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You Can’t Play Straight TRACS and Win:
Memory Updates in a Dynamic Task Environment

Hansjorg Neth Chris R. Sims Vladislav D. Veksler Wayne D. Gray
(nethh@rpi.edu) (simsc@rpi.edu) (vekslv@rpi.edu) (grayw@rpi.edu)
Cognitive Science Department
Rensselaer Polytechnic Institute

Abstract Table 1: Baseline distribution of cards in the deck. The back

To investigate people’s ability to update memory in a dy- Of every card shows only its shape, whereas the front shows
namic task environment we use the experimental card game poth its shape and color.

TRACS™ (Burns, 2001). In many card games card count-
ing is a component of optimal performance. However, for Shape: A ® [} A o [}
TRACS, Burns (2002a) reported that players exhibited a base- .

line bias: rather than basing their choices on the actual num- Color: red red red blue blue blue
ber of cards remaining in the deck, they chose cards based on it .

the initial composition of the deck. Both a task analysis and Initial deck: 6 4 2 2 4 6
computer simulation show that a perfectly executed memory
update strategy has minimal value in the original game, sug-
gesting that a baseline strategy is a rational adaptation to the
demands of the original game. We then redesign the game bilities of the actor (Simon, 1990). To capture functional

to maximize the dierence in performance between baseline relationships of complex tasks while abstracting away from

and update strategies. An empirical study with the new game ; i ; ;
shows that players perform much better than could be achieved domain specific details we advocate the use of synthetic task

by a baseline strategy. Hence, we conclude that people will €nvironments, or microworlds (Gray, 2002). If the properties
adopt a memory update strategy when the benefits outweigh Of the synthetic task environments are known and manipula-
the costs. ble, the scope and limits of human rationality can be assessed.

Moreover, the ffects of environmental changes are tractable.

Introduction Straight TRACS

Optimal performance in dynamic environments requires thafRaACS™ is a ‘Tool for Research on Adaptive Cognitive
we base our decisions on the current state of the world, not 08trategies, designed and developed by Kevin Burns (2001,
past states. Radar operators must act on the basis of continggpa).” Being both entertaining card game and experimental
ously changing variables such as plane altitude and headingasearch tool, TRACS provides a microworld which promises
Drivers constantly need to monitor the current speed limittg pridge the gap between mathematical rigor and real-world
posted road signs and theftia behind and in front of them.  relevance. We will limit our discussion traight TRACS,
Failure to mentally update these types of information can leagyhich is the simplest version of an entire family of gares.
to dangerous decisions and catastrophic behavior. Even our TRACS is played with a deck of 24 cards. The back of each
chances to win at card games like Blackjack or Bridge argard shows one of three shapes—circle, triangle, or square—
closely tied to our ability to count cards and update memorysilied in with black. The front of each card shows both its
Previous research suggests that human ability to monito§hape, and one of two colors (red or blue). Tablshows
and adjust to change is limited and dependent on various fagne initial deck distribution for each of the six possible card
tors. Yntema (1963) found that people are better at tracking pes. This baseline information is always available to the
small number of variables with a large range of values eachy|ayer. As hands are played the number of cards remaining

than a large number of variables with a small set of possiiy the deck decreases, and the odds for each shape change
ble values each. In addition, reducing the frequency of upzccordingly.

date can improve performance. Other manipulations, such at the start of a game, three cards are dealt in a row. The
as mcrease'd predlctablll'ty of a sequence, provide little Or NGniddle card is dealt face up (showing both its shape and
advantage in remembering the current state of the environsg|or), while the left and right cards are dealt face down,
ment. Venturino (1997) distinguished the memory capacityshowing their shape not their color. The task for the player
for static information from that for dynamically changing in- is tg choose the card, either left or right, most likely to match
formation and showed that the latter is highly limited, par-tne color of the middle card. The chosen card is then turned
ticularly when the to-be-remembered attributes are similargyer, revealing its color. If the chosen card matches the color
Hess, Detweiler and Ellis (1999) added that update perforpf the middle card, 4it is credited to the player's score. A

mance is improved when spatial invariants constrain whergnismatch is scored aswiss The two face up cards (the mid-

different data values are presented on a visual display. dle and the chosen card) are then removed from the game. On
In general, human rational behavior is constrained by the

structure of task environments and the computational capa- Online versions are availableatvw.tracsgame.com
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the next turn, the unchosen card is flipped over and become Now turm:
the new middle card, and two new cards are dealt face dow 'n“fia' dng FFF
to the left and right. A game lasts 11 turns, at which point otcards IllfcHich

