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Machine Learning–Based Prediction of Pediatric Ulcerative
Colitis Treatment Response Using Diagnostic Histopathology
See editorial on page 730.

he initial presentation of ulcerative colitis within the
Abbreviations used in this paper: AUROC, area under the receiver oper-
ating characteristic curve; CI, confidence interval; CSFR, corticosteroid-
free remission; GLCM, gray level co-occurrence matrix; HSV, hue satu-
ration value; IQR, interquartile range; LBP, local binary pattern; MDG,
mean decrease in Gini; PUCAI, pediatric ulcerative colitis activity index;
RF, random forest; SickKids, Hospital for Sick Children; WSI, whole-slide
images.
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Tpediatric population exhibits a degree of uniformity,
the majority characterized by extensive colitis at the time of
diagnosis. However, the response to initial therapy demon-
strates marked heterogeneity.1 It is challenging to discrim-
inate which patients would successfully improve on
corticosteroids followed by mesalamine therapy mainte-
nance therapy and those who would benefit from early
introduction of biologic therapy. The Clinical and Biological
Predictors of Response to Standardized Pediatric Colitis
Therapy (PROTECT) study, a multicenter inception cohort
study, aimed to address this.1,2 The study identified 3 early
clinical features: pediatric ulcerative colitis activity index
(PUCAI) of <45, hemoglobin of �10 g/dL at the time of
diagnosis, and week 4 clinical remission as predictors of
corticosteroid-free clinical remission on mesalamine main-
tenance therapy alone (CSFR) at 1 year. Moreover, PROTECT
offered novel insights into the prognostic utility of histologic
features assessed at disease onset—notably, surface villi-
form architectural abnormality1,3 and rectal eosinophilia.

The manual evaluation of histologic slides remains indis-
pensable. However, in the setting of a predictive tool that has
the potential for wide adoption, such an approach would be
restrictive. Alternatively, automated image processing can
provide standardized, quantitative, and high-throughput
analysis that has the potential to be widely implemented in
clinical practice. In this study, we applied advanced compu-
tational approaches to the PROTECT diagnostic H&E-stained
rectal biopsy specimens to develop an automated image
analysis framework for patient classification.

A subcohort of 292 treatment-naive patients with rectal
H&E biopsy samples available for digitization from PROTECT
were included for model development. The external valida-
tion test cohort included 113 pediatric patients followed in
the Canadian Children Inflammatory Bowel Disease Network
inception cohort study at the Hospital for Sick Children
(SickKids).4,5 We used the PROTECT study primary outcome
of CSFR at 1 year on mesalamine therapy alone and with no
colectomy. Clinical remission was defined as a PUCAI score of
<10 and with no corticosteroid use for 4 weeks or longer
immediately before 1 year. The outcome measure for the
external test cohort was analogous to PROTECT, except that
the use of other mesalamine therapy in addition to Pentasa
(Shire Pharmaceuticals/Pantheon) was permitted.

We first implemented a 2-step preprocessing strategy
composed of stain normalization and patch generation to
standardize the PROTECT and SickKids whole-slide images
(WSIs).6,7 We adopted a brightness ratio of 0.8 and overlap
patch ratio of 0.25, generating 187,571 informative 512 �
512 patches from the 292 PROTECT WSI data (male, 53%;
age: 12.7 years [interquartile range (IQR): 11–15]; White,
83%; PUCAI, 50 [IQR, 35–65]; CSFR, 41%) and 85,842
patches from the 113 SickKids WSI data (male, 60%; age, 13
year [IQR, 11–15]; White, 51%; PUCAI, 60 [IQR, 40–75];
CSFR, 40%). These patches were used to compute the his-
tomic features for model training. Histomic features are
objectively quantifiable and interpretable, representing
various morphologic architectures within the tissue. The
features capture the spatial arrangement, shape, color,
intervoxel patterns, and orientations in a given image. We
constructed 5 different classes of histomic features: nuclei,
histogram based, and hue saturation value (HSV) color fea-
tures as well as 2 texture features—gray-level co-occurrence
matrix (GLCM) features and local binary pattern (LBP)—to
capture information at the patch level. We computed 250
histomic input features at the patch level from the 5 classes:
11 nuclei (Otsu), 9 HSV color, 64 histogram-based, 156 GLCM,
and 10 LBP features (Figure 1A).8,9

We first trained the histomic features on 14 machine
learning models with 5-fold cross-validation for patch-level
classification using the Scikit-learn library.10 Feature impor-
tance was determined by the mean decrease in Gini (MDG), a
measure of how each variable discriminates each image into
its correct class, averaged across all decision trees
(Figure 1A). We then selected the optimal features for clas-
sification and retrained the patch-level models. We under-
took an alternative approach to further understand the
impact of each feature class. We trained the 5-class features
independently and determined the most discriminative fea-
tures based on the MDG. We combined the optimal features
into a single feature pool and retrained the machine learning
classifier. Whole slide–level prediction was defined by
threshold voting. We then applied the optimal histomic fea-
tures on the independent real-world external pediatric Sick-
Kids cohort. The performances of patch-level and WSI models
were evaluated using area under the receiver operating
characteristic curve (AUROC), accuracy, precision, sensitivity,
specificity, F1 score, and the DeLong test to assess the per-
formance difference between the various predictive models.

