering any vehicle or vessel is to achieve travel in the

desired direction and the types of steering mechanisms and methodologies are

numerous. Four wheeled ground vehicles such as BeagleRover determine the

direction of travel by proper angling of the wheels, as opposed to tracked

vehicles, for example, that use differential steering to induce change in

direction. In commercial passenger vehicles this is done with a series of gears,

rods, linkages and pivots that make up the steering mechanism [39]. The wheels

are turned using a manually operated steering wheel placed in front of the

driver via the steering column [40]. Remotely controlled four wheeled land

vehicles have become very developed and sophisticated and often mimic

various steering designs of commercial vehicles, in many cases mirroring the

functional and structural capabilities thereof [41]. BeagleRover's steering

mechanism is greatly simplified in comparison.

 Rather than the common axle based design, BeagleRover has a

servomotor attached to each wheel via a four-bar linkage mechanism,

enabling active four-wheel steering with the ability to turn each wheel

completely independently of the other three. The ability to independently drive

and steer all four wheels is commonly known as “swerve-drive” within the FIRST

Robotics Competition community [42]. The linkage mechanism is visible in Figure

3.1. The chassis is designed to allow each wheel to rotate a total of 120° while

maintaining its contact patch in line with the pivot point of the motor. This

steering design allows for much flexibility and various different modes of driving,

21

resulting in a very dynamic and engaging platform. The different drive modes

will be illustrated in section 3.3. Additions of this work to a preexisting

mechanical design include implementation of active four wheel steering and

Ackermann steering, both of which will be discussed in the following sections.

Both features are implemented in software.

3.1 Active Four Wheel Steering

 Active four wheel steering describes a steering methodology in which all

four wheels turn simultaneously given a single steering input from the driver [43].

In many commercial passenger vehicles with four wheel active steer, the front

two wheels are controlled manually by the driver via the steering wheel while

the rear two wheels are controlled by a computer and actuators [40, 44].

Having two control inputs to steer the front and rear wheels independently

allows for the optimization of both yawing of the vehicle and lateral motion,

resulting in higher maneuverability at low speeds and greater stability at high

speeds [43]. Higher maneuverability is accomplished at low speeds by turning

Figure 3.1: Close up of four bar steering mechanism.

22

the rear wheels out of phase with the front wheels, thereby decreasing the

turning radius of the vehicle. Conversely, applying in phase rotation at high

speeds decreases yaw rotation and increases lateral stability [43, 44, 45, 46].

Many high performance vehicles today employ active four wheel steering [40].

In phase rotation and out of phase rotation of the wheels is demonstrated by

BeagleRover in Figure 3.2.

Optimizing performance of active four wheel steerable vehicles relies on

advanced dynamics and mathematics and results in the front and rear wheels

being turned at different angles based on a number of factors. These factors

include vehicle speed, steering angle and states of the system among others

[46]. As an educational platform, BeagleRover is not designed for optimum

performance and is not intended to be a high precision vehicle. Therefore

active four wheel steering is demonstrated by toggling between different drive

modes, where each mode either features in phase turning of the front and rear

Figure 3.2: BeagleRover showing out of phase alignment of the wheels on the left and
in phase alignment on the right. In the left image, the front wheels are rotated
clockwise while the rear wheels are rotated counterclockwise. This is opposed to the
right image where all wheels are rotated clockwise.

23

wheels or out of phase turning. It is not speed dependent. This allows the user

to experiment with both methods at low or high speeds, comparing the

performance of each, which is a useful educational skew.

With four control inputs, one servo motor independently controlling each

wheel, BeagleRover is capable of maintaining its simplified design while still

achieving high maneuverability and providing an introduction to many of the

advanced techniques and concepts used in commercial and competition

vehicles. One such technique employed on BeagleRover in addition to active

four wheel steering is Ackermann steering geometry, which will be described

next.

3.2 Ackermann Steering Geometry

 Ackermann steering geometry was patented in 1818 by Rudolph

Ackermann [47]. It is a very well-known and well used concept with ample

support material available to aid in understanding. Although implementation

can become complex quickly, it is a very simple concept at its core and

presents a great teaching platform for high school level geometry, trigonometry

and related concepts. The goal of Ackermann geometry is to prevent slide slip

of the wheels when going around a turn, preventing loss of energy in the

direction perpendicular to motion as well as unnecessary wear and tear to the

vehicle. The geometric solution to this is to have all four wheels rolling around a

common point during a turn, each maintaining motion in the direction

tangential to the circle created by connecting the center of curvature to the

contact point of that wheel. The different circles traced by the inner and outer

24

wheels of a four-wheeled vehicle are shown in Figure 3.3, illustrating the need

for different angles of rotation.

 Ackermann geometry is implemented many different ways for different

steering designs. The goal for any vehicle implementing Ackermann steering is

to have all wheels rolling around a common center point as shown in Figure 3.3.

In front wheel steering vehicles, this common point is determined by the rear

wheels as that is the limiting factor. On BeagleRover, all four wheels turn

independently of each other so the common point is aligned with the center

of the wheel base allowing for a much tighter turn radius. The comparison is

shown in Figure 3.4.

 Because all four wheels on BeagleRover are controlled completely

independently, it is possible to map user input from the DSM2 radio directly to

inner or outer wheel turn angle. It seems most intuitive from the user perspective

to have the user turn input be mapped to the turn angle of the inner wheel. It

was determined through experimentation that this gives the "expected"

response from the vehicle. The amount of turn of the outer wheel is then

Figure 3.3: Ackermann steering geometry showing difference in radii between the
circle traced by the inner wheel and the circle traced by the outer wheel in a right
hand turn.

25

calculated based on Ackermann geometry. Referring to Figure 3.3, define the

following constants:

�� = ����� �� �������� �� ����� ℎ���,

�# = ����� �� �������� �� �$��� ℎ���,

%& = ���'(�)�ℎ,

*+ = ℎ���,���,

- =)�����'� ���. '����� �� '$�/��$�� �� '����� �� /�ℎ�'��.

The quantities ��, %& and *+ are known, where �� is the user input turn value

from the DSM2 radio. Assuming pure rotation about the joint center of

curvature, R and ultimately �#can be calculated based on these values. Using

the triangles depicted in Figure 3.5 and some basic trigonometry, we can

solve for R using equation 3.1, plugging that value into equation 3.2 to

ultimately solve for �#.

tan(θ4) =
W6
2

R − T:
2

(3.1)

tan(θ;) =
W6
2

R + T:
2

(3.2)

Figure 3.4: Comparing minimum turn radii of four wheel steering (left) vs. front wheel
steering (right) on the same vehicle. Consider the front inner wheel in each drawing to
be turned the maximum number of degrees as limited by the mechanical design. In
the case of BeagleRover the maximum turn of the inner wheels is 17.5° before contact
is made with the chassis.

26

Equations 3.1 and 3.2 represent what is known as ideal Ackermann

steering geometry [39]. In theory, this ideal is achievable by BeagleRover due

to its simplified steering mechanism. Because all four wheels are mechanically

independent of each other and controlled in software, there is nothing

mechanically limiting the rotation angle of the outer wheel from complying with

the ideal Ackermann steering criteria based on the rotation angle of the inner

wheel. However, some inaccuracies are expected in practice due mainly to

imperfections of 3D printed parts and by hand assembly. Servo resolution could

also be a factor. Note �� refers to the angle of rotation of both inner wheels and

accordingly �# refers to the angle of rotation of both outer wheels. The angles

of the front wheels mirroring those of the rear wheels theoretically allows for the

shortest turn radius possible when implementing ideal Ackermann geometry.

The turn radius would eventually be limited by the four-bar linkage mechanism

that attaches each servomotor to each wheel, however the wheels make

contact with the vehicle chassis before the threshold of the four-bar linkage is

reached.

As stated previously, implementation of four-wheel steering and

Ackermann steering geometry quickly becomes very complex when

attempting to optimize commercial and professional vehicle performance.

However it has been demonstrated that through simplified versions of these

techniques BeagleRover could be used to teach high school level

mathematical concepts. This platform also enables many different hands on

experiments through leveraging the on-board sensors of the Robotics Cape.

27

Such hands on experiments can be powerful in reinforcing theoretical concepts

learned as well as potentially increase student engagement and interest in

STEM [3]. Results of a few such experiments that would be accessible at the high

school level are given in figures 3.5 through 3.8. See the figure captions for

detailed descriptions of the experiments.

When looking at Figure 3.5 and Figure 3.6, notice the significant

difference in amplitude range. Figure 3.6 displays much more dramatic peaks

as compared to Figure 3.5, suggesting a potential increase in side slip of the

vehicle without the implementation of Ackermann geometry. There also seems

to be a low frequency component that is more pronounced in Figure 3.6 than

in Figure 3.5. This could also suggest the presence of more side slip as the back

tires periodically lose traction and recover. A more detailed analysis is required

to prove that is the case, however the qualitative analysis shows clearly that

Ackermann geometry changes the behavior of the vehicle. This gives tangible

feedback to any student having previously studied the mathematical concepts

used in implementation of ideal Ackermann steering geometry. These same

results were reproduced with a wider turn radius in Figures 3.7 and 3.8. There are

many, many more similar experiments that could be done with BeagleRover to

compliment high school level curricula.

3.3 Drive Modes

Enabled by the independent four wheel steering design, four different

stable driving modes are currently implemented on BeagleRover: normal four

wheel steer, lane change, crab and spin. Ackermann steering geometry, as

28

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

0
.0

0
5

3
9

3

0
.1

1
9

8
2

4

0
.2

3
4

9
4

1

0
.3

4
9

4
4

4

0
.4

6
4

5
4

8

0
.5

7
8

9
7

9

0
.6

9
4

1
2

4

0
.8

0
8

5
6

3

0
.9

2
3

6
5

9

1
.0

3
8

0
8

5

1
.1

5
3

2
5

5

1
.2

6
7

6
1

5

1
.3

8
2

9
2

3

1
.4

9
7

3
8

4

1
.6

1
2

4
4

8

1
.7

2
6

7
9

9

1
.8

4
1

9
7

9

1
.9

5
6

5
3

7

2
.0

7
1

6
0

9

2
.1

8
5

9
1

7

2
.3

0
1

2
0

2

2
.4

1
5

7
1

2
.5

3
0

7
5

6

2
.6

4
5

1
2

2
.7

6
0

2
6

7

2
.8

7
4

7
0

7

2
.9

9
0

0
9

3
.1

0
4

3
6

5

3
.2

1
9

4
7

9

3
.3

3
3

8
2

8

3
.4

4
9

0
1

6

3
.5

6
3

9
7

1

R
a

d
ia

n
s

p
e

r
se

co
n

d

Seconds

Rotation Rate About Gyro Z-Axis with Ackermann

Geometry through a Tight Turn

Figure 3.5: This plot shows the rotation rate about the z-axis of the gyroscope in radians
per second through one full counterclockwise rotation of the vehicle with Ackermann
geometry implemented. The motors were driven at 30% duty cycle as the vehicle
traced out a circle of radius ≈0.318 m on a hard wood floor.