there are not enough cards in the deck to deal anotherhan __ " ... .. > | ——/—
A player’s objective in TRACS is to maximize the number of | i Update 1 v ;
hits. l < . ")
As a probe of the player's assessment of odds at each tur E S “,gi@;ﬂé?ﬂ:‘;i:éss‘( i
Burns (2002a, 2002b) added a confidence meter to the tas | _ i
On each turn, players were presented with a red to blue colc | amery: v !
q nitial deck
gradient for each of the two face-down cards. Prior to choos ! | - cards played Lo 2. Conversion task: j
ing a card, the participants used the gradient to indicate th ! Compute probabilities i
likelihood of each candidate card to be red or blue. In an- | v !
other condition, Burns used a scale of nine buttons rather tha i _ 3. Decision task: j
a continuous spectrum. For consistency reasons all gradie '@ Choice of card :
estimates were rounded to the nearest button, correspondi | i
to the nearest 13%. | Cognition Update 2 '
Burns (2002a) characterized players’ likelihood estimates ~~ TN Ty T
as exhibiting abaseline biasi.e., their judgments of odds Outcome:
deviate systematically from the actual odds in the directior TTF
of the initial card distribution. There are six types of color— R

shape combinations. Burns (2002b) reports that players coui
only monitor 2—4 types of cards with reasonable reliability.
He concludes that the dual tasks of concurrently counting an
normalizing numbers ‘are naturally hard’ and that continu-

%ﬂ?’dggdﬁ%g (%dudri:éc(;a(;e;ae,dp.tq%gfgn|t|ve capacity of th‘teermine the likelihood of a red triangle, a player has to divide

the number of red triangles currently left in the deck by the

sum of red and blue triangles left in the deck. As people
re notoriously bad at dealing with probability information

I?see Gigerenzer, 2000, and Koehler, 1996, for reviews) it is

Figure 1: Subtasks and memory updates required on each turn
8f Straight TRACS.

In the following sections, we will challenge this claim both
theoretically and empirically. To preview our conclusions,
we find that subtle constraints in the task environment ca
have profound ects on the strategy adopted by participants. ; . . .
The reported baseline bias is revealed as both rational an(a)ncelvable that this trgnslauqn Process incurs aloss of accu-
adaptive when considered in light of a cost-benefit analysis ofoy: If 0, merely asking for likelihood estimates confounds

the environment. We then demonstrate that players will adopglsiirpnc;%uﬁ)gaé?; \t/¥32 r?{gﬁ%?'I'Eya]uggpqe:\tssaa&?rénsgbﬂgf r:a
a more éortful memory strategy if the cost-benefit structure players y capacity. . ; '
of the environment rewards this. player needs to integrate all estimates and decide which can-

didate card is more likely to score a hit on the current trial.
: In addition to these three subtasks, each turn requires two
_ o Tragklng TRACS o _ distinct updates of memory. The first update is necessary as
Given the original finding that players find it challenging to soon as the middle card is revealed. If the middle card hap-
succeed at TRACS, a natural starting point for our investigapens to be a red triangle, the player needs to realize that there
tion is a task analysis. What specifically makes this game s@ow is one less red triangle left in the deck. The second up-

difficult to play? date ought to occur at the end of a turn when the chosen card
. is revealed. This second update is critical, as at this point in
Task Analysis the game, players may be distracted by focusing exclusively

In describing TRACS as a game of ‘confidence and conseon the correctness of their choice and ignoring the additional
quence’ Burns (2001, 2002b) distinguishes two subtasks dnformation revealed.
diagnosis and decision. On each turn, a player first provides This task analysis reveals both the complexity and sim-
an odds judgment for each face-down card and then choos@$city of TRACS. On one hand, multiple subtasks and mem-
one on the basis of these estimates. ory update requirements make the game quite challenging.
Extending Burns’ analysis, we suggest that each turn inEven if frequency information on card types was readily
volves a minimum othreedistinct cognitive tasks: a mem- available, the conversions into probabilities, comparisons be-
ory retrieval task, an odds conversion task, and a decisiofveen odds, and selection of cards introduce potential sources
task (see Figurd). The first subtask on each turn consistsOf error. On the other hand, remembering and updating a list
in remembering how many cards of each candidate shape afdl Six humbers (representing the current frequency of each
color remain in the deck. As the initial card distribution is card type) does not in itself seem beyond the capacity of hu-
provided in terms of frequencies and players encounter car@lan memory.
instances through a process of natural sampling, we assumlsan
that this retrieval is framed in terms of natural frequencies. e Impact of Memory
Secondly, the retrieved frequencies need to be converted intét first glance, it seems that TRACS is a ‘memory game’
odds, which is a non-trivial process involving Bayes’ rule for (Burns, 2001, 2002a) in which players can succeed only by
natural frequencies (Gigerenzer, 2000). For example, to deemembering which cards have left the deck. However, our
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experience playing TRACS casts some doubts on the impor- S
tance of memory. Due to the random card selection process a ~-Random
typical game contains many knowledge-indeterminate turns. -e-Baseline
For example, whenever both face-down cards show the same 90% |~ Update
shape, a player has no choice but to guess. Likewise, both
face-down cards frequently have the same color, SO that the  80% -
player scores a hit or miss regardless of knowledge or choice. d
Even when the cardsfiiér in shape, color, and 0dds, itiS POS- £ 700 |
sible that selecting the card with higher actual odds results in
a miss, whereas choosing the ‘wrong’ card scores a hit.
These concerns raise questions about whether memory
really matters. To what extent can poor performance be
blamed on failures of memory? Would better memory im-
prove performance? The non-deterministic nature of the
game makes it hard to answer these questions analytically; 40% . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ !

