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Abstract

Program Verification with Property Directed Reachability

by

Tobias Welp

Doctor of Philosophy in Engineering–Electrical Engineering and Computer

Sciences

University of California, Berkeley

Professor Andreas Kuehlmann, Chair

As a consequence of the increasing use of software in safety-critical systems and the con-

siderable risk associated with their failure, effective and efficient algorithms for program

verification are of high value. Despite extensive research efforts towards better software

verification technology and substantial advances in the state-of-the-art, verification of larger

and complex software systems must still be considered infeasible and further advances are

desirable.

In 2011, Property Directed Reachablity (PDR) was proposed as a new algorithm

for hardware model checking. PDR outperforms all previously known algorithms for this

purpose and has additional favorable algorithmic properties, such as incrementality and

parallelizability.

In this dissertation, we explore the potential of using PDR for program verifi-

cation and - as product of this endeavor - present a sound and complete algorithm for

intraprocedural verification of programs with static memory allocation that is based on

PDR.

In the first part, we describe a generalization of the original Boolean PDR algo-

rithm to the theory of quantifier-free formulae over bitvectors (QF_BV). We implemented

the algorithm and present experimental results that show that the generalized algorithm

outperforms the original algorithm applied to bit-blasted versions of the used benchmarks.

In the second part, we present a program verification frontend that uses loop in-

variants to construct a model of the program that overapproximates its behavior. If the
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verification fails using the overapproximation, the QF_BV PDR algorithm from the first

part is used to refine the model of the program. We compare the novel algorithm with

other approaches to software verification on the conceptional level and quantitatively us-

ing standard competition benchmarks. Finally, we present an extension of the proposed

verification framework that uses a previous dynamic approach to program verification to

strengthen the discussed static algorithm.
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Chapter 1

Introduction

We start this chapter with an introduction to program verification and some introductory

notes about the algorithm Property Directed Reachability (PDR) which is the basis of the

work reported on in this dissertation. Next, in Section 1.4, we introduce our framework for

program verification from a high-level view. We conclude the chapter with a discussion of

the overall structure of this thesis.

1.1 The Case for Quality Assurance of Software Systems

Microprocessors are ubiquitous in today’s life. Practically every device sold in market

sectors such as consumer electronics, domestic and medical appliances, automobiles, and

avionics contains several microprocessors. Their injection have come with enormous sav-

ings in development and production costs and allowed for many more features previously

infeasible to provide. A modern car, for instance, contains a large number of microproces-

sors for applications as diverse as the electronic stability control (ESC) system, navigation,

and on-board entertainment.

The implemented microprocessors are programmed with software which is mostly

written by human developers. Experience shows that writing software free of errors is

practically impossible for all but the most trivial programs. One often measures the qual-

ity of software in the residual error density that is the number of errors per 1000 lines of

code (kLOC). Several publications report statistics for the residual error density. The num-

bers reported in [McC04] suggest that in the industrial average, one can expect a residual

error density of 15-50. For safety-critical applications, one can anticipate that more effort
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is spent for quality insurance than on the industrial average and that the residual error

density is closer to 1 as e.g. described in [CM90]. Most errors in software have only minor

impact on the users’ experience.

However, in particular for safety-critical applications, errors in software programs

can have grave consequences. Incidents have shattered the historic overconfidence in soft-

ware of developers and users alike. A particular sad example are the accidents with the

Therac-25, a radiation therapy device that has been operated in cancer treatment facili-

ties in the United States of America and in Canada. The device used software interlocks

to prevent that a high energy beam is targeted at a patient without the necessary filters in

place [LT93]. Unfortunately, the control software contained at least two bugs which caused

the machine to administer massive overdoses to six patients, resulting in serious injuries

and death. Other infamous examples include the explosion of the Ariane 5 on its maiden

flight due to an unsafe number conversion in the control software costing approximately

$370 million [Dow97] and the failure of the AT&T long distance network in 1990 due to

a logical error in the control software of the network switches costing AT&T roughly $60

million in fees for not connected calls [Bur95]. Overall, a frequently cited NIST study from

2002 [Tas02] suggests that there is approximately a $60 billion economic loss each year due

to software bugs only in the United States of America.

1.2 Technology and Methodology for Quality Software

Many methods have been devised to increase the quality of software (Figure 1.1). The first

Coding Rules Development Process

Curative Methods

Quality Assurance for Software

Preventive Methods

Program VerificationStatic AnalysisTesting

Figure 1.1: Means to Assure Quality of Software

category of methods aims at avoiding that errors are coded into the software in the first

place (preventive measures). Among them are coding rules (well readable code, proper
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indentation, avoidance of error-prone features of a programming language, . . . ) and a

well-established development process. The second category aims at finding and elimi-

nating defects that are already in the program (curative measures). The most significant

technique in this category is testing: The program is exercised with user input and the sys-

tem response is compared with an expected response. Testing can be applied at different

levels of granularities such as at the unit (function, class, file) level or at the system level.

Static alternatives to testing are static analysis and program verification. In both cases,

software is analyzed to find issues in the program that are reported to the user. In the case

of static analysis, the process is usually neither sound nor complete, i.e. the applied algo-

rithms are not guaranteed to find all errors and a reported defect is not guaranteed to be a

real bug. The aim of program verification is to either proof a safety property (something

bad will never happen) or a lifeness property (something good will eventually happen)

of a program. If the verification succeeds, the program is proved to have the property of

interest. Otherwise, a counterexample is emitted.

1.2.1 Program Verification

When used in a development environment, the use of program verification adds a substan-

tial amount of additional cost. For instance, the desired properties of the program must be

defined formally, verification software must be obtained, and a verification engineer must

expect a high computational burden to prove a certain property. To be useful, the benefits

of using program verification must outweigh the cost.

Gerald J. Holzmann discussed this question in [Hol01]. He classifies defects into

categories according to the difficulty of their stimulation and according to the severity of

the potential impact. Using these categories, he formulates the hypothesis that in a typical

program, these categories are not independent but that difficulty of stimulation of defects

correlates positively with their severity, i.e. a bug that is difficult to stimulate is more likely

to have catastrophic consequences. The author gives some arguments in support of this

hypothesis and one can also argue that the hypothesis is true for the grave incidents re-

ported above. Holzmann continues by pointing out that testing excels in finding defects

that are easy to stimulate. On the other side, the strength of program verification rests in

finding bugs independent of the difficulty of their stimulation. This allows to conclude

that program verification is more likely to be successful in finding bugs that are hard to
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stimulate than testing. If the formulated hypothesis is correct, then this also implies that

program verification is more likely to find bugs that lead to catastrophic accidents.

The quest for finding good verification algorithms for software is challenged by

the fact that program verification is an undecidable problem. To see why, note that Tur-

ing’s halting problem [Tur36] can trivially be reduced to program verification. Strategies

to cope with this challenge include to restrict the problem such as for instance disallowing

dynamic memory allocation, to devise semi-algorithms that are not guaranteed to termi-

nate, or a mixture thereof.

In practice, in addition to the challenge of undecidability, the implementations of

software verification algorithms suffer from poor scalability. To alleviate this problem, ver-

ification algorithms use several abstraction techniques to reduce the computational com-

plexity. For instance, modeling bit-vector arithmetic as linear arithmetic is a popular means

to achieve this. The disadvantage of applying these methods is that the verification al-

gorithms no longer solve the original problem, hence may produce false positives, false

negatives, or both.

The extensive research efforts towards better software verification technology has

advanced the state-of-the-art substantially. However, due to the high complexity of the

problem, verification of larger software systems must still be considered infeasible. As

such, and in the light of software systems permeating more and more safety-critical ap-

plications, advances to the currently available technology are certainly desirable. This

dissertation describes such an effort.

1.3 Property Directed Reachability

PDR has originally been proposed by Bradley [BM08, Bra11] as an algorithm for hard-

ware model checking. It shows excellent runtime performance on competition and indus-

trial benchmarks and in particular has shown to outperform interpolation-based verifica-

tion [McM03], until then the best algorithm for hardware model checking.

PDR and interpolation-based verification employ a similar high-level strategy

in attempting to solve a model checking instance: Both algorithms repeatedly calculate

overapproximate forward images starting from the initial set until one reaches a fixpoint.

However, the mechanisms of how the overapproximate forward images are calculated dif-

fer substantially. The strategy to this end employed by interpolation-based verification is
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to use interpolants [Cra57] derived from the proof of unsatisfiability of a bounded model

checking instance [BCC+03]. In contrast, PDR composes the forward image piece by piece

guided by suspected counterexamples to the property under verification. The latter strat-

egy has important advantages to the former. First, it refrains from unrolling the transition

relation and renders the overall algorithm to have modest memory requirements only.

Second, it is incremental, and as such enables comparatively easy parallization and ini-

tialization with known facts about the model checking instance. Third, the combination

of forward image calculation with guidance from counterexamples makes the algorithm

bidirectional, allowing it to perform well for finding counterexamples and proving that

none exist alike.

The discussed properties of PDR are not only appreciable for hardware model

checking but for program verification alike. As such the question whether PDR can be

used for program verification is immediate. This is the topic of this dissertation.

1.4 Using Property Directed Reachability for Program Verifica-

tion

Figure 1.2 illustrates our framework that uses PDR for program verification. The frame-

works implements the counterexample guided abstraction refinement paradigm [CGJ+03]:

Initially, one constructs a model of the program under verification that overapproximates

its behavior. If the property can be proved using this model, we can infer that the program

is safe. Otherwise, one checks whether the counterexample is a real bug of the program.

In case it is, we can infer that the program is not safe. If the counterexample is spurious,

we use the PDR algorithm to refine the model of the program.

yes

no

Counterexample?

Program

not Safe

yes

SpuriousCompose Overapproximation
no

Safe

Program

of Program Under Verification

Property Directed

holds?

Property

Invariant Refinement

Figure 1.2: High-Level Overview of the Proposed Framework
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In addition to using PDR for the refinement of the current model of the program

under verification in the backend, the framework leverages several other design principles

of PDR:

1. At all times, the program is modeled as a directed acyclic graph with size propor-

tional to the size of the program under verification. Similar to PDR, which refrains

from unrolling the transition relation, our algorithm refrains from unrolling loops.

2. The loops themselves are modeled using loop invariants. In the PDR algorithm,

counterexamples to induction are used to refine the overapproximate forward im-

ages. Similarly, our framework uses the PDR algorithm to refine the loop invariants.

In both cases, the refinement moves are guided by counterexamples, in other words,

both algorithms are property directed.

3. The framework attempts to solve the overall decision problem by dividing it in many

small proof obligations. As in PDR, these are processed piece by piece, constructing

the proof incrementally.

1.5 Challenges to Solve

While hardware model checking problems are traditionally formulated in binary logic,

programs are usually written in languages were integers are modeled as bit-vectors. As a

consequence, the PDR algorithm used in our framework must solve model checking prob-

lems formulated over the theory of quantifier-free formulae over bit-vectors (QF_BV). It is

well known that QF_BV formulae can be transformed in equivalent Boolean formulae, a

method often referred to as bit-blasting. However, this process loses all meta-information

encoded in the bit-vectors. For QF_BV SMT-solver, using this meta-information allows for

substantially faster algorithms [BKO+07]. To conserve the meta-information, a QF_BV

generalization of the PDR algorithm is required. Such an algorithm has not yet been

known and is one of the main contributions of this dissertation. Two specific challenges

are associated with this endeavor:

• A suitable analog of Boolean cubes as atomic reasoning unit of the original PDR

algorithm for QF_BV has to be found.
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• A suitable generalization of the ternary simulation for bit-vector formulae needs to

be devised.

At the end of a successful attempt to solving a model checking instance, the in-

ternal state of PDR encodes an invariant that reduces the model checking problem to a

combinational verification problem. For our application, we desire that these invariants

can be used as loop invariants. This requires a framework that formulates the correspond-

ing model checking instances using the program under verification and uses the acquired

knowledge to solve the verification problem.

1.6 Contributions of this Dissertation

This dissertation contains the following contributions:

• A generalization of the PDR algorithm to the theory QF_BV. Instead of simple bit-

blasting, the method partially reasons using the integer interpretation of the bit-

vectors. Though designed and tuned for the use in our software verification frame-

work, it could be applied to other contexts where the solution of QF_BV model check-

ing instances is required.

• A verification framework that uses the QF_BV PDR algorithm for inferring loop in-

variants driving a sound and complete algorithm for solving intraprocedural soft-

ware verification problems in programs with static memory allocation. The overall

design of the algorithm is inspired by the PDR algorithm and shares many common

properties.

• A method to enhance the presented approach to software verification using loop

invariants from other tools.

All presented algorithms have been implemented and their performance have been mea-

sured and compared with that of related algorithms.

1.7 Organization of this Dissertation

We organized this dissertation into two parts.
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• Part I is concerned with the design of a generalization of the PDR algorithm for the

theory QF_BV. Chapter 2 discusses the original PDR algorithm proposed for solving

hardware model checking problems and we present our generalization to QF_BV in

Chapter 3.

• Part II applies the generalized PDR algorithm introduced in Part I to the software

verification problem. Chapter 4 presents our frontend verification algorithm and

Chapter 5 discusses how this algorithm relates to previous approaches to program

verification. Chapter 6 explains how the presented approach can be strengthened

using loop invariants from other sources.

Finally, the conclusion in Chapter 7 summarizes the work presented in this dissertation

and reflects on the strengths and weaknesses of the presented approach to software verifi-

cation as well as potential future directions.
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Chapter 2

Property Directed Reachability

For almost a decade, interpolation-based verification [McM03] has been considered the

best algorithm to solve hardware model checking problems. In this approach, one repeti-

tively solves bounded model checking instances [BCC+03] with bound k. In case a coun-

terexample is found, one has solved the model checking instance. Otherwise, one derives

interpolants [Cra57] from the refutation proof, which act as overapproximations of the

forward image of the initial set. Next, the procedure is repeated with the approximate for-

ward image substituted for the initial set. After several iterations, the overapproximations

of the forward image often stabilizes, i.e. one finds an inductive invariant that proves the

model checking problem. In case one finds a counterexample in one of the repetitions, no

conclusion can be made and one increases k which increases the precision of the approxi-

mative forward image operator but increases the burden on the backend theory solver.

Recently, a novel approach to hardware model checking has been proposed which

attempts to decide a model checking problem stepwise by solving a large number of small

lemmata. In contrast to interpolation-based verification, this avoids unrolling the transi-

tion relation k times which often yields large SAT instances that cannot be solved efficiently.

This algorithm, later named Property Directed Reachability (PDR), has been originally pro-

posed in [Bra11] and its implementation IC3 demonstrated remarkably good performance

in the hardware model checking competition (HWMCC) 2010 (third place). The authors

of [EMB11] have shown that a more efficient implementation of the algorithm would have

won the HWMCC 2010. In particular, the new algorithm outperforms interpolation-based

verification on relevant benchmark sets.

In addition to its excellent runtime performance on practical problems, PDR has
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additional favorable properties. For instance, it excels in finding counterexamples or in

proving that none exist alike; it has modest memory requirements; it is parallizable, a

property which has become particularly relevant in recent years; and it is incremental and

as such can be initialized with known invariants of the model checking instances, if avail-

able.

As a logical consequence, PDR has become subject of active research in the last

years. Research efforts have been directed in three principal directions: First, researchers

have analyzed the algorithm to better understand the roots of its excellent performance

and have evaluated the potential for further algorithmic improvements. Efforts of this

kind are e.g. documented in [Bra12] and [SB11]. Second, researchers have attempted to

increase the performance of PDR. For instance, the authors of [BR13] propose to use a

different set of state variables to speed up verification. Third, researchers have generalized

PDR in order to use it in other problem domains. Three such generalizations have been

published recently. The authors of [HB12] present generalizations to push-down systems

and to the theory QF_LA, the authors of [KJN12] propose an extension of PDR for the

verification of timed systems, and the authors of [KMNP13] devised an algorithm based

on PDR for infinite state well-structured transition systems such as Petri nets.

The research discussed in this dissertation explores the potential of using PDR for

program verification. In the remainder of this chapter, we will describe aspects of the PDR

algorithm relevant to our work. We will start with a proper definition of the hardware

model checking problem in Section 2.1 and continue with a description of the algorithm in

Section 2.2. Finally, we conclude the chapter with a discussion of important characteristics

of PDR in Section 2.3.

2.1 Hardware Model Checking Problem

We are given a state space spanned by the domain of n Boolean variables x = x1, x2, · · · , xn

and define two sets of states: initial states I(x) and bad states B(x) using Boolean formulae

over the Boolean variables x. We model our hardware design operating in the state space

x using a transition relation T(x, x′) that is a Boolean formula over x and x′, where x′ is

a copy of x which corresponds to the same variables but hold the values for one time

step later. The transition relation is true iff the combination x and x′ represent a possible

transition of the hardware design. The problem to be solved is to decide whether a state



11

in B(x) can be reached from a state in I(x) using only transitions in T(x, x′). If no bad

state is reachable, we will say that the model checking instance holds. Note that for ease

of notation, we will omit the dependence of I, T, and B on the variables x and x′ in the

remainder of this dissertation.

2.2 Solving Model Checking Problems with PDR

This section describes PDR to the degree of detail as relevant for this dissertation. Some

aspects, a few of them essential for the performance of the algorithm, are omitted. We refer

the reader to [EMB11] for a comprehensive discussion.

The conceptual strategy of PDR to solve a given model checking problem is to

iteratively find small truth statements, or lemmata, and combine all lemmata to obtain the

desired proof for the given problem. The motivation for this strategy is that solving a large

number of small problems may be more tractable than attempting to solve one big problem

at once.

More concretely, PDR constructs a trace t consisting of frames f0, f1, · · · . Each

frame contains a set of Boolean cubes {ci}, where each cube ci =
∧

j lj is a conjunction

of Boolean literals lj where a Boolean literal lj can either be a Boolean variable x or its

negation ¬x. If there is a cube c in frame fi, the semantic meaning of this is that all states

contained in c cannot be reached within i steps from the initial states. In this case, we say

that the states in c are covered in frame i and we will call all cubes in frame fi the cover. The

inverse of the cover in fi is an overapproximation of the states that are reachable in i steps.

In frame f0, a state is covered if it is not reachable in 0 steps, in other words, if it is not in

the initial set I.

Algorithm 2.1 shows the overall PDR algorithm. In each iteration, the algorithm

searches for a cube in the last frame of the trace that is in B and not yet covered us-

ing FINDBADCUBE(). If such a cube c exists, the algorithm tries to recursively cover c

(RECCOVERCUBE(), see Algorithm 2.2). To this end, the routine checks if c is reachable

from the previous frame. Assume for now that this is the case and denote with c̃ a cube in

the previous frame that is not covered and from which c can be reached in one step. Then

RECCOVERCUBE() calls itself recursively on c̃. If such a sequence of recursive calls reaches

back to frame f0, the corresponding call stack effectively proves that c can be reached from

I, i.e. that the property fails. Otherwise, if a cube c is proved to be unreachable from the
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Algorithm 2.1 PDR(I, T, B)

1: while true do

2: Cube c = FINDBADCUBE()

3: int l = LENGTHSTRACE()

4: if c then

5: if !RECCOVERCUBE(c, l) then return “property fails"

6: else

7: PUSHNEWFRAME()

8: if PROPAGATECUBES() then return “property holds"

9: end if

10: end while

Algorithm 2.2 RECCOVERCUBE(Cube c, int l)

1: if l = 0 then return false

2: while c reachable from c̃ in one transition do

3: if !RECCOVERCUBE(c̃ , l − 1) then return false

4: end while

5: EXPAND(c, l)

6: PROPAGATE(c, l)

7: add c to Fl

8: return true

previous frame, it can be added to the cover of the current frame. For efficiency, however,

the algorithm attempts to expand and to propagate the cube to later frames before doing

so. Continuing the discussion of Algorithm 2.1, if FINDBADCUBE() returns without suc-

cessfully finding an uncovered cube in B, we know that B is covered in the last frame fl .