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

0
.0

0
4

5
2

5

0
.1

1
9

7
4

2

0
.2

3
4

2
1

3

0
.3

4
9

4
0

4

0
.4

6
3

7
4

2

0
.5

7
8

8
2

4

0
.6

9
3

3
0

1

0
.8

0
8

3
7

4

0
.9

2
3

2
5

2

1
.0

3
8

0
4

1
.1

5
2

4
5

6

1
.2

6
7

6
3

8

1
.3

8
1

9
8

2

1
.4

9
7

0
8

1

1
.6

1
1

6
0

2

1
.7

2
6

6
4

7

1
.8

4
1

2
8

5

1
.9

5
6

4
3

6

2
.0

7
0

7
8

5

2
.1

8
5

9
2

5

2
.3

0
0

2
7

9

2
.4

1
5

4
7

4

2
.5

3
0

0
2

8

2
.6

4
5

1
0

4

2
.7

5
9

4
3

2
.8

7
5

4
3

4

2
.9

8
8

9
8

9

3
.1

0
4

1
3

1

3
.2

1
8

5
3

3

3
.3

3
3

9

3
.4

4
8

1
0

3

R
a

d
ia

n
s

p
e

r
se

co
n

d

Seconds

Rotation Rate About Gyro Z-Axis Without Ackermann

Geometry through a Tight Turn

Figure 3.6: This plot shows the rotation rate about the z-axis of the gyroscope in radians
per second through one full counterclockwise rotation of the vehicle without

Ackermann geometry implemented. The motors were driven at 30% duty cycle as the
vehicle traced out a circle of radius ≈0.318 m on a hard wood floor.

29

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0
.0

0
5

4
4

6

0
.1

6
5

0
4

6

0
.3

2
4

7
2

9

0
.4

8
4

5
4

2

0
.6

4
4

1
6

6

0
.8

0
3

9
3

6

0
.9

6
3

5
3

1

1
.1

2
3

2
2

9

1
.2

8
2

9
7

4

1
.4

4
2

6
4

9

1
.6

0
2

3
9

9

1
.7

6
2

0
6

3

1
.9

2
1

8
9

9

2
.0

8
1

4
5

9

2
.2

4
1

2
8

2
.4

0
0

9
4

6

2
.5

6
0

6
2

2

2
.7

2
0

3
9

5

2
.8

7
9

9
1

3
.0

3
9

7
5

4

3
.1

9
9

3
1

6

3
.3

5
9

1
3

3

3
.5

1
8

7
7

2

3
.6

7
8

6
0

9

3
.8

3
8

2
5

3
.9

9
7

9
4

6

4
.1

5
7

5
9

7

4
.3

1
7

7
7

9

4
.4

7
6

9
5

7

4
.6

3
6

8
0

3

4
.7

9
6

5

4
.9

5
6

3
4

5

R
a

d
ia

n
s

p
e

r
se

co
n

d

Seconds

Rotation Rate About Gyro Z-Axis With Ackermann

Geometry through a Wide Turn

Figure 3.7: This plot shows the rotation rate about the z-axis of the gyroscope in radians

per second through one full counterclockwise rotation of the vehicle with Ackermann
geometry implemented. The motors were driven at 30% duty cycle as the vehicle
traced out a circle of radius ≈0.481 m on a hard wood floor. This is a 51.2% wider turn
than depicted in figures 3-5 and 3-6.

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0
.0

0
4

4
8

8

0
.1

5
4

3
5

2

0
.3

0
3

9
4

4

0
.4

5
3

6
5

9

0
.6

0
3

4
3

9

0
.7

5
3

3

0
.9

0
3

0
3

1
.0

5
2

5
9

4

1
.2

0
2

3
2

1
.3

5
2

0
4

7

1
.5

0
1

7
5

2

1
.6

5
1

5
1

7

1
.8

0
1

6
6

7

1
.9

5
1

2
2

1

2
.1

0
0

5
5

8

2
.2

5
0

3
8

8

2
.4

0
0

2
2

1

2
.5

4
9

8
7

2

2
.6

9
9

6
6

9

2
.8

4
9

2
8

9

2
.9

9
8

9
9

8

3
.1

4
8

8
4

8

3
.2

9
8

3
7

4

3
.4

4
8

2
0

8

3
.5

9
7

9
0

5

3
.7

4
7

5
8

7

3
.8

9
7

3
8

1

4
.0

4
7

1
1

5

4
.1

9
6

8
0

6

4
.3

4
6

5
5

6

4
.4

9
6

2
4

9

4
.6

4
5

9
9

R
a

d
ia

n
s

p
e

r
se

co
n

d

Seconds

Rotation Rate About Gyro Z-Axis Without Ackermann

Geometry through a Wide Turn

Figure 3.8: This plot shows the rotation rate about the z-axis of the gyroscope in radians
per second through one full counterclockwise rotation of the vehicle without
Ackermann geometry implemented. The motors were driven at 30% duty cycle as the
vehicle traced out a circle of radius ≈0.481 m on a hard wood floor. This is a 51.2% wider

turn than depicted in Figures 3-5 and 3-6. The comparison of Figures 3-7 and 3-8 shows
similar results as that of Figures 3-5 and 3-6.

30

described in the above section, is implemented in normal and crab modes. In

addition to these four stable modes of driving, BeagleRover is also capable of

driving on two wheels in an unstable configuration called balance mode,

which is the focus of chapter three. The vehicle is controlled with a DSM2 RC

radio, using the two switches available to select between the four different

drive modes. Other drive modes could be implemented, such as front wheel

steering (two wheel steering) or steering without Ackermann, however another

user input switch on the DSM2 radio would be required. Both of these additional

modes present valuable educational skews, the latter of which is implemented

in a separate example program included in the Robotics Cape codebase

(discussed in detail in chapter four).

 In normal four wheel steer mode, all four wheels face forward in a neutral

position and the vehicle drives as would be expected. There is an arrow carved

out of the chassis on the front of the vehicle to mark which direction is forward.

When turning in normal mode, both inside wheels will rotate the same number

of degrees according to user input, but out of phase with each other. In other

words, the front inside wheel on a left hand turn will rotate counterclockwise

from the user perspective and the rear inside wheel will rotate clockwise from

the user perspective. The outer wheels will follow the same pattern, the front

wheel rotating counterclockwise and the rear rotating the same number of

degrees clockwise. The outer wheels will rotate the number of degrees

calculated according to Ackermann steering geometry. The inner wheels can

rotate a maximum of 17.5° before making contact with the body of the vehicle,

31

making for a minimum turn radius of ≈0. 28 m. Normal four wheel steer mode

with zero steering input is pictured in Figure 3.9.

Crab mode operates exactly as normal four wheel steering mode, the

inner wheels rotating according to user input and the outer wheels rotating

based on the inner wheels and according to Ackermann steering geometry. In

neutral position, the wheels are rotated either clockwise or counterclockwise

by 90 degrees from normal mode and the "front" of the vehicle is now

considered to be the Ethernet port side of the BeagleBone Black. This is also

pictured in Figure 3.9. The maximum number of degrees the inner wheels can

turn before making contact with the body of the vehicle is ≈12.5°, resulting in a

wider minimum turn radius of 0.44 m.

One of the most fun drive modes BeagleRover displays is lane change

mode or what is actually referred to as "crab" steering in the automotive industry

(not to be confused with the definition of crab mode in this paper) [40]. As

discussed in section 3.1 on active four wheel steering, many high performance

Figure 3.9: BeagleRover pictured in its Normal drive mode on the left and Crab drive
mode on the right.

32

vehicles employ this technique when turning or changing lanes at high speeds

(hence why it is called "lane change mode" here) to improve stability of the

vehicle. However this technique is not only used for improved handling. It is also

found on vehicles where angled lateral translation is required such as camera

dollies, and on many farm equipment vehicles to avoid unnecessary soil

compaction [40]. As with normal mode, the maximum rotation angle of the

wheels is 17.5° as limited by contact with the vehicle chassis. Therefore the

maximum angle at which the vehicle can translate is 17.5° from straight. Lane

change mode is pictured in Figure 3.10.

 Last of the stable drive modes is spin mode. In spin mode, all wheels turn

54.78° so that the center of curvature of all wheels intersect at exactly the

intersection of the two lines of symmetry of the chassis, aka its central axis.

Therefore, the vehicle should spin in place exactly around this point, allowing

for maneuvering in very tight spaces. In reality, the vehicle comes close to doing

so but there is a slight amount of translation. This is likely caused by imperfections

Figure 3.10: BeagleRover pictured in Lane Change drive mode on the left and Spin
drive mode on the right.

33

due to 3D printed parts and or imprecise servos. Spin mode is pictured in Figure

3.10. Discussion of balance mode is left to the following chapter on control

design.

34

Chapter 4 Control Design

This chapter will provide a solution to balancing the Beagle Rover on two

wheels from the modeling and control design perspective. Originally, this

chapter was written to be a detailed solution set for the mobile inverted

pendulum problem as taught in UCSD’s MAE143C, complete with all necessary

derivations, and to be included in BeagleBone Robotics as a portion of a

curriculum capable of distribution to other universities. That version of the

control solution is presented in chapter six and is considered by the author to

be one of the major contributions of this work. Here in chapter three however,

the control solution will be presented in a fashion more traditional for a

technical paper. Derivation of the dynamics describing the motion of Beagle

Rover in balance mode is left to chapter six as that derivation is a detailed and

slightly elaborated inclusion of the derivation previously done for BeagleMiP

outside of this thesis work. The control solution, as that is unique to Beagle Rover

and this work, is the primary focus of this chapter. Implementation in hardware

and software, although alluded to here, is handled in detail in the following

chapter.

4.1 Problem Statement

 The plant is BeagleRover and will be modeled as an inverted pendulum

on two wheels as depicted in Figure 4.1. Beginning with the equations of motion

describing the system, the end goal is to design a discrete time control law to

stabilize the body angle, �, about its upright, unstable equilibrium position. The

final product will be a difference equation ready for implementation in a

35

microcontroller, the BeagleBone Black in this case. In order to achieve this goal,

classical control methods such as lead/lag control and pole placement will be

used to stabilize the body of the Rover on two wheels about its unstable

equilibrium position. Leveraging the discrete equivalent design approach, the

controller is first designed in continuous time and later converted to discrete

time for implementation in digital electronics. The primary tools and techniques

used include the Laplace and Z-transforms, lead and lag control, bode and

root locus plots, the closed loop step response and Tustin’s approximation with

prewarping, all of which will be discussed in more detail in the subsequent

sections.

4.2 Equations of Motion

 As discussed above, the full derivation of the equations of motion of the

Beagle Rover system is left to chapter six as it is the derivation taught in

MAE143C. In this section, the free body diagrams and equations of motion are

briefly presented in order to provide supporting context for the control design

section. Initially simplifying and considering a 2D representation of one

wheel/motor and a simple rod, the free body diagrams of the wheel and rod

are depicted in Figure 4.1.

 By approximating the wheel as a thin, solid disk and the body of the

vehicle as a simple rod the inertia of each can be calculated as

 <& = 1
2 .&-=, (4.1)

 I? = m?L= (4.2)

36

where the constants are defined as follows:

.& = .��� �� ℎ���,

.B = .��� �� ��),

<& = ������� �� ℎ���,

<B = ������� �� ��),

C = ���D$� �� .����,

- = ��)�$� �� ℎ���,

E = �����ℎ ���. ��) �� ��) �� '����� �� .��� �� ��),

FG ��) FH = ���'���� ���'�� ,�� ��� ℎ��� ��) ��) �� �ℎ� I ��) J)���'�����,

�K = ���������� ���'�,

�L = ���.�� ���'�,

� = ���/��J M9.81 .
�=O.

Whether balancing in crab mode or regular driving mode (short mode

or tall mode respectively), take the center of mass to be at the intersection of

the two axes of symmetry of the entire vehicle. This is an approximation as the

“rod” in this model does not actually include the bottom two wheels.

However, the mass of the wheels is negligible compared to that of the entire

Figure 4.1: Free body diagrams of the wheel and rod.

