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Abstract

A Computational Stress-Deformation Analysis of Arterial Wall Tissue

by

Ryan Taylor Krone
Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor David Steigmann, Co-chair
Professor Tarek Zohdi, Co-chair

Understanding the mechanical behavior of arterial walls under various physi-
ological loading and boundary conditions is essential for achieving the following:
(1) improved therapeutics that are based on mechanical procedures (e.g. arterial
segmenting and suturing), (2) study of mechanical factors that may trigger the on-
set of arterial aneurysms (i.e. focal blood-filled dilatations of the vessel wall caused
by disease) and (3) investigations on tissue variations due to health, age, hyperten-
sion and atherosclerosis, all of which hold immense clinical relevance. In general,
the physiological conditions on an any arterial segment can include axial stretch,
torsional twist and transmural (internal, radial) pressure which often provoke large
wall-tissue deformations that require theories of continuum hyperelasticity. Fur-
ther, the presence of collagen fibers throughout the two structural layers (media,
adventitia) of the arterial wall require anisotropic strain energy functions for more
histological accurate models. Nonlinear computational methods are therefore es-
sential for this class of boundary-value-problems (BVPs) which often do not contain
closed-form solutions.

We begin by modeling the arterial vessel wall as a thin sheet in the form of
a circular cylinder in the reference configuration. We seek to employ a bio-type
strain energy function on this constitutive framework to investigate the onset of
non-linear instabilities in a thin-walled, hyperelastic tube under (remote) axial
stretch and internal pressure. Viscoelastic effects are also considered in this model.
We then build to investigating the effects of various combinations of axial stretch
and transmural pressure on the global deformation and through-thickness stress
and strain fields of an arterial segment modeled as a two-layer, fiber-reinforced
composite and idealized as a thick-walled cylinder in the reference configuration.
We further consider (in both models) the presence of local tissue lesions, or portions
of the arterial wall having either stiffer (i.e. thrombosis or scar tissue) or softer (i.e.
diseased tissue) material characteristics, relative to the surrounding tissue. We
account for this by appropriately scaling the elastic constants of the strain energy
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functions for regions with a lesion and without. For the three-dimensional model,
we employ the strain energy function of Holzapfel et al. [1] which has been
modified by constraints on the principal invariants by Balzani et al. [2] in order to
ensure material polyconvexity. We choose a particular vessel, the human common
carotid (HCC) artery, with appropriate geometric and material properties found
from various experimentally-based studies (e.g. Fung et al. [3]). We focus on
distinct elastic constants for each layer (media, adventitia) that have been obtained
through biaxial (i.e. not simply uniaxial data - reasons for this are discussed later)
testing of in vitro HCC arteries. The loading conditions are combinations of axial
extension and transmural pressure, in the presence and absence of material lesions.
The loading is consistent with in vivo conditions on a general segment of the vessel
wall.

We find that as a two-dimensional surface, the overall deformation from inter-
nal pressure (i.e. the bulge) depends on the magnitude and, more importantly,
the rate of axial stretch and transmural pressure, the elastic material parameters of
the bio-strain energy function, and of course local inhomogeneities in the material
description of the tissue. When modeled as a three-dimensional solid undergoing
pure axial stretch, the majority of the stress is in the medial tissue, which displays
a significant gradient in the axial direction, whereas the stress in the adventitia is
constant throughout the length of the vessel. For supra-physiological pressures (i.e.
20-30 kPa, or about 50% higher than in-vivo conditions) the adventitia contributes
to the load sharing and the gradient in the medial layer evens out. For narrow (2%
of the length), stiff (100x stiffer than surrounding tissue), ring-like lesions under
the same pressures and axial stretch, the overall vessel deformation is considerably
smaller in the radial direction. The overall segment shape is stabilized by this
type of material abnormality. For local spot-like stiff (100x stiffer than surrounding
tissue) lesions, the deformation leads to an inward bulge (i.e. a clot) that will likely
affect fluid flow characteristics, hence growth and remodeling of the tissue at the
wall. For these loading conditions, when the spot-like and ring-like lesions are ap-
proximately two-times softer than the surrounding tissue, no significant differences
appear in the stress and strain fields.
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Chapter 1

Introduction

That mechanics plays crucial role in cardiovascular health and disease has been
known for centuries (e.g. see Roy [9]), though it has been only since the mid-
1970’s that we have understood the importance of wall stresses in predicting the
development and influences of vessel wall lesions (e.g. local abnormalities in the
vessel wall). Most stress analyses have assumed idealized geometries, i.e. an
axisymmetric, uniform-wall cylinder, and are generally based on either Laplace’s
equation of σ = Pr

2t , where, σ is the uniform in-plane wall Cauchy stress, P is
the transmural (internal, radial) pressure, r the pressurized inner-radius and t the
associated wall thickness (see McGiffin et al. [10]; Marston et al. [11]), axisymmetric
membrane theory (e.g. Elger et al. [12]; Fu et al. [13] ) or linear-elastic finite element
analyses (see Di et al. [14]; Elger et al. [12]; Wang et al. [15]; Stringfellow et al. [16];
Inzoli et al. [17]; Vorp et al. [18]; Mower et al. [19]). As biological tissue has inherent
nonlinear material behavior and encounters large strains on the order of 20-40% (see
He and Roach [20]; Raghaven et al. [21]), linear analyses are clearly inappropriate
and only in more recent years has there been efforts to employ nonlinear finite
element methods for their analysis. Until recently, the most accurate models use
patient-specific geometry (Fillinger et al. [22]; Raghavan et al. [23]) and treat the
arterial wall as nonlinearly elastic, albeit isotropic, homogeneous, uniformly thick
and incompressible.

More recently have authors incorporated anisotropy into the material response
of the artery wall. Vande Geest et al. [6] proposed a Choi-Vito-type, two-
dimensional phenomenological model obtained from biaxial tests on a series of hu-
man aortic samples. This exponential strain energy function assumes two in-plane
(of the tissue wall) preferred directions; longitudinal and circumferential. Another
phenomenological and exponential-type, anisotropic strain energy function is pro-
posed by Chuong and Fung [7] and [24] which adds a third preferred direction to
the material response by including the radial, through-thickness strain. Holzapfel
et al. [1] introduces a more physiologically-accurate approach by modeling the
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arterial tissue as a thick-walled, fiber-reinforced composite thereby including the
effects of the helically arranged collagen fibers in both the medial and adventitia
layers. They further propose an additive decomposition of the invariant-based
strain energy function into isotropic and anisotropic terms. The Holzapfel et al.
model [1] is transversely isotropic in that the matrix, or ground-substance of the
wall tissue (elastin) is treated as an isotropic continuum and the in-plane, helically
symmetric collagen fibers are accounted for with structural tensors. Balzani et
al. [2] modifies the Holzapfel model by developing conditions on the principal
deformation invariants that make the transversely isotropic strain energy function
polyconvex (i.e. convex in all of it’s deformation arguments). The fiber-reinforced,
thick-walled, two-layer cylinder proposed by Holzapfel et al. [8] and augmented
by Balzani et al. [2] is the model used in the second part of this study. For a general
introduction to the invariant formulation of anisotropic strain energy functions
with isotropic tensor functions see e.g. Boehler [25] and for more specific model
problems see e.g. Schröder [26]. Theoretical, experimental and clinical principles
related to arteries can be found in the text by Nichols and O’Rourke [27]. For
the most comprehensive sources on the general theories of cardiovascular solid
mechanics, specifically arterial wall mechanics, the reader is referred to the texts
by Humphrey [28] and Fung [29].

In this study, we present the following two models of an arterial wall under
various deformation states:

1. A two-dimensional membrane formulation suitable for rate-dependent axial
stretch and pressure-driven stability analyses. This model employs a more
idealized mathematical model of the arterial wall (i.e. as an arbitrarily thin
sheet) with simpler numerical methods (i.e. finite difference methods ap-
plied to a one-dimensional nodal network). It’s primary utility is a more
numerically-simple, hence a possibly more physically insightful, approach to
investigating rate, stretch and pressure-driven material instabilities that lead
to large deformations in the arterial wall with a hyperelastic, isotropic, in-
compressible bio-strain energy function. Physical (as opposed to numerical)
viscoelastic parameters are included in this model.

2. A three-dimensional, two-layer (media, adventitia), fiber-reinforced compos-
ite model under the dynamic response of both uniaxial stretch and trans-
mural pressure. We further investigate the time-dependent overall vessel
deformation and wall stress and strain fields in the presence of local material
inhomogeneities (or ”lesions”) characterized by locally stiff or soft portions
of the tissue wall (i.e. modeling, for example, scared or diseased tissue). We
use a hyperelastic, transversely isotropic, polyconvex strain energy function
(proposed by Holzapfel et al. [1] and made polyconvex by Balzini et al. [2])
that describes two-families of helically arranged fibers in each layer of the
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tissue wall. This material model is clearly a more physiologically-accurate
representation of the matrix of elastin and embedded collagen fibers in each
structural layer of the arterial wall. We employ a numerically robust nonlin-
ear total Lagrange formulation (i.e. over the reference configuration of the
body) of finite element method with each constituent layer (media, adventi-
tia) having a unique numerical meshing. We do not account for the presence
of residual wall stresses in this study; ,i.e., the reference configuration is both
load and stress-free (reasons for which are discussed later).
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Chapter 2

Arterial Histology

The microstructure of the arterial wall varies with the location along the arterial
tree, age, species and disease; therefore, it is necessary to focus on a particular
vessel and condition of interest. Nevertheless, the mechanical analysis of one
particular class of vessels yields both specific and detailed information but also a
more general philosophical approach to theoretical investigation that may be useful
throughout cardiovascular solid mechanics. Given this, arteries can be categorized
into two major groups: elastic arteries (e.g. the aorta, main pulmonary arteries,
common carotids (the vessel of interest in this study - see Fig. 2.1), common iliac,
etc.) and muscular arteries (e.g. the coronaries, cerebrals, femoral and renal arteries,
etc.) - see Rhodin [30] . Elastic arteries tend to be larger diameter vessels located
closer to the heart, whereas muscular arteries are most distally located and smaller
in diameter. Regardless of type, the normal arterial wall consists of three layers:
the intima, media and adventitia. The innermost layer, or intima, consists of a
monolayer of subendothelial cells attached to a membrane (approximately 0.2 -
0.5 µm thick) composed of mainly type IV collagen and laminin; the middle layer,
or media, consists of smooth muscle cells embedded in an extracellular matrix
of elastin, multiple types of collagen (types I, III and V) and proteoglycans; the
outermost layer consists of fibroblasts embedded in an extensive diagonally-to-
axially oriented type I collagen, admixed elastic fibers, nerves and in some cases
its own vasculature. It is thought that the adventitia serves, in part, as a protective
sheath that prevents acute over-distension of the media (as with all muscle, smooth
muscle contracts with maximum force at a certain length; above or below which
the contractions are less forceful). It is generally accepted that due to the relative
thinness and make-up of the intimal layer, only the media and adventitia contribute
to the structural behavior of the artery (neglecting growth, remodeling and chemo-
dynamic effects). Therefore, the three-dimensional model we will employ is a
two-layered structure composed of only the media and adventitia layers. Fig. 2.2
shows the physiology and constituents of a typical artery.
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Figure 2.1: Human Common Carotid (HCC) Artery (copied from Gray’s Anatomy,
[4])

This investigation will focus primarily on a representative, though idealized,
section of the Human Common Carotid (HCC) artery (A. Corotis Communis); the
principal arteries that supply blood to the head and neck (Fig. 2.1). We will inves-
tigate the vessel behavior under large deformations that are induced by various
combinations of transmural pressure and axial and stretch.

The material models (i.e. hyperelastic strain energy functions) for aortic tissue
used in this study have been extracted from the literature and are constructed
from basic principals of hyperelastic continuum mechanics. In other words, the
strain energy functions used here are not specific to the actual microstructure of the
tissue, rather are based on first principals of continuum mechanics and regression of
experimental data (for the material constants). Although the material models may
not conform to the tissue microstructure, they provide simple and approximate
descriptions of the material behavior and can be applied to three-dimensional
stress analyses. Many previous researchers in vascular mechanics have applied
this approach (e.g. Fung et al. [31]; Vaishnav et al. [32]; Vito et al. [33]; Vorp et al.
[34]).
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Figure 2.2: Physiology of the arterial wall (copied from Holzapfel et al. [1])
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Chapter 3

The Arterial Wall as a Thin Sheet

As a building block to understanding the full three-dimensional behavior of an
artery, we begin by modeling the arterial vessel wall as a two-dimensional mathe-
matical surface (i.e. membrane or thin sheet). We seek to employ a bio-type strain
energy function on this constitutive framework to investigate the onset of non-
linear instabilities in a thin-walled, hyperelastic tube under (remote) axial stretch
and internal pressure. We then investigate the conditions in which a bifurcation
of the mechanical stability leads to a bulge of the vessel wall. This model clearly
can not capture the geometric contributions to instabilities of a three-dimensional
body (e.g. Euler buckling), however, it leads to simpler numerical methods and is
useful in testing various bio-type strain energy functions.

The mathematical framework for our first model assumes the following:

• A two-Dimensional thin sheet formed as a circular cylinder in the reference
configuration

• Plain stress conditions

• Rate-dependent (viscoelastic and physical) stress response to in-plane strain

• An isotropic, hyperelastic, polyconvex bio-strain energy function

The numerical method for this model uses the following:

• The finite-difference method applied to a one-dimensional network of nodes
that is revolved to form an axisymmetric tube

• A novel spatial midpoint method that provides adequate numerical stability
and high accuracy

• A fixed-point time-iteration whereby a specified tolerance is met before ad-
vancing to the next time step
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3.1 Two-Dimensional Constitutive Framework

Consider a membrane wrapped into a right circular cylinder (note this is a
developable surface where no strain is required to unravel or flatten the surface back
out; in other words the reference configuration is stress-free). Also consider a
convected coordinate system on the surface of the cylinder, say {θα}, where α = 1, 2
and θ1 = θ, θ2 = z.
A material point on the surface in the reference configuration Ωo is parametrized
by the following,

R (θ, z) = Rer (θ) + zk (3.1)

The same material point in the current configuration is then parameterized by the
following (see Fig. (3.1)),

r (θ, z) = r(z)er (θ) + ζ(z)k (3.2)
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Figure 3.1: 2D membrane coordinates

Define a set of ”contravariant” bases, characterized by (3.1), on the undeformed
surface as,

A1 =
∂R
∂θ1 =

∂R
∂θ

= R
∂er(θ)
∂θ

= Reθ (3.3)

A2 =
∂R
∂θ2 =

∂R
∂z

= k (3.4)
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Define the dual set of ”covariant” bases to our contravariant bases, on the same
surface (these vectors have inverse components to the contravariant basis vectors),
as,

A1 =
1
R

eθ (3.5)

A2 = k (3.6)

The dot product of these bases form a set of scalars for which the components
are, Aαβ and Aαβ, respectively (where α,β = 1, 2), are defined as Aαβ ≡ Aα · Aβ and
Aαβ
≡ Aα

·Aβ.
Similarly, on the surface in the deformed configuration, where a material point is
parameterized by (3.2), we have the transformed contravariant bases,

a1 =
∂r
∂θ1 =

∂r
∂θ

= r
∂er(θ)
∂θ

= reθ (3.7)

a2 =
∂r
∂θ2 =

∂r
∂z

= r′(z)er(θ) + ζ′(z)k (3.8)

Where the covariant bases are then,

a1 =
1
r

eθ (3.9)

a2 =
1

r′(z)
er(θ) +

1
ζ′(z)

k (3.10)

Similarly, we have the following set of scalars from the dot products of our current
configuration bases, aαβ ≡ aα · aβ and aαβ ≡ aα · aβ.
For deformations in-plan of our surface, we can define the two-dimensional defor-
mation gradient as the following,

f ≡ aα ⊗Aα

= a1 ⊗A1 + a2 ⊗A2

= reθ ⊗
1
R

eθ + (r′(z)er(θ) + ζ′(z)k) ⊗ k

=
r
R

eθ ⊗ eθ + (r′(z)er(θ) + ζ′(z)k) ⊗ k (3.11)

It is useful to further define an orthogonal basis at our material point in the reference
configuration as {L,M,N} and current configuration as {l,m,n} (see Fig. (3.1)). In
the reference and current configurations, respectively, L and l point along the
surface in the longitudinal direction of the cylinder, M and m point along the
meridian of the cylinder (i.e. tangent at a material point around the circumference)
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and N and n are the outward unit normals to the surface.
We can define the deformed orthogonal basis vectors that lie in the surface (l and
m) as some scalar multiple (say λ and µ, respectively) of our contravariant bases,

λl = r′(z)er(θ) + ζ′(z)k (3.12)

µm =
r
R

eθ (3.13)

Therefore, we can represent the 2D deformation gradient (noting that in the refer-
ence configuration, M = er and L = k) as the following,

f = µm ⊗M + λl ⊗ L (3.14)

We further identify the hoop and longitudinal stretches, respectively, as,

µ =
r
R

(3.15)

λ = ((r′(z))2 + (ζ′(z))2)1/2 (3.16)

It is useful to define the outward unit normal for a material point in the current
configuration using the following relationship,

Jn = µm × λl (3.17)

Where, J is the Jacobian of the deformation (i.e. J = µλ = [det(FTF)]1/2). It will be
useful later to have this relationship expressed in the following form,

Jn = µm × λl

=
r
R

eθ × (r′(z)er + ζ′(z)k)

= −
r
R

r′(z)k +
r
R
ζ′(z)er

=
r
R

(ζ′(z)er − r′(z)k)

= µ(ζ′(z)er − r′(z)k) (3.18)

To avoid dealing with different systems of units, we will non-dimensionalize the
problem by dividing through by the reference configuration radius, R. Recalling the
[already] dimensionless radial coordinate, µ = r

R , we further define a dimensionless
axial coordinate (say x) in the reference configuration and a dimensionless axial
stretch (say ζ̄) in the current configuration, respectively, as the following,
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x =
z
R

(3.19)

ζ̄ =
ζ
R

(3.20)

Since the formulation of our equilibrium equations involves the derivative with
respect to the undeformed axial coordinate (which has dimensions of length), z, it
is useful to check the derivatives of the new dimensionless quantities.

r′(z) =
dr
dz

=
dr
dx

dx
dz

=
d(µR)

dx
1
R

=
dµ
dx

= µ′(x) (3.21)

ζ′(z) =
dζ
dz

=
dζ
dx

dx
dz

=
d(ζ̄R)

dx
1
R

=
d̄ζ
dx

= ζ̄′(x) (3.22)

So clearly, r′(z) = µ′(x) and ζ′(z) = ζ̄′(x). Also, it is useful to note the dimensionless
form of the longitudinal stretch as, λ = ((µ′)2 + (ζ̄′)2)1/2. Henceforth, consider
derivatives marked with a prime to have the definition ( )′ ≡ d( )

dx .