As we preserve the invariant that the cover in frame fi is an underapproximation of the

space not reachable within i steps, we can conclude that B is not reachable within l steps

and we push a new frame to the end of the trace. Afterwards, we attempt to propagate

cubes from frame l to frame l + 1. If this is successful for all cubes, we have shown that

from an overapproximation of the reachable states in frame fl we cannot reach any state

outside this overapproximation in frame fl+1. In other words, we have found an inductive

invariant. Moreover, the set of bad states B is disjoint of this inductive invariant. This
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proves that the property holds.

PDR is a sound and complete algorithm for the solving instances of the hardware

model checking problem. We already argued why the algorithm gives the correct response

upon termination. It remains to show that the algorithm terminates. The complete proof

for this result is given in [EMB11]. Herein, we restrict ourselves in pointing out the main

intuition of the proof which is based on the following idea: note that every state which

is reachable within i steps is also reachable within i + 1 steps. Hence, the cover of frame

fi+1 implies the cover of fi. If two succeeding frames have the same cover, the algorithm

terminates. Otherwise, the cover of fi+1 must be strictly smaller than that of fi. As the state

space is finite, this implies that the algorithm will eventually terminate. Note, however,

that the asymptotic worst case runtime is linear to the size of the state space which is

exponential to the size of the problem, i.e. the algorithm has runtime O(2n) with n being

the size of the problem.

PDR makes extensive use of a SAT-solver and a ternary simulator within the in-

dividual subroutines:

• To find a bad cube that is not yet covered (subprocedure FINDBADCUBE() on line 2

in Algorithm 2.1, one starts with solving the following SAT instance

B ∧ ¬
∨

ci∈Fl

ci (2.1)

If the instance is unsatisfiable, there are no more uncovered bad points in the last

frame and FINDBADCUBE() returns null. Otherwise, the SAT solver returns a satis-

fying assignment, a cube containing a single state. In the following, one attempts

to expand the cube under the condition that all points in the resulting cube remain

satisfying (2.1). The expansion sequence is as follows: assume that c =
∧

j lj is the

cube representing the satisfying assignment. The algorithm expands c by iteratively

attempting to delete literals from c. An attempt of removing a literal lk from c =
∧

j lj

is successful if every point in
∧

j 6=k lj remains satisfying (2.1). The condition can be

efficiently checked via ternary simulation [EMB11].

• To check whether a cube c in frame l is reachable from an uncovered cube in the

previous frame (line 2 in Algorithm 2.2), PDR uses the following SAT instance

¬
∨

ci∈Fl−1

ci ∧ T ∧ c′ (2.2)
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If the SAT instance is unsatisfiable, c can be added to the trace. With the intention to

collect larger cubes, PDR attempts to expand and propagate the cube before doing

so. For expansion, it applies the same sequence as for finding bad cubes and checks

for each attempt that (2.2) remains unsatisfiable. For propagation, the algorithm in-

creases l in (2.2) and again checks that the SAT instance remains unsatisfiable after

doing so.

If the SAT instance is satisfiable, PDR extracts cube c̃ representing the satisfying as-

signment from which c can be reached in one step. In order to obtain larger proof

obligations, PDR attempts to expand c̃. If the transition relation is in functional form,

i.e. the next value of each state variable is expression as a function of the current state,

this can be done via ternary simulation where the described expansion sequence is

used and for each possible expansion, it is checked whether each state reachable from

it in one transition is contained in c. If so, the expansion is valid.

We conclude the discussion of the algorithm by illustrating how PDR proves a

safety property. Consider the example in Figure 2.1. At the first snapshot, the algorithm

already covered part of the bad states B with cube c1. Now, a call of FINDBADCUBE()

returns the remainder of B as a new proof obligation. The subsequent call of RECCOVER-

CUBE() is successful in covering the proof obligation and adds cube c2 in f1 as indicated

in the second snapshot. With the new cover, no additional bad and uncovered cube can

be found in frame f1. Thus, a new frame is appended to the trace. The forward propaga-

tion succeeds with propagating cube c1 from frame f1 to frame f2 (third snapshot). PDR

continues with searching for a bad cube in frame f2 which is not yet covered and finds

the same conflicting cube as previously when covering frame f1. This time, however, the

cube cannot be covered directly as a subset of the proof obligation can be reached from the

previous frame f1 (see fourth snapshot). RECCOVERCUBE() succeeds in resolving the new

proof obligation in frame f1 by adding cube c3 and also succeeds in propagating the new

cube to frame f2 (fifth snapshot). With this additional cube, the proof obligation in frame

f2 can be resolved by adding cube c4 to the cover in frame f2 (sixth snapshot). Now, all

bad states in frame f2 are covered, a new frame is appended to the trace, and PROPAGATE-

CUBES() succeeds with propagating all cubes from f2 to f3. An inductive invariant strong

enough to prove the safety property is found and the algorithm terminates.
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Figure 2.1: Proving a Safety Property with PDR
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2.3 Characteristics of PDR

The experimental results reported in [EMB11] show that PDR has excellent performance

both on the benchmark set of the HWMCC and a set of industrial benchmarks. For in-

stance, the plot in Figure 2.2 reproduced from data of [EMB11] shows that PDR outper-

forms interpolation-based verification on the HWMCC benchmarks. This is particularly

impressive considering that interpolation-based verification has been subject of optimiza-

tion for almost a decade whereas PDR is a recent invention. The good performance can be

attributed to certain characteristics of PDR.
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Figure 2.2: PDR vs Interpolation-Based Verification on HWMCC Benchmarks

Firstly, PDR implements a directed bidirectional search for an inductive invariant

if the model checking instance holds or for a counterexample otherwise. The backward

search is targeted at finding a counterexample proving that a bad state is reachable. As

such, it resolves proof obligations, i.e. it checks if cubes, either composed of bad states

or of states from which bad states are known to be reachable, cannot be reached within a

certain number of transitions from the initial set. If this fails, the algorithm found a coun-
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terexample for the overall model checking problem. Otherwise, the proof obligation is

resolved by covering the proof obligation within the trace. In the propagation phase, the

cubes in the cover are attempted to be propagated forward within the trace. This forward

movement is designed for finding an inductive invariant and by doing so sieves out too

specific cubes that are not inductive. One can summarize that the overall search is steered

by the bad states, the backward search directly, the forward search indirectly by the in-

ferred cubes representing the cover of the frames. In other words, the algorithm is property

directed and hence its apt name given in [EMB11]. As such, the algorithm refrains from

wasting runtime by searching for strong invariants in case a weak invariant is sufficient to

prove that no bad state is reachable.

Secondly, PDR is an incremental model checker. By being committed to cubes as

atomic reasoning unit, PDR effectively succeeds in dividing the overall model checking

problem into smaller subproblems that are easier to solve. In fact, as pointed out in [Bra12],

it allows to construct the proof for solving the model checking instance incrementally, a

scheme that is considered favorably in [MP95]. Practically, the incremental nature of PDR

provides opportunities for parallelization, effective use of incremental SAT-solvers, and

to start the directed search using known facts of the transition systems by initializing the

trace.

Thirdly, in contrast to many other model checking algorithms, PDR abstains from

unrolling the transition relation. This avoids large SAT-solver instances which often require

unacceptably long solving times and as consequence yield model checking algorithms that

do not scale well.

Fourthly, cubes are an efficient and effective means to represent sets of states.

It is efficient because cubes can be stored densely and highly optimized procedures are

available for their processing. It is also an effective means because the number of cubes

required to represent an inductive invariant is low for most practically relevant hardware

model checking instances.
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Chapter 3

Generalization of PDR to Theory

QF_BV

In Chapter 2, we have discussed the convincing algorithmic properties of PDR, in terms

of its superior runtime performance, its low memory consumption, and its potential for

parallelization.

Similarly as the excellent algorithmic properties of the DPLL algorithm [DLL62]

have fueled interest in generalizing the DPLL algorithm to richer theories [MKS09], the

positive characteristics of PDR motivate research for generalizations to richer theories.

In this chapter, we describe a generalization of the Boolean PDR algorithm to the

theory of QF_BV. We start in the following section with outlining the overall generaliza-

tion strategy. In the subsequent two sections, we focus on the two biggest challenges of

the generalization, the choice of the atomic reasoning unit, the equivalent of the cube in

the Boolean case, and the expansion of proof obligations. Lastly, we conclude the chapter

by presenting experimental results demonstrating the overall performance of our general-

ization of PDR in comparison to the Boolean version and illustrating the impact of several

design choices on this performance in Section 3.4.

3.1 Overall Generalization Strategy

Table 3.1 summaries the main aspects of our generalization of the Boolean version of PDR

to a more general logic. We assume that the input format of the generalized version are
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QF_BV formulae, which motivated the use of a suitable SMT solver instead of a SAT-solver.

Using a QF_BV SMT solver, the queries to the SAT-solver in the Boolean version of the

algorithm can be transcribed more or less verbatim to constraints for the SMT solver.

Binary Approach Generalization

Model Checking Instance
Boolean formulae QF_BV formulae

I, B, T

Backend Solver SAT-Solver QF_BV SMT Solver

Atomic Reasoning Unit Boolean Cubes
Mixed Boolean Cubes

and Polytopes

Expansion of
Ternary Simulation

Mixed Ternary and

Proof Obligations Interval Simulation

Table 3.1: Summary Generalization PDR

The most challenging problem for the generalization, however, is to find a suit-

able representation of the atomic reasoning unit (ARU). In Section 3.2, we discuss different

choices for the ARU, their advantages and disadvantages, and propose the use of a hybrid

solution of Boolean cubes and polytopes.

A second interesting aspect in the quest for a QF_BV PDR algorithm is to find a

suitable generalization for the simulation-based expansion of proof obligations. The orig-

inal version of PDR uses ternary simulation to this end, which appears not to be suitable

for a QF_BV version of the algorithm if bit-vectors model integer variables. As indicated

in Table 3.1, we propose the use of a mixed ternary and interval simulation. We discuss

details of this issue in Section 3.3.

3.2 Choice of Atomic Reasoning Unit

The choice of the ARU is of fundamental importance for the efficiency of PDR. A good rep-

resentation allows for memory efficient storage and fast processing of the basic operations

of the algorithm and at the same time is able to represent typical invariants by using a

small number of ARUs. The Boolean version of the PDR algorithm utilizes Boolean cubes

as ARUs. As we have discussed in the second chapter of this dissertation, committing to

Boolean cubes provides an effective mechanism to divide an overall model checking prob-
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lem into smaller subproblems and by doing so yields an incremental scheme to compose

the overall inductive invariant. Intuitively, the choice of Boolean cubes appears not to be an

excellent choice for a QF_BV generalization of PDR as many trivial bit-vector constraints

do not have a simple correspondence as Boolean cubes. For illustration, assume that x is a

4-bit signed bit-vector and that we use the two-complement representation of integers as

bit-vectors. In this case, the simple constraint x ≤ 6 requires at least four Boolean cubes to

be represented, e.g.:

(1- - -) ∨ (00 - -) ∨ (010 -) ∨ (0110)

This suggests a representation of the ARU that is more targeted at representing typical

bit-vector constraints. At the same time, however, the choice for the ARU must not be too

expressive to preserve the incremental invariant inference scheme and to keep the expan-

sion moves tractable. As indicated in Table 3.1, we propose a mix of Boolean cubes and

polytopes as the format of the ARU in our generalization. Originally, we experimented

with a simpler representation, integer cubes. For ease of exposition, in the following sub-

section, we explain the algorithm with integer cubes and illustrate the limitations of this

representation. Subsequently, in Subsection 3.2.2, we describe polytopes and how they can

be used effectively in PDR to overcome these limitations. Sets of polytopes are an efficient

means of representing any piecewise linear inductive invariant. Many relevant problems

in the domain of program verification, however, also make use of bit-level operations that

yield inductive invariants that are not piecewise linear but can be efficiently represented

as sets of Boolean cubes. This suggests a hybrid approach based on Boolean cubes and

polytopes; the details of which we discuss in Subsection 3.2.3.

3.2.1 Formulation with Integer Cubes

We now denote with x = x1, x2, · · · , xn bit-vector variables. We define an integer cube

as a set of static intervals on the domain of these variables. The static intervals are to be

interpreted in the conjunctive sense, i.e. a point is in the integer cube iff all variables are

in their respective static intervals. As an example, consider the integer cube c defined by

c = (3 ≤ x1 ≤ 5) ∧ (−4 ≤ x2 ≤ 20). The point x1 = 4, x2 = 0 is in c whereas the point

x1 = 4, x2 = −10 is not. Geometrically, an integer cube corresponds to an orthotope (a.k.a.

hyperrectangle) in the n-dimensional space.

The definition of integer cubes as ARUs is a straightforward generalization of
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the concept of Boolean cubes and allows for an efficient implementation of many frequent

subroutines of the algorithm, such as checking for implication. The expansion operation

is also straightforward: instead of skimming Boolean literals as in the formulation with

Boolean cubes, we attempt to increase the intervals of the variables by decreasing lower

bounds and increasing upper bounds using binary search. In the theoretical sense, the fact

that all inductive invariants can be represented by a union of integer cubes appears to be

promising.

We illustrate the operation and limitations of the algorithm using integer cubes

as ARUs using two examples.

Example: Simple

Consider PDR was called with the following model checking problem in which B is un-

reachable.

I := (n ≡ 1) ∧ (x ≡ 0)

T := (n > 0) ∧ (x′ ≡ x + 1) ∧ (n′ ≡ n − 1)

B := (x ≥ 3)

Figure 3.1 illustrates how a simplified version of PDR with integer cubes as ARUs would

prove this fact.

Initially, the trace has only one frame, f0. As B ∧ I = false, B is not reachable in

zero steps and f1 is pushed at the end of the trace. In f1, FINDBADCUBE() returns integer

cube x ≥ 3 that is in B and uncovered (indicated by the red rectangle in the first snapshot

of Figure 3.1). Next, PDR checks whether there are points in x ≥ 3 that are reachable from

the initial set in f0 in one transition. This is not possible, hence x ≥ 3 can be covered. Before

being added to the cover of f1, the cube is expanded, yielding cube c1 covering x ≥ 2 as in

the second snapshot of Figure 3.1. After adding c1 to the cover, there are no longer uncov-

ered points in B and f2 is pushed at the back of the trace. Now, PDR attempts to propagate

integer cube c1 to f2. This is not possible, however, because from the overapproximation

of the reachable set in f1 (the inverse of the cover) one can reach points in x ≥ 2 in one

transition. After the propagation phase, PDR continues with finding uncovered cubes in

B in f2, yielding x ≥ 3 for another time (see trace in the second snapshot of Figure 3.1).

No point in x ≥ 3 can be reached from the reachable set in f1 and cube c2 is added to the
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Figure 3.1: Iterative Construction of Proof for Example Simple
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cover in f2. Now, B is covered completely and PDR pushes f3 in the end of the trace. In

the subsequent propagation phase, the attempt to propagate c2 fails. The following call of

FINDBADCUBE() returns again x ≥ 3 (see third snapshot in Figure 3.1 in f3). This time,

however, points in f3 can be reached from the uncovered region of f2. For instance, one

can reach x = 3, n = 0 from x = 2, n = 1 in f2 in one transition. Using simulation-based

expansion, one can expand this new proof obligation to 2 ≤ x < 3 ∧ 1 ≤ n. Points in this

region can also be reached from the previous frame, yielding an additional proof obliga-

tion 1 ≤ x < 2 ∧ 2 ≤ n in f1 (see third snapshot in Figure 3.1). No point in this cube can

be reached from the initial set in f0. Hence, a new cube (c3) covering the area is generated,

expanded to n ≥ 2, and added to f1. In the sequel, PDR also attempts to propagate c3 to

the next frames and realizes that this is in fact possible. Therefore, cube c3 is also added in

frames f2 and f3 (see fourth snapshot in Figure 3.1). As a consequence of adding cube c3 to

f1, all points in 2 ≤ x < 3 ∧ 1 ≤ n in f2 cease to be reachable from f1. After expansion, this

yields cube c4 in the cover of f2. As with cube c3, this cube cannot be reached in any later

frame, hence it is propagated as well. Also note that if a cube cannot be reached within two

steps, it can neither be reached within one step. Hence, c4 can also be considered covered

in f1 (see fifth snapshot in Figure 3.1). As a consequence of adding c4 to the cover of f2,

x ≥ 3 in f3 ceases to be reachable and allows to cover B completely. Note that transitions

such as x = 2, n = −2 to x = 3, n = −3 are invalid by the constraint n ≥ 0 in the transi-

tion relation. We obtain the cover in the sixth snapshot in Figure 3.1. In this snapshot, the

covers in f2 and f3 are identical. This means that no point in the overapproximation of the

reachable set in f2 can reach any state outside this overapproximation, i.e. we have found

an inductive invariant proving that B is unreachable.

Example: Linear Invariant

Consider now the following model checking problem

I := (x + 2y ≤ 5)

T := (x′ ≡ x + 1) ∧ (y′ ≡ y − 1) ∧ (x′ > x) ∧ (y′ < y)

B := (x + 2y > 5)

Note that the initial condition is preserved by the transition relation and serves itself as an

inductive invariant to prove that B is unreachable. Also note that the last two conjuncts in
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the transition relation serve to prevent potential overflows.
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Figure 3.2: Attempt to Solve Example Linear Invariant

For this example, the formulation of PDR using integer cubes is not able to con-

struct an inductive invariant efficiently. The trace in Figure 3.2 which was recorded after

a couple of iterations of the main loop illustrates this fact. For each integer on the line

x + 2y = 5, one needs an integer cube to cover the bad area entirely. Assuming that the

variables are 32-bit integers, this means that PDR needed to add 231 cubes.

In general, if the inductive invariant required to decide a model checking prob-

lem contains a relation between two or more variables, it is not possible to represent the

inductive invariant efficiently using integer cubes. Inductive invariants that relate vari-

ables are common in many practical applications of our model checker, which strongly

suggests that integer cubes are insufficiently expressive as ARUs.

3.2.2 Formulation with Polytopes

The limitations of the algorithm with integer cubes discussed in the previous section sug-

gest the need of a more expressive ARU.

Instead of integer cubes, we consider polytopes as ARUs now. Mathematically,

a polytope can be represented as a system of linear inequalities Ax ≤ b. With this rep-

resentation, the algorithm naturally generalizes to cope with polytopes. For the expan-

sion move, we iterate over each individual boundary and attempt to relax an inequality

∑j aijxj ≤ bi by increasing the right-hand-side bi. As in the case of integer cubes, we find

the largest bi using binary search. Conceptually, using polytopes as the ARU permits us

to represent any piecewise linear invariant efficiently. For instance, the inductive invari-

ant in the second example can be represented using the single polytope x + 2y > 5. In

comparison to integer cubes, the gain in expressiveness associated with polytopes comes
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with a slight decrease of the efficiency of frequently used atomic operations in PDR, such

as checking for implication.