We first trained the machine learning models on 250
histomic features at the patch level; the optimal model

http://crossmark.crossref.org/dialog/?doi=10.1053/j.gastro.2024.01.033&domain=pdf
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Figure 1.Overview of the machine learning approach and comparative patch-level predictive model performance. (A) Over-
view of the histomic predictive machine learning approach showing 2 parallel approaches. Thirteen machine learning models
were trained using (top) the entire 250 features and (bottom) 5 class features independently. Feature importance was
determined by the MDG for each approach and retrained to classify CSFR on mesalamine alone at 1 year. (B) The AUROC with
95% CI with 5-fold cross validation for patch-level performance using the optimal 18 features derived from the 250 features.
(C) AUROC with 95% CI and 5-fold cross validation for patch-level performance using the optimal 33 features from the 5-class
feature approach. (D) The Venn diagram shows shared histomic features between the 18 and 33 optimal features and includes
11 features: GLCM_contrast_3_2, GLCM_contrast_1_2, LBP_2_5, LBP_2_0, LBP_2_7, LBP_2_1, H_mean, H_thirdmoment,
Otsu_equivalent_diameter, Otsu_area, and Otsu_perimeter.
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trained was random forest (RF). The AUROC was 0.92 (95%
confidence interval [CI], 0.89–0.95) and the accuracy was
0.92 (95% CI, 0.90–0.94), compared to 0.52 (95% CI, 0.44–
0.60) and 0.53 (95% CI, 0.45–0.60), respectively, for logistic
regression. Eighteen optimal features were selected based
on MDG ranking, consisting of 3 GLCM, 8 LBP, 2 HSV, and 5
nuclei features. The best model trained on the 18 features at
the patch level was RF, with an AUROC of 0.88 (95% CI,
0.85–0.92) and accuracy of 0.90 (95% CI, 0.80–1.00)
(Figure 1B, Supplementary Table 1).

To evaluate the importance of each feature class, we also
trained each of the 5 classes on the 2 top-performing models
(Figure 1A). RF outperformed extra trees at the patch level for
each class. The AUROC of histogram-based features was 0.85
(95% CI, 0.82–0.88), the AUROC of GLCM was 0.87 (95% CI,
0.84– 0.90), the AUROC of LBP features was 0.83 (95% CI,
0.80–0.86), the AUROC of color features was 0.80 (95% CI,
0.78–0.82), and the AUROC of nuclei features was 0.80 (95%
CI, 0.76–0.83). For each class, the optimal features based on
MDG were selected for a total of 33 features: 13 histogram-
based features, 4 LBP features, 9 GLCM features, 4 color fea-
tures, and 3 nuclei features. RF was the best model trained on
the 33 features, with a patch-level AUROC of 0.89 (95%CI, 0.85–
0.93) and accuracy of 0.90 (95% CI, 0.87–0.92) (Figure 1C).

The AUROC and accuracy at the WSI level from the patch-
level model with the entire set of 250 histomic features were
0.87 (95% CI, 0.73–1.00) and 0.90 (95% CI, 0.80–1.00) and
with 33 features were 0.89 (95% CI, 0.82–0.94) and 0.90
(95% CI, 0.80–1.00), respectively. The model trained using
18 optimal features was comparable with models trained on
250 features, with an AUROC of 0.89 (95% CI, 0.71–0.96) and
accuracy of 0.90 (95% CI, 0.80–1.00). The DeLong test
demonstrated no significant statistical difference between the
predictive performance of the model using 18 vs 33 features
(P ¼ 0.59) (Figure 1D). Evaluation of the 18-histomic-fea-
tures set on the real-world SickKids cohort demonstrated
comparable performance. The AUROC and accuracy at the
patch level were 0.88 (95% CI, 0.84–0.91) and 0.88 (95% CI,
0.82–0.92), respectively. Similarly, at the WSI level, the
AUROC was 0.85 (95% CI, 0.75–0.95) and the accuracy was
0.85 (95% CI, 0.75–0.95) (Supplementary Table 2).