3.2 Three-Dimensional Constitutive Framework

To motivate the forthcoming definition of our two-dimensional stress measures,
we will briefly review the fundamental concepts of three-dimensional non-linear
continuum mechanics.

3.2.1 Deformation

Let Ω0 ⊂ <
3 be an open set defining a continuum body (an arterial layer) with

smooth, continuous boundary surface ∂Ω0 in three-dimensional Euclidean space
<

3. We refer to Ω0 as the reference configuration of the body at fixed reference
time, t = 0. The body undergoes a motion χ during some closed time interval,
t ∈ [0,T]. The motion is expressed via the mapping χ : Ω̃0 × [0,T] → <3, where
Ω̃0 = Ω0 ∪ ∂Ω0 denotes the closure of the open set, Ω0. The motion transforms a
reference point X ∈ Ω̃0 into a spatial point x = χ(X, t) ∈ Ω̃ for any subsequent time,
where of course Ω̃ = Ω∪ ∂Ω. The motion therefore gives χ(X, t) = X + u(X, t), with
the Lagrangian description of the displacement field u(X, t). Further, we define the
three-dimensional deformation gradient F(X, t) = ∂χ(X, t)/∂X = I + ∂u/∂X which
describes the deformation of a material line element (otherwise defined as dx = FdX,
where the material line segment dX, tangent at a material point to the curve Co in the
reference configuration, is mapped to the current material line segment dx, tangent
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to the deformed curve, C) and the Jacobian, J(X, t) = detF which characterizes the
volume change due to the deformation (see Figure 3.2).

Since we wish to use the Lagrangian description of the constitutive model, an
appropriate deformation tensor is the right Cauchy-Green tensor C(X, t) = FTF.

 

∂Ω

Ω  

∂Ω

Ω

 

χ , t 

χ , t

Origin

Reference  t 0   Current

d  
d

C   C

Figure 3.2: Deformation diagram

3.2.2 Stresses and the Viscoelastic Response

The first Piola-Kirchhoff, in-plane stresses (i.e. the principal stresses) for our
hyperelastic, incompressible, isotropic material are traditionally found by taking
the derivative of the strain energy density with respect to each of the principal
stretches. Since, by definition of a viscoelastic material, we seek an expression of
stress that is strain-rate dependent, we will modify our stresses by simply adding
a term that is rate-dependent (allowed by superposition).

First we postulate a hyperelastic three-dimensional incompressible, isotropic, and
strain-rate sensitive material then we will project this onto our two-dimensional
surface. We assume the following constitutive function for the nominal stress
(suspend standard summation convention for repeated indices and simply note
that i = 1, 2 or 3),
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P̂ =

3∑
i=1

∂W̄(λ1, λ2, λ3)
∂λi

vi ⊗ ui − qF∗ +
1
2
ν̄FĊ (3.23)

Notice that we have introduced a dimensionless strain energy density, W̄, that de-
pends on all three generalized principal stretches, λ1, λ2 and λ3. Our dimensionless
Lagrange multiplier, −q, coupled with F∗ incorporates our incompressibility con-
straint. We use ν̄ to represent our dimensionless kinematic viscosity (a constant),
where ν = Gν̄ and again, G is the shear modulus (note that for ν, in 3D and 2D,
respectively, the units are mass/(length*time) and mass/time). We can define our
3D deformation gradient and it’s cofactor, respectively, as,

F =

3∑
i=1

λivi ⊗ ui (3.24)

and,

F∗ =

3∑
i=1

µivi ⊗ ui (3.25)

Where, µ1 = λ2λ3, µ2 = λ1λ3 and µ3 = λ1λ2.

We define the right Cauchy stretch tensor and its time derivative (provided u̇i = 0),
respectively as,

C = FTF =

3∑
i=1

λ2
i ui ⊗ ui (3.26)

Ċ = 2
3∑

i=1

λiλ̇iui ⊗ ui (3.27)

Combining terms yields,

P̂ =

3∑
i=1

(∂W̄(λ1, λ2, λ3)
∂λi

− qµi + ν̄λ2
i λ̇i

)
vi ⊗ ui (3.28)

According to our formulation of plane stress (i.e. our membrane model), we know
that the stress in the direction normal to the surface, say the u3-direction, is zero
which can be expressed by P̂u3 = 0. Substituting (3.28) into this condition yields a
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useful relation,

((∂W̄(λ1, λ2, λ3)
∂λ3

− qµ3 + ν̄λ2
3λ̇3

)
v3 ⊗ u3

)
u3 = 0

∂W̄(λ1, λ2, λ3)
∂λ3

= qµ3 − ν̄λ
2
3λ̇3 (3.29)

Since we seek the ”new”(i.e. viscoelastic) in-plane principle stresses, it is useful to
first define a 2D identity tensor as the 3D identity tensor minus the out-of-plane
tensor component, or,

1 = I − k ⊗ k (3.30)

Again, from plane stress (i.e. P̂k = 0), we can say the following,

P̂ = P̂I
= P̂1 + P̂k ⊗ k
= P̂1 (3.31)

Forming this product gives the following,

P̂1 =

2∑
α=1

(∂W̄(λ1, λ2, λ3)
∂λα

− qµα + ν̄λ2
αλ̇α

)
vα ⊗ uα (3.32)

Due to incompressibility, we can equate W̄(λ1, λ2, λ3) to some other arbitrary strain
energy density that is only a function of the first two (generalized) principal
stretches,

W̄(λ1, λ2, λ3) = ω̄(λ1, λ2) with λ3 =
(
λ1λ2

)−1
(3.33)

Using (3.29), we can show the following,
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∂ω̄
∂λ1

=
∂W̄
∂λ1

+
(
∂W̄
∂λ3

)(
∂λ3

∂λ1

)
=

∂W̄
∂λ1

+
(
qµ3 − ν̄λ

2
3λ̇3

)(
−1
λ2

1λ2

)
=

∂W̄
∂λ1
−

q
λ1

+
(
ν̄

λ2
1λ2

)
λ2

3λ̇3 (3.34)

Using the same development, the second in-plane stress is the following,

∂ω̄
∂λ2

=
∂W̄
∂λ2

+
(
∂W̄
∂λ3

)(
∂λ3

∂λ2

)
=

∂W̄
∂λ2

+
(
qµ3 − ν̄λ

2
3λ̇3

)(
−1
λ1λ2

2

)
=

∂W̄
∂λ2
−

q
λ2

+
(
ν̄

λ1λ2
2

)
λ2

3λ̇3 (3.35)

Therefore, in general,

∂W̄
∂λα

=
∂ω̄
∂λα

+
q
λα
−
ν̄
λα
λ3λ̇3 (3.36)

Hence, if we plug (3.36) into (3.32) with some manipulation we obtain the in-plane
viscoelastic stress tensor components P̂α of the tensor P̂ as,

P̂α =
∂ω̄
∂λα

+
q
λα
− qµα + ν̄λ2

αλ̇α −
ν̄
λα
λ3λ̇3

=
∂ω̄
∂λα

+
ν̄
λα

(
λ3
αλ̇α − λ3λ̇3

)
(3.37)

Where,

P̂ =

2∑
α=1

P̂αvα ⊗ uα (3.38)

It is useful to note the following,
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λ̇3 =
˙(

λ1λ2

)−1(
λ̇1λ2 + λ1λ̇2

)
(3.39)

Therefore, to specialize this result using our previous notation, we substituteλ1 = µ
and λ2 = λ, so the two principal stresses are,

P̂1 =
∂ω̄
∂µ

+
ν̄
µ

(
µ3µ̇ − λ3λ̇3

)
(3.40)

and,

P̂2 =
∂ω̄
∂λ

+
ν̄
λ

(
λ3λ̇ − λ3λ̇3

)
(3.41)

With,

λ̇3 =
˙(
µλ

)−1(
µ̇λ + µλ̇

)
(3.42)

The only remaining issue is the matter of the material derivative which we have
denoted by ˙( ) ≡ ∂

∂t ( ). Since taking this derivative introduces another time parame-
ter in the denominator (i.e. ˙( ) =

[
1

time

]
), we must introduce a non-dimensional time

parameter, t̄, defined by t = τt̄, where τ carries the dimensions of time. Therefore,
˙( ) = ∂

∂t ( ) = ∂
∂t̄
∂t̄
∂t̄ ( ) = 1

τ
∂
∂t̄ ( ). Henceforth, all time derivatives will be in terms of the

dimensionless t̄.

To show that we have consistently constructed all non-dimensional quantities, note
the following unit cancellation (where [ ] = units o f ) in the second term on the
right-hand-side of the stresses P̂α (α = 1, 2): [ν̄]

[λα]

(
[λ3

α][λ̇α] − [λ3][ ˙λ3]
)

= [ν]
[G]

(
[ 1
τ ]
)

=
(mass/time)

( f orce/length)

(
1

time

)
=

(
−

)
. Therefore, our stresses are truly dimensionless.

3.2.3 Kinematic Viscosity Coefficient for Arterial Tissue, ν

To implement our viscoelastic model, we need appropriate physical values for
the kinematic viscosity coefficient, ν. We will refer to the study by Busse et al.
[35] on the effects of elastic and viscous properties of arterial wall tissue on stress
states and use an average of the experimentally derived values of viscosity reported
therein (Table 1 of [35]). The material parameters reported are for excised sections of
rat abdominal aorta (which we assume to have comparable material characteristics
to a human artery). We find the average to be ν = 81.9 kPa·sec.
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3.3 Potential Energy

So far we have characterized our surface, developed a measure of deformation
and stress, and defined some fundamental quantities for a vessel modeled as a thin
sheet. Our next step is to set up the equations of motion for our vessel in order to
solve some very simple initial boundary value problems. We proceed in this vein
by introducing definitions for the potential and kinetic energies that allow us to
formulate our equilibrium conditions and equations of motion.

The total potential energy, E, of our material is simply the sum of the total strain
energy, W (i.e. the measure of the work done by internal material forces) and the
work done by the external pressure, P, on a unit of current material surface area.
Assuming a unit of current material volume is given by, v, we may write the total
strain energy as the following,

E = W − Pv (3.43)

Where the negative sign indicates work being done on the material by the pressure
and the total strain energy is defined over a unit area in the reference configuration,
∂Ωo, as,

W ≡
∫
∂Ωo

ω(λ, µ)dA (3.44)

The volume in the current configuration, Ω, can be found by the following formula
(recalling that r is the location of a material point in the current configuration
defined by (3.2)),

v =
1
3

∫
Ω

div(r)dv (3.45)

We will assume the domain, Ω is closed, bounded and smooth; hence, we can use
Gauss’s divergence theorem to bring the integral to a unit current area. Since our
Jacobian can be expressed as a volume ratio, J = dv

dV , we can pull-back the integral
to a unit area of the reference configuration.

v =
1
3

∫
∂Ω

n · rda

=
1
3

∫
∂Ωo

Jn · rdA (3.46)
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We can now represent our total strain energy as the following,

E =

∫
∂Ωo

ω(λ, µ)dA −
P
3

∫
∂Ωo

Jn · rdA

=

∫
∂Ωo

(
ω(λ, µ) −

P
3

Jn · r
)
dA (3.47)

Noting that the reference configuration of our domain is a right circular cylinder
with an element of differential surface area of dA = 2πRdz, we can represent the
integral over the reference axial length (Lo) (and move the 2πR outside the integral
as R is of course constant),

E = 2πR
∫
Lo

(
ω(λ, µ) −

P
3

Jn · r
)
dz (3.48)

We first focus on the right-hand portion of the integrand. Recalling the formulation
(3.18) and the definition of the current radius in (3.2), we can form the inner product,
Jn · r, as the following,

Jn · r = µ(ζ′(z)er(θ) − r′(z)k) · (rer(θ) + ζk)
= µ(rζ′(z) − r′(z)ζ) (3.49)

Therefore,

E = 2πR
∫
Lo

(
ω(λ, µ) −

P
3
µ(rζ′(z) − r′(z)ζ)

)
dz (3.50)

In order to manipulate the equations more easily, we will generalize the integrand
as some function, say F(r, r′(z), ζ, ζ′(z)) (Note that we have noticed that the integrand
is a function of the variables (r, r′(z), ζ, ζ′(z)) because the arguments of ω(λ, µ) are
µ = r

R and λ = ((r′(z))2 + (ζ′(z))2)1/2.),

F(r, r′(z), ζ, ζ′(z)) = ω(λ, µ) −
P
3
µ(rζ′(z) − r′(z)ζ) (3.51)

Therefore,

E = 2πR
∫
Lo

F(r, r′(z), ζ, ζ′(z))dz (3.52)

Furthermore, we define a dimensionless integrand (suppressing the arguments),
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F̄ as F = GF̄. With definition (3.51), our dimensionless quantities (3.19) and (3.20)
and using the relationships between the derivatives shown in (3.21) and (3.22), we
have,

F̄ =
ω
G
−

P
3G
µ(rζ′(z) − r′(z)ζ)

= ω̄ −
P

3G
µ(µRζ̄′(x) − µ′(x)Rζ̄)

= ω̄ −
PR
3G
µ(µζ̄′(x) − µ′(x)ζ̄)

= ω̄ − P̄(µ2ζ̄′(x) − µµ′(x)ζ̄) (3.53)

Where, in (3.534), we have defined the dimensionless pressure as P̄ = PR
3G .

Therefore, if we change our domain of integration using dz = Rdx, our total poten-
tial energy equation (3.52) becomes the following,

E
2πR

= GR
∫
Lo

F̄(µ, µ′(x), ζ̄, ζ̄′(x))dx

E
2πGR2 =

∫
Lo

F̄(µ, µ′(x), ζ̄, ζ̄′(x))dx (3.54)

We will define a ”normalized” total potential energy, say Ē,

Ē =
E

2πGR2 (3.55)

Therefore, we have the final form of our dimensionless total potential energy as,

Ē =

∫
Lo

F̄(µ, µ′(x), ζ̄, ζ̄′(x))dx (3.56)

Equation (3.56) is the form we will use in all subsequent analysis.
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3.4 Kinetic Energy

The total kinetic energy of the system can be represented by the following
equation,

K =

∫
Lo

ρ

2

(
(ṙ)2 + (ζ̇)2

)
dz (3.57)

Where, ρ is the density (mass per unit reference length, Lo) and we recall that r and
ζ are the deformed radial and axial coordinates, respectively.
Using the same dimensionless quantities previously defined, as well as the explicit
form of the time derivative, we can show kinetic energy as the following,

K =

∫
Lo

ρR3

2

((dµ
dt

)2

+
(dζ̄

dt

)2)
dx (3.58)

Recall we have introduced a dimensionless time, t̄, defined by, t ≡ τt̄, where τ has
units of time. Therefore, our equation becomes,

K =

∫
Lo

ρR3

2τ2

((dµ
dt̄

)2

+
(dζ̄

dt̄

)2)
dx (3.59)

Finally, we define our dimensionless total kinetic energy, say K̄, as K ≡
(
ρR3

τ2

)
K̄ and

we therefore have the following,

K̄ =
1
2

∫
Lo

((dµ
dt̄

)2

+
(dζ̄

dt̄

)2)
dx (3.60)

Note that the quantity
(
ρR3

τ2

)
has units of energy (e.g. Joules). The [dimensionless]

total energy in the system is simply the sum, Etotal ≡ K̄ + Ē.

3.5 The Principle of Minimum Potential Energy

In this section we will derive the equilibrium (so called ”Euler-Lagrange”)
equations for our system by applying the Principle of Minimum Potential Energy
(PMPE). In the absence of kinetic energy, the state of minimum total potential energy
is equivalent to a state of static equilibrium of the system. Therefore, if we minimize
our total potential energy Ē given by (3.56) (here, a functional), we can identify the
equilibrium equations of this system. To do this we will employ the theory of
calculus of variations.
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Since we have two dimensionless coordinates, (µ, ζ̄) that uniquely define a material
point in the deformed configuration (in which our functional 3.56 depends upon),
we will get two Euler-Lagrange (or equilibrium) conditions - one for µ and one for
ζ̄.