In the current formulation of the algorithm, however, only polytopes composed

of unary inequalities can be found. To see why, consider that FINDBADCUBE() initially

obtains a single point x1 = c1, x2 = c2, . . . in the state space as a result of a call to the

backend SMT solver. This point is expressed as a polytope using sets of inequalities of the

form 











1 0 0 0 0 . . .

0 −1 0 0 0 . . .

0 0 1 0 0 . . .

0 0 0 −1 0 . . .
...

...
...

...
...

. . .

























x1

x1

x2

x2

...













≤













c1

−c1

c1

−c1

...













(3.1)

The defined expand operation allows to increase the volume of the polytope by increas-

ing the right-hand-sides of the inequalities, i.e. the values of ci or −ci in equation (3.1).

Geometrically, this moves the limiting hyperplanes parallely outward but does not al-

low for changing the principal shape of the polytope that remains being an integer cube.

This limitation is illustrated in Figure 3.3, where FINDBADCUBE() returns the single point

x = 6, y = 1 as illustrated in Figure 3.3a. The first expansion move attempts to increase the

right-hand-side of the inequality x ≤ 6 and is able to increase it arbitrarily, i.e. removes the

inequality altogether (see Figure 3.3b). Similarly, the third inequality y ≤ 1 is removed in

the second expansion move (see Figure 3.3c). In the third expansion move, the right-hand-

side of the second inequality is increased to −3. Thereafter, the fourth inequality cannot

be relaxed. We arrive at the expanded polytope x ≥ 3, y ≥ 1 as illustrated in Figure 3.3d.

We can conclude that in the current formulation of the algorithm, polytopes are

only used to encode integer cubes. Hence, we require an additional mechanism in our

algorithm to use the added expressiveness of polytopes. We define a new operation, RE-

SHAPE(), which is geared towards resolving this problem. In the recursive covering proce-

dure discussed in Chapter 2, RESHAPE() is called after propagation and is followed by an

additional expansion (see Algorithm 3.1).

Mathematically, the purpose of this reshape-operation is to increase the number

of terms within the boundaries of the polytope. Initially, we only have unary boundaries,

such as aixi ≤ bi. One solution towards finding boundaries with higher arity would be

to add an additional variable to obtain a boundary of the form aixi + ajxj ≤ bi and run a



26

2 4 6 x 10

2

4

6

y

10
f1








1 0

−1 0

0 1

0 −1








(

x

y

)

≤








6

−6

1

−1








(a) Before Expansion

2 4 6 x 10

2

4

6

y

10
f1








−1 0

0 1

0 −1








(

x

y

)

≤








−6

1

−1








(b) After First Expansion Step

2 4 6 x 10

2

4

6

y

10
f1








−1 0

0 −1








(

x

y

)

≤








−6

−1








(c) After Second Expansion Step

2 4 6 x 10

2

4

6

y

10
f1








−1 0

0 −1








(

x

y

)

≤








−3

−1








(d) After Expansion

Figure 3.3: The defined expansion operation cannot change the shape of the polytopes.

search algorithm to find values for ai and aj that are maximum with respect to a suitable

optimization criterion such as the volume of the polytope. However, considering the large

search space of this operation, this approach is unlikely efficient.

Instead, we propose a more targeted approach. The principal idea of our reshape-

operation is to use information from several polytopes to make guesses for possible new

boundaries. Then, one attempts to substitute these new boundaries for existing ones of

lower arity.
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Algorithm 3.1 RECCOVERPOLYTOPE(Polytope p, int l)

1: if l = 0 then return false

2: while p reachable from p̃ in one transition do

3: if !RECCOVERPOLYTOPE(p̃ , l − 1) then return false

4: end while

5: EXPAND(p, l)

6: PROPAGATE(p, l)

7: RESHAPE(p, l)

8: EXPAND(p, l)

9: add p to Fl

10: return true

Example: Linear Invariant (revisited)

Consider our second example for another time. In Figure 3.4, we illustrate how the reshape-

operation would proceed after the second polytope has been found. Snapshot 1 displays

the situation right before the call of the reshape-operation. Assume that RESHAPE() is

called on the striped polytope (pivot, a1). The other polytope a2 acts as guide. The sit-

uation suggests that the line defined by the lower-left corners of the two polytopes might

be a good candidate as a new boundary. Hence, RESHAPE() calculates this line and sub-

stitutes it for one of the neighbor boundaries of the corner of a1. In the second snapshot,

the new boundary was substituted for x ≥ 1. Next, RESHAPE() checks if polytope a1 is still

unreachable from the previous frame after the substitution. This is the case for the given

example, so the substitution is kept. After the reshape-operation, EXPAND() is called once

more which eliminates the other neighbor boundary of a1 (see third snapshot). Note that

guide a2 is now subsumed by the reshaped pivot, hence will be discarded. More impor-

tantly, the reshaped polytope covers B completely and is inductive invariant, hence the

model checking instance is solved.

General Reshape Algorithm

Details of the general algorithm are given in Algorithm 3.2. If called on a polytope, the rou-

tine iterates through all corners and finds for each promising set of guides G a correspond-

ing hyperplane. The efficiency and effectiveness of RESHAPE() depends critically on the
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Figure 3.4: Attempt to Solve Example Linear Invariant with Polytopes

choice of guides. With respect to effectiveness, iterating through all possible sets is clearly

the optimal choice. However, the number of sets grows exponentially with the number of

other polytopes that may act as guide. Consequently, a smaller choice guided by heuristics

is necessary. Our experimentation suggested that sets of guides that are close to p are most

likely to yield a successful substitution. After a set of guides G is fixed, we calculate the

hyperplane h defined by the corners of the guides and iteratively attempt to substitute it

for a neighbor boundary b of the corner in p. If such a substitution yields a polytope that

is reachable from the previous frame, we reverse the substitution and continue with our

attempt to reshape p by substituting h for another neighbor boundary. Otherwise, we bail

out, keeping the substitution and continue with trying to reshape another corner of p.

The reshape-operation as described in Algorithm 3.2 is able to substitute a (k+ 1)-

ary boundary for a unary one. If n is the number of dimensions of the state space, we can

choose k = n − 1 and the algorithm can principally find hyperplanes relating all variables

with each other. This comes at the expense of an asymptotic running time that grows

exponentially with parameter k. In problem domains which only require linear invariants
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Algorithm 3.2 RESHAPE(Polytope p, int l)

1: for each corner c of p do

2: for each promising set G of k guides do

3: h = FINDHYPERPLANE(c, p, G)

4: for each neighbor boundary b of p w.r.t. c do

5: SUBSTITUTE(p, h, b)

6: if p reachable from fl−1 then SUBSTITUTE(p, b, h)

7: else break 2

8: end for

9: end for

10: end for

that relate less than n variables with each other, a smaller value for k should be chosen for a

better runtime performance. For instance, in the linear invariant example, we only require

a binary linear invariant and we could chose k = 1. In this case, the number of promising

sets |G| grows linearly with the number of polytopes that may act as guides.

Bitwidth Extension of Polytope Expressions

Overflows are a practical problem associated with the use of QF_BV SMT solver in con-

junction with the inequality constraints of which polytopes are composed of. To illustrate

the issue, consider the following polytope composed out of three constraints over the 4-bit

signed bit-vector variables x and y
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(3.2)

If interpreted in the theory QF_BV with the two’s complement representation, all

points in the shaded regions of Figure 3.5a are contained in this polytope. This contradicts

the standard arithmetic interpretation of the constraints which corresponds to the geome-

try displayed in Figure 3.5c. The origin of the discrepancy are overflows occurring if the

polytope boundary inequalities are evaluated in bit-vector arithmetic. Consider the point

x = 4, y = 2. As expected, the first two inequalities in (3.2) hold. However, evaluating

the third inequality x + 2y ≤ 6 with these values yields true due to an overflow occur-
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ring when the summation 4 + 4 on the left-hand-side of the inequality is evaluated. For

x = −8, y = 4, the first inequality in (3.2) holds unexpectedly because the unary minus

operation applied to the most negative number (here −8) yields the most negative number

in the two’s complement representation of bit-vectors which is certainly determined to be

negative.

−8 −4 4

−8

−4

4

(a) Without Bit Extension

−8 −4 4

−8

−4

4

(b) 1-bit Extension

−8 −4 4

−8

−4

4

(c) 2-bit Extension

Figure 3.5: Interpretation of Polytopes using Bit-Vector Arithmetic

Though the interpretation of polytope constraints in bit-vector arithmetic does

not impact the correctness of the defined PDR algorithm with polytopes (any consistent

interpretation of the ARUs will yield a sound algorithm), it can have serious impact on its

efficiency as it is not in accordance with the geometric interpretation of polytopes which

originally motivated their use.

The problem can be alleviated by increasing all bitwidths of intermediate expres-

sions of the inequality constraints. The more bits are appended, the less likely overflows

impact the interpretation of the polytope. For instance, if we extend the bitwidths of the

variables in the given example by one, we obtain the interpretation in Figure 3.5b which no

longer contains the overflows pertaining the unary minus operation in first two inequali-

ties of the polytope. Extending the bitwidths of the variables by two, we obtain the desired

geometric interpretation of the constraints as illustrated in Figure 3.5c.

In our experimentation, we interpreted the polytope constraints using three addi-

tional bits and have no longer observed any adverse impact of overflows in the evaluation

of polytope inequalities on the efficiency of the algorithm.
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3.2.3 Hybrid Approach

The QF_BV PDR algorithm with polytopes as ARUs is well motivated when the induc-

tive invariant is representable efficiently as a set of piecewise linear inequalities. As such,

however, it does not outperform the original PDR algorithm with Boolean cubes on all

benchmarks as shown in the next example.

Example: Hybrid Invariant

For illustration, consider the following model checking problem

I := (2 × y ≡ x) ∧ (x + y ≤ 3)

T := (y′ ≡ y + 1) ∧ (x′ ≡ x − 2) ∧ (y′ > y) ∧ (x′ < x)

B := (x + y ≥ 4) ∨ (x mod 2 ≡ 1)

The snapshot in Figure 3.6 illustrates the issue the QF_BV PDR algorithm with

polytopes as ARUs encounters when attempting to solve this model checking instance.
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Figure 3.6: Attempt to Solve Example Hybrid Invariant

The inductive invariant of this system required to solve the instance is (x + y ≤ 3)

∧ (x even). The corresponding cover in the PDR trace includes two parts, ’x + y ≥ 4’ and

’x odd’. The first part can be covered using a polytope. However, the second part can not

be efficiently represented using polytopes. Instead, the algorithm would add a polytope

for each odd number representable by x. Assuming that x is a 32-bit bit-vector, this would

require 231 polytopes, causing the overall algorithm to be inefficient.

In contrast, the original PDR algorithm would efficiently find this second part of

the inductive invariant as it can be represented by a single Boolean cube but fail in finding

the first part efficiently.
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Original QF_BV QF_BV

Formulation Polytopes Hybrid

Atomic Reasoning Boolean
Polytopes

Boolean Cubes

Unit Cubes and Polytopes

Strengths
logic arithmetic arithmetic and logic

invariants invariants invariants

Weaknesses
arithmetic logic

-
invariants invariants

Table 3.2: Strengths and Weaknesses of Different Choices for ARUs

The shortcomings of using either exclusively Boolean cubes or polytopes as sum-

marized in Table 3.2 motivate a hybrid approach. To this end, we define the ARU to be

either a Boolean cube or a polytope. PDR constructs a cover as a union of ARUs. As such,

the coexistence of ARUs of different kinds does not represent a conceptional problem.

Each proof obligation is initially a point in the state space found by the SMT

solver. A point in the state space can be interpreted either as a Boolean cube or a polytope.

A specialization becomes necessary before the proof obligation is expanded as the expan-

sion sequences for Boolean cubes and polytopes are different. The decision of whether one

specializes a point to a Boolean cube or a polytope can be crucial and an effective strategy

for specialization is in order.

Probabilistic Specialization of Proof Obligations

We propose to specialize points to a specific kind of ARU probabilistically. In the setup

with Boolean cubes and polytopes, we specialize a point to a Boolean cube with probability

c and to a polytope otherwise.

This probabilistic specialization guarantees that a favorable decision can be ex-

pected to be chosen in a constant number of attempts. To see why, consider the example in

Figure 3.6 for another time. With probability c, the marked proof obligation is specialized

to a Boolean cube. In this case, the desired part ’x even’ of the inductive invariant would

be found immediately. Otherwise, the proof obligation would be covered by the polytope

x = 1. In this case, after another call to FINDBADCUBE(), another proof obligation with x
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odd is found followed by another probabilistic decision for specialization. The probabil-

ity that a favorable choice is made in the ith iteration is c(1 − c)i−1. Hence, the expected

number of trials until the favorable specialization is found can be calculated to be

E{Trials until Boolean cube specialization} = c
∞

∑
i=1

i(1 − c)i−1 =
1

c

Analogously, one calculates

E{Trials until polytope specialization} = c
∞

∑
i=1

i(1 − c)i−1 =
1

1 − c

Consequently, as long as c = (0, 1), one can expect a favorable decision within a

constant number of times. The optimal choice for c depends on the concrete model check-

ing instance. We will investigate this aspect in the experimental section of this chapter

(see 3.4.2).

3.3 Expansion of Proof Obligations

The excellent performance of the binary version of PDR as documented in [EMB11] can

be partly attributed on its ability to expand proof obligations using ternary simulation. In

this section, we describe a generalization of this approach for our QF_BV PDR solver.

Proof obligations are expanded after their specialization. At this time, a proof

obligation consists of a single point in the state space only. The aim of expansion is to

add additional points to the proof obligation, forming a set of points, while preserving

the property that if any point in the set is reachable, we proved that the model checking

instance does not hold. In this case, the found set of points can be processed simultane-

ously after expansion stimulating more abstract reasoning. Note that expansion of proof

obligations, albeit practically critical for performance, is not required for the correctness of

the algorithm. In general, expanding a proof obligation to contain the maximum number

of points takes time exponential to the size of the proof obligation [EMB11]. As a conse-

quence, it is essential to find an efficient approximate alternative. An underapproximation

of the maximum possible expansion that can be calculated efficiently but at the same time

yields good expansions in practice is a prudent choice. On the other hand, it is important

to assure that the result does not contain points from which B is not reachable. Otherwise,

the overall algorithm could eventually report spurious counterexamples, i.e. the algorithm

would no longer be sound.
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The backbone for expansion of proof obligations is simulation of expressions. In

the following, we will denote with Φe(a) an overapproximation of the values expression e

can take under the constraint that variables take values that are contained in ARU a only.

For example, consider the case that we have e = y1 ∨ y2 over the two 4-bit variables y1 and

y2 and as ARU the following Boolean cube a := (y1 ∈ - 0 0 -) ∧ (y2 ∈ 1 0 0 -). In this case, e

can take any value in cube 1 0 0 -. Consequently, both 1 0 0 - and - 0 0 - are valid valuations

for Φe(a). On the other hand, - - - 0 is not valid as it does not contain 1 0 0 1.

Expansion of proof obligations is used in two contexts. First, for expanding ARUs

in B that are not yet covered (line 2 in Algorithm 2.1) and second for expanding ARUs from

which another proof obligation is reachable in one step (line 3 in Algorithm 2.2). In the first

context, we test whether the proposed expansion to ã is valid by checking if

ΦB∧u(ã) = true (3.3)

where B is an expression describing the bad set of the model checking instance and u is the

expression describing the points that are not yet covered. In case the equation holds, the

expansion is valid.

In the context of expanding an ARU a from which another proof obligation a′ is

reachable in one step, we check whether the possible valuations of the variables after one

step starting from ã are included in the possible valuations of the corresponding variables

under a′, formally

∀xi.Φnextxi
(ã) ⊆ Φxi

(a′) (3.4)

where we denote with nextxi
the expression which captures the computation of the next

value of xi. Note that this requires that the transition relation is in a format that allows to

calculate the values for the next state. In many applications, this is naturally the case.

Note that, under the assumption that the simulation values Φe(a) represent over-

approximations, the checks (3.3) and (3.4) are conservative in the sense that an expansion

to ã is accepted only if a bad state is reachable from all points in ã.

3.3.1 Ternary Simulation

The binary PDR algorithm uses ternary simulation to calculate simulation values for ex-

pressions. In the following, we will use logic inference rule notation of the form

p1 p2 . . . pn
[rule]c
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to represent simulation rules where conclusion c can be inferred if the premises p1, p2, . . . ,

and pn hold. Representing binary variables as intervals [0, 0], [0, 1], and [1, 1] which stand

for false, false or true (X), and true, respectively, one can use the rules in Figure 3.7 to

obtain simulation values for any expression composed of AND- and INV-operations. As

[l1]
[const]

Φc = [c, c]

[l1]
[x]

ΦX = [0, 1]

l ≤ v ≤ u
[var]

Φv = [l, u]

Φe1 = [l1, u1] Φe2 = [l2, u2]
[and]

Φe1∧e2 = [min{l1, l2}, max{u1, u2}]

Φe = [l, u]
[inv]

Φ∼e = [1 − u, 1 − l]

Figure 3.7: Simulation Rules for Ternary Simulation

one can decompose any bit-vector expression into equivalent AND-Inverter expressions

using their circuit representations [KK97], this allows to calculate the simulation values

required in checks (3.3) and (3.4).

It remains to discuss how the range of variables is restricted given an ARU a. This

is straight-forward if the ARU is a Boolean cube. The situation is slightly more complicated

if the ARU is a polytope: It is instructive to make two observations. First, note that at the

beginning of an expansion move, a represents a point. Second, any proposed expansion for

a polytope is derived by relaxing individual inequalities of the polytope. Combining these

two observations, we can conclude that at any step of an expansion sequence, the polytope

encodes a static integer interval for each variable. For a bit-vector variable x of m bits, let

[l, u] be the interval x can take while staying in a. With i being the index of the bit we

are interested in, we can use SELECT(l, u, i) in Algorithm 3.3 to obtain the corresponding

range of values the bit can take. Note that in Algorithm 3.3, we denote with l[i : m − 1] the

vector of the m − i most significant bits of l if l was stored in a bit-vector of length m. The

definition of u[i : m − 1] is analog.

Algorithm 3.3 SELECT(l, u, i)

1: if l[i : m − 1] ≡ u[i : m − 1] then

2: return [l[i], l[i]]

3: else

4: return [0,1]

5: end if
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The idea of Algorithm 3.3 is as follows: let j be the lowest index of the bit-vectors

where l[j : m − 1] and u[j : m − 1] coincide. For all bits i ≥ j, we can assert that the

corresponding bit x[i] can only take the value common in l[i] = u[i] because all more

significant bits in the two’s complement encoding have the same values. For all other bits

i < j, x[i] can be either true or false because there is at least one more significant bit that

differs. For example, assume that a polytope constrains that 4-bit variable x must take

values in [3, 5]. In two’s complement representation, that corresponds to l = 0 0 1 1 and

u = 0 1 0 1. The index of the most significant bit that differs is j = 2. Hence, we have e.g.

that SELECT(3, 5, 3)=[0,0] and SELECT(3, 5, 0)=[0,1].