37

vehicle so for simplicity’s sake we will take the center of mass to be at the

intersection when in reality it is very slightly higher. A more rigorous calculation

could be done but would likely not result in any performance gain, especially

because some error would still be expected [48].

 Using the free body diagrams to first define the kinematic relations

describing the position and acceleration of the center of mass of the rod, and

assuming that both wheels are initially moving together without any slip

between the wheels and ground, the full nonlinear equations of motion are

derived as

 (.B-E'���)PQ + (<B + .BE=)�Q = .B�E���� − C, (4.3)

 (<& + (.B + .&)-=)PQ + (.B-E'���)�Q = .B-E�Q =���� + C (4.4)

where τ is total input torque to the system. By the small angle approximation

[49], equations (4.3) and (4.4) can be linearized about the body’s inverted

equilibrium point to yield

 (m?RL)ϕQ + (I? + m?L=)θQ = m?gLθ − τ, (4.5)

 (<& + (.& + .B)-=)PQ = (.B-E)�Q = C (4.6)

where all terms are now linear in theta, allowing for the application of linear

control techniques.

 Using the linearized equations of motion of our system, we could

proceed through the control design process and design a stabilizing controller

in simulation. In fact, this exercise is recommended as a first pass at designing a

stabilizing controller and is gone through in detail in chapter six. However, if

38

attempting to implement this initial control design in hardware, the designer

would find out that although stable in simulation, the robot would more than

likely not balance in reality. This is due to the fact that the motors themselves

have dynamics that must be included in the model. The motors used in

BeagleMiP and BeagleRover have been previously characterized for use in

MAE143C so consider the constants to be known quantities. The motor

dynamics are described by

 C = �̅$ + (, − V)W (4.7)

where the constants are defined as:

�̅ = ����� ���D$�,

, =)�.X��� '�����'����,

V = /��'�$� ���'����,

<Y = ������� �� .�����,

W = .���� �X��) ZP[− �[\,

$ = .���� ��X$� (F*] /��$� ,�� ��� − 1 ��) 1).

As before, the wheels are taken to be solid disks when estimating their

inertia. The total inertia of one wheel and motor is

 <& = <Y + 1
2 .&-=

(4.8)

and the final linearized equations of motion accordingly become

 (m?RL)ϕQ + (I? + m?L=)θQ = m?gLθ − 2τ (4.9)

 (I: + (m? + m:)R=)ϕQ + (m?RL)θQ = 2τ (4.10)

where tau is defined above to be the torque from one motor, .& now includes

39

the mass of both wheels and <& now includes the inertia of both wheels and

motor gearboxes.

4.3 Lag Control

Before beginning the control design process using classical control

techniques, the transfer function describing the input/output relationship

between PWM input to the motors, u, and body angle output, �, must be

defined. In order to derive the transfer function, the Laplace transform is

performed on the final linearized equations of motion followed by algebraic

rearrangement to get an equation of the form �(�) ^(�)⁄ = �$.	1(�)/)��	1(�).

First apply the definition of the Laplace transform to equations (4.9) and (4.10),

assuming zero initial conditions. Then making the appropriate substitutions for C

and W defined in the previous section and rearranging algebraically, the

transfer function is

	1(�) = `(a)
b(a) = =a(cdecf)

(gcdc=ecfh)aie(=(je+)(gcdgc=g=cf)ahe(ckecd)ae=(je+)ck (4.11)

where:

l1 = .B-E, (4.12)

l2 = <B + .BE=, (4.13)

l3 = .B�E, (4.14)

l4 = <& + (.B + .&)-=. (4.15)

Plugging in the constants yields the final transfer function as shown in equation

4.16.

 	1(�) = `(a)
b(a) = g==n.=a

aieo.==fahgfkn.oag=p=.= (4.16)

40

The root locus and bode plots, with negative gain applied, are shown in Figure

4.2.

 Looking at the root locus, no amount of gain can stabilize the system. In

order to bring the locus into the stable left half plane using pole placement

techniques, the controller must cancel the zero at the origin and replace it with

a stable zero. Note this is generally done with caution as a pole-zero

cancellation on the imaginary axis can lead to instability due to inaccuracies

in the model [50]. This model has been proven to be accurate so the

cancellation will be performed. Looking at the bode plot, higher magnitude at

low frequencies is needed to achieve acceptable tracking. By applying lag

control over the appropriate frequencies we can bump up the low frequency

gain as well as cancel the zero at the origin, replacing it with a stable zero and

bringing the locus into the LHP. The form of a lag controller is given in equation

4.17.

 ����(�) = aeq
aer ��� s > X (4.17)

Figure 4.2: Bode (left) and root locus (right) plots of –G1(s).

41

The primary use of a lag controller is to increase the gain at low

frequencies in order to achieve good tracking of the reference signal. The gain

will increase by a factor of z/p. Because the pole is at zero, z can be chosen

such that the lag control takes affect at frequencies well below the desired

crossover frequency of 20 rad/s (which has been determined by choosing a

crossover frequency an order of magnitude below the sample rate of the

BeagleBone Black’s ADC, avoiding significant phase loss at this critical

frequency) [50]. This is necessary due to the phase lag caused by the lag

controller as eroding the phase at crossover can potentially lead to closed-loop

instability. After a few iterations, z=3 is chosen. The resultant bode plot of the lag

controller is seen in Figure 4.3, illustrating the phase lag effect of a lag controller

as well as the high gain at low frequencies. The lack of roll off of the gain at low

frequencies is the result of having a controller pole at zero, acting as a pure

integrator. Ideally the gain would be rolled off at very low frequencies to avoid

integrator wind up, a phenomenon that can lead to instability in the case of

motor saturation, however this is prevented due to the plant zero at the origin

 Figure 4.3: Bode plot of lag controller ����(�).

42

[50]. The Bode and root locus plots of the plant with negative gain and lag

control combined are given in Figure 4.4.

4.4 Lead Control

The bode plot with lag control shows that the low frequency gain has

been increased but at the detriment of dangerously eroding the phase margin.

Also, crossover at the desired frequency is not achieved. The locus is now

brought over into the stable LHP with the appropriate gain applied, however

this design will have an unacceptably high overshoot due to the low phase

margin. In order to achieve crossover at the desired frequency and increase

the phase margin, lead control will be applied using much of the same logic as

is section 4.3. The following second order design guides will be used:

Wu = f.v
Kw

, ℎ��� �B = ���� ��.� (4.18)

Wu = xXs, ℎ��� Xs = X ∗ s (4.19)

As before, placing a zero at -15 to cancel the pole and replacing with a

faster pole will help to achieve the desired rise time without applying too much

Figure 4.4: Bode (left) and root locus (right) plots of −����(�)	1(�).

43

overall gain to the system. Keeping in mind that we would like a rise time of 0.05-

0.1 seconds, and a crossover frequency of ≈20 rad/s, the above equations can

be leveraged to calculate the location of the pole that should achieve

maximum phase increase at crossover [50]. Using equation (4.18), a rise time of

0.05s corresponds to a crossover frequency of 36. This yields a pole at 86.4 by

equation (4.19). Although this is not quite a factor of 10 higher than the zero at

15 to achieve maximum phase increase [50], ample phase margin of about 52

degrees is still achieved. The design guides are approximate and not all will be

met exactly. After adjusting the gain to again achieve crossover at the target

frequency, the final values chosen are Wu = 23 zs, �B ≈ 0.08�, F] = 52°. The final

open loop bode and locus plots with lag and lead control applied are shown

in Figure 4.5.

4.5 Closing the Loop

The final step in continuous time is to check the closed loop step

response to ensure that the design is stable and the design criteria have been

Figure 4.5: Final open loop Bode (left) and root locus (right) plots with lead and lag
control where ����(�) = (� + 15)/(� + 86.4).

44

met. Referring to ��~��g���(�) as �(�), the form of the closed loop transfer

function is

 z(�) = �(a)�(a)�f(a)
fe�(a)�(a)�f(a) (4.20)

Performing a few final adjustments, ����(�) and ��~��(�) become

 ����(�) = ae=.�
a (4.21)

��~��(�) = aef�
aevn.d (4.22)

with a closed loop gain K(s) = -10. Giving a step input to the system results in the

step response plotted on the left hand side of Figure 4.6 with a rise time of 0.06

s, settling time of 0.79 s and an overshoot of 10%. Because the response settles

at a value of ≈1.41 instead of 1 as desired, a loop prefactor of P = 1/1.4 can be

incorporated, yielding the step response pictured on the right hand side of

Figure 4.6.

4.6 Discrete Time Controller

 In order to implement the controller in hardware, it must be converted

from continuous time to discrete time to obtain the difference equation the

Figure 4.6: Closed loop step response of system without a loop prefactor on the left

and with a loop prefactor of 1/1.4 on the right. The addition of the loop prefactor
causes the step response to settle at one as desired.

45

controller must obey. Tustin's approximation with prewarping is used to convert

to a discrete time transfer function, applying prewarping around the crossover

frequency to insure accurate conversion at this frequency. Applying the inverse

Z transform, the final difference equation to be implemented in the

microcontroller is given by equation 4.23.

 $� = 1.652$�gf − 0.6525$�g= − 8.626�� + 16.52��gf − 7.902��g= (4.23)

4.7 Balancing in Normal Drive Orientation

All of the values presented in the control solution thus far have been for

balancing BeagleRover in its short or “crab” orientation. However, the vehicle

is capable of balancing on all four of its sides. In order to balance BeagleRover

in its tall orientation, the change in the distance from the center of the wheel

to the center of mass of the body, L, and the corresponding change in the body

inertia, <B could be accounted for. If so, the transfer function from input U(s) to

output �(�) becomes

 	2(�) = gfko.=a
aie�.pfoahgpn.dvag=�n.= (4.24)

with poles at -12.4, -1.98 and 8.43 which are slightly "slower" than the poles of

G1(s) when balancing in crab mode. The control design process would

proceed exactly as stepped through in the preceding sections. In practice

however, it was found desirable to simply increase the gain on the system when

balancing in the taller orientation. This will be further addressed in the following

section on implementation.

46

Chapter 5 Implementation

Chapter three presented the control solution to balancing BeagleRover

in its two-wheeled unstable configurations while chapter two identified the

stable four-wheeled drive modes and steering solution. Now that both solutions

have been developed in theory and simulation, the next step is to present the

implementation in hardware and software. This chapter will give an overview

of the hardware and general software implementation strategy used in

development of the EduLine as well as developments specific to BeagleRover.

The codebase and programming environment will be discussed as well as the

techniques used in state estimation. Additionally, the technique used to

balance on all four sides as well as transition from driving on four wheels to

balancing on two wheels will be explained.

5.1 Hardware and Codebase

All three robots in the EduLine use the BeagleBone Black (BBB), a "low-

cost, community-supported development board for developers and hobbyists"

[52]. The BeagleBone Black is an open hardware microprocessor development

board that can fit in the palm of a hand. It has enough flash storage and volatile

RAM to support a full-featured operating system and a custom build of the

Debian Linux operating system comes pre-installed. The BBB also features a

wide variety of connectivity options with two 2×23 pin header rows, USB client

and host capabilities, as well as Ethernet and HDMI ports.

The BeagleBone Black benefits from an add-on board, or cape, to

provide easy access to all of the functionality it provides. The solution to this

47

used by the EduLine, and therefore BeagleRover, is the Robotics Cape

designed by James Strawson. The Robotics Cape is a $35.00 add-on board that

provides the ability to drive up to four bi-directional DC motors via H-bridges

and up to eight servomotors. BeagleRover uses four bi-directional DC motors

and four servomotors. The cape also supports encoder counting on four

channels for motor position feedback, three of which are broken out in

hardware and a fourth added utilizing the BeagleBone Black's on-board PRU

(programmable real-time unit). BeagleRover does not currently use encoders

due to space restrictions of the mechanical design. However, BeagleMiP does

use two encoders for position control. A 9-axis inertial measurement unit (IMU) is

also included on the cape as well as a barometer for use in flight applications.