The development of the Euler-Lagrange equations depends on the fundamental
theorem of calculus of variations in which we assume (we note that this is a strong
assumption and weaker assumption makes the proof more complicated but we
attain the same result) that the integrand of our functional, i.e. F̄(µ, µ′(x), ζ̄, ζ̄′(x)),
has continuous first partial derivatives in x over some arbitrary interval, x ∈ [a, b].
We will also assume that the boundary conditions are defined on that interval; for
example,

µ(a) = c
µ(b) = d

¯ζ(a) = e
¯ζ(b) = f (3.61)

where, c, d, e, f are some known, arbitrary constants.

Over our interval, the functional we seek to minimize is thus,

Ē =

b∫
a

F̄(µ, µ′(x), ζ̄, ζ̄′(x))dx (3.62)

In the following, we will develop the Euler-Lagrange equation for the µ coordinate
because the the steps are identical for the ζ̄ coordinate.

If µ optimizes (i.e. minimizes or maximizes) the ”cost” functional, Ē, subject to
the boundary conditions (3.61), then a slight perturbation of µ that preserves the
boundary values must either increase (if µ is a minimizer) or decrease Ē (if µ is a
maximizer).

Let some function, say g(x) = µ(x) + εη(x), represent a prescribed perturbation
of µ(x), where another function η(x) is a differentiable function of x satisfying
η(a) = η(b) = 0 (i.e. it adds nothing to the boundaries) and ε is the scalar value of
the perturbation. Then define the total potential energy in terms of our perturbation



3.5. THE PRINCIPLE OF MINIMUM POTENTIAL ENERGY 24

as,

Ē(ε) =

b∫
a

F̄(x, g(x), g′(x))dx (3.63)

Now calculate the total derivative of the potential energy (i.e. with respect to ε)
while suppressing the dependency on x and keeping in mind that ( )′ ≡ d

dx ( ),

∂Ē
∂ε

=
∂
∂ε

( b∫
a

F̄(x, g, g′)dx
)

=

b∫
a

∂
∂ε

(
F̄(x, g, g′)

)
dx

=

b∫
a

(
∂F̄
∂x
∂x
∂ε

+
∂F̄
∂g
∂g
∂ε

+
∂F̄
∂g′

∂g′

∂ε

)
dx (3.64)

Where we note that g′ = µ′ + εη′ (and therefore ∂g′

∂ε = η′) and ∂x
∂ε = 0 so,

∂Ē
∂ε

=

b∫
a

(
∂F̄
∂g
η +

∂F̄
∂g′

η′
)
dx (3.65)

We notice that when our perturbation is zero (i.e. ε = 0), that g(x) = µ(x). Since
µ(x) represents an extrema for our system (i.e. a maximum or minimum value), we
can see that the derivatives in the integrand (at ε = 0) must be the following,

(
∂F̄
∂g

)
ε=0

=
∂F̄
∂µ

= 0(
∂F̄
∂g′

)
ε=0

=
∂F̄
∂µ′

= 0 (3.66)

Hence,

(
∂Ē
∂ε

)
ε=0

=

b∫
a

(
∂F̄
∂µ
η +

∂F̄
∂µ′

η′
)
dx = 0 (3.67)

We can of course split the integral into two parts and carry out the integration
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separately. Then, we can use integration by parts on the second integral to obtain
the following,

b∫
a

∂F̄
∂µ
ηdx +

[
∂F̄
∂µ′

η
]b

a
−

b∫
a

(
∂F̄
∂µ′

)′
ηdx = 0

b∫
a

(
∂F̄
∂µ
η −

(
∂F̄
∂µ′

)′
η
)
dx +

[
∂F̄
∂µ′

η
]b

a
= 0

b∫
a

(
∂F̄
∂µ
−

(
∂F̄
∂µ′

)′)
η(x)dx = 0 (3.68)

The last equation is due to the fact that
[
∂F̄
∂µ′η(x)

]b

a
= 0 from η(a) = η(b) = 0, as

defined earlier (note we are showing the explicit x-dependence to show that η(x)

must remain inside the integral). If we define another function, say G(x) = ∂F̄
∂µ−

(
∂F̄
∂µ′

)′
,

then,

b∫
a

G(x)η(x)dx = 0 (3.69)

Assuming that G(x) is continually differentiable on the interval [a, b] and again
using η(a) = η(b) = 0, by the Fundamental Lemma of the Calculus of Variations,
G(x) = 0.

Therefore, our equilibrium (Euler-Lagrange) equation for µ(x) is the following,

∂F̄
∂µ
−

(
∂F̄
∂µ′

)′
= 0 (3.70)

Following the same development for the ζ̄(x) coordinate we have the following,

∂F̄
∂ζ̄
−

(
∂F̄
∂ζ̄′

)′
= 0 (3.71)
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3.6 From Equilibrium to Equations of Motion

Since we will seek to include rate-effects in our model (developed in later
sections), it is useful to employ the equations of motion instead of merely the
equations of equilibrium shown in (3.70) and (3.71). This will enable us to use the
method of dynamic relaxation that updates our numerical solution only when the
the dynamic effects have dampened out, giving us a ”new” and stable equilibrium
state. To this end, we will simply add an inertial term (as our damping has been
accounted for already in the formulation of the in-plane nominal stress measures,
(3.40) and (3.41) ) to each of the equations (3.70) and (3.71). Hence, our equations
of motion are,

∂F̄
∂µ
−

(
∂F̄
∂µ′

)′
= ρ̄µ̈

∂F̄
∂ζ̄
−

(
∂F̄
∂ζ̄′

)′
= ρ̄ ¨̄ζ (3.72)

Where, ρ̄ is the dimensionless density and ¨( ) ≡ ∂2

∂t2 ( ).

3.7 Development of Euler-Lagrange Equation Compo-
nents

In this section we will explicitly develop each part of the two Euler-Lagrange
equations. This allows us to highlight the principal stresses and gives a platform
to incorporate the strain-rate dependence into our stress expressions (using (3.40)
and (3.41)) later on.
We will start with the first term in (3.70). Using the definition of F̄ as shown in
(3.53) as well as our definition of the principle in-plane stresses in (3.40) and (3.41)
we have,

∂F̄
∂µ

=
∂
∂µ

(
ω̄ − P̄

(
µ2ζ̄′(x) − µµ′(x)ζ̄

))
=

∂ω̄
∂µ
− P̄

(
2µζ̄′(x) − µ′(x)ζ̄

)
= P̂1 −

ν̄
µ

(
µ3µ̇ − λ3λ̇3

)
− P̄

(
2µζ̄′(x) − µ′(x)ζ̄

)
(3.73)

Similarly, we can develop the second term in the first EL equation as,
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∂F̄
∂µ′

=
∂
∂µ′

(
ω̄ − P̄

(
µ2ζ̄′(x) − µµ′(x)ζ̄

))
=

∂ω̄
∂µ′

+ P̄µζ̄

=
(
∂ω̄
∂λ

)(
∂λ
∂µ′

)
+ P̄µζ̄

=
(
P̂2 −

ν̄
λ

(
λ3λ̇ − λ3λ̇3

))(µ′
λ

)
+ P̄µζ̄ (3.74)

Notice how we have used the chain rule in the development to allow the derivative
of the strain energy density, ω̄, with respect to one of the principal stretches, λ.

Similarly, we can show that the first term in (3.71) is the following,

∂F̄
∂ζ̄

=
∂

∂ζ̄

(
ω̄ − P̄

(
µ2ζ̄′(x) − µµ′(x)ζ̄

))
= P̄µµ′(x) (3.75)

Note that ∂ω̄
∂ζ̄

= 0.

The second term in (3.71) is,

∂F̄
∂ζ̄′

=
∂

∂ζ̄′

(
ω̄ − P̄

(
µ2ζ̄′(x) − µµ′(x)ζ̄

))
=

∂ω̄

∂ζ̄′
− P̄µ2

=
(
∂ω̄
∂λ

)(
∂λ

∂ζ̄′

)
− P̄µ2

=
(
P̂2 −

ν̄
λ

(
λ3λ̇ − λ3λ̇3

))(
ζ̄′

λ

)
− P̄µ2 (3.76)

3.8 Hyperelasticity and Polyconvexity

Recall that the definition of a Green-elastic (Hyperelastic) material is one in
which we assume the existence of a Helmholtz free energy function that is itself a
function of a strain or deformation tensor. If the material is isotropic (which we
are assuming here), this strain energy function can be represented in terms of the
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principal invariants or stretches, generically, as ω = ω̃(i1, i2, i3) = ω̄(λ1, λ2, λ3). if
we define this strain energy function per unit reference volume, we have a strain
energy density,ω. The principal invariants are defined in terms of the right Cauchy
stretch tensor U and the (general) principal stretches as,

i1 = tr(U) = λ1 + λ2 + λ3

i2 = tr(U∗) = λ1λ2 + λ2λ3 + λ1λ3

i3 = det(U) = λ1λ2λ3

(3.77)

We will assume incompressibility for this model, therefore we can relate the prin-
cipal stretches in the following way,

det(U) = λ1λ2λ3 = 1,
λ3 = (λ1λ2)−1 (3.78)

Furthermore, due to our incompressibility constraint, we can represent our isotropic
strain energy function as, ω = ω̃(i1, i2).
We say that our material is polyconvex by ensuring the strain energy density is a
jointly convex and non-decreasing function of both arguments; namely,

∂ω
∂i1

> 0,
∂ω
∂i2

> 0 (3.79)

Additionally, if we are to perturb either argument (i1, i2) we require (for our poly-
convex strain energy density) the following condition,

ω(i1 + ∆i1, i2 + ∆i2) − ω(i1, i2) ≥
∂ω
∂i1

∆i1 +
∂ω
∂i2

∆i2 (3.80)

Further implying the following two conditions (see Steigmann [36]),

∂2ω

∂i2
1

≥ 0,
∂2ω

∂i2
2

≥ 0

(
∂2ω

∂i2
1

)(
∂2ω

∂i2
2

)
−
∂2ω
∂i1∂i2

≥ 0 (3.81)

3.9 Bio-strain Energy Functions

Much like a Neo-Hookean model for rubber-like (i.e. hyperelastic), isotropic,
incompressible materials, we will assume a strain energy density that depends
only on the first principal invariant of the Cauchy stretch tensor, i1. There are
various polynomial forms of rubber-like, isotropic strain energy density functions
for isotropic materials (e.g. Ogden, Mooney-Rivlin, Neo-Hookean, Varga, etc.)
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but here we assume an exponential form of our strain energy density that may help
capture the nonlinear stiffening of our material under large strains more effectively.
We propose the following potential for the membrane model of our artery,

ω(i1) =
G
2γ

(
e f (i1)
− 1

)
(3.82)

Where G is the shear modulus (units [G] = energy/area or f orce/length) andγ ∈ [0, 1]
is a dimensionless constant representing the ”health” of the material (γ = 1.0 being
healthy tissue). Furthermore, assume f (i1) ≡ γ(i − 3). With our incompressibility
constraint, the first principal invariant (dropping the subscript to simplify the
notation) becomes, i = λ1 +λ2 + (λ1λ2)−1. So our strain energy density becomes the
following,

ω(λ1, λ2) =
G
2γ

(
eγ(i−3)

− 1
)

(3.83)

Up to this point, we have generalized the principal stretches as λ1, λ2. Considering
the change of stretch variables to those of our current problem (i.e. λ1 ≡ λ and
λ2 ≡ µ) we have,

ω(λ, µ) =
G
2γ

(
eγ(i−3)

− 1
)

(3.84)

Where now i = λ + µ + (λµ)−1.

Since we have formed the strain energy density in terms of the in-plane principal
stretches (λ, µ), our model can be applied to a 2D surface (i.e. a Cosserat surface)
where the out-of-plane thickness is negligible compared to the shortest in-plane
length. As such, the units of our strain energy density are [ω] = energy/area or
f orce/length.

We can define a dimensionless strain energy density, ω̄ as, ω = Gω̄ and therefore,

ω̄(λ, µ) =
1

2γ

(
eγ(i−3)

− 1
)

(3.85)

3.9.1 Material stability

By applying the rules of finite elasticity (see, for example, Ogden [37]) we can
further analyze the material stability of (3.85) based on variations of principal
stretches, µ, λ, internal pressure, P and the material parameter, γ.
We start by recalling the total potential energy in the membrane (i.e. equations 3.43
and 3.44). Substituting we have the following,
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E(λ, µ) =

∫
∂Ωo

ω(λ, µ)dA − Pv. (3.86)

We note that
∫
∂Ωo

dA = 2πRL, where R,L is the undeformed radius and length of

the tube, respectively. The current volume is defined as v = πr2l, where r, l are the
deformed radius and length. Therefore,

E(λ, µ) = ω(λ, µ)2πRL − Pπr2l. (3.87)

Equilibrium corresponds to the following two conditions conditions,

(1)
∂E(λ, µ)
∂µ

= 0 ⇒ 2
(∂ω
∂µ

)
= 2PRµλ

(2)
∂E(λ, µ)
∂λ

= 0 ⇒ 2
(∂ω
∂λ

)
= PRµ2 (3.88)

Solving for our pressure then yields,

(1) P =
(∂ω
∂µ

) 1
Rµλ

(2) P =
(∂ω
∂λ

) 2
Rµ2 (3.89)

If we choose to look at the relationship between pressure and radial stretch, µ, (i.e.
3.89 - (2)) we can get a fair idea how the cylinder deforms as we increase the internal
pressure for a fixed value of axial stretch. This is physically less-useful as it would
require the ends of the vessel to be be allowed to expand radially (e.g. on rollers)
yet the axial stretch remain fixed. Along these lines, if we plot the pressure versus
the radial stretch, µ, for a given axial stretch, λ = 1.25, and we vary the biological
”health” parameter, γ, we see the behavior shown in figure (3.3).

For each value γ, the region of the plot with a negative slope corresponds to an
unstable equilibrium and the cylinder will ”snap-through” to a new radial stretch
and stable equilibrium. As expected, the lower values ofγ (corresponding to ”poor”
material strength) coincide with a ”snap-through” at lower internal pressures.
Conversely, the ”healthier” material will not experience an unstable equilibrium
point (i.e. inflection point). In the context of modeling an arterial section, we
can say that at a certain internal pressure, this snap-through is when a bulge, or
aneurysm, would suddenly appear. Further, the plot shows an intuitive response
of a rubber-like material in that the cylinder is at first more difficult to inflate
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Figure 3.3: Modeling diseased tissue; pressure versus radial stretch for ”healthy”
and ”unhealthy” tissue

(large initial positive slope) and as it grows, becomes increasingly less resistant
to the pressure. Although this behavior is indicative of polymers and rubber-like
materials undergoing large deformations, it is unfortunately not a characteristic of
an arterial wall under supraphysiological deformations. For arteries, the collagen
fibers in the adventitia layer provide increasing stiffness to deformations past a
certain point (hence the need for a more histological model, as in the following
chapter). Nevertheless, this simple membrane model can provide a useful scaffold
to various strain energy functions reported in terms of principal material stretches.

We can also fix γ and plot the pressure versus radial stretch for a range of axial
stretches. Figure (3.4) shows how at a value of γ = 0.20, for large axial stretch
(e.g. λ = 5.0,λ = 10.0) the slope is immediately negative indicating an unstable
equilibrium state where the cylinder will initially bulge to a larger radius given
any increment in pressure.
To capture realistic boundary conditions where the ends are not allowed to radially
expand but are held fixed, we must satisfy simultaneously both equations in (3.89).
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Figure 3.4: Modeling supraphysiological deformations; pressure versus radial
stretch at very large axial stretch

3.9.2 Popular 2D bio-strain energy functions

We shall compare our potential (3.84) to three types of material models reported
in Fu et al. [13]: Varga, Ogden and Gent, for which the strain energy functions are
given, respectively, by,

ωV = 2G
(
λ + µ +

1
λµ

)
, (3.90)

ωO =

3∑
r=1

Gr

αr

(
λαr + µαr +

( 1
λµ

)αr
− 3

)
, (3.91)

ωG = −
1
2

GJmln
(
1 −

J1

Jm

)
, J1 = λ2 + µ2 +

( 1
λµ

)2
, (3.92)

where G is again the shear modulus for infinitesimal deformations, Jm is a material
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constant between values of 0.422 and 3.93 (for human arteries, found experimen-
tally by Horgan et al. [38]). For the Ogden model (see [37]), α1 = 1.3, α2 = 5.0,
α3 = −2.0, G1 = 1.491, G2 = 0.003, G3 = −0.023, are the material constants.

To summarize which two-dimensional models we will use as well as the elastic
constants, see Table (3.1).

2D Potential Material Constants Reference
ω = G

2γ

(
eγ(i−3)

− 1
)

γ = [0, 1] Fung et al. [31]
i = λ + µ + (λµ)−1

ωV = 2G
(
λ + µ + 1

λµ

)
- Fu et al. [13]

ωO =
∑3

r=1
Gr
αr

(
λαr + µαr +

(
1
λµ

)αr
− 3

)
G1 = 1.491, G2 = 0.003, G3 = −0.023 Ogden et al. [37]

α1 = 1.3, α2 = 5.0, α3 = −2.0
ωG = − 1

2GJmln
(
1 − J1

Jm

)
Jm = [0.422, 3.93] Horgan et al. [38]

J1 = λ2 + µ2 +
(

1
λµ

)2

Table 3.1: Summary of common 2D potentials and constants for modeling arterial
wall tissue

3.10 Numerical Methods - A Finite-Difference Model
of the Discretized Membrane Equations

We propose a time-dependent, finite-difference model of the discretized mem-
brane formulation with various hyperelastic strain energy functions for assessing
the overall deformation of a right-circular cylinder.