We can conclude that ternary simulation can be used for the expansion of proof

obligations for the QF_BV generalization of the PDR algorithm. However, expansion of

proof obligations using ternary simulation cannot be expected to perform effectively if

used for a model checking instance where the transition function captures high-level con-

straints where bit-vectors are interpreted as integers. In particular, using ternary simula-

tion, the only way to represent any interval that contains both positive values and negative

values is by assigning X to all bits, causing gross overapproximation of simulation values

in practice.

3.3.2 Interval Simulation

The limitations of ternary simulation suggests a simulation method that captures integer

operations more naturally. One way to achieve this is integer simulation. Consider the

representative choice of simulation rules in Figure 3.8 where we denote the minimally and

maximally representable number for a given expression with −∞ and ∞, respectively.

The simulation rules model all operations conservatively where conservatively

means that they overapproximate the set of values an expression can take. For instance,

rule [plus-r] models an addition in case there is no overflow only, enforced by the an-

tecedents l1 + l2 ≥ −∞ and u1 + u2 ≤ ∞. In case there is an overflow, the result is given

the interval [−∞, ∞] as specified in rule [plus-o].

In the case of interval simulation, restricting the range of variables given an ARU

a is immediate if a is a polytope. Otherwise, if a is a Boolean cube, constraining the m

bits of x such as x[i] ⊆ [li, ui], we can use procedure CONJOIN(l0 , u0, . . . , lm−1, um−1) in

Algorithm 3.4 to calculate a suitable interval for bit-vector x.
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Φe = [l, u] l 6= −∞
[uminus-r]

Φ−e = [−u,−l]

Φe = [l, u] l ≡ −∞
[uminus-o]

Φ−e = [−∞, ∞]

Φe1 = [l1, u1] Φe2 = [l2, u2] l1 + l2 ≥ −∞ u1 + u2 ≤ ∞
[plus-r]

Φe1+e2 = [l1 + l2, u1 + u2]

Φe1 = [l1, u1] Φe2 = [l2, u2] l1 + l2 < −∞ ∨ u1 + u2 > ∞
[plus-o]

Φe1+e2 = [−∞, ∞]

Φe1 = [l1, u1] Φe2 = [l2, u2]
∧

i,j∈{1,2}(−∞ ≤ li × uj ≤ ∞)
[times-r]

Φe1×e2 = [mini,j∈{1,2}{li × uj}, maxi,j∈{1,2}{li × uj}]

Φe1 = [l1, u1] Φe2 = [l2, u2]
∨

i,j∈{1,2}(li × uj < −∞ ∨ li × uj > ∞)
[times-o]

Φe1×e2 = [−∞, ∞]

Φe1 = [l1, u1] Φe2 = [l2, u2] u1 < l2
[lt-1]

Φe1<e2 = [1, 1]

Φe1 = [l1, u1] Φe2 = [l2, u2] l1 > u2
[lt-0]

Φe1<e2 = [0, 0]

Φe1 = [l1, u1] Φe2 = [l2, u2] u1 ≥ l2 l1 ≤ u2
[lt-x]

Φe1<e2 = [0, 1]

Φe1 = [l1, u1] l1 ≡ 1
[ite-t]

Φif e1 then e2 else e3
= Φe2

Φe1 = [l1, u1] u1 ≡ 0
[ite-e]

Φif e1 then e2 else e3
= Φe3

Φe1 = [l1, u1] Φe2 = [l2, u2] Φe3 = [l3, u3] l1 6= u1
[ite-x]

Φif e1 then e2 else e3
= [min{l2, l3}, max{u2, u3}]

Figure 3.8: Choice of Simulation Rules for Interval Simulation
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Algorithm 3.4 CONJOIN(l0 , u0, . . . , lm−1, um−1)

1: l, u = bit-vector with length m

2: for i = 0 to m − 1 do

3: if li ≡ ui then

4: u[i] = l[i] = li

5: else

6: l[i] =







1 if i ≡ m − 1

0 otherwise

7: u[i] = 1 − l[i]

8: end if

9: end for

10: return [l, u]

Algorithm 3.4 constructs the bounds for variable x by iterating through all bits

of x. If the bounds for a bit are equal, the corresponding bit in the bound l, u is set to the

common value. Otherwise, the corresponding bit in l is set to the value which causes l to

represent a smaller value in the two’s complement representation. The corresponding bit

in u is set to the value which causes u to represent the bigger value. For instance, assume

we have a Boolean cube a := (x ∈ - - 0 1). Here, the valuation of the bit-vector with the

smallest (greatest) value in two’s complement representation is 1 0 0 1 (0 1 0 1). Hence, the

corresponding call to CONJOIN returns [−7, 5].

Though the rules in Figure 3.8 capture the meaning of integer operations well,

bit-vector rules for bit-level operations such as AND are difficult to formulate and rep-

resenting their results as integer intervals can loose a considerable amount of precision.

Assume, e.g. we want to calculate Φe1∧e2 given Φe1
= [−1, 0] and Φe2 = [−8,−7] where all

expressions have a width of 4 bits. Using the two’s complement representation of integers,

this corresponds to the following calculation

[−1,−0]

∧ [−8,−7]

[−8,−1]

↔

- - - -

∧ 1 0 0 -

- 0 0 -

Even the optimal result representable as integer interval [−8, 1] contains more points than

the exact result on the right which does e.g. not include −2.
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3.3.3 Hybrid Simulation

The strengths and weaknesses of each homogeneous simulation strategy suggests a hybrid

approach. To this end, we define two additional simulation rules [conjoin] and [select] as

in Figure 3.9 that use Algorithms 3.3 and 3.4. The rule [conjoin] serves for combining bits

to a bit-vector and the rule [select] to extract individual bits from a bit-vector. Combining

these rules with the rules from ternary simulation in Figure 3.7 and the rules of interval

simulation for integer operations as in Figure 3.8 allows for a simulation where bit-level

operations are simulated using ternary simulation and integer operations are simulated

with intervals. At the interfaces between the two kinds of operations act the transformation

rules [conjoin] and [select].

Φe[0] = [l0, u0] Φe[1] = [l1, u1] . . . Φe[n−1] = [ln−1, un−1]
[conjoin]

Φe = CONJOIN(l0, u0, l1, u1, . . . , ln−1, un−1)

Φe = [l, u]
[select]

Φe[i] = SELECT(l, u, i)

Figure 3.9: Conjoin and Select Simulation Rules

As such, the choice between interval simulation and ternary simulation is driven

by the specific expressions. If an expression is composed of bit-level operations, the expres-

sion is simulated with ternary simulation. Otherwise, for operations that capture the idea

of integer interpretation of bit-vectors, interval simulation is applied. The rules [conjoin]

and [select] which are susceptible to loosing precision are only applied when necessary at

the interface between operations of different kind.

3.3.4 Example: Simulation

We conclude the section with an example. Assume we attempted to simulate Φe(ã) with

e := (e1 < 2) ∧ (0 ≤ e1)

e1 := e2 ∧ e3

e2 := x1 − x2 + 2

e3 := y1 ∨ y2
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and

ã := (1 ≤ x1 ≤ 5) ∧ (0 ≤ x2 ≤ 3) ∧ (y1 ∈ - 0 0 -) ∧ (y2 ∈ 1 0 0 -)

Notation:

∨

−

∧

<

≤

2

0

y1

2

y2

x1

x2

[1, 5]

0 - - -

[1, 5]

[0, 3]

0 0 - -

[0, 3]

[2, 2]

0 0 1 0

[2, 2]

1 0 0 -

1 0 0 -

[−8, 7]

[2, 2]

0 0 1 0

[2, 2]

[0, 0]

0 0 0 0

[0, 0]

[−2, 5]

- - - -

[−2, 5]

1

1

[0, 1]

1

−

[1, 1]

∧

- 0 0 -

- 0 0 -

[−8, 1]

1 0 0 -

1 0 0 -

[−8,−7]

+

Φ Hybrid Simulation

Φ Ternary Simulation

Φ Interval Simulation

0 0 0 - → [0, 1]

- 0 0 -

[0, 7]

[0, 7] → 0 - - -

- - - -

[0, 7]

1

−

[0, 1]

e2

e3

e1
e

Figure 3.10: Example of a Hybrid Simulation

Figure 3.10 shows the expression DAG of e and the simulation results for all (sub)-

expressions using ternary, interval, and hybrid simulation. On the one hand, ternary simu-

lation works well for the simulation of subexpression e3 sustaining the information that the

second and third bit of the expression are low whereas interval simulation looses this infor-

mation entirely. On the other hand, interval simulation performs well for the simulation of

subexpression e2 pertaining the information that the value must be positive while ternary

simulation looses all information for this expression. However, only hybrid simulation is

able to maintain both pieces of information and to combine them to Φe1
(ã) = [0, 1]. Hence,

hybrid simulation yields the correct result that Φe(ã) = true while both ternary and inter-

val simulation fail due to their individual shortcomings. In case e corresponded to B ∧ u

in check (3.3), the expansion to ã would only succeed with hybrid simulation.
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3.4 Implementation and Experimental Evaluation

In this section, we describe our implementation of the presented QF_BV generalization

of the PDR algorithm and results obtained from experimentation with the implemented

software prototype. We start with a discussion of our implementation in the following

subsection. Next, in Subsection 3.4.2, we present experimental results that demonstrate the

impact of different choices for the ARU on the performance of the algorithm. In particular,

we investigate the impact of parameter c on the probabilistic specialization of ARUs in the

hybrid formulation with polytopes and Boolean cubes. Subsequently, in Subsection 3.4.3,

we juxtapose the performance of simulation-based expansion of proof obligations with

ternary, interval-based, and hybrid simulation. Finally, in Subsection 3.4.4, we review the

overall performance of our generalized PDR algorithm by comparing it with that of the

Boolean PDR algorithm provided in ABC [BM10] .

3.4.1 Implementation

We implemented the proposed algorithm in C++. The skeleton of our implementation is

similar to the one suggested in [EMB11]. As backend solver, we used the QF_BV theory

part of the SMT solver Z3 [DMB08] instead of a SAT-solver. As Z3 supports assumption

literals, analysis of the unsatisfiable core, and incremental solving, this choice allowed us to

implement all of the suggested optimization described in [EMB11]. Most importantly, our

implementation also inspects the unsatisfiable core to find opportunities for fast expansion

of proof obligations and it also reuses learned clauses by the SMT solver for incremental

solving using retractable assertions (hot solving). Unless stated otherwise in the following

sections, the expansion of proof obligations is based on hybrid simulation as discussed in

Section 3.3 and we use c = 0.5 as the probability that a point is specialized to a Boolean

cube. To assure bit-accurate simulation results, we use the arbitrary precision integer class

APInt provided as part of the LLVM-framework [LA04].

3.4.2 Impact of Specialization Probability Parameter c

As discussed in Section 3.2, the choice of a specific kind of ARU is important for the suc-

cess of the QF_BV PDR algorithm. In the proposed hybrid algorithm with polytopes and

Boolean cubes, parameter c controls the probability that a point in the state space is spe-



42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

N
u

m
b

e
r 

S
o

lv
e

d
 I

n
s
ta

n
c
e

s

0
1

0
2

0
3

0
4

0

[0s,0.5s]

(0.5s,5s]

(5s,50s]

(50s,500s]

(a) Instances extracted from the SV-COMP [Bey12] bit-vector benchmark set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

N
u
m

b
e
r 

S
o
lv

e
d
 I

n
s
ta

n
c
e
s

0
1
0

2
0

3
0

4
0

[0s,0.5s]

(0.5s,5s]

(5s,50s]

(50s,500s]

(b) Instances extracted from the INVGEN [GR09] benchmark set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

N
u
m

b
e
r 

S
o
lv

e
d
 I
n
s
ta

n
c
e
s

0
2
0

4
0

6
0

8
0

[0s,0.5s]

(0.5s,5s]

(5s,50s]

(50s,500s]

(c) All benchmark instances.

Figure 3.11: Impact of c on Number of Solved Benchmark Instances
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cialized to a Boolean cube. The point is specialized to a polytope with probability 1 − c.

Figure 3.11 documents the impact of parameter c on the efficacy of the overall

algorithm on a set of model checking instances extracted from software verification bench-

marks. The extreme cases c = 1 and c = 0 are the configurations of the algorithm with

exclusive use of Boolean cubes and polytopes, respectively. The chart in Figure 3.11a shows

the results for a subset of the entire set of instances derived from the bit-vector set of the

SV-COMP [Bey12] benchmarks. On this subset, the algorithm with only Boolean cubes

performs the best.

Figure 3.11b displays the same plot with instances derived from the benchmark

set of INVGEN [GR09]. On this subset, the configuration with only Boolean cubes performs

the worst. The varied result can be explained by the characteristics of the benchmark

sets. On the one hand, the benchmarks derived from the SV-COMP benchmarks focus

on bit-level characteristics. For instance, the inductive invariants required to solve these

problems often specify a single bit having a specific value or two bits having the same

value. On the other hand, in the INVGEN-benchmarks, bit-vectors are usually interpreted

as integers and the relevant inductive invariants often represent linear relations between

different variables using this interpretation. In this setting, the polytope interpretation is

particularly suitable.

In Figure 3.11c, we show the impact of c shown for the entire set of model check-

ing instances. Here, the algorithm performs similarly for all configurations but the two

pure versions (only Boolean cubes or only polytopes) of the algorithm perform worse.

This validates the theoretic discussion in 3.2.3 in so far as that the specific value for c does

not matter much in practice unless c is chosen at the extreme values.

3.4.3 Impact of Simulation Type in Expansion of Proof Obligations

To investigate the impact of the simulation type on the performance of the algorithm, we

conducted two experiments. The aim of the first experiment is to measure the impact of

different simulation types on the efficacy of the expansion move itself. In the second ex-

periment, we evaluate the impact of the simulation type on the performance of the overall

model checking algorithm.

For the first experiment, we recorded the volume of ARUs before and after expan-

sion moves where the volume is the number of points of the state space that are contained
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in the ARU. We compared the measurements in form of the expansion factor, defined as the

ratio of the volume of an ARU before and after the expansion move.
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Figure 3.12: Expansion Factor of Hybrid Simulation vs Integer and Ternary Simulation.

Figure 3.12 contains the results of this experiment. The comparisons between

hybrid simulation on the one side and interval and ternary simulation on the other side

side illustrates that hybrid simulation outperforms both pure simulation types, frequently

by many orders of magnitude.

The results prove that hybrid simulation is an effective way of expanding ARUs.

However, the results do not show how this impacts the overall performance of the algo-

rithm. To investigate this question, in the second experiment, we run the set of benchmarks

introduced in Subsection 3.4.2 three times each, once using ternary simulation, once using

interval simulation, and once using hybrid simulation for the expansion of proof obliga-

tions. For the specialization probability, we choose c = 0.5 for this experiment. The results

of the experiment are contained in Figure 3.13. Analog to Subsection 3.4.2, we present the

results for the subset of the benchmarks derived from the SV-COMP competition reposi-

tory (Figure 3.13a), for the subset of benchmarks derived from the INVGEN-benchmark set

(Figure 3.13b), and for the complete set of benchmarks (Figure 3.13c).

All three plots in Figure 3.13 suggest that the algorithm performs the best with hy-

brid simulation. Over the complete benchmark set, the algorithm with hybrid simulation

is able to solve approximately 15% more instances than with either pure simulation type
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Figure 3.13: Impact of Simulation Type on Number of Solved Benchmark Instances
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within the timeout limit of 500s. Interestingly, the plot in Figure 3.13a suggest that ternary

simulation performs better than interval simulation whereas the plot in Figure 3.13b sug-

gests the converse. As in the experimentation to investigate the impact of c on the per-

formance of the model checker, the seemingly contradictory result can be attributed to the

characteristics of the benchmarks. For model checking instances with focus on bit-level

operations, ternary simulation is an appropriate means for the expansion of proof obliga-

tions but interval simulation often fails. On the other side, for the subset of benchmarks

that focus on the integer interpretation of bit-vectors, interval simulation is appropriate

but ternary simulation performs poorly. For the entire benchmark set, however, both pure

approaches perform quite similarly.

3.4.4 Performance Comparison of QF_BV generalization vs ABC PDR

In the last experiment, we compare the performance of our generalized PDR algorithm

with the original Boolean version contained in the logic synthesis and verification tool

ABC [BM10]. To this end, we translated the benchmark model checking instances into

BTOR [BBL08], a format for specifying word-level model checking problems, and used the

tool SYNTHEBTOR, which is part of the distribution of the BOOLECTOR SMT solver [BB09],

to translate the problems into AIGER [Bie06], a standard format for specifying hardware-

model checking problems supported by ABC.

Figure 3.14 shows a comparison of running times to solve the given benchmark

model checking instances with the presented QF_BV generalization of PDR versus the

Boolean PDR model checker in ABC. For roughly 95% of the 155 benchmarks, the pre-

sented QF_BV generalization outperforms the Boolean PDR algorithm when run on the

AIGER-versions of the benchmarks, often by more than an order of magnitude. This

demonstrates that the QF_BV algorithm is able to use the additional information encoded

in the word-level formulation of the model checking instances to speed up the solving.

In the other roughly 5% of the benchmarks, the inductive invariant required to solve the

model checking instance can simply be represented as a set of Boolean cubes. In this case,

the generalized algorithm has no conceptional advantage over the Boolean algorithm and

attempting to solve the model checking instance using polytopes is not purposeful, hence

one cannot expect the generalized algorithm to outperform the original one.
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Chapter 4

Program Verification with Property

Directed Reachability

We start this chapter with a precise definition of the program verification problem we are

considering. Subsequently, in Section 4.2, we deduce a framework to solve instances of the

defined problem using PDR. Our ultimate solution, that is based on loop invariants, will

be described in detail in Section 4.3. We conclude the chapter by discussing experimental

results with our implementation of the presented algorithm in Section 4.4.

4.1 Definition Program Verification Problem

In the following, we assume that we are given a function-free PUV with static memory

allocation that has assertions in the source code. We denote a program as safe if none of

its assertions can be violated, regardless of the program input. Otherwise, we denote the

program as not safe. Given an input program, the problem of interest, which we refer to

as CHECK ASSERT, is to decide whether the program is safe or not. If the program is not

safe, a counterexample is returned which provides input values with which the program

can be interpreted such that the assertion is hit and the assertion condition does not hold.

Many practical applications can be reduced to CHECK ASSERT. Our main focus in

this work is on proving safety properties of a program, which allow an immediate reduc-

tion to the given problem. However, one can also reduce the problem of test generation to

CHECK ASSERT. For instance, if one was interested in covering a certain branch in the pro-



49

gram, one could add an assertion in front of the branching instruction asserting the branch

condition. If the branch can be taken, the program would be determined as not safe and

the returned counterexample encodes a suitable test. Otherwise, in case the branch can-

not be taken, the program would be determined safe. In addition, problems arising in

static analysis [ECCH00] and compiler optimization [ALSU06] can be reduced to CHECK

ASSERT.