The IMU is comprised of a 3-axis accelerometer, 3-axis gyroscope and 3-axis

magnetometer. BeagleMip and BeagleRover both use the accelerometer and

gyro for state estimation. The cape also supports DSM2 radio and Bluetooth for

controlling the robots wirelessly. Development of BeagleRover was done using

a DSM2 radio, further work being necessary to incorporate Bluetooth control.

In addition to the hardware, all EduLine robots come with an extensive

codebase written to support the Robotics Cape. The codebase includes

libraries for all of the functions used by BeagleMiP and BeagleRover for

hardware interfacing, plus many functions not currently used by these two

platforms. Additionally, approximately 30 example programs, ranging from

blinking an LED to gyro calibration, are included. A subset of the current

example programs written as part of the Robotics Cape codebase are shown

48

in Table 5.1. The first three programs were written by the author as a direct result

of this thesis work. The remaining programs are included as they are integrated

into the drive code or were found useful in developing the drive code,

illustrating the utility of the Robotics Cape codebase in writing more complex

programs. Note this is not an exhaustive list. All code is written in the C

programming language and available on GitHub. All instructions for installing

and getting started with the Robotics Cape libraries on the BeagleBone Black

are detailed in chapter three of BeagleBone Robotics and on the designer’s

website [52].

Notice there are two versions of the drive code, drive.c and drive-

simple.c listed in Table 5.1. The drive-simple.c is a simplified version of the drive

Table 5.1: A subsection of the example programs included in the Robotics Cape
codebase.

49

code lacking Ackermann steering and balancing that is included for

educational purposes, so that the student may compare the differences,

especially in steering behavior, directly on the robot. The test-orientation

example was also written specifically for drive.c in order to implement

balancing on all four sides of the vehicle. Independently this serves as a great

example of a simple multithreaded program to test operation of the motion

processing unit on the Robotics Cape (MPU-9150).

5.2 Programming Environment

The BBB is capable of functioning as a low power desktop computer by

connecting a USB keyboard, mouse, driving an HDMI display and rendering a

graphical user interface (GUI). However this was not done as the robots are

designed to be mobile and therefore used in a headless configuration (without

a GUI). Instead, because the BeagleBone has an operating system on board

enabling communication with the robot via standard network protocols, all

programming was done on a host computer. Development was done in a

Windows 8 environment, communicating with the BeagleBone via USB and

generating a command line interface using the free software application PuTTy.

All code was written in C using Notepad++ and compiled using standard Linux

commands from the command line, all the while transferring files back and forth

using the free SFTP (Secure File Transfer Protocol) program WinSCP. Getting

started in this programming environment is explained in detail in the first few

chapters of BeagleBone Robotics. As made apparent in chapter three, control

design was done in MATLAB leveraging the control toolbox.

50

5.2.1 Multithreaded Programming and Drive.c Program Architecture

An advantage of having an operating system on board is the ability to

execute multithreaded programs potentially increasing the functionality of the

application. In the case of BeagleRover, multithreading is not strictly necessary,

however it illustrates a powerful tool for use in more demanding applications. A

high level view of the drive.c program organization is shown in Figure 5.1.

The main() function is responsible for the setup routine and starting all

threads as well as cleanly shutting down the program if an exit condition is met.

The order in which the threads are listed in Figure 5.1 is the order in which they

appear in the program. Although it is not technically a separate thread, the

balance_core() function deserves mention as it is the IMU interrupt function

Figure 5.1: Visual depiction of the various threads running in the drive.c program and

their respective tasks.

51

responsible for stopping, or interrupting, all programs running in order to retrieve

sensor data at a rate of 200Hz. Once the raw sensor data is retrieved it is sent

through a complimentary filter to calculate pitch angle in any orientation of the

vehicle. The estimated state variable is then used by the control algorithm

developed in chapter three to provide the necessary input to the motors to

maintain stability in balancing, all within the balance_core() function. This is

depicted graphically in Figure 5.2. Many of the example programs included in

the Robotics Cape codebase are used by the various different threads. For

example, test_orientation.c was directly ported over to drive.c to serve as the

orientation_detector() thread with minor changes made for the application to

drive.c.

Notice there is a block in Figure 5.2 labeled "turn input." This is the input

given to the motors in order to steer the vehicle while in balance mode. This

Figure 5.2: Software architecture of the balance function. PWM LW stands for PWM input
to the left wheel and PWM RW is PWM input to the right wheel.

52

input does not rely on the state variable. It is a simple constant applied via user

input from the DSM2 radio. When turning in balance mode, the turn constant is

applied equally to both motors, increasing PWM to one motor and equally

decreasing PWM to the other motor. Therefore total input torque to the system

is not changed due to turning input and the vehicle maintains stability.

5.3 State Estimation

 As discussed at length in chapter three on control, BeagleRover is

modeled as a mobile inverted pendulum with a single input of torque

(ultimately PWM to the motors) and single output of pitch angle, �. Because it

is a SISO system there is only one state variable to control, pitch angle, or, tilt

angle. For the control algorithm to be successful in maintaining stability the state

variable must be reliably computed. As depicted in Figure 5.2 this is done

leveraging the on board sensors of the IMU, specifically the accelerometer and

gyroscope. It should be mentioned that state estimation is used for two different

purposes in the drive code. Aside from being used to detect deflection from

upright by the balance_core() function and control algorithm, state estimation

is also used to detect which side of the vehicle is facing upward and which

motors are in contact with the ground (or whatever surface on which the

vehicle is balancing, we'll call it ground) and therefore which motors should

receive the PWM signals. This function is performed by the orientation thread as

depicted in Figure 5.1 and is accomplished using Euler angles as calculated by

the Digital Motion Processor within the IMU. This differs from the complementary

53

filter used to estimate tilt angle for use in the balance controller as will be

discussed further below.

5.3.1 A Note on Euler Angles

The current balance code for BeagleMiP, balance.c, uses Euler angles

to estimate tilt angle when upright. For BeagleMiP this is readily achievable as it

only balances in one orientation of the IMU. BeagleRover in contrast balances

in four different orientations and using Euler angles becomes a more advanced

process. An in depth discussion of Euler angles is outside the scope of this work,

but briefly stated, the complication lies in the singularity of Euler rotation

sequences causing inaccuracies in the calculation of theta in certain

orientations of the vehicle [50]. However, Euler angles can more simply be used

to yield a general determination of which side of the vehicle is facing upward

and which side of the vehicle is in contact with the ground. In this case, a

threshold value is detected that is far away from the point at which theta

becomes unreliable. Furthermore, no feedback control is performed in this

scenario therefore there is less need for absolute accuracy. Utilizing Euler angles

to determine general orientation of the vehicle, as opposed to the

complimentary filter approach used to determine theta for use in the balance

controller, was done to illustrate the use of each as BeagleRover is intended to

be an educational platform. Although using Euler angles to estimate theta for

balance control as well is not an impossibility, that approach is more advanced

than what is taught in MAE 143C and other typical undergraduate courses.

54

Therefore complimentary filtering was chosen as the primary solution to state

estimation in order to remain consistent with the MAE143C curriculum.

5.3.2 Complementary Filter

The first order complementary filter used to estimate tilt angle is based

on the complementary filter example code in the Robotics Cape codebase

and adapted to be used to estimate theta in all four balance orientations of

BeagleRover. The four balance orientations as named in drive.c are NOSE_UP,

NOSE_DOWN, LEFT_DOWN and RIGHT_DOWN, corresponding to the negative

x-axis, positive x-axis, positive y-axis and negative y-axis of the IMU respectively,

according to the coordinate system depicted on the cape. The filter uses data

from both the accelerometer and gyroscope combined to yield a much more

accurate representation of theta across frequencies than could be achieved

with either sensor alone. The reason lies in the type of noise to which each signal

is most susceptible.

The accelerometer is used to determine angular position by measuring

the position of the gravity vector. As the accelerometer rotates in space, the

magnitude of the gravity vector in the direction of each axis changes, as

depicted in Figure 5.3. Using the standard C math.h library function, atan2(),

and two axes of the accelerometer, the angular position about the pitch axis

can be easily calculated. For example, if BeagleRover was balancing perfectly

in its NOSE_UP position, the negative x-axis of the accelerometer would

experience almost exactly -1g of gravitational force while the z-axis would

experience nearly zero. Passing these values to the atan2() function with proper

55

attention to order of the arguments would yield an angle of nearly zero as

expected. Note that care must be taken here with the signs of the vector

components passed to the function in order to return the correct quadrant of

the 2D x-z plane.

When used to measure angle of rotation, accelerometers can

experience high frequency noise [53]. This is due to changes in acceleration

caused by other factors such as horizontal motion. Considering the example

given above of balancing BeagleRover in its NOSE_UP orientation, this would

cause the z-axis to measure changes in acceleration not due to gravity,

causing very significant errors in the estimation of angular position. This can be

addressed by low-pass filtering the accelerometer signal, allowing only the low

frequency signal due to gravity to pass through. It should be noted that low-

pass filtering can cause phase lag [50]. As discussed in section 3.3 regarding lag

control (essentially a low-pass filter), significant phase erosion at the crossover

frequency can lead to instability of the system. If this is of concern, the phase

lag of the low-pass filter should be accounted for during control design as

depicted in Figure 5.4. As also discussed in chapter three, ample phase margin

Figure 5.3: 2D representation of the axes of an accelerometer as it changes position in

space. On the left hand side the x-axis reads slightly positive and on the right hand side
the x-axis reads slightly negative.

56

was built into the control design for BeagleRover to account for this issue of

phase erosion due to the low pass filter.

The gyroscope presents the opposite challenge, tending to output a

signal corrupted by low frequency noise [55]. The gyro outputs measurement of

angular velocity and is used to determine angular position by integrating over

time. However, MEMS gyroscopes such as the one used in the IMU of the

Robotics Cape, are subject to constant bias, which when integrated over time,

quickly leads to unreliable measurements [53, 54, 55]. This is addressed by high-

pass filtering the integrated signal from the gyroscope, eliminating the low

frequency drift that occurs as the platform is held near stationary [53, 55].

The complementary filter takes advantage of the low frequency

accuracy of the accelerometer and high frequency accuracy of the gyro,

combining signals to achieve the best of both worlds [56]. In Laplace notation,

the form of a low-pass filter is

���(�) = ��
ae��

 (5.1)

where Wu is the cutoff frequency above which the signal is attenuated [50].

Similarly, the form of a high-pass filter is

 ���(�) = a
ae��

 (5.2)

where Wu is the cutoff frequency below which the signal is attenuated [50]. In

the case of a complementary filter, the cutoff frequency for the low-pass and

high-pass filters is the same, therefore ��� + ��� = 1, ensuring that all

frequencies (ideally), minus the noise, are represented in the final

reconstruction of the signal. The block diagram of the complementary filter is

57

shown in Figure 5.4, illustrating the combination of the accelerometer signal and

the gyro signal. The end effect is an estimation of theta that favors the

accelerometer measurements at frequencies below Wu and favors the gyro

measurements at frequencies above Wu.