From the equations of motion defined in (3.108), we can isolate the principal
stretches, µ and λ, and develop an expression for each. To solve these expressions
numerically, we can use a spatial discretization where we consider a 1D array of
nodes that represent a cross-section of the membrane wall along the length of the
tube (Fig. 3.5). We may then specify the boundary conditions and and update the
stretches at each time-step.

3.10.1 Time Discretization

It is evident that equations (3.108) define the motion of a discrete material parti-
cle (or here, a node in our membrane mesh) in time. As a template for developing
the expression for the time-discretization of our nodal network, consider first the
simplest case: the dynamics of a simple particle moving in one dimension. The
equation of motion is the following,
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Figure 3.5: Numerical methods: a 1D nodal array

m
d
dt

(u̇) = F (3.93)

where, F is the total force on the particle, m is its mass and u̇ is it’s velocity. Expand
u̇ in a Taylor-series about time (t + a∆t). This gives the following,

u̇(t + ∆t) = u̇(t + a∆t) +
d
dt

(u̇)|t+a∆t(1 − a)∆t +
1
2

d2

dt2 (u̇)|t+a∆t(1 − a)2∆t2 + ϑ(∆t)3 (3.94)

and,

u̇(t) = u̇(t + a∆t) −
d
dt

(u̇)|t+a∆ta∆t +
1
2

d2

dt2 (u̇)|t+a∆ta2∆t2 + ϑ(∆t)3 (3.95)

Subtract the two expressions and let a = 1
2 to yield the following,

d
dt

(u̇)|t+a∆t =
u̇(t + ∆t) − u̇(t)

∆t
+ ϑ(∆t)2 (3.96)

Substitute (3.96) into the equation of motion (3.93) giving,

m
( u̇(t + ∆t) − u̇(t)

∆t
+ ϑ(∆t)2

)
= F (3.97)

or,
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u̇(t + ∆t) = u̇(t) +
∆t
m

F(t + a∆t) + ϑ(∆t)2 (3.98)

Define a weighted sum of u̇(t) and u̇(t + ∆t) as,

u̇(t + a∆t) = au̇(t + ∆t) + (1 − a)u̇(t) + ϑ(∆t)2 (3.99)

where, a ∈ [0, 1].
Similarly expand the position of the particle, u(t), about time (t + a∆t),

u(t + ∆t) = u(t + a∆t) +
d
dt

(u)|t+a∆t(1− a)∆t +
1
2

d2

dt2 (u)|t+a∆t(1− a)2∆t2 + ϑ(∆t)3 (3.100)

and,

u(t) = u(t + a∆t) −
d
dt

(u)|t+a∆ta∆t +
1
2

d2

dt2 (u)|t+a∆ta2∆t2 + ϑ(∆t)3 (3.101)

Again, subtract the two expressions and let a = 1
2 to yield the following,

u(t + ∆t) − u(t)
∆t

=
d
dt

(u̇)|t+a∆t + ϑ(∆t)2 (3.102)

Insert the weighted sum (3.99) into (3.102) giving,

u(t + ∆t) = u(t) +
(
au̇(t + ∆t) + (1 − a)u̇(t)

)
∆t + ϑ(∆t)2 (3.103)

Using the definition for u̇(t + ∆t) given in equation (3.99),

u(t + ∆t) = u(t) + a
(
u̇(t) +

∆t
m

F(t + a∆t) + ϑ(∆t)2
)
∆t + (1 − a)u̇(t)∆t + ϑ(∆t)2 (3.104)

or,

u(t + ∆t) = u(t) + u̇(t)∆t +
a(∆t)2

m
F(t + a∆t) + o(∆t)2 (3.105)

where, o(∆t)2
≡ ϑ(∆t)3.

Assume a weighted sum approximation for F(t+a∆t) (for more rigorous discussion
see Zohdi []),

F(t + a∆t) ≈ aF
(
u(t + ∆t)

)
+ (1 − a)F

(
u(t)

)
(3.106)

Therefore, we reach our final result for the updated position of the particle at time
(t+∆t) as a function of the weighted averages of the total force at time, t and (t+∆t),
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u(t + ∆t) = u(t) + u̇(t)∆t +
a(∆t)2

m

(
aF

(
u(t + ∆t)

)
+ (1 − a)F

(
u(t)

))
+ o(∆t)2 (3.107)

Our time-stepping scheme is then chosen as the following,

• a = 1 : Backward Euler (Implicit), ”A-stable” (see []) and the local truncation
error (committed per time step) is ϑ(∆t),

• a = 0 : Forward Euler (Explicit), conditionally stable and locally ϑ(∆t)2, or,

• a = 1
2 : Midpoint-Rule (Implicit), ”A(α)-stable” (see []), locally ϑ(∆t)3.

To extend this simple example to (3.108), explicitly, we can see,

∂F̄
∂µ
−

(
∂F̄
∂µ′

)′
︸        ︷︷        ︸

F1

= ρ̄µ̈︸︷︷︸
m d

dt (λ̇1)

∂F̄
∂ζ̄
−

(
∂F̄
∂ζ̄′

)′
︸        ︷︷        ︸

F2

= ρ̄ ¨̄ζ︸︷︷︸
m d

dt (λ̇2)

(3.108)

where it is clear that we can make the analogy that ′′F′′ = F1,2 and ′′u′′ = λ1,2 and of
course λ1 = µ and λ2 = ζ̄.

Fig. (3.5) shows a schematic of the one-dimensional nodal network and the
stretches we will be tracking (i.e. µ and ζ̄) as our numerical scheme progresses in
time (note spatial derivatives, as indicated in our equations by ( )′ = d

dx , are found
using a Taylor-series expansion around node, i).

Time-Stepping - The CFL Condition

A requirement for numerical stability (specifically for an explicit formulation
although we will use this a fraction of this critical time-step in our implicit models
as well) is that the time-step be sufficiently small to ensure the grid velocity, or the
speed at which the equations are updated, does not exceed the sound speed of the
material. This restriction on the time-step is called the Courant-Freidrichs-Levvy
(CFL) Condition and has the following representation,

∆tC <
∆xC

v
(3.109)
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Where, ∆tC is the critical time-step, ∆x is the minimum grid spacing between
the nodes (here in 1D), C < 1.0 is a constant called the Courant number and v is the
sound speed in the material. For an isotropic material (which we have here), the
sound-speed is defined through the material elastic constants Ci j (Young’s modulus
and bulk modulus are typical choices) and the density, ρ. We will use the following
definition for material sound-speed, v =

√
E/ρ.

3.11 Results

Before we employ our IBVP on the 1D finite-difference model, we must validate
that the model (i.e. the computer code) is working correctly. To do this, we have
constructed a number of simple tests to convince ourselves that its behavior is
consistent with both phenomenological and analytical predictions. The following
is a series of such validations.

3.11.1 Numerical Model Validations

Total Energy

Because we have included rate-effects into our formulation, we expect that
following an increment in either the pressure or the stretch of the tube, the total
energy of the system (i.e. potential + kinetic) must decrease to a constant value
(the rate at which it does this and the amount of overshoot is dictated by the degree
of damping we have). Although this is a fairly trivial idea, it is quite useful in
validating that the numerical computation is correct; namely, if we have an increase
in the total energy after incremental deformation, the numerical implementation is
flawed. This criteria was checked and the total energy in the system does decrease
to a constant value after an increment in the pressure or axial stretch.

The Euler Condition

A useful check that we correctly numerically implemented our membrane for-
mulation is by employing the so-called Euler Condition. This is a necessary con-
dition and stems from equating the two Euler-Lagrange (equilibrium) equations
(3.70,3.71) (as they are both zero).

∂F̄
∂µ

+
∂F̄
∂ζ̄

=
(
∂F̄
∂µ′

)′
+

(
∂F̄
∂ζ̄′

)′
(3.110)

where again
( )′

= d
dx and x is the dimensionless axial coordinate. If we integrate

along the axial direction we have,



3.11. RESULTS 38

∫
x

(
∂F̄
∂µ

+
∂F̄
∂ζ̄

)
dx −

∂F̄
∂µ′
−
∂F̄
∂ζ̄′

= Constant (3.111)

which becomes,

F̄ − µ′
(
∂F̄
∂µ′

)
− ζ̄′

(
∂F̄
∂ζ̄′

)
= Constant. (3.112)

In other words, the LHS of (3.112) is independent of the axial coordinate, x. Succes-
sive runs of the membrane model show that the LHS of (3.112) is indeed a constant
(i.e. when plotted against x) +/- a tolerance that is within our numerical error (i.e.
< ϑ(h)2, where h is the grid spacing).

Necking

We expect, intuitively, that the membrane will gradually narrow or neck midspan
as one end is held fixed and the other is pulled axially (i.e. the ”soap bubble effect”).
Fig. (3.6) show a series of 1D axial stretches that show this behavior and validate
that our viscoelastic bio-tissue material model is globally deforming as we assume.

Cylinder to Pressurized Cylinder

A rather easy-to-check analytical result that we may use to validate whether
our numerical model is working correctly is obtained by the following procedure.

1. Recall the (dimensionless) total potential energy, Ē as defined in (3.56) with
the integrand explicitly shown is the following,

Ē(λ, µ) =

x=L/R∫
x=0

(
ω̄ − P̄(µ2ζ̄′(x) − µµ′(x)ζ̄)

)
dx (3.113)

2. Now assume that the deformed equilibrium configuration of our tube is a
cylinder with a constant (in axial length, x) radial stretch, µ∗. Therefore,
µ′(x) = 0 and hence λ = ((µ′(x))2 + (ζ̄)2)1/2 = ζ̄. Equation (3.113) then becomes,

Ē(λ, µ) =
L
R

(
ω̄ − P̄µ2λ

)
(3.114)

3. We know from equations (3.88) that the equilibrium condition (with λ fixed)
is,
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(a) λ = 1.000
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(b) λ = 1.025
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(c) λ = 1.050
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(d) λ = 1.075
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(e) λ = 1.100
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(f) λ = 1.100, equilibrium

Figure 3.6: Model validation; necking from pure axial stretch
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∂Ē(λ, µ)
∂µ

=
L
R

(∂ω̄
∂µ
− 2P̄µλ

)
= 0, (3.115)

and solving for our dimensionless pressure, P̄ substituting our prescribed
radial stretch, µ∗ we have,

P̄ =
1

2λµ∗

(
∂ω̄
∂µ

)
µ=µ∗

. (3.116)

4. Now we can prescribe axial and constant radial stretches (e.g. λ = 1.1 and
µ∗ = 1.1) and given a strain energy function (e.g. equation (3.85)) and material
constants, we can solve for P̄. To check our numerical tool, we simply apply
the axial stretch, then increment the pressure P̄, wait until we have reached
equilibrium (i.e. the transients have dampened out) and check that our
deformed configuration is a cylinder with constant radial stretch µ∗ = 1.1.

We find that in performing this procedure we get and error of approximately 1.2%
(i.e. µ∗ = 1.1+/-0.013) which is acceptable considering the rate dependency of the
problem and the error tolerances of our numerical schemes (i.e. forward and
backward Euler).

3.11.2 Various Initial Boundary Value Problems (IBVP’s)

The following is a set of IBVP’s investigating the behavior of our membrane
under various conditions.

Investigation 1 - Fixed axial stretch and pressure, track the volume at various γ
over time

Increment the axial stretch to λ = 1.1. When equilibrium is reached (to within
a prescribed tolerance), inflate to a fixed pressure of P̄ = 0.50. As the tube inflates,
track the volume at each time step for different values of the material parameter,
γ from the constitutive equation (3.85) - i.e. ω̄(λ, µ) = 1

2γ

(
eγ(i−3)

− 1
)
. Figure (3.7)

shows that for smaller values of γ, the tube expands to a larger volume; i.e. the
material is weaker and stretches more radially to the same fixed internal pressure.
This is consistent with intuitive predictions. Notice that the initial portion of the
curve is the same for all values of γ. This period of time corresponds to the tube
transitioning from a necked-in, concave shape to a convex, bulged out profile. The
material provides little resistance as it snaps through until the pressure draws the
membrane tight again; the volume at which this happens clearly depends on γ.
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Figure 3.7: Modeling deformed segment volume as a function of material stiffness
for fixed internal pressure and axial stretch

Investigation 2 - Axial stretch with incremented pressure

Fix γ = 0.5 and increment the axial stretchλ to 10%. The dimensionless pressure
is then incremented to a maximum of P̄ = 2.5. As this model is viscoelastic, it may
be useful to conduct a parameter study on the effects of various stretch or inflation
rates on the overall deformation of the tube. The following is one such example
of the deformation given certain material parameters (i.e. γ and the kinematic
viscosity, ν) and a rate of stretch and inflation. The unsymmetrical deformation of
the tube is due to dynamic effects from first stretching, then inflating. That is, a
wave is propagating along the material from the initial stretch (a viscoelastic effect)
which causes the bulge to sway axially as the pressure is increased.

Investigation 3 - Inflation rate effects on final tube volume as seen by varying
the kinematic viscosity coefficient, ν̄

Here we fix the axial stretch, λ = 1.1 (i.e. a 10% stretch) and inflate at a fixed
rate to a dimensionless pressure, arbitrarily set to P̄ = 3.0. We then vary the
dimensionless kinematic viscosity coefficient of the material, ν̄. Figure (3.9) shows
traces of the material response. As would be expected, as the viscosity coefficient
is increased, the material is more resistant to our particular rate of inflation. Hence,
the volume at our end pressure is lower. We can see that below ν̄ = 0.005, the
slope increases more dramatically indicating the material undergoing very large
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(a) P̄ = 0.000
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(b) P̄ = 0.675
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(c) P̄ = 1.200
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(d) P̄ = 1.675
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(e) P̄ = 2.000
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(f) P̄ = 2.500

Figure 3.8: An example of viscoelastic effects



3.11. RESULTS 43

strains in a short time - eventually leading to material rupture, or membrane
burst. Also recall that we are implementing our viscosity through the definition of
our first Piola-Kirchhoff stress (equation (3.23)) rather than through the particular
constitutive equation we are using.
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Figure 3.9: Modeling viscoelastic effects related to segment volume

Investigation 4 - How local changes in material properties (i.e. γ) change the
overall inflation profile

Here we again increment the axial stretch to a maximum of 10 % (i.e. λ = 1.1)
and inflate at a fixed rate to a dimensionless pressure, arbitrarily set to P̄ = 5.0.
We prescribe a region on the network where the material constant that represents
the stiffness or health of the tissue, γ, for our constitutive equation ω̄(λ, µ) =
1

2γ

(
eγ(i−3)

− 1
)

is lower than for the rest of the network. Figure (3.10) shows how
material inhomogeneities cause the membrane to deform considerably differently
under internal pressure than a homogeneous membrane with constant γ (here,
γ = 10). Note how the locally soft region (3.10 (b)) still allows a more-or-less
symmetric bulge whereas the locally stiff region (3.10 (c)) creates a very different
profile.
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Globally: γ=10

(a) Homogeneous Network
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(b) Heterogeneous Network - soft local region
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Figure 3.10: Modeling inhomogeneities; local lesions in the vessel wall
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Chapter 4

The Arterial Wall as a 3D, Two-Layer,
Fiber-Reinforced Composite

Because of the material, structural and geometric complexities of biological
tissues, as well as the spatially non-uniform and time-dependent boundary con-
ditions, closed form solutions of the majority of relevant initial-value problems
are near impossible to attain. Therefore, the study of biological tissues require a
constitutive theory of finite elasticity applied to a numerical finite element frame-
work. Consequently, these problems also require more computational resources
and a post-processing graphics capability to display three-dimensional results. For
a comprehensive review of other finite element models in the literature for arterial
wall mechanics see Simon et al. [39].

In this section we seek to solve the continuum formulation of the equations of
motion for a thick-walled cylinder (i.e. artery) under transmural (internal, radial)
pressure and perivascular constraints (i.e. axial stretch) using a total Lagrangian
development of the finite element method with time stepping and a fixed point
iteration at each time step.

4.1 Mathematical Framework

4.1.1 Measures of Stress

Definitions of stresses used in this study

In nonlinear problems, various stress measures can be defined. We will follow
the definitions given in the text by Belytschko et al. [40] and therein refer the reader
for a more detailed development.
We will consider three measures of stress:

1. The (true) Cauchy stress tensor, σ
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2. The nominal stress tensor P which we define as the transpose of the first Piola-
Kirchhoff (PK1) stress tensor

3. The second Piola-Kirchhoff (PK2) stress tensor, S

 

Reference  t 0   Current

χ , t

dA 
da

 

d  
d

Ω   Ω

Figure 4.1: Definitions of 3D stress measures

Note that the nomenclature for the nominal stress is often contradictory; Belytschko
et al. [40] and Ogden [37] use the definition given here, whereas many authors
define P as the first Piola-Kirchhoff stress. It is important to note that the nominal
stress is not symmetric.
The stresses are defined by Cauchy’s law,

n · σda = df = tda (4.1)

where t is the traction (force per unit area, da) in the current configuration and n is
the unit normal to that area. In the reference configuration the counterpart to (4.1)
is,

N · PdA = df = pdA (4.2)

where p is the traction (force per unit area, dA) in the reference configuration and
N is the unit normal to that area. Note that we relate the tractions by assuming the
differential force df is constant in both configurations; i.e. df = tda = pdA. The PK2
stress is defined as,

N · SdA = F−1
· pdA (4.3)
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Transformation between stresses

The relations between the stresses are obtained by using (4.1) - (4.3) as well
as Nanson’s law which relates the current normal to the reference normal by the
following,

ndA = JF−TNdA (4.4)

For brevity, we will only report the relationships between the three stresses and refer
the reader to texts on continuum mechanics (e.g. [40]) for their full development.
It should be noted that although, for convenience, we will formulate our initial
value problem over the reference configuration of our body (i.e. artery), we will
post-process certain quantities in the current configuration. Specifically, we will
assess the Cauchy stress components for a measure of the ”true” stress of the body
at that point in time. The relations between the stresses are the following,

Cauchy stress Nominal stress 2nd Piola-Kirchhoff stress (PK2)
σ P S

σ = - J−1F · P J−1F · S · FT

P = JF−1
· σ - S · FT

S = JF−1
· σ · F−T P · F−T -

Table 4.1: Transformation between 3D stress measures

As a convenient scalar stress measure, we will use the Von Mises (or ”equivalent
tensile”) stress for multiaxial loading conditions, defined as the following,

σVM =

√(
σ11 − σ22

)2
+

(
σ22 − σ33

)2
+

(
σ11 − σ33

)2
+ 6

(
σ2

12 + σ2
23 + σ2

13

)
2

(4.5)

The repeated subscripts indicate stress along the principal axes and the mixed
subscripts indicate the components of shear stress.