4.2 Towards a PDR-based Framework for Program Verification

In this section, we develop a scheme for program verification with the PDR algorithm pre-

sented in Chapter 3. We start with presenting a purely symbolic encoding of the PUV and

progress towards a more effective strategy where loop iterations are mapped to transi-

tions of model checking instances. Eventually, we arrive at a recursive scheme where loop

invariants are refined using PDR.

4.2.1 Explicit Modeling the Program Counter

As discussed in the previous section, in this work we are concerned with recursion-free

programs with static memory allocation. The most straight-forward solution to solving

instances of CHECK ASSERT using the PDR algorithm is by formulating the proof obli-

gations in the PUV as QF_BV model checking instances modeling the program pointer

explicitly [ISGG05].

Consider, e.g. the program segment in Figure 4.1a and the corresponding CFG

in Figure 4.1b. The numbers in the upper right corner of the basic blocks indicate their

numbering that we will use in the following for reference. For instance, the entry basic

block on the top of Figure 4.1b will be denoted with B1.

If we use variable p to hold the index of the basic block the program is currently in, we can
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n = 1;

x = 0;

while (n>0)

{

x = x+1;

n = n-1;

assert(x < 3);

}

(a) Program Fragment

n = 1

x = 0

[n≤0]

[n>0]

x = x+1

n = n-1

assert x < 3

1

2

3

4

(b) Control Flow Graph

Figure 4.1: Example: Simple

transcribe the PUV into the following model checking instance

I := (p ≡ 1)

T :=









x′ ≡







0 if(p ≡ 1)

x + 1 if(p ≡ 3)

x otherwise









∧









n′ ≡







1 if(p ≡ 1)

n − 1 if(p ≡ 3)

n otherwise









∧









p′ ≡







2 if(p ≡ 1) ∨ (p ≡ 3)

3 if(p ≡ 2) ∧ (n > 0)

4 otherwise









B := (p ≡ 3) ∧ (x ≥ 2)

Initially, the program is in the entry basic block, hence p = 1. In each iteration, the state-

ments within basic block Bp are executed and the control flow transitions to the beginning

of the next basic block. The execution of the statements is reflected in the next state func-

tions of variables x and n. For instance, if the control flow is in the entry basic block B1, n

and x get their new respective values 1 and 0. The transitions are reflected in the next state

functions for p. For instance, if the control flow is currently in basic blocks B1 or B3, the

next basic block will be B2.

The presented encoding is sound and complete and the derived model checking

instances can be solved with the generalized PDR algorithm as presented in Chapter 3.
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However, empirically, the encoding typically yields long solving times and is only practi-

cally for the smallest PUVs as we will show in Section 4.4.

4.2.2 Mapping Transitions to Loop Iterations

A more compact encoding can be achieved if loop iterations are mapped to transitions

of the corresponding model checking instance. Using this paradigm, one obtains for the

program in Figure 4.1 the following model checking instance that we already encountered

in Chapter 3.

I := (n ≡ 1) ∧ (x ≡ 0)

T := (n > 0) ∧ (x′ ≡ x + 1) ∧ (n′ ≡ n − 1)

B := (x ≥ 3)

Here, the initial condition I reflects the portion of the program before the loop, the tran-

sition relation T the loop condition n > 0 and the increment and decrement of n and x,

respectively, and the bad set B is the inverse of the assertion.

This encoding style is more compact than modeling the program counter explic-

itly. However, the paradigm does not readily generalize to programs with more than one

loop. As an example, consider the program in Figure 4.2 which consists of two loops in

series.

n = 1;

x = 0;

while (n>0)

{

x = x+1;

n = n-1;

}

while (x>0)

{

x = x-1;

n = n+1;

assert(n < 2);

}

(a) Program Fragment

n = 1

x = 0

[n≤0]
[n>0]

x = x+1

n = n-1

[x≤0]

[x>0]

x = x-1

n = n+1

assert n < 2

1

2

3
4

5

6

7

(b) Control Flow Graph

Figure 4.2: Example: Series
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4.2.3 Multiple PDR instances for Multiple Loops

One solution to cope with a series of loops as in the program in Figure 4.2 is to use several

model checking instances that are managed by a master algorithm. A proper means of

communication between the individual loops are counterexamples and invariants. For the

example, we initially assume that x and n can take arbitrary values at basic block B4. We

compose the model checking instance

I := true

T := (x > 0) ∧ (x′ ≡ x − 1) ∧ (n′ ≡ n + 1)

B := (n < 2)

for the second loop. This model checking instance does not hold and if the PDR algo-

rithm is run on this instance, we obtain a counterexample sequence. Assume the returned

counterexample sequence is

State 0

x = 4

n = 0

→

State 1

x = 3

n = 1

→

State 2

x = 2

n = 2

The initial values x = 4, n = 0 can be used to compose a model checking instance

for the first loop

I := (n ≡ 1) ∧ (x ≡ 0)

T := (n > 0) ∧ (x′ ≡ x + 1) ∧ (n′ ≡ n − 1)

B := (x ≡ 4) ∧ (n ≡ 0)

If this model checking instance was satisfiable, we would have proved that the program is

not safe. However, as we have seen in Section 3.2.1 for a more general proof obligation, the

model checking instance holds. Assume that PDR returns the same invariant as calculated

in Section 3.2.1:

(x < 3) ∧ (n < 2) ∧ (x < 1 ∨ n < 1)

This invariant can be used as new initial condition for the second loop, yielding
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the following updated model checking instance for the second loop

I := (x < 3) ∧ (n < 2) ∧ (x < 1 ∨ n < 1)

T := (x > 0) ∧ (x′ ≡ x − 1) ∧ (n′ ≡ n + 1)

B := (n < 2)

With the updated initial condition, the model checking instance holds. This proves that

the PUV is safe.

The outlined algorithm has the advantage that all model checking instances only

pertain single loops, i.e. their sizes are limited by the size of loops in the PUV. Unfortu-

nately, as formulated, the algorithm cannot be applied for programs with nested loops

such as the one in Figure 4.3.

y = x;

while (i>0)

{

i = i-1;

while (x<2)

{

x = x+1;

i = i+1;

}

}

assert(x >= y);

(a) Program Fragment

y = x

LI1(x1, i1, x0 , i0)

[i>0]

i = i-1

[i≤0]
assert x ≥ y

LI2(x2, i3, x1 , i2)

[x<2]

i = i+1

x = x+1

[x≥2]

1

2

3 4

5

6
7

(b) Control Flow Graph

Figure 4.3: Example: Nested Loops

4.2.4 Loop Invariants

We reformulate the algorithm in order cope with nested loops. Instead of calculating in-

variants at points between loops, we now use the PDR algorithm to calculate loop invari-

ants as functions of the loop variables before and after the loop. We denote the variables

holding the values before a loop with a b suffix and the ones holding the values at the end

of a loop with a e suffix. For the nested loop example in Figure 4.3, denote with LI1(·) the

loop invariant of the outer loop and with LI2(·) the loop invariant of the inner loop. Both

x and i are modified and referenced in either loop. To indicate that x can only increase
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within the outer loop, we would e.g. use the loop invariant

LI1(xe, ie, xb, ib) := xe ≥ xb (4.1)

The use of loop invariants enables to model the inner loop when constructing the

model checking instance of the outer loop. For the nested loops example we can compose

the following model checking instance

I := (y ≡ x)

T := (y′ ≡ y) ∧ (i > 0) ∧ LI2(x′, i′, x, i − 1)

B := (i ≤ 0) ∧ (x < y)

(4.2)

where the inner loop is modeled by the loop invariant LI2(·).

It remains to discuss how the loop invariants are obtained. We propose to use

PDR for this purpose. This allows for an incremental and recursive invariant refinement

scheme. Assume that LI2(·) in the model checking instance (4.2) is true. In this case, the

model checking instance does not hold and the PDR algorithm would return a counterex-

ample sequence, for instance

State 0

x = 4

i = 1

y = 4

→

State 1

x = 3

i = 0

y = 4

(4.3)

This counterexample sequence is spurious. The body of the nested loop does not

allow the transition. We can construct the following model checking instance to refine the

loop invariant for the nested loop

I := (xb ≡ xe) ∧ (ib ≡ ie)

T := (x′b ≡ xb) ∧ (i′b ≡ ib) ∧ (xe < 2) ∧ (x′e ≡ xe + 1) ∧ (i′e ≡ ie + 1)

B := (xb ≡ 4) ∧ (ib ≡ 1 − 1) ∧ (xe ≡ 3) ∧ (ie ≡ 0 − 1)

Initially, the values at the beginning of the loop and after the loop are equal. In each

iteration of the loop, the values at the beginning of the loop stay constant but the values at

the end of the loop change as defined in the body of the nested loop (see Figure 4.3). The

spurious transition in (4.3) is reflected as bad set.
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The model checking instance holds and PDR could infer e.g. the inductive invari-

ant

LI2(xe, ie, xb, ib) := (xb < 4) ∨ (xe ≥ 3)

With this strengthened loop invariant, the spurious counterexample sequence would no

longer be possible but the model checking instance in (4.2) continues not to hold. How-

ever, iterative application of the sketched refinement scheme would eventually infer a loop

invariant strong enough to resolve CHECK ASSERT in the nested loop example.

The outlined iterative and recursive refinement scheme allows for a sound and

complete algorithm to decide CHECK ASSERT on all programs we are considering. In the

next section, we will present the proposed algorithm in detail and discuss its properties.

4.3 Program Verification with PDR

Figure 4.4 depicts a high-level view of the proposed algorithm to solve instances of CHECK

ASSERT. In a preprocessing stage, the PUV is transformed into a model that overapproxi-

mates the behavior of the program. Next, we check whether the program is safe using this

model. If so, we report that the program is safe. Otherwise, we obtain a counterexample

that can either be real or spurious where we denote a counterexample as spurious if it is

admitted by the current model of the program but not by the real program. In the former

case, we report that the program is not safe. Otherwise, we use the counterexample to

refine the model of the program.

Holds

Property

yes

sat no
Preprocess

Counterexample

Property

Fails

unsat

Spurious

SMT-Solver

Property with

Invariant Refinement
Property Directed

Check

Figure 4.4: High-Level Overview of the Proposed Framework

In the following subsections, we discuss details for the individual parts of the

framework. We begin with discussing the preprocessing step in the next subsection, fol-

lowed by a discussion of the main loop in Subsection 4.3.2, and finally present the loop



56

refinement using PDR in Subsection 4.3.3. We illustrate each part using the nested loop

example from Figure 4.3.

4.3.1 Preprocessing

Consider the CFG of the input program. For simplicity of exposition, we assume the pro-

gram to be structured [BJ66, Dij68]. Then, every loop l in the CFG can be uniquely iden-

tified by a pair (H, T) of basic blocks, where H is the loop head and T is the loop tail. A

basic block T is called a loop tail if it is dominated by the loop head H and there exists an

edge (T, H) in the CFG. We call the edge (T, H) a back edge. A basic block B1 dominates

basic block B2 if every path from the entry basic block to B2 passes through block B1. For

more detailed information on this notation, please refer to [ALSU06].

The loop body of a loop l = (H, T) (denoted as bodyl) is the set composed of

all basic blocks that are on any path between H and T. We associate with l two sets of

variables Ul and Rl where Ul is the set of variables which are updated in loopl and Rl is

the set of variables which are referenced in loopl. Note that Ul ⊆ Rl.

Algorithm 4.1 preprocess()

1: for each loop l = (H, T) in PUV do

2: remove back edge (T, H)

3: append LIl(Ul, Rl) to H

4: set LIl(·) = true

5: end for

6: passify()

The individual steps of the preprocessing are summarized in Algorithm 4.1. We

iterate through all loops and for each loop l = (H, T), we cut the associated back edge

(T, H). Note that after this step, the CFG becomes a directed acyclic graph (DAG) that un-

derapproximates the behavior of the PUV. Next, we append a loop invariant LIl(Ul, Rl), a

predicate over the two sets of variables Ul and Rl, to the loop header H. The first(second)

argument of LIl(·) corresponds to the values of the variables after(before) the loop. Se-

mantically, LIl(·) can be understood as a multivariate assignment to all variables in Ul.

The new values of the variables are arbitrary under the condition that the predicate LIl(·)

evaluates to true when applied to the combination of variable assignments before and after
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the loop. Initially, we set all loop invariants to true. Intuitively, this means that after the

loop invariant, all loop variables in Ul may take arbitrary values. Notice that after this

preprocessing, the obtained model overapproximates the behavior of the PUV.

In the main loop of our verification algorithm, we will check whether or not the

program is safe using an SMT solver. To this end, we construct an SMT formula F that

is unsatisfiable only if the program is safe. We encode the program using three sets of

constraints.

The first set of constraints assures that a possible solution to the SMT formula

corresponds to a feasible flow through the program. Therefore, we associate with each

basic block Bi in the CFG a Boolean variable bi and encode the control flow as follows. For

each basic block Bi with the exception of the entry basic block we add a clause

bi ⇒
∨

Bj∈Predecessors(Bi)

bj

that assures that Bi can only be visited if at least one of the predecessors is visited, too.

The second set of constraints is to model the data-flow of the program. Therefore,

we translate the PUV into a passive program using dynamic single-assignment [Fea91].

The principal idea of this technique is that each time a variable is updated, the new value

is assigned to a new copy of the variable. In accordance to the literature, we will refer to

these copies as variants. In our notation, we indicate the ith variant of variable x with xi.

As an example, a statement such as x = x + 1 in the PUV would be represented as xi+1 ≡

xi + 1 in the passive program. As a loop invariant LIl(Ul, Rl) corresponds to a multivariate

assignment to all the variables in the first argument, we increment the variant counter

for each variable in Ul. The predicate itself is represented by substituting each variable

corresponding to the value after(before) the loop with the updated(previous) variant. For

instance, loop invariant (4.1) would be represented as xi+1 ≥ xi in the passive program.

For each passive formula f encoding a statement, assumption, or loop invariant of the

resulting passive program, we add a clause of the form

bi ⇒ f

to F if Bi is the basic block in which f resides. Intuitively, the clause encodes that if the

control flow visits Bi, then f must be true.

Lastly, in the third set of constraints, we constrain that the model of the program

is not safe. For an assertion A in basic block B
π(A) with passive formula a as condition to
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be violated, we must visit block B
π(A) and a must not hold. The model is not safe if at least

one assertion is violated. Hence, we have formally

∨

A∈Assertions

b
π(A) ∧ ¬a

Example: Nested Loops

Reconsider the program fragment and corresponding control flow graph of the nested

loops example from Section 4.2.3 (reprinted in Figures 4.5a-b for convenience) for another

time.

y = x;

while (i>0)

{

i = i-1;

while (x<2)

{

x = x+1;

i = i+1;

}

}

assert(x >= y);

(a) Program Fragment

y = x

LI1(x1, i1, x0 , i0)

[i>0]

i = i-1

[i≤0]
assert x ≥ y

LI2(x2, i3, x1 , i2)

[x<2]

i = i+1

x = x+1

[x≥2]

1

2

3 4

5

6
7

(b) Control Flow Graph

y = x

LI1({x, i}, {x, i})

[i>0]

i = i-1

[i≤0]
assert x ≥ y

LI2({x, i}, {x, i})

[x<2]

i = i+1

x = x+1

[x≥2]

1

2

3 4

5

6
7

(c) Acyclic Program Model

y1 ≡ x0

LI1(x1, i1, x0, i0)

[i1 > 0]
i2 ≡ i1 − 1

[i1 ≤ 0]
assert x1 ≥ y1

LI2(x2, i3, x1, i2)

[x2 < 2]
i4 ≡ i3 + 1
x3 ≡ x2 + 1

[x2 ≥ 2]

1

2

3 4

5

6
7

(d) Passive Program

Figure 4.5: Preprocessing for Nested Loops Example

The program fragment contains two loops l1 = (B2, B7) and l2 = (B5, B6). We

remove the two corresponding back edges (B7, B2) and (B6, B5) and append LI1(·) and
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LI2(·) to the loop heads B2 and B5, respectively. These steps yields the DAG in Figure 4.5c.

Next, the DAG is passified and one obtains the graph in Figure 4.5d.

To check whether the so obtained model of the PUV is safe, we construct an

SMT formula F as follows. We assure that every satisfying assignment corresponds to

a valid control flow by adding the conjunction of the following control-flow constraints

to F where, for instance, the first constraint assures that basic block B2 cannot be visited

unless B1 is also visited.

(b2 ⇒ b1) ∧ (b4 ⇒ b2) ∧ (b6 ⇒ b5) ∧ (b3 ⇒ b2) ∧ (b5 ⇒ b4) ∧ (b7 ⇒ b5)

Next, we add the following constraints to the model to assure proper data-flow.

(b1 ⇒ (y1 ≡ x0)) ∧ (b2 ⇒ LI1(x1, i1, x0, i0)) ∧ (b3 ⇒ (i1 ≤ 0))

(b4 ⇒ (i1 > 0)) ∧ (b4 ⇒ (i2 ≡ i1 − 1)) ∧ (b5 ⇒ LI2(x2, i3, x1, i2))

(b6 ⇒ (x2 < 2)) ∧ (b6 ⇒ (i4 ≡ i3 + 1) ∧ (b6 ⇒ (x3 ≡ x2 + 1))

(b7 ⇒ (x2 ≥ 2))

As an example, the third constraint in the first line requires that if basic block B3 is visited,

then condition i1 ≤ 0 must hold.

Lastly, we constrain that the assertion in B3 must be violated. We enforce this by

asserting that

b3 ∧ (x1 < y1)

If the so composed SMT formula F is unsatisfiable, then the program is safe.

4.3.2 Iterative Refinement

Algorithm 4.2 summarizes the main loop of our proposed algorithm for program verifi-

cation. After having preprocessed the program and having constructed the SMT formula

F as discussed in the previous subsection, we check if F is satisfiable. If this is not the

case, then we return that the program is safe. Otherwise, we obtain a satisfying assign-

ment to all variables in F, counterexample c, and check whether c corresponds to a run

that violates an assertion. To this end, we interpret the PUV with the arguments encoded

in c starting at the entry basic block Be. If the interpretation run violates an assertion, we

report the program as not safe. Otherwise, the observed discrepancy between the real

program and its model encoded as SMT formula is due to the weakness of one or more
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loop invariants, i.e. there exists at least one loop whose loop invariant admits c but its loop

body does not. We refer to such a loop as being weakly modeled with respect to the coun-

terexample. We find such a weakly modeled loop l with respect to c using the subroutine

findWeaklyModeledLoop()and strengthen its invariant using refine() such that the

invariant continues to overapproximate the behavior of the loop but no longer admits the

spurious counterexample c. Then we repeat with checking for a counterexample in the

refined model of the PUV.

Algorithm 4.2 verifyProgram()

1: preprocess()

2: while counterexample c exists do

3: if interpretationHitsAssertion(c, Be) then

4: return “Program not safe”

5: else

6: l = findWeaklyModeledLoop(c)

7: refine(l, c)

8: end if

9: end while

10: return “Program safe"

Theorem 1. Algorithm 4.2 is a sound and complete algorithm to solve instances of CHECK AS-

SERT.