When implemented in digital electronics, the complementary filter takes the

form

 � = �J����(� + �J������ ∗)�) + �''����(�''������) (5.3)

where �J���� is the high-pass constant chosen for the high-pass filter and

�''���� is the low-pass constant chosen for the low-pass filter. The

accelerometer data represented by accelData has already been processed

by the atan2() function and gyroData*dt accomplishes the integration of the

angular velocity measurement performed at every time step. In the case of the

platform at hand, data is collected at a rate of 200 Hz (dt = 0.005 seconds) as

listed in table 5.1 and the high-pass and low-pass constants are approximately

0.99 and 0.01 respectively. These values are calculated based off the sample

rate and the noise properties of the specific sensors used.

Figure 5.4: The block diagram on the left hand side illustrates integration of the

complementary filter into the complete feedback system. Note disturbances and noise
are not shown here. On the right hand side the block diagram of the filter itself is shown,
where x and y in this case are the inputs to the low-pass and high-pass filters. Note the
output of the filter is J�(�) because no filter is ideal and J(�) will not be reconstructed

exactly.

58

 Note that in order to conserve resources, the filters are not calculated

until the orientation of the vehicle is detected then the correct filter using the

corresponding axes of the IMU is computed. However, it is important for

accuracy that state estimation is constantly computed, initially relying on raw

accelerometer data alone for immediate usage by the filter when needed. It

was observed that if the filter was not initialized using the raw accelerometer

data until a change in orientation was determined, a significant delay in

reaching the correct value of theta resulted, causing an unacceptable delay

in arming the controller. This resulted in instability when transitioning from four-

wheel driving to two-wheel driving using a wall.

5.4 Code Optimization and Features

 BeagleRover is designed to be an educational platform. Because of this,

the code has been written and optimized for readability and user experience.

It is thoroughly commented and organized in a way that promotes

understanding. There are also multiple blocks of code that are commented out

and currently unused but that provide either a potentially good teaching

example or debugging assistance. Examples include print loops for printing

various different values to the console as well as a mock yaw controller for

future implementation. Aside from readability, the user experience has also

been considered from the point of view of creating a dynamic and engaging

vehicle that is easy and fun to use. This was consistently kept in mind throughout

the development process and many features were implemented to this end.

Table 5.2 shows some of the features of the drive.c code. The last feature

59

listed, transition to balancing from four wheel drive, is explained in

greater detail in the following subsection.

As listed in feature three of table 5.2, the same balance controller is used

to balance in all four different orientations of the vehicle with the exception of

the proportional gain value, K. The controller was designed around balancing

in the short, or crab, orientation and used to balance in the tall orientation by

simply increasing the gain to compensate for the higher center of gravity. As

shown at the end of chapter three, the same exercise was gone through to

design a controller specific to balancing in the tall orientation but upon

Table 5.1: Drive.c key program features and their descriptions.

60

implementation, no significant performance gain was seen. Therefore it was

decided to take the approach described above for the sake of streamlining

the code for accessibility to users.

5.4.1 Drive to Balance Transition

 BeagleRover is capable of the unique maneuver of smoothly

transitioning from driving on four wheels to balancing on two wheels by driving

up a wall, provided there is sufficient friction between the wheels and ground.

This is done by initializing the balance controller only after the vehicle has

reached a certain angle of incline, or the start angle. In order to achieve a

smooth transition some finesse was required in timing at what start angle and

how long of a delay to implement before arming the balance controller. It was

expected that a delay would be necessary in order to prevent the controller

from outputting too high of a control value upon initialization and causing

instability. However, after experimentation with different combinations of values

it was discovered that choosing the correct start angle alone was sufficient in

achieving stability in the transition. Adding an additional delay is useful in

affecting the overall delay in arming the controller without affecting the start

angle as the start angle also affects computation of the complementary filter

and in turn accurate estimation of the state variable. However the additional

delay was found to be superfluous.

61

Chapter 6 Introduction to BeagleBone Robotics

Chapter one introduced this thesis by explaining its dual purpose. The first

was to present the control and steering solution of a small ground rover capable

of four wheel steering, balancing on two wheels and transitioning between the

two. This was handled in chapters two, three and four. The second, and primary

motivation of the work, was to contribute to an educational platform through

developing curriculum support. Chapter six marks a change of focus from the

quantitative solutions of the previous chapters to the presentation of the

curriculum support material written as a result of this thesis work. More work is

needed in order to deliver a polished curriculum written around the EduLine,

however the combination of BeagleBone Robotics plus the hardware and CAD

files for 3D printing the robots is already a very strong starting point for a

motivated instructor.

As explained in section 1.2 almost no material written exclusively toward

the end goal of developing a dispersible curriculum around the EduLine existed

on paper prior to the initiation of this thesis work. The word dispersible is key here

as material that is designed to be distributed as a model for educators to follow

in teaching particular concepts (a curriculum) takes on a different form than

material that is written to provide support material in teaching those concepts

(a textbook). A curriculum not only requires explanations of necessary concepts

and example problems as found in a textbook, but lesson plans and adherence

to standards often mandated by governing parties. In short, a curriculum

teaches educators how to teach the subject at hand. What is presented in this

62

chapter and the next is a precursor to a complete curriculum designed around

what is taught in MAE143C. It is hoped that this is a first step toward creating the

written material necessary for the EduLine to make an impact in classrooms

outside of UCSD. BeagleBone Robotics is considered by the author to be the

most significant contribution of this thesis work to furthering the EduLine as an

educational product.

6.1 BeagleBone Robotics Outline

 BeagleBone Robotics is co-authored by Talesa Bleything and James

Strawson, the teaching assistant for MAE143C for three iterations of the course

and the designer of the Robotics Cape used on all EduLine robots. The text has

three main parts. Part one is what we are referring to as the lab text and is

primarily authored by James Strawson, with the author of this thesis acting as

editor and first user. Part two is a complete set of build instructions for BeagleMiP

and BeagleRover. Part three is the complete control solution to balancing

BeagleMiP or BeagleRover. We recommend that MAE143C or similar courses

designed around the EduLine be taught in a lab format, where regular classes

are reserved for development of the control theory and supporting concepts

while a special lab section is reserved for hardware related material. The next

section gives brief outlines of parts one and two. Part three is presented in full in

chapter seven.

6.1.1 BeagleBone Robotics Parts One and Two

Part one of BeagleBone Robotics begins by stepping through the getting

started process with the BeagleBone Black as well as a description of the

63

workflow that will be used throughout the text. This includes instruction on how

to use the various communication options such as networking over USB,

Ethernet and Wi-Fi, as well as an intro to the Linux command line and file transfer

protocols. The last of the getting started chapters is focused on installing and

using the Robotics Cape.

 The following chapters deal with circuit design and controlling hardware

through GPIO and SPI protocols. These sections use an additional lab kit

containing LEDs, wires, breadboard and a seven segment display. The last few

chapters discuss how to use various features of the Robotics Cape and BBB

including battery management, on board sensors, H-bridges for driving DC

motors, buttons and LEDs, and counting quadrature encoders, all through the

use of the Robotics Cape library. All of these chapters and topics are

accompanied by exercises designed to ensure success with the hardware and

programming environment. By the time the student reaches the end of part

one, he or she should be armed with the tools necessary to successfully

implement the control solution to balancing BeagleMiP or BeagleRover that is

the culminating result of MAE143C.

 Part two of BeagleBone Robotics contains the complete instructions for

assembling BeagleMiP and BeagleRover. This is largely self-explanatory,

however it should be emphasized that all parts, with the exception of the

electronics, tires and motors, are 3D printed. Although BeagleMiP and

BeagleRover are both designed to be robust and durable, the fact that it is 3D

printed makes replacing broken parts fast and cheap, both of which are

64

important to an educational platform. This is not to mention the educational

value of learning 3D printing technology in itself. As 3D printers become more

and more common, prices will drop, making the technology increasingly

available to a range of schools at the high school level as well as college. The

design files for printing both vehicles are publicly available and instructions on

how to access them are included with the build instructions.

65

Chapter 7 BeagleBone Robotics Part Three

The following sections of chapter seven present part three of

BeagleBone Robotics in its entirety. It is currently written around BeagleRover

and contains the same control solution for balancing on two wheels as was

presented in chapter three, only in much greater detail and including some

material taught in MAE143C that is not absolutely needed to balance the

vehicle. It should also be made clear that by no means is everything that’s

taught in MAE143C included in this text. The format is written in an exercise,

solution style and the language is less formal to match that of BeagleBone

Robotics parts one and two. The material, including key terms and definitions,

is presented in the order in which the author finds it most comprehensible.

7.1 Introduction to BeagleBone Robotics Part Three

This section is intended to provide a comprehensive solution to

balancing the Beagle Rover on two wheels from the modeling and control

design perspective. It is written in semi-chronological order so that users may

obtain a clear and thorough understanding of the workflow required when

using the classical control techniques that will be presented. Implementation in

hardware and software, although alluded to here, is handled in detail in

another section of the text. The workflow required refers to the order in which

necessary concepts build upon each other as well as to the iterative process of

control design. This text is written for MAE 143C, the technical elective

undergraduate/graduate level Digital Control course taught at UCSD. In its

entirety, BeagleBone Robotics can be used to varying degrees to support a

66

range of curricula, topics including but not limited to, classical control, digital

control, embedded systems, robotics, dynamics, multithreaded programming,

3D printing, ordinary differential equations, digital/analog circuits and board

design among others. The focus of this chapter is the dynamics and control

used to balance the Beagle Rover and supporting concepts.

7.2 Using this Chapter

 All control related tools and concepts used in this solution are taught in

UCSD's MAE 143C course, however not everything taught in the course is used

here. Additionally students are expected to have a basic understanding of

ordinary differential equations and exposure to statics/dynamics is a plus.

Included along the way are sample exercises to which this text provides

solutions. We start with the equations of motion governing our system and end

with a discrete time control law ready to be implemented in a microcontroller.

Each subsection is meant to serve as a derivation of the solutions presented in

order to aid the curriculum design and lesson planning process. This is not a

complete curriculum and no section is intended to stand alone in teaching a

particular concept. To this end, the tools necessary to understand each

subsection are listed at the beginning of that section. The supporting textbook

used in MAE 143C is Numerical Renaissance by Dr. Thomas Bewley.

7.3 Problem Statement

 Our plant is the Beagle Rover and will be modeled as an inverted

pendulum on two wheels as depicted in Figure 7.1. Beginning with the

equations of motion describing the system, our end goal is to design a discrete

67

time control law to stabilize the body angle, �, about its upright, unstable

equilibrium position. The final product will be a difference equation ready for

implementation in a microcontroller, the BeagleBone Black in our case.

7.4 Equations of Motion

 In order to derive the equations of motion for the Rover in balance

mode, the system is modeled as a mobile inverted pendulum, an example of

which is provided in Numerical Renaissance, Ex. 17.10 and followed closely

here. The input to the system is torque from two motors and the output is body

angle, �. Initially, the equations are simplified by considering a 2D

representation of one wheel/motor and a simple rod. The inertia and torque

from the pair of wheels and motors will be integrated later. First, the free body

diagrams of the wheel and rod are presented followed by the kinematic

relations, dynamics and an integration of the two in order to derive the full

nonlinear equations of motion.

7.4.1 Free Body Diagrams and Constants

 Sample exercise: Sketch the 2D free body diagram of the wheel/rod

Figure 7.1: BeagleRover pictured on the left and 2D model of BeagleRover as a

mobile inverted pendulum on the right.

68

system. Be sure to clearly mark the coordinate system(s) used. Calculate the

inertia of the rod and wheels, approximating the wheels as solid discs.

Concepts and keywords: free body diagram, force, inertia, torque,

perpendicular axis theorem, stationary vs. body coordinate systems, normal

and tangential forces.