4.1.2 Equations of Motion

The Lagrangian form of Cauchy’s first equation of motion for a material point (i.e.
the ”strong form”) is the following,

Div(P) + ρ0b = ρ0ü, or
∂PAi

∂XA
+ ρ0bi = ρ0üi, (4.6)
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where, ∂PAi
∂XA

denotes the divergence in the reference coordinates X of the nominal
stress, P. The body forces are b and the change in linear momentum is given by
ü (where ¨( ) ≡ d2( )

dt2 ). We also note that, according to the conservation of mass, the
Jacobian J ≡ det(F) = det( dx

dX ) and density ρ are related in the current and reference
configurations by the following, ρJ = ρ0J0 = ρ0.

We further employ the conservation of angular momentum (which says the stress
field in the body must be symmetric) as defined with the deformation gradient F
and the nominal stress as the following, FiAPAk = FkAPAi (or equivalently, σik = σki).

In addition to the differential equations (4.6), our arterial section is subject to the
following boundary and initial conditions.

4.1.3 Boundary and Initial Conditions

For any mechanical system, the same component of traction and displacement
cannot be prescribed at the same point on the boundary of a body. Therefore, we
will consider a partition of the boundary in the form Γ = Γu ∪ Γt (with Γu ∩ Γt = 0).
We impose a Dirichlet condition on the portion of the boundary Γu and a Neumann
condition on the portion of the boundary Γt. For our Lagrangian formulation, the
tractions are prescribed in units of force per unit undeformed area. Hence, the
(Piola) traction p on the portion of the boundary Γt is defined in terms of the unit
normal N, in component form as pi ≡ PiANA. However, since our applied traction
is an internal pressure that remains normal to the inner surface of the tube, we are
really applying a Cauchy traction, say t∗. Assuming some prescribed displacement
on Γu, say u∗, the boundary conditions are therefore summarized as the following
(see Fig. 4.2),

u = u∗ on Γu (front end)
u = 0 on Γu (back end)

t = t∗ on Γt (inner surface)
t = 0 on Γt (outer surface) (4.7)

In this study, we require that there be no discontinuities in the traction through-
out the domain of the body, or across interfaces, Γint. In other words, the traction is
assumed to be continuously differentiable, i.e. C0, everywhere in our domain. In
terms of the nominal stress (i.e. P) we can show this as,

[[pi]] ≡ [[PiANA]] = 0 (4.8)
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Figure 4.2: Boundary Conditions
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where we define the operator [[a]] ≡ a+
− a− and in general, a+/− are the values of

a (some general field quantity) approaching from opposite directions at a material
point.

4.1.4 Referential description for the current traction

More specific to the geometry of our tube, we will rigidly constrain each capped-
end (thus Γu is on the faces of the elements at the tube ends and this is the only
place we will prescribe a displacement) and apply a transmural (radial, internal)
pressure normal to the inner surface of the tube (which we define as Γt). The
traction on the outside surface of the tube is set to zero (also Γt). Since we are
applying a traction on the current, deformed configuration of the tube, we are
actually applying a Cauchy traction (i.e. a force per unit current area). Therefore,
in order to integrate this traction over the reference area of the element (which is
necessary for our Lagrangian formulation), we will need to ”pull-back” the Cauchy
traction.
The Cauchy traction vector is defined as the following,

t = −p∗n, (4.9)

where, p∗ is the scalar pressure and n is the unit normal on the current (deformed)
surface. We can relate the two surface tractions by integrating each over the surface
area in the reference (Γo) and current (Γ) configurations.

∫
Γo

pdA =

∫
Γ

tda

=

∫
Γ

p∗nda (4.10)

To relate the surface normals in the current and reference configuration, we use
the familiar Nanson’s formula, nda = JF−T

·NdA, and substituting into the above
expression yields, ∫

Γo

pdA =

∫
Γ

p∗JF−T
·NdA (4.11)

Implementing this numerically, we will slowly increment the pressure, p∗, with
each small time step.
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4.1.5 Initial Conditions

We assume the following initial conditions for the displacement and velocity
fields,

u(X, t) = uo on Γu,o (4.12)
u̇(X, t) = u̇o on Γu,o (4.13)

where, of course ˙( ) ≡ d
dt ( ).

4.2 The Finite Element Method

4.2.1 The total Lagrangian formulation

The weak, or dual, form of our Lagrangian formulation is obtained by multi-
plying the momentum equation (4.6) by a kinematically admissible test function,
say v (i.e. for all v = d where u = d, some arbitrary displacement, but v = 0 on the
boundary Γu) and integrating over the reference configuration.

Define the spaces of approximation of the test and the trial functions as the
following,

u(X, t) ∈ H1(Ωo), u|Γu = d (4.14)
v(X) ∈ H1(Ωo), v|Γu = 0

Where we represent the Hilbertian-Sobolev space as H1(Ωo); or, the usual space
of scalar functions with partial derivatives of order less than unity in the space
L2(Ωo). In other words u is square integrable. Mathematically (suppressing the
arguments), we say this with the following,

u ∈ H1(Ωo) i f ‖u‖2H1(Ωo) ≡

∫
Ωo

∂u
∂X

:
∂u
∂X

dX +

∫
Ωo

u · udX < ∞ (4.15)

Recall that a norm has three main characteristics for any vectors u and v such that
‖u‖ < ∞ ‖v‖ < ∞ (i.e. the norms remain bounded):

1. ‖u‖ > 0 and ‖u‖ = 0 iff u = 0

2. ‖u + v‖ ≤ ‖u‖ + ‖u‖ and

3. ‖αu‖ ≤ |α|‖u‖where α is a scalar
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Henceforth we will develop our equations in indicial (or component) notation
to keep track of the reference and current bases of various tensors more easily.
Therefore, multiplying (4.6) by our test function and integrating over the initial
configuration of the domain yields,∫

Ωo

(
∂PAi

∂XA
+ ρ0bi − ρ0üi

)
vi dΩo = 0 (4.16)

In the above equation, the nominal stress is a function of the trial displacements
via the strain energy function and the strain-displacement equation. Therefore,
this weak form is not useful as it requires the trial displacements be C1 continuous
(we want continuously differentiable, or C0). To eliminate the derivative on the
nominal stress in (4.16), we can use the following,

∂PAi

∂XA
vi =

∂
∂XA

(PAivi) −
∂vi

∂XA
PAi (4.17)

Therefore, we have,

∫
Ωo

∂
∂XA

(PAivi) dΩo −

∫
Ωo

∂vi

∂XA
PAidΩo + ρ0

∫
Ωo

bividΩo − ρ0

∫
Ωo

üividΩo = 0 (4.18)

We seek to express the first integral, above, over the boundary of our domain, Ωo. If
we define the function f (X) ≡ Pv, we must then ask ourselves if f (X) is continually
differentiable, i.e. a C0 function, over Ωo. Here, we will allow for the possibility that
f (X) may have derivatives that are discontinuous on surfaces in three dimensions.
Therefore, Ωo must be split into subdomains so that the function f (X) is C0 within
each subdomain. Discontinuities in the derivatives of f (X) will then occur on the
interfaces between the subdomains. If we use Gauss’s theorem and apply it to each
of the subdomains then sum the result we obtain the following,∫

Ωo

∂
∂XA

(PAivi) dΩo =

∫
Γo

NAPAivi dΓo +

∫
Γo,int

[[PiANA]]vi dΓo (4.19)

By (4.8), the last integral in (4.19) is zero and our weak form becomes,

∫
Γo

pivi dΓo −

∫
Ωo

∂vi

∂XA
PAidΩo + ρ0

∫
Ωo

bividΩo − ρ0

∫
Ωo

üividΩo = 0 (4.20)

We then split the first integral in (4.20) into the traction and displacement reference
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domains (i.e. Γ = Γu ∪ Γt) as follows,

∫
Γo

pivi dΓo =

∫
Γo,u

pivi dΓo +

∫
Γo,t

pivi dΓo

=

∫
Γo,t

pivi dΓo (4.21)

The first integral on the RHS of (4.21) is zero as we know that there is no traction on
the displacement portion of the boundary, or, p = 0 on Γu.
We then have the following weak Lagrangian formulation,

∫
Γo,t

pivi dΓo −

∫
Ωo

∂vi

∂XA
PAi dΩo + ρ0

∫
Ωo

bivi dΩo − ρ0

∫
Ωo

üivi dΩo = 0 (4.22)

4.2.2 Three Dimensional Discretization

We consider a Lagrangian mesh of the domain Ωo. The finite element approxi-
mation to the motion x(X, t) is given (in component form) by,

xi(X, t) =

N∑
I=1

xiI(t)ΦI(X) (4.23)

Lower case subscripts are used for components, and the upper case subscripts for
nodal values. The nodal coordinates in the current configuration are given by xiI

and in the reference configuration by XiI, where, I = 1 to N (i.e. for three dimensions,
there are eight nodes so N=8). ΦI are the (interpolation) basis functions that are
functions of the material (i.e. Lagrangian) coordinates: X1,X2,X3.
We will define the nodal displacement field by the following,

ui(X, t) = xi(X, t) − Xi =

N∑
I=1

uiI(t)ΦI(X) (4.24)

where, uiI(t) are time-dependent scalar displacements at each of the nodes.
We will use a similar form for a set of test functions (note the test functions are not
a function of time),

vi(X) =

N∑
I=1

viIΦI(X). (4.25)
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4.2.3 Internal and External Forces via Virtual Work

We can define the internal and external forces in and on our domain with the
concept of virtual work. That is, any force (i.e. external or internal), appropriately
multiplied by an arbitrary increment of displacement (i.e. ”test function”), vi,
produces an increment of work, say W. We can note that the integrals in our weak
form (4.22) are of this quality. Coupled with the approximations for our trial and
test functions (4.24), (4.25), respectively, we can define the internal nodal forces
through the internal virtual work, by the following,

Wint
≡ viI f int

iI = viI

∫
Ωo

∂ΦI

∂XA
PAi dΩo (4.26)

Clearly,

f int
iI =

∫
Ωo

∂ΦI

∂XA
PAi dΩo

=

∫
Ωo

∂ΦI

∂XA
FikSAk dΩo

=

∫
Ωo

(
∂ΦI

∂XA
Fik

)
sym(A,k)

SAk dΩo

=

∫
Ωo

(
∂ΦI

∂XA

∂xi

∂Xk

)
sym(A,k)

SAk dΩo

=

∫
Ωo

BAkiISAk dΩo (4.27)

We use the familiar deformation gradient, F, which is defined as, Fik = ∂xi
∂Xk

. For
convenience, we have chosen to use the second Piola stress, S, given by PiA = FikSAk.
Since S is symmetric, it is further convenient to define a tensor, B, (following
Belytschko et al. [40]) as the following,

BAkiI =
(
∂ΦI

∂XA

∂xi

∂Xk

)
sym(A,k)

(4.28)

Similarly, we can define the define the virtual work done by the external nodal
forces as,
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Wext
≡ viI f ext

iI = viI

ρ0

∫
Ωo

ΦIbi dΩo +

∫
Γo,t

ΦIpi dΓo

 (4.29)

Thus,

f ext
iI = ρ0

∫
Ωo

ΦIbi dΩo +

∫
Γo,t

ΦIpi dΓo (4.30)

Defining a nodal force that is equivalent to an inertial force, together with our
approximations from (4.24), (4.25), we can write,

Wkin
≡ viI f kin

iI =

∫
Ωo

viρ0üi dΩo = viI

∫
Ωo

ρ0ΦIΦJdΩoü jJ (4.31)

Define the mass matrix (which is time invariant in our Lagrangian mesh) by the
following,

Mi jIJ ≡ δi j

∫
Ωo

ρ0ΦIΦJdΩo. (4.32)

Substituting the above expressions into the weak form, (4.22), we have,

viI

(
f ext
iI − f int

iI −Mi jIJü jJ

)
= 0, ∀ (I, i) < Γo,u (4.33)

The above applies to all arbitrary values of nodal displacements, viI, that are not
constrained by displacement boundary conditions, therefore it follows that,

Mi jIJü jJ + f int
iI = f ext

iI , ∀ (I, i) < Γo,u (4.34)

Note that (4.34) represent the discrete equations for the total Lagrangian formula-
tion.

Substituting our expressions above into (4.34) and rearranging, we find our new
weak form to be the following,

δi j

∫
Ωo

ρ0ΦIΦJdΩoü jJ = ρ0

∫
Ωo

ΦIbi dΩo +

∫
Γo,t

ΦIpi dΓo −

∫
Ωo

BAkiISAk dΩo (4.35)
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4.2.4 Mapping to the Parent Element

In order to numerically integrate (with, say, Gaussian quadrature) our La-
grangian weak form (4.35), we must first map our domain into a parent element. In
three dimensions, our parent element is a unit cube with a body centered coordinate
system of (ξ1, ξ2, ξ3) (see Fig. 4.3).
We can define our mapping from reference element coordinates, X, to parent ele-
ment coordinates, X̃, by the following relation,

X =
(
X̃1I Φ̂I(ξ), X̃2I Φ̂I(ξ), X̃3I Φ̂I(ξ)

)
(4.36)

The vector above is represented in component form where the first indice indicates
the component (1, 2, 3) and there is a sum over the eight nodes (per local element),
I = 1, 2, ..., 8. From this relation, we can note the Ith-node basis function is equivalent
to the Ith-node shape function,

ΦI(X(ξ)) = Φ̂I(ξ) (4.37)

The eight master element shape functions form a nodal bases of trilinear approxi-
mation given by the following (see Fig. (4.3)),

φ̂1 = 1
8 (1 − ξ1)(1 − ξ2)(1 − ξ3)

φ̂2 = 1
8 (1 + ξ1)(1 − ξ2)(1 − ξ3)

φ̂3 = 1
8 (1 + ξ1)(1 + ξ2)(1 − ξ3)

φ̂4 = 1
8 (1 − ξ1)(1 + ξ2)(1 − ξ3)

φ̂5 = 1
8 (1 − ξ1)(1 − ξ2)(1 + ξ3)

φ̂6 = 1
8 (1 + ξ1)(1 − ξ2)(1 + ξ3)

φ̂7 = 1
8 (1 + ξ1)(1 + ξ2)(1 + ξ3)

φ̂8 = 1
8 (1 − ξ1)(1 + ξ2)(1 + ξ3)

Table 4.2: shape functions

The mapping of infinitesimal line elements between the parent and reference do-
mains is given by another deformation gradient defined as,

Fξ =
∂X
∂ξ

(4.38)

The Jacobian (the determinant of the deformation gradient) relates the volumes
between the parent (dΩ̂0) and reference (dΩ0) domains and is given by the following,

Jξ ≡ det(Fξ) =
dΩ0

dΩ̂0
(4.39)
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Figure 4.3: The master element: a trilinear hexahedron

Similarly, the surface Jacobian relates the surface areas between the parent (dΓ̂o)
and reference (dΓo) domains and is given by,

Jsξ =
dΓo

dΓ̂o
=

dΓo

4
(4.40)

Note that the parent surface area of any face of the hexagonal element is 4.
It is useful to further modify our equation for the component form of BiAkI given
in (4.28) by expanding the first partial derivative and using the definitions of our
deformation gradients,

BAkiI =
∂ΦI

∂XA

∂xi

∂Xk

=
∂Φ̂I

∂ξl

∂ξl

∂XA

∂xi

∂Xk

=
∂Φ̂I

∂ξl

(
FξlA

)−1(
Fik

)
(4.41)

Rearranging our equations of motion in (4.34) and substituting for each expression
gives the following final result,

Mi jIJü jJ = f ext
iI − f int

iI (4.42)
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Where,

Mi jIJ = δi j

∫
Ω̂o

ρ0Φ̂IΦ̂J JξdΩ̂o

f ext
iI = ρ0

∫
Ω̂o

Φ̂Ibi JξdΩ̂o +

∫
Γ̂o,t

Φ̂Ipi JsξdΓ̂o

f int
iI =

∫
Ω̂o

(
∂Φ̂I

∂ξl

∂ξl

∂XA

∂xi

∂Xk

)
SAk JξdΩ̂o (4.43)

4.3 Numerical Methods

4.3.1 A Fixed-Point Iteration at Each Time Step

In order to avoid computing the stiffness matrices of the body in solving for our
displacement field (i.e. u jJ in equation (4.42)), which is necessary if implementing
numerical methods such as Newton’s method or the Conjugate Gradient method
(see Belytschko et al. [40]), we will utilize a fixed-point iteration (in time) scheme.
The basic steps for this algorithm follow,

1. Consider the displacement field of the body to be represented by the vector,
u and to simplify the notation, denote the displacement at times t, t − ∆t and
t + ∆t, by uL, uL−1 and uL+1, respectively.