In the current study, we have validated 18 rectal histo-
mic features that, when incorporated in a machine learning
model, predicted steroid-free remission on mesalamine
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alone in children with ulcerative colitis. These morpho-
metric features capture the properties within the tissue and
further support the development of an agnostic automated
histopathology-based predictive tool using standard-of-care
treatment biopsy specimens for classifying treatment
response in patients with ulcerative colitis.
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Supplementary Materials and Methods

Study Participants
PROTECT was a multicenter inception cohort study

based at 29 centers in the United States and Canada.e1 A
total of 400 children aged 4 to 17 years with a diagnosis of
ulcerative colitis based on established clinical, endoscopic,
and histologic parameters were included. Inclusion criteria
included disease extension beyond the rectum, a baseline
PUCAI score of at least 10, no previous therapy for colitis,
and a stool culture result that was negative for enteric
bacterial pathogens, including Clostridium difficile toxin. A
detailed protocol and study description can be found in
Hyams et al,e1,e2 Depending on the initial PUCAI score
(PUCAI of <10 denoted inactive disease or remission,
10�30 denoted mild disease, 35�60 denoted moderate
disease, and 65 or higher denoted severe disease), patients
received initial treatment with either mesalamine (mild
disease) or corticosteroids (moderate and severe disease),
with physician discretion permitted. A detailed description
of treatment guidelines is provided in Hyams et al.e1 All
patients on mesalamine received the study drug in the form
of Pentasa (Shire Pharmaceuticals/Pantheon).

The biopsy samples from both PROTECT and SickKids
were taken from the most inflamed part of the rectosigmoid
and were routinely processed and fixed in formalin and
embedded in paraffin blocks from which 4- to 5-mm sections
were cut and stained with H&E (Roche, HE600). All slides
were scanned at 20� with an Aperio T2 (AT2 DX) for digital
analysis. The PROTECT biopsy specimens were all pro-
cessed at Cincinnati Children’s Medical Center, and the
SickKids biopsy specimens at were processed at their clin-
ical pathology laboratory.

Image Preprocessing
We undertook stain normalization by first applying the

Python Staintools library,e3 a structure-preserving color
package on the WSI, to standardize the slides, with 1 WSI
identified as the benchmark image. We undertook bright-
ness normalization using Luminosity Standardizer,e4 fol-
lowed by stain normalization with the Vahadane method.e4

The digitally driven stain normalization process allows
standardizing the stain color appearance of a source image
with respect to a reference image (also referred to as the
target image), with no specific laboratory preanalytical or
procedure protocols or other expertise required. We
generated patches of 512 � 512 pixels and undertook ex-
periments to determine the optimal overlap ratio and
brightness threshold parameters. The overlap ratio in-
dicates the overlap between patches, with the aim of
providing sufficient coverage of the WSI, with the brightness
threshold determining informative from noninformative
patches. We applied the same imaging preprocessing pa-
rameters on both cohorts’ WSIs.

Histomic Features
Algorithms have been manually engineered to extract

distinctive characteristics and repeated patterns from

histopathology images that can be used as input features in
machine learning models. We constructed 5 different classes
of histomic features: nuclei, histogram-based, and HSV color
features as well as 2 texture features—GLCM and LBP
features—to capture information at the patch level. The LBP
feature creates a binary pattern by comparing the intensity
of each pixel in an image to the intensity of its neighboring
pixel and encodes whether it is darker or brighter.e5

Histogram-based features represent the distribution of co-
lor or intensity values in an image using a histogram.e6 The
mean and standard deviation of the pixel values in a his-
togram can be used to represent the brightness and contrast
of an image, whereas the skewness and kurtosis describe
the texture. GLCM texture features describe the spatial
relationship between pixel intensities in an image.e7 Nuclei
features were generated based on 3 different polygon
methods (Otsu threshold, Delaunay triangulations, and
Voronoi diagrams), and features were determined from the
pixel value from each polygon. Five nuclei features used the
Otsu algorithm, which is a thresholding method that can
automatically separate an object of interest (eg, nuclei) at a
given threshold from the background tissue.e8 Delaunay
triangulations and Voronoi diagram algorithms were
applied to understand the spatial relationships between the
nuclei. Imaging data were read by the SimpleITK package in
Python,e9 and GLCM and LBP features were generated by
the skimage packagese10 (graycomatrix, local_binary_pattern).
We used HistomicsTK, a Python package for the analysis of
digital pathology images, to count the number of nuclei.e11

Features were implemented using self-developed functions
without relying on pre-existing packages or libraries.