H H : 2 3 4 5 6 7 8 9 10 11
thus, we implemented the game as a computer simulation. Turn (within game)

Simulation  As Allen Newell and Herbert Simon famously Figure 2: Simulation results for four artificial agents playing
stated, “Just as a scissors cannot cut paper without two bladefp 000 games of original TRACS.

a theory of thinking and problem solving cannot predict be-

havior unless it encompasses both an analysis of the structure

of task environments and an analysis of the limits of rationakonstraints and the minimal benefits of an update strategy,
adaptation to task requirements.” (1972, p. 55). In this spiritparticipants might well have adopted a baseline strategy for
we created a simulation in MATLAB! in which ‘pure’ cog-  good reasons. Thus, our analysis suggests a re-interpretation
nitive strategies could be formalized and implemented. Byof Burns’ original findings: In Straight TRACS, memory up-
running these atrtificial agentS for thousands of trIaIS, we Wergjate y|e|ds no performance benefit over adopting amuch eas-

able to determine precise performance levels, despite the dyer baseline strategy. Hence, adopting the baseline strategy is
namic and nondeterministic aspects of the game. both adaptive anchtional.

We compared four cognitive agents thaffelied in their
memory resources and strategies, but did not make any errolsRACS*

in odds translation or judgment. Baselineagent has perfect The simulation results suggest that—by nffiedng an incen-
knowledge of the initial deck distribution, but is amnesic with tjye to a memory update strategy—Straight TRACS is inad-
regards to the cards played during a game. In contrast, thequate for investigating people’s willingness and capacity to
updateagent enjoys perfect memory of every hand playedmonitor and update changing environmental circumstances.
and bases all choices on the actual odds at any given momei this section we introduce TRACS*, which provides a clear

Two additional agents bracket the performance of baselingenefit for adopting an update strategy, as well as introduces
and update agentsandomagent has neither memory nor additional probes of memory performance.
knowledge of the initial distribution, and hence is forced to |n designing TRACS*, we sought to create a variant of the
blindly guess at every turn. On the other end of the scate, game for which a memory update strategy clearly benefits
niscientagent @ectively enjoys X-ray vision and can observe performance. We achieved this by carefully controlling the
the colors of both candidate cards, allowing for optimal cardcards dealt to the players. While cards were selected ran-
selections without the need for memory or odds estimates. domly, they were selected from a card space constrained by

The mean score for the random agent across 10,000 simewo rules. First, only pairs of face-down cards that would not
lated games was.Z4 (out of 11 possible) hits per game. To have equal odds of matching the target color would be dealt.
our surprise, baseline and update agents performed about tBy eliminating ties, this rule eliminates the need to guess.
same, scoring .67 and 679, respectively. Thus, the aver- Second, pairs were not selected if the card with the lower
age performance flerence between the baseline and updatedds resulted in a hit, or if the card with the higher odds did
agents was roughly two tenths of one point per game. Fumot. This rule aimed to reduce the influence of luck by elimi-
ther, both strategies achieved only marginally better scorefating win-win and lose-lose situations, thus driving a wedge
than the random strategy. between the baseline and update strategies.