2. Guess a displacement field, say uo, for all times: uL−1 = uo, uL = uo and
uL+1 = uo.

3. Define a tolerance for the iteration (i.e. some small scalar value), for example
TOL = 0.001. Define another relative tolerance to be (initially) larger than
TOL, for example REL = 10.

4. Now solve for the displacement uL+1 (if we are using an implicit method)
based on a convergence criteria that uL+1 is sufficiently close to our guess uo.
Use the letter K to indicate the iteration number.

The algorithm for this would look something like the following,

• For the first iterate (K=0) initialize the solution at all times with guess
uo:
uL−1,K = uo
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uL,K = uo

uL+1,K = uo

• Set a relative tolerance and the desired iteration tolerance:
REL = Large Number, TOL = Small Number

• Loop until REL < TOL (i.e. while REL > TOL, perform the following):
Solve at the next iteration: uL+1,K+1 = F(uL−1,K,uL,K,uL+1,K)

Compute the difference in iterates: REL =

(
‖uL+1,K+1

‖2−‖uL+1,K
‖2

)
‖uL+1,K‖2

where, F represents some function of the displacements at each time.
Update the solution: uL+1,K = uL+1,K+1

5. Note that we have used ‖ · ‖2 to denote the 2-norm defined as,

‖u‖2 ≡
( n∑

i=1

|ui|
2
)1/2

, (4.44)

where, n represent the degrees of freedom of our system of equations.

4.3.2 Model Validation

Homogeneous Deformations

A useful check that we have implemented our numerical method correctly is
by enforcing a homogeneous deformation on the boundary of the body and post-
processing the average value of the deformation gradient over every element in
the body. This procedure is outlined by the following steps.

1. Prescribe a homogeneous displacement, u to the entire boundary of the body
(i.e. the artery). Mathematically, this would look like the following,

u = A · X, (4.45)

where A is a matrix of constants applied to the boundary in the reference
configuration, X of the body. From the definition of displacement (i.e. u =
x − X, where x is the position vector in the current configuration), we may
then say the following,
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A · X = x − X
x = A · X + X
x =

(
A + I

)
X. (4.46)

2. Taking the referential gradient of x, gives us the deformation gradient F,

Grad(x) ≡ F = A + I. (4.47)

3. The average value over the body (mathematically shown by 〈·〉Ω) of the de-
formation gradient should then equal our prescribed displacement of the
boundary on the body. In other words,

〈F〉Ω = A + I. (4.48)

4.3.3 Mesh Refinement

To convince ourselves that we have converged on the true solution, we must
first conduct a numerical mesh refinement study. We will employ the commonly
used energy criteria of successively refining the mesh until the total potential en-
ergy of the body is within a prescribed tolerance. Note that we are omitting the
contribution of the kinetic energy as the loading in this study, for both modes of
deformation (i.e. pure extension and extension with internal pressure) is extremely
slow (e.g. 10% stretch and/or incremental pressure over 5-10 seconds) and thus,
adds very little energy, relative to the potential energy, to the total system energy.
The ”final mesh” resolution, or converged-solution mesh, in general, depends on
the specific mode of deformation of the body. However, our two modes of defor-
mation, pure extension and extension with internal pressure, produce physically
similar overall geometries; that is, purely stretching the cylindrical tube causes
axisymmetric necking, whereas stretching and inflating produces axisymmetric
bulging. Therefore, we will conduct only one successive mesh refinement and use
this mesh for all subsequent loading scenarios.

Due to numerical stability concerns, the total number of elements is dictated by
the aspect ratio of each element, or, the more ”cubic” the element, the smoother
and more stable the solution. Therefore, since the radial wall thickness is the
smallest (by comparison) length scale of our body, the radial mesh (or number of
elements in the radial direction) sets a lower bound on the number of elements in
both the circumferential and axial directions. In other words, an element should
have comparable length in each direction. Using the minimum number of radial
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elements (i.e. one element) for each layer (media Nm
r = 1, adventitia Na

r = 1), we
have found that the model remains stable, using a time step on the order of 10−7

seconds, with a lower bound of 12 elements in the circumferential (i.e. Nθ = 12) and
6 elements in the axial (i.e. Nz = 6) directions (i.e.”Mesh 1” in Tab. (4.3)). Hence,
we consider this our coursest mesh. To refine the mesh, we add elements radially
and adjust the number of elements in the other two directions to maintain stability.
We have converged on the final mesh when the total strain energy (averaged over
all the elements) of the body changes only by a small (prescribed) amount from
successive refinements. Figure 4.4 illustrates the successive mesh refinements for
pure axial extension.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4 (e) Mesh 5 (f) Mesh 6

Figure 4.4: Refining the mesh

Table 4.3 summarizes the mesh refinement scheme for pure extension. Note
that the column titled ”P.E.” lists the total strain energy of the body (in Joules) as
there is no pressure applied in this mode of deformation and the kinetic energy is
neglected due to the quasi-static nature of the loading (as described above).

This study will use Mesh number 5 as the CPU time for a more refined mesh
(e.g. Mesh 6) prohibits efficient parameter studies.
Note that the Degrees of Freedom (DOF) for the system are found by the following
formula, DOF= (Nθ)(Nrm + Nra + 1)(Nz + 1). Figure 4.5 shows the convergence of
the mesh for pure axial extension.
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Figure 4.5: Refining the mesh; total system strain energy for 10% axial stretch (see
Table 4.3)
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Mesh No. Nθ Nrm Nra Nz DOF P.E. [Joules] CPU Time [hrs]
1 12 1 1 6 756 1,636.96 2.5
2 20 1 1 10 1,980 875.97 6.7
3 40 2 1 20 10,080 480.60 36.7
4 50 2 1 30 18,600 361.87 75
5 60 2 1 40 29,520 318.20 111.7
6 70 3 1 50 53,550 unk 215

Table 4.3: Mesh refinement for pure axial stretch

4.4 Basic Constitutive Laws for Infinitesimal and Fi-
nite Strains

4.4.1 Infinitesimal Strain

Kirchhoff Saint-Venant

The simplest small-strain constitutive law is by Kirchhoff-Saint Venant (K-SV).
In terms of a strain energy function, the model has the following quadratic (in
deformation) form,

W =
1
2

E : C̄ : E (4.49)

where, C̄ is a fourth-order tensor of elastic material constants and E = 1
2 (FT
·F − I)

is the Lagrangian strain. The second Piola-Kirchhoff stress can be expressed by the
following general form, or in terms of the Lame constants, λ and µ,

S = C̄ : E
= λtr(E)I + 2µE (4.50)

The stress components are given by SAB = CABCDECD. For small deformations, the
material constants in a given hyperelastic constitutive equation must match those
of the K-SV model at small strains (for more detail on this see Ciarlet [41]). We
will use the K-SV material model as a template to match specific bio-strain energy
functions at small strains. In other words, we will plot a deformation measure
(e.g. axial stretch) versus the strain energy density reported in the literature and
compare this to the simplest K-SV model to identify if the models match at very
low (i.e. under ≈ 2%) strains (our requirement).
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4.4.2 Finite Strain (Hyperelasticity)

Deriving a Measure of Stress

A material is called hyperelastic if there exists a stored energy function, W,
that is only a function of the mechanical deformation (independent of rigid body
rotations) and where the stresses are defined by, S = 2∂W

∂C = ∂W
∂E or P = ∂W

∂F . These
relations come from the first law of thermodynamics (i.e. conservation of energy)
which states that for an adiabatic, isothermal, closed system, the work must be non-
negative or exactly zero. Different definitions for a non-negative stored energy (in
the undeformed configuration) function follow from the Clausius-Plank inequality,
i.e.,

t1∫
to

( ∫
ωo

Ẇdωo

)
dt

︸              ︷︷              ︸
WORK

=

t1∫
to

( ∫
ωo

ḞiAPAidωo

)
dt

=
1
2

t1∫
to

( ∫
ωo

ĊABSBAdωo

)
dt

=

t1∫
to

( ∫
ωo

ĖABSBAdωo

)
dt ≥ 0. (4.51)

The integrals are arbitrary so we have Ẇ = ḞiAPAi, 2Ẇ = ĊABSBA and Ẇ = ĖABSBA.

Fundamental Requirements for Finite-Strain Constitutive Equations

In addition to being invariant under rigid body rotations, every stored energy
function must obey the following criteria:

1. W ≥ 0 (as previously stated)

2. C = FTF = I ⇔ W = 0 (zero deformation corresponds to the strain energy
being identically zero)

3. C = I⇒ S = 0

4. The parameters in a finite deformation constitutive equation must be such
that they match hyperelastic responses with known material constants (for
example in the isotropic case, the Lame constants λ(= κ −

2µ
3 ) and µ, where
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κ and µ are the bulk and shear modulus, respectively, when the material is
perturbed around the undeformed configuration).

Note that the first three conditions for an admissible strain energy function are
satisfied by construction.

Defining Isotropic and Anisotropic Hyperelastic Materials

By way of a brief introduction to the isotropy or anisotropy of hyperelastic
materials, we will follow the main points of the development given in the text
by Holzapfel [42], Section 6.2, and refer the reader there for a more complete
development.

We seek to restrict the strain energy function to describing only the class of
materials that behave isotropically (i.e. with the same material response, or stress-
strain behavior, in every direction). As such, since the strain energy function is
itself a function of the deformation of the body (e.g. through the right Cauchy
tensor, C or the Green-Lagrange strain E, hence the deformation gradient F, as
C = FTF and E = 1

2 (C − I)), we must develop a requirement based on F. Therefore,
consider an arbitrary point with position vector X of an elastic continuum body in
the reference configuration Ωo at some initial time, t = 0. Then consider a rigid
body motion (i.e. the body is translated by a vector, c and rotated by an orthogonal
tensor, Q) superimposed on the reference configuration such that we move to a
new position given by the position vector X∗ = c + QX, where X∗ ∈ Ω∗o (our new
configuration). We now demand that a different motion x = χ∗(X∗, t) moves Ω∗o
to the current configuration, Ω so that x = χ(X, t) = χ∗(X∗, t); mapping X∗ to the
position described by x.
By the chain rule, the deformation gradient F may be written as the following,

F =
∂x
∂X

=
∂x
∂X∗

∂X∗

∂X
=
∂x
∂X∗

Q = F∗Q, (4.52)

where, F∗ = ∂x
∂X∗ is defined as the deformation gradient relative to the region Ω∗o.

We can rearrange (4.52 - (4)) to get F∗ = FQT. Therefore, we say that a hyperelastic
material is isotropic relative to the reference configuration Ωo if the values of the
strain energy W(F) and W(F∗) are the same for all orthogonal tensors Q. Hence, we
may write,

W(F) = W(F∗) = W(FQT). (4.53)

In other words, a superposed rigid body motion should lead to the same value
of the strain energy function at time, t. Conversely, if a superposed rigid body
motion does change the value of the strain energy function at time t in the sense that
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W(F) , W(F∗), the material is said to be anisotropic. For a more general discussion
of this the reader is referred to the text by Ogden [37].

4.5 A Survey of Constitutive Equations for Biological
Tissues

Soft tissues are primarily composed of water and have negligible permeability
(see Chuong and Fung [24]). Chuong and Fung investigated the incompressibility
of the healthy arterial wall and found that it behaves as a nearly incompress-
ible material in the range of stresses experienced in vivo (Chuong and Fung [7]).
Stergiopulos et al. ([43]) showed that the medial layer of a pig aorta has similar me-
chanical properties through the wall thickness as well as an even matrix of smooth
muscle cells. For these reasons, we will model the arterial tissue as an elastic,
homogeneous medium that undergoes finite deformations (i.e. is hyperelastic).
Although arteries exhibit viscoelastic characteristics (creep, stress relaxation and
slight hysteresis), the assumption of hyperelasticity is sufficient in most physio-
logic and pathophysiologic cases. The assumption of hyperelasticity for arterial
tissue has been shown by many researchers (Fung [31]; Patel and Fry [44]; Vito
and Hickey [33]; Chuong and Fung [7]; Vorp et al. [34]; Raghavan and Vorp
[45]). For the present research, both layers (media and adventitia) of the arterial
wall are herein assumed to be incompressible, homogeneous, hyperelastic material
undergoing finite deformations. Speirs et al. [46] report the performance of two
anisotropic strain-energy functions formulated by Zulliger et al. [47] and Holzapfel
et al. [48] in the framework of a finite element model. Both material models are a
function of the collagen fiber angles in the arterial tissue and the reader is referred
to those studies for additional detail. The most common strain energy functions
are of exponential type (see Chuong and Fung [7]; Delfino et al. [5]) although poly-
nomial forms (Vaishnav et al. [32]), logarithmic forms (Takamizawa and Hayashi
[49]) and mixed forms (Holzapfel and Weizsäcker [8]; Holzapfel, Gasser and Ogden
[1]) are also popular.

The following sections outline these various material models from the sim-
plest (K-SV) to the more complicated (Holzapfel). This last strain-energy function
(Holzapfel) will be used in our finite element model to investigate the effects of
simple pressure/axial stretch combinations with and without local regions of mate-
rial variation (i.e. lesions where are material softer or stiffer than the surrounding
regions).
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4.5.1 On residual stresses in the load-free arterial segment

With regard to arterial wall mechanics, one of the most important contributions
is that the load-free arterial ring is not stress-free; it opens when sliced along the
axis of the vessel. It appears the first to publish this discovery were Vaishnav and
Vossoughi [50]. Chuong and Fung [24] showed this to be important in computing
transmural (radially normal to the tissue wall) stresses and quantify this effect by
assuming a reference (load-free) configuration as an open sector (also stress-free)
with a defined opening angle. Numerous studies have included residual stresses
in their mathematical formulation of the arterial wall (e.g. Masson et al. [51],
Holzapfel et al. [1]). In general, however, even the open-sector is not stress free as
each distinct arterial layer (i.e. intima-media and adventitia) has a unique opening
angle (see Vossoughi et al. [52], Greenwald et al. [53], and more theoretical work
by Taber and Humphrey [54]). A study by Holzapfel et al. [48] shows the influence
of residual stress in the arterial wall on the stress and strain distributions through
the deformed wall thickness in the physiological (i.e. in vivo) state. They report
a considerable difference between the presence and absence of residual stresses
on the principal Cauchy stress components (σrr, σθθ, σzz; radial, circumferential
and longitudinal, respectively) through the deformed wall thickness. Interestingly,
they contend that the circumferential and longitudinal Cauchy stresses (i.e. σθθ,
σzz, respectively) are substantially reduced (by almost 50%) in the medial layer in
the presence of residual stresses in the arterial wall (i.e. Figure 4 of Holzapfel et al.
[48]).

We will not include residual stresses in our mechanical description of the vessel
wall for the following reasons: (1) it is not clear these added circumferential (i.e.
axisymmetric) residual stresses will affect the relative behavior or stress and strain
fields between healthy tissue and local irregularities in tissue material properties
(though this remains an interesting topic of inquiry), (2) as mentioned above,
the load-free configuration of an open sector is in fact not stress-free due to the
different opening angles for each arterial wall layer and (3) for reasons of modeling
simplicity.

4.5.2 On growth and remodeling of the arterial wall

The pulsetile (time-varying) blood flow through an arbitrary arterial segment
induces both a pressure-driven circumferential stress and a fluid-flow related shear
stress at a material point in the arterial wall. The pressure-induced wall stress is
commonly characterized by the mean circumferential stress, σθθ = Pr

t (P is the inter-
nal pressure, r is the deformed inner radius and t is the deformed wall thickness)
(from Laplace) and assuming the blood to be a Newtonian fluid, the mean shear
stress at the inner surface is characterized by τ =

4ηQ
πr3 (η is the blood viscosity and Q
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is the mean blood flow rate). It is generally accepted that endothelial cells, smooth
muscle cells and fibroblasts in the intimal layer of the arterial wall are regulated
in part by these stresses. Pathological changes such as hypertension (chronic in-
crease in blood pressure), atherosclerosis (narrowing of the arterial lumen) and
aneurysms (focal wall dilations) can lead to changes in the pressure and/or blood
flow and hence, the mechanical environment of the arterial wall tissue. If these
changes are sustained, the arterial wall will adapt by changing its structure or com-
position. Added mass from these changes is called growth, whereas a decrease in
tissue mass is termed atrophy. Similarly, any irreversible change in the structure
or material properties of the tissue is referred to as remodeling. Remodeling is
the product of either reorganizing existing tissue constituents, or synthesizing new
constituents. For example, in hypertension, the wall thickness increases in order
to maintain or restore circumferential stresses that are uniform within each layer
(Matsumoto and Hyashi [55]). For simplicity, growth and remodeling contribu-
tions to the arterial wall stress and strain fields are not considered in this study
although the presence of local lesions on the inside of the arterial wall may lead to
irregularities (under stretch and pressure) that can be assumed to change the blood
flow at the arterial wall and hence, the growth and remodeling of the intima and
media layers.

4.5.3 Isotropic Hyperelastic Material Laws

The following are two isotropic hyperelastic material laws used in the literature
to study the overall stress-strain behavior of arterial walls under large deforma-
tions. As arterial walls are considered highly anisotropic due to the presence of
collagen fibers (see [1]), these models lack the histological information possibly
necessary for a more accurate description of a given stress-strain state. Never-
theless, they are commonly used and can provide simple comparisons to more
complicated, hence error-prone, (anisotropic) material models.