Solution: Where

.& = .��� �� ℎ���,

.B = .��� �� ��),

<& = ������� �� ℎ���,

<B = ������� �� ��),

C = ���D$� �� .����,

- = ��)�$� �� ℎ���,

E = �����ℎ ���. ��) �� ��) �� '����� �� .��� �� ��),

FG ��) FH = ���'���� ���'�� ,�� ��� ℎ��� ��) ��) �� �ℎ� I ��) J)���'�����,

�K = ���������� ���'�,

�L = ���.�� ���'�,

� = ���/��J M9.81 .
�=O,

Figure 7.2: Free body diagrams of the wheel and rod.

69

calculate the inertia of the wheels by approximating them as thin solid discs.

By the perpendicular axis theorem, the inertia of one wheel is

 <& = f
= .&-=. (7.1)

The inertia of the body approximated as a rod is

<B = .BE=. (7.2)

Whether balancing in crab mode or regular driving mode, take the center of

mass to be at the intersection of the two axis of symmetry of the vehicle. This is

an approximation as the "rod" in our model does not actually include the

bottom two wheels. However, the mass of the wheels is negligible compared

to that of the entire vehicle so for simplicity's sake we will take the center of

mass to be at the intersection when in reality it is very slightly higher. A more

rigorous calculation could be done but would likely not result in any

performance gain, especially because some error would still be expected.

7.4.2 Kinematics

Sample exercise: Derive an equation describing the position of the

center of mass of the rod in terms of x(t) and �(�), and another describing the

acceleration.

Concepts and key words: differentiation, vector, unit vector, center of

mass, acceleration, basic trigonometry, basic algebra, stationary vs. body

coordinate system.

Solution: Define r(t) as the position vector from a stationary coordinate

system as defined in Figure 7.2 to the center of mass of the rod, x(t) as the

horizontal position of the center of the wheel also measured from a stationary

70

coordinate system, and �(�) as tilt angle of the rod measured counter clockwise

from upright. Writing r(t) as a function of x(t) and �(�) we get the kinematic

relationship

 � = I�� − E���(�)�� + E'��(�)��. (7.3)

Differentiating twice yields the acceleration

�Q = IQ�� − �QE'��(�)�f + �[=E���(�)�f − �QE���(�)�� − �[=E'��(�)��. (7.4)

Define �� = �� '��(�) + ����� (�) as the direction perpendicular to the rod and

�ǁ = �� '��(�) − ����� (�) as the direction parallel to the rod and plug into the

above equation to get

 �Q = �'��(�) IQ − E�Q ��� − [���(�) IQ + E�[=]�ǁ
 (7.5)

7.4.3 Dynamics

Sample exercise: Assuming that both wheels are initially moving

together so that there is no turning, and that there is no slip between the wheels

and the ground, derive the nonlinear equations of motion of the wheel/rod

system in terms of body angle, �, wheel angle, P, and input torque from the

motors C. For now think of C as a single input value to the system. How does the

torque applied by the motors affect the wheel? The body?

Concepts and key words: Newton's 2nd law of motion/rotation, dot

product, equations of motion.

Solution: Define FG and FH as the forces that the rod exerts on the wheels

in the positive �f and �= directions and P(�) as the rotation of the wheel

measured counterclockwise from a reference position. As the motor spins it

applies a torque to the wheel that spins the wheel in one direction and causes

71

the rod to rotate in the opposite. In order to write down the dynamics for our

system we will make use of the following common equations:

 Newton’s Second Law of Motion

 �� = .�, (7.6)

Newton’s Second Law for Rotation

 �C = <�, (7.7)

Arc of a Circle (P in radians)

 ��' �����ℎ = �P, (7.8)

Definition of Dot Product

� ∙ � = ǁ�ǁǁ�ǁ'�� (�). (7.9)

Using these equations and making two key assumptions, the first being that both

wheels are initially moving together (no turning) and the second that there is no

slip between the ground and the wheels, we can write down the following

dynamic equations as well as the position of the wheel center:

 Position of wheel center

I = -P, (7.10)

Acceleration of rod in ��

 .B[�Q ∙ ��] = .B�'��(�) IQ − E�Q � = −.�����(�) − FH ���(�) − FG'� �(�), (7.11)

Acceleration of rod in ��

 .B��Q ∙ ��� = .B�IQ − E'��(�)�Q + E���(�)�[=� = −FG, (7.12)

Acceleration of wheel center in �� where F is friction force between

wheel and ground

 m:xQ = P¡ − F, (7.13)

72

Rotational acceleration of rod

 <B�Q = −C − FHE���(�) − FGE'��(�), (7.14)

Rotational acceleration of wheel

<&PQ = C − -�. (7.15)

where .& and <& are the mass and moment of inertia of both wheels. We will

account for the torque of both motors later when applying control. For now it’s

fine to think of C as a single value representing total input torque to the system.

7.4.4 Nonlinear Equations of Motion

Our goal is to derive two equations that together describe the motion of

the rod and the wheel as the torque from the motors is varied. Therefor we

would like these equations to be in terms of �, P and C. Begin by rearranging

equation 7.14 to get

 FH ���(�) − FG '��(�) = £w Q̀ g¤
� . (7.16)

Plugging into equation 7.11, multiplying by L and distributing .B yields

 .BEIQ '��(�) − .B�QE= = −.BE����(�) + <B�Q + C. (7.17)

Rearrange to get Equation of Motion 1

 −(.BE'��(�)IQ) + (<B + .BE=)�Q = .BE����(�) − C. (7.18)

Now rearrange equations 7.13 and 7.15 to get

 FG = .&IQ + � (7.19)

and

� = −(£¥¦Q g¤
§). (7.20)

Plugging both 7.19 and 7.20 into equation 7.12 yields

73

 .B M−�QE'��(�) + �[=E���(�)O = −.&IQ + (£¥¦Q g¤
§). (7.21)

Multiplying 7.21 by R and distributing .B gives Equation of motion 2.

 <&PQ − (.&- + .B-)IQ + Z.B-E'��(�)\�Q = .B-�[= ���(�) + C (7.22)

Finally applying the no slip condition of equation 7.10, we get equations 7.23

and 7.24 which are the final nonlinear equations of motion of our system.

 Z.B-E'��(�)\PQ + (<B + .BE=)�Q = .BE����(�) − C (7.23)

 (<& + (.B + .&)-=)PQ + Z.B-E'��(�)\�Q = .B-E�[=��� (�) + C (7.24)

7.4.5 Linearization

Exercise: Linearize the equations of motion about the body's inverted

equilibrium point using small angle approximation.

Concepts and key words: Linearity, linearize, small angle approximation,

Taylor series expansion, perturbation.

Solution: The equations of motion as they stand are nonlinear in �. In

order to apply linear control techniques, we must linearize the equations.

Because our control algorithm will be designed to continuously correct the

system back to zero error (� = 0) we can use small angle approximation,

considering very small perturbations to theta around its inverted equilibrium

point. Making the substitution � = �̅ + �′ where �̅ = 0 and extending this to P and

C accordingly, the perturbation equations are:

Z.B-E'��(�′)\P′Q + (<B + .BE=)�′Q = .BE����(�′) − C ′, (7.25)

 (<& + (.B + .&)-=)P ′Q + Z.B-E'��(� ′)\� ′Q = .B-E�[′=��� (�′) + C. (7.26)

Applying the truncated Taylor series expansion resulting from the small angle

74

 approximation

 ���(�©) ≈ �© − `©i

k! , (7.27)

 '��(�©) ≈ 1 − `©h

=! (7.28)

and neglecting all primed quantities that are quadratic or higher (since the

square of a small number is an even smaller number), the linearized equations

of motion are

 (.B-E'��)PQ + (<B + .BE=)�Q = .BE�� − C, (7.29)

and

 (<& + (.B + .&)-=)PQ + (.B-E)�Q = C. (7.30)

7.5 Control

Classical control methods using lead/lag control and pole placement

will be used to stabilize the body of the Rover on two wheels about its unstable

equilibrium position. We will be leveraging the discrete equivalent design

approach, designing a controller in continuous time and later converting to

discrete time for implementation in a microcontroller. The primary tools and

techniques we will use include the Laplace and Z transforms, lead and lag

control, bode and root locus plots, the closed loop step response and Tustin's

approximation with prewarping, all of which will be discussed in more detail

below. The control process that follows is iterative in nature as the designer

applies the aforementioned tools in a deliberate fashion in order to meet the

desired performance specifications such as rise time, settling time and

overshoot of the system. Approximate design guides used during pole

placement are provided for assistance and it is useful to have them at one's

75

disposal before beginning the control design process. We will briefly list them

next.

7.5.1 Approximate 2nd Order Design Guides

Concepts and key words: order of a system, 2nd order behavior, step

input, s-plane, natural frequency, poles of a transfer function, lead control,

crossover frequency, rise time, settling time, percent overshoot, pole

placement.

As the title of this section suggests, the following design guides are most

applicable to second order systems however will also provide helpful guidance

for systems of higher order, especially if the system is characterized by 2nd order

behavior. Some commonly used characteristics of the step response of a

system and the corresponding design guides are below.

1. Percent overshoot of the system is defined as the maximum percent

by which the output of the system in response to a step input exceeds

its steady state value.

 V ≥ 0.5 →]r ≤ 15% (7.31)

 V ≥ 0.7 →]r ≤ 5% (7.32)

2. Rise time of the system is defined as the time it takes for the output of

the system to a step input to reach 0.9 of the steady state response

 �B = 1.8 WL¯ (7.33)

 where WL is the natural frequency.

76

3. Settling time of the system is defined as the time it takes for the output

of the system to a step input to settle to within ±5% of the steady state

value.

 �a = 4.6 ±¯ (7.34)

Some other useful guidelines are:

4. Pole Location of the plant transfer function in the s-plane and how it

affects the natural frequency of the system is shown in Figure 7.3.

5. For good phase bump when implementing lead control

 ²Y�G → X s̄ = 10. (7.35)

6. To achieve crossover frequency at an order of magnitude below the

sample rate of the ADC

 Wu = 1.8 �B¯ , (7.36)

 Wu = xXs. (7.37)

Note these guidelines are approximate and it is likely that the designer will not

achieve all criteria exactly.

Figure 7.3: Graphical depiction of the s-plane showing how the natural frequency of
the system is affected by pole location.

77

7.5.2 G1(s)

Exercise: By first taking the Laplace transform of the linearized equations

of motion, derive the transfer function of the plant, 	1(�), from input C(�) to

output �(�).

Concepts and key words: transfer function, Laplace transform.

Solution: For a first pass at designing a stabilizing controller, take the input

to the system to be C and output �. Motor dynamics will be included later. To

obtain the transfer function from input C to output �, take the Laplace transform

of the linearized equations of motion and rearrange to get an input/output

relationship of the form �(�) C(�)⁄ = �$. 	1(�))��	1(�)⁄ . Applying the definition

of the Laplace transform and assuming zero initial conditions, the transformed

equations are

 (.B-E'��)�=P(�) + (<B + .BE=)�=�(�) = .B�E�(�) − C(�), (7.38)

 (<& + (.B + .&)-=)�=P(�) + (.B-E)�=�(�) = C(�) (7.39)

Solving equation (7.39) for P(�), plugging into equation (7.38) and algebraically

rearranging, we get the transfer function from input C(�) to output �(�).