Proof. We sketch the proof of Theorem 1. We start by showing partial correctness. First

note that if verifyProgram() returns “Program not safe”, then it has found a real coun-

terexample. To see why the program is safe if the algorithm returns “Program safe”, note

that at any time, the loop invariants are overapproximations of the behavior of the loop

because the loop invariants are initially assigned true and any refinement step preserves

the property that the pertaining loop invariant continues to overapproximate the behavior

of the actual loop. Hence, at any time F models an overapproximation of the complete pro-

gram. If the program is safe using this overapproximation, it is also safe on the concrete

program. It remains to show that the algorithm terminates. As we assume static mem-

ory allocation, each counterexample is over a fixed number of variables and each variable

can only hold a finite number of values. Hence, there is only a finite number of different
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counterexamples. In each call of refine(), the model of the PUV is refined such that all

previous and the current counterexample are no longer admitted. Hence, in each iteration

of the main loop, at least one additional spurious counterexample is excluded and the algo-

rithm terminates in a finite number of iterations. Also, each called subroutine terminates

in finite time. This is obvious for routine preprocess() as discussed in the previous

subroutine. We will argue why the other routines terminate in finite time in the following

subsections. This implies the result.

Counterexample Analysis with Interpretation

We use interpretation to validate the correspondence between a counterexample and the

original sequential program in two contexts: In the first context (applied in line 3 in Al-

gorithm 4.2), we want to validate that a counterexample corresponds to a run of the PUV

hitting an assertion. To this end, we extract the values for all variables at the entry basic

block Be from the counterexample c, initialize an interpreter with these values and start

the interpretation run. If the run hits an assertion, interpretationHitsAssertion()

returns true. Note that this check does not guarantee that the actual run of the program

corresponds to the one predicted by the counterexample c but only that an assertion will

be hit with the initial values encoded in c. In the context of algorithm 4.2, however, this

inaccuracy is not only irrelevant but beneficial because it allows for the accidental finding

of a real counterexample using an inconsistent counterexample.

Programs with infinite loops represent another challenge for the algorithm. If the

interpreter enters an infinite loop, it may continue interpreting the same code repeatedly

with the same valuation of the variables. To guarantee termination of the interpretation,

our implementation of the interpreter records already visited program states and bails out

of the interpretation run reporting that no assertion is hit if the same program state is

visited a second time.

In the second context (applied in line 6 in Algorithm 4.2), we have already de-

termined that the current counterexample c is spurious and we are interested in finding a

loop which is weakly modeled with respect to c. Algorithm 4.3 gives details of how this

is done: The bi variables with true value in c encode a path Π in the DAG of the passive

program. Denote with B
π(i) the ith of n loop headers in Π. Given this notation, we find

a weakly modeled loop l by iterating from n to 1 and test for each i whether an interpre-
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tation run starting from the ith loop header hits an assertion. Note that Algorithm 4.3 is

Algorithm 4.3 findWeaklyModeledLoop(c)

1: Π = path through passive program

2: n = number of loop headers in Π

3: for i = n to 1 do

4: if not interpretationHitsAssertion(c, B
π(i)) then

5: return π(i)

6: end if

7: end for

8: assert(false)

guaranteed to find a weakly modeled loop if c is spurious, i.e. that the assertion in line 6

will never be violated. To see why, note that the for-loop in the algorithm has the invariant

that in the ith iteration of the for-loop, interpreting the PUV from the corresponding loop-

header of the PUV with the post-values encoded in the counterexample hits an assertion.

If the interpretation run started with the pre-values encoded in c does not hit an assertion,

we have found a weakly modeled loop. Otherwise, we know that the post-values of the

(i − 1)th loop on the path must hit an assertion as all program constructs but loops are

modeled precisely in the passive program.

Example: Nested Loops (cont’d)

With the loop invariants LI1(·) and LI2(·) being initially true, the program cannot be proved

to be safe. Assume that the SMT solver returned the counterexample

c = {y1 = 0, x0 = 0, i0 = 0, x1 = −1, i1 = 0, . . . } (4.4)

An interpretation run from the beginning of the program with the initial values x=0, i=0

quickly shows that the counterexample c is spurious. The path modeled by the counterex-

ample is B1 → B2 → B3. Starting an interpretation run from the latest loop header on this

path (B2) with the pre-values x=0, i=0, y=0 does not violate any assertion. Hence we

can conclude that LI1(·) is too weak. Next, we call the procedure refine() on loop 1

which strengthens its loop invariant to

LI1(·) = (x0 < 0) ∨ (x1 > −1)
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In the next iteration of the while-loop, we can find another spurious counterex-

ample such as

c = {y1 = 1, x0 = 1, i0 = 0, x1 = 0, i1 = 0, . . . }

Again, we refine the invariant for loop 1. This time, we obtain

LI1(·) = (x1 ≥ x0)

as new, strengthened loop invariant. With this invariant for loop 1, the SMT formula F is

no longer satisfiable. This proves that the program is safe.

It is instructive to note that the derived loop invariant is not the strongest loop

invariant that can be inferred for loop 1 but that it is strong enough to prove the desired

property. In this sense, our algorithm is also property directed and therefore appears to

be well suited to be used in combination with PDR. At the same time as being property

directed, however, our algorithm also assures abstraction from the counterexamples. For

instance, the inferred loop invariant is independent from variable i.

4.3.3 Property Directed Invariant Refinement

Algorithm 4.4 gives an overview of how LIl(·) is refined given a spurious counterexam-

ple c. After generalizing c, we invoke the QF_BV PDR algorithm with the intent to infer

a strengthened loop invariant for l that contradicts c. If the attempt is successful, we up-

date the SMT formula F to reflect the new loop invariant returned by the backend model

checker. Note that this can be implemented by simply adding bH ⇒ LIl(·) to the constraint

Algorithm 4.4 refine(l, c)

1: generalizeCounterexample(l, c)

2: while PDR(I, T, c) does not hold do

3: let s be the counterexample sequence

4: let c′ be a spurious transition in s

5: let l′ be a loop whose LIl′ admits c′ but bodyl does not

6: refine(l′, c)

7: end while

8: update F to reflect strengthened LIl(·)
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base because any new loop invariant implies all previous loop invariants which allows for

effective use of incremental solving.

In the presence of nested loops with weak loop invariants, it is also possible that

PDR returns a spurious counterexample sequence s. In this case, it remains to determine an

individual spurious transition c′ in s and to find a nested loop l′ whose invariant admits

c′ while bodyl′ does not. These tasks can be performed using interpretation similar as

in Algorithm 4.3. Once a culprit loop l′ is determined, refine() is called recursively

to strengthen LIl′(·). This recursive strengthening is repeated until all loop invariants of

nested loops are strong enough such that PDR succeeds in disproving c.

In the following subsection, we discuss details of the counterexample generaliza-

tion. Next, we describe the composition of the model checking instances which are fed

to PDR for the actual invariant refinement. Both subsections are followed by illustrations

which demonstrate how the discussed algorithms perform on our running example.

Generalization of Counterexamples

The motivation of the generalization of spurious counterexamples at the beginning of the

refine() procedure is to promote that the QF_BV PDR model checker finds loop invari-

ants that do not only exclude the current counterexample but also exclude a large number

of related spurious counterexamples. As such, it is a pure optimization that is not required

for the correctness of the algorithm. To some extend, counterexample generalization mir-

rors simulation-based expansion of proof obligations in the PDR algorithm originally pre-

sented in [EMB11] and generalized to a hybrid simulation approach in the QF_BV PDR

solver presented in Chapter 3.

We propose to generalize counterexamples using abstract interpretation [CC77]

with the abstract domain of integer intervals and vectors of ternary values. The choice for

a specific abstract domain is furnished by the kind of operation that calculates an abstract

value. We use integer intervals if a result is calculated by an operation that interprets

bitvectors as integers (e.g. addition). For all other operations (e.g. conjunctions), we use

vectors of ternary values.

We start the abstract interpretation runs at a loop header l and continue with the

interpretation of the loop until a fixed point is found. The final value sets at loop header l

represent overapproximations of the reachable values of the variables for the given initial
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values.

Algorithm 4.5 generalizeCounterexample(l, c = {cb, ce})

1: r = abstractInterpret(l, cb)

2: for each x ∈ Ul do

3: if r[x] disjoint of ce[x] then

4: expand ce[x] maximally preserving disjointedness from r[x].

5: for all y 6= x ∈ Ul do ce[y] = ⊤

6: break

7: end if

8: end for

9: for each x ∈ Rl do

10: Substitute cb[x] with largest value set v ⊇ cb[x] s.t.

11: ∃y ∈ Ul.abstractInterpret(l, cb/v)[y] is disjoint of ce[y]

12: end for

Algorithm 4.5 gives details of how we use the results of abstract interpretation

runs for the actual generalization of counterexamples. Note that we use cb (ce) to denote

the portion of c that corresponds to the values of the variables before (at the end) of the

loop and ⊤ to denote the maximum value set representable by a certain abstract domain.

Lines 1-8 of Algorithm 4.5 aim at generalizing the value sets of the post-values of the coun-

terexample ce: To this end, the program is interpreted with the initial values cb given in the

counterexample to obtain an overapproximation r of the reachable values after the loop.

If, for any variable x ∈ Ul, the set of reachable values r[x] is disjoint from the correspond-

ing post-values ce[x] in the counterexample, ce[x] is expanded maximally while preserving

the disjointedness from the reachable value set. If ce[x] is represented as an integer in-

terval, this is achieved by pushing the upper and lower bounds until ce[x] ceases to be

disjoint of r[x]. In case ce[x] is represented as a vector of ternary values, we substitute 0

and 1 values with don’t care values until ce[x] ceases to be disjoint of r[x]. This procedure

guarantees that the resulting counterexample remains spurious regardless of any other

variables. Hence, we can enlarge all other value sets corresponding to other post-variables

maximally.

Lines 9-12 aim at generalizing the value sets for the initial values cb in the coun-

terexample. To this end, for each variable x ∈ Rl, we attempt to expand cb[x] maximally
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such that for at least one variable y, the overapproximation of its reachable value set r[y]

remains disjoint from the corresponding post-values ce[y] in the counterexample. Again,

the expansion procedure for finding a large value set depends on the specific abstract do-

main: If the value set is an integer interval, we attempt to increase it using binary search.

Otherwise, in case the value set is a vector of ternary values, we attempt to replace 0 or 1

values with don’t care values for each bit.

Example: Nested Loops (cont’d)

We consider the situation when verifyProgram() in Algorithm 4.2 calls refine() for

the first time. Here, generalizeCounterexample() is called on loop 1 with the coun-

terexample in equation (4.4). Mapping variants to variables, we have

c = {cb = {x = 0, i = 0}, ce = {x = −1, i = 0}}

y = x

[i>0]

i = i-1

[i≤0]
assert x ≥ y

[x<2]

i = i+1

x = x+1

[x≥2]

1

2

3 4

5

6
7

x = 0, i = 0

x = 0, i = 0

x = ⊥, i = ⊥

x = ⊥,
i = ⊥

blax = ⊥, i = ⊥

x = ⊥, i = ⊥

x = ⊥, i = ⊥

(a) Fix-Point Abstract Interpretation 1

y = x

[i>0]

i = i-1

[i≤0]
assert x ≥ y

[x<2]

i = i+1

x = x+1

[x≥2]

1

2

3 4

5

6
7

x ≥ 0, i = ⊤

x ≥ 0, i = ⊤

x ≥ 0, i = [0, ∞ − 1]

x ≥ 0,
i = ⊤

blax ≥ 0, i = ⊤

x = [1, 2], i = ⊤

x ≥ 2, i = ⊤

(b) Fix-Point Abstract Interpretation 2

Figure 4.6: Fix-Points of the Abstract Interpretations during Counterexample

Generalization for the Nested Loops Example

An abstract interpretation run with the initial values in cb yields to the fixed point

in Figure 4.6a. With the initial values cb, the loop is not entered and the reachable intervals

at the loop header remain r = {x = 0, i = 0}. As r[x] is disjoint from ce[x], we can expand

ce as defined in lines 4-5 of Algorithm 4.5 to obtain

c = {cb = {x = 0, i = 0}, ce = {x ≤ −1, i = ⊤}}
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Next, we expand the value sets in the cb-portion of the counterexample. For cb[x], de-

creasing the lower bound causes that the reachable value sets r returned by the abstract

interpretation ceases to be disjoint from the post-values in ce. However, increasing the up-

per bound preserves this condition. For cb[i], we can increase the interval in both directions

arbitrarily without causing that ce ceases to be disjoint from the reachable intervals r (see

fixed point of the corresponding abstract interpretation in Figure 4.6b. As in Chapter 3,

we denote with ∞ the maximum value a bitvector can take). We obtain the generalized

counterexample

c = {cb = {x ≥ 0, i = ⊤}, ce = {x ≤ −1, i = ⊤}} (4.5)

Invariant Refinement

Given a loop l = (H, T) and a spurious counterexample c, the input model checking in-

stance (I, T, B) of the PDR-algorithm for loop l is constructed as follows. For each variable

x ∈ Ul, denote with xb and xe, respectively, the corresponding variants at the beginning

and at the end of loop l. For each variable x ∈ Rl \ Ul, denote with xb the corresponding

variant. To specify the set of initial states I, we require that for each variable x in Ul, we

have that xe ≡ xb. Intuitively, this means that the values of a variable before the loop and

after the loop are equal before any iterations. The transition relation T is composed of four

parts. First, for each variable x ∈ Rl, we constrain that the initial value does not change:

x′b ≡ xb. Second, for each variable x ∈ Ul, we constrain x′e ≡ xT where xT is the last in-

stantiated variant of x in the loop tail T. Third, we add the SMT formula corresponding to

the part of the CFG that represents the loopl. Nested loops are represented by their loop

invariants but their bodies are excluded. Fourth, we constrain bT, i.e. that each transition

requires that the loop tail is reached. The bad states B are the states that are contained in

the generalized counterexample c.

This construction guarantees that the size of the model checking instances are

bound by the size of the loop. Unrolling or “inlining” of nested loops are purposely

avoided. In our experience, this usually entails that SMT formulae are solved quickly.

We preserve the trace constructed for loop l by the PDR algorithm between calls.

This avoids that runtime required to prove that a certain subspace is unreachable in a

certain number of steps is spent more than once. We argue why this memoization does not

compromise the correctness of the results returned by PDR. Consider any two successive
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invocations PDR(I1, T1, B1) and PDR(I2, T2, B2) for refinement of the same loop. The trace

constructed during the first call may be reused in the second call, because

1. we always call PDR with the same set of initial states, i.e. I1 = I2,

2. and any refinement of a nested loop invariant leads to a strengthening of the tran-

sition relation. As a consequence, T2 is stricter than T1 (formally T2 ⇒ T1) and any

state determined unreachable within a certain number of states using the weaker

transition relation T1 is also unreachable under the stronger transition relation T2.

Example: Nested Loops (cont’d)

We use the QF_BV PDR-solver to strengthen the loop invariant of loop 1 with the gener-

alized counterexample in equation (4.5). Constructing the model checking instance using

the directions above, we obtain the following model checking instance as input of the PDR

algorithm.

I = (x1 ≡ x0) ∧ (i1 ≡ i0)

T = (x′0 ≡ x0) ∧ (i′0 ≡ i0) ∧ (x′1 ≡ x2) ∧ (i′1 ≡ i3) ∧ (b5 ⇒ b4)

∧(b7 ⇒ b5) ∧ (b4 ⇒ (i1 > 0)) ∧ (b4 ⇒ (i2 ≡ i1 − 1))

∧(b5 ⇒ LI2(·)) ∧ (b7 ⇒ (x2 ≥ 2)) ∧ b7

B = (x0 ≥ 0) ∧ (x1 ≤ −1)

Note that the current version of LI2(·) is used within the transition relation. As this loop

invariant is initially true, this practically allows any update in one iteration. Assume that

PDR returns the following counterexample sequence

State 0

i0 = 0, x0 = 0

i1 = 0, x1 = 0

→

State 1

i0 = 0, x0 = 0

i1 = 0, x1 = −1

As the sequence has only one transition, it is clear that this one must be spurious. Similarly,

as there is only one nested loop within loop 1, it is clear that the current invariant LI2(·)

causes the discrepancy between model and program. We extract the following counterex-

ample for loop 2 by projecting the variables appropriately:

c′ = {x1 = 0, i2 = 0, x2 = −1, i3 = 0}
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and call refine() recursively on loop 2 and c′. The procedure returns after having refined

the invariant of loop 2 to

LI2(·) = (x1 < 0) ∨ (x2 > −1)

In the next iteration of the while-loop, we call the PDR-solver with the same

model checking instance as above but with the updated LI2(·) within the transition re-

lation. With this strengthening, the counterexample can be disproved and we can infer the

loop invariant

LI1(·) = (x0 < 0) ∨ (x1 > −1)

from the trace of the PDR invocation.

When refine() is called the second time in verifyProgram(), the process of

strengthening LI1(·) is similar with one significant difference: We start PDR with the trace

constructed in the previous invocation. Therefore, the subspace (x0 ≥ 0) ∧ (x1 ≤ −1)

previously determined as unreachable is available. If, for instance, the next call of the

QF_BV PDR solver was with the spurious counterexample

c = (x0 ≥ 2) ∧ (x1 ≤ 1)

then the cover in last frame of the PDR trace in the backend solver will eventually be as dis-

played in Figure 4.7a. This situation triggers a reshape-action as described in Section 3.2.2,

yielding the cover in Figure 4.7b which corresponds to the invariant

LI1(·) = (x1 ≥ x0)

which is strong enough to prove the safety of the program.

−2−4 4 6 x0

−4

2

4

x1

(a) Before Reshape

−2−4 4 6 x0

−4

2

4

x1

(b) After Reshape

Figure 4.7: Cover in the last frame before and after the reshape-operation.
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4.4 Implementation and Experimental Evaluation

In this section, we describe our practical work. We start with a discussion of our imple-

mentation in Section 4.4.1 and continue with presenting results obtained from experimen-

tation with our implementation on benchmark programs contained in the distribution of

INVGEN [GR09] and from the benchmark set of the SV-COMP competition on Software

Verification [Bey12] in Section 4.4.2.

4.4.1 Implementation with LLVM

We implemented the presented algorithm in C++ and use functionality of the LLVM-

framework [LA04] for parsing, representation, and analysis of the PUV. Working with the

LLVM intermediate representation instead of a custom frontend for a specific language

has the important advantage that we can process programs of any language for which an

LLVM-frontend exists. For example, in addition to the C-language frontend we used in

our experimentation, there exist frontends for the languages Fortran, Ada, Python, and

Haskell.

The disadvantage of using the LLVM intermediate representation is that the cor-

rectness of the verification results depends on the correctness of the frontend compiler. In

addition, even if correct, the compiler frontend is free to define the behavior of constructs

that are undefined, indeterminate, or implementation defined by the C-standard [ISO99].

An example where this yields incorrect verification results in our setup with the

C-fronted Clang [Cla] used in our experimentation is given in Figure 4.8. The program in

Figure 4.8a is not safe because by the C standard, the value of j is indeterminate every

time the loop body is entered. As such, l and k can get different values assigned in the

loop and the assertion in the last line does not necessarily hold. However, a compiler

is free to assign any value to j. Clang resolves the situation by allocating j in the basic

block before entering the loop. This interpretation is equivalent with the safe program in

Figure 4.8b. Though the initial value of j is indeterminate in the safe program as well, the

value cannot change between iterations and the variables l and k are guaranteed to have

identical values at the end of the loop and the assertion holds.