Model Training and Identification of Optimal
Features

We first trained histomic features on 14 machine
learning models (naive Bayes–based model; CatBoost;
AdaBoost; tree-based models—extra trees, random forest,
and decision trees; Bagging; GradientBoosting; and logistic
regression (reference standard) with 5-fold cross-validation
for patch-level classification. We grouped patches at the
patient level (WSI level) for each fold, using the Stratified-
GroupKFold function. We fine-tuned the hyperparameters
by grid search.e12 Models were implemented and built by
Scikit-learn library.e13 Feature importance was determined
by the MDG. Features with higher MDG have the greatest
predictive power and are most important for classi-
fication.e14 The feature importance was computed using the
Scikit-Learn features_importance function and was normal-
ized. We selected the optimal features for classification and
retrained the patch-level models.

Interpretability of Histomic Features
To evaluate the impact and importance of the optimal

features on remission prediction, we generated the Shapley
additive explanation (SHAP) value.e14 The SHAP value
measures the contribution of the feature value to the pre-
diction value, as illustrated in Supplementary Figure 1A. The
y-axis indicates the feature. The x-axis indicates the SHAP
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value, where a positive value is indicative of CSFR and a
negative value of non-CSFR. The magnitude of the feature
value is represented by a color bar, with red indicating high
and blue representing low. Each individual patient is
represented by a dot. We noted nucleus features with a
higher value—Otsu_equivalent_diameter, Otsu_area, and
Otsu_perimeter—have a positive impact on the likelihood
of CSFR. Conversely, a high value of LBP_2_5 has a negative
impact (negative SHAP value) on the likelihood of CSFR.
Supplementary Figure 1B visualizes the feature Otsu_equi-
valent_diameter at the slide level.
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Supplementary Figure 1. Histomic feature importance represented by the SHAP values. (A) The relationship between the 18
histomic features and the outcome of CSFR with mesalamine alone at 1 year. Positive SHAP values (x-axis) are indicative of
clinical remission, and negative values represent nonremission. The magnitude of each feature value is represented by the
color bar, with red being high and blue representing low. Features include LBP and GLCM; histogram features include H_third
moment and H_mean; and nuclei features include Otsu_perimeter, Otsu_eccentricity, Otsu_area, and Otsu_equivalent_dia-
meter. (B) Image 1 shows nonoverlapping patches of H&E stain–normalized WSIs. (C) A heatmap of the Otsu equivalent
diameter, a nuclei feature, with the color bar representing feature values. High values are in red/brown, and low values are in
blue.
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Supplementary Table 1.Patch-Level Image Model Performance Metrics Using the 18 Optimal Histomic Features

Model type Sensitivity Specificity Precision F1 score Accuracy AUROC

PROTECT cohort
Random forest 0.85 (0.78–0.93) 0.91 (0.87–0.95) 0.90 (0.85–0.96) 0.90 (0.8– 0.91) 0.89 (0.86–0.91) 0.88 (0.85–0.92)
Logistic regression 0.44 (0.33–0.55) 0.57 (0.44–0.69) 0.60 (0.49–0.71) 0.52 (0.29–0.54) 0.51 (0.47–0.55) 0.50 (0.45–0.56)

SickKids cohort
Random forest 0.90 (0.85–0.95) 0.86 (0.82–0.9) 0.91 (0.86–0.96) 0.86 (0.79–0.9) 0.88 (0.85–0.92) 0.88 (0.84–0.91)
Logistic regression 0.84 (0.78–0.89) 0.79 (0.73–0.84) 0.86 (0.8–0.93) 0.79 (0.69–0.84) 0.82 (0.78–0.86) 0.81 (0.77–0.85)

NOTE. Values are averages with 95% CI (point estimate and 95% CI).

Supplementary Table 2.Whole-Slide Image Model Performance Metrics Using the 18 Optimal Histomic Features

Model type Sensitivity Specificity Precision F1 score Accuracy AUROC

PROTECT cohort
Random forest 0.84 (0.78–0.90) 0.94 (0.82–1.00) 0.91 (0.82–1.00) 0.87 (0.82–0.92) 0.90 (0.80–1.00) 0.89 (0.71–0.96)
Logistic regression 0.47 (0.30–0.63) 0.50 (0.41–0.58) 0.59 (0.50–0.67) 0.48 (0.40–0.56) 0.48 (0.42–0.54) 0.48 (0.41–0.56)

SickKids cohort
Random forest 0.78 (0.49–1.00) 0.91 (0.81–1.00) 0.84 (0.57–1.00) 0.82 (0.59–1.00) 0.85 (0.63–1.00) 0.85 (0.75– 0.95)
Logistic regression 0.42 (0.34–0.50) 0.43 (0.39–0.49) 0.53 (0.50–0.59) 0.43 (0.40–0.47) 0.48 (0.44–0.51) 0.47 (0.40–0.55)

NOTE. Values are averages with 95% CI (point estimate and 95% CI).
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