Figure 2 shows the mean percentage of hits per turn for Figure3 illustrates the ffects of these changes. The mean
each agent. It is obvious that the performance of baselingcore for the random agent in TRACS* remained stable, at
and update agents are very similar, except for an increasing49 (out of 11) hits per game across 10,000 games. How-
benefit of update strategy late in a game. The entire rangever, baseline and update scores rose.2@ &nd 1083, re-
between random and omniscient performance scores is onpectively. Hence, our game modifications were successful
25%, which is essentially due to 25% of all turns not allowingin introducing a substantial benefit of the update strategy over
for a hit. the random and baseline strategies. Given that baseline and

While an optimal update agent acts to maximize perfor-update strategies now yield unique performance signatures, it
mance regardless of théert involved, humans have limited should be possible to determine which strategy our partici-
cognitive resources and are required to negotiate cost—benefiints actually adopt in the game.
tradedfs (Anderson, 1990; Simon, 1990, 1992). Given these Our second alteration in TRACS* was procedural. In addi-
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Figure 3: Simulation results for four artificial agents playing Figure 4: Screenshot of the TRACS* interface requesting
10,000 games of modified TRACS*. odds estimates (after the completion of the recall task).

tion to using continuous color gradients to assess our particPerformance TRACS* allows for a straightforward corre-
pants’ odds calculations, we introduced memory recall boxespondence between a player’s awareness of the current game
to judge the accuracy of their memory. In this way we hopedstate and his or her outcome score. Thus, scores reliably
to elucidate whether Burns’ findings indicated an actual baseexceeding the expected values of a simulated baseline agent
line bias, or merely just dliculty in converting accurately re- would signal a memory update strategy.

called frequencies into points along a likelihood gradient. On average, participants scored 9.3 hits per game with 22
out of 25 players (88%) exceeding the theoretic baseline score
Experiment of 8.2 hits. This strongly suggests that memory updates con-

Method tributed to task performance.

To allow for a statistical assessment of thes@edénces,
Twenty-five undergraduates from Rensselaer Polytechnic Inye let our simulated baseline and update agents both play the
stitute participated in partial fulfillment of a course require- same number of games as human participants. A compari-
ment. They ranged in age from 18 to 22 years, with an averson of mean scores over the sequence of ten games per player
age of 19.6 years. Participants were tested individually. showed that human players scored significantly more points
The experimenter spent about ten minutes instructing eacthan baseline agents [9:8.2, t(26)=2.1, p<.001], and sig-
participant on the rules of original TRACS. Each participantnificantly fewer hits than update agents [918.8,t(25)=2.1,
played a total of 10 games of 11 turns each. On every turnp<.001]. Figure5 contrasts the performance of human par-
players had to complete the recall task, provide odds estiticipants with that of simulated agents on a within-game res-
mates, and choose a card. olution. It is obvious that human players did not perform on
On the newly added recall task participants were asked,
for each face-down card, to report the number of red and
blue cards of that shape which remained in the deck. An-
swers were typed into text boxes immediately below each ., |
face-down card. Players then estimated the odds of each face-
down card being red or blue by placing a marker on a continu-
ous color gradient. Gradients were red on the left and blue on
the right, and 300 pixels widex(0 cm), allowing for a pre-

Q0% r-vrreereseeseesnee s

cision below one percent (see Figuréor a screenshot). Fi- . -e-Baseline
nally, participants chose a card by clicking onit. Feedbackon = | |77 |
correctness was then provided by a thumbghuymbs-down
image and the next turn was initiated by clicking on the feed-
back image. e
The game was implemented in Macintosh Common Lisp
5.0 running on OS 10.2 with a 17" flat panel display settoa |
1024x768 screen resolution. The initial card distribution and
a hiymiss counter were shown to the left of the game window.  “* " 2 3+ : + 7 & + 10 u
Turn (within game)
Results Figure 5: Participants’ mean percentage of hits by turn com-
more detailed analyses of various error types. bars indicate 95% confidence intervals.)
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the level of an ideal update agent, but did reliably better tharsystematic preference. If participants—due to update failure
a baseline agent. or memory decay—were more likely to choose odds closer to

To assess possiblefects of learning we conducted an the br_:lseline tha_n to_the update value_z this would co_nstitute a
ANOVA with game number as a within-subjects factor. A baseline bias. Likewise, an “update bias” could be diagnosed
significant main #&ect [F(9,216)3.0, p<.01] indicated that if participants were more likely to selept odds in the vicinity
players improved their scores reliably from an average of 8.8 the actual value. Figuréshows that, in TRACS?, the evi-
hits in earlier to about 9.7 hits in later games. Subsequerfi€nce for an update bias clearly outweighs the evidence for a

comparisons showed that human participants outperformedR@seline bias. Participants’ preference for actual values seems
pure baseline agent in all but the initial two games. particularly pronounced when odds are based on recall fre-