As the problem of detecting any kind of constructs that are undefined, imple-

mentation defined, etc. is undecidable, this can be considered a conceptional flaw of our

verification strategy. Practically, however, most problematic constructs can be detected
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int l;

int k;

for (int i=0; i < 2; ++i)

{

int j;

if (i == 0) l = j;

if (i == 1) k = j;

}

assert (l == k);

(a) Unsafe Program

int l;

int k;

int j;

for (int i=0; i < 2; ++i)

{

if (i == 0) l = j;

if (i == 1) k = j;

}

assert (l == k);

(b) Safe Program

Figure 4.8: Safe and unsafe program compiled to the same LLVM intermediate

representation.

statically and resolved for sound verification. Otherwise, the strategy employed by Clang

to resolve problematic constructs is similar to the strategy employed by most other com-

pilers. For instance, for the program in Figure 4.8a, it can be expected that most compilers

will allocate j on the same position on the stack in all iterations, compiling the unsafe pro-

gram in a safe manner. In this case, the wrong verification result does not matter because

the program error will never manifest in practice.

4.4.2 Experimental Results

Table 4.1 summarizes runtime characteristics of the presented algorithm (referred to as

Property Directed Program Verification or PDPV for short) for the set of benchmarks. Col-

umn 1 gives the name of the benchmark, column 2 the origin of the benchmark, and col-

umn 3 the lines of code as a crude measure of benchmark size. The next nine columns

contain runtime statistics of our algorithm once both with counterexample generaliza-

tion and memoization of reachability information in the PDR trace (default, columns 4-6),

once without counterexample generalization (columns 7-9), and once without memoiza-

tion (columns 10-12). For each configuration, we report runtime, peak memory require-

ment, and the percentage of the runtime spent in the QF_BV PDR model checker. As point

of reference, columns 13 and 14 report running times and memory consumption when us-

ing the fully symbolic approach modeling the program counter explicitly as discussed in

Section 4.2 on these benchmarks. We report timeout in case a verification attempt does not

terminate within 600 seconds.
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As can be seen, our verifier solves all verification tasks within reasonable run-

time limits. Memory requirements are generally low, which is explained by the avoidance

of unrolling both in the frontend and in the backend model checker of the program verifier.

Generalization of counterexamples reduces the running time often substantially. In these

cases, the runtime savings can be explained by the reduction of the burden on the backend

model checker. Without the use of memoization, the algorithm is less stable, documented

by several timeouts. With the fully symbolic encoding, only a small fraction of the bench-

marks can be solved within the limit on running time and in these cases, the performance

is substantially worse than the proposed verifier.
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Chapter 5

Related Approaches To Program

Verification

In this chapter, we discuss related approaches to program verification. Two techniques

are particularly relevant with respect to the research discussed in this dissertation: In Sec-

tion 5.1, we discuss a verification framework that, similar to PDPV, uses loop invariants

to reduce a proof obligation for a safety property in a sequential program to a combina-

tional verification problem that can be fed to a theory solver. In Section 5.2, we introduce

a verification technique that is based on interpolation and has been used in conjunction

with PDR as a hybrid verification technique. We will survey both techniques with a focus

on comparing them to our technique.

5.1 Program Verification with Invariants

In this section, we start with outlining the loop-invariant-based framework in the follow-

ing section. The success of the approach is contingent on whether or not sufficiently strong

loop invariants are available. If loop invariants are not available, one can attempt to infer

them automatically. In Section 5.1.2, we discuss techniques that have been devised for this

purpose.
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5.1.1 Overall Framework

The popular paradigm for program verification discussed in [BL05] proves or disproves

a safety property in the PUV by converting the proof obligation in the CFG of the PUV

into a logic formula which is unsatisfiable only if the program has the property of interest.

The conversion from the original problem to the logic formula is similar to the technique

we described in Chapter 4: The CFG is transformed into a directed acyclic graph (DAG),

the derived DAG is passified, and the passive, combinational program is translated into a

logic formula using weakest preconditions [Dij76] which can be fed to a theory solver.

In the first of the three transformation steps, backedges of loops in the PUV are

cut and one attempts to capture the meaning of the loops using loop invariants. The format

of the loop invariants differs from the one applied in our framework. In the framework

discussed in [BL05], any program variable can be in the support of the loop invariant

while in PDPV, only variables referenced in the loop can be in the support of the loop

invariant. Also, in the framework in [BL05], loop invariants constrain the values in the

variables at any time the control visits the loop header. In PDPV, the loop invariants

relate the possible values of the variables after the loop with those at the beginning. These

two differences are significant as they enable the local reasoning applied to refine loops

discussed in Section 4.3.3.

Figure 5.1 illustrates the ideas in [BL05] graphically: For each loop, the corre-

assert(invariant)

havoc(x)

assume(invariant)

[Guard]

x := ...

assert(invariant)

[¬ Guard]

. . .

. . .

1

32

(a) Original Sequential Program

assert(invariant)

havoc(x)

assume(invariant)

[Guard]

x := ...

assert(invariant)

[¬ Guard]

. . .

. . .

1

32

(b) Combinational Model

Figure 5.1: Derivation of a combinational model from a sequential program.

sponding backedge is cut, variables updated in the loop are allowed to take arbitrary val-

ues (indicated by the havoc-statement in the figure), and the values are restricted there-
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after by assuming the loop invariant. If the supplied loop invariants are too strong, the

framework can produce false positives (an unsafe program is declared safe). To exclude

this possibility, the initiation and consecution conditions are verified by adding assertions

in the loop header and body. Note that in PDPV, adding these conditions would be re-

dundant as loop invariants are correct by construction.

To illustrate the above, consider the concrete example in Figure 5.2a where one

attempts to prove that the assertion in basic block 5 holds regardless of the value of x at the

beginning of the code fragment. Cutting the backedge, adding the havoc-statement, and

applying the loop invariant x ≥ 0 yields the combinational model in Figure 5.2b. It is easy

to see that all assertions hold regardless of the initial value of x in this model. This proves

both the original proof obligation and that the applied loop invariant are valid.

[x<0]

x := -x

[x≥0]

assert(x≥0)
havoc(x)

assume(x≥0)

assert(x≥0) x := x*x

assert(x≥0)

. . .

. . .

1

2 3

4

5 6

(a) Original Sequential Program

[x<0]

x := -x

[x≥0]

assert(x≥0)
havoc(x)

assume(x≥0)

assert(x≥0) x := x*x

assert(x≥0)

. . .

. . .

1

2 3

4

5 6

(b) Combinational Model

Figure 5.2: Verifying a program with a loop invariant

The success of the discussed framework to program verification depends on the

existence of loop invariants strong enough to prove the desired properties of the PUV.

Unfortunately, loop invariants are often not available and despite arguments from the aca-

demic community in favor of program annotation (see e.g. [DF88]), developers are usually

not willing or able to provide loop invariants to the verification system. This instigated

interest for automatic inference of loop invariants. We will survey relevant approaches to

loop inference in the following section.
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5.1.2 Approaches to Invariant Inference

There is a rich body of literature describing approaches to automatically inferring loop

invariants in programs. Herein, we describe the three most relevant approaches. We start

with the most established approach, abstract interpretation, which is not only used for

program verification but in a larger number of applications such as static analysis and

compiler optimization. Subsequently, we describe a more recent dynamic approach which

is particularly targeted to applications where the desired invariants are relatively simple.

Finally, we discuss a similar but static approach to invariant inference which represents

the conceptual basis of INVGEN [GR09], a popular tool for inferring linear loop invariants.

Abstract Interpretation

Traditionally, a vehicle for invariant inference is abstract interpretation as originally intro-

duced in [CC77]. In abstract interpretation, one selects an abstract domain A, abstraction

and concretization functions, as well as an abstract transition relation. Given the abstract

transition system, one calculates the least fixed point to obtain invariants in the abstract

domain. These can be transformed to invariants of the PUV using the concretization func-

tion.

To illustrate the technique to invariant inference, reconsider the example in Fig-

ure 5.2. Assume we chose A = {⊥, (−), (+), (±)} which relates to the concrete domain

of x as given in Table 5.1. We start the calculation of the least fixed point assuming the

Abstract Domain Concrete Domain

⊥ x ∈ ∅

(−) x < 0

(+) x ≥ 0

(±) x ∈ [−∞, ∞]

Table 5.1: Relation between Abstract and Concrete Domains of x

bottom element for x at each location in the program (see Figure 5.3a). At the beginning

of the program, x an take any value. In the abstract domain, this corresponds to (±) (see

Figure 5.3b). In the next iteration of the least fixed point calculation, the (±)-value at the

input of basic block 1 is propagated to the fanout of this basic block, as basic block 1 cor-
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responds to an identity function in the abstract transition relation (see Figure 5.3c). In the

next iteration, the abstract values at the fanout of basic blocks 2 and 3 are updated. In both

cases, x must be greater or equal than zero, reflected as (+) in the abstract domain (see

Figure 5.3d). In the next iteration, these values are propagated through basic block 4 (see

Figure 5.3e). As multiplying two positive values yields a positive value, the abstract value

at the fanout of basic block 6 is calculated to (+) in the next iteration (see Figure 5.3f).

At this point, applying the abstract transition relation does no longer update any abstract

value, i.e. we have found the least fixed point. The abstract value at the loop header is (+),

hence we can infer that x ≥ 0 is an invariant of the loop in the program fragment.

The main practical challenge associated with using abstract interpretation to in-

variant inference is to find a suitable abstract domain for the specific PUV and properties

of interest. To increase the probability that abstract interpretation infers useful aspects

about loops, many different abstract domains can be used. In any case, however, there is

no guarantee that abstract interpretation will yield strong loop invariants.

Dynamic Invariant Inference

In the DAIKON-approach [ECGN01], one assumes that a test set for the PUV is available.

The algorithm consists of three phases. In the first phase, DAIKON compiles a set of likely

invariants. The set is based on experience with typical programs and contains for instance

hypotheses about a single variable x such as x = c, x 6= 0, x ∈ [a, b], etc. or hypotheses

about pairs of variables x, y such as x ≤ y, ax + by = c, etc. In the second phase, the test

set is used to filter out candidate invariants that contradict the observed behavior. In the

third phase, the remaining candidates are verified using a theory solver.

Figure 5.4 illustrates how DAIKON could be used to infer loop invariants for the

example. Assume that in the first phase of the algorithm, the candidates x < 0, x ≥ 0,

and x = c are generated. In the second phase, DAIKON interprets the program fragment

with the test set containing two tests with x being initially 10 and −5. Interpreting the first

test allows DAIKON to filter out the candidate x < 0 and to specialize the candidate x = c

to x = 10. Applying the second test additionally cancels candidate x = 10. In the third

phase of the algorithm, DAIKON verifies with a theory solver that x ≥ 0 is indeed a valid

invariant of the loop in the program fragment.

In practice, DAIKON has two limitations: First, it can only find loop invariants
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that are in the initial set of candidates. Second, DAIKON requires a strong test set such that

the set of candidates can be reduced to a manageable number. Otherwise, the verification

phase will require unacceptably long.

Template Approaches

A static alternative to the DAIKON-approach are template solutions. In these approaches,

one assumes a certain parametrized form of the loop invariants, constructs a suitable con-

straint system that potential parameters must obey to, and uses a theory solver to solve for

the parameters. One implementation of this approach is discussed in [CSS03] where the

authors assume that the loop invariants can be formulated as linear inequalities.

[x<0]

x := -x

[x≥0]

assert(x≥0) x := x*x

. . .

. . .

ax ≥ c

1

2 3

4

5 6

(a)

Initiation:

x < 0 ⇒ −ax ≥ c

x ≥ 0 ⇒ ax ≥ c

Consecution:

ax ≥ c ⇒ ax2 ≥ c

(b)

Figure 5.5: Inference of a Loop Invariant with Template Approach

We illustrate the technique for our example in Figure 5.5 where we assume that

the invariant is of the form ax > c. To be valid, the invariant needs to adhere to two sets

of constraints, pertaining initiation and consecution. There are two ways of reaching the

loop initially, through basic blocks 2 and 3. The path through basic block 2 is only taken

if x < 0. Also in basic block 2, the sign of x is flipped. When reaching basic block 4, the

invariant must hold, hence we get the constraint x < 0 ⇒ −ax ≥ c. The constraint for

the path through basic block 3 is constructed in analog fashion. To assure consecution, we

need to add a constraint for the loop through basic block 6. Here we can assume that the

invariant ax ≥ c holds when leaving the loop header. x is squared in the loop. Hence,

to assure that invariant holds when reentering the loop, we must have ax2 ≥ c. To find
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possible parameters a and c, the three constraints are solved using a theory solver. It is

easy to verify that with a = 1 and c = 0, the constraints hold for any value of x, yielding

the same invariant x ≥ 0 as with the other discussed approaches for invariant inference.

A well-known tool that uses the template approach as main reasoning engine is

INVGEN [GR09]. After applying a couple of dynamic strategies, INVGEN sets up a sys-

tem of equations and solves for the template parameters. This hybrid approach yields a

relatively robust algorithm. However, INVGEN has three main limitations: First, INVGEN

commits to conjunctions of linear inequalities as loop invariants. If the invariant required

to prove a program safe is of any other form, the algorithm fails. Second, INVGEN models

programs using the quantifier free theory of linear arithmetic (QF_LA). Consequently, IN-

VGEN does not support programs with bit-level operations and the verification results are

not guaranteed to be correct, e.g. in the presence of possible overflows. Third, INVGEN is

not able to generate counterexamples. If the verification fails, it is not clear if the program

is unsafe or if INVGEN failed.

Figure 5.6 contains an empirical comparison between PDPV and INVGEN. As in

Chapter 4, we report timeout in case the program did not terminate within 600 seconds.

Additionally, we report error if the program terminated without providing a result (either

by giving up or due to a crash) and false positive if an unsafe program is reported as safe.

INVGEN terminates faster than PDPV in the majority of the cases but fails in roughly 40%

of the benchmarks. In one case, it returns an incorrect verification result.

Detailed Study of Selected Benchmarks INVGEN uses linear arithmetic to model bitvec-

tor arithmetic. The consequences of this inaccurate modeling can be studied e.g. in the

example NetBSD_loop.c of which a simplified excerpt is given in Figure 5.7a. Here, IN-

VGEN disregards the possible overflow in the addition of the second assertion and returns

that the problem is save. On the other side, PDPV returns a counterexample stimulating

this overflow.

The example disj_simple.c for which a simplified excerpt is given in Fig-

ure 5.7b is safe in the theory QF_LA. However, INVGEN fails in constructing the proof

because it can only find invariants that are conjunctions of linear inequalities by default.

Otherwise, the tool requires template annotation and performs less efficient as most opti-

mization gets disabled. In particular, invariants that are disjunctions represent a challenge

for INVGEN and many other program verification tools alike but are often needed in prac-
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if(lenPath>0)

{

off=len;

for(i=0;

i<=off;

i++)

{

assert(0<=i);

assert(i<len+1);

}

}

(a) NetBSD_loop.c

int x=0;

int n;

while(x<n)

{

x++;

}

if(n>0)

{

assert(x<=n);

}

(b) disj_simple.c

Figure 5.7: Program fragments for which INVGEN fails but PDPV succeeds.

tice [SDDA11]. To prove the specific example in Figure 5.7b safe, the disjunctive invariant

(x = n) ∨ (n < 0) must be inferred. Even with a suitable template annotation, INVGEN

fails in calculating the invariant. In contrast, disjunctive invariants do not represent a

structural challenge for PDPV and hence it is able to verify the program quickly.

At the cores of all three surveyed approaches to invariant inference rest certain

assumptions about the form of the invariants; in abstract interpretation by defining the

abstract domain, in DAIKON by the compiled set of likely invariants, and in the template

approaches by the actual choice of the template. These assumptions make the inference

process tractable but at the same time limit their generality as no invariants can be found

that do not match these assumptions. Another common trait of all three approaches is that

they are not directed towards finding invariants useful in proving certain properties in a

program. This is in stark contrast to our verification framework, which does not suffer

from these limitations. In principle, PDPV is able to find any invariant and it is directed

towards resolving the actual proof obligations.

5.2 Program Verification with Interpolation

The software verification algorithm IMPACT [McM06] constructs an unwinding of the CFG

that is subsequently annotated with reachability information calculated using Craig Inter-
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polation [Cra57].

Figure 5.8 illustrates how IMPACT proves that our running example from Fig-

ure 5.2a is safe. Via depth-first search, IMPACT traverses the CFG until an error location is

reached. Along the way, a tree T is constructed. Each vertex of T corresponds to a program

location after a basic block is executed. In our illustration, we denote the ith vertex that cor-

responds to the program location after basic block Bj with ji. Each vertex in T is associated

with a predicate that holds in the corresponding program location. Initially, all vertices

are annotated with the predicate ⊤. For our example, assume that the path through basic

blocks B1, B2, and B4 to the error location is explored first. (see Figure 5.8a).

For each error path, IMPACT constructs an SMT formula that is satisfiable iff the

path is viable and the SMT formula is fed to an SMT solver. If the SMT formula is satisfi-

able, the returned model encodes a counterexample proving that the program is not safe.

Otherwise, IMPACT applies an interpolation algorithm to derive reachability information

from the proof of unsatisfiability derived by the SMT solver. An interpolant I for an in-

consistent SMT formula composed of conjuncts A and B is a formula that is implied by A

(A ⇒ I), implies ¬B (I ⇒ ¬B), and is over variables that are in the supports of both A and

B. For the error path in Figure 5.8a, we could derive the SMT formula

(x0 < 0) ∧ (x1 = −x0)
︸ ︷︷ ︸

A

∧ (x1 < 0)
︸ ︷︷ ︸

B

(5.1)

that is clearly inconsistent. To derive e.g. reachability information for vertex 21, we parti-

tion the SMT formula as indicated in equation (5.1) and apply an interpolation algorithm

to obtain the interpolant x1 > 0.

The annotation for all vertices on the first error path is contained in Figure 5.8b

along with the second error path that is resolved using the same steps yielding the an-

notation as in Figure 5.8c. Note that vertices 41 and 42 correspond to the same program

location and that the annotation of vertex 42 implies the annotation of vertex 41. Intu-

itively, this means that everything that can be reached from vertex 42 can also be reached

from vertex 41 and we can abstain from further expanding 42. In this situation, we say

that 42 is covered by 41 and we indicate the relationship with a dotted directed edge in our

illustrations. IMPACT terminates if all vertices are either fully expanded or covered. For

our example, this yields the unwinding in Figure 5.8c.

In [CG12], this verification algorithm is extended by proposing a procedure simi-
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(c) Termination

Figure 5.8: Stages of Unwinding of IMPACT
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Figure 5.9: Application of TREEIC3 for Annotation

lar to PDR (referred to as TREEIC3) as a secondary method for annotating the unwinding.