The Mooney-Rivlin Model for Rubber-Like Materials

Possibly the most generic and commonly used isotropic, hyperelastic strain
energy function for materials undergoing large deformations (e.g. rubber or bi-
ological tissues) is the compressible Mooney-Rivlin model. Though this model
represents a necessary departure into modeling finite deformations, it lacks the
strong stiffening effect of arteries in the large strain domain and the important
anisotropy exhibited by the arterial wall (see Fung [31]). In other words, the strain
energy function is only a polynomial function of the deformation invariants, I1, I2

and I3. Hence, we present it only as a comparison to more phenomenological ex-
ponential and logarithmic-type strain energy functions for biological tissues found
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in literature.

The Mooney-Rivlin potential employs a convenient decomposition of incom-
pressible and compressible constituents in order to facilitate easier numerical im-
plementation (i.e. we don’t have an indeterminate Lagrange multiplier we must
solve for as part of an incompressibility constraint). The general form is as follows,

W = K1(Ī1 − 3) + K2(Ī2 − 3) +
κ
2

(
√

I3 − 1)2. (4.54)

Where, I1, I2 and I3 are the three scalar invariants of C defined as,

I1 = tr(C)

I2 =
1
2

[
(tr(C))2

− tr((C)2)
]

I3 = det(C) (4.55)

In this model, the first and second invariants of C = FT
·F (I1 and I2) have been

scaled by a power of the third invariant to ensure that they contribute nothing to
the compressible part of the material response. Formally,

Ī1 = I1I−1/3
3 = I1J−2/3

Ī2 = I2I−2/3
3 = I2J−4/3 (4.56)

where, J = det(F). We can also define an incompressible deformation gradient,

F ≡ J1/3F and the associated Cauchy-Green strain tensor, C = F
T
· F = J−2/3C. The

second Piola-Kirchhoff stress is then,

S = 2
(
∂W
∂I1

∂I1

∂C
+
∂W
∂I2

∂I2

∂C
+
∂W
∂I3

∂I3

∂C

)
= 2

(
∂W
∂Ī1

∂Ī1

∂I1
I +

∂W
∂Ī2

∂Ī2

∂I2

(
I1I − C

)
+
∂W
∂I3

I3C−1
)

(4.57)

where, the following derivatives of the principal invariants with respect to the
Cauchy-Green strain tensor, C, have been substituted,



4.5. A SURVEY OF CONSTITUTIVE EQUATIONS FOR BIOLOGICAL
TISSUES 70

∂I1

∂C
= I

∂I2

∂C
= I1I − C

∂I3

∂C
= I3C−1 (4.58)

The derivatives of the scaled with respect to the principle invariants are the follow-
ing,

∂Ī1

∂I1
= I−1/3

3

∂Ī2

∂I2
= I−2/3

3 (4.59)

The reader is referred to Ciarlet ([41]) for proofs of these derivatives. There is a very
specific relationship between the material constants, K1 and K2 in the above model
of µ = 2(K1 + K2), were µ is the shear modulus of the material. It should be noted
that when K1 = µ/2 and K2 = 0, the material is called a compressible Neo-Hookean
material. The suitability of the Neo-Hookean material law (i.e. W =

µ
2 (I1 − 3)) to

model elastin in the arterial wall (assuming the elastin behaves like a rubber-like
material) has a sound theoretical basis (Treloar [8]). It is a generalization of Hooke’s
law (small strains) to the case of finite strains (Rivlin [9]).

A Phenomenological Material Model by Delfino et al. [5]

A potential for rubber-like (isotropic) materials was proposed by Delfino et al.
[5] for carotid arteries which is able to model the typical stiffening effects in the
high pressure domain. The strain energy has the form,

W =
a
b

(
exp

[b
2

(Ī1 − 3)
]
− 1

)
, (4.60)

where a > 0 is a stress-like material parameter and b > 0 is a non-dimensional
parameter. The first invariant of the modified right Cauchy-Green tensor C̄ is
defined as Ī1 = C̄ : I. The material parameters for a human carotid artery, as
reported in [5], are the following,

It is worth noting that the potential (4.60) increases monotonically with Ī1 and
therefore guarantees strict local convexity (i.e. that the second derivative of W
with respect to E is positive definite). This fundamental physical requirement in
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Elastic Constants
a = 44.2 kPa
b = 16.7 [-]

Table 4.4: Elastic constants of healthy human common carotid (HCC) artery for
model by Delfino et al. [5]

hyperelasticity ensures that undesirable material instabilities are precluded. For
2D contour plots (that show this convexity) of (4.60) and other convex potentials
used to model arteries, the reader is referred to Holzapfel et al. [1].

4.5.4 Anisotropic Hyperelastic Material Laws

A Choi-Vito-Type 2D Phenomenological Material Model by Vande Geest et al.
[6]

In 2006, Vande Geest et al. [6] performed biaxial tests on a series of non-diseased
human aortic samples and the highly nonlinear responses were described well by
a 2D phenomenological Choi-Vito strain energy function, namely,

W = c
(
exp[c1E2

θθ] + exp[c2E2
zz] + exp[2c3EθθEzz] − 3

)
, (4.61)

where, EAB are principal values of Green-Lagrange strain E. Mean values of the
material parameters are shown in table (4.5).

Elastic Constants
c = 0.32 kPa
c1 = 70.6 kPa
c2 = 71.7 kPa
c3 = 64.0 kPa

Table 4.5: Elastic constants of healthy human artery for Choi-Vito-Type 2D model
by Vande Geest et al. [6]

The second Piola-Kirchhoff stress is again found by taking the derivative with
respect to the Green-Lagrange strain; S = ∂W

∂E . It is worth noting that the material
response is similar in the longitudinal and circumferential directions of healthy
arterial tissue (see Humphrey et al. [56]). Vande Geest et al. also concluded this
and state that aneurysmal degeneration of the abdominal aorta is associated with an
increase in mechanical anisotropy, with preferential stiffening in the circumferential
direction. Hence, the values of the material constants reported here are really only
applicable for modeling healthy aortic tissue (which we assume in this study).
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The exponential material laws such as Choi-Vito (4.61) show a more aggressive
increase in material stiffness at higher strains than polynomial models such as
Mooney-Rivlin (4.54). Due to the fact that arteries also exhibit this behavior (i.e.
from the contribution of the collagen fibers in the adventitia layer, mainly), these
exponential-type constitutive laws are perhaps more suited for investigations on
the supraphysiological distention and inflation of the arterial wall.

Fig. (4.6) shows the behavior of a typical polynomial-type hyperelastic material
law (Mooney-Rivlin) and an exponential law (Choi-Vito) from an applied triaxial
stretch. Fig. (4.7) compares the K-SV material law for infinitesimal deformations
to a hyperelastic model (Choi-Vito) in order to show the narrow range of strain in
which a typical small-strain material law matches a hyperelastic one.

1 1.05 1.1 1.15
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Triaxial Stretch (−)

T
ot

al
 S

tr
ai

n 
E

ne
rg

y,
 W

 (
N

.m
)

Applied Triaxial Displacement

 

 
Mooney−Rivlin
Choi−Vito

Figure 4.6: Strain energy responses of typical polynomial and exponential-type
material models for arterial tissue

A Fung-Type 3D Phenomenological Material Model by Chuong and Fung [7]

The most concise two-dimensional potential used in literature to describe the
non-linear stress-strain behavior of arterial wall tissue is the exponential potential
proposed by Fung et al. [57]. A generalization to three-dimensions was proposed
by Chuong and Fung [7], which assumes the principal directions of the stress tensor
coincide with the radial, circumferential and axial directions of the artery. Deng
et al. [58] proposed an extension of the classical two-dimension function given in
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Figure 4.7: Hyper versus infinitesimal elasticity; what is ”large” strain?

[57] to include shear deformations in the z = constant plane; hence, incorporating
torsional effects.

There have been many subsequent modifications to these functions that have
been published. The most general three-dimensional strain energy function of
Fung’s type is formulated by Humphrey [3] and has the form,

W =
c
2

(
exp[Q] − 1

)
(4.62)

where c is a material parameter and Q denotes a quadratic function of the compo-
nents of the Green-Lagrange strain tensor,

Q = b1E2
θθ + b2E2

zz + b3E2
rr + 2b4EθθEzz + 2b5EzzErr + 2b6EθθErr + 2b7E2

θz + 2b8E2
rz + 2b9E2

θr
(4.63)

where, b1, ..., b9 are non-dimensional material parameters characterizing the blood
vessel and EIJ, where I, J = r, θ, z are the Green-Lagrange strain components. Ac-
cording to Holzapfel, Gasser and Ogden [1], there is no a priori restriction on the
material parameters presented in Chuong and Fung [7]. They go on to mention
that it is important to note that in order for the anisotropic function W to be poly-
convex in the sense of Ball [59], the material parameters b1, ..., b9 must not be chosen
arbitrarily.
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Holzapfel et al. [1] go on to show both a convex set of material constants (for a
rabbit carotid artery) and an alternative set that leads to non-convexity. The convex
values are summarized below (note that we list only b1, ..., b7 as experiment 71 in
[7] only includes shear effects from torsion; or, Eθz) .

Elastic Constants
c = 26.95 kPa
b1 = 0.9925 [-]
b2 = 0.4180 [-]
b3 = 0.0089 [-]
b4 = 0.0749 [-]
b5 = 0.0295 [-]
b6 = 0.0193 [-]
b7 = 5.0000 [-]

Table 4.6: Elastic constants of healthy rabbit carotid artery for 3D Fung-type model
by Chuong et al. [7]

The second Piola-Kirchhoff stress is again found by taking the derivative with
respect to the Green-Lagrange strain; S = ∂W

∂E .

A 3D Two-Layer Fiber-Reinforced Material Model by Holzapfel et al. [1]

So far in this section we have presented only material models that, although
anisotropic, represent a homogeneous continuum and do not include any of the
histological features of the arterial wall. Holzapfel et al. [8] proposes modeling
each (thick-walled) layer as a composite reinforced by two families of fibers that
are arranged in symmetric spirals. They assume that each layer (i.e. the media
and adventitia) respond with similar mechanical characteristics and therefore use
the same strain energy function although with different material constants. We
will adopt this material model, although we will not impose an incompressibility
constraint on the material due to the inherent numerical complications involved
in implementing it within the finite element method. For simplicity, we will also
neglect residual strains in the material and consider the reference configuration of
the artery to be stress-free.

Following [1], we suggest using an additive split of the strain energy function,
W, into Wiso, associated with purely isotropic deformations and Waniso, associated
only with anisotropic deformations. At low pressures, the energy contribution of
the wavy collagen fibers within each layer of the arterial wall is assumed to be
negligible and the mechanical response is mainly governed by the noncollagenous
matrix material (i.e. elastin), which we assume to be isotropic and modeled by Wiso.
According to Roach et al. [60], the resistance to stretching at large deformations
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(e.g. pressures) is almost entirely due to collagenous fibers and this response is
therefore governed entirely by the anisotropic function Waniso. Information about
the orientation of the collagen fibers, which render the material orthotropic, is
incorporated. Hence, the two-term potential is the following,

W(C,M(1),M(2)) = Wiso(C) + Waniso(C,M(1),M(2)) (4.64)

The three-dimensional, statistical distribution of the collagen fibers are modeled
as two major families of symmetrically-arranged fibers having mean directions
represented by the unit vectors M(1) and M(2) which specify preferred directions
in the reference configuration of the material. It is these directions that render the
material layers anisotropic. We can express the strain energy functions in terms of
the principal invariants and we assume the following form,

W(I1, I4, I6) = Wiso(I1) + Waniso(I4, I6) (4.65)

The isotropic invariant is defined as I1 = trace(C) = C11 + C22 + C33. The anisotropic
invariants I4 and I6 employ structural tensors A(1) and A(2) that are defined by
the dyadic product of the unit vectors M(1) and M(2) as A(1) = M(1)

⊗ M(1) and
A(2) = M(2)

⊗ M(2). These invariants have clear physical interpretations as the
squares of the stretches in the directions of the associated families of collagen
fibers. They are defined as,

I4 = C : A(1) = C : (M(1)
⊗M(1)) = M(1)

· CM(1) (4.66)
I6 = C : A(2) = C : (M(2)

⊗M(2)) = M(2)
· CM(2) (4.67)

For simplicity, we will use a Neo-Hookean material for Wiso(I1) to model the
isotropic hyperelastic matrix material and for Waniso(I4, I6) we use an exponential
function to model the highly nonlinear response to large deformations from the
families of collagen fibers. In addition, we assume that the responses of the two
families of fibers to be uncoupled. Therefore, the general strain energies are the
following,

Wiso(I1) =
c
2

(I1 − 3) (4.68)

Waniso(I4, I6) =
k1

2k2

∑
α=4,6

(
exp

[
k2(Iα − 1)2

]
− 1

)
(4.69)

If we apply this model to each layer separately, we have six material constants; that
is, cM, k1M and k2M for the media and cA, k1A and k2A for the adventitia. In respect of
equation (4.68), our strain energy functions for each layer are explicitly,
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Rin < R < (Rin + HM),


Wiso(I1)M = cM

2 (I1 − 3)

Waniso(I4, I6)M = k1M
2k2M

∑
α=4,6

(
exp

[
k2M(IαM − 1)2

]
− 1

) (4.70)

(Rin + HM) < R < Rout,


Wiso(I1)A = cA

2 (I1 − 3)

Waniso(I4, I6)A = k1A
2k2A

∑
α=4,6

(
exp

[
k2A(IαA − 1)2

]
− 1

) (4.71)
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Figure 4.8: An artery as a fiber-reinforced composite: two layers of helically ar-
ranged symmetric fibers in each layer

We specify our anisotropic invariants for each layer as I4 j = C : A(1)
j = M(1)

j · CM(1)
j

and I6 j = C : A(2)
j = M(2)

j · CM(2)
j where, j = M,A. We use material and geometrical

data for a carotid artery from a rabbit from experiment 71 in Fung et al. [57], which
is summarized in table (4.7).

The constitutive equation for the second Piola-Kirchhoff stress S follows from
the strain energy given in (4.65) by differentiation with respect to C. In using the
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Elastic Constants
Media Adventitia

cM = 3.0000 kPa cA = 0.3000 kPa
k1M = 2.3632 kPa k1A = 0.5620 kPa
k2M = 0.8393 [−] k2A = 0.7112 [−]
HM = 0.26 mm HA = 0.13 mm
βM = 29.0o βA = 62.0o

Table 4.7: Elastic constants of healthy rabbit carotid artery for 3D Fung-type model
applied to a fiber-reinforced, two-layer cylinder by Holzapfel et al. [8]

chain rule, S is given as a function of the three scalar invariants (in this case we are
using only three of them; for a more general formula for the S in terms of the other
invariants see [42], section 6.8) in the form,

S = 2
∂W(C,A(1),A(2))

∂C
= 2

∑
α

∂W(I1, I4, I6)
∂Iα

∂Iα
∂C

; α = 1, 4, 6. (4.72)

The partial derivatives of the invariants with respect to C are given explicitly as the
following,

∂I1

∂C
=

trC
∂C

=
∂(I : C)
∂C

= I or
∂I1

∂CAB
= δAB (4.73)

∂I4

∂C
= A(1) = M(1)

⊗M(1) or
∂I4

∂CAB
= M(1)

A M(1)
B (4.74)

∂I6

∂C
= A(2) = M(2)

⊗M(2) or
∂I6

∂CAB
= M(2)

A M(2)
B (4.75)

Therefore, the explicit relation for the stress may be written,

S = 2
[
∂W
∂I1

I +
∂W
∂I4

M(1)
⊗M(1) +

∂W
∂I6

M(2)
⊗M(2)

]
. (4.76)

It should be noted that the potential shown in (4.68) is incompressible and there-
fore requires special finite element approaches to implement. In other words, there
is a non-zero state of stress when there is zero deformation if we use merely the
strain energies shown. If we are to add a penalty parameter (which we will do in
the following section) to penalize the strain energy when the Jacobian deviates from
unity, then we are imposing a quai-incompressibility constraint in our formulation
and therefore do not need to devise special numerical methods.
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A 3D Two-Layer Fiber-Reinforced Polyconvex Material Model by Balzani et. al
[2]

In this section we will use a specific form of polyconvex, transversely-isotropic
strain energy function for our arterial wall. The above model (4.68) by Holzapfel
et. al [1] is limited in that (1) there exists a non-zero stress state at zero deformation,
(2) it requires difficult numerical techniques to implement incompressibility (i.e.
there is no incompressibility constraint on the isotropic-part of the strain energy
itself) and (3) polyconvexity is not satisfied thereby allowing non-physical results.
We therefore implement the model proposed by Balzani et. al [2] that guarantees
the existence of energy minimizers of some variational principals for finite strains;
in other words, is hyperelastic and polyconvex (for the proof of polyconvexity as
it applies to the following strain energy function, see [2], Appendix A). They have
determined the material constants of this model by matching the experimentally
derived stress-stretch behavior of the medial layer of an excised human aortic artery
(see [2] for more experimental details).