L quencies (77.1% vs. 22.9%). In contrast, the same preference

Errors  Even though human participants performed bettefis \yeaker when odds estimates are measured by probability
than a baseline agent, their performance was worse than thgfadients (57.6% vs. 42.4%). As the baseline attractor seems
of an ideal update agent. In this section, we examine this disg exert less gravitational pull when providing frequency es-
crepancy by first considering erroneous frequency and likelitimates than when responding on a gradient scale, examining
hood estimates before assessing errors of internal consisten@my the latter (e.g., Burns, 2002a, 2002b) might overestimate

As participants estimated card frequencies as well as likelithe size of a baseline bias.
hoods we were provided with two distinct indices of memory.  All errors reported so far were deviations of empirical es-
To allow for direct comparisons of both indices on a singletimates from either true or baseline values. Our finding that
scale, we converted reported frequencies into ‘recall oddsparticipants’ frequency estimates are closer to the actual val-
For both recall odds and likelihood estimates (as indicated ofQyes than to the initial baselines makes it implausible that
the gradient scales) we then calculated and summed up thgarticipants’ frequency estimates are governed by a baseline
absolute dierence from the actual odds. bias. At the same time, it raises questions about alternative

Figure6 illustrates that both recall-odds and gradient-oddsbreakdowns in performance. On the basis of our initial task
errors increase over the course of a game, but errors in freanalysis, the complexity of TRACS allows for a variety of
quency recall (with a mean of 8.0%) are significantly lowernon-memory related errors. In the following and final sec-
than the errors in likelihood estimates provided on gradientions we consider conversion errors and errors of choice as
scales (12.6%). The third line in FiguBeshows the mean examples of errors of internal consistency.
size of the ‘baseline-odds’ error (16.5%) which would result  Due to our sequential procedure of first requiring frequency
if participants had adopted a baseline strategy on the giveimformation and then asking for probability estimates, partic-
trial. Even though the mean gradient-odds error exceeded thpants’ responses on the likelihood gradients ought to be a
baseline-odds error on the first three trials, the general trendirect function of recall performance. Nonetheless, people’s
indicates that participants’ actual errors on both scales wergotorious problems with probabilities can cawsmversion
lower than suggested by a baseline bias. errors when transforming recalled frequencies into odds on

Taking into account the direction of deviations rather thancontinuous scales. To assess the occurrence of such errors, we
just error magnitudes, we can also ask whether empirical recompared subjective recall odds (based on the card frequency
call and gradient odds are closer to the baseline or to the aentries of each participant and turn) with the likelihood es-
tual odds. Whenever the actual odds value deviates from th@mates provided on the same turn. An average deviation of
baseline value there are two possible attractors: Participan&6% indicates that this translation process was indeed non-
might specify odds closer to the baseline odds, or they mightrivial and error-prone. The magnitude of this error is striking
select odds closer to the actual oddsbiAsis defined by a not only as it is almost as large as the average error in fre-
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guency recall (8.0%, see Figudg but also when considering may have inadvertently promptedigirent memory strategies
that players reported their subjective frequencies immediatelis an empirical question to be addressed in future studies.
before indicating their judgment of odds and had all relevant Finally, the performance results of our modified version
frequencies displayed directly above the gradient scales (s&86RACS* provide a more optimistic view of the human ca-
Figure4). Thus, we conclude that a large proportion of par-pacity for concurrent memory updates than do previous stud-
ticipants’ error-prone responses on likelihood scales were duies. As our players were able to reliably exceed baseline per-

to errors in odds conversion. formance, we conclude that the previously reported ‘baseline
Two curious errors of internal consistency address the rebias’ may be an artifact of the original game.
lation between odds estimates and card selectidtecall- Despite our criticisms, our results agree with those of

choice errorscan be defined as instances in which the cardBurns (2002a, 2002b) that people are able to take baserate
with lower recall odds (based on the subjective card freinformation into account. However, we additionally demon-
guency estimates) is selected by the participant. Similarlystrate that—when memory matters—people are also able to
gradient-choice errorsoccur whenever the card with lower dynamically update their memory while being engaged in a
likelihood odds (based on probability estimates) is chosen. highly demanding task.
There were 4.3% (119 out of 2750 choices) recall-choice
errors, but 8.3% (229) gradient-choice errors. Given that any Acknowledgments
conflict between judgment and choice is relatively bizarre We are grateful to Kevin Burns for allowing us to use TRACS
both errors are more frequent than we would have expecte@nd providing many helpful comments. In addition, we thank
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