To this end, one constructs a trace-tree where each frame corresponds to a vertex in the

unwinding T. The cover of a frame f ji indicates which states are unreachable in the cor-

responding program location ji. Given an error path, the objective is to cover a frame in

the trace-tree corresponding to a program location on the error path entirely, effectively

proving that the path is not viable. As in the PDR algorithm, TREEIC3 resorts to local rea-

soning involving at most two frames at a time. The role of the transition relation is taken

by the statements executed between two program locations. The principle is illustrated

in Figure 5.9 where we assume that the first error path was already processed and one

attempts to strengthen the annotation to exclude the second error path to E2. Figure 5.9b

contains the trace-tree constructed for this purpose. Note that the frames f21
, f41

, and fE1

reflect the annotations in Figure 5.9a. We attempt to prove that E2 is not reachable. By

means of a call of FINDBADCUBE(), we obtain the proof obligation ⊤ in fE2
and using a

procedure similar to RECCOVERCUBE(), we infer the additional proof obligations in f61

and f42
. (see Figure 5.9b). No state in the proof obligation in frame f61

can be reached from

frame f41
, hence the proof obligations can be covered. Similar reasoning allows to cover
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the remaining proof obligations in frames f42
and fE2

and to arrive at the terminal state in

Figure 5.9d.

The authors of [CG12] propose to use the PDR-inspired annotation scheme as a

secondary annotation method if the original interpolation-based annotation method per-

forms poorly. Using this hybrid scheme, the verification algorithm outperforms the origi-

nal version of the algorithm with exclusive use of interpolation on a large fraction of bench-

marks, often substantially. In the following, we refer to the formulation of the algorithm

with both annotation schemes as IMPACT∗ while we continue to refer to the original for-

mulation with exclusive use of interpolation for annotation as IMPACT.

There are two main differences between our algorithm and IMPACT∗: First, PDPV

calculates invariants for real locations in the PUV while IMPACT∗ calculates invariants for

nodes in an unrolling of the CFG. In addition to the potential efficiency problems due to

this unrolling described in [McM10], restricting to real program locations as in PDPV has

the advantages that the invariants can be initialized with potentially known invariants,

that the proofs generated by the verifier are easier to comprehend, and that the inferred

invariants can be used for further analyses or optimization. Second, as IMPACT∗ calculates

reachability information partially using interpolation, its success rests on the availability

of an efficient interpolation algorithm. Such an interpolation procedure is not known for

QF_BV. To avoid bit-blasting and the application of a Boolean interpolation algorithm such

as presented in [McM03], IMPACT∗ resorts to an interpolation algorithm for the quantifier

free theory of linear rational arithmetic (QF_LRA) [McM04]. This choice gives a very ef-

ficient algorithm, but does not allow for accurate modeling of any bitvector arithmetic.

A quantitative comparison to PDPV is contained in Figure 5.10. IMPACT∗ outperforms

our algorithm in the majority of the benchmarks. However, the algorithm yields wrong

verification results (false positives or false negatives) in roughly 30% of the cases.

The problems leading to the large number of bogus verification results can be il-

lustrated using the same examples as in Section 5.1.2. Similarly to INVGEN, IMPACT∗ is

ignorant to the potential overflow in the program NetBSD_loop.c and erroneously re-

turns that the program is safe. For the example disj_simple.c, IMPACT∗ does not suffer

from the limitations regarding disjunctive invariants but returns a spurious counterexam-

ple as an artifact of modeling the program using rational arithmetic: In this interpretation,

the program is indeed not safe. For instance, n can initially be assigned 0.5. This allows

for a run where x gets incremented once and the assertion fails.
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Chapter 6

Initialization of Loop Invariants

At the core of the verification framework described in Chapter 4 rests the counterexam-

ple guided strengthening of loop invariants using Property Directed Reachability. As de-

scribed there, the loop invariants are initially assumed to be true, i.e. the initial loop model

allows arbitrary valuations of its loop variables before and after the loop.

A promising extension to this approach is to initialize the loop invariants. This

may speed up the solving of the model checking instances in the PDR backend or avoid

calls to the PDR backend altogether.

In this chapter, we start with discussing how to integrate initial loop invariants

into our framework for program verification in the following section. Next, we discuss

several options to obtain loop invariants in Section 6.2. Finally, in Section 6.3, we describe

a case study where we use one specific tool, DAIKON [ECGN01], to obtain loop invariants

and assist the solving of the benchmark instances we introduced in Chapter 4.

6.0.1 Dijkstra’s Urn Example

We will illustrate the discussion in this chapter using Dijkstra’s urn example as presented

in [Dij90] (see Figure 6.1). Assume you are given an urn filled with white and black balls.

Every iteration, two arbitrarily selected balls are taken out of the urn. If the two balls

are white, one of the two balls is painted black and returned to the urn (Move 1). If the

two balls are black, one of the black balls is returned to the urn (Move 2). Otherwise, if

a black and a white ball were selected, only the white ball is returned to the urn (Move

3). Note that the outcomes of the second and the third moves are equal with respect to
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w′ = w
b′ = b − 1

w′ = w
b′ = b − 1

w′ = w − 2
b′ = b + 1

Move 3

Move 2

Move 1

(a) Illustration of possible moves

int

urn(int w, int b)

{

assume (w >= 0);

assume (b >= 0);

assume (w + b >= 2);

int z = w;

while (w + b >= 2)

{

if (* && w >= 2)

{

// Move 1

w -= 2;

b += 1;

}

else if (b >= 1)

{

// Move 2 or 3

b -= 1;

}

}

if (z & 1)

{

assert(b == 0 && w == 1)

}

else

{

assert(b == 1 && w == 0)

}

}

(b) urn.c

Figure 6.1: Dijstra’s urn example

the difference in numbers of black and white balls in the urn before and after the move.

The program in Figure 6.1b models the urn example where we used the *-symbol in the

if-condition to indicate the random selection. The property of interest pertains the state of

the urn after termination of the while-loop: If the count of white balls is initially odd, only

a single white ball remains in the urn. Otherwise, only a single black ball remains in the

urn. The property is encoded in the assertions at the end of urn.c.

The while-loop in function urn() has many invariants. With respect to our proof

obligations, the most important ones are that the number of white or black balls can never

become negative (w ≥ 0, b ≥ 0) and that the parity of the number of white balls does not

change (z odd ⇔ w odd). These three invariants and the fact that the loop is only left if

w + b < 2 immediately imply the assertions, i.e. prove that the program is safe.
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6.1 Integration of External Loop Invariants

As discussed in Chapter 5, loop invariants are traditionally formulated in terms of program

variables. In contrast, PDPV encodes loop invariants as predicates over two copies of loop

variables, holding their values before and after loop, only. As in previous chapters, we

refer to the variant holding the value of a variable v before (at the end of) the loop as vb

(ve).

In Dijkstra’s urn example, we have the program variables w, b, and z. Only w and

b are loop variables, hence PDPV expects loop invariants over wb, we, bb, and be.

If a given loop invariant in the traditional formulation holds for a specific loop,

it holds before and after the loop, i.e. the loop invariant can be transcribed into the format

expected by PDPV both in terms of the variants holding the value before and after the

loop. For instance, the loop invariant w ≥ 0 can be reflected by adding wb ≥ 0 and we ≥ 0.

Internally, loop invariants for a specific loop l are associated with the PDR-trace

corresponding to l. Denoting the set of invariants with I, they are reflected in subroutines

as follows:

• For finding a bad ARU that is not yet covered, one uses the following generalization

of equation (2.1)

B ∧ ¬
∨

ci∈Fl

ci ∧
∧

i∈I

i (6.1)

where, in addition to specifying that the ARU must be in bad and is not yet covered,

one also specifies that all invariants must hold.

• Similarly, one adds the invariants to the check if a proof obligation in frame l is reach-

able from the previous frame l − 1 to arrive at the following generalized form of

equation (2.2):

¬
∨

ci∈Fl−1

ci ∧
∧

i∈I

i ∧ T ∧ c′ (6.2)

Note that adding a term such as
∧

i∈I i′ to (6.2) would be redundant as c′ is guaranteed

to adhere to all invariants in I as it was previously found using (6.1) or (6.2).
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6.2 Origin of Initial Loop Invariants

The most immediate option to obtain loop invariants is by program annotation. Even

though program annotation is generally unpopular in practice, adding a few loop invari-

ants in safety-critical code that otherwise fails verification may be considered acceptable.

In some contexts, loop invariants may also be readily available in particular if automatic

code generation is used.

Otherwise, loop invariants can be inferred by any of the approaches discussed in

Section 5.1.2. The fact that checking loop invariants is computationally easier than infer-

ring them is making this alternative viable as it allows to check invariants which may or

may not be correct. To name an example where this matters, consider INVGEN [GR09]. We

have seen in Section 5.1.2, that the fact that INVGEN uses the theory QF_LA rather than

QF_BV can yield wrong verification results. However, even though a wrong theory is used,

this does not imply that the inferred invariants are actually wrong. If the initialization and

consecution tests pass using the theory QF_BV, the invariants can be used regardless of

how the invariant was calculated.

Extending our verification framework by using invariants inferred with DAIKON

is a particular promising approach. As described in Section 5.1.2, DAIKON executes a dy-

namic analysis to obtain candidates for loop invariants. On the other hand, our framework

executes a purely static analysis. It is generally accepted in the community that static and

dynamic tools have complementary advantages and disadvantages. Using the loop invari-

ants inferred by DAIKON in our static tool may combine the strengths of both paradigms.

6.3 Initializing Loop Invariants with DAIKON

In this section, we describe a case study where we use DAIKON to infer loop invariants

for the benchmark set introduced in Chapter 4. We start with discussing some technical

details of our experimental setup in the next subsection and report experimental results in

Subsection 6.3.2.

6.3.1 Implementation

The generation of loop invariants with the DAIKON invariant generator is associated with

two technical challenges. First, DAIKON assumes the availability of test sets but we did
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not have any tests for our benchmarks. Second, DAIKON does not support the generation

of loop invariants but that of function invariants only.

We resolved the first challenge by automatically generating appropriate test sets

for all benchmark problems. To this end, we applied procedure GENERATETESTS() as

coded in Algorithm 6.1. As in Chapter 4, we denote with −∞ and ∞ the minimally and

maximally representable value within the type of a specific argument. Further, we use

the function RAND(a, b), that returns integers selected uniformly at random in the interval

[a, b].

Algorithm 6.1 GENERATETESTS(t, a)

1: for each i in 1 to t do

2: test = []

3: for each j in 1 to a do

4: switch (r = RAND(1,9))

5: case r = 1: test.APPENDARGUMENT(0)

6: case r = 2: test.APPENDARGUMENT(-1)

7: case r = 3: test.APPENDARGUMENT(1)

8: case r = 4: test.APPENDARGUMENT(−∞)

9: case r = 5: test.APPENDARGUMENT(∞)

10: case r = 6: test.APPENDARGUMENT(RAND(-10,-2))

11: case r = 7: test.APPENDARGUMENT(RAND(2,10))

12: case r = 8: test.APPENDARGUMENT(RAND(−∞+1,-11))

13: case r = 9: test.APPENDARGUMENT(RAND(11,∞-1)))

14: end case

15: end for

16: OUTPUT(test)

17: end for

When called, GENERATETESTS(t, a) composes t tests with a arguments at random,

but oversamples corner values such as -1, 0 and ∞ for the arguments. In our experiments,

we have observed that this yields a better test coverage for the benchmark problems than

a purely random argument generation within the allowed intervals of the arguments. A

higher test coverage in turn yields better pruning of potential invariants in the second

phase of the DAIKON approach as described in Section 5.1.2.
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...

int z = w;

while (w + b >= 2)

{

while_loop_head(z, w, b);

if (* && w >= 2)

{

// Move 1

w -= 2;

...

(a) urn.c with Call to Dummy Function

void

while_loop_head(int z,

int w,

int b)

{

;

}

(b) Dummy Function

Figure 6.2: Example Insertion of Dummy Function Calls

To cope with the second challenge with DAIKON not generating loop invariants

by default but only function invariants, we add dummy function calls at the loop head-

ers. As arguments, the dummy functions receive all variables relevant to a specific loop.

Once inserted, DAIKON generates function invariants for these dummy functions which

are semantically equivalent to the desired loop invariants.

For the program modeling Dijkstra’s urn example, we add the function call to

while_loop_head() at the beginning of the while-loop as illustrated in Figure 6.2. The

function itself does not do anything but once inserted, DAIKON generates a function in-

variant for it. These function invariants generated for while_loop_head() correspond

to the desired loop invariants.

With this setup, DAIKON finds the invariants w ≥ 0 and b ≥ 0 for the while-loop.

However, it fails in finding the third required invariant (z odd ⇔ w odd) as DAIKON does

not provide an appropriate template constraint for this type of invariant.

6.3.2 Experimental Evaluation

To measure the impact of the DAIKON invariants on the solving times of the INVGEN and

SV-COMP benchmarks introduced in Chapter 4, we generated DAIKON invariants for the

problems and compared the solving times with and without their use. The scatter plot in

Figure 6.3 summarizes the results.

In our experimentation, we made the following observations: For the majority of

roughly 80% of the benchmarks, either DAIKON does not generate any loop invariants or

the generated loop invariants are useless for solving the proof obligation. In these cases,
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Figure 6.3: Impact of Initialization with DAIKON Invariants on Solving Time.

initializing the loop invariants has usually only marginal impact on the running time. If

there is an impact on the running time, it is typically due to the solving times of the back-

end SMT-solver which may increase or decrease by the additional constraints added. One

notable exception is jain_1.c, where the running time increased by almost two orders of

magnitude due to the additional constraints to the SMT solver. For the remaining bench-

marks, the invariants generated by DAIKON simplify the proof obligations substantially

and the solving time decreases, often by more than an order of magnitude. This is e.g. the

case in Dijkstra’s urn example where the two invariants w > 0 and b > 0 cut off three

quarters of the search space and effectively direct the PDR algorithm towards finding the

last invariant quickly. In the extreme case, the invariants inferred by DAIKON were strong

enough to solve the benchmarks without the need of any invariant refinement by PDR. For

the set of used benchmarks, this has been the case three times.
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Chapter 7

Conclusions

In this dissertation, we investigated the potential of using Property Directed Reachability

(PDR) for program verification. More concretely, we devised a sound and complete algo-

rithm for intraprocedural verification of programs with static memory allocation that uses

PDR to refine loop invariants.

The main parts of this effort is a generalization of the original Boolean PDR algo-

rithm for the theory of quantifier-free formulae over bitvectors and a program verification

frontend that uses this generalized PDR algorithm to infer loop invariants strong enough

to settle the proof obligations of interest.

We summarize these two contributions in the next two sections, point out their

strengths and weaknesses, and discuss directions for future work.

7.1 QF_BV Model Checking with PDR

In Chapter 3, we presented a QF_BV generalization of the PDR algorithm from [EMB11].

Though formulated for Boolean logic, the majority of the original algorithm can be used

for QF_BV by substituting SAT formulae with SMT formulae and the SAT solver with an

SMT solver for QF_BV. A major challenge has been to find a proper atomic reasoning unit

(ARU) that allows to represent commonly encountered QF_BV invariants effectively but

at the same time enables abstraction and fast reasoning as do Boolean cubes in the Boolean

case. To this end, we discovered that a mix of polytopes and Boolean cubes performs satis-

factory. While polytopes allow to represent piecewise linear invariants effectively, Boolean

cubes are particularly useful for bitwise relations. For expansion of proof obligations, the
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generalized PDR algorithm resorts to hybrid simulation where arithmetic operations are

simulated using interval simulation and all other operations using ternary simulation. We

have implemented the proposed algorithm and our experiments indicate that the model

checker uses the meta information encoded in the QF_BV model checking instances and

solves instances typically faster than the PDR algorithm included in ABC [BM10].

The generalized PDR algorithm appears to inherit most of the strengths and

weaknesses of the original PDR algorithm. In addition to the convincing performance,

the algorithm has modest memory requirements, is incremental, and can be parallelized.

In our experimentation, we have encountered two limitations of the algorithm.

First, the algorithm occasionally suffers from a negative impact of the eager, simulation-

based expansion of ARUs in the cover. To illustrate, consider the following slightly modi-

fied version of the simple example from Chapter 3.

I := (n ≡ 1) ∧ (x ≡ 0)

T := (n > 0) ∧ (x′ ≡ x + 1) ∧ (n′ ≡ n − 1)

B := (x ≥ 1000)

Figure 7.1 contains the state of the trace after several iterations of the main loop of PDR.

In each frame fi with i < 999, the following sequence happens: First, a proof obligation

x ≥ 1000 is generated. Next, the proof obligation is determined to be unreachable from

the previous frame and after expansion, an integer cube x > i + 1 is added to the cover.

Thereafter, no additional uncovered points in bad exist and a new frame is appended at

the end of the trace.
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Figure 7.1: Illustration of Negative Impact of Eager Expansion

This implies that 1000 frames need to be added to the frame before a similar invariant as for

the original example (see 3.2.1) is found. In our experiments, we have determined that the

illustrated problem can be alleviated by providing more general proof obligations (e.g. the
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counterexample generalization discussed in Chapter 4 has this effect) and by randomizing

the expansion sequence. The root cause, however, is an inherited property of the PDR

algorithm and critical to the performance of the algorithm for many benchmark problems.

The illustrated problem appears to be more prevalent in QF_BV model checking problems

than in Boolean ones, though.

Another performance problem we have encountered occurs in some benchmarks

which require complex invariants over many variables to be solved. Consider e.g. a bench-

mark where the invariant xe − xb ≥ ye − yb is required. Such a loop invariant would indi-

cate that x increases at least as much as y. To find this invariant, at least four applications

of the reshape-operation are necessary. In practice, one could expect that many more futile

attempts are made until the desired loop invariant is found. One strategy to alleviate the

problem could be to add proxy variables standing for empirically frequent combinations

of raw variables. For the example invariant above, the proxy variables xp = xe − xb and

yp = ye − yb would be particularly helpful. A proper investigation of the potential of using

proxy variables will be an interesting direction for future work.

7.2 Property Directed Program Verification

In the second part of this dissertation, we have devised a sound and complete algorithm

for intraprocedural verification of programs with static memory allocation. The program

verification algorithm is based on Property Directed Reachability in two ways: First, it uses

the QF_BV PDR algorithm from the first part of this dissertation as backend model checker

to infer loop invariants. Second, its design is based on PDR and incorporates several of its

features. Among others, similar to PDR, PDPV divides the overall verification instances

into smaller and more manageable subproblems, applies interpretation to generalize proof

obligations, and refines the current model of the program only if necessary (lazy) and in a

targeted manner (property-directed).

In addition to these properties, PDPV has the advantageous property that it uses

a form of loop invariants to infer a combinational model of the program strong enough

to prove the properties of interest. Loop invariants are a well defined and understood

interface. As such, the algorithm can be combined with other approaches to program

verification as we have demonstrated in Chapter 6. In contrast to other approaches to

invariant inference (see Section 5.1.2), the PDR-based approach is principally able to derive
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any invariant necessary to prove a program safe.

The main weakness of the presented approach lies in the fact that it is only suit-

able for intraprocedural verification. If the PUV is non-recursive, a straight-forward solu-

tion that allows to cope with this problem is inlining, i.e. by copying the body of functions

into their call sites. However, this process can increase the size of the PUV substantially

and renders the process of subsequent verification infeasible for all but the smallest pro-

grams.

A more practical solution to this end may be the use of function summaries, logic

formulae that capture the meaning of the function body. We conjecture that the recursive

refinement scheme as applied to loop invariants may also be adequate for inferring func-

tion summaries.
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