 	1(�) = Yw§�e£¥e(YweY¥)§h

ZYwh§h�hg(£¥e(YweY¥)§h)\(£weYw�h)ahe(Yw��)(£¥e(YweY¥)§h) (7.40)

From here on, assume all modeling and calculations to be done using

MATLAB. For balancing in crab mode, referring to the constants depicted in

and listed below the free body diagrams (Fig. 5.2), take E = 0.06., which is at

the intersection of the two axis of symmetry of the vehicle, moment of inertia

for the rod and wheels to be <B = .BE= and <& = .&E= (inertia of both wheels)

with .B = 0.612(�, .& = 0.054(� (mass of both wheels) and normalizing so that

78

the highest power of s has a coefficient of 1 in the denominator, we get:

	1(�) = gpfk
ahgfdn.d (7.41)

Now that we have the transfer function, we may begin the control design

process using the classical control techniques and design guides highlighted

thus far.

7.5.3 Discrete Equivalent Design

Exercise: What is the Nyquist frequency and how does it affect the

system? How can the control designer compensate for this effect?

Concepts and key words: block diagram, DAC, ADC, ZOH,

microcontroller, bode plot, frequency domain, phase margin, Tustin's

approximation with prewarping, Padé approximation, crossover frequency,

Nyquist frequency, aliasing, low pass filter, sample time.

Solution: To design our controller, we will use the discrete equivalent

design approach. The controller is designed in continuous time and later

converted to discrete time for implementation in the discrete time electronics.

The continuous time controller, D(s), is represented as a cascade of the analog

to digital conversion of the error signal (obtained by comparing the output of

the sensors to a reference signal), the discrete time controller, D(z), and the

digital to analog conversion necessary to provide analog signals to the motors.

When designing a controller in continuous time, the designer must be cognizant

of the h/2 time delay that results from the use of a zero-order-hold in the

microcontroller's DAC, where h the sample time of the ADC. The ADC, D(z), DAC

cascade and the Laplace transform of the resulting delay are depicted in the

79

block diagrams of Figure 7.4.

The h/2 time delay results in potentially significant phase loss if occurring

within an order of magnitude of the ³´µ¶·¸¹ º��µ¶�»¼´ = ½/2, defined as the

frequency above which aliasing occurs and the output of the ADC into the

discrete time controller can no longer be trusted as accurate. To compensate

for this, most ADC's incorporate a low pass filter above the Nyquist frequency

which also results in phase loss. The combined phase loss can be problematic if

the phase at the crossover frequency is eroded enough to potentially cause

unacceptably high overshoot and or closed loop instability of the system. To

account for the phase loss, the designer can either represent the time delay

resulting from the DAC's ZOH with a Padé approximation built directly into the

continuous time representation of the plant, G(s), or simply build enough of a

phase margin in at crossover to insure stability even with the h/2 phase loss.

After designing D(s) to meet the design specifications such as the desired rise

time and settling time, we will use Tustin's approximation with prewarping to

Figure 7.4: Block diagram of the controller/plant system. The bottom diagram shows the
series connection of the controller and plant with the delay that arises from the digital-
to-analog conversion of the discrete time controller output. The top diagram shows the
discrete time version of the controller including the necessary data conversion for
communicating with the sensors and motors.

80

obtain the discrete time controller, D(z), that the microcontroller is to obey. We

will first go through the process of incorporating a Padé approximation of a

delay into G1(s) and designing a stabilizing controller so that the user of this text

may have it as an example. Later it will be omitted.

7.5.4 Padé Approximation

Exercise: Comment on the phase margin and how this can be affected.

What type of control can be used to stabilize the system?

Concepts and key words: Padé approximation, rational function, IMU,

sample time, root locus, bode plot, s-plane and stability, "speed" of a system.

Solution: As depicted in the above block diagram, the Laplace

transform of the delay function is �g�a which is not a rational function of s.

Implementation of an irrational function in a discrete time microcontroller is

problematic, therefor we will use a Padé approximation in its place given by

�g�a ≈ �L(�) where �L(�) increases in accuracy with higher values of n. For our

purposes � = 2 is sufficient and the approximation is

 �=(�) ≈ fg�a =⁄ e(�a)h f=⁄
fe�a =⁄ e(�a)h f=⁄ . (7.42)

We must now specify exactly the h/2 time delay to be used in MATLAB's Padé

function. The IMU on the Robotics Cape has a sample time of 200Hz which

translates to a time delay of) = 0.005/2 seconds. The resulting Padé

approximation is

 F(�) = ahg=d��aef.p=~¾.¾¿

ahe=d��aef.p=~¾.¾¿. (7.43)

Combining P(s) with G1(s) and applying a negative gain results in the root locus

81

and bode plots of the "new plant," as pictured in Figure 7.5.

The n=2 Padé approximation added two stable, very fast poles which

will decay quickly and not affect the plant dynamics in a significant way. It can

be seen from the root locus that no amount of gain can be applied to stabilize

the system. Also, looking at the bode plot, there is no phase margin which is

defined as the amount of phase the open-loop system is away from 180

degrees at the frequency where the magnitude crosses 1, aka the crossover

frequency. In order to bump up the phase margin and achieve stability, a lead

controller will be applied.

7.6 Lead Control

Exercise: Design a lead controller to stabilize the G1(s)P2(s) system.

Clearly explain the reasoning behind your choice of the pole and zero locations

of the controller as well as the overall gain, K, of the system. Provide the root

locus and bode plots. What can you say about tracking of the reference signal?

How can this be affected?

Figure 7.5 Bode (left) and root locus (right) plots of the plant, G1(s), combined with a
second order Padé approximation of the delay introduced to the system by the
BeagleBone Black’s DAC.

82

Concepts and key words: Gain, lead control, reference signal, tracking,

lag control.

Solution: The form of a lead controller is

 ��~��(�) = Â ∗ aeq
aer ℎ��� s < X. (7.44)

The primary goals of applying lead control here are to bring the locus into the

stable left half plane while simultaneously speeding up the system and

increasing the phase margin. If we choose z = 12.1 to cancel the stable pole

and replace with a faster pole, we can decrease the rise time and settling time

of the step response without increasing the gain too high and potentially risking

instability. By design guide 4, choosing p=120 should result in an appropriate

phase margin. Then adjust the gain K to achieve crossover at the desired

frequency, increasing it to bump up the magnitude of the bode plot and vice

versa. We shoot for a crossover frequency of about 20 rad/s as that is an order

of magnitude below the sampling frequency of the ADC, another design guide.

After iterating to achieve close to the desired crossover and an acceptable

phase margin, a potential lead controller is

 ��~��(�) = Â ∗ aef=.f
aef=� ��ℎ Â = 2.75. (7.45)

After combining the lead controller and plant (with Padé approximation) in

series, the root locus and bode plots are shown in Figure 7.6.

 This is only one potential solution, yielding a phase margin of ≈ 45° at a

crossover of ≈ 17 rad/s with a damping of 0.6. Notice that the magnitude at

83

low frequencies is not very high and could result in poor tracking of the

reference signal. This could be affected by adding lag control which will be

exemplified after incorporating the motor dynamics.

7.7 Including Motor Dynamics

Exercise: Recalculate the inertia of the wheels including the inertia of the

motors/gearboxes using <~ = 3.6Ä − 8 Â�.= and the given information below.

Exercise: Given the equation for motor torque, incorporate the motor

dynamics into the original linearized equations of motion of the system, apply

the Laplace transform and rearrange as before to derive the new transfer

function of the system from input U(s) to output �(�). Plot the root locus and

bode plots. Comment. What is the format of a possible stabilizing controller?

Solution: Although we have now achieved a stabilizing controller in

simulation, the robot itself would very likely not balance in reality. This is due to

the fact that the motors themselves have dynamics that we have hitherto

neglected. We will include them now and follow a similar control design

approach, utilizing the root locus and bode plotting tools, this time with the

Figure 7.6: Bode (left) and root locus (right) plots of the plant, G1(s), and n=2 Padé

approximation of the delay function, P(S), with lead control applied.

84

addition of the closed loop step response and lag control. The motor dynamics

can be modeled as

C = �̅$ + (, − V)W (7.46)

where:

�̅ = ����� ���D$�,

, =)�.X��� '�����'����,

V = /��'�$� ���'����,

<~ = .���� ��.��$�� �������,

W = .���� �X��) (P[− �)[�� Z�[− P[\)�X��)��� �� .���� X������J,

 $ = .���� ��X$� (F*] /��$� ,�� ��� − 1 ��) 1).

Additionally, when calculating the inertia of the wheels and motors

combined, we must multiply the motor armature inertia by the square of the

gearbox ratio prior to summing with the wheel inertia. As before, the wheels are

taken to be solid disks when estimating their inertia. The total inertia of one

wheel and motor is

 <& = <~ + f
= .&-= (7.46)

and the final linearized equations of motion accordingly become

 (.B-E)PQ + (<B + .BE=)�Q = .B�E� − 2C (7.47)

 (<& + (.B + .&)-=)PQ + (.B-E)�Q = 2C (7.48)

where C is defined above to be the torque from one motor, .& now includes

the mass of both wheels and <& now includes the inertia of both wheels and

gearboxes. Making the proper substitutions, taking the Laplace transform, and

rearranging algebraically exactly as before yields the new transfer function

85

 	1(�) = `(a)
b(a) = =a̅(cdecf)

(gcdc=ecfh)aie(=(je+)(gcdgc=g=cf)ahe(ckecd)ae=(je+)ck (7.49)

where:

l1 = .B-E, (7.50)

 l2 = <B + .BE=, (7.51)

l3 = .B�E, (7.52)

 <& + (.B + .&)-=. (7.53)

Plugging in the constants for these particular motors gives the final transfer

function.

 	1(�) = `(a)
b(a) = g==n.=a

aieo.==fahgfkn.oag=p=.= (7.54)

The root locus and bode plots with negative gain applied are given in

Figure 7.7. Looking at the root locus, no amount of gain can stabilize the system.

In order to bring the locus into the LHP using pole placement techniques, our

controller must cancel the zero at the origin and replace it with a stable zero.

Note this is generally done with caution as a pole-zero cancellation on the

imaginary axis can lead to instability due to inaccuracies in the model. We are

confident in our model and will perform this cancellation. Looking at the bode

Figure 7.7: Bode (left) and root locus (right) plots of the plant G1(s) incorporating

motor dynamics.

86

plot, we do not have a high enough magnitude at low frequencies to achieve

acceptable tracking. By applying lag control over the appropriate frequencies

we can bump up the low frequency gain as well as cancel the zero at the

origin, replacing it with a stable zero and bringing the locus into the LHP as

desired.

7.8 Lag Control

Exercise: Design a lag controller to stabilize the system and plot the root

locus and bode plots. Comment.

Concepts and key words: Lag control, phase lag, integrator windup.

Solution: The form of a lag controller is

 ����(�) = aeq
aer ��� s > X. (7.55)

The primary use of a lag controller is to increase the gain at low

frequencies in order to achieve good tracking. The gain will increase by a factor

of z/p. Because our pole is at zero, we are able to choose z such that our lag

control takes affect at frequencies well below our desired crossover frequency

of 20rad/s. This is necessary due to the phase lag caused by the lag controller.

We do not want to erode the phase at crossover and risk instability. After a few

iterations, we choose z=3 and the resultant bode plot of our lag controller is

given in Figure 7.8, illustrating the phase lag effect of a lag controller as well as

the high gain at low frequencies. Notice the lack of roll off of the gain at low

frequencies, which is the effect of having a controller pole at zero, acting as a

pure integrator. Ideally we would roll off this gain at very low frequencies to

87

avoid integrator wind up, a phenomenon that can lead to instability in the case

of motor saturation, however in this case we cannot. Combining this lag control

with the plant and a negative gain yields the root locus and bode plots given

in Figure 7.9.

7.9 Lead Control with Motor Dynamics

Exercise: Add lead control and plot the root locus and bode plots.