For a brief background, we follow the main points of Schr̈oder et. al [61]
and refer the reader there for a more complete development of the concepts of
polyconvexity as applies to finite-strain energy functions. As Schr̈oder points out,
” the existence of energy minimizers of some variational principles for finite strains
is based on the concept of quasiconvextiy, introduced by Morrey [62]”. They go on to
suggest that the requirement for quasiconvexity is based on an integral-inequality
that is difficult to manipulate and a more practical concept is that of polyconvexity
which implies the acoustic tensor of a strain energy function is elliptic for all
deformations. That is, we are guaranteed the existence of physical equilibrium
states that sufficient conditions for the existence of minimums in the total energy of
the body. For more on the general theory behind the construction of polyconvex,
anisotropic strain energy functions, see Schröder [63] and Schröder and Neff [26].

Following [61], we begin by assuming the total strain energy is simply the sum
of the anisotropic and isotropic strain energies,

W = WISO + WANISO. (4.77)

We will impose a quasi-incompressibility constraint on the isotropic part of the
strain energy function so as to avoid special finite element approaches. As before,
we will use a Neo-Hookean material model for the isochoric part plus a term that
penalizes any changes in the material volume. Our isotropic strain energy function
is then the following,

WISO = c1

(
I1I−1/3

3 − 3
)

︸          ︷︷          ︸
Neo−Hookean

+ ε
(
Iγ3 + I−γ3 − 2

)
︸           ︷︷           ︸

quasi−incompressibility
constraint

; c1 > 0, ε > 0, γ > 1 (4.78)
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Balzini uses a polynomial-type potential to represent the anisotropic portion
of the material response. They go on to show that if certain conditions for the
mixed invariants I4 and I6 are satisfied, the strain energy function is guaranteed to
be polyconvex; thereby ensuring physical material responses distinct from possible
erroneous numerical results. The requirements laid forth are the following,

WANISO =


α1(I4 − 1)α2 + α1(I6 − 1)α2 ; f or I4 ≥ 1.0 and I6 ≥ 1.0,
α1(I4 − 1)α2 ; f or I4 ≥ 1.0 and I6 < 1.0,
α1(I6 − 1)α2 ; f or I4 < 1.0 and I6 ≥ 1.0,
0; f or I4 < 1.0 and I6 < 1.0.

(4.79)

The invariants I1 and I3 are, as before, defined as I1 = tr(C) and I3 = det(C).
Following Balzani et al. [2], we define the so-called mixed invariants I4 and I6 using
equations (4.66). Note that c1 scales the isotropic response and the parameters ε and
γ control the volumetric deformation. The second term of (4.78) enforces quasi-
incompressibility by penalizing any change in volume of the material. α1 scales
the anisotropic terms and α2 controls the level of curvature (in stress-strain space)
in the fiber directions (i.e. the level of non-linearity, or exponential-type behavior
of the material).
The stresses from the isotropic and anisotropic parts are additive so we have the
following general form,

S = SISO + SANISO (4.80)

Finding the stress from our strain energy function, we recall the following,

S = 2
8∑
α=1

∂W(I1, ..., I8)
∂Iα

∂Iα
∂C

(4.81)

Due to the particular invariants that the isotropic part WISO depends on (i.e. I1 and
I3), the isotropic stress is then,

SISO = 2
(
∂WISO

∂I1

∂I1

∂C
+
∂WISO

∂I3

∂I3

∂C

)
(4.82)

or,

SISO
AB = 2

(
∂WISO

∂I1

∂I1

∂CAB
+
∂WISO

∂I3

∂I3

∂CAB

)
∂WISO

∂I1
= c1I−1/3

3 (4.83)
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∂WISO

∂I3
= −

1
3

c1I1I−4/3
3 + εγI−1

3 (Iγ3 − I−γ3 ) (4.84)

∂I1

∂C
= I or

∂I1

∂CAB
= δAB (4.85)

∂I3

∂C
= I3C−1 or

∂I3

∂CAB
= I3C−1

AB (4.86)

Substituting yields the following expression,

SISO = 2
[
c1I−1/3

3 I +
(
εγ(Iγ3 − I−γ3 ) −

1
3

c1I1I−1/3
3

)
C−1

]
(4.87)

or,

SISO
AB = 2

[
c1I−1/3

3 δAB +
(
εγ(Iγ3 − I−γ3 ) −

1
3

c1I1I−1/3
3

)
C−1

AB

]
From Table (4.1), we can represent the Cauchy stresses using the formula σ =

J−1F · S · FT. After simplification, we get the following,

σISO =
2
J

[
c1I−1/3

3 B +
(
εγ(Iγ3 − I−γ3 ) −

1
3

c1I1I−1/3
3

)
I
]

(4.88)

or,

σISO
ij = 2

[
c1I−1/3

3 Bi j +
(
εγ(Iγ3 − I−γ3 ) −

1
3

c1I1I−1/3
3

)
δi j

]
We will only explicitly show the stress for the first conditions of equation (4.79) as
the other conditions are simplifications of these cases. The first condition of WANISO

depends on I4 and I6, therefore the full expression for the stress is the following.

SANISO = 2
(
∂WANISO

∂I4

∂I4

∂C
+
∂WANISO

∂I6

∂I6

∂C

)
(4.89)

or,

SANISO
AB = 2

(
∂WANISO

∂I4

∂I4

∂CAB
+
∂WANISO

∂I6

∂I6

∂CAB

)
∂WANISO

∂I4
= α1α2(I4 − 1)α2−1 (4.90)

∂WANISO

∂I6
= α1α2(I6 − 1)α2−1 (4.91)
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∂I4

∂C
= M(1)

⊗M(1) or
∂I4

∂CAB
= M(1)

A M(1)
B (4.92)

∂I6

∂C
= M(2)

⊗M(2) or
∂I6

∂CAB
= M(2)

A M(2)
B (4.93)

Substituting yields the following expression,

SANISO = 2α1α2

[(
(I4 − 1)α2−1

)
M(1)

⊗M(1) +
(
(I6 − 1)α2−1

)
M(2)

⊗M(2)
]

(4.94)

or,

SANISO
AB = 2α1α2

[(
(I4 − 1)α2−1

)
M(1)

A M(1)
B +

(
(I6 − 1)α2−1

)
M(2)

A M(2)
B

]
Defining m = FM, we get the following Cauchy stresses,

σANISO =
2α1α2

J

[(
(I4 − 1)α2−1

)
m(1)
⊗m(1) +

(
(I6 − 1)α2−1

)
m(2)
⊗m(2)

]
(4.95)

or,

σANISO
ij =

2α1α2

J

[(
(I4 − 1)α2−1

)
m(1)

i m(1)
j +

(
(I6 − 1)α2−1

)
m(2)

i m(2)
j

]

4.6 Results

In this section we present the overall response of our three-dimensional, non-
linear finite element model for various combinations of axial stretch, transmural
pressure and presence (or absence) of material ”lesions” (locally stiffer or softer
tissue) in the arterial wall. For all cases considered, we will use only the final
polyconvex, transversely-isotropic hyperelastic strain energy function and associ-
ated material constants for a human arterial wall presented by Balzani et. al [2]
and summarized above by equations (4.78) and (4.79). This model, as has been
mentioned, captures the histology of the collagen fibers through certain structural
tensors, easily implements our incompressibility constraint, is polyconvex and has
been ”hand-fitted” (see [2]) to experimental data on human arterial (medial) tissue.
Through it’s polyconvex construction, it avoids certain mathematical and compu-
tational deficiencies evident in many other phenomenological models. Table (4.8)
lists the material constants used for the healthy medial tissue (per [2]). For the ad-
ventitia layer, we have scaled the isotropic constants to be 1/10 those for the medial
layer which is consistent with what has been experimentally found by Holzapfel
et. al [8].
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Elastic Constants
Media Adventitia

c1 = 13.50 kPa c1 = 1.35 kPa
ε = 10.00 kPa ε = 1.00 kPa
γ = 20.00 [−] γ = 20.00 [−]
α1 = 1014 kPa α1 = 1014 kPa
α1 = 20.0 kPa α1 = 20.0 kPa

Table 4.8: Material data for human aortic tissue from Balzani et. al [2].

4.6.1 Finite Element Model Geometry

We borrow from the paper by Holzapfel and Gasser ([64]) and use the arterial
geometry listed for a healthy human Left Anterior Descending (LAD) coronary
artery. Note that we are using the material data for aortic tissue, recall the human
aorta is located in the midsection, roughly between the heart and waist), though
the geometry is from the coronary artery (recall the LAD is located on the anterior
side of the heart). In that study, the geometry listed is for the load-free opened-up
configuration as they include residual stresses in their model. We will assume this
geometry for our load-free closed configuration as we are not considering residual
stresses in this study. Figure (4.9) shows a schematic of the size of the load-free
configuration of the artery which will be used for all subsequent boundary and
loading conditions performed. Note that the adventitia layer is approximately
33% of the total wall thickness. Further note that the arterial section length is
arbitrarily chosen to be 10 mm (in general, there may be residual stresses in the
axial direction as well but we do not consider these).

4.6.2 Case Studies

The main novelty of this study in inherent to the completely independent de-
velopment of the three-dimensional, nonlinear finite element code. In other words,
since we have constructed our numerical finite element from scratch, coding our
own solvers and algorithms, the model is infinitely tunable to whatever conditions
we choose to study. This is an advantage over studies that use commercial code in
that there are a limited number of parameters under the user’s control.

In light of this, it would be imprudent and inefficient to run a large number of
parameter studies as the relevance of one study over another would be debatable.
Rather, we will mimic the most common studies in literature (i.e. extension and in-
flation) with the most current anisotropic strain energy function (i.e. a polyconvex,
invariant-based structural model for each layer) and report the stresses and strains
under these conditions.
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Figure 4.9: Load-free configuration arterial geometry used in this study

On the Presence of Lesions in the Arterial Wall

To take advantage of the user-control of our model, we further look at the pres-
ence of lesions, or local material abnormalities, in the arterial wall under the same
boundary and loading conditions as model of healthy tissue. To our knowledge, no
studies have been performed that include all of these conditions simultaneously.
Specifically, we will model two pathological conditions: (1) the scar-like tissue that
results from a complete bisection and suturing of the artery - as modeled by a
ring-like stiff region through both layers of the tissue wall and (2) a locally asym-
metric stiff and soft spot-like region through both layers of the tissue. This could
be interpreted as a degradation of the arterial wall (soft) or a calcification (stiff).

To achieve the desired axial stretch and transmural pressure, all degrees of
freedom are held fixed for the elements at both ends (i.e. each end is considered
”glued” in-place) and one end is incrementally stretched along the axis of the artery
and (depending on the case) the pressure is slowly incremented to a maximum
value. The elastic constants governing the isotropic response of the adventitia
layer (outer layer) is roughly an order of magnitude less than that of the medial layer
(consistent with the literature). Note that Mesh 5 was used for all subsequent cases.
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Case A. Medial and Adventitia Layers, 10% Axial Extension, No Transmural
Pressure

Figure 4.10: Case A: 10% Axial Extension, No Transmural Pressure

Fig.s (4.10 - 4.13) show the resulting principal (Cauchy) stresses (in N
m2 ) from

a physically realistic (in vivo) applied axial stretch of λ = 1.1 (i.e. 10%), with
no transmural pressure. Note that the principal stresses are constant along the
length of the artery in the adventitia layer and the medial layer shows a significant
gradient. Fig. (4.10) shows the Von Mises stress (left) in Pascals and the average
axial strain (mm).

Fig. (4.11) shows the through-thickness average radial stress contour of a section
of the artery. Note that, as you would expect, the highest stresses occur near the
ends of the vessel where the highest radial strains occur. The vessel exhibits
a necking at the waist as you would expect under this mode of deformation.
Fig. (4.12) shows that the circumferential stress is almost identical in magnitude
and distribution to the radial stress. Fig. (4.13) shows the considerably higher
longitudinal stress; the majority of which is carried in the stiffer, medial layer.
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Figure 4.11: Case A: Average radial Cauchy stress, σrr
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Figure 4.12: Case A: Average circumferential Cauchy stress, σθθ
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Figure 4.13: Case A: Average longitudinal Cauchy stress, σzz
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Case B. Medial and Adventitia Layers, 10% Axial Extension, 20 kPa Transmural
Pressure

Figure 4.14: Case B: 10% Axial Extension, 20 kPa Transmural Pressure

Fig.s (4.14 - 4.17) show the resulting principal (Cauchy) stresses (in N
m2 ) from a

physically realistic (in vivo) applied axial stretch ofλ = 1.1 (i.e. 10%) and transmural
pressure of 20 kPa. Again, the principal stresses are constant along the length of
the artery in the adventitia layer and the medial layer shows a significant gradient.

Fig. (4.15) shows how the radial distension of the vessel acts to even out the
stress distribution between the two layers. Compare this to the through-thickness
stress gradient shown in Figure (4.11). Now the circumferential stress, however, is
predictably more and the gradient better defined (Fig. (4.16)).
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Figure 4.15: Case B: Average radial Cauchy stress, σrr



4.6. RESULTS 90

Figure 4.16: Case B: Average circumferential Cauchy stress, σθθ
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Figure 4.17: Case B: Average longitudinal Cauchy stress, σzz
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Case C. Medial and Adventitia Layers, 10% Axial Extension, 20 kPa Transmural
Pressure, Stiff Ring Lesion

Figure 4.18: 10% Axial Extension, 20 kPa Transmural Pressure, 100X Stiff Ring
Lesion

Fig.s (4.18 - 4.21) show the resulting principal (Cauchy) stresses (in N
m2 ) from a

physically realistic (in vivo) applied axial stretch ofλ = 1.1 (i.e. 10%) and transmural
pressure of 20 kPa and a narrow (about 2% of the overall segment length) stiff (100x)
ring lesion at mid span. The elastic constants in the material description of the lesion
are two orders of magnitude stiffer, for both layers, than the surrounding tissue.
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Figure 4.19: Case C: Average radial Cauchy stress, σrr
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Figure 4.20: Case C: Average circumferential Cauchy stress, σθθ
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Figure 4.21: Case C: Average longitudinal Cauchy stress, σzz
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Case D. Medial and Adventitia Layers, 10% Axial Extension, 20 kPa Transmural
Pressure, Stiff Spot Lesion

The spot-like lesion is defined as a set of three elements in each principal
direction. The lesion is three orders of magnitude stiffer (1000x) in elastic response
to the surrounding tissue. Fig.s (4.23 - 4.25) show a sequence of Von Mises stress
at selected times of the deformation described in Case D, leading to the final
state shown in here in Fig. (4.22). The artery has been sectioned to show the stress
distribution on the inner surface of the medial layer as well as the through thickness
distribution. Note the stiff material spot-like lesion primarily affects the stress field
on the inner medial layer, although the lesion does goes through both layers. Fig.
(4.26) shows a section view of the principal stresses at the final time (3.92 sec).

Figure 4.22: Case D: Average Von Mises stress, σvm, at time = 3.92s
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(a) t=0.0s

(b) t=0.4s

(c) t=0.8s

Figure 4.23: Spot-lesion inflation sequence - times (0.0s-0.8s)
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(a) t=1.2s

(b) t=1.6s

(c) t=2.0s

Figure 4.24: Spot-lesion inflation sequence - times (1.2s-2.0s)
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(a) t=2.4s

(b) t=2.8s

(c) t=3.2s

Figure 4.25: Spot-lesion inflation sequence - times (2.4s-3.2s)
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(a) σrr

(b) σθθ

(c) σzz

Figure 4.26: Spot-lesion, inflation, extension principal stresses (σrr,σθθ,σzz)
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(a) σrθ

(b) σθz

(c) σrz

Figure 4.27: Spot-lesion, inflation, extension shear stresses (σrθ,σθz,σrz)
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Chapter 5

Discussion

5.1 Conclusions on the 2D Membrane Formulation of
the Arterial Wall

We have shown that modeling the arterial wall as a two-dimensional membrane
has the following benefits: 1. evaluating, in a relatively simple numerical setting,
the performance of various 2D strain energy functions, 2. predicting the overall
volume change given prescribed axial stretch and internal pressure (and the rates
for each), and 3. exposing the influence of local material inhomogeneities on the
overall deformation of the vessel.

Perhaps the most useful outcome of this portion of the study is the apparent
viscoelastic behavior of the artery. As the artery is quickly stretched, then quickly
inflated, the deformation is extremely acute in the regions of higher strain (the end
being pulled). This bulge eventually evens out and the vessel retains a symmetric
equilibrium state if the pressure is held constant, but if the pressure continually
increases the artery will likely rupture at this location.

5.2 Conclusions on the 3D Finite Element Formulation
of the Arterial Wall

In the absence of material lesions, the artery was shown to carry the majority
of the strain, therefore stress, in the medial layer. Under pure axial stretch, the
stress fields in the adventitia are constant along the segment length, whereas in
the media, there is a significant gradient. For extension and internal pressure, the
adventitia contributes to the load sharing more, although the majority of it is still
in the medial layer.

The presence of local material lesions was shown to affect the strain, thereby
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stress, fields through both layers of the arterial wall under these boundary con-
ditions. It was shown that a stiff ring-type lesion served to stabilize the radial
deformation of the artery, although the stresses through the wall thickness were
much higher. For a softer lesion, the stress fields appeared identical to those in the
absence of a material lesion - hence the omission from including these plots in the
Results. For stiff, spot-like lesions, the vessel behavior is considerably distorted.
The protrusion of the stiff spot-like lesion into the vessel interior would reason-
ably lead to irregular blood flow at the tissue surface, subsequent irregular shear
stress and resulting tissue growth and remodeling. The stress contour shows the
Von Mises stress is on the order of two times higher in the lesion than the tissue
surrounding it. It then increases again further from the abnormality. Clearly the
acute gradients in stress could reasonably lead to irregular growth, remodeling or
degradation of the vessel wall.
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