Figure 7.8: Bode plot of lag controller D_lag (s).

Figure 7.9: Bode (left) and root locus (right) plots of lag control combined with the plant
G1(s).

88

Identify design specifications. Comment.

Concepts and Key words: Lead control, phase margin, crossover

frequency, pole zero cancelation, rise time.

Solution: The bode plot with lag control shows that we have increased

the low frequency gain but have indeed dangerously eroded our phase

margin. Also, we do not have crossover at the desired frequency. The locus is

now brought over into the stable LHP with the appropriate gain applied,

however this design does not meet the necessary specifications such as

damping, etc. In order to achieve crossover at desired frequency and increase

phase margin, we will add lead control using much of the same logic as we did

previously. In order to design our lead controller and achieve crossover where

we desire we will use the previously introduced design guides.

 Wu ≈ 1.8 �B¯ ℎ��� �B = ���� ��.� (7.56)

 Wu = xXs ℎ��� Xs = X��� ∗ s��� (7.57)

As before, placing a zero at -15 to cancel the pole and replacing with a

faster pole will help to achieve the required rise time without applying too much

overall gain to the system. Keeping in mind that we would like a rise time of 0.05-

0.1 seconds, and a crossover frequency of ≈20 rad/s, we can use the above

equations to calculate the location of the pole that should achieve close to

our desired specifications. A rise time of 0.05 seconds corresponds to a

crossover frequency of 36 which gives us a pole at 86.4. This is not quite a factor

of 10 higher than the zero at 15 to achieve max phase bump, but we still have

a phase margin of about 52 degrees which is sufficient to account for any future

89

phase loss associated with implementation in digital electronics. Now adjust the

gain to get crossover at the target frequency. Cannot meet all approximate

design guides exactly so compromise at Wu = 23, �B ≈ 0.08, X. = 52. The final

open loop bode and root locus plots with lead control applied are given in

Figure 7.10.

7.10 Closing the Loop

Exercise: Plot the closed loop step response. Comment on whether or

not design specifications were met.

Concepts and Key words: closed loop, step input, step response, rise

time, settling time, overshoot, loop prefactor.

Solution: Referring to ��~��g���(�) as �(�), the form of the closed loop

transfer function is

 z(�) = �(a)�(a)�f(a)
fe�(a)�(a)�f(a) (7.58)

Performing a few final tweaks, we end with ���� = (� + 2.5) �⁄ and

��~��(�) = (� + 15) (� + 86.4)⁄ with a gain of -10. Giving a step input to this system

Figure 7.10: Bode (left) and root locus (right) plots of lead and lag control applied to
the plant, G1(s), showing high gain at low frequencies for good tracking of the
reference signal and ample phase bump at the crossover frequency.

90

results in the step response plotted on the left hand side of Figure 7.10 showing

a rise time of 0.06 s, settling time of 0.79 s and an overshoot of 10%. Notice that

the response settles at a value of ≈1.41 instead of 1 as desired. This can be fixed

by adding a loop prefactor of P = 1/1.41 as shown in equation (7.59). The step

response now becomes that pictured on the right hand side of Figure 7.11.

 z(�) = F ∗ Â(�)�(�)	1(�)
1+Â(�)�(�)	1(�) (7.59)

7.11 Discrete Time Controller

Exercise: Convert the continuous time controller to discrete time and

derive the corresponding difference equation to be implemented in hardware.

Concepts and Key Words: discrete time, difference equation, transfer

function, Tustin’s approximation, prewarping, Z-transform, inverse Z-transform.

Solution: In order to implement the controller in hardware, we need to

convert from continuous time to discrete time and obtain the difference

equation the controller must obey. To convert to a discrete time transfer

function we use Tustin's approximation with prewarping. We apply prewarping

Figure 7.11: Step response of closed loop system without a loop prefactor on the left
and with a loop prefactor on the right. Addition of the loop prefactor causes the
response to settle at one as desired.

91

around the crossover frequency to insure accurate conversion at this

frequency. Then applying the inverse Z transform gives us the difference

equation to be implemented in the microcontroller.

 $�e= − 1.652$�ef + 0.6525$� = −8.626��e= + 16.52��ef − 7.902�� (7.60)

7.12 Balancing in Normal Drive Orientation

Exercise: Derive the transfer function of the system for BeagleRover in its

tall orientation.

Concepts and Key Words: No new concepts or key words.

Solution: In order to balance BeagleRover in its tall orientation, we must

account for the change in the distance from the center of the wheel to the

center of mass of the body, L, and the corresponding change in the body

inertia, <B. Changing these values and recalculating, the transfer function for

the new orientation becomes

 	2(�) = gfko.oa
aie�.pfoahgpn.dvag=�n.= (7.61)

with poles at -12.4, -1.98 and 8.43 which are slightly "slower" than the poles of

G1(s) when balancing in crab mode.

92

Chapter 8 Conclusions and Future Work

The purpose of this work is twofold. First, it is dedicated to the technical

development of BeagleRover, a small RC car capable of numerous different

drive modes including balancing and driving on two wheels. Second, it is to lay

groundwork for how BeagleRover, as part of a larger platform currently being

called the EduLine, can be used to affect STEM education. The technical

portion of this paper centers on the control algorithm designed to achieve

balance on two wheels as well as the smooth transition between driving on four

wheels to driving on two using a wall. This is accomplished through classical and

digital control methods, namely lead and lag control techniques.

Implementation in a microcontroller is considered including the use of a

complementary filter to adjust for sensor noise characteristics. Lastly, four-wheel

steering is augmented by the addition of Ackermann steering geometry.

Successful implementation of the classical control and filtering

techniques mentioned above has resulted in a vehicle capable of balancing

on all four of its sides in two different unstable configurations. These consist of a

“tall” configuration and “short” configuration, referring to a higher and lower

center of mass respectively. The difference in location of the center of mass

was handled by increasing the gain while balancing in tall mode. This proved

to be sufficient in achieving balance however the vehicle does seem to display

better disturbance rejection in its short configuration. While driving in Normal

mode (on all four wheels with the front of the vehicle being what one would

expect) Ackermann steering geometry was implemented to reduce side slip of

93

the vehicle while moving through a turn. Some simple tests leveraging the on-

board gyroscope showed side slip does seem to be reduced by Ackermann

geometry when going through a tight as well as a wide turn on a hard wood

floor. The implementation of Ackermann geometry was also shown to provide

a strong educational skew that is accessible at the high school level, leading

into the educational portion of this thesis work.

Throughout the technical developments of this work, applications to

STEM education are considered, with each major section including a discussion

of its particular relevance to that topic. The education centric portion of this

work culminates in a text we are currently calling BeagleBone Robotics (BBR), a

portion of which is given in chapter seven. BeagleBone Robotics currently

consists of a hardware section that is focused on such topics as getting up and

running with the BeagleBone Black and programming in Linux, as well as a

theoretical section on control design. The theoretical portion is written in a

question and answer format designed to be used as a complete solution set for

balancing BeagleRover on two wheels. This section is not currently augmented

to be BeagleMiP specific (Beagle MiP being the first robot in the EduLine that is

currently used to teach MAE 143C, Digital Control Systems at UCSD). Although

not included in this text, BBR does include build instructions for both BeagleMiP

and BeagleRover. As a precursor to a formal curriculum written around the

EduLine, BeagleBone Robotics is considered to be a major contribution of this

thesis. That being said, there is still ample room for augmentation of this work,

both from the educational perspective as well as the technical.

94

From the educational perspective, some specific ways to augment

BeagleRover as an educational platform are adding a graphical programming

option, incorporating Ackermann steering geometry and complementary

filtering into the theoretical portion of BBR, designing complete lesson plans for

use by instructors, adding more examples of hands on experiments achievable

at the high school level. From a high level view, the EduLine has the potential

to reach a wide audience by offering a low enough barrier to entry to engage

high school aged students while offering a direct path to college level curricula.

A high school level course, or Volume 1 of BeagleBone Robotics, that has a

direct counterpart at a well-respected university such as UCSD, or Volume 2 of

BeagleBone Robotics, is potentially very powerful. In order to impact the largest

number of students possible, BeagleBone Robotics should be brought into the

classroom rather than focusing exclusively on extracurricular programs. What’s

more, the most ambitious goal is to adapt Volume 1 for use in public high

schools by appealing to state standards for science and math education. To

adapt the EduLine material to state standards for use in public school systems

is a very in depth project that will take years to complete. But if done

successfully, it could potentially impact the downward trend in students

pursuing STEM degrees that was highlighted in chapter one, especially if it is

kept affordable. Out of the EduLine, BeagleRover is the platform best suited for

adaptation to high school level coursework for a number of reasons that have

been explained throughout this paper.

From the technical perspective, some work could be done to improve

95

balancing of the vehicle as it has the tendency to “run off” when not given any

user input from the DSM2 radio. A sure way to do this would be to add position

control by leveraging frequency separation techniques. Other sensors such as

wheel encoders would be required to accomplish this reliably. However, this

method is implemented by BeagleMiP and it may be desirable from the

educational and commercial product perspective to allow for this difference

between the two robots. More compelling than this however, are the potential

improvements to the vehicle handling while driving in Normal mode. This could

include more advanced versions of Ackermann steering geometry as well as

the addition of torque vectoring which refers to spinning the wheels at different

speeds through a turn to compensate for differences in distance traveled.

Optimizing the handling of BeagleRover through these techniques could be a

separate master’s thesis project in itself.

 Although this paper focused on BeagleRover as an educational

product, there are many ways this project can be extended including to

applications outside of education. In fact, the ability to customize and extend

is a key component of the foundation of the project. One example is inspired

by Tactical Electronics’ Under Door Camera [57], a wireless camera designed

to be slid under a door and then operated from a place of cover, there is a

current effort in the Robotics Lab to design a mechanism that can be attached

to the Rover and deploy a camera in a similar fashion. As seen in the second

image, Tactical Electronics’ Under Door Camera is meant to be placed in the

desired location by a human hand, at best by an attached pole. If the same

96

result was to be achieved by a remotely controlled vehicle that can maneuver

in very tight spaces, leveraging the different drive modes such as spin mode to

turn around without lateral motion in any direction, the operator would benefit

from maintaining a greater distance of cover. The applications to hostage

situations and or exploration of a burning building for example are apparent,

enhanced by the presence of an IR light source and IR camera to illuminate

the inhabitants of a dark room without alerting attention.

A second example of extension beyond educational applications takes

the form of an additional theoretical problem. While working on the steering

code for BeagleRover, it got stuck in a loop while rotating in place on two

wheels, similar to a spinning top. This begs the question, can it spin fast enough

to be open loop stable in this orientation? By drawing parallels to the problem

of a spinning top, one could attempt to calculate the necessary angular

velocity of the vehicle about the vertical axis and therefor the necessary

velocity of the motors. The physical limitations of the Rover were tested by

writing code to disable balance control while driving on two wheels so that

maximum angular velocity could be achieved prior to disabling feedback. The

result was instability at high velocities even with the balance control enabled,

let alone disabled. The tendency of the vehicle to rotate about one wheel

rather than about the vertical axis quickly causes instability at higher speeds,

even if a high enough speed for open loop stability was achievable. It is left to

future study to move forward with this challenge.

Overall BeagleRover works well and the addition of this robot greatly

97

enhances the appeal of the EduLine as an educational robotics platform. The

combination of BeagleRover and BeagleMiP along with BeagleBone Robotics

provides a strong starting point for formal STEM curricula at both the high school

and university levels. With future development, the EduLine stands to impact

STEM education in a very real and meaningful way.

